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Abstract. In this paper an approach to analysis of dependence of Ses-
sion Initiation Protocol server model with batch arrivals performance
measures on batch size distribution is considered. Proposed approach
employs non-parametric methods of statistical analysis. It is shown that
there is statistical reliable dependence of performance measures, taken
for signaling traffic analysis, on distance between distributions in defi-
nite norm. On the basis of proposed analysis elasticity coefficients were
evaluated depending on distance between batch size distributions. This
approach enables to get correction factors for estimation of these para-
meters in case distribution functions differ from uniform.

Keywords: Optimization · SIP mathematical model · Distribution
function · Norm · Performance measure · Queuing system ·
Parameter sensibility · Sample · Batch arrivals

1 Introduction

Developing telecommunication services are successfully provided via IP-based
Multimedia Subsystem (IMS), where Session Initiation Protocol (SIP) is the
main signaling protocol [1]. Signaling traffic load is auxiliary for communica-
tion nodes and is used for providing communications services to users. Signaling
messages have so-called life time. When life time is over, information becomes
not actual, signaling messages are retransmitted and overload the SIP server
that processes them. Among the other problems with Session Initiation Proto-
col the overloading problem was stated by IETF in [2], and solution requirements
that address the problems were formulated in [3]. Providing telecommunication
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services of required quality results in necessity of detailed research of commu-
nication system structure, statistic data analysis, implementation of processing
algorithm for different types of signaling messages in order to increase num-
ber of successfully initiated sessions and decrease of service and sojourn time
at a SIP server [6]. Many papers from the IETF documents [3–5] to a number
of scientific papers [11–16,18–24] were devoted to developing and investigating
mechanisms of SIP-server overload control. For example, signaling messages ser-
vice process was presented as asymmetric polling system [9], as queueing model
with threshold control [10]. Sometimes you can see research even with unreliable
servers [17].

In this paper were chosen the following parameters for the investigation:
average queue length and average waiting time. The first one enables estimation
of SIP server’s buffer capacity during the busy hour, the second when summed
with service time enables estimation of SIP server sojourn time and is comparable
to the message life time.

Process of signaling messages arrival and processing at a SIP server is per-
formed via a single-server queue with batch arrivals and vacations. The vaca-
tion models the time interval when server processes messages that differ from
signaling ones. In a model the batch arrival of customers corresponds to the
simultaneous requests of the group of online subscribers.

In [6–8] there is an estimation of average value of queue length and average
waiting time for general distribution of batch size. In [8] the analysis for the four
batch size distribution functions has been done: Zipf, geometric, logarithmic and
uniform distribution. In [8] a statistical dependence of investigating parameters
on batch size distribution in case of Poisson process has been analyzed. In con-
trast with the papers where an investigation was performed only for geometrical
distribution, in [8] it is recommended to use a uniform distribution of batch size
that essentially simplifies formulas for calculations. In this paper an approach to
performance measures analysis is proposed, sensitivity of model parameters to
batch size distribution was estimated.

Distribution function variation was evaluated in [8] under different norms.
Those with highest reliability of estimated statistical dependence were chosen.
It turned out that analysis of numeric evaluation of SIP server performance
parameters sensitivity to batch size distribution variation can be carried out
with high reliability (0.99).

Since only sampling distribution functions of parameters are available for
preliminary analysis, so we want to evaluate model parameters with statistical
fluctuation of sampling distribution function when the distribution is not con-
verge to any general population because of non-stationary behavior. We denote,
that the batch size is a measured on practice, whereas average waiting time and
average queue length depend on messages service time and processor vacation
time. Distribution functions of the last two parameters are assumed to be known,
because they depend on the SIP server hardware implementation. However,
confidence interval for average queue length may not be got from correspond-
ing empirical distribution, because we do not know this distribution function.



Approach to Estimation of Performance Measures for SIP Server Model 143

We can evaluate these parameters by means of the simplified models only. In
[8] the sensitivity analysis for one of models was carried out. Analysis was later
applied to empirical distribution function of batch size.

