
Faster ECC over F2521−1

(feat. NEON)

Hwajeong Seo1, Zhe Liu2, Yasuyuki Nogami3, Taehwan Park1,
Jongseok Choi1, Lu Zhou4, and Howon Kim1(B)

1 School of Computer Science and Engineering, Pusan National University,
San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea

{hwajeong,pth5804,jschoi85,howonkim}@pusan.ac.kr
2 Laboratory of Algorithmics, Cryptology and Security (LACS),
University of Luxembourg, 6, rue R. Coudenhove-Kalergi, L-1359

Luxembourg-Kirchberg, Luxembourg
zhe.liu@uni.lu

3 Graduate School of Natural Science and Technology, Okayama University,
3-1-1, Tsushima-naka, Kita, Okayama 700-8530, Japan

yasuyuki.nogami@okayama-u.ac.jp
4 School of Computer Science and Technology, Shandong University, Jinan, China

Abstract. In this paper, we present high speed parallel multiplication
and squaring algorithms for the Mersenne prime 2521 − 1. We exploit 1-
level Karatsuba method in order to provide asymptotically faster integer
multiplication and fast reduction algorithms. With these optimization
techniques, ECDH on NIST’s (and SECG’s) curve P-521 requires 8.1/4 M
cycles on an ARM Cortex-A9/A15, respectively. As a comparison, on
the same architecture, the latest OpenSSL 1.0.2d’s ECDH speed test
for curve P-521 requires 23.8/18.7 M cycles for ARM Cortex-A9/A15,
respectively.

Keywords: Elliptic Curve Cryptography · P-521 · Karatsuba · SIMD ·
NEON

1 Introduction

Multi-precision modular multiplication and squaring are performance-critical
building blocks of Elliptic Curve Cryptography (ECC). Since the algorithm is a
computation-intensive operation, it demands careful optimizations to achieve

This work was partly supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.
10043907, Development of high performance IoT device and Open Platform with
Intelligent Software) and the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the ITRC(Information Technology Research Center) support program
(IITP-2015-H8501-15-1017) supervised by the IITP(Institute for Information & com-
munications Technology Promotion).

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 169–181, 2016.
DOI: 10.1007/978-3-319-30840-1 11

170 H. Seo et al.

acceptable performance particularly over embedded processors. Recently, an
increasing number of embedded processors started to employ Single Instruc-
tion Multiple Data (SIMD) instructions to perform massive body of multimedia
workloads. In order to exploit the parallel computing power of SIMD instruc-
tions, traditional cryptography software needs to be rewritten into a vectorized
format. The most well known approach is a reduced-radix representation for
a better handling of the carry propagations [6]. The redundant representation
reduces the number of active bits per register. Keeping the final result within
remaining capacity of a register can avoid a number of carry propagations. In
[2], vector instructions on the CELL microprocessor are used to perform multi-
plication on operands represented with a radix of 216. At CHES 2012, Bernstein
and Schwabe adopted the reduced radix and presented an efficient modular mul-
tiplication on Curve25519. At HPEC 2013, a multiplicand reduction method
in the reduced-radix representation was introduced for the NIST curves [8]. At
CHES 2014, the Curve41417 implementation adopts 2-level Karatsuba multi-
plication in the redundant representation as well as a clever method to reduce
inputs to the required multiplications rather than outputs [1]. Recently efficient
Karatsuba multiplication algorithm for P-521 by Granger and Scott is proposed
at PKC’15 which requires as few word-by-word multiplications as is needed for
squaring, while incurring very little overhead from extra additions [4]. The algo-
rithm shows high performance over 64-bit SISD architecture but it is not favor-
able for 32-bit ARM-NEON SIMD platforms because 32-bit SIMD architecture
does not conduct 64-bit wise multiplication efficiently and needs to group the
operands for parallel computations. Until now, there is relatively few studied on
NIST’s (and SECG’s) curve P-521 for ARM-NEON architecture. Since the curve
is NIST standard and ARM-NEON is the most well known smart phone proces-
sor, the efficient implementation of P-521 over ARM-NEON processor should be
deserved. In this paper, we present speed record of P-521 over ARM-NEON plat-
form. We exploit 1-level Karatsuba method in order to provide asymptotically
faster integer multiplication and fast reduction algorithms.

The remainder of this paper is organized as follows. In Sect. 2, we recap the
P-521 curve. In Sect. 3, we propose the efficient implementations of P-521 curve.
In Sect. 4, we evaluate the performance of proposed methods in terms of clock
cycles. Finally, Sect. 5 concludes the paper.

