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Abstract. The Kalyna block cipher has recently been established as
the Ukranian encryption standard in June, 2015. It was selected in a
Ukrainian National Public Cryptographic Competition running from
2007 to 2010. Kalyna supports block sizes and key lengths of 128,
256 and 512 bits. Denoting variants of Kalyna as Kalyna-b/k, where b
denotes the block size and k denotes the keylength, the design spec-
ifies k ∈ {b, 2b}. In this work, we re-evaluate the security bound of
some reduced round Kalyna variants, specifically Kalyna-128/256 and
Kalyna-256/512 against key recovery attacks in the single key model.
We first construct new 6-round distinguishers and then use these distin-
guishers to demonstrate 9-round attacks on these Kalyna variants. These
attacks improve the previous best 7-round attacks on the same.

Our 9-round attack on Kalyna-128/256 has data, time and mem-
ory complexity of 2105, 2245.83 and 2226.86 respectively. For our 9-round
attack on Kalyna-256/512, the data/time/memory complexities are 2217,
2477.83 and 2451.45 respectively. The attacks presented in this work are
the current best on Kalyna. We apply multiset attack - a variant of
meet-in-the-middle attack to achieve these results.

Keywords: Block cipher · Kalyna · Key recovery · Differential enumer-
ation · Single key model

1 Introduction

The block cipher Kalyna proposed by Oliynykov et al. has been recently
selected as Ukranian encryption standard in 2015. Kalyna block cipher adopts
an SPN (substitution-permutation network) structure, similar to AES [2] but
with increased MDS matrix size, a new set of four different S-boxes, pre-and
post-whitening modular 264 key addition and a new key scheduling algorithm.

The official version of Kalyna specification (in English) available publicly does
not include any security analysis of the design. A preliminary study in [9], before
this cipher was standardized, reports attack complexities for Kalyna-128/128
against various attacks such as differential, linear, integral, impossible differential,
boomerang etc. and shows that upto 5 rounds of this variant can be broken. Sim-
ilar results are claimed for other Kalyna variants as well. The designers of Kalyna
thus claim brute force security against Kalyna for rounds ≥ 6.
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In this work, we extend the number of rounds attacked and show the
first 9-round key recovery attack against Kalyna-128/256 and Kalyna-256/512.
Similar to [1], our attack is inspired from the multiset attack demonstrated by
Dunkelman et al. on AES in [6]. Multiset attack is a variant of meet-in-the-
middle attack presented by Demirci et al. on AES in [4]. However, Demirci et
al.’s attacks suffered from a very high memory complexity. To reduce the mem-
ory complexity of Demirci et al.’s attacks on AES, Dunkelman et al. in [6],
proposed multiset attack which replaces the idea of storing 256 ordered byte
sequences with 256 unordered byte sequences (with multiplicity). This reduced
both memory and time complexity of MITM attack on AES. They also intro-
duced the novel idea of differential enumeration technique to significantly lower
the number of parameters required to construct the multiset. Derbez et al. in [5]
improved Dunkelman et al.’s attack on AES-192/256 by refining the differen-
tial enumeration technique. By using rebound-like techniques [7], they showed
that the number of reachable multisets are much lower than those counted in
Dunkelman et al.’s attack. Due to structural similarities between Kalyna and
AES, a similar attack was applied to 7-rounds of Kalyna by AlTawy et al. in [1].
The multiset attack on AES-192/256 was further improved by Li et al. in [8] by
using the concept of key sieving. Recently, in [11], Li et al. demonstrated the
most efficient multiset attack on AES-256 by exploiting some more key sieving
properties and clever MixColumn properties. On similar lines, we investigate the
effectiveness of improved multiset attack on Kalyna in this work.

In our attacks, we examine Kalyna-128/256 and Kalyna-256/512. We con-
struct new 6-round distinguishers for both the variants and use it to extend our
attacks up to 9 rounds. For Kalyna-256/512, we significantly reduce the data
and time complexities of the previous best 7-round attack on the same [1]. The
key schedule algorithm of Kalyna does not allow recovery of all subkeys or the
master key from one subkey only unlike AES [2]. However, it allows recovery
of odd-round keys from even-round keys and vice-versa. This property will be
used by us in our attacks to reduce the attack complexities. To the best of our
knowledge, our attacks are the first attacks on 9-round Kalyna-128/256 and
Kalyna-256/512 respectively.

Organization. In Sect. 2, we provide a brief description of Kalyna and notations
used throughout the work. In Sect. 3, we give details of our 6-round distinguisher
for Kalyna-128/256 followed by Sect. 4 where we present our 9-round attack on
the same. In Sect. 5, we briefly describe our 6-round distinguisher for Kalyna-
256/512 and report the attack complexities for our 9-round attack on the same.

Finally in Sect. 6, we conclude our work. Our results are summarized in
Table 1.



Single Key Recovery Attacks on 9-Round Kalyna-128/256 121

Table 1. Comparison of cryptanalytic attacks on round reduced variants of Kalyna.
The blank entries were not reported in [9]. (The memory complexity header represents
the number of 128-bit blocks for Kalyna-128 and 256-bit blocks for Kalyna-256 required
to be stored in memory.)

