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Abstract. The quickest change detection/isolation (multidecision)
problem is of importance for a variety of applications. Efficient statistical
decision tools are needed for detecting and isolating abrupt changes in
the properties of stochastic signals and dynamical systems, ranging from
on-line fault diagnosis in complex technical systems (like networks) to
detection/classification in radar, infrared, and sonar signal processing.
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1 Introduction

The quickest change detection/isolation (multidecision) problem is of impor-
tance for a variety of applications. Efficient statistical decision tools are needed
for detecting and isolating abrupt changes in the properties of stochastic signals
and dynamical systems, ranging from on-line fault diagnosis in complex tech-
nical systems (like networks) to detection/classification in radar, infrared, and
sonar signal processing. The early on-line fault diagnosis (detection/isolation) in
industrial processes (SCADA systems) helps in preventing these processes from
more catastrophic failures.

The quickest multidecision detection/isolation problem is the generalization
of the quickest changepoint detection problem to the case of K − 1 post-change
hypotheses. It is necessary to detect the change in distribution as soon as possible
and indicate which hypothesis is true after a change occurs. Both the rate of false
alarms and the misidentification (misisolation) rate should be controlled by given
levels.

2 Problem Statement

Let X1,X2, . . . denote the series of observations, and let ν be the serial number
of the last pre-change observation. In the case of multiple hypothesis, there are
several possible post-change hypotheses Hj , j = 1, 2, . . . ,K − 1. Let P

j
k and E

j
k
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denote the probability measure and the expectation when ν = k and Hj is the
true post-change hypothesis, and let P∞ and E∞ = E

0
0 denote the same when

ν = ∞, i.e., there is no change. Let (see [1] for details)

Cγ =
{

δ = (T, d) : min
0≤�≤K−1

min
1≤j �=�≤K−1

E
�
0

(
inf
r≥1

{Tr : dr = j}
)

≥ γ

}
, (1)

where T is the stopping time, d is the final decision (the number of post-change
hypotheses) and the event {dr = j} denotes the first false alarm of the j-th
type, be the class of detection and isolation procedures for which the average
run length (ARL) to false alarm and false isolation is at least γ > 1. In the case
of detection–isolation procedures, the risk associated with the detection delay is
defined analogously to Lorden’s worst-worst-case and it is given by [1]

ESADD(δ) = max
1≤j≤K−1

sup
0≤ν<∞

{
esssupE

j
ν [(T − ν)+|Fν ]

}
. (2)

Hence, the minimax optimization problem seeks to

Find δopt ∈ Cγ such that ESADD(δopt) = inf
δ∈Cγ

ESADD(δ) for every γ > 1, (3)

where Cγ is the class of detection and isolation procedures with the lower bound γ
on the ARL to false alarm and false isolation defined in (1).

Another minimax approach to change detection and isolation is as follows
[2,3]; unlike the definition of the class Cγ in (1), where we fixed a priori the
changepoint ν = 0 in the definition of false isolation to simplify theoretical
analysis, the false isolation rate is now expressed by the maximal probability of
false isolation supν≥0 P

�
ν(d = j �= �|T > ν). As usual, we measure the level of

false alarms by the ARL to false alarm E∞T . Hence, define the class

Cγ,β =

{
δ = (T, d) : E∞T ≥ γ, max

1≤�≤K−1
max

1≤j �=�≤K−1
sup
ν≥0

P
�
ν(d = j|T > ν) ≤ β

}
. (4)

Sometimes Lorden’s worst-worst-case ADD is too conservative, especially for
recursive change detection and isolation procedures, and another measure of
the detection speed, namely the maximal conditional average delay to detection
SADD(T ) = supν Eν(T −ν|T > ν), is better suited for practical purposes. In the
case of change detection and isolation, the SADD is given by

SADD(δ) = max
1≤j≤K−1

sup
0≤ν<∞

E
j
ν(T − ν|T > ν). (5)

We require that the SADD(δ) should be as small as possible subject to the
constraints on the ARL to false alarm and the maximum probability of false
isolation. Therefore, this version of the minimax optimization problem seeks to

Find δopt ∈ Cγ,β such that SADD(δopt) = infδ∈Cγ,β
SADD(δ)

for every γ > 1 and β ∈ (0, 1). (6)

A detailed description of the developed theory and some practical examples
can be found in the recently published book [4].
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3 Efficient Procedures of Quickest Change
Detection/isolation

Asymptotic Theory. In this paragraph we recall a lower bound for the worst
mean detection/isolation delay over the class Cγ of sequential change detec-
tion/isolation tests proposed in [1]. First, we start with a technical result on
sequential multiple hypotheses tests and then we give an asymptotic lower bound
for ESADD(δ).