2 NIST Curve P-521

The Weierstrass form NIST curve P-521 as standardized in [3,7] and the finite
field Fp is defined by:

p = 2521 − 1

The curve E : y2 = x3 + ax + b over Fp is defined by:

a = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFC

Faster ECC over F2521−1 (feat. NEON) 171

b = 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3

B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88

3D2C34F1 EF451FD4 6B503F00

and group order is defined by:

n = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8

899C47AE BB6FB71E 91386409

Using Jacobian projective coordinates, for P1 = (X1, Y1, Z1) the point 2P1 =
(X3, Y3, Z3) is computed as follows:

T1 ← Z2
1 , T2 ← Y 2

1 , T3 ← X1 · T2, T4 ← X1 + T1, T5 ← X1 − T1,

T6 ← T4 · T5, T4 ← 3 · T6, T5 ← T 2
4 , T6 ← 8 · T3, X3 ← T5 − T6,

T5 ← Y1 + Z1, T6 ← T 2
5 , T5 ← T6 − T1, Z3 ← T5 − T2, T5 ← 4 · T3,

T6 ← T5 − X3, T5 ← T4 · T6, T6 ← T 2
2 , T4 ← 8 · T6, Y3 ← T5 − T4

For a point P2 = (X2, Y2, 1) which is affine point and not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed as follows:

T1 ← Z2
1 , T2 ← T1 · Z1, T1 ← T1 · X2, T2 ← T2 · Y 2, T1 ← T1 − X1

T2 ← T2 − Y1, Z3 ← Z1 · T1, T3 ← T 2
1 , T4 ← T3 · T1, T3 ← T3 · X1

T1 ← 2 · T3, X3 ← T 2
2 , X3 ← X3 − T1, X3 ← X3 − T4, T3 ← T3 − X3

T3 ← T3 · T2, T4 ← T4 · Y1, Y3 ← T3 − T4

For a point P2 which is projective point (X2, Y2, Z2) and not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed as follows:

T1 ← Z2
2 , U1 ← X1 · T1, T2 ← Z2

1 , U2 ← X2 · T2, T3 ← Y1 · Z2

S1 ← T3 · T1, T4 ← Y2 · Z1, S2 ← T4 · T2, H ← U2 − U1, R ← S2 − S1

T1 ← R2, T2 ← H2, T3 ← T2 · H, T4 ← U1 · T2, T1 ← T1 − T3

T2 ← 2 · T4, X3 ← T1 − T2, T3 ← S1 · T3T4 ← T4 − X3, T4 ← R · T4

Y3 ← T4 − T3, T1 ← Z1 · Z2, Z3 ← H · T1

3 Proposed Method

3.1 Multiplication

The prime of P-521 curve is 2521 − 1. This representation can be written in
2522−2 by following the idea of Langley in OpenSSL 1.0.0e approach. We choose
27/26-radix and this divides 522-bit into 20-limb as follows: (27, 26, 26, 26, 26,
26, 26, 26, 26, 26 ‖ 27, 26, 26, 26, 26, 26, 26, 26, 26, 26). Since the lower and

172 H. Seo et al.

Algorithm 1. Karatsuba-based multiplication mod p521
Require: Integer a, b satisfying 1 ≤ a, b ≤ p − 1.
Ensure: Results z = a · b mod p.
1: aL ← a mod 2261

2: aH ← a div 2261

3: bL ← b mod 2261

4: bH ← b div 2261

5: rL ← aL · bL
6: t ← (rL − aH · bH · 2261) mod p {direct reduction}
7: tH ← t div 2261

8: tL ← t mod 2261

9: tHL ← tH − tL
10: aK ← aL + aH

11: bK ← bL + bH
12: abK ← (tHL · 2261 + tL − 2 · tH + aK · bK · 2261) mod p {direct reduction}
13: return abK

higher 261-bit wise operands share identical radix representation, we applied 1-
level of Karatsuba multiplication which replaces the one 522-bit multiplication
complexity to three 261-bit multiplications with some addition and subtraction
operations. In this paper, we further improve the ordinary 1 level of Karatsuba
multiplication particularly over 2522 − 2. The detailed descriptions are available
in Algorithm 1. For starter, both operands are divided into lower and higher
parts from Steps 1 − 4. In Step 5, lower part of operands are multiplied each
other. In Step 6, higher parts are multiplied and then subtracted from the results
of Step 5. Since the intermediate results exceed the 522-bit length, we directly
reduce the intermediate results into range of modulus1. In Steps 7−9, the results
are divided into higher and lower parts and then lower parts are subtracted from
higher parts. In Steps 10 and 11, higher and lower parts of operands are added
each other. In Step 12, remaining several addition, subtraction and multiplication
operations are conducted with direct reduction techniques. Finally, in Step 13,
we obtained the results.