Algorithm Rounds Attack type Time Data Memory Reference

attacked complexity complexity complexity

Kalyna-128/128 2 (of 10) Interpolation − - - [9]

3 (of 10) Linear Attack 252.8 - - [9]

4 (of 10) Differential 255 - - [9]

4 (of 10) Boomerang 2120 - - [9]

5 (of 10) Impossible Differential 262 - 266 [9]

5 (of 10) Integral 297 - 233+4 [9]

Kalyna-128/256 7 (of 14) Meet-in-the-Middle 2230.2 289 2202.64 [1]

9 (of 14) Meet-in-the-Middle 2245.83 2105 2226.86 This work, Sect. 4

Kalyna-256/512 7 (of 18) Meet-in-the-Middle 2502.2 2233 2170 [1]

9 (of 18) Meet-in-the-middle 2477.83 2217 2451.45 This work, Sect. 5

2 Preliminaries

In this section, we describe Kalyna and mention the key notations and definitions
used.

2.1 Description of Kalyna

The block cipher Kalyna-b/k has five variants namely - Kalyna-128/128, Kalyna-
128/256, Kalyna-256/256, Kalyna-256/512 and Kalyna-512/512 where, b is the
block size and k is the key size. The 128-bit, 256-bit and 512-bit internal states
are treated as a byte matrix of 8 × 2 size, 8 × 4 size and 8 × 8 size respec-
tively where, the bytes are numbered column-wise. The pre-whitening and post-
whitening keys are added modulo 264 to the plaintext and ciphertext respectively
columnwise. Each internal round consists of 4 basic operations -SubBytes (SB),
Shift Rows (SR), MixColumn (MC) and Add Round Key (ARK). For detailed
description of these operations, we refer the reader to [10].

Key Scheduling Algorithm. The key scheduling algorithm of Kalyna first involves
splitting of the master key K into two parts - Kα and Kω. If the block size and
key size are equal, i.e., (k = b), then Kα = Kω = K, otherwise if (k = 2b), then
Kω || Kα = K, i.e., Kα is set as b/2 least significant bits of K and Kω is set
as b/2 most significant bits of K. Using these two parameters, an intermediate
key Kσ is generated which is then used to independently generate even indexed
round keys. For complete details of the key schedule algorithm, one may refer
to [10]. Two properties which are important for us are as follows:

1. Recovery of a subkey does not allow recovery of master key better than brute
force.
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2. The keys for round i where i is an odd number can be linearly computed
from the key used in round (i − 1) and vice- versa as follows:

Ki = Ki−1 ≪ (b/4 + 24) (1)

where, ≪ denotes circular left shift operation.

2.2 Notations and Definitions

The following notations are followed throughout the rest of the paper.

P : Plaintext
C : Ciphertext
i : Round number i, where, 0 ≤ i ≤ 8
Kalyna-b : Kalyna with state size of b-bits
Kalyna-b/k : Kalyna with state size of b-bits and key size of k-bits
Ki : Subkey of round i
Ui : MC−1(Ki), where MC−1 is the inverse MixColumn operation
Xi : State before SB in round i
Yi : State before SR in round i
Zi : State before MC in round i
Wi : State after MC in round i
Δs : Difference in a state s
si[m] : mth byte of state s in round i, where, 0 ≤ m ≤ l and l = 15

for Kalyna-128/256 and l = 31 for Kalyna-256/512
si[p − r] : pth byte to rth byte (both inclusive) of state s in round i,

where 0 ≤ p < r ≤ l and l = 15 for Kalyna-128/256 and
l = 31 for Kalyna-256/512

In some cases we interchange the order of the MixColumn and Add Round
Key operations. As these operations are linear, they can be swapped, by first
xoring the intermediate state with an equivalent key and then applying the
MixColummn operation. This is exactly similar to what one can do in AES [5].
As mentioned above, we denote the equivalent round key by Ui = MC−1(Ki).
We utilize the following definitions for our attacks.

Definition 1 (δ-list). We define the δ-list as an ordered list of 256 16-byte
(or 32-byte) distinct elements that are equal in 15 (or 31) bytes for Kalyna-128
(or Kalyna-256). Each of the equal bytes are called as passive bytes whereas
the one byte that takes all possible 256 values is called the active byte [2]. We
denote the δ-list as (x0, x1, x2, . . . , x255) where xj indicates the jth 128-bit
(or 256-bit) member of the δ-list for Kalyna-128 (or Kalyna-256). As mentioned
in the notations, xj

i [m] represents the mth byte of xj in round i.

Definition 2 (Multiset). A multiset is a set of elements in which multiple
instances of the same element can appear. A multiset of 256 bytes, where each
byte can take any one of the 256 possible values, can have

(
28+28−1

28

) ≈ 2506.17

different values.
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Definition 3 (Super S-Box). The Kalyna Super S-box (denoted as SSB) can
be defined similar to AES Super S-box [3]. For each 8-byte key, it produces a
mapping between an 8-byte input array to an 8-byte output array.

