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Abstract. LBlock is a 32-round lightweight block cipher with a 64-bit
block size and an 80-bit key. This paper presents a new impossible dif-
ferential attack on LBlock by improving the previous best result for 1
more round. Based on the nibble conditions, detailed differential proper-
ties of LBlock S-Boxes and thorough exploration of subkey relations, we
set up well precomputation tables to collect the data needed and pro-
pose an optimal key-guessing arrangement to effectively reduce the time
complexity of the attack. With these techniques, we launch an impossible
differential attack on 24-round LBlock. To the best of our knowledge, this
attack is currently the best in terms of the number of rounds attacked
(except for biclique attacks).

Keywords: Lightweight block cipher · LBlock · Impossible differential
cryptanalysis

1 Introduction

In the past few years, the wide applications of RFID tags and sensor networks
have stimulated the needs of lightweight cryptographic primitives that require
very limited resources (the area size on the chip, memory, power consumption
etc.) while still providing good security. In accordance with this tendency, many
lightweight block ciphers were proposed, such as TWINE [19], PRESENT [4],
LED [7], LBlock [23], SIMON and SPECK [2] etc. For all of them, LBlock is
a relatively recent proposal and its security analysis is still under the heated
discussions.
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The LBlock block cipher was introduced by Wu and Zhang at ACNS 2011
[23] and the designers gave corresponding cryptanalysis. As a lightweight prim-
itive, LBlock has 64-bit block size and 80-bit key length. Since its proposal, the
security of LBlock has been analyzed by various cryptanalysis methods, such as
differential [11], impossible differential [5,6,8,12,14,22,23], integral [16,17,23],
zero-correlation linear [18,20], cube cryptanalysis [10], biclique attacks [1,21]
and so on.

Impossible differential cryptanalysis was independently introduced by
Knudsen [9] and Biham et al. [3], which allowed the adversary to discard wrong
keys as many as possible by distinguishing the impossible differential character-
istics, and exhaustively search the rest of the keys. Up to date, the impossible
differential attack is a relatively effective method in terms of attacked rounds of
LBlock. Boura et al. proposed the latest impossible differential result to attack
23-round LBlock with a time complexity 275.36 and a data complexity 259 [5,6].
In [6], the authors provided new generic formulas to compute the data, time
and memory complexities of impossible differential attacks. As to LBlock specif-
ically, they presented some new key-bridging techniques for discarding wrong
keys and therefore improved the time and data complexities of their attack.
Boura et al.’s work simplified the computation of impossible differential crypt-
analysis by a general equation. By comprehensive studying on their works of
LBlock and utilizing the 14-round impossible differential in [6], we further found
that the time complexity could be improved.

Our Contributions. The contributions of this paper are summarized in three
folds as follows:

– In this paper, we thoroughly explore the relations of the subkeys involved
to find an optimal arrangement for key guessing. Based on this and some
precomputations, a new key-guessing technique based on nibble is proposed
to reduce the guessed key space greatly, which is similar to dynamic key-
guessing technique [15] that is valid for block ciphers based on bit operations
such as SIMON.

– We make a more detailed investigation of the differential properties of S-Boxes.
These properties enable us to build some precomputation tables that help us
to collect available plaintext (ciphertext) pairs more efficiently and simplify
the operations in the online phase.

– The number of bit-conditions ascends to 88 after extending the 14-round
impossible differential to attack 24-round LBlock. According to the formu-
las given in [6], the smallest amount of input (or output) pairs N should be
approximately 288 so that the 24-round attack is seemingly unavailable. We
lower the high data complexity and make the 24-round attack a success with
277.50 encryptions and 259 chosen plaintexts by using our techniques.

Table 1 outlines our impossible differential attack on 24-round LBlock com-
pared with some previous cryptanalysis.

This paper is organized as follows, Sect. 2 reviews the LBlock cipher and
investigates detailed differential properties of S-Boxes used in round function.
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Table 1. Summary of some main attacks on LBlock

Model Attacks Rounds Time Data Memory Reference

Single-key Impossible differential 20 272.7 263CP 268 [23]

21 273.7 262.5CP 255.5 [12]

21 269.5 263CP 275 [8]

22 279.28 258CP 276 [8]

23 275.36 259CP 274 [6]

24 277.50 259CP 275 Sect. 3

Integral 22 270.54 264CP N/A [23]

22 271.27 262.1CP 235 [17]

22 279 260CP 263 [16]

Zero-correlation linear 20 263.7 264KP 264 [18]

20 239.6 263.6KP 264 [18]

22 270 261KP 264 [18]

23 276 262.1KP 260 [20]

Biclique attack 32 278.4 252CP 28 [21]

32 278.338 22KP 27FC [1]

Related-key Differential 22 267 263.1RKCP N/A [11]

Impossible differential 22 270 247RKCP N/A [14]

23 278.3 261.4RKCP 261.4 [22]

CP : Chosen Plaintext; KP : Known Plaintext; RKCP : Related-Key Chosen Plaintext.

We give detailed analysis on 24-round LBlock in Sect. 3. Section 4 concludes the
paper.

2 Preliminaries

In the first part of this section, we make a brief description of LBlock. In the
second part, we present some detailed properties about LBlock S-Boxes which
are helpful to launch our impossible differential attack.