This approach introduces two advantages. First NEON engine over ARMv7
provides only 16 128-bit wise registers. For 261-bit multiplication, we need 5
registers for both 20-limb of 32-bit operands and 10 for 20-limb of 64-bit inter-
mediate results and 1 for temporal registers. If we retain whole 522 multiplication
results without reduction, the intermediate results exceed the size of general pur-
pose registers, which introduces a number of memory load and store operations.
Second this method follows basic concept of refined Karatsuba algorithm which
reduces the one time of addition operation.

For 261-bit multiplication of 10-limb operand in (27, 26, 26, 26, 26, 26, 26, 26,
26, 26) representation, we can conduct multiplication as follows. The variables
(a0 ∼ a9 and b0 ∼ b9) indicate the both operands and the other variables
(c0 ∼ c18) represents the intermediate results. The equation shows that some

1 We discuss the detailed direct reduction techniques in following section.

Faster ECC over F2521−1 (feat. NEON) 173

of the partial product needs doubling the intermediate results to align the bit
position. For example, the partial products including a0b2 and a1b1 are stored in
same destination (c2) but one (a0b2) is placed in 53-th and the other one (a1b1)
is 52-th bit. In order to store the results in right bit position, we should conduct
doubling on the partial product (a1b1) and get the doubled result (2a1b1) which is
finally located in 53-th bit as like opponent (a0b2). The bit-aligned multiplication
on 26/27 radix is as follows.

c0 ← a0b0

c1 ← a0b1 + a1b0

c2 ← a0b2 + a2b0 + 2a1b1
c3 ← a0b3 + a3b0 + 2(a1b2 + a2b1)

c4 ← a0b4 + a4b0 + 2(a1b3 + a3b1 + a2b2)
c5 ← a0b5 + a5b0 + 2(a1b4 + a4b1 + a2b3 + a3b2)

c6 ← a0b6 + a6b0 + 2(a1b5 + a5b1 + a2b4 + a4b2 + a3b3)
c7 ← a0b7 + a7b0 + 2(a1b6 + a6b1 + a2b5 + a5b2 + a3b4 + a4b3)

c8 ← a0b8 + a8b0 + 2(a1b7 + a7b1 + a2b6 + a6b2 + a3b5 + a5b3 + a4b4)
c9 ← a0b9 + a9b0 + 2(a1b8 + a8b1 + a2b7 + a7b2 + a3b6 + a6b3 + a4b5 + a5b4)

c10 ← 2(a1b9 + a9b1 + a2b8 + a8b2 + a3b7 + a7b3 + a4b6 + a6b4 + a5b5)
c11 ← a2b9 + a9b2 + a3b8 + a8b3 + a4b7 + a7b4 + a5b6 + a6b5

c12 ← a3b9 + a9b3 + a4b8 + a8b4 + a5b7 + a7b5 + a6b6

c13 ← a4b9 + a9b4 + a5b8 + a8b5 + a6b7 + a7b6

c14 ← a5b9 + a9b5 + a6b8 + a8b6 + a7b7

c15 ← a6b9 + a9b6 + a7b8 + a8b7

c16 ← a7b9 + a9b7 + a8b8

c17 ← a8b9 + a9b8

c18 ← a9b9

However, the aligned multiplication should be re-written in a SIMD friendly
form. Particularly, the NEON architecture supports 2-way 32-bit wise multipli-
cation, which means two consecutive 32-bit multiplications are computed and the
store the two consecutive 64-bit results in one 128-bit register. For this reason,
the alignments in the 128-bit register should be concerned in order to accumu-
late the multiplication results into correct destinations. We group the two adja-
cent partial product results as follows: (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8),
(c11, c10), (c13, c12), (c15, c14), (c17, c16). After then we re-arrange the partial
products that need doubling the results to correct bit position. Since the dou-
bling process can be computed together with multiplication by using instruc-
tion set (vqdmull), we can avoid one time of shift operation per each doubling
operation. However, all partial products aren’t grouped at once properly. We
re-locate the intermediate results by conducting the shift to left by word size.
This aligns the intermediate results as follows: (c2, c1), (c4, c3), (c6, c5), (c8, c7),

174 H. Seo et al.

(c10, c9), (c12, c11), (c14, c13), (c16, c15), (c18, c17) and conducts the vectorized par-
tial products.