Two important properties that will be used in our attacks are as follows:

Property 1a (Kalyna S-box). For any given Kalyna S-box, say Si (where,
i = 0, 1, 2 or 3) and any non-zero input - output difference pair, say (Δin, Δout)
in F256 × F256, there exists one solution in average, say y, for which the equation,
Si(y)⊕ Si(y ⊕ Δin) = Δout, holds true.

Proof. The proof of this will be provided in the extended version of the paper.

Property 1b (Kalyna Super S-box). For any given Kalyna Super S-box, say
SSB and any non-zero input - output difference pair, say (Δin, Δout) in F264 ×
F264 , the equation, SSB(z)⊕SSB(z ⊕Δin) = Δout has one solution in average.

Property 2 (Kalyna MixColumns). If the values (or the differences) in any
eight out of its sixteen input/output bytes of the Kalyna MixColumn operation
are known, then the values (or the differences) in the other eight bytes are
uniquely determined and can be computed efficiently. This is similar to AES
MixColumn property stated in [11].

Proof. The proof of this will be provided in the extended version of the paper.

The time complexity of the attack is measured in terms of 9-round Kalyna
encryptions required. The memory complexity is measured in units of b-bit
Kalyna (where, b = 128 or 256) blocks required.

3 Construction of Distinguisher for 6-Round
Kalyna-128/256

In this section, we construct a distinguisher on the 6-inner rounds of Kalyna-
128/256. Before, we proceed further, we first establish the following relation for
Kalyna-128/256. According to Property 2, we can form an equation using any
11 out of 16 input-output bytes in the Kalyna MixColumn operation. For any
round j, where, 0 ≤ j ≤ 8:

0xCA · Zj [12] ⊕ 0xAD · 0xZj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15]
= 0x94 · Wj [8] ⊕ 0xB4 · Wj [9] ⊕ 0x4E · Wj [10] ⊕ 0x7E · Wj [11]

⊕ 0xC0 · Wj [13] ⊕ 0xDA · Wj [14] ⊕ 0xC5 · Wj [15] (2)

or, 0xCA · Zj [12] ⊕ 0xAD · Zj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15]
= 0x94 · (Kj [8] ⊕ Xj+1[8]) ⊕ 0xB4 · (Kj [9] ⊕ Xj+1[9]) ⊕
0x4E · (Kj [10] ⊕ Xj+1[10]) ⊕ 0x7E · (Kj [11] ⊕ Xj+1[11])
⊕ 0xC0 · (Kj [13] ⊕ Xj+1[13]) ⊕ 0xDA · (Kj [14] ⊕ Xj+1[14])
⊕ 0xC5 · (Kj [15] ⊕ Xj+1[15]) (3)
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where, Wj = Kj ⊕ Xj+1. Let,

Pj = 0xCA · Zj [12] ⊕ 0xAD · Zj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15] (4)
Qj = 0x94 · Xj+1[8] ⊕ 0xB4 · Xj+1[9] ⊕ 0x4E · Xj+1[10] ⊕

0x7E · Xj+1[11] ⊕ 0xC0 · Xj+1[13] ⊕ 0xDA · Xj+1[14] ⊕ 0xC5 · Xj+1[15]
Const = 0x94 · Kj [8] ⊕ 0xB4 · Kj [9] ⊕ 0x4E · Kj [10] ⊕ 0x7E · Kj [11] (5)

⊕ 0xC0 · Kj [13] ⊕ 0xDA · Kj [14] ⊕ 0xC5 · Kj [15] (6)

then, Eq. 3 can be rewritten as,

Pj = Qj ⊕ Const (7)

Eq. 7 will be used to establish the distinguishing property as shown next.

3.1 Distinguishing Property for Kalyna-128/256

Given, a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}128 �→
{0, 1}128 and a 120-bit constant T , we define a multiset v as follows:

Ci = f(T || M i),where (0 ≤ i ≤ 255) (8)
ui = 0x94 · Ci[8] ⊕ 0xB4 · Ci[9] ⊕ 0x4E · Ci[10] ⊕ 0x7E · Ci[11]

⊕ 0xC0 · Ci[13] ⊕ 0xDA · Ci[14] ⊕ 0xC5 · Ci[15] (9)
v = {u0 ⊕ u0, u1 ⊕ u0, . . . , u255 ⊕ u0} (10)

Note that, (T || M0, T || M1, . . ., T || M255) forms a δ-list and atleast one
element of v (i.e., u0 ⊕ u0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations
on 128-bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the

aim is to find how many multisets v (as defined above) are possible when, f
$←− F

and T
$←− {0, 1}120.

In case, when F = family of all permutations on 128-bit and f
$←− F.

