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Abstract. The Snowden revelations have shown that intelligence agen-
cies have been successful in undermining cryptography and put in ques-
tion the exact security provided by the underlying intractability problem.
We introduce a new class of intractability problems, called Learning with
Errors in the Exponent (LWEE). We give a tight reduction from Learn-
ing with Errors (LWE) and the Representation Problem (RP) in finite
groups, two seemingly unrelated problem, to LWEE. The argument holds
in the classical and quantum model of computation.

Furthermore, we present the very first construction of a semantically
secure public-key encryption system based on LWEE in groups of com-
posite order. The heart of our construction is an error recovery “in the
exponent” technique to handle critical propagations of noise terms.

Keywords: Lattice theory · Group theory · Public-key encryption ·
Intractability amplification

1 Introduction

Among the most carefully scrutinized cryptographic problems are probably the
discrete logarithm in finite groups and factorization. Shor’s celebrated theo-
rems [1,2] curtailed for the first time the confidence of founding cryptosystems
on group-theoretic assumptions. Shor showed the existence of polynomial-time
solvers for integer factorization and discrete logarithm computation in the non-
classical quantum computation model. Researchers have then begun to look for
alternative computational problems. In this line of work Regev explored a lat-
tice problem class known as learning with errors (LWE) [3]. Given a distribution
of noisy equations (a, b = 〈a, s〉 + e) ∈ Z

n
q × Zq where e is taken from a small

Gaussian error distribution, the search learning with error problem states it is
hard to compute the solution s whereas the decisional variant assumes it is hard
to distinguish (a, b) from uniformly random elements in Z

n
q × Zq. Several argu-

ments flesh out LWE’s intractability [4]: First, the best known solvers run in
exponential time and even quantum algorithms do not seem to help. Second,
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learning with errors is a generalization of learning from parity with error, which
is a well-studied problem in coding theory. Any major progress in LWE will most
likely cause significant impact to known lower bounds of decoding random lin-
ear codes. Lastly and most importantly, breaking certain average-case problem
instances of LWE breaks all instances of certain standard lattice problems [3,5–7].

Taking the findings from lattices in presence of errors into account we carry
on the study of noise as a non-black box intractability amplification technique.
Specifically, we ask if noise effects the intractability of group-theoretic problems
as well? If so, is non-trivial cryptography possible in such groups? The main
challenge is to handle the propagation of “noise in the exponent”. Error terms
require a careful treatment, because they may easily distort the cryptographic
task. Apart from the theoretical interest, our work has concrete practical moti-
vation. Recent large-scale electronic surveillance data mining programs put in
question the security provided by present cryptographic mechanisms. (See also
the IACR statement and mission on mass surveillance.1) One of the problems
is that many security protocols in the wild are based on a single intractability
problem and we do not know the exact security. What if somebody has found
a clever way to factor numbers? This already suffices to decrypt most of the
TLS-protected Internet traffic and eavesdrop emails, social network activities,
and voice calls.2 Answering the above questions in an affirmative way adver-
tises a novel family of computationally hard problems with strong security and
robustness properties in the superposition of group and lattice theory.

1.1 Our Contribution

Blending Group and Lattice Theory. The idea of blending intractability problems
is not new and is subject to several Diffie-Hellman related problems in groups
of composite order which assume the hardness of the discrete log or factoriza-
tion problem [8,9]. In this work, we address the blending of group and lattice
related problems, and introduce the notion of Learning with Errors in the Expo-
nent (LWEE). The LWEE distribution consists of samples (ga, g〈a,s〉+e) ∈ G

n ×G

where a is sampled uniformly from Z
n
q , and s ←R χn

s , e ←R χe from some distri-
butions χs, χe. Learning with errors in the exponent comes in two versions: The
search version asks to find the secret vector s while in the decisional variant one is
supposed to distinguish LWEE samples from uniformly random group elements.
Except for the error the assumption bears reminiscence to the representation
problem RP [10]. Given a tuple of uniformly sampled elements g1, . . . , g�, h from
G, the (search) representation problem (�-SRP) asks to compute the “represen-
tation” x1, . . . , x� ← χ with respect to h for χ the uniform distribution such that
Π�

i=1g
xi
i = h. We give a tight reduction from �-SRP to the search LWEE problem.

