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Preface

ICISC 2015, the 18th International Conference on Information Security and Cryptol-
ogy, was held in Seoul, Korea, during November 25–27, 2015. This year, the con-
ference was hosted by KIISC (Korea Institute of Information Security and Cryptology)
jointly with NSR (National Security Research Institute).

The aim of this conference is to provide an international forum for the latest results
of research, development, and applications in the field of information security and
cryptology. This year we received 84 submissions, and were able to accept 23 papers
from 13 countries, with the acceptance rate of 27.4 %. The review and selection
processes were carried out by the Program Committee (PC) members, 56 prominent
experts world wide, via the IACR review system. First, each paper was blind reviewed,
by at least three PC members for most cases. Second, for resolving conflicts on the
reviewers’ decisions, the individual review reports were open to all PC members, and
detailed interactive discussions on each paper were followed.

The conference featured two invited talks: “Discrete Logarithm-Based Zero-
Knowledge Arguments” by Jens Groth, and “Multilinear Maps and Their Cryptanal-
ysis” by Jung Hee Cheon. We thank the invited speakers for their kind acceptance and
interesting presentations. We would like to thank all authors who submitted their
papers to ICISC 2015 and all 56 PC members. It was a truly nice experience to work
with such talented and hard-working researchers. We also appreciate the external
reviewers for assisting the PC members in their particular areas of expertise.

Finally, we would like to thank all attendees for their active participation and the
Organizing Committee members who expertly managed this conference. We look
forward to seeing you again at the next year’s ICISC.

November 2015 Soonhak Kwon
Aaram Yun
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A General Framework for Redactable Signatures
and New Constructions

David Derler1(B), Henrich C. Pöhls2, Kai Samelin3,4, and Daniel Slamanig1

1 IAIK, Graz University of Technology, Graz, Austria
{david.derler,daniel.slamanig}@tugraz.at

2 Institute of IT-Security and Security Law and Chair of IT-Security,
University of Passau, Passau, Germany

hp@sec.uni-passau.de
3 IBM Research – Zurich, Rüschlikon, Switzerland

ksa@zurich.ibm.com
4 TU Darmstadt, Darmstadt, Germany

Abstract. A redactable signature scheme (RSS) allows removing parts
of a signed message by any party without invalidating the respective
signature. State-of-the-art constructions thereby focus on messages rep-
resented by one specific data-structure, e.g., lists, sets or trees, and
adjust the security model accordingly. To overcome the necessity for this
myriad of models, we present a general framework covering arbitrary
data-structures and even more sophisticated possibilities. For example,
we cover fixed elements which must not be redactable and dependen-
cies between elements. Moreover, we introduce the notion of designated
redactors, i.e., the signer can give some extra information to selected
entities which become redactors. In practice, this often allows to obtain
more efficient schemes. We then present two RSSs; one for sets and one
for lists, both constructed from any EUF-CMA secure signature scheme
and indistinguishable cryptographic accumulators in a black-box way and
show how the concept of designated redactors can be used to increase
the efficiency of these schemes. Finally, we present a black-box construc-
tion of a designated redactor RSS by combining an RSS for sets with
non-interactive zero-knowledge proof systems. All the three construc-
tions presented in this paper provide transparency, which is an impor-
tant property, but quite hard to achieve, as we also conceal the length
of the original message and the positions of the redactions.

1 Introduction

A redactable signature scheme (RSS) allows any party to remove parts of a
signed message such that the corresponding signature σ can be updated without

The full version of this paper is available as IACR ePrint Report 2015/1059.
D. Derler, H.C. Pöhls and D. Slamanig are supported by EU H2020 project
Prismacloud, grant agreement no. 644962.
H.C. Pöhls is also supported by EU FP7 project Rerum, grant agreement no. 609094.
K. Samelin is supported by EU FP7 project FutureID, grant agreement no. 318424.

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-30840-1 1



4 D. Derler et al.

the signers’ secret key sk. The so derived signature σ′ then still verifies under the
signer’s public key pk. Hence, RSSs partially solve the “digital message sanitiza-
tion problem” [28]. This separates RSSs from standard digital signatures, which
prohibit any alteration of signed messages. Such a primitive comes in handy
in use-cases where only parts of the signed data are required, but initial origin
authentication must still hold and re-signing is not possible or too expensive.
One real-world application scenario is privacy-preserving handling of patient
data [4,7,35,37]. For instance, identifying information in a patient’s record can
be redacted for processing during accounting.

State-of-the-Art. RSSs have been introduced in [21,36]. Their ideas have been
extended to address special data-structures such as trees [8,33] and graphs [23].
While the initial idea was that redactions are public, the notion of account-
able RSSs appeared recently [30]. Here, the redactor becomes a designated party
which can be held accountable for redactions. Further, RSSs with dependencies
between elements have been introduced and discussed in [4]. Unfortunately, their
work neither introduces a formal security model nor provides a security analysis
for their construction. Consecutive redaction control allows intermediate redac-
tors to prohibit further redactions by subsequent ones [26,27,34].

