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Abstract. We analyze the point decomposition problem (PDP) in
binary elliptic curves. It is known that PDP in an elliptic curve group
can be reduced to solving a particular system of multivariate non-linear
equations derived from the so called Semaev summation polynomials.
We modify the underlying system of equations by introducing some aux-
iliary variables. We argue that the trade-off between lowering the degree
of Semaev polynomials and increasing the number of variables provides
a significant speed-up.
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1 Introduction

The point decomposition problem (PDP) in an additive abelian group G with
respect to a factor base B ⊂ G is the following: Given a point1 R ∈ G, find
Pi ∈ B such that

R =
m∑

i=1

Pi

for some positive integer m; or conclude that R cannot be decomposed as a sum
of points in B. The discrete logarithm problem (DLP) in G with respect to a
base P ∈ G is the following: Given P and Q = aP ∈ G for some secret integer a,
compute a. DLP can be solved using the index calculus algorithm in two main
steps. In the relation collection step, fix a factor base B, and find a set of points
Ri = aiP + biQ for some randomly chosen integers ai, bi, such that Ri can be
decomposed with respect to B, i.e.,

Ri =
∑

j

Pij , Pij ∈ B.

Here, we may assume for convenience that Pij are not necessarily distinct. Note
that each decomposition induces a modular linear dependence on the discrete
1 We prefer to use point rather than element because elliptic curve group elements

are commonly called points.
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logarithms of Q ∈ G and Pij ∈ B with respect to the base P . After collecting
sufficiently many relations2, linear algebra step solves for the discrete logarithm
of Q ∈ G, as well as the discrete logarithms of the factor base elements. Clearly,
the success probability and the running time of the index calculus algorithm
heavily depend on the decomposition probability of a random element in G, the
cost of the decomposition step, and the size of the factor base. In particular,
the overall cost of the relation collection and the linear algebra steps must be
optimized with a non-trivial success probability.

In 2004, Semaev [11] showed that solving PDP in an elliptic curve group is
equivalent to solving a particular system of multivariate non-linear equations
derived from the so called Semaev summation polynomials. Semaev’s work trig-
gered the possibility of the existence of an index calculus type algorithm which
is more efficient than the Pollard’s rho algorithm to solve the discrete logarithm
problem in elliptic curves defined over Fqn , which we denote ECDLP(q, n). Note
that Pollard’s rho algorithm is a general purpose algorithm that solves DLP in
a group G, and runs in time O(

√|G|). Gaudry [7] showed that, for a fixed n,
Semaev summation polynomials can be effectively used to solve ECDLP(q, n) in
heuristic time O(q2− 2

n ), where the constant in O(·) is exponential in n. For exam-
ple, Gaudry’s algorithm and Pollard’s rho algorithm solve ECDLP(q, 3) in time
O(q1.33) and O(q1.5), respectively. Due to the exponential in n constant in the
running time of Gaudry’s algorithm, his attack is expected to be more effective
than Pollard’s rho algorithm if n ≥ 3 is relatively small and q is large. Diem [2]
rigorously showed that ECDLP(q, n) can be solved in an expected subexponential
time when a(log q)α ≤ n ≤ b(log q)β for some a, b, α, β > 0. On the other hand,
Diem’s method has expected exponential running time O(en(log n)1/2) for solving
ECDLP(2, n). As a result, the index calculus type algorithms presented in [2,7]
do not yield ECDLP solvers which are more effective than Pollard’s rho method
when q = 2 and n is prime. The ideas for choosing an appropriate factor base in
[2] have been adapted in [5,10], and the complexity of the relation collection step
have been analyzed. In both papers [5] and [10], a positive integer m, which we
call the decomposition constant, is fixed to represent the number of points in the
decomposition of a random point in the relation collection step. The factor base
consists of elliptic curve points whose x-coordinates belong to an n′-dimensional
subspace V ⊂ F2n over F2, where n′ is chosen such that mn′ ≈ n. We refer to
PDP in this setting by PDP(n,m, n′) throughout the rest of this paper.