2 SIP Server Model as a Queue with Batch Arrivals
and Vacations

A mathematical model of signaling messages processing at a SIP server is inves-
tigated as a queuing system with batch arrivals and vacations. According to
Basharin-Kendall notation this system is denoted as M[X] G 1 ∞ . Let suppose
that a batch of customers arrives according to Poisson process with rate λ. Cus-
tomer service time is a random variable with a distribution function B(t), where
b1 is the mean value and b2 is the finite second moment. If there are no customers
in the queue, the server goes for a vacation. The vacation time is a random vari-
able with a distribution function V (t) with finite first and second moments v1
and v2.

Let f(k) be probability that batch size is equal to k ≥ 1. We denote the corre-
sponding distribution function F (k). For the queuing system M[X] G 1 ∞ with
vacations we can find average queue length and average waiting time depending
on offered load ρ which is estimated as follows:

ρ = λb1l
(1), (1)

where l(1) is average batch size with distribution function F (k).
In [6] a generating function was obtained for the queue length distribution

for a single server model with vacations. The result is expressed as follows:

P (z) =
1 − ρ

λv1
· 1 − z

1 − L(z)
· 1 − φ(λ, z)
β(λ, z) − z

, (2)

where L(z) is a generating function for batch size with the distribution function

F (k): L(z) =
∞∑

k=0

f(k)zk. Other functions mentioned in (2) are expressed with

the following equations: v1 =
∞∫

0

t dV (t) , φ(λ, z) =
∞∫

0

e−λt(1−L(z)) dV (t) , and

β(λ, z) =
∞∫

0

e−λt(1−L(z)) dB(t). According to [8] average queue length depending

on load ρ is obtained by the generating function (2) as follows:

N = lim
z→1

P ′(z) =
v2

2v1b1
ρ +

l(2) − l(1)

2l(1)
ρ

1 − ρ
+

b2
2b21

ρ2

1 − ρ
. (3)

Taking into account the notation vs =
∞∫

0

tsdV (t), bs =
∞∫

0

tsdB(t) and

l(s) =
∑

k

ksf(k), s = 1; 2, the average waiting time is obtained as follows:

τ =
Nb1
ρ

=
v2
2v1

+
l(2) − l(1)

2l(1)
b1

1 − ρ
+

b2
2b1

ρ

1 − ρ
. (4)
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You can see the average queue length (Fig. 1) and average waiting time
(Fig. 2) for 4 batch size distributions for exponential service time and vaca-
tion time with the following initial data b1 = 15 ms – average service time,
v1 = 15l1 ms – average vacation time, l1 = 3 – average batch size. This is the
starting point of the reseaches. The plots (Figs. 1 and 2) have similar behavior.
We investigate the sensitivity of the model parameters to probability variation
of batch size.

Fig. 1. Average queue length depending on load.

Fig. 2. Average waiting time depending on load.
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3 Sensitivity of the Model Parameters to Probability
Variation

As a base of our analysis we use 4 batch size distributions with following dis-
tribution functions (Table 1), where fi(k) is the probability, that batch size is
equal k. We assume, that maximum batch size is equal to 8. The distribution
functions can be found by formula Fi(n) =

∑n
k=1 fi(k).

We consider 5 types of norms and define the distance between two DFs by the
formulas from the Table 2, where the distance from i to j distribution functions
is ρnorm

ij . The first step of our investigation was to compare distances between
DFs in several norms.

Table 3 shows the distances between batch size DFs in considered norms. For
example, the first row shows the distance between Logarithmic and Geometric
batch size distributions, the last row – the distance between Zipf and Uniform
distributions. Statistics show that the distances are dependent from each other.
So, for the next step of our investigation we can use any appropriate norm.

Table 1. Distribution functions

Logarithmic DF f1(k) = 1
Z1

(0,85)k

k
, Z1 =

∑8
k=1

(0,85)k

k

Geometric DF f2(k) = 1
Z2

(0, 67)k , Z2 =
∑8

k=1 (0, 67)k

Zipf DF f3(k) = 1
Z3k

, Z3 =
∑8

k=1 1/k

Uniform DF f4(k) = 1/8

Table 2. Definition of distance in norms

C norm ρC
ij = max

k
|fi(k) − fj(k)|

L1 norm ρL1
ij =

∑8
k=1 |fi(k) − fj(k)|

Hellinger distance ρHe
ij =

∑8
k=1

(√
fi(k) −√fj(k)