(c1, c0) ← (a0b1, a0b0)

(c3, c2) ← (a0b3, a0b2) + (a3b0, a2b0)

(c5, c4) ← (a0b5, a0b4) + 2(a2b3, a2b2) + (a5b0, a4b0)

(c7, c6) ← (a0b7, a0b6) + 2(a2b5, a2b4) + 2(a4b3, a4b2) + (a7b0, a6b0)

(c9, c8) ← (a0b9, a0b8) + 2(a2b7, a2b6) + 2(a4b5, a4b4) + 2(a6b3, a6b2) + (a9b0, a8b0)

(c11, c10) ← (a2b9, 2a2b8) + (a4b7, 2a4b6) + (a6b5, 2a6b4) + (a8b3, 2a8b2)

(c13, c12) ← (a4b9, a4b8) + (a6b7, a6b6) + (a8b5, a8b4)

(c15, c14) ← (a6b9, a6b8) + (a8b7, a8b6)

(c17, c16) ← (a8b9, a8b8)

c ← c � word

(c2, c1) ← (2a1b1, a1b0)

(c4, c3) ← 2(a1b3, a1b2) + 2(a3b1, a2b1)

(c6, c5) ← 2(a1b5, a1b4) + 2(a3b3, a3b2) + 2(a5b1, a4b1)

(c8, c7) ← 2(a1b7, a1b6) + 2(a3b5, a3b4) + 2(a5b3, a5b2) + 2(a7b1, a6b1)

(c10, c9) ← 2(a1b9, a1b8) + 2(a3b7, a3b6) + 2(a5b5, a5b4) + 2(a7b3, a7b2) + 2(a9b1, a8b1)

(c12, c11) ← (a3b9, a3b8) + (a5b7, a5b6) + (a7b5, a7b4) + (a9b3, a9b2)

(c14, c13) ← (a5b9, a5b8) + (a7b7, a7b6) + (a9b5, a9b4)

(c16, c15) ← (a7b9, a7b8) + (a9b7, a9b6)

(c18, c17) ← (a9b9, a9b8)

In Step 6 of Algorithm1, it conducts the partial product of aH · bH together
with direct modular reduction. Since the reduction on our P-521 representation
(2522 − 2) only requires double addition/subtraction with values over 2522, we
conduct multiplication and double addition/subtraction with variables by calling
vqdmlal and vqdmlsl instructions, respectively. The lower part of multiplica-
tion (aH · bH) is subtracted from intermediate results from c10 to c19. Since
the higher part of multiplication (aH · bH) is larger than modulus (2522 − 2),
we directly conduct reduction on intermediate results from c0 to c9. More in
detail, firstly intermediate results are grouped in (c2, c1), (c4, c3), (c6, c5), (c8, c7),
(c10, c9), (c12, c11), (c14, c13), (c16, c15), (c18, c17). After then the lower parts of
multiplication (aH ·bH) are subtracted from intermediate results (c11 ∼ c19). The
higher parts of multiplication (aH · bH) are directly subtracted from intermedi-
ate results (c0 ∼ c9). After then intermediate results are shift to right by word
size and then conduct the remaining partial products in following group order:
(c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10), (c13, c12), (c15, c14), (c17, c16).

(a9 ∼ a0) ← (a19 ∼ a10)

(b9 ∼ b0) ← (b19 ∼ b10)

(c12, c11) ← (c12, c11) − (2a1b1, a1b0)

Faster ECC over F2521−1 (feat. NEON) 175

(c14, c13) ← (c14, c13) − 2(a1b3, a1b2) − 2(a3b1, a2b1)

(c16, c15) ← (c16, c15) − 2(a1b5, a1b4) − 2(a3b3, a3b2) − 2(a5b1, a4b1)

(c18, c17) ← (c18, c17) − 2(a1b7, a1b6) − 2(a3b5, a3b4) − 2(a5b3, a5b2) − 2(a7b1, a6b1)