2.1 Description of LBlock

Encryption Algorithm. LBlock adopts a 64-bit block with an 80-bit key,
which is a variant of 32-round Feistel network. Let P = L0||R0 be the 64-bit
plaintext, Li−1||Ri−1 be the input of the i-th round, Li||Ri be the output, Ki be
the subkey of the i-th round, and Li = (Xi

7, ...,X
i
0), Ri = (Xi

15, ...,X
i
8), where

Xi
j(0 ≤ j ≤ 15) are 4-bit nibbles. We denote the j-th nibble subkey of i-th round

as ki
j . Then the data processing procedure is expressed as follows.

1. For i = 1, 2, ..., 32, do

Li = F (Li−1, Ki) ⊕ (Ri−1 ≪ 8),

Ri = Li−1

2. C = (R32, L32) as the 64-bit ciphertext.
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Round Function. The round function F of LBlock is composed of three
basic operations: subkey addition, S-Box transformation and nibble permuta-
tion. There are 8 different 4-bit bijective S-Boxes (S7, S6, ..., S0) in S-Box trans-
formation. The round function is shown in Fig. 1.

Fig. 1. Round function of LBlock

Key Schedule. The key schedule function takes an 80-bit masterkey K, and
produces 32-bit subkeys for each round. Let Ki(i = 1, ..., 32) be an 80-bit internal
state for the key schedule function for the i-th round. Then, the 32-bit subkeys
Ki(i = 1, ..., 32) are derived as follows.

– K1 ← K;
– K1 ← K1[79, ..., 48];
– for i = 2, ..., 32 do

• Ki ← Ki−1 ≪ 29;
• Ki[79, 78, 77, 76] ← S9(Ki[79, 78, 77, 76]);
• Ki[75, 74, 73, 72] ← S8(Ki[75, 74, 73, 72]);
• Ki[50, ..., 46] ← Ki[50, ..., 46] ⊕ [i − 1]2, where [i − 1]2 is the binary repre-

sentation of i − 1;
• Ki ← Ki[79, ..., 48].

2.2 Observations on Differential Properties of S-Boxes

Some differential properties of LBlock S-Boxes have been given in [5]. Let A,B
be the input and output of S-Boxes, i.e. B = Si(A) (i = 0, ..., 7), and ΔA,ΔB be
the input and output differences respectively. We represent ΔA

Si−→ ΔB for the
pair (ΔA,ΔB) satisfying difference transition of Si excluding (ΔA,ΔB) = (0, 0),
which is available for difference transition of Si.

Property 1. (from [5]) For any given ΔA and ΔB, the probability Pr{ΔA
Si−→

ΔB} = 96
256 ≈ 2−1.41. For each differential pair (ΔA, ΔB) satisfying following

conditions, {
Si(A) ⊕ Si(A ⊕ ΔA) = ΔB,

(ΔA,ΔB) �= (0, 0).
(1)

there are on average 240
96 ≈ 21.32 values that verify condition (1).
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In this paper, we further investigate the detailed differential distribution tables
of S-Boxes that draw connections between differences and exact values, and
give the more detailed differential properties of LBlock S-Boxes which are useful
in impossible differential attack of LBlock similar to the early abort technique
proposed by Lu et al. [13]. For example, the detailed differential distribution
table of S0 is given in Table 5 in Appendix A.

Property 2. For condition (1), the following differential properties of S-Boxes
are derived:

– If ΔA �= 0, then the probability Pr{ΔA
Si−→ ΔB | ΔA �= 0} = 96

240 ≈ 2−1.32.

Similarly, Pr{ΔA
Si−→ ΔB | ΔB �= 0} = 96

240 ≈ 2−1.32.

– If ΔA �= 0 and ΔB �= 0, then the probability Pr{ΔA
Si−→ ΔB | ΔA �= 0,ΔB �=

0} = 96
225 ≈ 2−1.22.

– Furthermore, for condition (1), when input and output differences of a S-Box
are known, we could directly get the input values that satisfy the differen-
tial transition of the S-Box by looking up the detailed differential distribution
tables.

Example. For the differential equation ΔS1(X0
1 ⊕ k1

1) ⊕ ΔX0
14 = 0, and the

given (ΔX0
1 , ΔX0

14) make the equation hold, we could directly get about 21.32

values of X0
1 ⊕ k1

1 by accessing the detailed differential distribution table of S1.
Furthermore, if X0

1 is known, then corresponding values of k1
1 that satisfy the

differential equation could be also obtained by one table looking up.

3 Impossible Differential Cryptanalysis of 24-Round
LBlock

In this section, we describe our attack on 24-round LBlock by utilizing the 14-
round impossible differential in [6]. In the remainder of this paper, we denote
a zero-difference nibble by “0”, nonzero-difference nibble by “1” and unknown-
difference (either 0 or 1) by “∗”. Therefore, the 14-round impossible differential
characteristic is represented as: (00000000, 00001000) � (00000100, 00000000).

Before introducing the whole attack, we thoroughly explore the relations of
the subkeys and build some precomputation tables. Based on these, we present an
efficient data collection and a new key-guessing technique to mount an impossible
differential attack on 24-round LBlock.

3.1 Conditions of Extended Impossible Differential Paths

We add 5 rounds to the top and bottom of the 14-round impossible differential
respectively to attack 24-round LBlock (see Fig. 2). We find the sufficient nibble
conditions to conform the extended 10-round differential propagation. Then,
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Fig. 2. Impossible differential attack against 24-round LBlock

we deduce the differential equations related to subkeys for chosen plaintext-
ciphertext pairs from the nibble conditions. These equations are effective for
filtering the incorrect subkey candidates. The acquired conditions, corresponding
differential equations and subkeys involved in conditions are listed in Table 2.
(subkeys in bold mean that the subkeys also involve in some other rounds).