1 http://www.iacr.org/misc/statement-May2014.html.
2 TLS’s preferred cipher suite makes use of RSA-OAEP to transport the (master) key

in the key establishment process. Once the ephemeral master key for the session is
known it is possible to derive session keys and decrypt all encrypted messages.

http://www.iacr.org/misc/statement-May2014.html
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Relations between Group and Lattice Assumptions. Looking at the decisional
problem, we first define the decisional variant of the representation problem
(�-DRP): Given a tuple g, g1, . . . , g�, g

x1 , . . . , gx� , h from G, where x1, . . . , x� ←
χ are sampled from some distribution χ, �-DRP asks to distinguish between
Π�

i=1g
xi
i = h and a randomly sampled value h in G. Note, for � = 1 and uniform

distribution over Zq, DRP coincides with the decisional Diffie-Hellman (DDH)
problem. For � > 1, we prove in the generic group model that �-DRP belongs
to the class of progressively harder assumptions [11]. We then show that DRP
is reducible to LWEE. This implies that if we select a group G for which DDH
is believed to be hard, the hardness carries over to an instantiation of LWEE in
that group G. It is worth mentioning that both of our reductions are tight. They
hold for (potentially non-uniform) distributions χ, if the underlying RP problem
is hard for representations sampled from the same distribution. Investigating
the relation to lattices, we show that an algorithm solving either the search
or decisional LWEE problem efficiently can be turned into a successful attacker
against the search or decisional LWE problem. Our reductions are tight and hold
as well for (potentially non-uniform) distribution χ if LWE is hard for secret s
sampled from the same distribution.

A Concrete Cryptosystem. We give a first construction of a public-key encryp-
tion scheme. One may size the magnitude to which the RP and LWE intractabil-
ity contribute to the security of the system. The selection of parameters (e.g.,
modulus, dimension) offers great flexibility to fine-tune the cryptosystem’s
resilience against (quantum)-computational progress in attacking the underly-
ing intractability problems. Concretely, one may choose the parameters to obtain
short keys and ciphertexts, make the scheme post-quantum secure or immuni-
ties the scheme for the case that at some point in time either the DRP or DLWE
becomes computationally tractable.

Although our construction serves the sole purpose of showcasing the feasi-
bility of cryptosystems (in practical applications, it would be preferable to split
the message information-theoretically into two shares and encrypt each share
with a different encryption scheme, say El-Gamal and Regev encryption) based
on “errors in the exponent”, learning with errors in the exponent is an inter-
esting concept in its own right. We leave it open for future work to find novel
applications and to study the instantiation based on the learning with errors
assumptions in rings. We discuss related work in the full version [12].

1.2 Extensions and Open Problems

While learning with errors in the exponent is an interesting concept in its own
right, it requires further inspection. Here we point out a few possible directions
for future research:

– It would be interesting to cryptanalyze the assumption. This would help
nail down concrete security parameters, in particular for the case of double-
hardness where both underlying assum1ptions contribute to the overall secu-
rity.
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– We are unaware of any existential relation between the representation and
learning with errors assumption neither in the classical nor quantum model of
computation. In fact, any insight would require progress in solving the hidden
subgroup problem (HSP) in certain finite Abelian and non-Abelian groups.
Shor’s discrete-log quantum algorithm crucially relies on the HSP in Abelian
groups. However, efficient quantum algorithms for the HSP in non-Abelian
groups are unknown as they would give an efficient algorithm for solving the
unique shortest-vector problem, being a special case of the shortest vector
problem (SVP) [13].

– Clearly, building further cryptosystems based on the search or decisional vari-
ant of learning with errors in the exponent is an interesting direction.

2 Preliminaries

2.1 Notation

Random Sampling, Negligibility and Indistinguishability. If D is a probability
distribution, we denote by d ←R D the process of sampling a value d randomly
according to D. If S is a set, then s ←R S means that s is sampled according to
a uniform distribution over the set S. We write [m] for the set {0, 1, . . . ,m − 1}.
The expression �x� denotes the nearest integer to x ∈ R, i.e., �x� = �x − 0.5�.

A function ε() is called negligible (in the security parameter κ) if it decreases
faster than any polynomial poly(κ) for some large enough κ. An algorithm A
runs in probabilistic polynomial-time (PPT) if A is randomized—uses internal
random coins— and for any input x ∈ {0, 1}∗ the computation of A(x) termi-
nates in at most poly(|x|) steps. If the running time of an algorithm is t′ ≈ t, we
mean that the distance between t′ and t is negligible.

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N ¡¡¡¡¡¡¡ .mine be two distribution ensem-
bles. We say X and Y are (t, ε)-computationally indistinguishable if for every
PPT distinguisher A with running time t, there exists a function ε(κ) such that
|Pr[A(X) = 1] − Pr[A(Y ) = 1]| ≤ ε(κ) (and we write X ≈(t,ε) Y ). If A is PPT
and ε(κ) is negligible, we simply say ======= be two distribution ensem-
bles. We say X and Y are (t, ε)-computationally indistinguishable (and write
X ≈(t,ε) Y ) if for every PPT distinguisher A with running time t, there exists
a function ε(κ) such that |Pr[A(X) = 1] − Pr[A(Y ) = 1]| ≤ ε(κ). If A is PPT
and ε(κ) is negligible, we simply say ¿¿¿¿¿¿¿ .r342 X and Y are (computation-
ally) indistinguishable (and we write X ≈ Y ). We say a distribution ensemble
X = {Xκ}κ∈N has (high) min-entropy, if for all large enough κ, the largest prob-
ability of an element in Xκ is 2−κ. We say a distribution ensemble X = {Xκ}κ∈N