Much more work on RSSs exists. However, they do not use a common secu-
rity model and most of the presented schemes do not provide the important
security property denoted as transparency [8]. As an example, [20,23,37] are not
transparent in our model. In such non-transparent constructions, a third party
can potentially deduce statements about the original message from a redacted
message-signature pair. In particular, their schemes allow to see where a redac-
tion took place. Hence, they contradict the very intention of RSSs being a tool
to increase or keep data privacy [8].

Ahn et al. [1] introduced the notion of statistically unlinkable RSSs as a
stronger privacy notion. Their scheme only allows for quoting instead of arbitrary
redactions, i.e., redactions are limited to the beginning and the end of an ordered
list. Moreover, [1] only achieves the weaker and less common notion of selective
unforgeability. Lately, even stronger privacy notions have been proposed in [2,3]
in the context of the framework of P-homomorphic signatures. There also exists
a huge amount of related yet different signature primitives, where we refer the
reader to [16] for a comprehensive overview of the state-of-the-art.

Motivation. RSSs have many applications. In particular, minimizing signed
data before passing it to other parties makes RSSs an easy to comprehend privacy
enhancing tool. However, the need for different security models and different
data structures prohibits an easy integration into applications that require such
privacy features, as RSSs do not offer a flexible, widely applicable framework.
While the model of RSSs for sets (e.g. [26]) can protect unstructured data such as
votes, it is, e.g., unclear if it can be used for multi-sets. For ordered lists (such as
a text) this already becomes more difficult: should one only allow quoting (i.e.,
redactions at the beginning and/or the end of a text) or general redactions?
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For trees (such as data-bases, XML or JSON), we have even more possibilities:
only allow leaf-redactions [8], or leaves and inner nodes [23], or even allow to
alter the structure [31]. Furthermore, over the years more sophisticated features
such as dependencies, fixed elements and redactable structure appeared. They
complicate the specialized models even more.

We want to abandon the necessity to invent specialized security models tai-
lored to specific use-cases and data-structures. Namely, we aim for a framework
that generalizes away details and covers existing approaches. Thereby, we want
to keep the model compact, understandable and rigid. We aim at RSSs to become
generally applicable to the whole spectrum of existing use-cases. In addition, we
explicitly want to support the trend to allow the signer to limit the power of
redactors [14,18,22]. To prove the applicability of our framework, we present
three new constructions which hide the length of the original message, the posi-
tions of redactions, and the fact that a redaction has even happened.

Contribution. Our contribution is manifold. (1) Existing work focuses on mes-
sages representations in only a specific data-structure, whereas our model is
generally applicable (even for data-structures not yet considered for RSSs in the
literature). Our general framework also captures more sophisticated redaction
possibilities such as dependencies between redactable parts, fixed parts and con-
secutive redaction control. (2) We introduce the notion of designated redactors.
While this concept might seem similar to the concept of accountable RSSs [30],
we are not interested in accountability, but only want to allow to hand an extra
piece of information to the redactor(s). This often allows to increase the effi-
ciency of the respective scheme. (3) We present two RSSs, one for sets and one
for lists, constructed in a black-box way from digital signatures and indistinguish-
able cryptographic accumulators. We show that existing constructions of RSSs
are instantiations of our generic constructions but tailored to specific instantia-
tions of accumulators (often this allows to optimize some of the parameters of
the schemes). (4) We present a black-box construction of RSSs with designated
redactors for lists from RSSs for sets and non-interactive zero-knowledge proof
systems. We stress that all three proposed constructions provide transparency,
which is an important property, but quite hard to achieve.

Notation. We use λ ∈ N to denote a security parameter and assume that
all algorithms implicitly take 1λ as an input. We write y ← A(x) to denote the
assignment of the output of algorithm A on input x to y. If we want to emphasize
that A receives explicit random coins r, we write y ← A(x; r). If S is a finite
set, then s ←R S means that s is assigned a value chosen uniformly at random
from S. We call an algorithm efficient, if it runs in probabilistic polynomial time
(PPT) in the size of its input. Unless stated otherwise, all algorithms are PPT
and return a special error symbol ⊥ /∈ {0, 1}∗ during an exception. A function
ε : N → R≥0 is negligible, if it vanishes faster than every inverse polynomial.
That is, for every k ∈ N there exists a n0 ∈ N such that ε(n) ≤ n−k for all n > n0.
If the message M is a list, i.e., M = (m1,m2, . . . , m|M |), where mi ∈ {0, 1}∗, we
call mi a block. |M | ∈ N then denotes the number of blocks in the message M .
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2 Generic Formalization of Redactable Signatures

This section presents our generalized definitions for RSSs.