(t1, t0) ← (4a1b9, 2a1b8) − (4a3b7, 2a3b6) − (4a5b5, 2a5b4) −
(4a7b3, 2a7b2) − (4a9b1, 2a8b1)

c19 ← c19 − t0

c0 ← c0 − t1

(c2, c1) ← (c2, c1) − 2(a3b9, a3b8) − 2(a5b7, a5b6) − 2(a7b5, a7b4) − 2(a9b3, a9b2)

(c4, c3) ← (c4, c3) − 2(a5b9, a5b8) − 2(a7b7, a7b6) − 2(a9b5, a9b4)

(c6, c5) ← (c6, c5) − 2(a7b9, a7b8) − 2(a9b7, a9b6)

(c8, c7) ← (c8, c7) − 2(a9b9, a9b8)

c ← c � word

(c11, c10) ← (c11, c10) − (a0b1, a0b0)

(c13, c12) ← (c13, c12) − (a0b3, a0b2) − (a3b0, a2b0)

(c15, c14) ← (c15, c14) − (a0b5, a0b4) − 2(a2b3, a2b2) − (a5b0, a4b0)

(c17, c16) ← (c17, c16) − (a0b7, a0b6) − 2(a2b5, a2b4) − 2(a4b3, a4b2) − (a7b0, a6b0)

(c19, c18) ← (c19, c18) − (a0b9, a0b8) − 2(a2b7, a2b6) −
2(a4b5, a4b4) − 2(a6b3, a6b2) − (a9b0, a8b0)

(t1, t0) ← (2a2b9, 4a2b8) − (2a4b7, 4a4b6) − (2a6b5, 4a6b4) − (2a8b3, 4a8b2)

c0 ← c0 − t0

c1 ← c1 − t1

(c3, c2) ← (c3, c2) − 2(a4b9, a4b8) − 2(a6b7, a6b6) − 2(a8b5, a8b4)

(c5, c4) ← (c5, c4) − 2(a6b9, a6b8) − 2(a8b7, a8b6)

(c7, c6) ← (c7, c6) − 2(a8b9, a8b8)

3.2 Squaring

Multi-precision squaring can be utilized with ordinary multiplication methods.
However, squaring method has two advantages over the multiplication methods.
Both partial products A[i]×A[j] and A[j]×A[i] output the identical results. By
taking accounts of these features, the parts are multiplied with doubled form (i.e.
2 × A[i] × A[j]) which provides the same results of conventional multiplication
(i.e. A[i] × A[j] + A[j] × A[i]). We applied squaring on 261-bit wise operand
as follows. Unlike multiplication operation, squaring can eliminate the almost
half of partial product with doubling but this introduces quadrupled results. In
order to resolve this matter, we firstly doubled the operands and preserve both
original and doubled operands in the registers. This is possible approach, because
squaring only needs one operand and remaining registers can retain the doubled
operands. This ensures the quadrupled multiplication with doubled operands
and double multiplication instruction such as vqdmull.

176 H. Seo et al.

c0 ← a0a0

c1 ← 2(a0a1)
c2 ← 2(a0a2 + a1a1)

c3 ← 2(a0a3) + 4(a1a2)
c4 ← 2(a0a4 + a2a2) + 4(a1a3)
c5 ← 2(a0a5) + 4(a1a4 + a2a3)

c6 ← 2(a0a6 + a3a3) + 4(a1a5 + a2a4)
c7 ← 2(a0a7) + 4(a1a6 + a2a5 + a3a4)

c8 ← 2(a0a8 + a4a4) + 4(a1a7 + a2a6 + a3a5)
c9 ← 2(a0a9) + 4(a1a8 + a2a7 + a3a6 + a4a5)
c10 ← 2(a5a5) + 4(a1a9 + a2a8 + a3a7 + a4a6)

c11 ← 2(a2a9 + a3a8 + a4a7 + a5a6)
c12 ← 2(a3a9 + a4a8 + a5a7) + a6a6

c13 ← 2(a4a9 + a5a8 + a6a7)
c14 ← 2(a5a9 + a6a8) + a7a7

c15 ← 2(a6a9 + a7a8)
c16 ← 2(a7a9) + a8a8

c17 ← 2(a8a9)
c18 ← a9a9

Similar with SIMD multiplication, squaring operation also needs to group the
two intermediate results in SIMD friendly way. Squaring has one more advan-
tage over that of multiplication. The whole squaring operation can be executed
in following representation (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10),
(c13, c12), (c15, c14), (c17, c16). Since squaring reduces the duplicated partial prod-
ucts, single group representation can cover the whole partial products without
re-arrangements.