Faugère et al. [5] showed, under a certain assumption, that ECDLP(2, n)
can be solved in time O(2ωn/2), where 2.376 ≤ ω ≤ 3 is the linear algebra
constant. The running time analysis in [5] considers the linearization technique
to solve the system of multivariate nonlinear of equations which are derived from
the (m + 1)’st Semaev polynomial Sm+1 during the relation collection step to
solve PDP(n,m, n′). Faugère et al. further argue that, Groebner basis techniques
may improve the running time by a factor m in the exponent, where m is the
decomposition constant. This last claim has been confirmed in the experiments
in [5] for elliptic curves defined over F2n with n ∈ {41, 67, 97, 131} and m = 2.

2 This is roughly when the number of relations exceeds |B|.
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Petit and Quisquater’s heuristic analysis in [10] claims that ECDLP(2, n) can
asymptotically be solved in time O(2cn2/3 log n) for some constant 0 < c < 2. The
subexponential running time in [10] is based on a rather strong assumption on
the behavior of the systems of equations that arise from Semaev polynomials. In
particular, it is assumed in [10] that the degree of regularity Dreg and the first
fall degree DFirstFall of the underlying polynomial systems to solve PDP(n,m, n′)
are approximately equal. The analysis in [10] also assumes that n′ = nα and
m = n1−α for some positive constant α. Experiments with a very limited set of
parameters (n,m, n′), n ∈ {11, 17}, m ∈ {2, 3}, n′ = �n/m� were conducted in
[10] in the favor of their assumption.

A recent paper by Shantz and Teske [13] presented some extended exper-
imental results on solving PDP(n,m, n′) for the same setting as in the Petit
and Quisquater’s paper [10]. In particular, [13] validates the degree of regu-
larity assumption in [10] for the set of parameters (n,m, n′) such that n ∈
{11, 13, 15, 17, 19, 23, 29}, m = 2, n′ = �n/m�; and for (n,m, n′) such that
n ∈ {11, 13, 15, 17, 19, 21}, m = 3, n′ = �n/m�. Shantz and Teske [13] were
able to extend their experimental data for the parameters (n,m, n′,Δ), n ≤ 48,
m = 2, and where Δ = n − mn′ is chosen appropriately to possibly improve
the running time of ECDLP(2, n). In another recent paper [8], Huang et al.
exploit the symmetry in Semaev polynomials, and improve on the running time
and memory requirements of the PDP(n,m, n′) solver in [5]. The efficiency of
the method in [8] is tested for parameters (n,m, n′) such that n ≤ 53, m = 3,
n′ = 3, 4, 5, 6.

Petit and Quisquater’s heuristic analysis [10] claims that index calculus meth-
ods for solving ECDLP(2, n) is more effective than the Pollard’s rho method
for n > 2000, m ≥ 4 and mn′ ≈ n. However, all the experiments reported
so far on solving PDP(n,m, n′) for the set of parameters (n,m, n′,Δ) with
Δ = n − mn′ ≤ 1 and m = 3 are limited to n ≤ 19; see [8,13]. Similarly,
all the experiments for the set of parameters (n,m, n′,Δ) with m = 3 are lim-
ited to n′ ≤ 6, which forces Δ ≥ 2 for n ≥ 20. In general, it is desired to have
n′ increasing as a function of n, rather than having some upper bound on n′, so
that n ≈ mn′ as assumed in the running time analysis of ECDLP(2, n) solvers
in [5,10]. Therefore, it remains a challenge to run experiments on an extensive
set of parameters (n,m, n′) with larger prime n values, m ≥ 4, and mn′ ≈ n.
For example, it is stated in [8, Sect. 4.1] that

On the other hand, the method appears unpractical for m = 4 even for
very small values of n because of the exponential increase with m of the
degrees in Semaev’s polynomials.

In a more recent paper [6], Galbraith and Gebregiyorgis introduce a new
choice of variables and a new choice of factor base, and they are able to solve
PDP with various n ≥ 17, m = 4, n′ = 3, 4 using Groebner basis algorithms;
and also with various n ≥ 17, m = 4, n′ ≤ 7 using SAT solvers.