2.1 The Generalized Framework

We use the formalization by Brzuska et al. [8] as a starting point. In contrast to
their model, however, ours is not specifically tailored to trees, but is generally
applicable to all kinds of data. The resulting model is rigid, i.e., it is more
restrictive than the ones introduced in the original works [21,36], while it is not
as restrictive as [1–3,9,10,12]. We think that the security model introduced in [8]
is sufficient for most use cases, while the ones introduced in [1–3,9,10,12] seem
to be overly strong for real world applications. Namely, we require an RSS to
be correct, unforgeable, private, and transparent. We explicitly do not require
unlinkability and its derivatives (constituting even stronger privacy notations),
as almost all messages (documents) occurring in real world applications contain
data usable to link them, e.g., unique identifiers.1 Moreover, we do not formalize
accountability, as this notion can easily be achieved by applying the generic
transformation presented in [30] to constructions being secure in our model.2

In the following, we assume that a message M is some arbitrarily structured
piece of data and for the general framework we use the following notation. ADM
is an abstract data structure which describes the admissible redactions and may
contain descriptions of dependencies, fixed elements or relations between ele-
ments. MOD is used to actually describe how a message M is redacted. Next,
we define how ADM, MOD and the message M are tangled, for which we intro-
duce the following notation: MOD �ADM

M means that MOD is a valid redaction
description with respect to ADM and M . ADM � M denotes that ADM matches
M , i.e., ADM is valid with respect to M . By M ′ ←−MOD M , we denote the deriva-
tion of M ′ from M with respect to MOD. Clearly, how MOD, ADM, �ADM, ←−MOD

and � are implemented depends on the data structure in question and on the
features of the concrete RSS. Let us give a simple example for sets without using
dependencies or other advanced features: then, MOD and ADM, as well as M ,
are sets. A redaction M ′ ←−MOD M simply would be M ′ ← M \MOD. This further
means that MOD �ADM

M holds if MOD ⊆ ADM ⊆ M , while ADM � M holds if
ADM ⊆ M . We want to stress that the definitions of these operators also define
how a redaction is actually performed, e.g., if a redacted block leaves a visible
special symbol ⊥ or not.

Now, we formally define an RSS within our general framework.

Definition 1. An RSS is a tuple of four efficient algorithms (KeyGen,Sign,
Verify,Redact), which are defined as follows:

KeyGen(1λ): On input of a security parameter λ, this probabilistic algorithm
outputs a keypair (sk, pk).

1 However, we stress that our model can be extended in a straightforward way.
2 Our model could also be extended to cover accountability in a straightforward way.
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Sign(sk,M,ADM): On input of a secret key sk, a message M and ADM, this
(probabilistic) algorithm outputs a message-signature pair (M,σ) together
with some auxiliary redaction information red.3

Verify(pk, σ,M): On input of a public key pk, a signature σ and a message M ,
this deterministic algorithm outputs a bit b ∈ {0, 1}.

Redact(pk, σ,M,MOD, red): This (probabilistic) algorithm takes a public key pk,
a valid signature σ for a message M , modification instructions MOD and
auxiliary redaction information red as input. It returns a redacted message-
signature pair (M ′, σ′) and an updated auxiliary redaction information red′.4

We also require that Sign returns ⊥, if ADM � M , while Redact also returns ⊥,
if MOD �

ADM
M . We will omit this explicit check in our constructions. Note that

red can also be ∅ if no auxiliary redaction information is required.

2.2 Security Properties

The security properties for RSSs have already been formally treated for tree
data-structures in [8]. We adapt them to our general framework.

Correctness. Correctness requires that all honestly computed/redacted signa-
tures verify correctly. More formally this means that ∀λ ∈ N, ∀n ∈ N, ∀M,
∀ADM � M,∀(sk, pk) ← KeyGen(1λ), ∀((M0, σ0), red0) ← Sign(sk,M,ADM),
[∀MODi �ADM

Mi, ∀((Mi+1, σi+1), redi+1) ← Redact(pk, σi,Mi,MODi, redi)]0≤i<n

it holds that for 0 ≤ i ≤ n : Verify(pk, σi,Mi) = 1, where [Si]0≤i<n is shorthand
for S0, . . . , Sn−1.

Unforgeability. Unforgeability requires that without a signing key sk, it should
be infeasible to compute a valid signature σ on a message M , which is not a valid
redaction of any message obtained by adaptive signature queries.

Definition 2 (Unforgeability). An RSS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr
[

(sk, pk) ← KeyGen(1λ), (M∗, σ∗) ← AOSign(sk,·,·)(pk) :
Verify(pk,M∗, σ∗) = 1 ∧ M∗ /∈ QSign

]
≤ ε(λ)

holds. OSign denotes a signing oracle and we define QSign ← ⋃q
i=1{M ′ | M ′ ←−MODj

Mi ∀ MODj �ADMi Mi}. Here, q ∈ N is the number of signing queries and Mi and
ADMi denote the respective input to OSign.