)2

Kullback-Leibler distance ρKL
ij =

∑8
k=1 fi(k) ln (fi(k)/fj(k))

Supplement for total area S ρS
ij = 1 −∑8

k=1 min (fi(k), fj(k))

Table 3. Distances between batch size distributions

Comparison C L1 He KL S

Logarithmic, Geometric 0,13 0,27 0,02 0,04 0,134

Logarithmic, Zipf 0,11 0,26 0,03 0,05 0,129

Logarithmic, Uniform 0,35 0,86 0,26 0,52 0,431

Geometric, Zipf 0,05 0,18 0,01 0,03 0,090

Geometric, Uniform 0,22 0,71 0,18 0,33 0,354

Zipf, Uniform 0,24 0,60 0,13 0,26 0,302
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Let find out how to change the values N and τ in formulas (3)–(4), if
probability variation of f(k) is low. Let a new distribution can be expressed
as f̃(k) = f(k) + ε(k)f(k), moreover, under the same norming the equality∑

k

ε(k)f(k) = 0 is fulfilled. Let introduce the variable E = sup
k

|ε(k)|. Then we

get the following estimation of distance between distributions in L1 norm:

ε =
∥
∥
∥f − f̃

∥
∥
∥

L1
=

∑

k

∣
∣
∣f(k) − f̃(k)

∣
∣
∣ =

∑

k

|ε(k)| f(k) ≤ E. (5)

Let use (5) to get estimation of some differentiable function variation depend-
ing on average batch size in case E << 1:

∣
∣
∣δl

(1)
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

k

k
(
f(k) − f̃(k)

)
∣
∣
∣
∣
∣
<
∑

k

k
∣
∣
∣f(k) − f̃(k)

∣
∣
∣ =
∑

k

k |ε(k)| f(k) ≤ El(1);

∣
∣
∣δu
(
l(1)
)∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∂u
(
l(1)
)

∂ (l(1))

∣
∣
∣
∣
∣
∣
·
∣
∣
∣δl

(1)
∣
∣
∣ ≤ Eu

∣
∣
∣
∣
∂ ln u

∂ ln l

∣
∣
∣
∣ |l=l(1) + o (E) .

(6)

Logarithmic derivative of function with respect to parameter’s logarithm is
called function sensitivity to parameter variation. Then, from (6) comes that
variation of some function from the mean value, obtained due to distribution
variation, at linear approximation on E does not exceed this function multiplied
by the supremum of distribution density variation and by modulus of speci-
fied sensitivity. In our case estimations of average queue length (3) and average
waiting time (4), that are linear for E, are expressed as follows:

|δN | ≤ Eρ

2
·
∣
∣
∣
∣
∣

v2
v1b1

+
l(2) − l(1)

l(1)
b1

(1 − ρ)2
+

b2
b21

(2 − ρ)
ρ

(1 − ρ)2

∣
∣
∣
∣
∣
;

|δτ | ≤ Eρ

2 (1 − ρ)2
·
∣
∣
∣
∣
l(2) − l(1)

l(1)
b1 +

b2
b1

∣
∣
∣
∣ .

(7)

However, theoretical estimations (7) do not possess adequate accuracy as
they appear to be too excessive. Despite this fact they cannot be improved
within of functions to be chosen for empirical distribution functions. Unimprov-
ability comes out of existence of a variation when ε(k) = {0;±E}. Inadequacy of
accuracy comes out of condition (5): as far as ε ≤ E, then for heavily nonuniform
distributions the variation norm in the form of sup

k
|ε(k)| is too crude estimate,

since for such kind of distributions the distance between distributions can be
significantly less than E. That is why in [4] an analysis of sensitivity of these
parameters based on the numerical results for various functions f(k) was carried
out. It was found out that four types of norms – L1 and C for F (k), L1 for f(k)
and similar to them the forth norm that is a supplement for total area S to the
unity of two densities – determine rather exactly the variation of values N and
τ under variation of densities.
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Let us denote variation of f(k) by δf , which is denominated in norm C for
distribution function. We denote by δN(ρ) variation of average queue length
and by δτ(ρ) variation of average waiting time for a given value of load ρ. Data
analysis showed that under variation of uniform distribution, which determined
on the interval from 1 to the maximum batch size (in our case maximum is
equal to 8), there is a relationship between δN(ρ) and δf , also δτ(ρ) and δf
with determination 0.99:

∣
∣
∣
∣
δN(ρ)
N(ρ)

∣
∣
∣
∣ = 0, 2 (1 − ln ρ) (δf)0,27 ;

∣
∣
∣
∣
δτ(ρ)
τ(ρ)

∣
∣
∣
∣ =

0, 106 + 0, 041 ln ρ

ρ
(δf)0,27 ;

ρ ∈ [0, 1; 0, 9].

