
On Differentially Private Online Collaborative
Recommendation Systems

Seth Gilbert, Xiao Liu(B), and Haifeng Yu

School of Computing, National University of Singapore, Singapore, Singapore
{seth.gilbert,liuxiao,haifeng}@comp.nus.edu.sg

Abstract. In collaborative recommendation systems, privacy may be
compromised, as users’ opinions are used to generate recommendations
for others. In this paper, we consider an online collaborative recommen-
dation system, and we measure users’ privacy in terms of the standard
notion of differential privacy. We give the first quantitative analysis of
the trade-offs between recommendation quality and users’ privacy in such
a system by showing a lower bound on the best achievable privacy for
any algorithm with non-trivial recommendation quality, and proposing a
near-optimal algorithm. From our results, we find that there is actually
little trade-off between recommendation quality and privacy, as long as
non-trivial recommendation quality is to be guaranteed. Our results also
identify the key parameters that determine the best achievable privacy.

Keywords: Differential privacy · Collaborative recommendation
system · Lower bound · Online algorithm

1 Introduction

In this paper we consider an online collaborative recommendation system that
attempts to predict which objects its users will like. Imagine, for example, a
news website which publishes articles every day. When a user enjoys an article,
he/she votes on the article (e.g., upvotes it, likes it, +1s it, etc.). Users can
also ask the system for a recommendation, i.e., to suggest an article that they
might like. After reading the recommended article, the user gives the system
feedback on the recommendation so that it can improve its recommendation
quality. In this paper, we work with a simplified, abstract version of this very
common paradigm.

Due to the way it works, a collaborative recommendation system has the
risks of leaking its users’ privacy. Clearly, there are trade-offs between recom-
mendation quality and privacy: a system that gives completely random recom-
mendations certainly leaks no one’s privacy, but it is also useless; in contrast, a
recommendation system that gives high quality recommendations has to make
“full use” of its users’ data, which is more prone to privacy leakage.

A full version [21] of this paper is available at http://arxiv.org/abs/1510.08546. This
research was supported by MOE ARC-2 grant MOE2014-T2-1-157.

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 210–226, 2016.
DOI: 10.1007/978-3-319-30840-1 14

http://arxiv.org/abs/1510.08546

On Differentially Private Online Collaborative Recommendation Systems 211

In this paper, we adopt ε-differential privacy [17] as our formal definition of
privacy, and we give the first quantitative analysis of these trade-offs for online
collaborative recommendation systems. Prior to this paper, the topic of differ-
entially private recommendation systems has primarily been examined under
offline matrix models [12,13,23,24,28,32,42]. From the theoretical perspective,
our recommendation model can be viewed as a variant of an online learn-
ing problem. Currently, there are only a limited number of existing papers on
differentially private online learning [18,26,41], and their privacy models do not
fit the recommendation problem (see Sect. 3 for more details).

We first study the best achievable privacy for a fixed recommendation quality
by showing a near-tight lower bound on the privacy parameter ε (smaller ε means
better privacy). For example, if we were to guarantee a trivial recommendation
quality only, then we can achieve “perfect privacy” (i.e., ε = 0) by ignoring users’
opinions on objects and recommending randomly. As we set better and better
target recommendation quality, it might be expected that the best achievable ε
smoothly gets larger and larger. However, we show that the transition is sharp:
although ε = 0 is achievable for the trivial recommendation quality, the lower
bound of ε rises to a certain level as long as non-trivial recommendation quality
is to be guaranteed, and it remains essentially the same (up to a logarithmic
factor) as the target recommendation quality increases.

We then propose a novel ε-differentially private algorithm. Our algorithm’s ε
is within a logarithmic factor to the aforementioned lower bound, and meanwhile
its recommendation quality is also near-optimal up to a logarithmic factor, even
when compared to algorithms providing no privacy guarantee.

Our near matching results surprisingly imply that there are actually little
trade-offs between recommendation quality and privacy — an inherent “amount
of privacy” (up to a logarithmic factor) must be “leaked” for any algorithm with
non-trivial recommendation quality. Our results also identify the key parameters
that fundamentally determine the best achievable recommendation quality and
privacy. We provide more details about our results in Sect. 4.

2 Model and Problem Statement

2.1 Recommendation System Model

We now describe the model in more detail, abstracting away some of the com-
plications in the scenario above in order to focus on the fundamental trade-offs.

We consider an online collaborative recommendation system that contains
voters, clients and objects, and it repeatedly recommends objects to clients based
on voters’ opinions on objects. A voter/client either likes or dislikes an object.
Voters submit their opinions on objects to the system in the form of votes, where
a vote by voter i on object j indicates that voter i likes object j; clients receive
recommendations from the system and provide feedback to the system which tells
whether they like the recommended objects or not. Since every client has his/her
own personalized preferences, the system will serve each client separately.

We now describe how the model operates for a particular client C. The system
runs for T rounds. In each round t ∈ {1, . . . , T}, a set of m new candidate objects

212 S. Gilbert et al.

arrives in the system, out of which the client C likes at least one of them. We
assume that m is a constant, and totally the system has mT objects over all
the T rounds. Let U denote the set of all the voters, and Bt denote the set of
candidate objects in the tth round. After Bt arrives, each voter i ∈ U votes on
one object in Bt; the system then recommends one object bt ∈ Bt to the client C
(based on the voters’ votes and the previous execution history), and C responses
the system with his/her feedback which tells whether he/she likes bt or not. The
system proceeds into the next round after that.

We measure the recommendation quality by loss, which is defined as the
number of objects that the algorithm recommends to the client C but C dislikes.