Note that an adversary can perform redactions on its own (also transitively).

3 We assume that ADM can always be correctly and unambiguously derived from any
valid message-signature pair. Also note that ADM may change after a redaction.

4 Note that this algorithm may either explicitly or implicitly alter ADM in an unam-
biguous way.
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Privacy. For anyone except the involved signers and redactors, it should be
infeasible to derive information on redacted message parts when given a redacted
message-signature pair.

Definition 3 (Privacy). An RSS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr
[

(sk, pk) ← KeyGen(1λ), b ←R {0, 1},O ← {OSign(sk, ·, ·),
OLoRRedact((sk, pk), ·, ·, ·, ·, ·, ·, b)}, b∗ ← AO(pk) : b = b∗

]
≤ 1

2
+ ε(λ)

holds. OSign is defined as before and OLoRRedact is defined as follows:

OLoRRedact((sk, pk),M0,MOD0,M1,MOD1,ADM0,ADM1, b):
1: Compute ((Mc, σc), redc) ← Sign(sk,Mc,ADMc) for c ∈ {0, 1}.
2: Let ((M ′

c, σ
′
c), red

′
c) ← Redact(pk, σc,Mc,MODc, redc) for c ∈ {0, 1}.

3: If M ′
0 �= M ′

1, return ⊥.
4: Return (M ′

b, σ
′
b).

Note that the oracle returns ⊥ if any of the algorithms returns ⊥.

In our privacy definition, we allow the adversary to provide distinct values for
ADM0 and ADM1 to the signing oracle. While this guarantees the required flexi-
bility to support arbitrary data structures, it yields a rather strong definition of
privacy. There is existing work, which introduces an additional abort condition
in OLoRRedact [31] (it is easy to see that security in our model implies security
in their model). While such a notion is sufficient for certain implementations of
RSSs (such as the one in [31]), we believe that our definition is required for a
general model as we propose it.

Transparency. It should be infeasible to decide whether a signature directly
comes from the signer (i.e., is a fresh signature) or has been generated using
the Redact algorithm, for anyone except the signer and the possibly involved
redactor(s). More formally, this means:

Definition 4 (Transparency). An RSS is transparent, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr
[

(sk, pk) ← KeyGen(1λ), b ←R {0, 1},O ← {OSign(sk, ·, ·),
OSign/Redact((sk, pk), ·, ·, ·, b)}, b∗ ← AO(pk) : b = b∗

]
≤ 1

2
+ ε(λ)

holds. Here OSign is as in Definition 2 and OSign/Redact is defined as follows:

OSign/Redact((sk, pk),M,MOD,ADM, b):
1: Compute ((M,σ), red) ← Sign(sk,M,ADM).
2: Compute ((M ′, σ0), red′) ← Redact(pk, σ,M,MOD, red).
3: Compute ((M ′, σ1), red′′) ← Sign(sk,M ′,ADM′)
4: Return (M ′, σb).
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Note, ADM′ is extracted from (M ′, σ0) and the oracle returns ⊥ if any of the
algorithms returns ⊥.

We call an RSS secure, if it is correct, unforgeable, private, and transparent.
We want to emphasize that additionally returning auxiliary redaction infor-

mation red in Sign and Redact does not contradict transparency or privacy, as
the “final” verifier never sees any red (which is why the privacy and transparency
games do not return red for the challenge message-signature pair). Intuitively,
only if an intermediate redactor exists, red is given away by the signer to selected
designated entities that become redactors.5

Relations Between Security Properties. The relations between the differ-
ent security properties do not change compared to the work done in [8]. Namely,
transparency implies privacy, while privacy does not imply transparency. Fur-
thermore, unforgeability is independent of privacy and transparency. We prove
these statements in the extended version of this paper.

Notes on Our Model. In a nutshell, our generalized framework leaves the
concrete data-structure—and, thus, also the definition of ADM, MOD, and red—
open to the instantiation. For clarity, let us match our framework to already
existing definitions. In particular, consider the model of [8]. It does not explic-
itly define ADM, but implicitly assumes that only leaves of a given tree are
redactable, i.e., MOD may only contain changes which are possible with recur-
sive leaf-redaction. Pöhls et al. [31] explicitly define ADM as the edges between
different nodes in their model for RSS for trees, while allowing arbitrary redac-
tions, i.e., MOD may contain any set of nodes in the tree (including the tree’s
root), as well as edges.

Finally, we note that our model also covers consecutive redaction control
[26,27,34] via ADM. Recall that ADM is contained in all signatures and Redact
may also change ADM.

3 Building Blocks

In this section we provide the definitions of the required building blocks.

Digital Signature Schemes. We start by defining digital signatures.