is well-spread, if for any polynomial poly(·) and all large enough κ, the largest
probability of an element in Xκ is smaller than poly(κ). (In other words, the
max-entropy of distributions in X must vanish super-logarithmatically.) Under
the Gaussian distribution Dσ with parameter σ > 0, the probability of sampling
an integer x ∈ Z is proportional to exp[−x2/(2σ2)].
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Vectors and Matrices in the Exponent. We denote vectors by bold lower case
letters and matrices by bold upper case letters. The ith row of a matrix A is
denoted by A[i], the jth element of a vector a is denoted by aj , To ease notation
we sometimes write ai for the ith row vector, and ai,j for the element in the ith

row and jth column of matrix A. Let G be a group of order q, g a generator of
G, a a vector in Z

n
q , and A a matrix in Z

m×n
q . We use the notation ga ∈ G

n

to denote the vector ga
def= (ga1 , · · · , gan) and gA ∈ G

m×n to denote the matrix
gA

def= (ga1 , · · · , gam)�.

Computations in the Exponent. Given ga and b, the inner product of vectors a
and b in the exponent, denoted by g〈a,b〉, is

n∏

i=1

(gai)bi =
n∏

i=1

gai·bi = g
∑n

i=1 ai·bi = g〈a,b〉 .

Likewise, a matrix-vector product in the exponent, given a vector v and gA for
a matrix A =

(
a1 a2 . . . an

)
can be performed by

∏n
i=1(g

ai)vi =
∏n

i=1 gai·vi =
g
∑n

i=1 ai·vi = gAv . Adding (and subtracting) in the exponent is computed via
element-wise multiplication (and division) of the group elements ga · gb = ga+b.

Quadratic Residuosity. The Legendre symbol verifies whether an integer a ∈ Zp

is a quadratic residue modulo a prime p, i.e., x2 ≡ a mod p for some x. If
L(a, p) := a(p−1)/2 = 1, this is the case; otherwise L(a, p) = −1. More generally,
for n ≥ 2, we define L(a, p)n := a(p−1)/gcd(n,p−1). If the modulus N is of the
form N = p1 · · · pk where the pi are odd primes, one uses its generalization,
namely the Jacobi symbol, which is defined as J(a,N) =

∏k
i=1 L(a, pi). Note that

J(a,N) = 1 does not imply that a is a quadratic residue modulo N . However,
if J(a,N) = −1, a is certainly not. The set of quadratic residues modulo N is
denoted by QRN := {a2 : a ∈ Z

∗
N}. By JN we denote the subgroup of all

elements from Z
∗
N with Jacobi symbol 1, i.e., JN = {a ∈ Z

∗
N : J(a,N) = 1}.

Note that QRN is a subgroup of JN . It is widely believed that one cannot
efficiently decide whether an element a ∈ JN is a quadratic residue modulo N if
the prime factors of N are unknown (For more details, full version).

2.2 Standard Group-Theoretic Problems

We will make use of the rank hiding assumption introduced by Naor and Segev [14]
(and later extended by Agrawal et al. [15]).3 It was proven to be equivalent to the
DDHG,χ assumption for groups of prime order and uniform χ [14].

Definition 1 (Rank Hiding). Let G be a group of order q with generator
g, and i, j, n,m ∈ N satisfying i = j and i, j ≥ 1. The Rank Hiding problem
(RHG,i,j,m,n) is (t, ε)-hard if

{(G, q, g, gM) : M ←R Rki(Zm×n
q )} ≈(t,ε) {(G, q, g, gM) : M ←R Rkj(Zm×n

q )}
3 The assumption was first introduced by Boneh et al. [16] under the Matrix DDH

assumption.
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where Rkk(Zm×n
q ) returns an m × n matrix uniformly random from Z

n×m
q with

rank k ≤ min(n,m).

2.3 Representation Problem

The representation problem in a group G assumes that given l random group
elements g1, . . . , gl ∈ G and h ∈ G it is hard to find a representation x ∈ Z

�
q

such that h =
∏�

i=1 gxi
i holds. Brands shows an electronic cash system based on

the problem. Recently, the assumption was extensively applied to show leakage
resiliency [15,17,18].

We now state a more general version of the search representation problem
where vector x ←R χ� is sampled from a distribution χ with (at least) min-
entropy and where an adversary is given m ≥ 1 samples instead of a single one.