A client C is fully characterized by specifying C’s preferences on every object.
However, in a recommendation system, whether a client C likes an object j or not
is unknown until the system has recommended j to C and gotten the feedback.

We denote the votes of all the voters in U by V〈U〉, and we call V〈U〉 the voting
pattern of U , or simply a voting pattern when U is clear from the context. Given
a client C and a voting pattern V〈U〉, a (randomized) recommendation algorithm
A maps the pair (C,V〈U〉) to a (random) sequence of objects in B1 × · · · × BT .
We call a particular sequence in B1 × · · · × BT a recommendation sequence.

2.2 Differential Privacy in Recommendation Systems

Voters’ votes are assumed to be securely stored by the system, which are not
accessible from the public. Nevertheless, a curious client may still try to infer
voters’ votes by analyzing the recommendation results. In this paper, we adopt
differential privacy [17] as our definition of privacy. Roughly speaking, differen-
tial privacy protects privacy by ensuring that the outputs are “similar” for two
voting patterns V〈U〉 and V〈U ′〉 if they differ by one voter. Such a pair of voting
patterns are called adjacent voting patterns, and they are formally defined as:

Definition 1 (Adjacent Voting Patterns). Two voting patterns V〈U〉 and
V〈U ′〉 are adjacent voting patterns iff i) |U � U ′| = 1, and ii) for any voter
i ∈ U ∩ U ′ and in any round t ∈ {1, . . . , T}, i always votes on the same object
in both V〈U〉 and V〈U ′〉.
Generalizing Definition 1, we say that two voting patterns V〈U〉 and V〈U ′〉 are
k-step adjacent, if there exists a sequence of k + 1 voting patterns V〈U0〉 =
V〈U〉,V〈U1〉, . . . ,V〈Uk−1〉,V〈Uk〉 = V〈U ′〉 such that V〈U�〉 and V〈U�+1〉 are adja-
cent for any � = 0, . . . , k − 1.

Having defined adjacent voting patterns, we can then apply the standard
differential privacy in [17] to our setting:

Definition 2 (ε-Differential Privacy). A recommendation algorithm A pre-
serves ε-differential privacy if for any client C, any pair of adjacent voting pat-
terns V〈U〉,V〈U ′〉, and any subset S ⊆ B1 × · · · × BT ,

Pr[A(C,V〈U〉) ∈ S] ≤ eε Pr[A(C,V〈U ′〉) ∈ S],

where the probabilities are over A’s coin flips.

On Differentially Private Online Collaborative Recommendation Systems 213

2.3 Attack Model, Power of the Adversary

As indicated by Definitions 1 and 2, we protect voters’ privacy against the client.
We do not need to protect the client’s privacy because voters receive nothing
from the system.

Our research goal is to study the theoretical hardness of the aforemen-
tioned recommendation problem, therefore we assume that there is an adver-
sary with unlimited computational power who controls how the voters vote and
which objects the client likes. The adversary tries to compromise our algo-
rithm’s loss/privacy by feeding the algorithm with “bad” inputs. From the
perspective of game theory, our recommendation model can be viewed as a
repeated game between the algorithm, who chooses the objects to recommend,
and the adversary, who chooses the client’s preferences on objects and the voting
pattern. For our lower bounds, we consider an oblivious adversary that chooses
the client’s preferences on objects and the voting patterns in advance; for our
upper bounds, we consider an adaptive adversary whose choice in time t can
depend on the execution history prior to time t. By doing so, our results are
only strengthened.

2.4 Notations

Next we introduce some notations that characterize the system. Some of them
are also the key parameters that determine the best achievable loss/privacy.

The Client’s Diversity of Preferences. A client C’s diversity of preferences DC

is defined to be the number of rounds in which C likes more than one objects.

The Client’s Peers. Inherently, a collaborative recommendation system is able
to achieve small loss only if some voters have similar preferences to the client. Let
the distance between a client C and a voter i be the total number of objects that
are voted on by i but are disliked by C. Given a radius parameter R ∈ {0, . . . , T},
we define a voter i to be a client C’s peer if their distance is within R. Given
a client C, a voting pattern V〈U〉 and a radius parameter R, we can count the
number of C’s peers in U , and we denote it by PC,V〈U〉,R.

Other Notations. We define n to be an upper bound of |U| (i.e., the number
of voters), D to be an upper bound of DC (i.e., the client’s diversity of prefer-
ences), and P to be a lower bound of PC,V〈U〉,R (i.e., the number of the client’s
peers). The reader may wonder why these parameters are defined as upper/lower
bounds. The purpose is to give a succinct presentation. Take n as an example:
since differential privacy needs to consider two voting patterns with different
numbers of voters, if we define n as the number of voters, it would be unclear
which voting pattern we are referring to. The reader can verify that by choosing
the right directions for the parameters (e.g., we define n to be an upper bound,
and P to be a lower bound), our definition does not weaken our results.

214 S. Gilbert et al.

In general, we consider a large system that consists of many voters, many
objects (over all the rounds), and runs for a long time. That is, n and T can
be very large. In this paper, we also impose a (quite loose) requirement that
n = O(poly(T)), i.e., n is not super large compared to T .

In reality, a client shall find more peers as more voters join the system.
Otherwise, the client has an “esoteric tastes” and it is inherently hard for any
collaborative system to help him/her. Thus, in this paper, we consider the case
that P ≥ 6m, i.e., the client has at least a constant number of peers.

