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Abstract. We investigate a closed network consisting of two multi-
servers with n customers. Service requirements of customers at a server
have a common cumulative distribution function. The state of the net-
work is described by the following state parameters: for each multi-server
and for the queue empirical measures of the age of customers being ser-
viced/waiting in the queue multiplied by n−1. The approximation of a
single multi-server dynamics is currently studied by famous scientists
H. Kaspi, K. Ramanan, W. Whitt et al. We find approximation for a
network, but only in discrete time.

A motivation for studying such systems is that they arise as models
of computer data systems and call centers.

Keywords: Multi-server queues · GI/G/n queue · Fluid limits · Mean-
field limits · Strong law of large numbers · Measure-valued processes ·
Call centers

1 Introduction

1.1 Review of Investigated Contact Centers Models

In the last ten years an extensive research in mathematical models for telephone
call centers has been carried out, cf. [2–6,8–17]. The object has been expanded to
more general customer contact centers (with contact also made by other means,
such as fax and e-mail). One of important relating questions is the dynamics
of multi-server queues with a large number of servers. In order to describe the
object efficiently the state of the model must include: (1) for every customer in
the queue the time that he has spent in it and (2) for every customer in the
multi-server the time that he has spent after entering the service area, that is
being received by one of the available servers.
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The focus of research was on multi-server queues with a large number of
servers, because it is typical of contact centers. For such queues were found
fluid limits with the number of servers tending to infinity. Notice that such
a limit is a deterministic fumction of time with values in a certain measure
space, or in a space containing such a component. These developed deterministic
fluid models provided simple first-order performance descriptions for multi-server
queues under heavy loads.

1.2 A New Model for Contact Centers

We suggest here a more suitable model for contact centers. The number of cus-
tomers is fixed. Customers may be situated in two states: normal and failure.
There is a multi-server which repairs customers in the failure state. The repair
time/the time duration of a normal state is a random variable, independent
and identically distributed for all customers. Now “the arrival process” in the
multi-server does not correspond to that of the previous G/GI/s + GI model.
For a large number of customers and a suitable number of servers calculate the
number of current failures, so much as an approximation. This is a continuation
of our work [1], where a single multi-server in a network was functioning.

We confine ourselves to a discrete time model. W. Whitt has written a very
interesting seminal article [15], in a simple discrete case. About 150 authors have
cited it and made generalizations to the continuous time. But their results do
not enclose Whitt’s discrete time ones. Walsh Zuñiga [12] with his results most
close to discrete time admits only discrete time service but his arrival process is
continuous.

In Whitt’s article [15] the idea of the convergence proof is true and very lucid,
and the proof is clearly presented. But Whitt has not covered all cases in his
proofs, and at that Whitt does not accurately point to it. Only the main case
is examined: the number of serviced customers is not zero and does not exceed
the number of customers in the queue. Also when he proves convergence of the
number of customers being served for a given time b(t, k) in (6.33) he omits the
case bs(n − 1, k − 1) tends to zero. We have transferred his proof technique to
our new network model and filled all these misses.

1.3 Problem Origin

Consider a closed network consisting of n customers. They may be situated in
two states: normal and failure. A multi-server repairs customers in the failure
state. The repair time (resp., the time duration of a normal state) is a random
variable, independent and identically distributed for all customers. For a large
number of customers and a suitable number of servers we shall calculate the
number of current failures, so much as an approximation.

Now we give a rigorous description of this model.
Consider a closed network consisting of n customers and two multi-servers.

Multi-server 1 (further denoted MS1) consists of n servers (for the customers in
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the normal state), the time they service a customer has distribution G1. Multi-
server 2 (further denoted MS2) consists of snn servers with a number sn ∈ (0, 1)
(for the customers in the failure state), the time they service a customer has
distribution G2. The distributions G1, G2 are discrete: they are concentrated on
{1, 2, . . .}. Service times are independent for both servers and all customers. We
will investigate the behavior of the net as n → ∞, namely, we shall establish a
stochastic-process fluid limit. It will be done only in a special case: discrete time
t = 0, 1, 2, . . .

We begin with a simple example of functioning of this network.