Definition 2 (Search Representation Problem). Let χ be a distribution
over Zq, and �,m be integers. Sample M ←R Z

m×�
q and x ←R χ�. The Search

Representation Problem (SRPG,χ,�,m) is (t, ε)-hard if any algorithm A, running
in time t, upon input (g, gM, gx, gMx), outputs x′ ∈ Z

�
q such that gMx′

= gMx

with probability at most ε. If χ is the uniform distribution, we sometimes skip χ
in the index and say that SRPG,�,m is (t, ε)-hard.

Brands proves the equivalence of the representation problem and the discrete
logarithm problem for uniform χ and m = 1. It is easy to verify that the reduction
holds for every distribution for which the discrete logarithm problem holds.

To establish relations to the learning with errors in the exponent problem
(cf. Sect. 3.2), we need a decisional variant of the representation problem. To
our surprise, the decisional version has not been defined before, although the
assumption is a natural generalization of the decisional Diffie-Hellman problem
to �-tuples (similar in spirit as the �-linear problem in G [11]). Given � random
group elements g1, . . . , g� ∈ G together with h ∈ G and gx1 , . . . , gx� ∈ G where
x1, . . . , x� ←R Z

∗
q , it is hard to decide if h =

∏�
i=1 gxi

i or h is a random group
element in G. Our definition below generalizes this problem to the case, where
m ≥ 1 samples are given to an adversary and x1, . . . , x� are sampled from any
min-entropy distribution χ.

Definition 3 (Decisional Representation Problem). Let χ be a distrib-
ution over Z

∗
q , and �,m be integers. Sample M ←R Z

m×�
q , h ←R Z

m
q , and

x ←R χ�. The Decisional Representation (DRPG,χ,�,m) problem is (t, ε)-hard if

(g, gM, gx, gMx) ≈(t,ε) (g, gM, gx, gh).

If χ is the uniform distribution over Z
∗
q , we say DRPG,�,m is (t, ε)-hard.

Remark 1. DRPG,χ,�,m can be stated in the framework of the Matrix-DDH
assumption recently introduced by Escala et al. [19] and thus we put another
class of hardness problems to the arsenal of their expressive framework.
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We now give evidence that the family of DRPG,χ,�,m problems is a class of
progressively harder problems (with increasing �). Proofs of following proposi-
tions can be foound in the full version.

Proposition 1. If DRPG,χ,�,m is (t, ε)-hard, then for any �,m ≥ 1 with t′ ≈ t
and distribution χ with min-entropy DRPG,χ,�+1,m is (t′, ε)-hard.

Proposition 2. In the generic group model DRPG,χ,�+1,m is hard for distribu-
tion χ with minimal entropy, even in presence of a DRPG,χ,�,m-oracle.

Remark 2. DRPG,χ,1,1-problem with χ being the uniform distribution over Zq

coincides with the decisional Diffie-Hellman (DDH) problem. Hence, we obtain
the corollary that for uniform distributions χ, the decisional Diffie-Hellman
problem implies the representation problem DRPG,χ,�,1 for � ≥ 1. In fact,
Proposition 1 suggests a stronger argument. Assuming the decisional Diffie-
Hellman problem holds for well-spread and min-entropy distributions χ, then
the DRPG,χ,�,1 holds for χ and � ≥ 1.

While Propositions 1 and 2 show that the DRP problem progressively
increases with �, the following proposition states that the problem remains hard
with increasing number of samples m. More precisely, we show that DRPG,χ,�,m+1

is hard as long as DRPG,χ,�,m and the Rank Hiding problem RHG,m,m+1,m+1,2�+1

(cf. Definition 1) is hard. The proof is given in the full version.

Proposition 3. If RHG,m,m+1,m+1,2�+1 is (t, ε)-hard and DRPG,χ,�,m is (t′, ε′)-
hard in a cyclic group G of order q, then for any distribution χe and any m > 0
with t′ ≈ t and ε′′ ≤ (1 − ε)−1ε′ DRPG,χ,�,m+1 is (t, ε′′)-hard.

2.4 Learning with Errors

The learning with errors assumption comes as a search and decision lattice prob-
lem. Given a system of m linear equations with random coefficients ai ∈ Z

n
q in

the n indeterminates s sampled from some distribution χs and biased with some
error ei from the error distribution χe, it is hard to compute vector s or distin-
guish the solution bi =

∑n
i ais + ei from a uniform element in Zq.

Definition 4 (Learning with Errors). Let n,m, q be integers and χe, χs be
distributions over Z. For s ←R χs, define the LWE distribution LLWE

n,q,χe
to be the

distribution over Z
n
q ×Zq obtained such that one first draws a ←R Z

n
q uniformly,

e ←R χe and returns (a, b) ∈ Z
n
q ×Zq with b = 〈a, s〉 + e. Let (ai, bi) be samples

from LLWE
n,q,χe

and ci ←R Zq for 0 ≤ i < m = poly(κ).