2.5 Loss/Privacy Goal

In this paper, we consider the worst-case expected loss of the algorithm, that is,
we aim to bound the algorithm’s expected loss for any client C and any voting
pattern V〈U〉 such that |U| ≤ n, DC ≤ D and PC,V〈U〉,R ≥ P . Notice that O(T)
loss can be trivially achieved by ignoring voters’ votes and recommending objects
randomly. However, such an algorithm is useless, and hence we consider the more
interesting case when non-trivial loss (i.e., o(T) worst-case expected loss) is to
be guaranteed. It can be shown that the worst-case expected loss is Ω(R) for
any algorithm (Theorem 3). Therefore, sub-linear loss is achievable only when
R is sub-linear. In this paper, we focus on the case when R = O(T ν) for some
constant ν < 1.1

For the privacy, we aim to preserve ε-differential privacy. We study the best
achievable ε-differential privacy for any given target loss.

3 Related Work

Recommendation Systems and Online Learning. The research on recommenda-
tion systems has a long history [1,40]. A classic recommendation model is the
offline matrix-based model, in which the user-object relation is represented by
a matrix. In this paper, we consider a very different online recommendation
model. From the theoretical perspective, our model can be viewed as a variant
of the “Prediction with Expert Advice” (PEA) problem in online learning [9].
Such an approach that models the recommendation systems as online learning
problems has been adopted by other researchers as well, e.g., in [2,31,33,37,43].

Differential Privacy. There has been abundant research [14–16,18,20] on differ-
ential privacy. Much of the early research focused on answering a single query
on a dataset. Progress on answering multiple queries with non-trivial errors was
made later on, for both offline settings [4,19,25,38] (where the input is available
in advance), and online settings [5,10,11,18,26,29,41] (where the input continu-
ously comes). We will introduce the work on differentially private online learning
in [18,26,41] with more details soon after, as they are most related to this paper.
1 Technically, the assumptions that n = O(polylog(T)), P ≥ 6m and R = O(T ν) are

only for showing the near-optimality of our lower bound. Our lower bound itself
remains to hold without these assumptions.

On Differentially Private Online Collaborative Recommendation Systems 215

Protecting Privacy in Recommendation Systems. People are well aware of the
privacy risks in collaborative recommendation systems. Two recent attacks were
demonstrated in [34] (which de-anonymized a dataset published by Netflix) and
[6] (which inferred users’ historical data by combining passive observation of a
recommendation system with auxiliary information). The research in [34] even
caused the second Netflix Prize competition to be cancelled.

Many of the existing privacy-preserving recommendation systems adopted
privacy notions other than differential privacy (e.g., [3,7,8,35,36,39]). For stud-
ies on differentially private recommendation systems, prior to our paper, most
of them were for offline matrix-based models. Some experimentally studied
the empirical trade-offs between loss and privacy (e.g., [13,32,42]); the oth-
ers focused on techniques that manipulate matrices in privacy-preserving ways
(e.g., [12,23,24,28]). In a recent work [22], the authors proposed a modified ver-
sion of differential privacy (called distance-based differential privacy), and they
showed how to implement distance-based differential privacy in matrix-based
recommendation systems.

Differentially Private Online Learning. This paper is most related to differen-
tially private online learning, as our recommendation model is a variant of the
PEA problem in online learning. Currently, only a limited number of studies
have been done on this area [18,26,41]. In [18], Dwork et al. proposed a differ-
entially private algorithm for the PEA problem by plugging privacy-preserving
online counters into “Follow the Perturbed Leader” algorithm [27]. In [26,41],
differential privacy was considered under a more general online learning model
called “Online Convex Programming.”

Despite the similarity between our recommendation model and the learning
models in [18,26,41], there is an important difference. Since their research is
not for recommendation systems, they considered somewhat different notions of
privacy from ours. Roughly speaking, if interpreting their models as recommen-
dation problems, then their privacy goal is to ensure that each voter is “followed”
with similar probabilities when running the algorithm with two adjacent voting
patterns. Such a guarantee is not sufficient for a recommendation system. For
example, an algorithm that always “follows” voter Alice is perfectly private in
terms of their privacy definition, but completely discloses Alice’s private votes.2

Besides the difference in privacy definition, we provide both lower bound and
upper bound results, while [18,26,41] only have upper bound results.

4 Our Results and Contributions

Main Results. Our first result is a lower bound on the best achievable privacy:
2 On the other hand, our privacy definition does not imply their definitions either.

Therefore these two types of privacy models are incomparable.

216 S. Gilbert et al.

Theorem 1. For any recommendation algorithm that guarantees L = O(T η)
worst-case expected loss (η < 1 is a constant) and preserves ε-differential privacy,
ε = Ω(1

P (D+R+log T
L)) = Ω(1

P (D+R+log T)), even for an oblivious adversary.

Our second result is a near-optimal algorithm (the p-REC algorithm in Sect. 7.2):

Theorem 2. The p-REC algorithm guarantees O((R + 1) log n
P) worst-case

expected loss, and it preserves O(1
P (D + R + 1) log T

R+1)-differential privacy,
even for an adaptive adversary.

It can be shown that the worst-case expected loss is Ω(R + log n
P) even for

algorithms with no privacy guarantee (Theorem3). Thus, p-REC’s worst-case
expected loss is within a logarithmic factor to the optimal. Recall that R =
O(T ν) for a constant ν < 1 and log n = O(log T), hence p-REC’s worst-case
expected loss is within O(T η) for some constant η < 1 too. Then, by Theorem1,
p-REC’s privacy is also within a logarithmic factor to the optimal.

Discussion of our Results. Theorem 1 shows that a minimal amount of “privacy
leakage” is inevitable, even for the fairly weak O(T η) target loss.