Example 1. Let at time t = 0 all n customers be in a normal state. Each customer
switches over to the failure state according to the distribution function G1 and
tries to enter multi-server 2. The early failure customers can do it, but with time
growing multi-server 2 may become fully occupied. Then the failure customers
create a queue, waiting for the first available server in multi-server 2. Recall that
a server becomes afresh available with time distribution G2.

In this example and everywhere further we demand:

Assumption 1. Customers are served in order of their arrival to MS2 or to its
queue (FCFS) by the first available server.

Denote the number of customers at a moment t = 0, 1, . . . in MS1 (resp., MS2)
by B1

n(t) (resp., B2
n(t)) and the number of customers in the queue Qn(t) =

n − B1
n(t) − B2

n(t). These quantities must be defined more exactly. Namely,

Bi
n(t) =

∞∑

k=0

bi
n(t, k), i = 1, 2, and Qn(t) =

∞∑

0

qn(t, k)

with bi
n(t, k) being the number of customers in the multi-server i at the moment t

who have spent there time k, i = 1, 2, and qn(t, k) being the number of customers
in the queue at the moment t who have been there precisely for time k. bi

n(t, k)
may also be interpreted as the number of busy servers at time t in the multi-
server i that are serving customers that have been in service precisely for time
k, i = 1, 2.

At the same time moment t ∈ {1, 2, . . .} multiple events can take place, so
we have to specify their order.

We must create a fictitious queue for the MS1—in fact this multi-server is so
large (n servers), that any customer of the whole quantity n trying to enter the
MS1 at once finds a free server in it.

At the time moment t the parameters b1, b2, q are taken from the previous
time t − 1 and processed to the current situation.

For both multi-servers:

– first, customers in service are served;
– second, the served customers move to another multi-server queue, to the end

of it;
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– third, waiting customers in queue move into service of the multi-server accord-
ing to Assumption 1.

Customers enter service in MS2 whenever a server is available, so that the
system is work-conserving; i.e. we assume that Qn(t) = 0 whenever B2

n(t) < snn,
and that B2

n(t) = snn whenever Qn(t) > 0, t = 0, 1, 2, . . .. This condition can be
summarized by the equation

(sn − B2
n(t)/n)Qn(t) = 0 for all t and n.

Notations. Let σi
n(t) be the number of service completions in MSi at time

moment t = 1, 2, . . ., i = 1, 2. Denote for k = 1, 2, . . . Gi;c(k) = 1 − Gi(k) and
gi(k) = Gi(k)−Gi(k−1), i = 1, 2. Symbol ⇒ means convergence of the network
state characteristics to a constant in probability as the index n denoting the
number of cusomers tends to infinity.

Theorem 1 (The Discrete-Time Fluid Limit). Suppose that for each n, the
system is initialized with workload characterized by nonnegative-integer-valued
stochastic processes

bi
n(0, k), i = 1, 2, and qn(0, k), k = 0, 1, 2, . . . ,

satisfying
B1

n(0) + B2
n(0) + Qn(0) = n, (1)

B2
n(0) ≤ snn, and (snn − B2

n(0))Qn(0) = 0 (2)

for each n w.p.1. Suppose that sn → s ∈ (0, 1) and

bi
n(0, k)

n
⇒ bi(0, k), i = 1, 2, and

qn(0, k)
n

⇒ q(0, k) for k = 0, 1, 2, . . . (3)

as n → ∞, where s is a constant and bi(0, k), i = 1, 2, and q(0, k) are determin-
istic functions. Moreover, suppose that for each ε > 0 and η > 0, there exists an
integer k0 such that for n = 1, 2, . . .

P(
∞∑

k=k0

bi
n(0, k)

n
> ε) < η, i = 1, 2, and P(

∞∑

k=k0

qn(0, k)
n

> ε) < η. (4)

Then, as n → ∞,

bi
n(t, k)

n
⇒ bi(t, k), i = 1, 2, (5)

qn(t, k)
n

⇒ q(t, k), (6)

σi
n(t)
n

⇒ σi(t), i = 1, 2, (7)

for each t ≥ 1 and k ≥ 0, where (b1, b2, q, σ1, σ2) is a vector of deterministic
functions (all with finite values).
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Further, for each t = 0, 1, . . .