3.2 Relationship Among Involved Subkeys

We reveal that 75 bits of key-information are well enough to deduce all the
subkeys involved in the conditions by thoroughly exploring the relations among
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Table 2. Differential conditions of extended impossible differential paths

Round Nibble conditions Subkeys involved Known

(differential equations) in conditions equations

1 ΔX1
0 = 0 : ΔS1(X0

1 ⊕ k1
1) ⊕ ΔX0

14 = 0 k1
1

ΔX1
1 = 0 : ΔS3(X0

3 ⊕ k1
3) ⊕ ΔX0

15 = 0 k1
3

ΔX1
3 = 0 : ΔS2(X0

2 ⊕ k1
2) ⊕ ΔX0

9 = 0 k1
2

ΔX1
4 = 0 : ΔS5(X0

5 ⊕ k1
5) ⊕ ΔX0

10 = 0 k1
5

2 ΔX2
4 = 0 : ΔS5(X1

5 ⊕ k2
5) ⊕ ΔX0

2 = 0 k2
5 ,k1

7

ΔX2
5 = 0 : ΔS7(X1

7 ⊕ k2
7) ⊕ ΔX0

3 = 0 k2
7 ,k1

6 ΔX1
7 = ΔX0

13

ΔX2
7 = 0 : ΔS6(X1

6 ⊕ k2
6) ⊕ ΔX0

5 = 0 k2
6 ,k1

4 ΔX1
6 = ΔX0

12

3 ΔX3
0 = 0 : ΔS1(X2

1 ⊕ k3
1) ⊕ ΔX0

12 = 0 k3
1 ,k2

3,k1
2 ΔX2

1 = ΔX0
7

ΔX3
1 = 0 : ΔS3(X2

3 ⊕ k3
3) ⊕ ΔX0

13 = 0 k3
3 ,k2

2 ,k1
0 ΔX2

3 = ΔX0
1

4 ΔX4
5 = 0 : ΔS7(X3

7 ⊕ k4
7) ⊕ ΔX0

1 = 0 k4
7 ,k3

6 ,k2
4 ,k1

5,k1
7 ΔX3

7 = ΔX1
5

5 ΔX5
1 = 0 k5

3 , k4
2 , k3

0, k2
1 , ΔX4

3 = ΔX0
7

ΔS3(X4
3 ⊕ k5

3) ⊕ ΔX1
5 = 0 k2

3,k1
2,k1

3,k1
1,k1

7

23 ΔX23
9 = 0 : ΔS2(X24

10 ⊕ k24
2 ) ⊕ ΔX24

3 = 0 k24
2

ΔX23
11 = 0 : ΔS7(X24

15 ⊕ k24
7 ) ⊕ ΔX24

5 = 0 k24
7

ΔX23
12 = 0 : ΔS4(X24

12 ⊕ k24
4 ) ⊕ ΔX24

6 = 0 k24
4

ΔX23
15 = 0 : ΔS3(X24

11 ⊕ k24
3 ) ⊕ ΔX24

1 = 0 k24
3

22 ΔX22
10 = 0 : ΔS5(X23

13 ⊕ k23
5 ) ⊕ ΔX24

12 = 0 k23
5 ,k24

6

ΔX22
8 = 0 : ΔS0(X23

8 ⊕ k23
0 ) ⊕ ΔX24

10 = 0 k23
0 ,k24

0 ΔX23
8 = ΔX24

2

ΔX22
13 = 0 : ΔS6(X23

14 ⊕ k23
6 ) ⊕ ΔX24

15 = 0 k23
6 ,k24

1 ΔX23
14 = ΔX24

0

21 ΔX21
12 = 0 : ΔS4(X22

12 ⊕ k22
4 ) ⊕ ΔX24

0 = 0 k22
4 ,k23

4 ,k24
4 ΔX22

12 = ΔX24
14

ΔX21
14 = 0 : ΔS1(X22

9 ⊕ k22
1 ) ⊕ ΔX24

2 = 0 k22
1 ,k23

2 ,k24
5 ΔX22

9 = ΔX24
11

20 ΔX20
15 = 0 : ΔS3(X21

11 ⊕ k21
3 ) ⊕ ΔX24

11 = 0 k21
3 ,k22

7 ,k23
3 ,k24

7 ,k24
6 ΔX21

11 = ΔX23
13

19 ΔX19
9 = 0 k20

2 ,k21
5 ,k22

6 ,k23
1 , ΔX20

10 = ΔX24
14

ΔS2(X20
10 ⊕ k20

2 ) ⊕ ΔX23
13 = 0 k23

4 ,k24
4 ,k24

2 ,k24
3 ,k24

6

subkeys. This enable us to find an optimal arrangement for key guessing in key
recovery in order to reduce the time complexity of the attack. We show relations
among subkeys involved in conditions and the masterkey in Table 3.

For a S-Box S and its input x, we denote the 4 output bits by (S(x)0, S(x)1,
S(x)2, S(x)3), simply as ((x)0, (x)1, (x)2, (x)3). In LBlock, a subkey bit may
be both the s-th output bit of a S-Box and the boolean function of partial
masterkey bits K[i ∼ j]. On this occasion, we denote such a bit by K(i ∼ j)s.
For example, k2

7 = S9(47, 48, 49, 50), we denote its 4 bits by S9(47, 48, 49, 50)0,
S9(47, 48, 49, 50)1, S9(47, 48, 49, 50)2, S9(47, 48, 49, 50)3 or simply (47 ∼ 50)0,
(47 ∼ 50)1, (47 ∼ 50)2, (47 ∼ 50)3 without causing ambiguities.