Moreover, unlike many other systems in which the utility downgrades linear
to the privacy parameter ε, the loss in an online recommendation system is much
more sensitive to ε: according to Theorem 2, we can achieve near-optimal loss for
an ε = O(1

P (D + R + 1) log T
R+1); meanwhile, only trivial loss is achievable for

just a slightly smaller ε = o(1
P (D + R + log T)). In other words, the trade-offs

between loss and privacy are rather little — the best achievable ε is essentially
the same (up to a logarithmic factor) for all the algorithms with O(T η) worst-
case expected loss.3 For this reason, instead of designing an algorithm that has
a tunable privacy parameter ε, we directly propose the p-REC algorithm that
simultaneously guarantees both near-optimal loss and privacy.

From our results, we identify the key parameters D, P and R that determine
the best achievable loss and/or privacy.

The parameter R characterizes the correlation between the client and the
voters, and it is not surprised that the best achievable loss is inherently limited
by R, because a basic assumption for any collaborative system is the existence of
correlation in the data (e.g., the low-rank assumption in matrix-based recommen-
dation systems), and the system works by exploring/exploiting the correlation.

We notice that a larger P gives better privacy. This is consistent with our
intuition, as an individual’s privacy is obtained by hiding oneself in a population.

We also notice that the best achievable privacy linearly depends on the
client’s diversity of preferences D and the radius parameter R. The parameter
D looks to be unnatural at the first sight, and no prior research on recommenda-
tion systems has studied it. The reason might be that most of the prior research
3 This statement actually holds for all the algorithms with o(T) loss. In Theorem 1,

we choose O(T η) target loss to get a clean expression for the lower bound on ε, and
a similar (but messier) lower bound on ε holds for o(T) target loss too.

On Differentially Private Online Collaborative Recommendation Systems 217

focused on the loss, and D has no impact on the loss (the loss should only be
smaller if a client likes more objects). Nevertheless, in this paper, we discover
that D is one of the fundamental parameters that determine the best achievable
privacy. We provide an intuitive explanation of ε’s linear dependence on D and
R with an illustrative example in Sect. 7.1.

5 Preliminaries

Let P and Q be two distributions over sample space Ω. The relative entropy
between P and Q is defined as

∑
ω∈Ω P(ω) ln P(ω)

Q(ω) , where P(ω) and Q(ω) is
the probability of ω in P and Q, respectively. We adopt the conventions that
0 log 0

0 = 0, 0 log 0
x = 0 for any x > 0 and x log x

0 = ∞ for any x > 0. It is well
known that relative entropy is always non-negative [30].

In this paper, we often simultaneously discuss two executions A(C,V〈U〉)
and A(C,V〈U ′〉) for some algorithm A, some client C and two voting patterns
V〈U〉 and V〈U ′〉. As a notation convention, we will use Pr[·] and Pr′[·] to denote
the probability of some event in the execution of A(C,V〈U〉) and A(C,V〈U ′〉),
respectively. For any recommendation sequence b = (b1, . . . , bT) ∈ B1 × · · · × BT

and any round t, we define the random variables Et(b) = ln Pr[bt|b1,...,bt−1]
Pr′[bt|b1,...,bt−1]

and

E(b) = ln Pr[b]
Pr′[b] . It then follows that E(b) =

∑T
t=1 Et(b). We also define random

variable Lt to be the loss of execution A(C,V〈U〉) in the tth round.
Finally, we list the following lower bound for the worst-case expected loss.

Theorem 3 can be proved by constructing a client with random opinions on
objects. Please see the full version [21] of this paper for its proof.

Theorem 3. The worst-case expected loss of any recommendation algorithm is
Ω(R + log n

P), even for an algorithm providing no privacy guarantee and an
oblivious adversary.

6 The Special Setting Where D = R = 0

In order to better explain our ideas, we start by discussing the simple setting
where D = R = 0. That is, the client likes exactly one object in every round, and
the client’s peers never vote on any object that the client dislikes. We discuss
the general setting where D + R ≥ 0 in the next section.

6.1 Lower Bound

When D = R = 0, we have the following lower bound on the privacy:

Theorem 4. For any recommendation algorithm that guarantees L = o(T)
worst-case expected loss and preserves ε-differential privacy, if D = R = 0,
then ε = Ω(1

P log T
L), even for an oblivious adversary.

218 S. Gilbert et al.

Proof (Sketch). Due to the limitation of space, here we provide a proof sketch
of Theorem 4. The reader can refer to [21] for the full proof of this theorem.
Our proof consists two main steps. In the first step, we consider a particular
round t and two clients Alice and Bob who have different preferences in the
tth round. Since the algorithm has to provide good recommendations to both
Alice and Bob, the output distributions must be very different. Meanwhile, we
carefully construct Alice’s and Bob’s executions, such that their voting patterns
are O(P)-step adjacent to each other, hence the output distributions cannot be
much different. From this dilemma we can establish a lower bound for the tth
round. In the second step, we then extend this lower bound to all the T rounds
using mathematical induction.

6.2 Algorithm

We propose the following Algorithm1 for the simple setting where D = R = 0.
As we will see, it is a special case of the general p-REC algorithm in Sect. 7.2.
Therefore, we call it the p-RECsim algorithm (“sim” is short for “simple”).

The p-RECsim algorithm maintains a weight value weight[i] for each voter i,
and it recommends objects according to voters’ weight in each round by invoking
the procedure RecommendByWeight(). When it receives the client’s feedback, it
invokes the procedure UpdateWeight() to update voters’ weight. In p-RECsim,
each voter’s weight is either 1 or 0. A voter with 0 weight has no impact on the
algorithm’s output, and once a voter’s weight is set to 0, it will never be reset
to 1. Therefore, we can think of that UpdateWeight() works by “kicking out”
voters from the system. We call the voters who have not been kicked out (i.e.,
those who have non-zero weight) surviving voters.