Bi
n(t)
n

≡
∑∞

k=0 bi
n(t, k)

n
⇒ Bi(t) ≡

∞∑

k=0

bi(t, k), i = 1, 2, (8)

Qn(t)
n

≡
∑∞

k=0 qn(t, k)
n

⇒ Q(t) ≡
∞∑

k=0

q(t, k), (9)

with
B1(t), B2(t), Q(t) ≥ 0, B1(t) + B2(t) + Q(t) = 1, (10)

B2(t) ≤ s, and (s − B2(t))Q(t) = 0. (11)

The evolution of the vector (b1, b2, q, σ1, σ2)(t), t = 0, 1, 2 . . . , proceeds with steps
of t in the following way. As we go from time t − 1 to t, there are two cases,
depending on whether B2(t − 1) = s or B2(t − 1) < s.

Case 1. B2(t − 1) = s. In this first case, after moment t − 1 asymptotically all
servers are busy and in general there may be a positive queue. In this case,

σi(t) =
∞∑

k=1

bi(t − 1, k − 1)
gi(k)

Gi;c(k − 1)
, (12)

bi(t, k) = bi(t − 1, k − 1) Gi;c(k)
Gi;c(k−1) , k = 1, 2, . . . , i = 1, 2, (13)

b1(t, 0) = σ2(t), (14)
b2(t, 0) = min{σ2(t), Q(t − 1) + σ1(t)}, (15)

and finally q is determined with the help of an intermediate queue q′,

q′(t, 0) = σ1(t), q′(t, k) = q(t − 1, k − 1), k = 1, 2, . . . : (16)
if σ2(t) = 0 then q(t, k) = q′(t, k), k = 0, 1, . . . , (17)

if σ2(t) ≥ ∑∞
k=0 q′(t, k) then q(t, k) = 0, k = 0, 1, . . . , (18)

if 0 < σ2(t) <
∑∞

k=0 q′(t, k) then with (19)
c(t) = min{i ∈ {0, 1, . . .} :

∑∞
k=i q′(t, k) ≤ σ2(t)}, (20)

q(t, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0for k ≥ c(t),
∞∑

i=c(t)−1

q′(t, i) − σ2(t) for k = c(t) − 1,

q′(t, k) for k < c(t) − 1.

Case 2. B2(t − 1) < s. In this second case, after the time moment t − 1 asymp-
totically all servers are not busy so that there is no queue. As in the first case,
Eqs. (12), (13), and (14) hold. Instead of (15),

b2(t, 0) = min{s − B2(t − 1) + σ2(t), σ1(t)}. (21)

Then,

q(t, k) = 0 forall k > 0 and q(t, 0) = σ1(t) − b2(t, 0). (22)
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Proof. For t = 0 conditions (3) and (4) imply the convergence presented in (8)
and (9), and conditions (1), (2) provide properties (10), (11). Thus the proof of
the Theorem is reduced to the following Lemma:

Lemma 1. Suppose for a given t ∈ {1, 2, . . .} Eqs. (5), (6) hold for t − 1. Then
all the statements of the Theorem hold for t.

We divide the proof of this Lemma to several Lemmas below.

Lemma 2. Fix n ∈ {1, 2, . . .}. If for given ε > 0 and η > 0 and integer k0 holds

P(
∞∑

k=k0

bi
n(0, k)

n
> ε) < η, i = 1, 2, and P(

∞∑

k=k0

qn(0, k)
n

> ε) < η, (23)

then for every t = 1, 2, . . .

P(
∞∑

k=k0+t

bi
n(t, k)

n
> ε) < η, i = 1, 2, and P(

∞∑

k=k0+t

qn(t, k)
n

> ε) < η. (24)

Proof. Evidently, for any t = 1, 2, . . . , k = 0, 1, . . . w.p.1

bi
n(t, k + t) ≤ bi

n(0, k) and qn(t, k + t) ≤ qn(0, k).

Corollary 1. Condition (4) holds not only for time t = 0, but for any time
t = 1, 2, . . ., i.e., for each t, ε > 0 and η > 0, there exists an integer k0 such that
for n = 1, 2, . . .