Lemma 1. Let (Xk)k≥1 be a sequence of i.i.d. random variables. Let
H0, . . . ,HK−1 be K ≥ 2 hypotheses, where Hi is the hypothesis that X has
density fi with respect to some probability measure μ, for i = 0, . . . ,K − 1 and
assume the inequality

0 < ρij
def.
=

∫
fi log

fi

fj
dμ < ∞, 0 ≤ i �= j ≤ K − 1,

to be true.
Let Ei(N) be the average sample number (ASN) in a sequential test (N, δ)

which chooses one of the K hypotheses subject to a K×K error matrix A = [aij ],
where aij = Pi(accepting Hj), i, j = 0, . . . , K − 1.

Let us reparameterize the matrix A in the following manner :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−∑K−1
�=1 α� α1 . . . αK−1

γ1 1 − ∑K−1
�=2 β1,� − γ1 . . . β1,K−1

γ2 β2,1 . . . β2,K−1

. . . . . . . . . . . .

γi βi,1 . . . βi,K−1

. . . . . . . . . . . .

γK−1 βK−1,1 . . .1−∑K−2
�=1 βK−1,l−γK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then a lower bound for the ASN Ei(N) is given by the following formula :

Ei(N)≥max

⎧⎪⎨
⎪⎩

(1 − γ̃i) ln
(∑K−1

�=1 αl

)−1

− log 2

ρi0
,

max
1≤j �=i≤K−1

(
(1 − γ̃i) ln β−1

ji − log 2
ρij

)}
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for i = 1, . . . , K − 1, where

γ̃i = γi +
K−1∑

�=1,� �=i

βi,�.

Theorem 1. Let (Yk)k≥1 be an independent random sequence observed sequen-
tially :

L(Yk) =
{

P0 if k ≤ ν
P� if k ≥ ν + 1 , ν = 0, 1, 2, . . . , for 1 ≤ � ≤ K − 1

The distribution P� has density f�, � = 0, . . . ,K −1. An asymptotic lower bound
for ESADD(δ), which extends the result of Lorden [5] to multiple hypotheses
case, is:

ESADD(T ; γ) � log γ

ρ∗ as γ → ∞,

where

ρ∗ def.
= min

1≤�≤K−1
min

0≤j �=�≤K−1
ρ�,j and 0 < ρ�,j

def.
= E

l
1

(
log

fl(Yi)
fj(Yi)

)
< ∞

is the K-L information.

Generalized CUSUM Test. The generalized CUSUM (non recursive) test asymp-
totically attains the above mentioned lower bound [1]. Let us introduce the fol-
lowing stopping time and final decision

Ñ = min{Ñ1, . . . , ÑK−1}; d̃ = argmin{Ñ1, . . . , ÑK−1}
of the detection/isolation algorithm. The stopping time Ñ � is responsible for the
detection of hypothesis H�:

Ñ � = inf
k≥1

Ñ �(k), Ñ �(k) = inf
{

n ≥ k : min
0≤j �=�≤K−1

Sn
k (�, j) ≥ h

}

Ñ � = inf
{

n ≥ 1 : max
1≤k≤n

min
0≤j �=�≤K−1

Sn
k (�, j) ≥ h

}
, Sn

k (�, j) =
n∑

i=k

log
f�(Yi)
fj(Yi)

.

The generalized matrix recursive CUSUM test, which also attains the asymptotic
lower bound, has been considered in [6,7]. Let us introduce the following stopping
time and final decision

N̂r = min{N̂1, . . . , N̂K−1}; d̃r = argmin{N̂1, . . . , N̂K−1}
of the detection/isolation algorithm. The stopping time N̂ � is responsible for the
detection of hypothesis Hl :

N̂ � = inf
{

n ≥ 1 : min
0≤k �=j≤K−1

Qn(�, j) ≥ h

}
,

Qn(�, j) = (Qn−1(�, j) + Zn(�, j))+ , Zn(�, j) = log
f�(Yn)
fj(Yn)
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For some safety critical applications, a more tractable criterion consists in
minimizing the maximum detection/isolation delay:

SADD(δ) = max
1≤j≤K−1

sup
0≤ν<∞

E
j
ν(T − ν|T > ν). (7)

subject to :

Cγ,β =
{

δ : E∞T ≥ γ, max
1≤�≤K−1

max
1≤j �=�≤K−1

sup
ν≥0

P
�
ν(d = j|T > ν) ≤ β

}
.

for 1 ≤ �, j �= � ≤ K − 1. An asymptotic lower bound in this case is given by the
following theorem [3].