The p-RECsim algorithm shares a similar structure to the classic Weighted
Average algorithm for the PEA problem [9], as they both introduce weight to
voters and output according to the weight. Our core contribution is the dedicated
probability of recommending objects. In each round t, p-RECsim recommends
object j with probability γ · 1

m + (1 − γ) · φ(xj,t)∑
k∈Bt

φ(xk,t)
, where xj,t is the fraction

of surviving voters voting on object j in round t. We have:

Theorem 5. If D = R = 0, then the p-RECsim algorithm guarantees O(log n
P)

worst-case expected loss and it preserves O(1
P log T)-differential privacy, even

for an adaptive adversary.

According to Theorem3, p-RECsim’s loss is within a constant factor to the opti-
mal. Then by Theorem 4, p-RECsim’s ε is also within a constant factor to the
optimal ε among all the algorithms that guarantee O(T η) worst-case expected
loss. We prove p-RECsim’s loss bound in [21]. Here we briefly introduce the main
steps to analyze p-RECsim’s privacy.

Consider the executions p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), where
C is any client and V〈U〉 and V〈U ′〉 are any pair of adjacent voting patterns (U
contains one more voter than U ′). To show that p-RECsim preserves O(1

P log T)-
differential privacy, it is sufficient to show that |E(b)| = O(1

P log T) for any

On Differentially Private Online Collaborative Recommendation Systems 219

Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

3T−1
, λ ← 2m ln T , ρ ← 1

2m
, weight[i] ← 1 for each i ∈ U

Procedure Main()

foreach round t = 1, . . . , T do
obj ← RecommendByWeight(weight[]);
Recommend object obj to the client C;
feedback ← the client C’s feedback on object obj;
UpdateWeight(weight[], obj, feedback);

Procedure RecommendByWeight(weight[])
foreach object j ∈ Bt do

xj,t ←
∑

i∈Uj,t
weight[i]

∑
i∈U weight[i]

, where Uj,t is the set of voters who vote on object

j in round t;

Independently draw a Bernoulli random variable Zt with Pr[Zt = 1] = γ;
if Zt = 1 then

Independently draw an object obj from Bt uniformly at random;
else

Independently draw an object obj from Bt according to the following
distribution: each object j ∈ Bt is drawn with probability proportional

to φ(xj,t), where φ(x) =

{
0 if x ≤ ρ,

eλx − eλρ otherwise;

return obj;

Procedure UpdateWeight(weight[], obj, feedback)
if feedback = “dislike” then

weight[i] ← 0 for every voter i who votes on object obj;
else

weight[i] ← 0 for every voter i who does not vote on object obj;

Algorithm 1. The p-RECsim algorithm.

recommendation sequence b = (b1, . . . , bT). From now on, we will consider a
fixed b, a fixed C and a fixed pair of V〈U〉 and V〈U ′〉.

Given b = (b1, . . . , bT), let Wt(b) =
∑

i∈U weight[i] be the number of surviving
voters at the beginning of round t in execution p-RECsim(C,V〈U〉), conditioned
on that the recommendations in the first t − 1 rounds are b1, . . . , bt−1. Since
p-RECsim never kicks out the client’s peers, Wt(b) ≥ P ≥ 6m.

First, we upper-bound the “privacy leakage” in each single round:

Lemma 6. For any round t, |Et(b)| ≤ 3λ · 1
Wt(b)

.

Lemma 6 can be shown by a straightforward but rather tedious calculation, see
the full version [21] of this paper for the proof.

Next, we show that a constant fraction of surviving voters are kicked out
whenever there is non-zero “privacy leakage:”

220 S. Gilbert et al.

Lemma 7. For any round t, if |Et(b)| �= 0, then Wt+1(b) ≤ Wt(b) · (1 − 1
3m).

Proof. Notice that |Et(b)| �= 0 iff Pr[bt|b1, . . . , bt−1] �= Pr ′[bt|b1, . . . , bt−1]. Let x
and x′ be the fraction of surviving voters voting on the recommended object
bt in execution p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), respectively. Since
there are Wt(b) surviving voters, |x − x′| ≤ 1

Wt(b)
≤ 1

P ≤ 1
6m .

We claim that x > 1
3m . Assume for contradiction that x ≤ 1

3m . Since |x−x′| ≤
1

6m , both x and x′ will be no larger than 1
3m + 1

6m = 1
2m = ρ. Notice that

φ(ζ) = 0 for any variable ζ ≤ ρ, it then follows that φ(x) = φ(x′) = 0 and
Pr[bt|b1, . . . , bt−1] = Pr′[bt|b1, . . . , bt−1] = γ · 1

m , contradiction.
If the clients dislikes the recommended object bt, by p-RECsim’s rule of updat-

ing weight, x > 1
3m fraction of surviving voters will be kicked out.

If the clients likes bt, then there must exist another object ξ ∈ Bt which is
different from bt, such that Pr[ξ|b1, . . . , bt−1] �= Pr′[ξ|b1, . . . , bt−1]. Otherwise, if
all the other objects are recommended with the same probability in executions
p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), so will be bt, contradiction. By
similar arguments, there are at least 1

3m fraction of surviving voters voting on the
object ξ in both p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉). Since p-RECsim

kicks out all the voters who do not vote on bt (including those who vote on ξ),
again we get the desired result. �

Lemma 6 states that |Et(b)| is O(λ
Wt(b)

) = O(1
P log T). Lemma 7 implies that

there can be at most O(log n
P) rounds with |Et(b)| �= 0. A combination of these

two lemmas immediately shows that overall we have O(1
P log T ·log n

P)-differential
privacy. With a bit more careful analysis, we can remove the extra log n

P factor.
We leave the details to [21].

