
Integral Attack Against Bit-Oriented
Block Ciphers

Huiling Zhang1,2,3(B), Wenling Wu1,2,3, and Yanfeng Wang1,2,3

1 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{zhanghuiling,wwl}@tca.iscas.ac.cn
2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Integral attack is an extremely important and extensively
investigated cryptanalytic tool for symmetric-key primitives. In this
paper, we improve the integral attack against bit-oriented ciphers. First,
we propose the match-through-the-Sbox technique based on a specific
property of the Sbox. Instead of computing the inverse of the Sbox in
partial decryption, we independently calculate two Boolean functions
which accept less input bits. The time complexity is thus reduced and the
number of attacked rounds will be stretched. Second, we devise an easy-
to-implement algorithm for construction of the integral distinguisher,
which is then proved to be very effective for constructing lower order dis-
tinguishers. It shows SIMON 32, 48, 64, 96 and 128 has 13-, 14-, 17-, 21-
and 25-round integral distinguisher, respectively, significantly improving
the recent results from EUROCRYPT 2015. Finally, our techniques are
applied to several ciphers. We attack one more round than the previous
best integral attack for PRESENT and first evaluate the securities of
SIMON family (except for SIMON 32) and RECTANGLE with integral
attack.

Keywords: Bit-oriented block cipher · Integral attack · Meet-in-the-
middle · Algebraic normal form · PRESENT · SIMON

1 Introduction

Integral attack was firstly proposed by Daemen et al. to evaluate the security of
Square cipher [5] and then formalized by Knudsen and Wagner [7]. It consists
of two phases, the integral distinguisher construction and the key recovery. An
attacker starts with a set of 2d plaintexts, which travel all values at d bit positions
and take a constant value at others. If he proves that the state after r encryption
rounds has a property with probability 1, e.g., the XOR of all values of the state
equals to 0 at some bits which are known as balanced bits, a d-order integral
distinguisher containing r rounds is thus achieved. Then for the second phase,
the key space is reduced by checking balanced property. More specifically, the
attacker guesses a part of subkeys and computes the balanced bits for every
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Table 1. Summary of integral attack results

Target #Rounds Time Data Mem Technique Ref.

PRESENT-80 6 241.7 222.4 - Bit-pattern [14]

9 260 220.3 220 7-round IND [12]

10 235 221.5 235.9 MTTS Sect. 4.1

PRESENT-128 7 2100.1 224.3 280 Bit-pattern [14]

10 299.3 222.4 284 7-round IND [12]

11 294.8 221.2 232.1 MTTS Sect. 4.1

SIMON(2n, m) 19/20/21/ 2m−1 22n−1 2cc New IND Sect. 4.2

23/24/27/

28/32/33/34

RECTANGLE-80 11 269.5 239.6 245.6 New IND and MTTS Sect. 4.3

RECTANGLE-128 12 2120.7 245 239 New IND and MTTS Sect. 4.3

IND: integral distinguisher. MTTS: match-through-the-Sbox technique. 2n: block
size. m: key size. c = 42/52/76/55/84/56/89/89/130/179.

ciphertext by the partial decryption. If the XOR of the results is 0, the guessed
value is a candidate for the right subkey, otherwise, it must be wrong.

Several techniques were proposed to optimize integral attack. In 2000,
Ferguson et al. [6] introduced the partial-sum technique, which reduces the com-
plexity of the partial decryption by guessing each subkey byte one after another
and timely discarding the redundant data. The meet-in-the-middle technique for
integral attack against Feistel ciphers was proposed by Sasaki et al. [8,9]. It
employs the characteristic of Feistel structure and represents the balanced state
by the XOR of two variables. Then, the partial decryption is separated into
two independent parts, which greatly diminishes the time complexity. In 2014,
Todo and Aoki applied the FFT technique to integral attack [11]. As the partial
decryption is performed by Fast Walsh-Hadamard Transform, the time complex-
ity does not depend on the number of chosen plaintexts, which is useful in an
integral attack with enormous number of chosen plaintexts.

Recently, block ciphers which can be implemented in resource constraint envi-
ronment, e.g., RFID Tags for a sensor network, have received much attention.
This kind of block ciphers are called lightweight block ciphers. Lots of them are
bit-oriented, such as PRESENT [3], PRINCE [4], PRIDE [1], RECTANGLE [15],
as well as EPCBC [13] and SIMON family [2]. Traditional integral attack is less
effective for these ciphers, which impels the cryptanalysts to develop new tech-
niques. In FSE 2008, Z’aba et al. introduced a method of constructing integral
distinguishers for bit-oriented ciphers [14]. Several bit-wise integral properties,
denoted by bit-patterns, were defined and after that they showed the propagation
of bit-patterns which will indicate the existence of integral distinguishers. This
method requires the set of plaintexts to be ordered, and bit-patterns are easily
destroyed after a few encryption rounds. Thus, the applications are limited. In
EUROCRYPT 2015, Todo proposed a generalized integral property [10], named
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division property, which evaluates the sum of the outputs of a parity function.
A multi-set Λ has the division property Dn