Under such setting, since in the multiset v, we have 255 values (one element is
always 0) that are chosen uniformly and independently from the set {0, 1, . . .,
255}, the total number of possible multisets v are at most

(
28−1+28−1

28−1

) ≈ 2505.17.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F. Here,

f
$←− F ⇔ K

$←− {0, 1}256 and f = EK . Let us consider the 6 inner rounds of
Kalyna-128/256 as shown in Fig. 1. Here, C in Eq. 8 is represented by X6 and
Eq. 9 is defined as:

ui = 0x94 · Xi
6[8] ⊕ 0xB4 · Xi

6[9] ⊕ 0x4E · Xi
6[10] ⊕ 0x7E · Xi

6[11]
⊕ 0xC0 · Xi

6[13] ⊕ 0xDA · Xi
6[14] ⊕ 0xC5 · Xi

6[15] (11)
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It is to be noted that under this setting, for each i where, (0 ≤ i ≤ 255),
Eq. 11 is same as Eq. 5 computed at round 5, i.e., ui = Qi

5. Now, we state the
following Observation 1.

Observation 1. The multiset v is determined by the following 52 single byte
parameters only :

• X0
1 [0 - 7] (8-bytes)

• X0
2 [0 - 15] (16-bytes)

• X0
3 [0 - 15] (16-bytes)

• X0
4 [0 - 3, 12 - 15] (8-bytes)

• X0
5 [4 - 7] (4-bytes)

Thus, the total number of possible multisets is 252×8 = 2416 since, each 52-byte
value defines one sequence.

Proof. In round 0 (in Fig. 1), the set of differences {X0
0 [15] ⊕ X0

0 [15], X1
0 [15] ⊕

X0
0 [15], . . ., X255

0 [15]⊕X0
0 [15]} (or, equivalently the set of differences at X0[15])

is known to the attacker as there are exactly 256 differences possible. This is so,
because in the plaintext we make the most significant byte as the active byte.
Hence, when the pre-whitening key is added (columnwise), the carry-bit in the
most significant bit is ignored limiting the possible values (and the differences)
at X0[15] to 256 only. Since S-box is injective, exactly 256 values exist in the set
{Y 0

0 [15] ⊕ Y 0
0 [15], Y 1

0 [15] ⊕ Y 0
0 [15], . . ., Y 255

0 [15] ⊕ Y 0
0 [15]}. As Shift Row (SR),

MixColumn (MC) and Add Round Key (ARK) are linear operations, the set of
differences at X1[0 − 7] will be known to the attacker.

Owing to the non-linearity of the S-box operation, the set of differences at
Y1[0 − 7] cannot be computed to move forward. To allievate this problem, it
is sufficient to guess X0

1 [0 − 7], i.e., values of the active bytes of the first state
(out of 256 states) at X1 as it allows calculating the other Xi

1[0 − 7] states
(where, 1 ≤ i ≤ 255) and cross SB layer in round 1. Since, SR, MC and ARK
operations are linear, the set of differences at X2[0−15] is known. Continuing in
a similar manner as discussed above, if the attacker guesses full states X0

2 [0−15]
and X0

3 [0 − 15], then the set of differences at Z3, i.e., {Z0
3 ⊕ Z0

3 , Z1
3 ⊕ Z0

3 , . . .,
Z255
3 ⊕ Z0

3} can be easily computed. Now at this stage, she can easily calculate
the set of differences at W3 [0, 1, 2, 3, 12, 13, 14, 15] which is equal to the set of
differences at X4 [0, 1, 2, 3, 12, 13, 14, 15]1. By guessing X0

4 [0, 1, 2, 3, 12, 13,
14, 15], the attacker can cross the SB layer in round 4 and calculate the set of
differences at W4 [4, 5, 6, 7]. By guessing X0

5 [4, 5, 6, 7], the attacker can obtain
the set of values {Z0

5 [12−15], Z1
5 [12−15], . . ., Z255

5 [12−15]}. Using these, she can
compute P i

5 at Zi
5 as P i

5 = CAx ·Zi
5[12]⊕ADx ·Zi

5[13]⊕49x ·Zi
5[14]⊕D7x ·Zi

5[15]
(according to Eq. 4) and thus the set {P 0

5 ⊕P 0
5 , P 0

5 ⊕P 1
5 , . . . , P 255

5 ⊕P 0
5 }. Since,

according to Eq. 7, P i
j ⊕ P 0

j = (Qi
j⊕ Const) ⊕ (Q0

j⊕ Const) = Qi
j ⊕ Q0

j and
ui = Qi

5 (mentioned above), the attacker can easily calculate the multiset v =
{Q0

5 ⊕ Q0
5, Q1

5 ⊕ Q0
5, . . ., Q255

5 ⊕ Q0
5}. This shows that the multiset v depends on

52 parameters and can take 2416 possible values. 
�
1 In Fig. 1, byte 3 in states W3, X4, Y4 and Z4 have not been colored grey for a purpose

which will be cleared when we reach Observation 2.
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Since, there are 2416 possible multisets, if we precompute and store these
values in a hash table, then the precomputation complexity goes higher than
brute force for Kalyna-128/256. In order to reduce the number of multisets,
we apply the Differential Enumeration technique suggested by Dunkelman et al.
in [6] and improved by Derbez et al. in [5]. We call the improved version proposed
in [5] as Refined Differential Enumeration.