7 The General Setting Where D + R ≥ 0

7.1 Lower Bound

In this section, we prove Theorem 1. If 0 ≤ D + R < 6 ln T and the target loss
L = O(T η), then Ω(log T

L) = Ω(D+R+log T
L) and hence Theorem 1 is implied by

Theorem 4. When D + R ≥ 6 ln T , we have the following Theorem 8. Theorem 1
is then proved because Ω(D + R) = Ω(D + R + log T

L) if D + R ≥ 6 ln T .

Theorem 8. For any recommendation algorithm that guarantees L = o(T)
worst-case expected loss and preserves ε-differential privacy, if D + R ≥ 6 ln T ,
then ε = Ω(1

P (D + R)), even for an oblivious adversary.

Before proving Theorem8, we first explain the intuition behind the proof by
a simple illustrative example. Imagine that there is one client Alice, and two
voting patterns V1 and V2. Both V1 and V2 contain only one voter named Bob,
but Bob may vote differently in V1 and V2. We let Bob be Alice’s peer in both
V1 and V2. For simplicity let us set R = 0, so Bob never votes on any object
that Alice dislikes. By Definition 1, V1 and V2 are 2-step voting patterns.

On Differentially Private Online Collaborative Recommendation Systems 221

Now consider a particular round t with two candidate objects. If Alice likes
only one of the objects, then there is only one way for Bob to cast vote; otherwise
Bob will no longer be a peer of Alice. However, if Alice likes both objects, then
Bob can vote on different objects in V1 and V2 without breaking the promise
that he is Alice’s peer. Since Bob is the only information source of the system,
an recommendation algorithm A has to somehow “follow” Bob, and hence the
distributions of the executions A(Alice,V1) and A(Alice,V2) will be different. If
Alice’s diversity of preferences is D, then this situation can happen for D times,
which results an ε ∝ D. The linear dependency of ε on R is for a similar reason.

Proof (Sketch of Theorem 8). Due to the limitation of space, we provide a proof
sketch in the main text. The full proof can be found in [21].

We first prove Theorem 8 for the case where P = 1 and 6 ln T ≤ D + R ≤ T .
To show Theorem 8 for the case where P = 1, it is sufficient to show that
for any given algorithm A, we can construct a client C and a pair of 2-step
adjacent voting patterns V〈U〉,V〈U ′〉, such that ln Pr[b]

Pr′[b] = Ω(D + R) for some
recommendation sequence b ∈ B1 × · · · × BT .

We construct the client C by setting C’s preferences on objects. We will
always ensure that C likes multiple objects in at most D rounds. For the vot-
ing pattern V〈U〉 and V〈U ′〉, we let each of them contain one voter U and U ′,
respectively. We construct the voting patterns by setting U and U ′’s votes in
each round. We will always ensure that both U and U ′ vote on at most R objects
that are disliked by the client C, hence U and U ′ are both the client C’s peers.

We construct C, V〈U〉 and V〈U ′〉 round by round. Imagine that we are in
the beginning of the tth round, with the previous recommendation history being
b<t = (b1, . . . , bt−1). In order to better demonstrate our ideas, let us temporarily
assume an adaptive adversary who can also see the recommendation history
b<t. The adversary can then set C’s preferences on objects and U and U ′’s votes
based on the algorithm A’s behavior:

– Case 1 : A “follows” voter U with probability ≤ 0.75. In this case, the adver-
sary let C like exactly one object in round t, and it let U vote on the only
object that C likes. It then follows that E[Lt|b<t] ≥ 1 − 0.75 = 0.25, i.e., the
expected loss in round t is at least a constant.

– Case 2.a: A “follows” voter U with probability > 0.75, but it “follows” the
voter U ′ with probability ≤ 0.5. In this case, if the adversary let U and U ′

vote identically, then the distributions Pr[·|b<t] and Pr′[·|b<t] will be different.
In particular, we can show that the relative entropy E[Et|b<t] ≥ 0.13, i.e., the
expected “privacy leakage” in round t is at least a constant.

– Case 2.b: A “follows” voter U with probability ≥ 0.75, and it “follows” voter
U ′ with probability > 0.5. This case is symmetric to Case 2.a, and hence
the adversary can force E[Et|b<t] ≥ 0.13 by letting U and U ′ vote differently.
However, it is worth noting that during the entire execution of A, the adver-
sary can let U and U ′ vote differently for at most D + R times due to the
constraints imposed by D and R (see the full proof for more details).

222 S. Gilbert et al.

It can be shown that with the above adaptive construction, E[E] = Ω(D+R) for
any algorithm A, which implies the existence of one recommendation sequence
b such that E(b) = ln Pr[b]

Pr′[b] = Ω(D + R). To see why E[E] = Ω(D + R), we first
notice that there cannot be too many rounds in Case 1 on expectation, because
A has to ensure o(T) expected loss. Therefore most of the rounds must be in
Case 2.a or Case 2.b. If there are many rounds in Case 2.a, then E[E] must be
large because E[Et|b<t] ≥ 0.13 in every Case 2.a round, and E[Et|b<t] ≥ 0 in all
the other rounds (relative entropy is non-negative [30]). Otherwise, there must
be many rounds in Case 2.b. In this case, the adversary can force E[Et|b<t] ≥ 0.13
for Ω(D + R) times, and we have E[E] = Ω(D + R).