k if and only if for all Boolean functions,
f : Fn

2 → F2, with algebraic degree < k, the sum of f on Λ is always 0. It has
been pointed out that the propagation characteristic of division property for the
nonlinear function totally depends on the algebraic degree. Hence, ciphers with
low-degree functions are vulnerable to this analysis. Another generic method is
by directly evaluating the algebraic degree, which is often called “higher-order
differential attack”. It utilizes the facts: (1) any state bit can be computed by
a Boolean function taking plaintext and key bits as variables. (2) If the degree
of the Boolean function is less than d for any value of the key, this state bit is
balanced for 2d chosen plaintexts. But, unfortunately, the existing approaches
of degree evaluation are mostly rough, which will result in the misjudgment of
balanced bits. In 2013, Wu et al. discovered that some properties of PRESENT’s
Sbox help to make a more accurate evaluation of the degree and they extended
the integral distinguisher to 7 rounds [12]. However, their improvement is ded-
icated for PRESENT. The generic approach to improve the accuracy of degree
evaluation is still unavailable.

Our Contributions. In this paper, we first attempt to optimize the key recov-
ery phase by the property of Sboxes and propose match-through-the-Sbox tech-
nique for bit-oriented block ciphers. In previous key recovery, attackers compute
the inverse of the Sbox to get the value of balanced bits. We discover that the
computation can be divided into two independent parts when the Sbox has a
specific property. This leads to a great decrease of the time complexity and
furthermore leads to an extension of the number of attacked rounds. Then, we
propose an algorithm of constructing integral distinguishers. It is inspired by
[12], however our improvement is generic. The algorithm focuses on the terms
occurring in the algebraic normal form of the Boolean function mapping plain-
text bits to the state bit, which shows a tighter upper-bound of the degree.
Therefore, integral distinguishers can be more effectively constructed. Moreover,
it can be automatically implemented, that is to say, it does not require the
complicated and tedious manual deductions, such as the proof of the 7-round
distinguisher for PRESENT in [12]. As applications, we prove 13-, 14-, 17-, 21-
and 25-round distinguisher for SIMON 32, 48, 64, 96 and 128, which contains 4,
3, 6, 8 and 12 more rounds than the previous best result, respectively. We also
reduce the order of the integral distinguisher for RECTANGLE to 36 from 56,
and thus the required number of chosen plaintexts for the integral attack can be
decreased 220 times. Finally, our techniques are applied to the integral attacks
against PRESENT, SIMON family and RECTANGLE. The comparison of the
results to previous integral attacks is summarized in Table 1.

Organization. Section 2 gives a brief review of Boolean function and integral
attack. The techniques for improving integral attack against bit-oriented block
ciphers are proposed in Sect. 3. In Sect. 4, we apply our techniques to PRESENT,
SIMON family and RECTANGLE. Finally, Sect. 5 concludes this paper.
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2 Preliminaries

2.1 Boolean Function

A Boolean function f on n variables is a mapping from Fn
2 to F2. It can be

expressed with algebraic normal form (ANF), that is

f(x) =
⊕

Γ∈P(N )

aΓ

∏

k∈Γ

xk,

where P(N ) is the power set of N = {0, 1, · · · , n − 1} and x = (xn−1, · · · , x0) ∈
Fn

2 . The algebraic degree of f, denoted by deg(f), is the number of variables in
the highest order term with the nonzero coefficient. It has following properties,

deg(fg) ≤ deg(f) + deg(g), (1)

deg(f ⊕ g) ≤ max{deg(f), deg(g)}. (2)

A vectorial Boolean function F is a mapping from Fn
2 into Fm

2 . Such function
being given, the Boolean functions fm−1, · · · , f0 defined, at every x ∈ Fn

2 , by
F (x) = (fm−1(x), · · · , f0(x)), are called the coordinate Boolean functions of
F. The algebraic degree of F is defined as the highest degree of its coordinate
Boolean functions. And the linear combinations, with non all-zero coefficients,
of the coordinate functions are called the component functions of F.

2.2 Integral Attack

A well-known result from the theory of Boolean functions is that if the algebraic
degree of a Boolean function is less than d, then the sum over the outputs of
the function applied to all elements of an affine vector space of dimension ≥ d
is zero. This property allows to exploit the algebraic degree to create integral
distinguishers.

In a key-alternating block cipher, the intermediate state Xi is iteratively
computed from the plaintext X0 as:

Xi = F (Ki−1 ⊕ Xi−1),

where F is the round function. We denote the j-th bit of Xi by xi
j . Assuming

the block size is l, then, xi
j can be expressed as a Boolean function on l plain-

text bits, x0
0, x

0
1, · · · , x0

l−1. To construct a d-order integral distinguisher, we first
choose d bits in the plaintext as variables, supposing they are x0

0, x
0
1, · · · , x0

d−1

for simplicity, and then evaluate the degree of the function (treating the rest of
l − d plaintext bits as constants). If the degree is less than d for any key, the
sum of the values of xi

j must be zero for a plaintext set whose elements travel
all values of x0

0, x
0
1, · · · , x0

d−1 and have a fixed value of remaining bits, i.e., xi
j is

a balanced bit.
A generic method of the degree evaluation is by recursion. Supposing the

upper-bounds of the degrees for xi−1
t , 0 ≤ t < l, are known, we can evaluate the

degree for xi
j according to property (1), (2).
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3 Improvements of Integral Attack

In this section, we first propose the match-through-the-Sbox technique, which is
very simple and effective for integral attacks against some bit-oriented ciphers.
After that, we scrutinize and improve the integral distinguisher construction
described in Sect. 2.2.