3.3 Precomputation

Firstly, in the remainder of this paper, we refer a pair that makes an equa-
tion hold as an available pair for this equation. From Table 2, we observe that
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Table 3. Relations among subkeys involved in conditions and masterkeys

Round Relations between subkeys and masterkeys

1 k1
1 : (55,54,53,52)

k1
3 : (63,62,61,60)

k1
2 : (59,58,57,56)

k1
5 : (71,70,69,68)

2 (k2
5 : (42, 41, 40, 39), k1

7 : (79,78,77,76))

k2
7 : S9(47, 48, 49, 50), k1

6: (75, 74, 73, 72)

k2
6 : S8(43, 44, 45, 46), k1

4: (67, 66, 65, 64)

3 k3
1 : (77, 76, 75, 74),k2

3 : (34,33,32,31),k1
2

k3
3 : (5, 4, 3, 2), k2

2: (30, 29, 28, 27), k1
0 : (51, 50, 49, 48)

4 k4
7 : (S9(69, 70, 71, 72), k3

6: (S8(14, 15, 16, 17), k2
4 : (38, 37, 36, 35), k1

5,k1
7

5 k5
3 : (27, 26, 25, 24), k4

2:(52,51,(S9(47, 48, 49, 50)0,S9(47, 48, 49, 50)1),

k3
0 : (73, 72, 71, 70), k2

1: (26, 25, 24, 23), k2
3,k1

2,k1
3,k1

1,k1
7

23 k24
2 : ((29 ∼ 39)1, (29 ∼ 39)2, (26 ∼ 39)0, (26 ∼ 39)1)

k24
7 : S9((47 ∼ 61)0, (47 ∼ 61)1, (47 ∼ 61)2, (47 ∼ 61)3)

k24
4 : ((36 ∼ 46)0, (36 ∼ 46)1, (36 ∼ 46)2, (33 ∼ 46)0)

k24
3 : ((33 ∼ 46)1, (33 ∼ 46)2, (33 ∼ 46)3, (29 ∼ 39)0)

22 k23
5 : ((69 ∼ 76)0, (69 ∼ 76)1, (69 ∼ 76)2, (69 ∼ 76)3),

k24
6 : S8((43 ∼ 54)0, (43 ∼ 54)1, (43 ∼ 54)2, (43 ∼ 54)3)

k23
0 : ((51 ∼ 61)2, (51 ∼ 61)3, (47 ∼ 54)0, 47 ∼ 54)1),

k24
0 : ((22 ∼ 32)2, (22 ∼ 32)3, (18 ∼ 25)0, (18 ∼ 25)1)

k23
6 : S8((77 ∼ 3)3, (73 ∼ 76)0, (73 ∼ 76)1, (73 ∼ 76)2),

k24
1 : (26 ∼ 39)2, (26 ∼ 39)3, (22 ∼ 32)0, (22 ∼ 32)1)

21 k22
4 : ((14 ∼ 21)0,(14 ∼ 21)1,(14 ∼ 21)2,(11 ∼ 21)0),

k23
4 : ((65 ∼ 72)0, (65 ∼ 72)1, (65 ∼ 72)2, (62 ∼ 72)0),k24

4

k22
1 : ((4 ∼ 17)2, (4 ∼ 17)3, (0 ∼ 10)0, (0 ∼ 10)1),

k23
2 : ((58 ∼ 68)1, (58 ∼ 68)2, (55 ∼ 68)0, (55 ∼ 68)1),

k24
5 : ((40 ∼ 50)0, (40 ∼ 50)1, (40 ∼ 50)2, (40 ∼ 50)3)

20 k21
3 : (40 ∼ 50)1, (40 ∼ 50)2, (40 ∼ 50)3, (36 ∼ 46)0),

k22
7 : (26 ∼ 39)0, (26 ∼ 39)1, (26 ∼ 39)2, (26 ∼ 39)3),

k23
3 : (62 ∼ 72)1, (62 ∼ 72)2, (62 ∼ 72)3, (58 ∼ 68)0), k24

7 ,k24
6

19 k20
2 : ((65 ∼ 72)1, (65 ∼ 72)2, (62 ∼ 72)0, (62 ∼ 72)1),

k21
5 : ((47 ∼ 54)0, (47 ∼ 54)1, (47 ∼ 54)2, (47 ∼ 54)3),

k22
6 : ((22 ∼ 32)0, (22 ∼ 32)1, (22 ∼ 32)2, (22 ∼ 32)3),

k23
1 : ((55 ∼ 68)2, (55 ∼ 68)3, (51 ∼ 61)0, (51 ∼ 61)1), k23

4 ,k24
4 ,k24

2 ,k24
3 ,k24

6
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some conditions of extended impossible differential paths are closely related
rather than independent. The input differences of some conditions could also be
output differences of other conditions, and plaintext- (ciphertext-) differences
have determined whether corresponding conditions held. Based on these, we
construct well precomputation tables by combining some related conditions to
provide higher efficiency for collecting available pairs. The connections between
input/output differences and conditions of active S-Boxes are depicted in Fig. 3.

Fig. 3. Connections between input/output differences and conditions

Secondly, in order to reduce time complexity of key recovery phase, we set
up five precomputation tables TKi (i = 1, 2, 3, 4, 5). When some key bits in a
condition equation have been known, the other related key bits could be obtained
by one table looking up rather than redundant online computations.