P(
∞∑

k=k0

bi
n(t, k)

n
> ε) < η, i = 1, 2, and P(

∞∑

k=k0

qn(t, k)
n

> ε) < η. (25)

In a network consisting of n ∈ {1, 2, . . .} customers denote by σi
n(t, k) the number

of customers served in MSi, i = 1, 2, at time moment t who had been in service
for time k at this time moment t, for t, k ∈ {1, 2, . . .}.

Lemma 3. If for given t, k ∈ {1, 2, . . .}

bi
n(t − 1, k − 1)

n
⇒ bi(t − 1, k − 1),

then
σi

n(t, k)
n

⇒ bi(t − 1, k − 1)
gi(k)

Gi;c(k − 1)
, k = 1, 2, . . . , i = 1, 2,

bi
n(t, k)

n
⇒ bi(t, k) = bi(t − 1, k − 1)

Gi;c(k)
Gi;c(k − 1)

, k = 1, 2, . . . , i = 1, 2.
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Proof. Set i = 1, 2. For each n, t, k ≥ 1, we can represent σi
n(t, k) and bi

n(t, k) as
random sums of IID Bernoulli random variables; in particular,

σi
n(t, k − 1) =

bin(t−1,k−1)∑

i=1

Xi (26)

and

bi
n(t, k) =

bin(t−1,k−1)∑

i=1

(1 − Xi), (27)

where Xi assumes the value 1 if the ith customer among those in service at time
moment t − 1 that have been in the system for time k − 1 is served at time
moment t, and assumes the value 0 otherwise. Thus, Xi, i ≥ 1, is a sequence of
IID random variables with

P(X1 = 0) =
gi(k)

Gi;c(k − 1)
, k = 1, 2, . . . , i = 1, 2.

Apply now Appendix Lemma 5.

Corollary 2. If for given t ∈ {1, 2, . . .}, i ∈ {1, 2}
bi
n(t − 1, k − 1)

n
⇒ bi(t − 1, k − 1), k = 1, 2, . . . ,

then limit (7) holds:
σi

n(t)
n

⇒ σi(t). (28)

Proof. This is guaranteed by Lemma 2.

Now we shall calculate the queue after it has filled the free servers. For a given
n ∈ {1, 2, . . .} we move σ2

n(t) customers from the end of queue, that is, the
customers who have spent the longest time in the queue (if there are fewer
customers in the queue, we move they all).

Define an intermediate queue q′
n:

q′
n(t, 0) = σ1

n(t), q′
n(t, k) = qn(t − 1, k − 1), k = 1, 2, . . . (29)

Obviously,

if σ2
n(t) = 0 then qn(t, k) = q′

n(t, k), k = 0, 1, . . . , (30)

if σ2
n(t) ≥

∞∑

k=0

q′
n(t, k) then qn(t, k) = 0, k = 0, 1, . . . , (31)

if 0 < σ2
n(t) <

∞∑

k=0

q′
n(t, k) then with (32)

cn(t) = min{i ∈ {0, 1, . . .} :
∞∑

k=i

q′
n(t, k) ≤ σ2

n(t)}, (33)
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qn(t, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for k ≥ cn(t),
∞∑

i=cn(t)−1

q′
n(t, i) − σ2

n(t) for k = cn(t) − 1,

q′
n(t, k) for k < cn(t) − 1.

Remark 1. As q′
n(t, k) = qn(t − 1, k − 1),

q′
n(t, k)

n
⇒ q′(t, k), k = 1, 2, . . .

It is easy to understand other presentations of qn and q:

Lemma 4. For i = 0, 1, 2, . . .

∞∑

k=i

qn(t, k) = (
∞∑

k=i

q′
n(t, k) − σn(t)) ∨ 0, (34)

∞∑

k=i

q(t, k) = (
∞∑

k=i

q′(t, k) − σ(t)) ∨ 0. (35)

It follows straightforward:

∞∑

k=i

qn(t, k)
n

= (
∞∑

k=i

q′
n(t, k)

n
− σn(t)

n
) ∨ 0. (36)

Setting in Appendix Lemma7

an(k) =
q′
n(t, k)

n
and θn =

σn(t)
n

,

a−
n (k) =

qn(t, k)
n

, a−(k) = q(t, k) and θ = σ(t),

and using Remark 1 and Corollary 2, we obtain convergence in Eqs. (6), (7).