– The Search Learning With Errors (SLWEn,m,q,χe
(χs)) problem is (t, ε)-hard if

any algorithm A, running in time t, upon input (ai, bi)i∈[m], outputs s with
probability at most ε.

– The Decisional Learning with Errors (DLWEn,m,q,χe
(χs)) problem is (t, ε)-hard if

(ai, bi)i∈[m] ≈(t,ε) (ai, ci)i∈[m]

for a random secret s ←R χs.

If χs is the uniform distribution over Zq, we simply write LWEn,m,q,χe
.
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A typical distribution for the error is a discrete Gaussian distribution with an
appropriate standard deviation. There are several proposals for the distribution
of the secret. While the uniform distribution is the most standard one, it is
shown that setting χs = χe, known as the “normal form”, retains the hardness
of LWE [20,21]. We also note that the learning with errors problem where the
error is scaled by a constant α relatively prime to q is as hard as the original
definition [22]. The “scaled” LWE distribution then returns (a, b) with a ←R Z

n
q

and b = 〈a, s〉 + αe.

3 Learning with Errors in the Exponent

3.1 Definition

For self-containment, the assumption is stated both as a search and decision
problem over a group G of order q, and exponents sampled from distributions
χe, χs over Z. We demonstrate the versatility and general utility of the decisional
version in Sect. 4.

Definition 5 (Learning with Errors in the Exponent). Let G be a group
of order q where g is a generator of G. Let n,m, q be integers and χe, χs be
distributions over Z. For any fixed vector s ∈ Z

n
q , define the LWEE distribution

LLWEE
G,n,q,χe

to be the distribution over G
n × G obtained such that one first draws

vector a ←R Z
n
q uniformly, e ←R χe and returns (ga, gb) ∈ G

n × G with b =
〈a, s〉 + e. Let (gai , gbi) be samples from LLWEE

G,n,q,χe
and ci be uniformly sampled

from Z
∗
q for 0 ≤ i < m = poly(κ).

– The Search Learning With Errors in the Exponent (SLWEEG,n,m,q,χe
(χs)) prob-

lem is (t, ε)-hard if any algorithm A, running in time t, upon input (gai ,
gbi)i∈[m], outputs s with probability at most ε.

– The Decision Learning With Errors in the Exponent (DLWEEG,n,m,q,χe
(χs)) prob-

lem is (t, ε)-hard if(gai , gbi)i∈[m] ≈(t,ε) (gai , gci)i∈[m] for a random secret
s ←R χn

s . If χs is the uniform distribution over Zq, we write DLWEEG,n,m,q,χe
.

We let AdvDLWEE/SLWEE

G,n,m,q,χe,χs
(t) denote a bound on the value ε for which the deci-

sional/search LWEE problem is (t, ε)-hard.

One may interpret learning with errors in the exponent in two ways. One
way is to implant an error term from a distribution χe into the Diffie-Hellman
exponent. Another way to look at LWEE is as compressing an LWE instance
within some group G of order q.

3.2 Relations to Group and Lattice Problems

We connect the representation and learning with errors problem to learning
with errors in the exponent. The essence is that there exist tight reductions
from the search (resp. decision) learning with errors in the exponent problem to
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either the search (resp. decision) representation problem and the search (resp.
decision) learning with errors problem. This has several interesting property
preserving implications. As a corollary we infer that for appropriate parameter
choices LWEE preserves the hardness and robustness properties of the represen-
tation and/or learning with errors problem. Essentially then LWEE boils down
to the security of either of the two underlying problems. This way, the cryp-
tosystem can be instantiated to leverage leakage resistance and post-quantum
hardness thanks LWE [3,23]. On the flip side, the cryptosystem may offer short
instance sizes through the underlying RP problem (when instantiated on elliptic
curves). Of particular interest for many emerging applications is the partnering
of the two hardness assumptions. One may choose parameters such that both RP
and LWE hold. We call the case double-hard, which appeals to provide in some
sense hedged security.

Following four propositions summarize our main results. Proofs appear in
the full version.

Proposition 4. If SRPG,χs,�,m is (t, ε)-hard in a cyclic group G of order q, then
for any distribution χe and any number of samples m > 0 SLWEEG,�,m,q,χe

(χs)
is (t′, ε)-hard with t′ ≈ t.

Proposition 5. If SLWEn,m,q,χe
(χs) is (t, ε)-hard, then for any cyclic group G

of order q with known (or efficiently computable) generator SLWEEG,n,m,q,χe
(χs)

is (t′, ε)-hard with t′ ≈ t.