In this paper, we modify the system of equations, that are derived from
Semaev polynomials, by introducing some auxiliary variables. We show that
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PDP(n,m, n′) can be solved by finding a solution to a system of equations
derived from several third Semaev polynomials S3 each of which has at most
three variables. For a comparison, PDP(n,m, n′) in E(F2n) with decomposition
constant m = 5 would be traditionally attacked via considering the Semaev poly-
nomial S6 with 5 variables, which is likely to have a root in V 5, where V ⊂ F2n

is a subspace of dimension n′ = 	n/5
. On the other hand, when m = 5, our
polynomial system consists of third Semaev polynomials S3,i (i = 1, 2, 3, 4), and
a total of 8 variables which is likely to have a root in V 5 × F

3
2n , where V ⊂ F2n

is a subspace of dimension 	n/5
. As a result, our technique overcomes the dif-
ficulty of dealing with the (m + 1)’st Semaev polynomial Sm+1 when solving
PDP(n,m, n′) with m ≥ 4. We should emphasize that choosing m ≥ 4 is desir-
able for an index calculus based ECDLP(2, n) solver to be more effective than
a generic DLP solver such as Pollard’s rho algorithm. Our method introduces
an overhead of introducing some auxiliary variables. However, we argue that
the trade-off between lowering the degree of Semaev polynomials and increasing
the number of variables provides a significant speed-up. In particular, we present
some experimental results on solving PDP(n,m, n′) for the following parameters:

– n ≤ 19, m = 4, 5, and n′ = 	n/m
. We are not aware of any previous experi-
mental data for n > 15 and m = 5.

– n ≤ 26, m = 3, n′ = 	n/m
. We are not aware of any previous experimental
data for n > 21, m = 3, and Δ = n − mn′ ≤ 2.

We observe in our experiments that regularity degrees of the underlying systems
are relatively low. We also observe that running time and memory requirement
of algorithms can be improved significantly if the Groebner basis computations
are first performed on a subset of polynomials and if the ReductionHeuristic
parameter in Magma is set to be a small number; see Sect. 5 for more detail.
We would like to emphasize that these techniques are applied for the first time
in this paper to solve the point decomposition problem. As a result, we gain
significant improvement over the recently published experimental results [12].
For a comparison, we are able to solve PDP(15, 5, 3) instances in about 7 s (with
256 MB memory). Note that, PDP(15, 5, 3) is solved in about 175 s (with 2635
MB memory) in [12]. In general, our experimental findings with m = 3, 4, 5
extend and improve on the recently reported results in [8,12,13].

The rest of this paper is organized as follows. In Sect. 2, we recall Semaev
polynomials and their application to ECDLP(2, n). In Sect. 3, we describe and
analyze a new method to solve PDP(n,m, n′) in E(F2n). In Sect. 4, we present
our experimental results. In Sect. 5, we extend our results from Sect. 3.

2 Semaev Polynomials and ECDLP

Let F2n = F2[σ]/〈f(σ)〉 be a finite field with 2n elements, where f(σ) is a monic
irreducible polynomial of degree n over the field F2 = {0, 1}. Let E be a non-
singular elliptic curve defined by the short Weierstrass equation

E/F2n : y2 + xy = x3 + ax2 + b, a, b ∈ F2n .
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We denote the identity element of E by ∞. The i’th Semaev polynomial associ-
ated with E is defined as follows:

Si(x1, x2, . . . , xi) =

{
(x1x2 + x1x3 + x2x3)

2 + x1x2x3 + b if i = 3

ResX(Si−j(x1, . . . , xi−j−1, X), Sj+2(xi−j , . . . , xi, X)) if i ≥ 4,

(1)

where 1 ≤ j ≤ i − 3.
For n′ ≤ n, let

V = {a0 + a1σ + · · · + an′−1σ
n′−1 : ai ∈ F2} ⊂ F2n

and define the factor base

B = {P = (x, y) ∈ E : x ∈ V }.

Recall that in PDP(n,m, n′), we are looking for Pi = (xi, yi) ∈ B such that

P1 + · · · + Pm = R, (2)

for some given point R = (xR, yR) ∈ E. We refer to (2) as an m-decomposition
of R in B. We expect that, on average, a random point R ∈ E has an m-
decomposition in B with probability 2mn′

/2nm! simply because |B| ≈ 2n′
and

permuting Pi does not change the sum
∑

Pi (see [7]). As described in Sect. 1,
the DLP in E can be solved via an index-calculus based approach by computing
about |B| explicit m-decompositions and solving a sparse linear system of about
|B| equations. Therefore, the cost of solving ECDLP(2, n) may be estimated as

2n′ 2nm!
2mn′ Cn,m,n′ + 2ω′n′

, (3)

where Cn,m,n′ is the cost of solving PDP(n,m, n′), and ω′ = 2 is the sparse
linear algebra constant. Semaev [11] showed that a decomposition of the form
(2) exists if and only if the x-coordinates of Pi and R are zeros of the (m + 1)’st
Semaev polynomial, that is, Sm+1(x1, . . . , xm, xR) = 0. In the rest of this paper,
we focus on solving PDP(n,m, n′) (and estimating Cn,m,n′) via modifying the
equation induced by Sm+1.