3.1 Match-Through-the-Sbox Technique

A property of the Boolean function is firstly defined. Then, the match-through-
the-Sbox technique based on this property is developed, which is used in the key
recovery phase to reduce the time and memory complexities and even extend
the number of attacked rounds.

Definition 1. Let f be a Boolean function on n variables. If there exist two
Boolean functions on less than n variables, denoted by g1 and g2, satisfying

f = g1 ⊕ g2

f is said to be a separable Boolean function. In addition, if g1 and g2 do not
share any variable, f is completely separable.

Example 1. Suppose f is a Boolean function on 4 variables.

– Let f = x3x2x1 ⊕ x2x1x0 ⊕ x3x0 ⊕ 1. f is not a separable Boolean function.
– Let f = x3x2x1 ⊕ x2x1x0 ⊕ 1. f is separable, while it is not completely

separable.
– Let f = x3x2 ⊕ x1x0 ⊕ x0. f is completely separable.

Separable property commonly occurs for the component functions of 4-bit
Sboxes (or their inverse mappings) in lightweight block ciphers, such as
PRESENT, LBlock, PRINCE, etc., because lightweight block ciphers prefer the
Sbox with compact algebraic expression for the sake of low cost. We will explain
how to optimize the key recovery by using this property, which is called the
match-through-the-Sbox technique.

Match-Through-the-Sbox Technique. Assume that y is a balanced bit. Let
f be the coordinate Boolean function of S−1 such that y = f(x3, x2, x1, x0),
where xi is the state bit outputted from the Sbox. In previous key recovery,
attackers decrypt to the values of y and check whether the sum is zero for a
plaintext set (denoted by Λ). However, if f is separable and f = g1(x3, x2, x1)⊕
g2(x2, x1, x0) without loss of generality, we can write the checking equation⊕
Λ

y = 0 as the equivalent form:

⊕

Λ

g1(x3, x2, x1) =
⊕

Λ

g2(x2, x1, x0). (3)
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Fig. 1. Left: previous approach; right: match-through-the-Sbox technique

We then compute x3||x2||x1 and x2||x1||x0, independently, and finally check
whether they match each other according to the Eq. (3).

The difference between the previous approach and our match-through-the-
Sbox technique is depicted in Fig. 1. We now analyze their complexities with-
out considering any optimal technique, for example, the partial-sum technique.
Let K be the subkey information which needs to be guessed to obtain the
value of y by partial decryption. Let C be the ciphertext bits involved in
the computation of y. The previous attack costs time complexity 2|K|+|C|.
Let KL and KR be the subkey that needs to be guessed to obtain the value
of x3||x2||x1 and x2||x1||x0, respectively. And let CL and CR be the cipher-
text bits involved in two partial decryption phases, respectively. Our method
costs time complexity 2|KL|+|CL| + 2|KR|+|CR|. Since K is the combination of
KL and KR, we have |KL| < |K| and |KR| < |K|. Similarly, |CL| < |C|
and |CR| < |C| hold. Therefore, the time complexity of our method is much
lower than the previous approach. Meanwhile, the cost of storing ciphertext
bits will be reduced to 2|CL||CL| + 2|CR||CR| from 2|C||C|. However, additional
min{2|KL||KL|, 2|KR||KR|} bits of memory is required to find the matches.

3.2 Integral Distinguisher Construction

The traditional integral distinguisher construction, as shown in Sect. 2.2, only
focuses on the upper-bound of the degree. Here we further pay attention to
the terms occurring in the algebraic expression and then propose a searching
algorithm.

We assume that x0
0, x

0
1, · · · , x0

d−1 are chosen as d variables from l plaintext
bits. The j-th bit of the state after i encryption rounds, xi

j , is uniquely repre-
sented as a polynomial on these variables with coefficients in F2, i.e.,

xi
j =

⊕

Γ∈S(D)

ρΓ(k, c)

(
∏

t∈Γ

x0
t

)
, (4)

where S(D) denotes a subset of the power set of D = {0, 1, · · · , d−1}, k denotes
the key, c is the constant in plaintext, and ρΓ(k, c) either takes value 1 or else
depends on k and c. The polynomial (hereinafter referred to as the “Poly(xi

j)”)
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Algorithm 1. Construction of integral distinguishers