Definition 5 (Digital Signatures). A digital signature scheme DSS is a triple
(DKeyGen, DSign,DVerify) of PPT algorithms:

5 This also distinguishes designated redactors from accountable redactable signa-
tures [30]. Namely, the additional information red can be given to any redactor,
while the redactor is a fixed entity in accountable RSSs. Hence, in our notion, the
redactors can even form a chain, and can be pinpointed in an ad-hoc manner.
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DKeyGen(1λ): This probabilistic algorithm takes a security parameter λ as input
and outputs a secret (signing) key sk and a public (verification) key pk with
associated message space M.6

DSign(sk,m): This (probabilistic) algorithm takes a message m ∈ M and a secret
key sk as input, and outputs a signature σ.

DVerify(pk,m, σ): This deterministic algorithm takes a signature σ, a message
m ∈ M and a public key pk as input, and outputs a bit b ∈ {0, 1}.

A DSS is secure, if it is correct and EUF-CMA secure. The formal security defi-
nitions are provided in the extended version of this paper.

Cryptographic Accumulators. Cryptographic accumulators [5] represent a
finite set X as a single succinct value accX and for each x ∈ X one can compute a
witness witx, certifying membership of x in X . We use the formal model from [17]
which assumes a trusted setup, i.e., a TTP generates the accumulator keypair
(skacc, pkacc) and discards skacc. We, however, note that in some constructions
skacc improves efficiency, which is a useful feature if the party maintaining the
accumulator is trusted (as it is the case in our schemes).7

In the formal model below, we omit some additional features of accumulators
as they are not required here (cf. [17]).

Definition 6 (Accumulator). An accumulator Acc is a tuple of algorithms
(AGen,AEval,AWitCreate,AVerify) which are defined as follows:

AGen(1λ, t): This probabilistic algorithm takes a security parameter λ and a
parameter t as input. If t �= ∞, then t is an upper bound for the number of
accumulated elements. It returns a key pair (skacc, pkacc), where skacc = ∅ if
no trapdoor exists.

AEval((sk∼
acc, pkacc),X ): This (probabilistic) algorithm takes a key pair (sk∼

acc,
pkacc) and a set X to be accumulated as input and returns an accumulator
accX together with some auxiliary information aux.

AWitCreate((sk∼
acc, pkacc), accX , aux, x): This (probabilistic) algorithm takes a key

pair (sk∼
acc, pkacc), an accumulator accX , auxiliary information aux and a

value x as input. It returns ⊥, if x /∈ X , and a witness witx for x otherwise.
AVerify(pkacc, accX ,witx, x): This deterministic algorithm takes a public key

pkacc, an accumulator accX , a witness witx and a value x as input and out-
puts a bit b ∈ {0, 1}.

An accumulator Acc is secure if it is correct, collision free, and indistinguishable.
We recall the formal security definitions of these properties in the extended
version of this paper and refer to [17] for an overview of concrete instantiations.
Henceforth, we use Dom(acc) to denote the accumulation domain.

6 We usually omit to mention the message space M and assume that it is implicit in
the public key.

7 Such a trapdoor skacc, when used, does not influence the output distributions of the
algorithms, but improves efficiency of some algorithms.
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Non-interactive Commitments. We also require non-interactive commit-
ment schemes, which we define below.

Definition 7 (Non-interactive Commitment). A non-interactive commit-
ment scheme Com is a tuple of PPT algorithms (Gen,Commit,Open), which are
defined as follows:

Gen(1λ): This probabilistic algorithm takes as input a security parameter λ and
outputs the public parameters pp (subsequently, we omit pp for the ease of
notation and assume that it is implicit input to all algorithms).

Commit(m): This (probabilistic) algorithm takes as input a message m and out-
puts a commitment C together with a corresponding opening information O
including the randomness r used by Commit.

Open(C,O): This deterministic algorithm takes as input a commitment C with
corresponding opening information O and outputs message m′ ∈ m ∪ ⊥.

A non-interactive commitment scheme Com is secure, if it is correct, (computa-
tionally) binding and (computationally) hiding. We provide a formal definition
of the security properties in the extended version of this paper. We call a com-
mitment scheme homomorphic if for any m,m′ we have Commit(m ⊕ m′) =
Commit(m) ⊗ Commit(m′) for some binary operations ⊕ and ⊗. We emphasize
that any perfectly correct IND-CPA secure public key encryption schemes yields
perfectly binding commitments, e.g., ElGamal [19], which is also homomorphic.

Non-interactive Proof Systems. Now, we introduce non-interactive proofs
for an NP-language with witness relation R : LR = {x | ∃ w : R(x,w) = 1}.

Definition 8 (Non-interactive Proof System). A non-interactive proof sys-
tem Π is a tuple of algorithms (Gencrs, Proof, Verify), which are defined as follows:

Gencrs(1λ): This probabilistic algorithm takes a security parameter λ as input,
and outputs a common reference string crs.