(8)

4 Algorithm for Average Queue Length Calculation

Practical application of the described method is the algorithm for average queue
length calculation.

Step 1. Choose the basic predicted batch size distribution of f(k) on the interval
1 ≤ k ≤ M , for example, uniform distribution: f(k) = 1/8.

Step 2. Calculate the average queue length N0 for the basic distribution:

N0 =
v2

2v1b1
ρ +

M − 1
3

ρ

1 − ρ
+

b2
2b21

ρ2

1 − ρ
, (9)

For basic distribution function Eq. (3) is considered as null approximation.

Step 3. Get the empirical batch size distribution function F (k) from measure-
ments. Let consider that empirical distribution, being investigated, is stationary,
F (k) is its distribution function.

Step 4. Calculate the distance between empirical and uniform distributions:

δf = sup
k

|F (k) − k/M | . (10)

Step 5. Substituting the result of (10) in (8) we get estimation of average queue
length that corresponds to the following empirical distribution:

N/N0 ≈ 1 + 0, 2 (1 − ln ρ) (δf)0,27
, ρ ∈ [0, 1; 0, 9] (11)

Estimation for average waiting time variation is expressed in the same way.
Equation (11) is computationally much simpler than calculation of the gener-

ating function in accordance with (2), where L(z) is calculated through empirical
distribution of F (k). That is, firstly, rather difficult and, secondly, leads to cal-
culation errors that may exceed approximation inaccuracy for (11).
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5 Average Queue Length for Geometric Batch Size
Distribution

For example, let consider that an empirical distribution of fn(k) is taken from a
general population f(k) that has geometric distribution with a parameter q on
the interval 1 ≤ k ≤ M . That means f(k) = 1−q

1−qM qk−1.
We show you algorithm for average queue length calculation with geometric

distribution function.

Step 1. Basic batch size distribution:
f(k) = 1/8, 1 ≤ k ≤ M - uniform distribution.

Step 2. Average queue length N0 for the uniform distribution:

N0 (ρ) , ρ ∈ [0, 1; 0, 9].

Step 3. Empirical batch size distribution is geometric distribution with following
parameters: q = 0, 67, M = 8 [8].

F (k) =
1 − q

1 − qM
qk−1, 1 ≤ k ≤ M.

Step 4. Distance between empirical and basic distributions:

δf = 0, 35.

Step 5. Estimation of average queue length:

N ≈ 0, 14 (1 − ln ρ) N0(ρ), ρ ∈ [0, 1; 0, 9].

6 Conclusion

This paper presents the approach to estimation of the performance measures for
SIP server model with batch arrivals and vacations depending on the batch size
distribution. Investigation of this particular dependence was motivated by the
fact that the batch size distribution is not known as a general population and,
moreover, cannot be recognized as far as empirical evaluations of this popula-
tion are non-stationary. That is why approximate evaluation methods, that are
not associated with a specified functional class of mentioned distributions, are
of great significance and actuality. Therefore, the method that considers coeffi-
cients of the model parameters sensitivity to adjustment of the distance between
distribution functions seems to be efficient among nonparametric techniques.
This method may be used for non-stationery distributions when non-stationary
behavior is interpreted as definite variation of some basic distribution (for exam-
ple, uniform). This approach enables to circumvent technical difficulty coming
from absence of convergence theorem both for probability and the norm for
random variables being investigated.
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Proposed approach to evaluation of performance measures of a Session Initi-
ation Protocol server model and given analysis of parameters sensitivity leads to
recommendations for engineers to use simple formulas for preliminary evaluation
of presence signaling messages service.
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