1: INDSearch(d, l, {t0, t1, · · · , td−1})
2: r = 0
3: for i = 0 to l − 1 do

4: Ai Δ
= ai

2d−1|| · · · ||ai
0 = 0|| · · · ||1

5: end for
6: for i = 0 to d − 1 do
7: ati

2i
= 1

8: ati
0 = 0

9: end for

10: while al−1

2d−1
· · · a1

2d−1a
0
2d−1 = 0 do

11: for i = 0 to l − 1 do
12: T i = Ai

13: end for
14: r = r + 1
15: for i = 0 to l − 1 do
16: Ai = EvalFunc(fi, T

l−1, · · · , T 0)
17: end for
18: end while
19: return r − 1

can be deduced from the coordinate functions of the round function by recursion,
however, it is a tedious procedure since k is unknown. Therefore, we consider a
collection of several monomials instead, denoted by Ω(xi

j), which contains every
term in Poly(xi

j) no matter which values k and c take. Thus if the highest order
term x0

d−1 · · · x0
1x

0
0 does not occur in Ω(xi

j), it certainly has deg(xi
j) < d. The

challenge is how to estimate the set Ω(xi
j) as small as possible. We realize it by

a straightforward method as follows.
Obviously, Ω(x0

j ) only contains term x0
j if x0

j is a variable, otherwise, it
only contains constant term 1. Ω(x1

t ) can be evaluated from Ω(x0
j ), 0 ≤ j < l,

according to the t-th coordinate function of the round function. This process
involves two basic operations, XOR and AND, which comply with the rules:

Ω(x ⊕ y) = Ω(x) ∪ Ω(y) and Ω(xy) = {ab|a ∈ Ω(x), b ∈ Ω(y)}. (5)

where x and y are state or key bits. By noting that Ω(x) = {1} when x is a key
bit, we can easily prove Eq. (5). In the recursive manner, Ω(xi

j) is evaluated.

Search Algorithm. The basic idea has been explained above. We further
describe each term by a d-bit string ad−1|| · · · ||a1||a0, where as (0 ≤ s < d)
takes 1 if the variable x0

s occurs in the term, otherwise it takes 0. Then, Ω(xi
j)

corresponds to a 2d-bit string a2d−1|| · · · ||a1||a0, where s-th bit (0 ≤ s < 2d)
takes 1 if the term [s]2 (the binary representation of s) is in the set. Thereafter,
the construction of the integral distinguisher can be performed by Algorithm 1.

In the algorithm, fi is the i-th coordinate Boolean function of the round
function. And EvalFunc(fi, T

l−1, · · · , T 0) evaluates Ω(xr
i ) from Ω(xr−1

j ), 0 ≤
j < l, by the rules:

(1) Ω(x ⊕ y) = (a2d−1|| · · · ||a0) ∨ (b2d−1|| · · · ||b0), where ∨ is bit-wise OR.
(2) Ω(xy) = a′

2d−1|| · · · ||a′
0, where a′

[i]2∨[j]2
= 1 if ai = 1 and bj = 1.

for Ω(x) = a2d−1|| · · · ||a0 and Ω(y) = b2d−1|| · · · ||b0. The time and memory
complexity is 22d simple computations and l2d bits, respectively.
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Table 2. Integral distinguishers for RECTANGLE and SIMON family.

r
Orders of r-round integral distinguishers

RECTANGLE SIMON32 SIMON48 SIMON64 SIMON96 SIMON128
[15] Ours [10] Ours [10] Ours [10] Ours [10] Ours [10] Ours

6 - - 17 1 17 - 17 - 17 - 17 -
7 56 36 25 2 29 1 33 - 33 - 33 -
8 - - 29 8 39 3 49 1 57 - 65 -
9 - - 31 16 44 10 57 2 77 - 97 -
10 - - - 23 46 21 61 8 87 1 113 -
11 - - - 28 47 33 63 18 92 2 121 -
12 - - - 31 - 42 - 31 94 8 125 1
13 - - - 31 - 47 - 44 95 18 127 2
14 - - - - - 47 - 54 - 31 - 8
15 - - - - - - - 60 - 46 - 18
16 - - - - - - - 63 - 62 - 31
17 - - - - - - - 63 - 76 - 46
18 - - - - - - - - - 86 - 62
19 - - - - - - - - - 92 - 78
20 - - - - - - - - - 95 - 94
21 - - - - - - - - - 95 - 108
22 - - - - - - - - - - - 118
23 - - - - - - - - - - - 124
24 - - - - - - - - - - - 127
25 - - - - - - - - - - - 127

The generic method loses too much information and thus has a rough esti-
mation, which is improved by our approach. Hence, our algorithm can more
effectively construct the integral distinguishers, especially for ciphers with sim-
ple confusion components.

Results. We apply Algorithm 1 to construct integral distinguishers for REC-
TANGLE and SIMON family. Since the complexities grow exponentially with d,
we choose small d and get a lower order integral distinguisher, and then extend
it by applying the higher order integral method as shown in [16]. The results are
displayed in Table 2, where the distinguishers colored red are directly achieved,
and others are constructed based on them. Note that, we built the 7-round
distinguisher for RECTANGLE by extending a 4-order distinguisher with 4
rounds constructed by Algorithm 1. Besides, the distinguishers marked in bold
type are free extensions of previous ones. They choose the plaintext set as
{(R,F (R) ⊕ L)|(L,R) ∈ Λ}, where F is the round function and Λ is a plaintext
set of the previous distinguisher. Compared with the previous best known results,
our distinguishers have much lower order under the same number of rounds, fur-
thermore, the longest distinguisher for each member of SIMON family contains
4/3/6/8/12 more rounds than the distinguisher in [10] which is constructed by
the division property.