Proposition 6. If DRPG,χs,�,m is (t, ε)-hard in a cyclic group G of order q, then
for any distribution χe and any number of samples m > 0 DLWEEG,�,m,χe

(χs)
is (t′, ε)-hard with t′ ≈ t.

Proposition 7. If DLWEn,m,q,χe
(χs) is (t, ε)-hard, then for any cyclic group G

of order q with known (or efficiently computable) generator DLWEEG,n,m,χe
(χs)

is (t′, ε)-hard with t′ ≈ t.

3.3 On the Generic Hardness of LWEE

With Propositions 4–7 in our toolbox we conjecture LWEE to be harder than
either of the underlying RP or LWE problems. The argument is heuristic and
based on what is known about the hardness of each intractability problem (see
full version for more details).

Fix parameters such that RP and LWE problem instances give κ bits security.
The only obvious known approach today to solve the LWEE instance is to first
compute the discrete logarithm of samples (gai , gbi) and then solve the LWE
problem for samples (ai, bi). Note that an adversary must solve n2+n many dis-
crete logarithms because the secret vector s is information-theoretically hidden,
if less than n samples of LWE are known. Solving N := n2+n discrete logarithms
in generic groups of order q takes time

√
2Nq while computing a single discrete

logarithm takes time
√

πq/2 [24,25].4 In fact, this bound is proven to be optimal
4 Solving N -many discrete logarithms is easier than applying N times a DL solver for

a single instance.
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in the generic group model [26]. Note, parameters for LWEE are chosen such that
computing a single discrete logarithm takes time 2κ. Hence, in order to solve the
LWEE instance for N = O(κ2), one requires time 2√

π

√
N · 2κ + 2κ > 2κ+2 log(κ).

This shows that generically the concrete instance of LWEE is logarithmically
harder in the security parameter κ.

4 Public-Key Encryption from LWEE

4.1 The High-Level Idea

The idea behind our scheme is reminiscent of Regev’s public-key encryption
scheme. In a nutshell, the public key is an LWEE instance (gA, gAs+x) ∈
G

n×n × G
n. Similarly to [27,28] and as opposed to Regev [3], for efficiency

reason we avoid the use of the leftover hash lemma –instead we impose one fur-
ther LWEE instance– and make use of a square matrix A. Ciphertexts consist of
two LWEE instances C = (c0, c1) where c0 = gAr+e0 encapsulates a random key
r ∈ Z

n
q and c1 = g〈b,r〉+e1 ·gαμ encrypts the message μ (we discuss the exact value

of α below). The tricky part is the decryption algorithm. All known LWE-based
encryption schemes require some technique to deal with the noise terms. Oth-
erwise, decryption is prone to err. Regev’s technique ensures small error terms.
One simply rounds c1 − c0s to some reference value cb indicating the encryption
of bit b. While rounding splendidly works on integers, the technique fails in our
setting.

Our approach explores a considerably different path. Instead of rounding, we
synthesize the pesky error terms. To this end, we adapt the trapdoor technique
of Joye and Libert [29] and recover partial bits of the discrete logarithm (by
making use of the Pohlig-Hellman algorithm [30]). The main idea is to tweak
the modulus in a smart way. Given composite modulus N = pq with p′, q′, such
that p = 2kp′ + 1 and q = 2kq′ + 1 are prime, there exists an efficient algorithm
for recovering the k least significant bits of the discrete logarithm. We choose
the parameters so that the sum of all error terms in the exponent is (with high
probability) at most 2k−�. This leads to a “gap” between error bits and those bits
covert by the discrete log instance. We plant the message in this gap by shifting
it to the 2k−�’s bit, where � is the size of the message we want to decrypt. Hence,
we choose α = 2k−� in our construction to shift the message bits accordingly.
We leave it as an interesting open problem to instantiate the scheme in prime
order groups.

4.2 Our Construction

The scheme is parameterized by positive integers n, k, � < k and Gaussian para-
meters σs, σe.

KeyGen: Sample prime numbers p′ and q′, such that p = 2kp′+1 and q = 2kq′+1
are prime. Set N = pq and M = 2kp′q′. Sample s ←R Dn

σs
, A ←R Z

n×n
M and

x ←R Dn
σe

and compute b = A�s+x. Sample g ∈ JN \QRN of order M . The
public key consists of pk = (g, gA, gb, N), and the secret key of sk = (p, s).
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Algorithm 1.

Input: Generator g of a group with order p − 1 = 2kp′, p and k
Output: k least significant bits of logg(h)

begin
a = 0, B = 1;
for i ∈ {1, . . . , k} do

z ← L(h, p)2i mod p;
t ← L(g, p)a2i mod p;
if z �= t then

a ← a + B;
end
B ← 2B;

end
return a

end

Encrypt(pk, μ): To encrypt � bits μ ∈ {0, 1, . . . 2� −1} given public key pk choose
r ←R Dn

σs
, e0 ←R Dn

σe
and e1 ←R Dσe

. Use gA, r and e0 to compute gAr+e0 ,
and gb, r and e1 to compute g〈b,r〉+e1 . The ciphertext is c0, c1 with

c0 = gAr+e0 , c1 = g〈b,r〉+e1 · g2
k−�μ.