Refined Differential Enumeration. The basic idea behind this technique is
to choose a δ-set such that several of the parameters mentioned in Observa-
tion 1 equal some pre-determined constants. To achieve so, we first construct a
6-round truncated differential trail in round 0 - round 5 (as shown in Fig. 1)
where, the input difference is non-zero at one byte and output difference is non
zero in 7 bytes. The probability of such a trail is 2−112 as follows: the one byte
difference at ΔP [15] and correspondingly at ΔX0[15] propagates to 8-byte dif-
ference in ΔX1[0 − 7] and 16-byte difference in ΔX2[0 − 15] and further till
ΔZ3[0 − 15] with probability close to 1. Next, the probability that 16-byte dif-
ference in ΔZ3[0 − 15] propagates to 7-byte difference in ΔW3[0 − 2, 12 − 15] (=
ΔX4[0− 2, 12− 15]) is 2−72. This 7-byte difference in ΔX4 propagates to 4-byte
difference in ΔW4[4 − 7] followed by 7-byte difference in ΔW5[8 − 11, 13 − 15]
with a probability of 2−32 and 2−8 respectively. Thus, the overall probability of
the differential from ΔP to ΔZ5 is 2−(72+32+8) = 2−112.

In other words, we require 2112 plaintext pairs to get a right pair. Once, we
get a right pair, say (P 0, P 1), we state the following Observation 2.

Observation 2. Given a right pair (P 0, P 1) that follows the truncated differ-
ential trail shown in Fig. 1, the 52 parameters corresponding to P 0, mentioned
in Observation 1 can take one of atmost 2224 fixed 52-byte values (out of the
total 2416 possible values), where each of these 2224 52-byte values are defined
by each of the 2224 values of the following 39 parameters:

• ΔZ0[7] (1-byte)
• X0

1 [0 − 7] (8-bytes)
• Y 0

3 [0 − 15] (16-bytes)
• Y 0

4 [0 − 3, 12 − 15] (8-bytes)
• Y 0

5 [5 − 7] (3-bytes)
• ΔZ5[12 − 14] (3-bytes)

Proof. Given a right pair (P 0, P 1), the knowledge of these 39 new parameters
allows us to compute all the differences shown in Fig. 1. This is so because the
knowledge of ΔZ0[7] allows us to compute ΔX1[0 − 7]. Then, if the values of
X0

1 [0 − 7] are known, one can compute the corresponding X1
1 [0 − 7] and cross

the S-box layer in round 1 to get ΔX2. From the bottom side, we know that
ΔW5[12] = ΔZ5[8] = ΔZ5[9] = ΔZ5[10] = ΔZ5[11] = 0. Thus, if ΔZ5[12, 13, 14]
are known, then using Property 2 (as 9 bytes are known), we can deduce ΔZ5[15]
(and ΔW5[8−11, 13−15]). Then, the knowledge of Y 0

5 [5−7], allows us to easily
determine the corresponding Y 1

5 [5−7] and compute ΔX5[5−7] (and ΔW4[5−7]).
We know that ΔW4[0] = ΔW4[1] = ΔW4[2] = ΔW4[3] = ΔZ4[3] = 0. Using
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Property 2, we can deduce ΔW4[4] and hence ΔX5[4] and since we already know
ΔY5[4] (from ΔZ5[12] guessed previously), using Property 1a. the possible values
of X5[4] and Y5[4] can be computed. We can compute ΔY4[0 − 2, 12 − 15] from
ΔW4[0−7]. By guessing Y 0

4 [0−2, 12−15], we can obtain ΔY3[0−15]. Using the
value of Y 0

3 [0 − 15], we can compute ΔY2. Then using Property 1a., the possible
values of X0

2 and Y 0
2 can be computed. At this stage, the total possible values

of these 39 parameters are 239×8 = 2312.

However, for each value of this 39-byte parameter, the following key bytes -
U2[0 − 3, 12 − 15], K3[0 − 15], K4[0 − 2, 12 − 15] and K5[4 − 7] can be deduced
as follows:

1. Knowledge of X0
1 [0 − 7] allows us to compute the corresponding Z0

1 [0 −
3, 12 − 15]. Xoring these values with X0

2 [0 − 3, 12 − 15] helps us in deducing
U2[0 − 3, 12 − 15].

2. Knowledge of X0
2 allows us to compute the corresponding W 0

2 . Xoring W 0
2

with X0
3 helps us in deducing K3.

3. Similarly, knowledge of X0
3 and X0

4 [0 − 2, 12 − 15] (from Y 0
4 [0 − 2, 12 − 15])

can be used to deduce K4[0 − 2, 12 − 15].
4. Again, knowledge of X0

4 [0 − 3, 12 − 15] and X0
5 [4 − 7] (from Y 0

5 [4 − 7]) helps
in deducing K5[4 − 7].

Now, according to the key schedule algorithm of Kalyna-128/256, from K3,
we can compute K2 (according to Eq. 1) which allows us to compute the cor-
responding U2. Thus, by comparing the computed U2[0 − 3, 12 − 15] with the
deduced U2[0−3, 12−15], a sieve of 8-bytes (since matching probability is 2−64)
can be applied to eliminate the wrong guesses. Similarly, again from Eq. 1, knowl-
edge of K5[4 − 7] allows us to compute K4[12], K4[13] and K4[14] as K4[12] =
K5[5], K4[13] = K5[6] and K4[14] = K5[7]. This allows us a filtering of further
3-bytes. Thus by key sieving, the total possible guesses of 39-byte parameter
reduces from 239×8 to 2(39−(8+3))×8 = 228×8 = 2224.