4 Applications

In this section, we demonstrate several applications of our techniques. Based
on the match-through-the-Sbox technique we attack one more round than the
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previous best integral attacks against PRESENT for both two versions. Besides,
new integral distinguishers are used to launch the attacks against SIMON family
and RECTANGLE.

4.1 Application to PRESENT

PRESENT is a 31-round SPN (Substitution Permutation Network) type block
cipher with block size 64 bits. It supports 80- and 128-bit master key, which
will be denoted by PRESENT-80 and PRESENT-128, respectively. The round
function of PRESENT is the same for both versions and consists of standard
operations such as subkey XOR, substitution and permutation. At the beginning
of each round, 64-bit input is XORed with the subkey. Just after the subkey
XOR, 16 identical 4 × 4 Sboxes are used in parallel as a non-linear substitution
layer and finally a bit-wise permutation is performed so as to provide diffusion.

The subkeys Ki for 0 ≤ i ≤ 31, where K31 is used for post-whitening, are
derived from the master key by the key schedule. We provide the key schedule
of PRESENT-80: 80-bit master key is stored in a key register and represented as
k79||k78|| · · · ||k0. At i-th round, the 64 leftmost bits of actual content of the key
register are extracted as the subkey Ki, that is, Ki = k79||k78|| · · · ||k16. After
that, the key register is rotated by 61 bit positions to the left, then the Sbox is
applied to left-most four bits of the key register and finally the round counter
value, which is a different constant for each round, is XORed with k19k18k17k16k15.
The key schedule of PRESENT-128 is similar with PRESENT-80 except two
Sboxes are applied. For more details, please refer to [3].

We denote by Xi the internal state which is the input to the i-th round
and denote by Y i its output after subkey XOR, i.e., Y i = Xi ⊕ Ki. We further
describe 64 bits inside of Xi as Xi = Xi[63]|| · · · ||Xi[1]||Xi[0]. A plaintext is
loaded into the state X0 and Y 31 is produced as the ciphertext.

In 2013, Wu et al. proposed a 7-round integral distinguisher of PRESENT
[12], that is, for a set of 216 plaintexts where X0[0, · · · , 15] are active bits, the
rightmost bit of Y 7 is balanced. We adopt this distinguisher in following attacks.

Property of the Sbox. Let x = (x3, x2, x1, x0) be the input of S−1, and y0

be the rightmost bit of the output. It has

y0 = x3x1 ⊕ x2 ⊕ x0 ⊕ 1. (6)

Suppose that g1 = x3x1 and g2 = x2 ⊕x0 ⊕ 1. We get y0 = g1 ⊕ g2, which means
the coordinate Boolean function of S−1 is completely separable.

Key Recovery Against 10-Round PRESENT-80. Choose X0[0, · · · , 15]
as active bits and then Y 7[0] is balanced. From Eq. (6), it has Y 7[0] =
X8[48]X8[16] ⊕ X8[32] ⊕ X8[0] ⊕ 1. Applying the match-through-the-Sbox tech-
nique, we need to check the following equation in the key recovery:

⊕

Λ

X8[48]X8[16] =
⊕

Λ

(X8[32] ⊕ X8[0]). (7)
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As shown in Fig. 2, the computation of
⊕
Λ

X8[48]X8[16] and
⊕
Λ

(X8[32]⊕X8[0])

involves the bits marked with red lines and black lines, respectively. One obser-
vation is that we only need to get the rightmost bit of the output from each S−1,
which is computed by this form: (x3 ⊕ k3)(x1 ⊕ k1) ⊕(x2 ⊕ k2) ⊕ (x0 ⊕ k0) ⊕ 1,
where k0, · · · , k3 are subkey bits. Therefore, we actually require 3-bit subkey
information, k0 ⊕ k2, k1, k3, instead of 4-bit. The details of the attack are as
follows:

Fig. 2. 10-round key recovery (Color figure online)

1. Choose N plaintext sets, Λ0, · · · , ΛN−1, satisfying the integral distinguisher,
and get the ciphertexts after 10-round encryption.

2. Compute
⊕
Λs

X8[48]X8[16] for 0 ≤ s < N .

– We guess 12-bit subkey: K10[i] ⊕ K10[i + 32],K10[i + 16],K10[i + 48] for
i ∈ {1, 3, 9, 11}, and compute the value of Y 9[4]⊕Y 9[36], Y 9[12]⊕Y 9[44]
for each ciphertext. Count how many times each 14-bit value appears:
Y 9[4]⊕Y 9[36], Y 9[12]⊕Y 9[44] and Y 10[i]⊕Y 10[i+32], Y 10[i+16], Y 10[i+
48] for i ∈ {5, 7, 13, 15}, and then save the values which appear odd times
in a table.

– Guess 3 subkey bits, K10[5] ⊕ K10[37],K10[21] and K10[53]. Compress
the data into 212 texts of Y 9[4] ⊕ Y 9[36], Y 9[20], Y 9[12] ⊕ Y 9[44] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {7, 13, 15}.
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– Guess 3 subkey bits, K10[13] ⊕ K10[45],K10[29] and K10[61]. Compress
the data into 210 texts of Y 9[4] ⊕ Y 9[36], Y 9[20, 52], Y 9[12] ⊕ Y 9[44] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {7, 15}.