3 A New Approach to Solve the Point Decomposition
Problem

Let E/F2n , V , and B be as defined in Sect. 2. Recall that an m-decomposition
of a point

R = P1 + · · · + Pm,

where R = (xR, yR) ∈ E, Pi = (xi, yi) ∈ B, can be computed (if exists) by
identifying a tuple (x1, . . . , xm) ∈ V m that satisfies

Sm+1(x1, . . . , xm, xR) = 0 (4)
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Note that xi belong to an n′-dimensional subspace of F2n . Therefore, (4) defines
a system Sys1 of a single equation over F2n in m variables. In [5,10], the Weil
descent technique is applied, and a second system Sys2 of n equations over
F2 in mn′ boolean variables is derived from Sys1. The cost Cn,m,n′ of solving
PDP(n,m, n′) in [5,10] is estimated through the analysis of solving Sys2 using
linearization and Groebner basis techniques. Next, we describe a new approach
to derive another system Sys3 of boolean equations such that a solution of Sys3
yields an m-decomposition of a point R.

Notation. Throughout the rest of this paper, we distinguish between
two classes Semaev polynomials. The first class of Semaev polynomials is
denoted by Sm,1(x1, . . . , xm), which represents the m’th Semaev polynomial
with m variables. The second class of Semaev polynomials is denoted by
Sm,2(x1, . . . , xm−1, xR), which represents the m’th Semaev polynomial with
m − 1 variables (i.e., the last variable xm is evaluated at a number xR).

3.1 The Case: m = 3

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 − R = ∞
if and only if there exist Pi ∈ B and P12 ∈ E such that

{
P1 + P2 − P12 = ∞
P3 + P12 − R = ∞ (5)

Therefore, a 3-decomposition of R = P1 + P2 + P3 may be found as follows:

1. Define the following system of equations derived from Semaev polynomials
{

S3,1(x1, x2, x12) = 0
S3,2(x3, x12, xR) = 0.

(6)

Note that this system is defined over F2n and has 4 variables x1, x2, x3, x12.
2. Introduce boolean variables xi,j such that

xi =
n′−1∑

j=0

xi,jσ
j ,

for i = 1, 2, 3, and

x12 =
n∑

j=0

x12,jσ
j .

Apply the Weil descent technique to (6) and define an equivalent system of
2n equations over F2 with 3n′ + n boolean variables

{xi,j : i = 1, 2, 3, j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n − 1}.
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Solve this new system of boolean equations and recover x1, x2, x3 ∈ F2n from
xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
3n′ + n boolean variables rather than solving a system of n equations over F2

with 3n′ boolean variables.

3.2 The Case: m = 4

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 − R = ∞

if and only if there exist Pi ∈ B and P12 ∈ E such that
{

P1 + P2 − P12 = ∞
P3 + P4 + P12 − R = ∞ (7)

Therefore, a 4-decomposition of R = P1 +P2 +P3 +P4 may be found as follows:

1. Define the following system of equations derived from Semaev polynomials
{

S3,1(x1, x2, x12) = 0
S4,2(x3, x4, x12, xR) = 0

(8)

Note that this system is defined over F2n and has 5 variables x1, x2, x3, x4, x12.
2. Introduce boolean variables xi,j such that

xi =
n′−1∑

j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, and

x12 =
n∑

j=0

xi,jσ
j .

Apply the Weil descent technique to (8) and define an equivalent system of
2n equations over F2 with 4n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4 j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n − 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
4n′ + n boolean variables rather than solving a system of n equations over F2

with 4n′ boolean variables.
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3.3 The Case: m = 5

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 − R = ∞

if and only if there exist Pi ∈ B and P123 ∈ E such that
{

P1 + P2 + P3 − P123 = ∞
P4 + P5 + P123 − R = ∞ (9)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as
follows:

1. Define the following system of equations derived from Semaev polynomials
{

S4,1(x1, x2, x3, x123) = 0
S4,2(x4, x5, x123, xR) = 0

(10)

Note that this system is defined over F2n and has 6 variables x1, x2, x3,
x4, x5, x123.