Theorem 2. Let (Yk)k≥1 be an independent random sequence observed
sequentially:

L(Yk) =
{

P0 if k ≤ ν
P� if k ≥ ν + 1 , ν = 0, 1, 2, . . . , for 1 ≤ � ≤ K − 1

Then

SADD(N ; γ, β) � max
{

log γ

ρ∗
d

,
log β−1

ρ∗
i

}
as min{γ, β−1} → ∞,

where ρ∗
d=min1≤j≤K−1 ρj,0 and ρ∗

i =min1≤�≤K−1 min1≤j �=�≤K−1 ρ�,j.

Vector Recursive CUSUM Test. If γ → ∞, β → 0 and log γ ≥ log β−1(1+ o(1)),
then the above mentioned lower bound can be realized by using the following
recursive change detection/isolation algorithm [2] :

Nr = min
1≤�≤K−1

{Nr(�)}, dr =arg min
1≤�≤K−1

{Nr(�)},

where Nr(�)=inf {n ≥ 1 : min0≤j �=�≤K−1 [Sn(�, j)−h�,j ]≥0},

Sn(�, j) = gn(�, 0) − gn(j, 0), gn(�, 0) = (gn−1(�, 0) + Zn(�, 0))+ ,

with Zn(�, 0) = log f�(Yn)
f0(Yn) , g0(�, 0) = 0 for every 1 ≤ � ≤ K − 1 and gn(0, 0) ≡ 0,

h�,j=
{

hd if 1 ≤ � ≤ K − 1 and j = 0
hi if 1 ≤ j, � ≤ K − 1 and j �= �

.

4 Applications to Network Monitoring

In this section the above mentioned theoretical results are illustrated by appli-
cation of the proposed detection/isolation procedures to the problem of network
monitoring.

Let us consider a network composed of r nodes and n mono-directional links,
where y� denotes the volume of traffic on the link � at discrete time k (see
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details in [8,9]). For the sake of simplicity, the subscript k denoting the time
is omitted now. Let xi,j be the Origin-Destination (OD) traffic demand from
node i to node j at time k. The traffic matrix X = {xi,j} is reordered in the
lexicographical order as a column vector X =

[
(x(1), . . . , x(m))

]T , where m = r2

is the number of OD flows.
Let us define an n×m routing matrix A = [a�,k] where 0 ≤ a�,k ≤ 1 represents

the fraction of OD flow k volume that is routed through link �. This leads to the
linear model

Y = AX,

where Y = (y1, . . . , yn)T is the Simple Network Management Protocol (SNMP)
measurements. Without loss of generality, the known matrix A is assumed to be
of full row rank, i.e., rankA = n.

The problem consists in detecting and isolating a significant volume anom-
aly in an OD flow xi,j by using only SNMP measurements y1, . . . , yn. In fact,
the main problem with the SNMP measurements is that n 	 m. To overcome
this difficulty a parsimonious linear model of non-anomalous traffic has been
developed in the following papers [10–17].

The derivation of this model includes two steps: (i) description of the ambient
traffic by using a spatial stationary model and (ii) linear approximation of the
model by using piecewise polynomial splines.

The idea of the spline model is that the non-anomalous (ambient) traffic
at each time k can be represented by using a known family of basis functions
superimposed with unknown coefficients, i.e., it is assumed that

Xk ≈ Bμk, k = 1, 2, . . . ,

where the m × q matrix B is assumed to be known and μt ∈ R
q is a vector

of unknown coefficients such that q < n. Finally, it is assumed that the model
residuals together with the natural variability of the OD flows follow a Gaussian
distribution, which leads to the following equation:

Xk = Bμk + ξk (8)

where ξk ∼ N (0, Σ) is Gaussian noise, with the m × m diagonal covariance
matrix Σ = diag(σ2

1 , . . . , σ
2
m). The advantages of the detection algorithm based

on a parametric model of ambient traffic and its comparison to a non-parametric
approach are discussed in [11,14], (see also [18] for PCA based approach). Hence,
the link load measurement model is given by the following linear equation :

Yk = ABμk + Aξk = Hμk + ζk + [θ�], (9)

where Yk = (y1, . . . , yn)k
T and ζk ∼ N (0, AΣAT ). Without any loss of general-

ity, the resulting matrix H = AB is assumed to be of full column rank. Typically,
when an anomaly occurs on OD flow � at time ν + 1 (change-point), the vector
θ� has the form θ� = ε a(�), where a(�) is the �-th normalized column of A and
ε is the intensity of the anomaly. The goal is to detect/isolate the presence of
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an anomalous vector θ�, which cannot be explained by the ambient traffic model
Xk ≈ Bμk.