– Guess 3 subkey bits, K10[7] ⊕ K10[39],K10[23] and K10[55]. Compress
the data into 28 texts of Y 9[4] ⊕ Y 9[36], Y 9[20, 28, 52], Y 9[12] ⊕ Y 9[44]
and Y 10[15] ⊕ Y 10[47], Y 10[31], Y 10[63].

– Guess 3 subkey bits, K10[15] ⊕ K10[47],K10[31] and K10[63]. Compress
the data into 26 texts of Y 9[4]⊕Y 9[36], Y 9[20, 28, 52, 60], Y 9[12]⊕Y 9[44].

– Thanks to the key schedule, K9[44] is obtained due to previous guessed
subkey bit K10[25], and K9[28] ⊕ K9[60] = K10[9] ⊕ K10[41]. Therefore,
we only need to guess 2-bit K9[12, 60], compute Y 8[48] and compress the
data into 24 texts of Y 8[48], Y 9[4] ⊕ Y 9[36], Y 9[20, 52].

– Similarly, we have K9[36] = K10[15] and K9[20] ⊕ K9[52] = K10[1] ⊕
K10[33]. Hence, we guess 2-bit K9[4, 52], compute Y 8[16] and compress
the data into 22 texts of Y 8[16, 48].

– Guess 2-bit value of K8[16, 48], compute
⊕
Λs

X8[48]X8[16] for 0 ≤ s < N

and save the values of 30-bit guessed subkey, K1, in a hash table H
indexed by the N -bit result.

3. Similar to Step 2, we compute
⊕
Λs

(Y 8[32]⊕Y 8[0]) (notice that it is
⊕
Λs

(X8[32]⊕
X8[0])) for 0 ≤ s < N by guessing 30-bit subkey K2. The details are shown
in Appendix A. Save K2 in a hash table H ′ indexed by the N -bit sum.

4. Check the matches between H and H ′. If the indexes match each other and the
overlap information between K1 and K2 matches, K1||K2 is a key candidate.

Complexities. We have |K1| = 30 and |K2| = 30. Due to the key schedule, K1

and K2 overlap in 3 bits, K9[40, 48] and K9[24] ⊕ K9[56]. Therefore, the total
guessed subkey K contains 30 + 30 − 3 = 57 bits. 257−N candidates for K are
left after checking the matches. They are then exhaustively searched together
with the remaining 23 subkey bits. The time complexity of Step 2 is evaluated
as

212 × 216 × 4 + 23 × 212 × 214 + · · · + 22 × 228 × 22

= 230 + 229 + 230 + 231 + 232 + 232 + 232 + 232

= 234.3

computations of the Sbox. The time complexity of Step 3 is 235 as explained
in Appendix A. For the trade-off between time and data complexity, we choose
N = 46. Hence, the attack totally costs (234.3 + 235) × 1

16 × 1
10N + 280−N = 235

10-round encryptions. The data complexity is 216N = 221.5 chosen plaintexts.
The memory complexity depends on the storage of two hash tables, which is
2 × (230 × 30) = 235.9 bits.

For the integral attack against 11-round PRESENT-128, we first guess 64-bit
K11 and decrypt the ciphertexts to Y 10. After that, procedures of the partial
decryption are similar with the 10-round case. Specifically, we guess 27-bit and
25-bit subkeys to compute

⊕
Λ

X8[48]X8[16] and
⊕
Λ

(Y 8[32]⊕Y 8[0]), respectively,
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as K11 has been guessed. They only overlap in one bit, K8[16]⊕K8[48], therefore,
the total guessed subkey K contains 64 + 27 + 25 − 1 = 115 bits. We analyze
38 plaintexts sets for the optimization of time complexity. The data complexity
is hence 221.2 chosen plaintexts. The memory complexity is evaluated by 216 ×
64 × 38 + 227 × 27 + 225 × 25 = 232.1 bits, and time complexity is 264 × (232 +
232) × 1

16 × 1
11 × 38 + 2128−38 = 294.8 11-round encryptions.

4.2 Application to SIMON

SIMON is a family of lightweight block ciphers, optimized for performance on
hardware devices, proposed by NSA. It is based on a classical Feistel construction
operating on two n-bit branches. Denote the state entering i-th round by (Li, Ri),
which is further described as (Li[n − 1]|| · · · ||Li[0], Ri[n − 1]|| · · · ||Ri[0]). At
each round, the round function F transforms the left branch in the following
way,

F (Li) = ((Li <<< 8)&(Li <<< 1)) ⊕ (Li <<< 2).

The output of F is then XORed with the subkey Ki and with the right branch
to form the left input of the next round. There exist in total ten members of the
SIMON family, each one characterized by different block and key size. We denote
a member of the SIMON family by SIMON(2n/m), where 2n is the block size and
m is the key size. The key schedule processes different procedures depending on
m
n . While, it is always linear, and the master key can be derived if any sequence
of m

n consecutive subkeys are known. For detailed description, please refer to [2].

Key Recovery Against SIMON Family. We use the longest integral dis-
tinguisher shown in Table 2 for each member. Assume that s is the number of
rounds of the distinguisher. We append t rounds to the distinguisher and give
the key recovery attack against (s + t)-round SIMON(2n/m).