Using Observation 1 and Observation 2, we state the following third Obser-
vation 3 :

Observation 3. Given (M0, M1, . . ., M255) and f
$←− F and T

$←− {0, 1}120,
such that T || M0 and T || M j , (where, j ∈ { 1, . . ., 255}) is a right pair that
follows the differential trail shown in Fig. 1, then atmost 2224 multisets v are
possible.

Proof. From Observation 1, we know that each 52-byte parameter defines one mul-
tiset and Observation 2 restricts the possible values of these 52-byte parameters
to 2224. Thus, atmost 2224 multisets are only possible for Kalyna-128/256. 
�
As the number of multisets in case of 128-bit random permutation (= 2505.17)
is much higher than 6-round Kalyna-128/256 (= 2224), a valid distinguisher is
constructed.
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4 Key Recovery Attack on 9-Round Kalyna-128/256

In this section, we use our Observation 3 to launch meet-in-the-middle attack
on 9-round Kalyna-128/256 to recover the key. The distinguisher is placed in
round 0 to round 5, i.e., plaintext is considered as the δ-list with byte 15 being
the active byte and the multiset sequence is checked at X6 (as shown in Fig. 2).
Three rounds are added at the bottom of the 6-round distinguisher. The attack
consists of the following three phases:
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4.1 Precomputation Phase

In this phase, we build a lookup table T to store 2224 sequences to be used for
comparison in the online phase. The construction of this table requires us to
create two more hash tables (T0 and T1) in the intermediate steps. The entire
procedure is as follows:

1. For each K3

– We guess ΔZ1[0−3, 12−15]||ΔX4[0−2, 12−15] to compute the difference
ΔX2 and ΔY3 respectively. We resolve (ΔX2 - ΔY3) using Property 1b
to compute the corresponding X2||X3. We then deduce K2 from K3 and
compute the corresponding value of Z1[0−3, 12−15]. Using the guessed
value of ΔZ1[0 − 3, 12 − 15] and the computed value of Z1[0 − 3, 12 −
15], we compute ΔZ0[0 − 7]. If ΔZ0[0 − 6] = 0 (which happens with
a probability of 2−56), we store the corresponding X1[0 − 7]||ΔZ1[0 −
3, 12−15]||X2||X3||W3[12−14]||ΔX4[0−2, 12−15] at index K3 in table
T0. There are about 264 entries for each index.

2. For each guess of ΔZ5[12 − 14]
– We compute ΔZ5[15] using Property 2.
– We guess Y5[5 − 7], compute X5[5 − 7] and ΔX5[0 − 3, 5 − 7] where,

ΔX5[0 − 3] = 0. Since, ΔX5[0 − 3, 5 − 7] = ΔW4[0 − 3, 5 − 7] and we
know that ΔZ4[3] = 0, thus we can compute ΔX5[4] (= ΔW4[4]) and
ΔZ4[0 − 2, 4 − 7] again using Property 2. Since ΔY5[4] is known from
ΔZ5[12], we can resolve (ΔX5[4]-ΔY5[4]) to get X5[4].

– We guess Y4[0−3, 12−15] and compute corresponding X4[0−3, 12−15]
in the backward direction and W4[4 − 7] in the forward direction. This
allows us to calculate K5[4−7] and deduce the corresponding K4[12−14].
We use this to compute W3[12 − 14].

– We store X4[0−3, 12−15]||X5[4−7] at index value W3[12−14]||ΔX4[0−
2, 12 − 15] in table T1. There are about 232 entries for each index.

3. For each of the 2128 index of K3 in table T0, we have 264 entries of W3

[12−14]||ΔX4[0−2, 12−15] and corresponding to each of these we have 232

entries of X4[0 − 3, 12 − 15]||X5[4 − 7] in table T1. So in all, after merging
T0 and T1, we get 2128+64+32 = 2224 unique set of 39-byte parameters, that
are required to construct the multiset v.

4. For each of these 2224 39-byte parameters, we calculate the corresponding
52-byte parameters for all the elements of the δ-list and compute the multiset
v = {u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}. We store the multiset along with the
52-byte parameters in the table T .

The time complexity to construct T0 = 2(16+8+7)×8 × 2−2.17 = 2245.83. The
time complexity to construct T1 = 2(3+3+8)×8 × 2−2.17 = 2109.83. The time com-
plexity to merge T0 and T1 = 2128+64+32 = 2224. Finally, the time complexity to
construct T = 2224 × 28 × 2−0.58 = 2231.41.
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4.2 Online Phase

In this phase we extend the differential trail shown Fig. 1, by adding 3 more
rounds at the bottom (as shown in Fig. 2). The steps of the online phase are as
follows:

1. We encrypt 297 structures of 28 plaintexts each where byte 15 takes all pos-
sible values and rest of the bytes are constants. We store the corresponding
ciphertexts in the hash table.