Therefore, after the de-correlation transformation, the change detec-
tion/isolation problem is based on the following model with nuisance parame-
ter Xk :

Yk = HXk + ξk + θ(k, ν), ξk ∼ N (0, σ2In), k = 1, 2, . . . , (10)

where H is a full rank matrices of size n × q, n > q, and θ(k, ν) is a change
occurring at time ν + 1, namely :

θ(k, ν) =
{

0 if k �= ν
θ� if k ≥ ν + 1 , 1 ≤ � ≤ K − 1.

This problem is invariant under the group G = {Y → g(Y ) = Y + HX} (see
details in [19]). The invariant test is based on maximal invariant statistics. The
solution is the projection of Y on the orthogonal complement R(H)⊥ of the
column space R(H) of the matrix H. The parity vector Z = WY is a maximal
invariant to the group G.

WH = 0, WT W = PH = Ir − H(HT H)−HT , WWT = In−q.

Transformation by W removes the interference of the nuisance parameter X

Z = WY = Wξ (+Wθ).

Hence, the sequential change detection/isolation problem can be re-written as

Zk = WYk = Wξk + Wθ(k, ν), ξk ∼ N (0, σ2In−q), k = 1, 2, . . . .

Theorem 3. Let (Yk)k≥1 be the output of the model given by (10) observed
sequentially. Then the generalized CUSUM or matrix recursive CUSUM tests
attain the lower bound corresponding to the minimax setup :

ESADD(N ; γ) � log γ

ρ∗ as γ → ∞, ρ∗ def.
= inf

X�,Xj
min

1≤�≤K−1
min

0≤j �=�≤K−1
ρ�,j(X

�, Xj)

where X� (resp. Xj) corresponds to the hypothesis H� (resp. Hj). The vector
recursive CUSUM test attains the lower bound

SADD(N ; γ, β) � max

{
log γ

ρ∗
d

,
log β−1

ρ∗
i

}
as γ → ∞, β → 0, log γ ≥ log β−1(1 + o(1)),

where

ρ∗
d = inf

Xj ,X0
min

1≤j≤K−1
ρj,0(X

j , X0) and ρ∗
i = inf

X�,Xj
min

1≤�≤K−1
min

1≤j �=�≤K−1
ρ�,j(X

�, Xj).

Acknowledgement. This work was partially supported by the French National
Research Agency (ANR) through ANR CSOSG Program (Project ANR-11-SECU-
0005).



Quickest Multidecision Abrupt Change Detection with Some Applications 101

References

1. Nikiforov, I.V.: A generalized change detection problem. IEEE Trans. Inf. Theor.
41(1), 171–187 (1995)

2. Nikiforov, I.V.: A simple recursive algorithm for diagnosis of abrupt changes in
random signals. IEEE Trans. Inf. Theor. 46(7), 2740–2746 (2000)

3. Nikiforov, I.V.: A lower bound for the detection/isolation delay in a class of sequen-
tial tests. IEEE Trans. Inf. Theor. 49(11), 3037–3047 (2003)

4. Tartakovsky, A., Nikiforov, I., Basseville, M.: Sequential Analysis: Hypothesis Test-
ing and Changepoint Detection. CRC Press, Taylor & Francis Group, Boca Raton
(2015)

5. Lorden, G.: Procedures for reacting to a change in distribution. Annals Math. Stat.
42, 1897–1908 (1971)

6. Oskiper, T., Poor, H.V.: Online activity detection in a multiuser environment using
the matrix CUSUM algorithm. IEEE Trans. Inf. Theor. 48(2), 477–493 (2002)

7. Tartakovsky, A.G.: Multidecision quickest change-point detection: previous
achievements and open problems. Sequential Anal. 27, 201–231 (2008)

8. Lakhina, A. et al.: Diagnosing network-wide traffic anomalies. In: SIGCOMM
(2004)

9. Zhang, Y. et al.: Network anomography. In: IMC 2005 (2005)
10. Fillatre, L., Nikiforov, I., Vaton, S. Sequential Non-Bayesian Change Detection-

Isolation and Its Application to the Network Traffic Flows Anomaly Detection. In:
Proceedings of the 56th Session of ISI, Lisboa, 22–29 August 2007, pp. 1–4 (special
session)

11. Casas, P., Fillatre, L., Vaton, S., Nikiforov, I.: Volume anomaly detection in data
networks: an optimal detection algorithm vs. the PCA approach. In: Valadas,
R., Salvador, P. (eds.) FITraMEn 2008. LNCS, vol. 5464, pp. 96–113. Springer,
Heidelberg (2009)

12. Fillatre, L., Nikiforov, I., Vaton, S., Casas, P.: Network traffic flows anomaly detec-
tion and isolation. In: 4th edition of the International Workshop on Applied Prob-
ability, IWAP 2008, 7–10 July 2008, Compiègne, p. 1–6 (invited paper)
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