2. Introduce boolean variables xi,j such that

xi =
n′−1∑

j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, 5, and

x123 =
n∑

j=0

x123,jσ
j .

Apply the Weil descent technique to (10) and define an equivalent system of
2n equations over F2 with 5n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′ − 1} ∪ {x123,j : j = 0, . . . n − 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
5n′ + n boolean variables rather than solving a system of n equations over F2

with 5n′ boolean variables.

3.4 Analysis of the New Polynomial Systems

One of the methods to solve a system of multivariate non-linear equations is
to compute the Groebner basis of the underlying ideal. Groebner basis com-
putations can be performed using Faugère’s algorithms [3,4], which reduce the
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problem to Gaussian elimination of Macaulay-type matrices Md of degree d. The
Macaulay matrix Md encodes degree (at most) d polynomials, that are generated
during Groebner basis computation. Therefore, the cost of solving a system of
equations is determined by the maximal degree D (also known as the degree of
regularity of the system) reached during the computation. If N is the number
of variables in the system, then the cost is estimated as O

((
N+D−1

D

)ω
)
, where

(
N+D−1

D

)
is the maximum number of columns in MD and ω is the linear algebra

constant. In general, it is hard to estimate D. In the recent paper [10], it is con-
jectured that the degree of regularity Dreg of systems arising from PDP(n,m, n′)
satisfies Dreg = DFirstFall+o(1), where DFirstFall is the first fall degree of the system
and defined as follows.

Definition 1. [10] Let R be a polynomial ring over a field K. Let F :=
{f1, . . . , f�} ⊂ R be a set of polynomials of degrees at most DFirstFall. The first
fall degree of F is the smallest degree DFirstFall such that there exist polynomials
gi ∈ R with maxi (deg(fi) + deg(gi)) = DFirstFall, satisfying deg(

∑�
i=1 gifi) <

DFirstFall but
∑�

i=1 gifi �= 0.

Experimental studies in recent papers [10,13] give supporting evidence that
Dreg ≈ DFirstFall. However, experimental data is yet very limited (see Sect. 1)
to verify this conjecture. In this section, we compute the first fall degree of the
systems proposed in Sects. 3.1, 3.2, and 3.3. Our experimental results in Sect. 4
support that Dreg ≈ DFirstFall.

DFirstFall of the system when m = 3. In this case, one needs to solve the
system of 2n equations over F2 with 3n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (6) that consists of two Semaev
polynomials S3,1 and S3,2. The monomial set of S3,1(x1, x2, x12) is

{1, x2
1x

2
2, x

2
1x

2
12, x

2
2x

2
12, x1x2x12}.

Therefore, the Weil descent of S3,1(x1, x2, x12) yields a 2n′ + n variable poly-
nomial set {fi} over F2 such that maxi(deg(fi)) = 3. On the other hand, the
monomial set of x1 · S3,1(x1, x2, x12) is

{x1, x
3
1x

2
2, x

3
1x

2
12, x

2
2x

2
12, x

2
1x2x12}.

Therefore, the Weil descent of x1 · S3,1(x1, x2, x12) yields a polynomial set
{Fi} over F2 such that maxi(deg(Fi)) = 3. It follows from the definition that
DFirstFall(S3,1) ≤ 4 because the maximum degree of polynomials obtained from
the Weil descent of x1 is 1. Similarly, the monomial set of S3,2(x3, x12, xR) is

{1, x2
3x

2
12, x

2
3, x

2
12, x3x12}.

Therefore, the Weil descent of S3,2(x3, x12, xR) yields a n′+n variable polynomial
set {fi} over F2 such that maxi(deg(fi)) = 2. On the other hand, the monomial
set of x3

3 · S3,2(x3, x21, xR) is

{x3
3, x

5
3x

2
12, x

5
3, x

3
3x

2
12, x

4
3x12}.
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Therefore, the Weil descent of x3
3 · S3,2(x3, x12, xR) yields a polynomial set

{Fi} over F2 such that maxi(deg(Fi)) = 3. It follows from the definition that
DFirstFall(S3,2) ≤ 4 because the maximum degree of polynomials obtained from
the Weil descent of x3

3 is 2. We conclude that DFirstFall ≤ 4.