Proof(crs, x, w): This probabilistic algorithm takes a common reference string
crs, a statement x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π): This deterministic algorithm takes a common reference string
crs, a statement x, and a proof π as input, and outputs 1 if π is valid and
0 otherwise.

In our context, a non-interactive proof system Π is secure, if it is complete,
sound, and adaptively zero-knowledge. We provide formal security definitions
in the extended version of this paper. Concrete instantiations of non-interactive
proof systems, tailored to our requirements, are given in Sect. 5.

4 Redactable Signatures for Sets

For our RSS for sets (cf. Scheme 1), we compute an accumulator representing
the set to be signed and then sign the accumulator using any digital signature
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Scheme 1. A RSS for sets

scheme. For verification, one simply provides witnesses for each element in the
set and it is verified whether the digital signature on the accumulator as well as
the witnesses are valid. Redaction amounts to simply throwing away witnesses
corresponding to redacted elements. To maintain transparency, while still allow-
ing the signer to determine which blocks (i.e., elements) of the message (i.e., the
set) are redactable, we model ADM as a set containing all blocks which must not
be redacted. We also parametrize the scheme by an operator ord(·), which allows
to uniquely encode ADM as a sequence. MOD is modeled as a set containing all
blocks of the message to be redacted. We note that one can straightforwardly
extend Scheme 1 to support multi-sets by concatenating a unique identifier to
each set element. In the extended version of this paper we prove the following:

Theorem 1. If Acc and DSS are secure, then Scheme 1 is secure.

4.1 Observations and Optimizations

Depending on the properties of the used accumulator scheme, one can reduce
the signature size from O(n) to O(1). The required properties are as follows:

(1) The accumulator scheme needs to support batch-membership verification.
Formally, this means that there are two additional algorithms AWitCreateB
and AVerifyB, which are defined as follows:
AWitCreateB((sk∼

acc, pkacc), accX , aux,Y) is an deterministic algorithm that
takes a key pair (sk∼

acc, pkacc), an accumulator accX , auxiliary information
aux and a set Y. It returns ⊥, if Y �⊆ X , and a witness witY for Y
otherwise.
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AVerifyB(pkacc, accX ,witY ,Y) is a deterministic algorithm that takes a public
key pkacc, an accumulator accX , a witness witY and a set Y. It returns
true if witY is a witness for Y ⊆ X and false otherwise.

(2) The accumulator scheme fulfills the quasi-commutativity property, i.e., with
ρ being a fixed randomness it holds that

∀ (sk∼
acc, pkacc) ← AGen(1λ),∀ X ,∀ x ∈ X ,∀ Y ⊂ X

(accX , aux) ← AEval((sk∼
acc, pkacc),X ; ρ) :

AEval((sk∼
acc, pkacc),X \ Y; ρ) = AWitCreateB((sk∼

acc, pkacc), accX , aux,Y).

(3) It is possible to publicly add values to an accumulator.

Refer to [17, Table 1] for a list of accumulators providing the required properties.
From (1), (2), and (3) it is straightforward to derive the following corollary:

Corollary 1. For schemes fulfilling (1), (2), and (3), it holds that ∀{x, y} ⊆
X , one can use wit{x}∪{y} and accX to attest that x is a member of accX\{y}.
Furthermore, one can efficiently compute wit{x}∪{y} from wit{x} and y.

Then, only a single witness needs to be stored and verification is performed with
respect to this witness. Redaction is performed by publicly updating the witness
(can be interpreted as removing elements from the accumulator). Such a scheme
generalizes the RSS for sets from [32], which builds upon the RSA accumulator.
For accumulator schemes where (3) does not hold, one can still obtain constant
size signatures by setting red ← aux. Upon Redact, red is not updated.

Our construction may look similar to the one in [29]. However, in contrast to
our construction, they require a rather specific definition of accumulators, which
they call trapdoor accumulators. Trapdoor accumulators differ from conventional
accumulators regarding their features and security properties. In particular, they
need to support updates of the accumulated set without modifying the accumu-
lator itself. Further, they require a non-standard property denoted as strong
collision resistance, which can be seen as a combination of conventional collision
resistance and indistinguishability. Clearly, such a specific accumulator model
limits the general applicability.

5 Redactable Signatures for Linear Documents

We build our RSS for linear documents upon the RSS for sets presented in the
previous section. From an abstract point of view, moving from sets to linear doc-
uments means to move from an unordered message to an ordered one. A naive
approach to assign an ordering to the message blocks would be to concatenate
each message block with its position in the message and insert these extended
tuples into the accumulator. However, such an approach trivially contradicts
transparency, since the positions of the messages would reveal if redactions have
taken place. Thus, inspired by [15], we choose some indistinguishable accumula-
tor scheme and use accumulators to encode the positions. More precisely, with n
being the number of message blocks, we draw a sequence of n uniformly random
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Scheme 2. A RSS for linear documents

numbers (rj)n
j=1 from the accumulation domain. Then, for each message block

mi, 1 ≤ i ≤ n, an accumulator acci containing (rj)i
j=1 is computed (i.e., acci

contains i randomizers). Finally, for each mi, one appends acci||ri and signs the
so obtained set

⋃n
j=1{(mi||acci||ri)} using the RSS for sets. Upon verification,

one simply verifies the signature on the set and checks for each i whether one
can provide i valid witnesses for (rj)i

j=1 with respect to acci. Redaction again
amounts to throwing away witnesses corresponding to redacted message blocks.