Decrypt(sk, (c0, c1)): To decrypt the ciphertext (c0, c1) given secret key sk =
(p, s), first compute g〈s,Ar+e0〉 and then h = c1/g〈s,Ar+e0〉. Run Algorithm 1
to synthesize v = logg(h) mod 2k and return

⌊
v

2k−�−1

⌉
.

4.3 Correctness

To show correctness of our construction we build upon two facts. First, Algorithm1
synthesizes the k least significant bits of a discrete logarithm. The algorithm’s cor-
rectness for a modulus being a multiple of 2k is proven in [29, Section 3.2]. Second,
noise in the exponent does not overlap with the message. To this end, we bound
the size of the noise with following lemma.

Lemma 1 (adapted from [28, Lemma 3.1]). Let c, T be positive integers such
that

σs · σe ≤ π

c

T√
n ln(2/δ)

and
(

c · exp(
1 − c2

2
)
)2n

≤ 2−40.

For x, s ←R Dn
σe

, r, r0 ←R Dn
σe

, e1 ←R Dσe
, we have |〈x, r〉 − 〈s, e0〉 + e1| < T

with probability at least 1 − δ − 2−40.

We are now ready to prove the following theorem.

Theorem 1. Let c, T be as in Lemma 1. Then, the decryption is correct with
probability at least 1 − δ − 2−40.
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4.4 Ciphertext Indistinguishability

Theorem 2. Let G = 〈g〉 be the cyclic group of composite order generated by g.
If the decisional LWEE problem DLWEEG,n,n+1,q,Dσe

(Dσs
) is (t, ε)-hard, then the

above cryptosystem is (t, 2ε)-indistinguishable against chosen plaintext attacks.

Proof. In a high level, our proof works as follows. Instead of showing IND-CPA
security via a direct argument we show that the distribution (pk, c0, c1) is indis-
tinguishable from the uniform distribution over (Gn×n × G

2n+1). That is, a
ciphertext (c0, c1) under public key pk appears completely random to an adver-
sary. This holds, in particular, in the IND-CPA experiment when the adver-
sary chooses the underlying plaintext. We prove the theorem via a series of
hybrid arguments, Hybrid0 to Hybrid2, where in each consecutive argument we
make some slight changes with the provision that the adversary notices the
changes with negligible probability only. In the following, we use the abbrevia-
tions u = Ar + e0 and v = 〈b, r〉 + e1 + 2k−�μ.

Hybrid0: In this hybrid we consider the original distribution of the tuple

(pk, (c0, c1)) = (gA, gb, gu, gv).

Hybrid1: In this hybrid we modify the distribution and claim

(gA, gb, gu, gv) ≈c (gA
′
, gb

′
, gA

′r+e0 , g〈b′·r〉+e1 · g2
k−�μ)

for a uniformly sampled elements gA
′
, gb

′ ∈ G
n×n × G

n. We argue that
any successful algorithm distinguishing between Hybrid0 and Hybrid1 can be
easily turned into a successful distinguisher B in the DLWEEG,n,n,q,Dσe

(Dσs
)

problem. The DLWEE-adversary B is given as challenge the tuple (gA, gb)
and is asked to decide whether there exist vectors s ←R Dσs

, x ←R Dn
σe

such that gb = gA
�s+x or gb was sampled uniformly from G

n.
Let Pr[Hybridi(t)] denote the probability of any algorithm with runtime t to
win the IND-CPA experiment in hybrid i. Then, we have

Pr[Hybrid0(t)] ≤ Pr[Hybrid1(t)] + AdvDLWEE

G,n,n,q,Dσe ,Dσs
(t).

Hybrid2: In this hybrid we modify the distribution and claim

(gA
′
, gb

′
, gA

′r+e0 , g〈b′·r〉+e1 · g2
k−1μ) ≈c (gA

′′
, gb

′′
, gu

′
, gv′ · g2

k−1μ)

for a uniformly sampled elements gA
′′
, gb

′′
, gu

′
, gv′ · gμ ∈ G

(n+1)×n × G
n+1.

We argue that any successful algorithm distinguishing between Hybrid1 and
Hybrid2 can be easily turned into a successful distinguisher B against the
DLWEEG,n,n+1,q,Dσe

(Dσs
) problem. Note that gb

′
, g〈b′·r〉+e1 is an additional

sample from the LWEE distribution from which gA
′
, gA

′r+e0 is sampled.
We have

Pr[Hybrid1(t)] ≤ Pr[Hybrid2(t)] + AdvDLWEE

G,n,n+1,q,Dσe ,Dσs
(t).