2 Appendix

Lemma 5. ξn, n = 1, 2, . . . , is a random variable with values in {0, 1, 2, . . .},
and ξn

n ⇒ ξ (a constant). Let Xi, i = 1, 2, . . . , be IID random variables with
values in {0, 1}. Then

lim
n→∞

1
n

ξn∑

i=1

Xi = ξP(X1 = 1). (37)
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Proof. As
ξn∑

i=1

Xi ≤ ξn, n = 1, 2, . . ., the proposition is evident for ξ = 0. If

ξ > 0, then limn→∞ ξn = ∞ and (weak LLN)

1
n

ξn∑

i=1

Xi =
ξn

n

∑ξn
i=1 Xi

ξn
−−−−→
n→∞ ξEX1 = ξP(X1 = 1).

Assumption 2. For n = 1, 2, . . . there exists a sequence an of nonnegative ran-
dom variables an(k), k = 0, 1, 2, . . . with finite deterministic limits an(k) ⇒
a(k), k = 0, 1, 2, . . .

For each ε > 0 and η > 0, there exists an integer k0 such that for n = 1, 2, . . .

P(
∞∑

k=k0

an(k) > ε) < η. (38)

Lemma 6. If Assumption 2 holds then

P(
∞∑

k=0

an(k) < ∞) = 1, n = 1, 2, . . . , and
∞∑

k=0

a(k) < ∞. (39)

Furthermore, for i=0,1,2,. . .

∞∑

k=i

an(k) ⇒
∞∑

k=i

a(k). (40)

Proof. Whitt has introduced this Assumption and derives from it partially the
statement of the Lemma for i = 0 without proof (see the first paragraph in the
proof of Theorem 6.1 [15]).

Lemma 7. Suppose that Assumption 2 holds and nonnegative random variables
θn, n = 1, 2, . . . , with deterministic limit θ, θn ⇒ θ, are given.

Define new sequences1 a−
n , n ∈ {1, . . .}, a− by the following equations

sequences: for i = 0, 1, 2, . . .

∞∑

k=i

a−
n (k) = (

∞∑

k=i

an(k) − θn) ∨ 0, (41)

∞∑

k=i

a−(k) = (
∞∑

k=i

a(k) − θ) ∨ 0. (42)

These a−
n , n ∈ {1, . . .}, a− sequences satisfy:2

a−
n (k) ⇒ a−(k), k = 0, 1, 2, . . . , and

∞∑

k=0

a−
n (k) ⇒

∞∑

k=0

a−(k) . (43)

1 They describe queues after customers leave them and go to the emptied servers.
2 Even starting from an arbitrary k.
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Proof. According to Lemma 6,

for i = 0, 1, 2, . . .

∞∑

k=i

an(k) ⇒
∞∑

k=i

a(k). (44)

As function f(x, y) = (x − y) ∨ 0 is continuous, this and convergence of
θn, n = 1, 2, . . . , guarantees convergence

for i = 0, 1, 2, . . . (
∞∑

k=i

an(k) − θn) ∨ 0 ⇒ (
∞∑

k=i

a(k) − θ) ∨ 0. (45)

what is identical to ∞∑

k=i

a−
n (k) ⇒

∞∑

k=i

a−(k). (46)

Finally, for i = 0, 1, 2, . . .

a−
n (i) =

∞∑

k=i

a−
n (k) −

∞∑

k=i+1

a−
n (i) ⇒

∞∑

k=i

a−(k) −
∞∑

k=i+1

a−(k) = a−(k). (47)

3 Conclusion

We have investigated a model without abandonment in the queue, although the
necessary details of the customers age in the queue are provided. Since such a
behavior in the queue is universally recognized, we intend to consider it next.
As customers in a closed network cannot abandon it, probably we shall choose
instead a similar version of “nonpersistent customers”, see [7].
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