DFirstFall of the system when m = 4. In this case, one needs to solve the
system of 2n equations over F2 with 4n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (8) that consists of two Semaev
polynomials S3,1 and S4,2. From our above discussion, DFirstFall(S3,1) ≤ 4. Now,
analyzing the monomial set of S4,2(x3, x4, x123, xR), we can see that the Weil
descent of S4,2(x3, x4, x123, xR) yields a 2n′ + n variable polynomial set {fi}
over F2 such that maxi(deg(fi)) = 6 (this follows from the Weil descent of
the monomial (x3x4x123)3). On the other hand, analyzing the monomial set of
x3 ·S4,2(x3, x4, x123, xR), we see that the Weil descent of x3 ·S4,2(x3, x4, x123, xR)
yields a polynomial set {Fi} over F2 such that maxi(deg(Fi)) = 6. It follows from
the definition that DFirstFall(S4,2) ≤ 7 because the maximum degree of polyno-
mials obtained from the Weil descent of x3 is 1. We conclude that DFirstFall ≤ 7.

DFirstFall of the system when m = 5. In this case, one needs to solve the
system of 2n equations over F2 with 5n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (10) that consists of two Semaev
polynomials S4,1 and S4,2. From our above discussion, DFirstFall(S4,2) ≤ 7. Now,
analyzing the monomial set of S4,1(x1, x2, x3, x123), we can see that the Weil
descent of S4,1(x1, x2, x3, x123) yields a 3n′ + n variable polynomial set {fi}
over F2 such that maxi(deg(fi)) = 8 (this follows from the Weil descent of the
monomial (x1x2x3x123)3). On the other hand, analyzing the monomial set of
x3 ·S4,1(x1, x2, x3, x123), we see that the Weil descent of x3 ·S4,1(x1, x2, x3, x123)
yields a polynomial set {Fi} over F2 such that maxi(deg(Fi)) = 8. It follows from
the definition that DFirstFall(S4,1) ≤ 9 because the maximum degree of polyno-
mials obtained from the Weil descent of x3 is 1. We conclude that DFirstFall ≤ 9.

4 Experimental Results

We implemented the methods proposed in Sect. 3 on a desktop computer
(Intel(R) Xeon(R) CPU E31240 3.30GHz) using Groebner basis algorithms in
Magma [1]. For each parameter set (n,m, n′), we solved 5 random instances of
PDP over a randomly chosen elliptic curve E/F2n . In Table 1, we report on our
experimental results for solving PDP(n,m, n′ = 	n/m
) with m = 3, 4, 5. In
particular, for each of these 5 computations, we report on the maximum CPU
time (seconds) and memory (MB) required for solving PDP. We also report on
the maximum of the maximum step degrees D in the Groebner basis computa-
tions. Recall that in Sect. 3, we estimated DFirstFall ≤ 4 when m = 3; DFirstFall ≤ 7
when m = 4; and DFirstFall ≤ 9 when m = 5. In our experiments, we observe that
Dreg = 4 when m = 3; Dreg = 7 when m = 4; and Dreg ≤ 8 when m = 5.

Let m = 5 and n′ = 	n/m
. Based on our experimental data, it is tempting
to assume that the underlying system of polynomial equations has Dreg ≤ 9.
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Table 1. Experimental results on solving PDP(n,m, n′ = �n/m�). Time in seconds;
Memory in MB; D is the maximum step degree.

m = 3 m = 4 m = 5

n Time Memory D Time Memory D Time Memory D

11 0.520 25.8 7

12 0.670 33.0 7

13 0.890 42.8 7

14 4.260 126.7 8

15 350.100 1839.5 8

16 414.320 5100.7 7 408.270 2633.9 8

17 1.690 38.8 4 1395.170 5632.8 7 506.340 4050.3 8

18 26.680 264.5 4 497.770 5632.8 7 920.790 6186.9 8

19 15.270 321.8 4 509.330 5634.1 7 1265.090 8282.9 8

20 49.350 397.6 4

21 163.100 1228.3 4

22 126.290 1413.2 4

23 248.820 1668.7 4

24 1266.610 5142.2 4

25 1623.180 6363.8 4

26 1645.78 6596.9 4

Moreover, the system has N = 5n′ + n ≈ 2n boolean variables. Therefore, when
m = 5, we may estimate the cost of solving ECDLP(2, n) (see (3)) as

2n′ 2nm!
2mn′

(
N + Dreg − 1

Dreg

)w

+ 2w′n′

≈ 2n/5m!(2n)9w + 2w′n/5

≈ 2342n/5n27 + 22n/5,

where we assume w = 3 and w′ = 2. For example, when n ≈ 1200, the cost of
solving ECDLP(2, n) is estimated to be 2550 which is significantly smaller than
the cost 2600 of square-root time algorithms.