Precomputation Tables of Plaintext-Pairs. We first consider three condi-
tions (ΔX3

1 = 0, ΔX2
5 = 0, ΔX1

1 = 0), and deduce follow equations,

ΔS3(X
2
3 ⊕ k3

3) ⊕ ΔX0
13 = 0, (2)

ΔS7(X
1
7 ⊕ k2

7) ⊕ ΔX0
3 = 0, (3)

ΔS3(X
0
3 ⊕ k1

3) ⊕ ΔX0
15 = 0. (4)

Since ΔX2
3 = ΔX0

1 and ΔX1
7 = ΔX0

13, the Eq. (2) holds with probability 2−1.41

for any given (ΔX0
1 , ΔX0

13) according to Property 1. When (2) holds, it is easy to
verify that ΔX0

13 �= 0. In this case, (3) holds with probability 2−1.32 according to
Property 2. Similarly, the Eq. (4) holds with probability 2−1.32. Therefore, for any
given (ΔX0

1 , ΔX0
13, ΔX0

3 , ΔX0
15), all the three equations hold with probability

2−4.05. That is to say, for each value of (X0
1 , X0

13, X0
3 , X0

15), there are about
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211.95 values of (X0
1 ′, X0

13′, X0
3 ′, X0

15′) such that the corresponding differences
(ΔX0

1 , ΔX0
13, ΔX0

3 , ΔX0
15) make all these three equations hold.

A table T1 on nibbles (X0
1 , X0

13, X0
3 , X0

15) is set up. The row address of T1

is natually
i = X0

1‖X0
13‖X0

3‖X0
15, (5)

the column index is
j = ΔX0

1‖ΔX0
13‖ΔX0

3‖ΔX0
15 (6)

where the nibble difference (ΔX0
1 ,ΔX0

13,ΔX0
3 ,ΔX0

15) conforms that all the three
equations hold. We store (X0

1 ⊕ ΔX0
1 , X0

13 ⊕ ΔX0
13, X0

3 ⊕ ΔX0
3 , X0

15 ⊕ ΔX0
15)

in the corresponding location of table T1, denoted by T1(i, j). Therefore, there
are 216 rows, and about 211.95 columns in each row of table T1. The size of the
table T1 is about 216 × 211.95 = 227.95 words.

In the same way, considering the three equations

ΔS1(X
2
1 ⊕ k3

1) ⊕ ΔX0
12 = 0,

ΔS6(X
1
6 ⊕ k2

6) ⊕ ΔX0
5 = 0,

ΔS5(X
0
5 ⊕ k1

5) ⊕ ΔX0
10 = 0

we also set up a table T2 with (X0
7 , X0

12, X0
5 , X0

10) as row address, index of
difference (ΔX0

7 , ΔX0
12, ΔX0

5 , ΔX0
10) satisfying the three equations as column

address.

Precomputation Tables of Ciphertext-Pairs. We know that the three con-
ditions (ΔX21

14 = 0, ΔX22
8 = 0, ΔX23

9 = 0) in Table 2 hold with probability
2−4.05 for any given (ΔX24

11 , ΔX24
2 , ΔX24

10 , ΔX24
3 ). A precomputation table T3

is set up with
i = ΔX24

11‖ΔX24
2 ‖ΔX24

10‖ΔX24
3 (7)

being index and T3(i) = 1 when (ΔX24
11 , ΔX24

2 , ΔX24
10 , ΔX24

3 ) satisfy the three
conditions, otherwise T3(i) = 0. There are about 211.95 “1”s out of 216 locations
in table T3. In other words, ciphertext pair (C,C ′) is an available pair for the
characteristic in Fig. 2 only if their nibble difference satisfying T3(i) = 1 where
i is defined as (7).

In the same way, for (ΔX24
14 , ΔX24

0 , ΔX24
15 , ΔX24

5 ), we also set up a table T4.

Precomputation Tables of Key Bits. For condition ΔX2
5 = 0 in round 2,

by partially decrypting 2 rounds, we deduce that
⎧
⎪⎪⎨

⎪⎪⎩

ΔS7(X
1
7 ⊕ k2

7) ⊕ ΔX0
3 = 0,

X1
7 = S6(X

0
6 ⊕ k1

6) ⊕ X0
13,

ΔX1
7 = ΔX0

13.

(8)

According to the detailed difference properties of S-Box S7, we could set up a
precomputation table TK1 with (ΔX0

13, ΔX0
3 , X0

6 , X0
13) as row address, store

(k2
7, k1

6) satisfying (8) in the corresponding row. Therefore, there are 216 rows,
and about 25.32 bytes in each row of table TK1.

By using the same method, we also set up other precomputation tables used
in key recovery phase, and list them in Table 6 in Appendix A.
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3.4 Data Collection

In the data collection phase, we adopt the idea which is similar to the “prelimi-
nary sieving of pairs” in [5], but our method only needs to process those available
pairs satisfying that all equations hold. By dividing the whole 264 plaintexts into
several sets according to some plaintext- and ciphertext-nibbles, and accessing
precomputation tables Ti (i = 1, 2, 3, 4), we apply the divide-and-conquer tech-
nique to collect available plaintext-ciphertext pairs such that the corresponding
equations hold. This enables us to reduce the time complexity of collecting avail-
able pairs.

We demonstrate the available-pair-collecting procedure as follows.

1. Encrypt 2n sets of plaintexts whose nibbles X0
0 , X0

4 , X0
6 , X0

8 are constants while
other nibbles traverse all 248 values. We therefore acquire 2n+48 plaintexts P and
their corresponding ciphertexts C.