We only decrypt to one balanced bit for the sake of less subkey involved.
Suppose it is Rs[b]. It has Rs[b] = (Rs+1[b − 1]Rs+1[b − 8]) ⊕ Rs+1[b − 2] ⊕
Ls+1[b] ⊕ Ks[b]. Therefore, we check the following equation in key recovery:

⊕
(Rs+1[b − 1]Rs+1[b − 8]) =

⊕
(Rs+1[b − 2] ⊕ Ls+1[b]). (8)

If Eq. (8) holds for a guessed value, it is regarded as a candidate for the right
subkey, which will be exhaustively searched together with the remaining key
information. To check Eq. (8), we first decrypt to

⊕
(Rs+1[b − 2] ⊕ Ls+1[b]) by

applying the partial-sum technique. After that, a hash table is achieved, which
saves the values of guessed subkey indexed with the result. Then we compute⊕

(Rs+1[b−1]Rs+1[b−8]) similarly and finally we find matches in the hash table.
Now we analysis the complexities of our attack. Let K1 and K2 be

the subkey involved in the computation of
⊕

(Rs+1[b − 2] ⊕ Ls+1[b]) and⊕
(Rs+1[b − 1]Rs+1[b − 8]), respectively. Denote the total subkey guessed in

key recovery phase by K1 ∪ K2. We count the number of bits in K1, K2 and
K1 ∪ K2 for each cipher in SIMON family, without considering the key schedule.
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Table 3. Size of guessed subkey for t-round key recovery against SIMON family

(2n/m) s t Size of guessed subkey

|K1| |K2| |K1 ∪ K2|
(32/64) 13 6 42 45 49

(48/72) 14 6 52 59 65

(48/96) 14 7 76 83 89

(64/96) 17 6 55 63 69

(64/128) 17 7 84 93 99

(96/96) 21 6 56 65 73

(96/144) 21 7 89 101 109

(128/128) 25 7 89 101 110

(128/192) 25 8 130 145 155

(128/256) 25 9 179 197 207

The results are summarized in Table 3. Then the memory complexity is calcu-
lated by 2|K1||K1|. The subkey space can be reduced by 1 bit for a plaintext set,
furthermore, the master key space is accordingly reduced by 1 bit since the sub-
keys are related with linear relations. Hence, the time complexity of exhaustive
search is 2m−1 (s + t)-round encryptions, which dominates the time complexity
of the entire attack. The data complexity is 22n−1 chosen plaintexts.

4.3 Application to RECTANGLE

RECTANGLE is a 25-round SPN cipher with bit-slice design. The 64-bit
state Xi = (Xi[63], · · · ,Xi[1],Xi[0]) has equivalent representation as Fig. 3.
The round function consists of three steps: AddSubkey, SubColumn, ShiftRow.
Denote the state after AddSubkey in i-th round by Y i, i.e., Y i = Xi ⊕ Ki.
SubColumn is parallel application of Sboxes to the 4 bits in the same column.
ShiftRow is a left rotation by 0, 1, 12 and 13 offset for row 0, 1, 2, and 3,
respectively. The key schedule is similar to the encryption with less Sboxes and
different rotations. Limited by the space, please refer to [15] for the details.

⎡
⎢⎢⎣
X[15] X[14] · · · X[1] X[0]
X[31] X[30] · · · X[17] X[16]
X[47] X[46] · · · X[33] X[32]
X[63] X[62] · · · X[49] X[48]

⎤
⎥⎥⎦ ⇔

⎡
⎢⎢⎣
X(0f) X(0e) · · · X(01) X(00)
X(1f) X(1e) · · · X(11) X(10)
X(2f) X(2e) · · · X(21) X(20)
X(3f) X(3e) · · · X(31) X(30)

⎤
⎥⎥⎦

Fig. 3. Two-dimensional representation of the state
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Our search algorithm constructs a 36-order integral distinguisher containing
7 rounds, which improves the 56-order distinguisher proposed by the designers.
More specifically, for a set of 236 plaintexts with X0(i0, i2, i3, i4, i6, i7, i8, ie, if),
0 ≤ i < 4, being active, the state after 7 encryption rounds has 22 balanced bits:
X7(00, 10, 20, 01, 11, 21, 31, 12, 32, 03, 04, 14, 05, 15, 16, 2b, 2c, 2d, 3d, 3e, 0f, 2f).

Key Recovery Against RECTANGLE. Since Y 7(01) and Y 7(11) are bal-
anced bits,

⊕
Λ

(Y 7(01) ⊕ Y 7(11)) = 0 holds. Applying the match-through-the-

Sbox technique, we have
⊕

Λ

X8(12)X8(01) =
⊕

Λ

{X8(3e)X8(12) ⊕ X8(3e) ⊕ X8(12)}. (9)

We first prepare N sets of 236 plaintexts satisfying the integral distinguisher.
48 bits of the ciphertext are related to the partial decryption for X8(01, 12), and
also 48 bits of the ciphertext are related to the partial decryption of X8(3e, 12).
Let K1 and K2 be the subkey involved in the computation of X8(01, 12) and
X8(3e, 12), respectively. From the key schedule, |K1| = 60, |K2| = 61 and they
overlap in 45 bits. We first guess 20 subkey bits shared by them for saving
memory. Then we independently guess the rest of bits in K1 and K2 and inde-
pendently compute the left and right of Eq. (9). Finally, the matches between
the results are checked in order to sieve the guessed keys. Due to the limitation of
space, we only show the complexities. The total time complexity of the attack is
evaluated by (256+272.3+271.7)N× 1

16× 1
11+280−N = 265.3N+280−N encryptions.