5 Extensions and Optimization

In Sect. 3, we introduced a single auxiliary variable to lower the degree of Semaev
polynomials. The degree of polynomials can further be lowered by introducing
more auxiliary variables. As an example, we consider the case m = 5. Let R =
(xR, yR) ∈ E, as before. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 − R = ∞
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if and only if there exist Pi ∈ B and P12, P34, P50 ∈ E such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 + P2 − P12 = ∞
P3 + P4 − P34 = ∞
P5 − P50 − R = ∞
P12 + P34 + P50 = ∞

(11)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as
follows:

1. Define the following system of equations derived from Semaev polynomials
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S3,1(x1, x2, x12) = 0
S3,1(x3, x4, x34) = 0
S3,2(x5, x50, xR) = 0
S3,1(x12, x34, x50) = 0

(12)

Note that this system is defined over F2n and has 8 variables
x1, x2, x3, x4, x5, x12, x34, x50.

2. Introduce boolean variables xi,j such that

xi =
n′−1∑

j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, 5, and

xi,j =
n∑

k=0

xi,jσ
j ,

for i = 12, 34, 50. Apply the Weil descent technique to (12) and define an
equivalent system of 4n equations over F2 with 5n′ + 3n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′−1}∪{xi,j : i = 12, 34, 50, j = 0, . . . n−1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 4n equations over F2 with
5n′ + 3n boolean variables rather than solving a system of n equations over F2

with 5n′ boolean variables. Similar to the analysis in Sect. 3, we can show that
DFirstFall ≤ 4.

In Table 2, we report on our experimental results for solving PDP(n,m, n′ =
	n/m
) with m = 5 deploying only the third Semaev polynomials; see (12).
The time and memory results in the second and third column of Table 2 are
obtained using the Groebner basis implementation of Magma with the grevlex
ordering of monomials. We observe that the maximum step degree is Dreg = 4 for
11 ≤ n ≤ 19. The time and memory results in the last two columns of Table 2 are
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Table 2. Experimental results on solving PDP(n,m, n′ = �n/m�). Time in seconds;
Memory in MB; D is the maximum step degree; DHeuristic is set to be 4 in Groebner
basis computations.

DHeuristic = 4

m = 5 m = 5

n Time Memory D Time Memory

11 2.380 58 4

12 4.150 116.7 4

13 6.390 124.1 4

14 9.510 245.2 4

15 393.170 6421.9 4 7.130 256.3

16 242.500 5911.7 4 6.900 320.4

17 365.460 7063.8 4 6.660 320.4

18 836.080 8619.4 4 11.700 394.6

19 531.420 8864.2 4 45.570 2505.3

obtained using the Groebner basis implementation of Magma with the grevlex
ordering of monomials in a boolean ring. We also introduced two modifications
in the computations: We set the ReductionHeuristic parameter in Magma to 4;
and we first computed Groebner bases of partial systems described by single
equations in (12), and merged them later. These two techniques yield non-trivial
optimization both in time and memory. For a comparison, when n = 15 and
m = 3, (Time, Memory) values decrease from (393.170, 6421.9) to (7.130, 256.3)
when this modification is deployed in the computation; see Table 2. For the
same parameters (n = 15 and m = 3), (Time, Memory) values are reported as
(174.47, 2635.4) in [12].

Based on our experimental data, it is tempting to assume that the underlying
system of polynomial equations has Dreg ≤ 4 for all n. Moreover, the system has
N = 5n′ + 3n ≈ 4n boolean variables. Therefore, when m = 5, we may estimate
the cost of solving ECDLP(2, n) (see (3)) as

2n′ 2nm!
2mn′

(
N + Dreg − 1

Dreg

)w

+ 2w′n′

≈ 2n/5m!(4n)4w + 2w′n/5

≈ 2312n/5n12 + 22n/5,

where we assume w = 3 and w′ = 2. This running time outperforms square-
root methods when n > 457. For example, when n ≈ 550, the cost of solving
ECDLP(2, n) is estimated to be 2250 which is significantly smaller than the cost
2275 of square-root time algorithms.
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