2. Within each set, we collect the available pairs satisfying the extended conditions by
taking the following steps:
(a) The plaintexts/ciphertexts (P, C) of every set are divided into 248 subsets

according to (X24
4 , X24

8 , X24
9 , X24

13 , X0
1 , X0

13, X0
3 , X0

15, X0
7 , X0

12, X0
5 , X0

10).
There is about 1 plaintext/ciphertext in every subset.

(b) For every subset A, we find corresponding subset A′ by accessing tables T1,
T2, and combine each element of A with each element of A′ to construct pairs.
Furthermore, for each obtained pair, we verify whether this pair is available by
accessing tables T3 and T4. Therefore, we construct about 248−1 × 211.95×2 ×
2−4.05×2 ≈ 262.8 pairs for each set, and need about (248+11.95×2) × 2 ≈ 272.9

times table looking-up equivalent to 272.9/(8×24) ≈ 265.3 24-round encryptions.
(c) For the 262.8 remaining pairs, we verify whether condition equations (ΔX1

0 = 0,
ΔX1

3 = 0, ΔX23
12 = 0, ΔX23

15 = 0) in Table 2 hold by testing corresponding plain-
text (ciphertext) nibble differences appeared in conditions. According to Prop-
erties 1 and 2, there are about 262.8 ×2−1.41×2−1.32×2 ≈ 257.34 pairs remaining
for each set.

In data collection phase, we could collect about 2n+57.34 pairs, the complexity
of the data collection is about 2n+65.3 24-round encryptions.

3.5 Key Recovery

By thoroughly exploring the relations of subkeys, we find that many key bits are
determined accordingly only by solving some simple equations after some key
bits have been guessed. Based on these, we present an optimal arrangement for
guessing key bits and identifying wrong guesses as early as possible. With the
optimal arrangement of guessing key and precomputation tables, we effectively
reduce the key-guessing space in the procedure of “wrong key filtering” to reduce
the time complexity of key recovery phase. We repeatedly follow steps of “wrong
key filtering” for 2n sets to calculate and discard wrong keys as many as possible,
and exhaustively search the rest of the equivalent keys. The masterkey will be
recovered with the key schedule after discarding wrong keys.
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Wrong Key Filtering. From the round function of LBlock, we know that the
calculations of X1

5 , ΔX1
5 , X23

13 and ΔX23
13 involved in the remaining six equations

in Table 2 depend on (k1
7, k

24
6 ). Hence, we guess (k1

7, k
24
6 ) in advance to only store

pairs that satisfy these 6 conditions. For each value of guessed (k1
7, k

24
6 ), there

are about 257.34−1.22×4−1.32×2 ≈ 249.82 pairs such that these 6 equations hold.
Therefore, within each set, we have N1 = 249.82 × 28 ≈ 257.82 available pairs
with their corresponding (k1

7, k24
6 ) satisfying that all the equations in Table 2

have solutions.
For an available pair, we further guess other subkey bits and filter wrong

keys by taking the following steps.

1. For conditions ΔX1
0 = 0, we get about 21.32 values of k1

1 with corresponding X1
0

by accessing differential distribution table of S1. Similar method is applied for 9
conditions (ΔX1

1 = 0, ΔX1
3 = 0, ΔX1

4 = 0, ΔX2
4 = 0, ΔX23

9 = 0, ΔX23
11 = 0,

ΔX23
12 = 0, ΔX23

15 = 0, ΔX22
10 = 0) in rounds 1, 2, 23, and 22 one by one, and we get

about 21.32 values for k1
3, k1

2, k1
5, k2

5, k24
2 , k24

7 , k24
4 , k24

3 , k23
5 with corresponding X1

1 ,
X1

3 , X1
4 , X2

4 , X23
9 , X23

11 , X23
12 , X23

15 , X22
10 respectively. For 2 conditions (ΔX2

5 = 0,
ΔX2

7 = 0) in round 2, we get about 25.32 values of (k2
7 , k1

6) with (X2
5 , X1

7 ) and 25.32

values of (k2
6 , k1

4) with (X2
7 , X1

6 ) by accessing the corresponding precomputation
tables TK1,TK2 respectively.

2. In this step, we combine partial obtained subkeys to diminish the candidate key
space. Firstly, because k23

5 is determined by k1
7 , k1

5, (k2
7 , k1

6) according to relations
among subkeys, we combine them to get 2(1.32×3) values of ( k1

7 , k1
5 , k2

7 , k1
6 , k23

5 ) and
corresponding key information K[47 ∼ 50, 68 ∼ 79]. Secondly, we get 2(1.32×5+1)

values of K[43 ∼ 55, 64 ∼ 79] by combining them with k1
1, (k2

6 , k1
4) and guessing

K[51] to verify k24
6 . Thirdly, We get 2(1.32×8−3) values of K[43 ∼ 79] by further

combining k1
2, k1

3 to verify k24
7 . In the end, we get 2(1.32×9−3) values of K[39 ∼ 79]

by combining them with k2
5.

3. For every subkey candidate obtained in step 2, we deduce k23
3 , k21

3 [0, 1, 2] with corre-
sponding X22

15 by the key schedule and partial decryptions. For condition ΔX20
15 = 0

in round 20, we obtain about 2(1.32+1) values of (k22
7 , k21

3 [3]) by accessing table
TK3. Therefore, we get about 2(1.32×10−2) values of K[39 ∼ 79], K(26 ∼ 39)0,
K(26 ∼ 39)1, K(26 ∼ 39)2, K(26 ∼ 39)3, K(36 ∼ 46)0 in total.