Note that now all exponents are uniformly distributed, and, in particular,
independent of μ and thus, independent of b in the IND-CPA game. Hence,
any algorithm has in Hybrid2 exactly a success probability of 1/2.

This completes the proof of semantic security.
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4.5 Candidate Instantiations of Our Encryption Scheme

We give three possible instantiations to derive a system with short key sizes, post-
quantum security or double hardness. Throughout this section we instantiate our
scheme such that the encryption scheme from Sect. 4.2 encrypts only a single bit.
Nonetheless, parameters can easily be upscaled to many bits.

Table 1. Key sizes in kilobytes (kB) for our encryption scheme basing security on DRP
or LWE, respectively.

Sizes/Security DRP-based instantiation LWE-based instantiation

80-bit 128-bit 256-bit 80-bit 128-bit 256-bit

Public-key size 0.565 kB 1.500 kB 7.500 kB 235 kB 417 kB 1233 kB

Secret-key size 0.212 kB 0.563 kB 2.813 kB 0.976 kB 1.302 kB 2.237 kB

Ciphertext size 0.283 kB 0.750 kB 3.750 kB 0.980 kB 1.306 kB 2.241 kB

The Classical Way. Here, we instantiate our encryption scheme such that the
underlying DRP is intractable, and neglecting the hardness of the underlying
LWE. In the full version, we recall some groups where we believe DRP is hard to
solve. Our encryption scheme works in the group JN := {x ∈ ZN : J(x,N) = 1}
for N = pq with p, q being k-safe primes. In fact, we can even take safe primes
p, q (i.e., k = 1) since we do not need any noise in the exponent if we neglect the
underlying LWE hardness. Thus, we embed the message to the least significant
bit in the exponent. For this reason, we can sample g ←R JN/QRN where 〈g〉
has order 2p′q′. Since the LWE instance within LWEE is not an issue here we
select n = m = 1, σs = ∞ and σe = 0.

We obtain 80-bit security for the underlying DRP problem if we choose safe
primes p and q such that log p = log q = 565 (see full version for more details).
Table 1 lists possible key sizes for our encryption scheme. Recall that the public
key consists of pk = (g, gA, gb, k,N) (i.e., 4 group elements if we fix k = 1) and
the secret key of sk = (p, s).

The Post-Quantum Way. Here we give example instantiations of our encryption
scheme when it is based on a presumably quantum-resistant LWEE assump-
tion. That is, we select parameters such that the underlying LWE assumption
is intractable without relying on the hardness of DRP. For this, we modify the
scheme slightly by choosing fixed values for p′ and q′ instead of sampling. A good
choice is k = 15, since it allows to choose p′ = 2 and q′ = 5, which are very small
prime numbers such that 2kp′ +1 and 2kq′ +1 are prime. For the LWE modulus,
this leads to M = 2kp′q′ = 327680. Like Lindner and Peikert [28], we choose the
Gaussian parameter such that the probability of decoding errors is bounded by
1%. We choose furthermore the same parameter for error and secret distribution
(i.e. σs = σe = σ), since a standard argument reduces LWE with arbitrary secret
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to LWE with secret chosen according to the error distribution. For this choice
of k, p′ and q′, we obtain 80-bit security by choosing n = 240 and σ = 33.98.
Table 1 lists the key sizes when our encryption scheme is instantiated such that
its security is based on LWE only (see full version for more information about
the concrete hardness of LWE).

The Hardest Way (Double-Hardness). The most secure instantiation of our
encryption is such that even if one of the problems DRP or LWE is efficiently solv-
able at some point, our encryption scheme remains semantically secure. Selecting
parameters for double hardness, however, is non-trivial.

To select appropriate parameters for the case of double hardness, we apply
the following approach: For a given security level (say κ = 80), we select N
such that the Number Field Sieve needs at least 2κ operations to factor N .
A possible choice is log N = 1130 (See full version). Since factoring N must
also be hard for McKee-Pinch’s algorithm, which works well when (p − 1) and
(q − 1) share common factor, k must be chosen such that N1/42−k ≥ 2κ, i.e.
k ≤ log(N)

4 −κ. This leads to k = 203. Given N and k, we can calculate the sizes
of the primes log(p′) ≈ log(q′) ≈ 362 and log(p) ≈ log(q) ≈ 565 and the LWE
modulus log(M) ≈ 927. Taking n = 67000 and σ = 297, Lemma 1 shows that
the algorithm decrypts correctly with high probability.
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18. Dagdelen, Ö., Venturi, D.: A second look at Fischlin’s transformation. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 356–
376. Springer, Heidelberg (2014)
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