(c1, c0) ← (2a0a1, a0a0)
(c3, c2) ← 2(a0a3, a0a2) + (4a1a2, 2a1a1)

(c5, c4) ← 2(a0a5, a0a4) + 4(a1a4, a1a3) + (4a2a3, 2a2a2)
(c7, c6) ← 2(a0a7, a0a6) + 4(a1a6, a1a5) + 4(a2a5, a2a4) + (4a3a4, 2a3a3)

(c9, c8) ← 2(a0a9, a0a8) + 4(a1a8, a1a7) + 4(a2a7, a2a6) +
4(a3a6, a3a5) + (4a4a5, 2a4a4)

(c11, c10) ← (2a2a9, 4a1a9) + (2a3a8, 4a2a8) + (2a4a7, 4a3a7) + (2a5a6, 4a4a6)
(c13, c12) ← 2(a4a9, a3a9) + 2(a5a8, a4a8) + 2(a6a7, a5a7)

(c15, c14) ← 2(a6a9, a5a9) + 2(a7a8, a6a8)

Faster ECC over F2521−1 (feat. NEON) 177

(c17, c16) ← 2(a8a9, a7a9)
(t1, t0) ← (a6a6, 2a5a5)
(t3, t2) ← (a8a8, a7a7)

t4 ← a9a9

c10 ← c10 + t0

c12 ← c12 + t1

c14 ← c14 + t2

c16 ← c16 + t3

c18 ← c18 + t4

We also applied the direct reduction techniques described in Steps 6 and 12
in Algorithm 1 for the squaring method as well. Firstly intermediate results are
grouped in (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10), (c13, c12), (c15, c14),
(c17, c16). After then the lower part of multiplication (aH ·aH) is subtracted from
intermediate results (c11 ∼ c19). The higher part of multiplication (aH · aH) is
directly subtracted from intermediate results (c0 ∼ c9).

(a9 ∼ a0) ← (a19 ∼ a10)

(c11, c10) ← (c11, c10) − (2a0a1, a0a0)

(c13, c12) ← (c13, c12) − 2(a0a3, a0a2) − (4a1a2, 2a1a1)

(c15, c14) ← (c15, c14) − 2(a0a5, a0a4) − 4(a1a4, a1a3) − (4a2a3, 2a2a2)

(c17, c16) ← (c17, c16) − 2(a0a7, a0a6) − 4(a1a6, a1a5) − 4(a2a5, a2a4) − (4a3a4, 2a3a3)

(c19, c18) ← (c19, c18) − 2(a0a9, a0a8) − 4(a1a8, a1a7) −
4(a2a7, a2a6) − 4(a3a6, a3a5) − (4a4a5, 2a4a4)

(c1, c0) ← (c1, c0) − (4a2a9, 8a1a9) − (4a3a8, 8a2a8) − (4a4a7, 8a3a7) − (4a5a6, 8a4a6)

(c3, c2) ← (c3, c2) − 4(a4a9, a3a9) − 4(a5a8, a4a8) − 4(a6a7, a5a7)

(c5, c4) ← (c5, c4) − 4(a6a9, a5a9) − 4(a7a8, a6a8)

(c7, c6) ← (c7, c6) − 4(a8a9, a7a9)

(t1, t0) ← (2a6a6, 4a5a5)

(t3, t2) ← 2(a8a8, a7a7)

t4 ← 2a9a9

c0 ← c10 − t0

c2 ← c12 − t1

c4 ← c14 − t2

c6 ← c16 − t3

c8 ← c18 − t4

3.3 Inversion

Constant-time inversion is performed by powering by p521 − 2 = 2521 − 3. The
inverse can be computed at a cost of 520S + 13M by following Algorithm 2.

178 H. Seo et al.

Algorithm 2. Fermat-based inversion mod p521
Require: Integer a1 satisfying 1 ≤ a1 ≤ p − 1.
Ensure: Inverse z = ap−2

1 mod p = a−1
1 mod p.