The aforementioned adaptive adversary chooses a “bad setting” for the
algorithm A in each round based on which case A is in. We point out that
this is actually not necessary: we still have E[E] = Ω(D + R) if the adversary
randomly chooses a “bad setting” in each round with a proper distribution. Such
a (random) adversary is oblivious, and it implies the existence of a “bad input”
that does not depend on A’s execution. This finishes the proof in the case of
P = 1.

Finally, we prove Theorem 8 for the cases where D + R > T and/or P > 1.
These proofs are just simple extensions of the above basic proof. �

7.2 Algorithm

We propose the following p-REC algorithm for the general setting where D+R ≥
0. The p-REC algorithm is a generalized version of the p-RECsim algorithm,
and it shares a similar structure as that of p-RECsim, except that the procedure
UpdateWeight() is replaced by UpdateCreditAndWeight(). In fact, we can get
back the p-RECsim algorithm by setting D = R = 0 in the p-REC algorithm.

Theorem 2 summarizes p-REC’s loss and privacy. According to the lower
bounds in Theorems 1 and 3, both its loss and privacy are within logarithmic
factors to the optimal.

In the beginning of the p-REC algorithm, each voter i ∈ U is initialized with
two credit values credit(D)[i] = 2D (which we call D-credit) and credit(R)[i] =
2R + 1 (which we call R-credit). In each round t, the algorithm recommends
objects by invoking the RecommendByWeight() procedure. After it receives the
client’s feedback, the algorithm updates each voter’s credit and then calculate
his/her weight by invoking the UpdateCreditAndWeight() procedure.

To see the intuition behind the p-REC algorithm, let us analyze why the
p-RECsim algorithm fails in the general setting where D + R ≥ 0. If we run
p-RECsim in the general setting, we may end up with a situation where all the
client’s peers are kicked out from the system. A client’s peer can be (wrongly)
kicked out in two scenarios:

– when the client likes more than one objects in some round, the peer votes on
one such object, but another such object is recommended;

– when the peer votes on an object that the client dislikes, and that object is
recommended to the client.

On Differentially Private Online Collaborative Recommendation Systems 223

Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

(3T/(R+1))−1
; λ ← 2m ln T

R+1
; ρ ← 1

2m
; for each i ∈ U :

credit(D)[i] ← 2D, credit(R)[i] ← 2R + 1, weight[i] ← 1

Procedure Main()

foreach round t = 1, . . . , T do
obj ← RecommendByWeight(weight[]);
Recommend object obj to the client C;
feedback ← the client C’s feedback on object obj;

UpdateCreditAndWeight(credit(D)[], credit(R)[], weight[], obj,
feedback);

Procedure UpdateCreditAndWeight(credit(D)[], credit(R)[], weight[], obj,
feedback)

if feedback = “dislike” then

credit(R)[i] ← credit(R)[i] − 1 for every voter i who votes on obj;
else

credit(D)[i] ← credit(D)[i] − 1 for every voter i who does not vote on obj;

foreach voter i ∈ U do

if credit(R)[i] > 0 and credit(D)[i] + credit(R)[i] > 0 then
weight[i] ← 1;

else
weight[i] ← 0;

Algorithm 2. Privacy-preserving RECommendation (p-REC) algorithm.

However, since these two scenarios can happen for at most D + R times, a
natural idea is to give a voter D+R more “chances” before we kick out him/her.
Motivated by this, we could initialize each voter i with D + R + 1 credit, and
deduct i’s credit by 1 when i is caught to vote on an object the client dislikes,
or when the client likes the recommended object but i does not vote on it. We
kick out a voter only when he/she has no credit.

For some technical reasons, p-REC needs to introduce two types of credit
(D-credit and R-credit), and deducts different types of credit in different situa-
tions. It also initializes each voter with 2D (instead of D) D-credit and 2R + 1
(instead of R + 1) R-credit. The analysis of the p-REC algorithm is similar in
spirit to that of the p-RECsim algorithm, and we leave the details to [21].

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

2. Awerbuch, B., Hayes, T.P.: Online collaborative filtering with nearly optimal
dynamic regret. In: Proceedings of the 19th Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, pp. 315–319. ACM (2007)

224 S. Gilbert et al.

3. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving
accuracy of a distributed collaborative filtering. In: Proceedings of the 2007 ACM
Conference on Recommender Systems. pp. 9–16. ACM (2007)

4. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive
database privacy. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, pp. 609–618. ACM (2008)

5. Bolot, J., Fawaz, N., Muthukrishnan, S., Nikolov, A., Taft, N.: Private decayed
predicate sums on streams. In: Proceedings of the 16th International Conference
on Database Theory, pp. 284–295. ACM (2013)

6. Calandrino, J., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V., et al.: “You
might also like:” privacy risks of collaborative filtering. In: Proceedings of the 2011
IEEE Symposium on Security and Privacy, pp. 231–246. IEEE (2011)

7. Canny, J.: Collaborative filtering with privacy. In: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pp. 45–57. IEEE (2002)

8. Canny, J.: Collaborative filtering with privacy via factor analysis. In: Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 238–245. ACM (2002)

9. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, New York (2006)

10. Chan, T.-H.H., Li, M., Shi, E., Xu, W.: Differentially private continual monitoring
of heavy hitters from distributed streams. In: Fischer-Hübner, S., Wright, M. (eds.)
PETS 2012. LNCS, vol. 7384, pp. 140–159. Springer, Heidelberg (2012)

11. Chan, T.H.H., Shi, E., Song, D.: Private and continual release of statistics. ACM
Trans. Inf. Syst. Secur. 14(3), 26 (2011)