4. Similarly, we get about 2(1.32×13−6) values of K[26 ∼ 79] by guessing 1 bit K(26 ∼
32)3 and combining obtained subkeys of step 4 with k24

2 , k24
4 , k24

3 one by one. Then,
we apply obtained values to verify condition ΔX3

0 = 0 in round 3 and get about
21.32×14−10 values of K[26 ∼ 79] with corresponding X2

1 .
5. We further compute k23

1 , k23
4 , k21

5 , k20
2 and X22

12 , X22
14 with the knowledge of the

subkeys. For condition ΔX19
9 = 0 in round 19, we get about 21.32 values of k22

6 by
accessing tables TK4 for each one of guessed key and plaintext/ciphertext infor-
mations obtained. Because K(26 ∼ 32)3 could also be deduced from k22

6 , we get
2(1.32×15−11) values of K[26 ∼ 79], K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2,
K(22 ∼ 32)3.

6. Under each one of obtained subkeys of step 5, we deduce k24
1 and X23

14 . For condition
ΔX22

13 = 0 in round 22, and get about 21.32 values of k23
6 by accessing the differential

distribution table of S6. Because k23
6 can also be computed from K[73 ∼ 79] and

(0 ∼ 3)3 according to key schedule, we get about 2(1.32×16−14) values of K[26 ∼ 79],
K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2, K(22 ∼ 32)3, K(0 ∼ 3)3. Similar method
is applied to ΔX22

8 = 0, with repeated 2 bits of k24
0 , we get 2(1.32×17−16) values of
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K[26 ∼ 79], K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2, K(22 ∼ 32)3, K(0 ∼ 3)3,
K(18 ∼ 25)0, K(18 ∼ 25)1.

7. We can deduce K[22 ∼ 25] by guessing K(22 ∼ 25)3 and above subkeys obtained,
thus k4

2 , k3
0 and k2

1 and corresponding X2
0 , X3

2 , X4
3 are known. For ΔX5

1 = 0 in round
5, we get about 21.32 values of k5

3 for each one of subkeys obtained by accessing the
differential distribution table of S3. Because 3 bits of k5

3 are repeated, then we get
2(1.32×18−19) values of K[22 ∼ 79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1.

8. Similarly, we can acquire key materials step by step as follows:
(a) For equation ΔX4

5 = 0 in round 4, we get 2(1.32×19−19) values of K[14 ∼ 17, 22 ∼
79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1 by TK5.

(b) For ΔX21
12 = 0 in round 21, we get 2(1.32×20−19) values of K[14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(14 ∼ 21)0, K(14 ∼ 21)1, K(14 ∼
21)2, K(11 ∼ 21)0.

(c) For ΔX21
14 = 0 in round 21, we get 2(1.32×21−21) values of K[14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼
17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1.

(d) For ΔX3
1 = 0 in round 3, we get 2(1.32×22−21) values of K[2 ∼ 5, 14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼
17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1.

Therefore, for each available pair, there are about 21.32×22 × 2−21 ≈ 28.04 values of
75-bit keys (K[2 ∼ 5, 14 ∼ 17, 22 ∼ 79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1,
K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼ 17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1) to be
discarded.

Exhaustive Search. For every remaining candidate key after filtering wrong keys, we
search the rest of key bits to recover the masterkey as follows.

According to key schedule, we deduce keys (K(4 ∼ 10)3,K[0, 1, 2, 3]) from each
one of candidate keys (K(0 ∼ 10)0, K(0 ∼ 10)1), K(0 ∼ 3)3) and guessed 2-bit
(K(0 ∼ 10)2, K(0 ∼ 10)3). Because subkeys K[2, 3] are also involved in candidate
subkeys, we get about 1 value of (K(4 ∼ 10)3,K[0,1]) for each remaining candidate key.
Similarly, 2 values of K[18, 19, 20, 21], 1 value of (K(7 ∼ 17)3, K(7 ∼ 10)3, 6), and 24

values of subkeys K[7, 8, 9, 10, 11, 12, 13] would be deduce in sequence.
Hence, there are 25 values of 80-bit masterkey left to be exhaustively searched by

24-round encryptions test for every remained candidate subkey.

3.6 Complexity Analysis

From wrong key filtering phase, there are about 2(1.32×22−21) = 28.04 values of the
75-bit keys to be discarded for each one of available pairs. In other words, for every
available pair, a key is discarded with probability P1 = 28.04−75 = 2−66.96. Thus, we let
N be the amount of available plaintext-ciphertext pairs such that all equations hold
rather than the previous sense of amount of pairs only satisfying input and output
differences. By repeatedly processing with N different available plaintext-ciphertext
pairs, the probability that one key is kept in the candidate set is

P = (1 − P1)
N � e−N×P1 .
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Table 4. Complexity in wrong key filtering

Step Time complexity

1 N × ( 21.32×10
8×24 + 25.32×2

8×24 ) 24-round encryptions

2 N × ( 2(1.32×3+4)
8×24 + 2(1.32×5+5)

8×24 + 2(1.32×8+1)
8×24 + 2(1.32×9−3)

8×24 ) 24-round encryptions

3 N × 2(1.32×9−3)×4
8×24 24-round encryptions

4 N × ( 2(1.32×11−2)
8×24 + 2(1.32×12−4)

8×24 + 2(1.32×13−4)
8×24 + 2(1.32×13−6)

8×24 24-round encryptions

5 N × 2(1.32×14−10)×8
8×24 24-round encryptions

6 N × ( 2(1.32×15−11)×2
8×24 + 2(1.32×16−14)×2

8×24 ) 24-round encryptions

7 N × 2(1.32×17−15)×5
8×24 24-round encryptions

8 N × ( 2(1.32×18−19)
8×24 + 2(1.32×19−19)

8×24 + 2(1.32×20−19)
8×24 + 2(1.32×21−21)

8×24 ) 24-round encryptions

When N = 21.86

P1
= 268.82, we calculate:

P � e2
1.86 ≈ 25.23,

n = N − N1 = 68.82 − 57.82 = 11.