2. For each of the 2112 (P0, P ′
0) plaintext pairs, do the following:

– We guess 2128 values of K9 and deduce the corresponding values of K8

from K9. We decrypt each of the ciphertext pairs through 2 rounds, to
get X7 and ΔX7. Then, we deduce the corresponding ΔW6 and ΔZ6.

– We filter out the keys, which do not give zero difference at ΔZ6[0 − 4,
12 − 15]. 256 key guesses are expected to remain.

– We pick one member of the pair, say P0, create the δ-list by constructing
the rest of the 255 plaintexts as Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get
their corresponding ciphertexts.

– For each remaining 256 key guesses of K8 and K9, we guess U7[5 − 11],
compute the corresponding Z6[5 − 11] and Y6[8 − 11, 13 − 15] and then
obtain the multiset { u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}.

– We check whether this multiset exists in the precomputation table T or
not. If not, then we discard the corresponding guesses.

The probability for a wrong guess to pass the test is 2224×2−467.6 = 2−243.6.2

Since we try only 2112+56 = 2168 multisets, only the right subkey should verify
the test.

4.3 Recovering the Remaining Subkey Bytes

The key schedule algorithm of Kalyna does not allow recovery of master key
from any subkey better than brute-force [10]. However, knowledge of all round
keys enables encryption/decryption. We follow a similar approach as described
in [1] to recover all the round subkeys. When a match with a multiset is found
using a given plaintext-ciphertext pair, we choose one of the ciphertexts and
perform the following steps:

1. We already know the corresponding K8 and K9 and U7[5 − 11].
2. We guess the remaining 9 bytes of U7, and deduce the corresponding 272

values of K7 and K6.
3. For each 272 guesses of (K7,K6), from X7 we compute X5. We discard the

key guesses for which X5[4 − 7] does not match with the values of X5[4 − 7]
obtained from the corresponding matched multiset in the pre-computation
table.

2 Note that the probability of randomly having a match is 2−467.6 and not 2−505.17

since the number of ordered sequences associated to a multiset is not constant [6].



Single Key Recovery Attacks on 9-Round Kalyna-128/256 131

4. For the remaining 272−32 = 240 guesses of (K9, K8, K7, K6), we guess
2128 values of K5. We deduce X4 and discard the key guesses for which
X4[0− 2, 12− 15] does not match with the values obtained corresponding to
the correct multiset sequence from the precomputation table. From a total
of 2128+40 = 2168 key guesses, 2112 key guesses are expected to remain.

5. We deduce K4 from K5 for the remaining key guesses and compute X3.
We compare this to the value obtained from the precomputation table cor-
responding to the correct multiset sequence and discard those that do not
match. Only one value of (K9, K8, K7, K6, K5, K4) is expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already
known from the pre-computation table. We deduce X1 for the remaining one
value of (K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2128 values of K1, deduce K0 and compute the plaintext. We
compare this to the plaintext corresponding to ciphertext being decrypted.
We are left with only one value of (K9, K8, K7, K6, K5, K4, K3, K2, K1,
K0).

Complexities. The time complexity of the precomputation phase is dominated
by step 1 and is 2248 × 2−2.17 = 2245.83 Kalyna-128/256 encryptions. The time
complexity of the online phase is dominated by step 1 and is 2112 × 2128 ×
2−2.17 = 2237.83. The time complexity of the Subkey recovery phase is dominated
by step 4 which is 2168 × 2−3.17 = 2164.83. Clearly the time complexity of the
whole attack is dominated by the time complexity of the precomputation phase,
i.e., 2245.83. It was shown in [5] that each 256-byte multiset requires 512-bits
space. Hence, to store each entry in table T, we require 512-bits to store the
multiset and 52 × 8 = 416-bits to store the 52-byte parameters, i.e., a total of
928-bits (= 29.86). Therefore, the memory complexity of this attack is 2224 ×
29.86−7 = 2226.86 Kalyna 128-bit blocks. The data complexity of this attack is
2105 plaintexts.

5 Key Recovery Attack on 9-Round Kalyna-256/512

In this section, we briefly describe our meet-in-the-middle attack on 9-round
Kalyna-256/512. We first establish the following relation for Kalyna-256/512.
According to Property 2, we can form an equation using any 12 out of 16 input-
output bytes in the Kalyna MixColumn operation. For any round j, where,
0 ≤ j ≤ 8:

Zj [8] ⊕ Zj [9] ⊕ Zj [12] ⊕ Zj [13] = EAx · Wj [8] ⊕ 54x · Wj [9] ⊕ 7Dx · Wj [10]
⊕ C3x · Wj [11] ⊕ E0x · Wj [12] ⊕ 5Ex · Wj [13]
⊕ 7Dx · Wj [14] ⊕ C3x · Wj [15] (12)
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Similar to as shown in Sect. 3, since, Wj = Kj ⊕ Xj+1, If

Pj = Zj [8] ⊕ Zj [9] ⊕ Zj [12] ⊕ Zj [13] (13)
Qj = EAx · Xj+1[8] ⊕ 54x · Xj+1[9] ⊕ 7Dx · Xj+1[10] ⊕