1: a2 ← a2
1 · a1 { cost: 1S+1M}

2: a3 ← a2
2 · a1 { cost: 1S+1M}

3: a6 ← a23

3 · a3 { cost: 3S+1M}
4: a7 ← a2

6 · a1 { cost: 1S+1M}
5: a8 ← a2

7 · a1 { cost: 1S+1M}
6: a16 ← a28

8 · a8 { cost: 8S+1M}
7: a32 ← a216

16 · a16 { cost: 16S+1M}
8: a64 ← a232

32 · a32 { cost: 32S+1M}
9: a128 ← a264

64 · a64 { cost: 64S+1M}
10: a256 ← a2128

128 · a128 { cost: 128S+1M}
11: a512 ← a2256

256 · a256 { cost: 256S+1M}
12: a519 ← a27

512 · a7 { cost: 7S+1M}
13: a2521−3

1 ← a22

519 · a1 { cost: 2S+1M}
14: return a2521−3

1

3.4 Addition and Subtraction

Addition and subtraction over redundant representations do not introduce the
carry or borrow propagations from least significant word to most significant
word. Since SIMD instruction conducts the four different addition or sub-
traction operations with single instruction, we conduct 20 26/27-radix addi-
tion/subtraction with five times of 32-bit wise vector addition/subtraction oper-
ations. For point addition and doubling, several addition variants such as integer
doubling, tripling, quadrupling, octupling are required. We also exploit the vec-
tor addition by 1, 2, 2, 3 times for doubling, tripling, quadrupling and octupling
operations, respectively. Since the tripling, quadrupling and octupling operations
may generate the overflows in very next step, we conduct reduction right after
the operations.

3.5 Radix Adjustments

The multiplication and squaring computations produce a product of the 63-bit
20 limbs for intermediate results. We then use a sequence of carries to bring
each limb down to 26 or 27 bits. We vectorized between a carry c0 → c1 and
c10 → c11, between a carry c1 → c2 and c11 → c12. The computation order
is as follows: (c10, c0) → (c11, c1), (c11, c1) → (c12, c2), (c12, c2) → (c13, c3),
(c13, c3) → (c14, c4), (c14, c4) → (c15, c5), (c15, c5) → (c16, c6), (c16, c6) →
(c17, c7), (c17, c7) → (c18, c8), (c18, c8) → (c19, c9), (c19, c9) → (c0, c10),
(c10, c0) → (c11, c1). The computations output 20 limbs of results (27, 27, 26, 26,
26, 26, 26, 26, 26, 26 || 27, 27, 26, 26, 26, 26, 26, 26, 26, 26) (Table 1).

The addition and subtraction computations carry out the 31-bit wise 20
limbs. Similarly, we use a sequence of carries to bring each limb down to 26 or

Faster ECC over F2521−1 (feat. NEON) 179

27 bits. The computation order is as follows: (c19, c9) → (c0, c10), (c10, c0) →
(c11, c1), (c11, c1) → (c12, c2), (c12, c2) → (c13, c3), (c13, c3) → (c14, c4),
(c14, c4) → (c15, c5), (c15, c5) → (c16, c6), (c16, c6) → (c17, c7), (c17, c7) →
(c18, c8), (c18, c8) → (c19, c9). This computation outputs 20 limbs as follows
(27, 26, 26, 26, 26, 26, 26, 26, 26, 27 || 27, 26, 26, 26, 26, 26, 26, 26, 26, 27).
Unlike multiplication case, we firstly conduct the radix adjustment on the most
significant group (c19, c9) which can reduce the one time of adjustment.

Table 1. Prime-field ECC timings from openssl speed ecdh on Cortex-A9 and
Cortex-A15 devices where Cortex-A9 with OpenSSL 1.0.2d on a Odroid-X2 develop-
ment board running at 1.7 GHz and Cortex-A15 with OpenSSL 1.0.2d on a Odroid-XU
development board running at 1.6 GHz

Curve A9 op/s Cycles A15 op/s Cycles

secp160r1 1014.4 1,700,000 1258.8 1,280,000

nist192 718.2 2,380,000 951.0 1,760,000

nist224 489.2 3,400,000 701.4 2,240,000

nist256 475.5 3,570,000 574.9 2,720,000

nist384 154.6 11,050,000 223.0 7,200,000

nist521 71.2 23,800,000 85.3 18,720,000

3.6 Scalar Multiplication

Constant time scalar multiplication is computed with the window method. This
consists of pre-computation of point and scalar multiplication by window width.
For unknown point, we tested over three different window sizes including 4, 5
and 6. For window size 4, pre-computation needs 1 time of doubling and 7 times
of addition. For window size 5, pre-computation needs 1 time of doubling and 15
times of addition. For window size 6, pre-computation needs 1 time of doubling
and 31 times of addition. Without point pre-computation, scalar multiplication
needs (131A+520D), (105A+520D), (87A+516D) for 4, 5, 6 window methods.
Total (138A+521D), (120A+521D), (118A+517D) are needed for 4, 5, 6 window
methods. For fixed point we conduct the comb window method. Since fixed point
can take advantages of online pre-computation which reduces the number of
point doubling, total overheads for 4, 5, 6 window methods are calculated in
(131A+130D), (105A+104D), (87A+86D), respectively.