12. Chaudhuri, K., Sarwate, A.D., Sinha, K.: A near-optimal algorithm for
differentially-private principal components. J. Mach. Learn. Res. 14(1), 2905–2943
(2013)

13. Chow, R., Pathak, M.A., Wang, C.: A practical system for privacy-preserving col-
laborative filtering. In: Proceedings of the 12th IEEE International Conference on
Data Mining Workshops (ICDMW), pp. 547–554. IEEE (2012)

14. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidel-
berg (2008)

15. Dwork, C.: The differential privacy frontier (extended abstract). In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

16. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1),
86–95 (2011)

17. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

18. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, pp. 715–724. ACM (2010)

19. Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the complexity
of differentially private data release: efficient algorithms and hardness results. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp.
381–390. ACM (2009)

20. Dwork, C., Smith, A.: Differential privacy for statistics: what we know and what
we want to learn. J. Priv. confidentiality 1(2), 2 (2010)

21. Gilbert, S., Liu, X., Yu, H.: On differentially private online collaborative recom-
mendation systems. ArXiv e-prints (2015). arxiv:1510.08546

http://arxiv.org/abs/1510.08546

On Differentially Private Online Collaborative Recommendation Systems 225

22. Guerraoui, R., Kermarrec, A.M., Patra, R., Taziki, M.: D2P: distance-based dif-
ferential privacy in recommenders. Proc. VLDB Endowment 8(8), 862–873 (2015)

23. Hardt, M., Roth, A.: Beating randomized response on incoherent matrices. In:
Proceedings of the 44th annual ACM Symposium on Theory of Computing, pp.
1255–1268. ACM (2012)

24. Hardt, M., Roth, A.: Beyond worst-case analysis in private singular vector compu-
tation. In: Proceedings of the 45th annual ACM Symposium on Theory of Com-
puting, pp. 331–340. ACM (2013)

25. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-
preserving data analysis. In: Proceedings of the 51th Annual IEEE Symposium
on Foundations of Computer Science, pp. 61–70. IEEE (2010)

26. Jain, P., Kothari, P., Thakurta, A.: Differentially private online learning. In: Pro-
ceedings of the 25th Annual Conference on Learning Theory, pp. 24.1–24.34 (2011)

27. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. J. Com-
put. Syst. Sci. 71(3), 291–307 (2005)

28. Kapralov, M., Talwar, K.: On differentially private low rank approximation. In:
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1395–1414. SIAM (2013)

29. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. Proc. VLDB Endowment 7(12), 1155–1166 (2014)

30. Kullback, S.: Information Theory and Statistics. Courier Corporation, New York
(1968)

31. Lee, W.S.: Collaborative learning for recommender systems. In: Proceedings of the
18th International Conference on Machine Learning, pp. 314–321 (2001)

32. McSherry, F., Mironov, I.: Differentially private recommender systems: building
privacy into the net. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 627–636. ACM (2009)

33. Nakamura, A., Abe, N.: Collaborative filtering using weighted majority predic-
tion algorithms. In: Proceedings of the 15th International Conference on Machine
Learning, pp. 395–403 (1998)

34. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, pp. 111–
125. IEEE (2008)

35. Polat, H., Du, W.: Privacy-preserving collaborative filtering. Int. J. Electron. Com-
mer. 9(4), 9–35 (2003)

36. Polat, H., Du, W.: SVD-based collaborative filtering with privacy. In: Proceedings
of the 2005 ACM Symposium on Applied Computing, pp. 791–795. ACM (2005)

37. Resnick, P., Sami, R.: The influence limiter: provably manipulation-resistant rec-
ommender systems. In: Proceedings of the 2007 ACM Conference on Recommender
Systems, pp. 25–32. ACM (2007)

38. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In:
Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 765–774.
ACM (2010)

39. Shokri, R., Pedarsani, P., Theodorakopoulos, G., Hubaux, J.P.: Preserving pri-
vacy in collaborative filtering through distributed aggregation of offline profiles.
In: Proceedings of the 2009 ACM Conference on Recommender Systems, pp. 157–
164. ACM (2009)

40. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009, Article ID 421425, 19 (2009). Doi:10.1155/2009/421425

http://dx.doi.org/10.1155/2009/421425

226 S. Gilbert et al.

41. Thakurta, A.G., Smith, A.: (Nearly) optimal algorithms for private online learn-
ing in full-information and bandit settings. In: Advances in Neural Information
Processing Systems, pp. 2733–2741 (2013)

42. Xin, Y., Jaakkola, T.: Controlling privacy in recommender systems. In: Advances
in Neural Information Processing Systems, pp. 2618–2626 (2014)

43. Yu, H., Shi, C., Kaminsky, M., Gibbons, P.B., Xiao, F.: Dsybil: optimal sybil-
resistance for recommendation systems. In: Proceedings of the 2009 IEEE Sympo-
sium on Security and Privacy, pp. 283–298. IEEE (2009)

	On Differentially Private Online Collaborative Recommendation Systems
	1 Introduction
	2 Model and Problem Statement
	2.1 Recommendation System Model
	2.2 Differential Privacy in Recommendation Systems
	2.3 Attack Model, Power of the Adversary
	2.4 Notations
	2.5 Loss/Privacy Goal

	3 Related Work
	4 Our Results and Contributions
	5 Preliminaries
	6 The Special Setting Where D = R = 0
	6.1 Lower Bound
	6.2 Algorithm

	7 The General Setting Where D + R >= 0
	7.1 Lower Bound
	7.2 Algorithm

	References