Here, M = (mi)n
i=1 is a sequence of message blocks mi, ADM is the cor-

responding sequence of fixed message blocks, and the operator ord(·) for the
underlying RSS for sets simply returns ADM without modification. All possible
valid redactions, forming the transitive closure of a message M , with respect to
Redact, are denoted as span�(M), following [15,34]. Note that for ADM it must
hold that ADM ∈ span�(M). MOD is modeled as a sequence of message blocks to
be redacted and we assume an encoding that allows to uniquely match message
block with its corresponding message block in the original message.

Theorem 2. If Acc and RS are secure, then Scheme 2 is secure.

We prove Theorem 2 in the extended version of this paper.
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5.1 Observations and Optimizations

Depending on the used accumulator scheme, it is possible to reduce the signa-
ture size from O(n2) to O(n). Let us assume that (1), (2), and (3) from Sect. 4.1
hold, which means that also Corollary 1 holds. Then, due to (1), one only needs
to store one witness wit⋃i

k=1{rk} per message block, where i is the position of
the block in the message. Furthermore, upon redaction of message block i with
corresponding randomizer ri, one can update the witnesses wit⋃j

k=1{rj} for all
i > j ≤ |M | by computing wit′rj

← wit⋃j
k=1{rj}∪{ri} and removing witness

wit⋃i
k=1{ri} and randomizer ri from the signature, which boils down to removing

ri from all accumulators. The so-obtained construction then essentially general-
izes the approach of [15], which make (white-box) use of the RSA accumulator.
If (3) does not hold, one can use a similar strategy as in Sect. 4.1.

5.2 RSS for Linear Documents with Designated Redactors

The signature size and computational complexity of RSSs can often be improved
by explicitly considering the possibility to allow red to be non-empty. In Scheme 3
we follow this approach and present such a generic construction of RSSs for lin-
ear documents. Basically, the idea is to compute commitments to the positions
of the messages blocks and concatenate them to the respective message blocks.
Then, one signs the so obtained set of concatenated messages and commitments
using an RSS for sets. Additionally, one includes a non-interactive zero-knowledge
proof of an order relation on the committed positions for attesting the correct
order of the message blocks. The information red then represents the randomness
used to compute the single commitments. Redacting message blocks then simply
amounts to removing the single blocks from the signature of the RSS for sets
and recomputing a non-interactive proof for the ordering on the remaining com-
mitments. Since redaction control via ADM can straightforwardly be achieved
as in Scheme 2, we omit it here for simplicity, i.e., we assume ADM = ∞. Also
note that without ADM the operator ord(·) is not required. MOD is defined as in
Scheme 2. We emphasize that one can easily obtain constant size red by pseudo-
randomly generating the randomizers (ri)

|M |
i=1 and storing the seed for the PRG

in red instead of the actual randomizers.
Instantiating proof system Π for Rord can be done straightforwardly by using

zero-knowledge set membership proofs. Below, we briefly discuss the efficiency
of the instantiations of Scheme 3, when based on three common techniques. We
note that the below Σ-protocols can all easily be made non-interactive (having
all the required properties) using the Fiat-Shamir transform.

Square Decomposition. An efficient building block for range proofs in hidden
order groups is a proof that a secret integer x is positive [6,24], which is sufficient
for our instantiation. Technically, therefore we need an homomorphic integer
commitment scheme and Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ x ≥ 0.
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Scheme 3. A designated redactor RSS for linear documents

This approach yields O(n) signature generation cost, signature size and verifica-
tion cost and has a constant size public key. It, however, only works in a hidden
order group setting.

For the subsequent two approaches we need to introduce an upper bound k
on the number of message blocks which will be a parameter of Scheme 3.

Multi-Base Decomposition. This technique for range proofs works by decom-
posing the secret integer x =

∑n
i=1 Gi · bi with bi ∈ [0, u − 1] into a (multi)-base

representation and then proving that every bi belongs to the respective small
set ([25], cf. [13] for an overview). It also works in the prime order group setting.
Here, the relation Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ 0 ≤ x < k.