4 Evaluation

There are several works done over lower security levels including Curve41417 and
Ed448-Goldilocks [1,5]. However it is hard to retrieve the fair performance eval-
uations due to different parameters. One obvious difference is that smaller curve

180 H. Seo et al.

Table 2. Clock cycles for scalar multiplication

Target Unknown point Fixed point ECDH

w=4 w=5 w=6 w=4 w=5 w=6

Cortex-A9 6,291,936 6,098,946 6,011,768 3,056,410 2,527,714 2,147,404 8,159,172

Cortex-A15 3,097,904 3,003,728 2,970,976 1,503,661 1,243,027 1,056,902 4,027,878

Table 3. Clock cycles for finite field multiplication, squaring and inversion; point
addition and doubling

Target Finite field arithmetic Point operation

MUL SQR INV ADD DBL

Cortex-A9 708 578 311,451 12,453 8,036

Cortex-A15 350 276 149,208 6,176 3,962

only requires small number of general purpose registers which utilizes the more
number of temporal registers than longer curve. Furthermore target modulus
prime is different to each other which introduces totally different radix represen-
tations and fast reduction algorithms. For this reason, we evaluate the obvious
candidate, latest OpenSSL 1.0.2d implementations using the command openssl
speed ecdh. On the same architecture, OpenSSL 1.0.2d reports 71.2 and 85.3
operations per second for A9 and A15, which implies a count of approximately
23.8 M and 18.7 M cycles per ECDH. On the other hand, our implementations
described in Table 2 only require 8.1 M and 4.0 M cycles per ECDH for A9 and
A15, respectively. In Table 3, the detailed clock cycles for basic operations are
drawn where the clock cycles of finite field operations include reduction operation
and the point addition and doubling is calculated over Jacobian representations.

5 Conclusion

In this paper, we show efficient implementations of P-521 over ARM-NEON
processor. We conduct 1-level of Karatsuba multiplication together with direct
modular reduction on (2522 − 2). By taking advantages of several optimization
techniques, we improve the modular multiplication on P-521 significantly. Same
technique is also applied to squaring and reduces the complexities in similar
manner. Finally, we outperform the latest OpenSSL 1.0.2d over both A9 and
A15 ARM processors.

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Curve41417: karatsuba revisited.
In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 316–334.
Springer, Heidelberg (2014)

Faster ECC over F2521−1 (feat. NEON) 181

2. Bos, J.W., Kaihara, M.E.: Montgomery multiplication on the cell. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009,
Part I. LNCS, vol. 6067, pp. 477–485. Springer, Heidelberg (2010)

3. Standard for Efficient Cryptography Group: Recommended elliptic curve domain
parameters (2000)

4. Granger, R., Scott, M.: Faster ECC over F2521−1. In: Katz, J. (ed.) PKC 2015.
LNCS, vol. 9020, pp. 539–553. Springer, Heidelberg (2015)

5. Hamburg, M.: Ed448-goldilocks, a new elliptic curve
6. Intel Corporation.: Using streaming SIMD extensions (SSE2) to perform big

multiplications, Application note AP-941 (2000). http://software.intel.com/sites/
default/files/14/4f/24960

7. U.D. of Commerce/N.I.S.T. Federal information processing standards publication
186–2 fipps 186–2 digital signature standard

8. Pabbuleti, K.C., Mane, D.H., Desai, A., Albert, C., Schaumont, P.: SIMD acceler-
ation of modular arithmetic on contemporary embedded platforms. In: High Per-
formance Extreme Computing Conference (HPEC), pp. 1–6. IEEE (2013)

http://software.intel.com/sites/default/files/14/4f/24960
http://software.intel.com/sites/default/files/14/4f/24960

	Faster ECC over F2521-1 (feat. NEON)
	1 Introduction
	2 NIST Curve P-521
	3 Proposed Method
	3.1 Multiplication
	3.2 Squaring
	3.3 Inversion
	3.4 Addition and Subtraction
	3.5 Radix Adjustments
	3.6 Scalar Multiplication

	4 Evaluation
	5 Conclusion
	References