Choose N = 12, and then the time complexity is optimized to 269.5 encryptions.
The memory complexity is 236×64N +260−20×40+261−20×41 = 245.6 bits. The
data complexity is 236N = 239.6. In a similar manner, we can attack 12-round
RECTANGLE-128 with the time, memory and data complexity being 2120.7

12-round encryptions, 245 bits and 239 chosen plaintexts, respectively.

5 Conclusion

In this paper, we raised the power of integral attack against bit-oriented ciphers
in both aspects. We first proposed the match-through-the-Sbox technique, which
reduces the time and memory for the key recovery phase by using the separa-
ble property of the Sbox. It works similarly to the meet-in-the-middle tech-
nique for integral attack against Feistel ciphers, however, its application is not
restricted by the structure but by the property of the Sbox. Therefore, it can
be applied to SPN ciphers, such as PRESENT and RECTANGLE. Then, we
devised a generic algorithm for increasing the accuracy of the degree evaluation
and thereby improving the integral distinguisher. Limited by the memory cost,
it is suitable for constructing lower order distinguishers, which can be extended
to more rounds by the higher order method. The effect of this algorithm was
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demonstrated for several ciphers. For instance, it constructed 13-, 14-, 17-, 21-
and 25-round integral distinguisher for SIMON 32, 48, 64, 96 and 128, respec-
tively, which are all the best results as we known. Besides, it reduced the order
of the distinguisher for RECTANGLE to 36 from 56.

As applications, we launched the integral attack on several ciphers. For
PRESENT, we can attack one more round than the previous best integral attack
for two versions. Moreover, for SIMON family and RECTANGLE, we first eval-
uated their securities against integral attack (except for SIMON 32). Although
our attacks do not pose a threat to these ciphers, it shows that the integral
attack against bit-oriented ciphers has more room to be enhanced.

As we shown, both of our techniques are relevant to the property of the
confusion component, for example the Sbox, hence, we conclude that integral
attack is also sensitive to the Sbox for bit-oriented ciphers, except for the linear
layer. Since the lightweight block ciphers is an actively discussed topic, we hope
that this paper returns some useful feedback to future design and analysis.

A Details of Step 3

Compute
⊕
Λs

(Y 8[32] ⊕ Y 8[0]) for 0 ≤ s < N .

– We guess 12-bit subkey: K10[i] ⊕ K10[i + 32],K10[i + 16],K10[i + 48] for
i ∈ {0, 2, 8, 10}, and compute the value of Y 9[0] ⊕ Y 9[32], Y 9[8] ⊕ Y 9[40] for
each ciphertext. Count how many times each 14-bit value appears: Y 9[0] ⊕
Y 9[32], Y 9[8] ⊕ Y 9[40] and Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for
i ∈ {4, 6, 12, 14}. And then pick the values which appear odd times.

– Guess 3 subkey bits, K10[4] ⊕ K10[36],K10[20] and K10[52]. Compress the
data into at most 212 values of Y 9[0] ⊕ Y 9[32], Y 9[16], Y 9[8] ⊕ Y 9[40] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {6, 12, 14}, which appear
odd times.

– Guess 3 subkey bits, K10[12] ⊕ K10[44],K10[28] and K10[60]. Compress the
data into 210 texts of Y 9[0] ⊕ Y 9[32], Y 9[16, 48], Y 9[8] ⊕ Y 9[40] and Y 10[i] ⊕
Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {6, 14}.

– Guess 3 subkey bits, K10[6] ⊕ K10[38],K10[22] and K10[54]. Compress the
data into 28 texts of Y 9[0]⊕Y 9[32], Y 9[16, 24, 48], Y 9[8]⊕Y 9[40] and Y 10[14]⊕
Y 10[46], Y 10[30], Y 10[62].

– Guess 3 subkey bits, K10[14] ⊕ K10[46],K10[30] and K10[62]. Compress the
data into 26 texts of Y 9[0] ⊕ Y 9[32], Y 9[16, 24, 48, 56], Y 9[8] ⊕ Y 9[40].

– Guess 3 subkey bits, K9[0]⊕K10[32],K10[16] and K10[48]. Compress the data
into 24 texts of Y 8[0], Y 9[24, 56], Y 9[8] ⊕ Y 9[40].

– Guess 3 subkey bits, K9[8]⊕K10[40],K10[24] and K10[56]. Compress the data
into 22 texts of Y 8[0, 32].

– Compute
⊕
Λs

(Y 8[32] ⊕ Y 8[0]) for 0 ≤ s < N and save the 30-bit guessed

subkey K2 in a hash table H ′ indexed by the corresponding N -bit result.

The time complexity is 230+229+230+231+232+233+234 = 235 computations
of the Sbox.
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