Thus we need C = 211+48 = 259 plaintexts. The complexity of data collection is about
265.3+11 = 276.3 24-round encryption. The complexity of exhaustive search is about

280−25.76=274.77 24-round encryption tests.
In the following Table 4 , we discuss the time complexity of each step in wrong key

filtering phase.
From Table 4, we know that the total time complexity of wrong key filtering is

about 268.82+7.4 = 276.22 24-round encryptions.
Therefore, the total time complexity of the impossible differential attack on 24-

round LBlock is: 276.3+276.22+274.77 ≈ 277.50 24-round encryptions. Its data complexity
is 259 chosen plaintexts.

4 Conclusion

In this paper, we propose a 24-round impossible differential attack on LBlock, one
round more than the best previous result. This attack is achieved by employing sev-
eral advanced techniques including dynamic key-guessing, more detailed properties
of S-Boxes, optimal key-guessing arrangement etc. This attack is, to the best of our
knowledge, the best result on LBlock (except biclique attacks) in terms of the number
of attacked rounds.
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A Detailed Differences Distribution of S-Box
and Precomoutation Tables

Table 5. Distribution of input and output differences of S0

Input Values satisfying difference propagation Available Unavailable

difference number number

0 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0 16

1 0, (6, 7, 12, 13), 0, (8, 9), 0, 0, 0, (0, 1), 0, (4, 5, 14, 15), 0, (10, 11), 0, 0, 0, (2, 3) 6 10

2 0, (0, 2, 9, 11), 0, (13, 15), 0, 0, 0, (4, 6), 0, (1, 3, 8, 10), 0, (12, 14), 0, 0, 0, (5, 7) 6 10

3 0, 0, (8, 11, 12, 15), 0, 0, 0, (1, 2, 4, 7), 0, 0, 0, (9, 10, 13, 14), 0, 0, 0, (0, 3, 5, 6), 0 4 12

4 0, 0, 0, (0, 4), (9, 10, 13, 14), (2, 6), (8, 11, 12, 15), 0, 0, 0, 0, (3, 7), 0, (1, 5), 0, 0 6 10

5 0, 0, 0, 0, (1, 2, 4, 7), (9, 12), 0, (8, 13), 0, 0, (0, 3, 5, 6), 0, 0, (10, 15), 0, (11, 14) 6 10

6 0, 0, (1, 2, 4, 7), 0, (0, 3, 5, 6), (11, 13), 0, (9, 15), 0, 0, 0, 0, 0, (8, 14), 0, (10, 12) 6 10

7 0, 0, 0, (1, 6), (8, 11, 12, 15), (0, 7), 0, 0, 0, 0, 0, (2, 5), 0, (3, 4), (9, 10, 13, 14), 0 6 10

8 0, 0, (5, 13), (3, 11), 0, 0, (6, 14), (2, 10), 0, 0, (4, 12), (1, 9), 0, 0, (7, 15), (0, 8) 8 8

9 0, 0, 0, (5, 12), 0, 0, 0, (7, 14), (1, 3, 8, 10), 0, 0, (4, 13), (0, 2, 9, 11), 0, 0, (6, 15) 6 10

10 0, (4, 5, 14, 15), (3, 9), 0, 0, 0, (0, 10), 0, 0, 0, (1, 11), 0, 0, (6, 7, 12, 13), (2, 8), 0 6 10

11 0, (1, 3, 8, 10), 0, 0, 0, 0, 0, 0, (4, 5, 14, 15), 0, 0, 0, (6, 7, 12, 13), (0, 2, 9, 11), 0, 0 4 12

12 0, 0, (6, 10), (2, 14), 0, (3, 15), (5, 9), 0, (7, 11), (0, 12), 0, 0, (4, 8), 0, 0, (1, 13) 8 8

13 0, 0, 0, (7, 10), 0, (5, 8), 0, 0, (0, 13), (6, 11), (2, 15), 0, (3, 14), 0, (1, 12), (4, 9) 8 8

14 0, 0, (0, 14), 0, 0, (4, 10), (3, 13), (5, 11), (2, 12), (7, 9), 0, (6, 8), (1, 15), 0, 0, 0 8 8

15 0, 0, 0, 0, 0, (1, 14), 0, (3, 12), (6, 9), (2, 13), (7, 8), (0, 15), (5, 10), 0, (4, 11), 0 8 8

Table 6. Precomputation tables of keys

Table Index Content Size

TK1 (ΔX0
13, ΔX0

3 , X0
6 , X0

13) (k2
7, k1

6) 216 × 25.32

TK2 (ΔX0
12, ΔX0

5 , X0
4 , X0

12) (k2
6, k1

4) 216 × 25.32

TK3 (ΔX23
13 , ΔX24

11 , X22
15 , X23

13 , k21
3 [0, 1, 2]) (k22

7 , k21
3 [3]) 219 × 22.32

TK4 (ΔX24
14 , ΔX23

13 , X22
14 , X23

15 ⊕ k21
5 , X22

12 ⊕ k20
2 ) k22

6 220 × 21.32

TK5 (ΔX1
5 , ΔX0

1 , X2
6 , X1

5 ⊕ k4
7) k3

6 216 × 21.32
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