C3x · Xj+1[11] ⊕ E0x · Xj+1[12] ⊕ 5Ex · Xj+1[13] ⊕
7Dx · Xj+1[14] ⊕ C3x · Xj+1[15] (14)

Const = EAx · Kj [8] ⊕ 54x · Kj [9] ⊕ 7Dx · Kj [10] ⊕ C3x · Kj [11]
⊕ E0x · Kj [12] ⊕ 5Ex · Kj [13] ⊕ 7Dx · Kj [14] ⊕ C3x · Kj [15](15)

then, Eq. 12 can be rewritten as,

Pj = Qj ⊕ Const (16)

For Kalyna-256/512, instead of counting multisets, we count 256-byte ordered
sequence as shown next.

5.1 Construction of 6-Round Distinguisher for Kalyna-256/512

Given a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}256 �→
{0, 1}256 and a 248-bit constant T, we define an ordered sequence ov as follows:

Ci = f(T || M i),where (0 ≤ i ≤ 255) (17)

oui = EAx · Ci[8] ⊕ 54x · Ci[9] ⊕ 7Dx · Ci[10] ⊕ C3x · Ci[11]

⊕ E0x · Ci[12] ⊕ 5Ex · Ci[13] ⊕ 7Dx · Ci[14] ⊕ C3x · Ci[15] (18)

ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0} (19)

Note that, (T || M0, T || M1, . . ., T || M255) forms a δ-list and the first
element of ov (i.e., ou0 ⊕ ou0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations
on 256-bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the
aim is to find how many ordered sequences ov (as defined above) are possible

when, f
$←− F and T

$←− {0, 1}248.
In case, when F = family of all permutations on 256-bit and f

$←− F.
Under such setting, since, ov is a 256-byte ordered sequence in which the first
byte is always zero and the rest 255 bytes are chosen uniformly and independently
from the set {0, 1, . . ., 255}, the total possible values of ov are (256)255 = 22040.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F. Here,

f
$←− F ⇔ K

$←− {0, 1}512 and f = EK . Let us consider the first 6 rounds of
Kalyna-256/512 as shown in Fig. 3. Here, C in Eq. 17 is represented by X6 and
Eq. 18 is defined as:

oui = EAx · Xi
6[8] ⊕ 54x · Xi

6[9] ⊕ 7Dx · Xi
6[10] ⊕ C3x · Xi

6[11]
⊕ E0x · Xi

6[12] ⊕ 5Ex · Xi
6[13] ⊕ 7Dx · Xi

6[15] ⊕ C3x · Xi
6[15] (20)
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Fig. 3. 9-round attack on Kalyna-256/516. The subkey bytes guessed are shown dotted.

It is to be noted that here, for each i where, (0 ≤ i ≤ 255), Eq. 20 is same
as Eq. 14 computed at round 5, i.e., oui = Qi

5. Under this setting, by applying
differential enumeration technique [5,6] and key sieving technique [8,11], the
total possible values of ordered sequence ov is 2448. Due to space constraints,
we are unable to provide proofs of the same in this work3.

As the number of ordered sequences in case of 256-bit random permutation
(= 22040) is much higher than 6-round Kalyna-256/512 (= 2448), a valid distin-
guisher is constructed.

5.2 Key Recovery Attack

Following a similar approach as used in Kalyna-128/256, it is possible to launch
an attack on 9-round Kalyna-256/512 (as shown in Fig. 3). Due to space limita-
tions, we omit the full details of the key recovery attack here and just report the
attack complexities4. The time complexity of the precomputation phase is 2453.83

3 The details of this distinguisher will be provided in the extended version of this
paper.

4 The complete details of this attack will be provided in the extended version of this
paper.
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Kalyna encryptions. The time complexity of the online phase is 2477.83 and the
time complexity of the Subkey recovery phase is 2412.83. Clearly the time com-
plexity of this attack is dominated by the online phase, i.e., 2477.83. The memory
complexity of this attack comes out to be 2451.45 Kalyna-256 blocks. In this
attack, we require 2224 plaintext pairs to guarantee the existence of a right pair.
Thus, the data complexity of this attack is 2217 plaintexts.

6 Conclusions

In this work, we utilize multiset attacks to launch key recovery attack on Kalyna-
128/256 and Kalyna-256/512. We improve the previous 7-round attack on both
the variants to demonstrate the first 9-round attacks on the same. Our attacks
on Kalyna-256/512 even improve upon the previous 7-round attack on the same
variant in terms of time and data complexities. We obtain these results by con-
structing new 6-round distinguishers on Kalyna and applying MITM attack on
the rest of the rounds. Currently, this line of attack only works on Kalyna-b/2b
variants and Kalyna variants in which block size and key size are equal appear
to be safe. It would be an interesting problem to try applying multiset attacks
on Kalyna-b/b. Presently, all five variants of Kalyna have been included in the
Ukranian standard. However, our results as well as the previous 7-round attack
show that compared to Kalyna-b/2b variants, Kalyna-b/b variants appear to be
more robust.
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