This approach yields O(n log k) signature generation costs, signature size and
verification costs and a constant size public key.
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Signature-Based Approach. This technique [11] pursues the idea of sign-
ing every element in the interval8 using a suitable signature scheme (DKeyGen,
DSign,DVerify). In our application let the interval be [0, k[ and let us denote the
corresponding public signatures by σ = (σ0, σ1, . . . , σk−1). Now, proving mem-
bership of x in [0, k[ amounts to the relation Rord under crs being σ and the
respective public key pkσ (public parameters):

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧
∃ i ∈ [0, k[ : DVerify(pkσ, x, σi) = 1.

This approach yields O(n) signature generation cost, signature size and veri-
fication cost. The crs representing the public signatures and the verification key
may be included into the public key of RS, yielding a public key of size O(k).

Finally, we prove Theorem3 in the extended version of this paper.

Theorem 3. If Com, Π, and RS are secure, then Scheme 3 is secure.
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Abstract. In the ordinary security model for signature schemes, we
consider an adversary that may forge a signature on a new message
using only his knowledge of other valid message and signature pairs.
To take into account side channel attacks such as tampering or fault-
injection attacks, Bellare and Kohno (Eurocrypt 2003) formalized related-
key attacks (RKA), where stronger adversaries are considered. In RKA for
signature schemes, the adversary can also manipulate the signing key and
obtain signatures for the modified key. This paper considers RKA secu-
rity of two established signature schemes: the Schnorr signature scheme
and (a well-known variant of) DSA. First, we show that these signature
schemes are secure against a weak notion of RKA. Second, we demonstrate
that, on the other hand, neither the Schnorr signature scheme nor DSA
achieves the standard notion of RKA security, by showing concrete attacks
on these. Lastly, we show that a slight modification of both the Schnorr
signature scheme and (the considered variant of) DSA yields fully RKA
secure schemes.

Keywords: Related-key attacks · Schnorr signatures · DSA

1 Introduction

1.1 Background

A signature scheme is a cryptographic public key primitive which guarantees
validity of messages. Up until now, many schemes have been proposed such as
the ElGamal signature scheme [15], the Schnorr signature scheme [28], and DSA
[1].The commonly accepted security notion for a signature scheme is existential
unforgeability against chosen message attacks, which guarantees that even if an
adversary can obtain signatures on arbitrarymessages of its choice, the adversary
cannot forge a valid signature on a new message. The Schnorr signature scheme,
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and two variants of DSA were proven to satisfy this notion in the random oracle
model [25,26], under the discrete logarithm (DL) assumption.

Related-key attacks (RKA), stronger attacks, were formalized by Bellare and
Kohno [5]. RKA security captures security against practical attacks such as
tampering or fault injection, which enable adversaries to alter a hardware-stored
secret key and observe the output of the algorithm using the modified key. Thus,
RKA security captures practical attacks which might cause security issues in
practice. Therefore, it is an important question whether primitives are secure
against RKA attacks even if they are already shown to be secure against ordinary
attacks.

RKA for signature schemes allows an adversary to obtain not only valid
message and signature pairs, but also signatures under a modified key. RKA
security is defined with respect to the related-key deriving (RKD) functions
with which an adversary is allowed to modify the secret key. For example, we
consider linear functions, affine functions, and polynomial functions. Since RKA
considers a broader class of attacks than ordinary attacks, security against RKA
is much stronger than ordinary security.

However, only a few generic constructions for achieving RKA secure signa-
tures have been proposed. Bellare, Cash, and Miller [4] studied relations between
RKA secure primitives, and in particular showed that an RKA secure pseudo-
random function (PRF) can be used to convert a signature scheme secure against
ordinary attacks, into a scheme providing RKA security. The conversion is rela-
tively simple: before generating the verification and signing key, apply the PRF
to the randomness used by the key generation algorithm, and then store the
randomness instead of the generated signing key. Now, since the signing key of
the original scheme is no longer stored, this has to be re-generated whenever a
message is signed. This is done by applying the PRF to the stored randomness,
and then re-running the key generation algorithm. Bellare, Cash, and Miller [4]
showed that, via this conversion, it is possible to lift the RKA security of the
PRF to the signature scheme. Used in combination with the recently proposed
RKA secure PRF by Abdalla et al. [2], which is shown to be secure under the
q-Diffie Hellman Inversion assumption, this allows the conversion of any (ordi-
nary) signature scheme to a scheme which is RKA secure with respect to poly-
nomial functions.

Goyal et al. [21] showed a similar conversion for achieving RKA secure sig-
natures, but based on a correlated-input secure (CIS) hash function. Further-
more, Goyal et al. constructed a very efficient CIS hash function secure under
the q-Diffie Hellman Inversion assumption, which would lead to signatures that
are RKA secure with respect to polynomials. However, this construction only
achieves selective security; a weak and non-adaptive security notion that requires
the adversary to submit the RKD functions before seeing the verification key of
the signature scheme.

Building upon the work on non-malleable key derivation functions (nm-
KDFs) [17], Qin et al. [27] introduced the notion of continuous nm-KDFs, and
used these in a similar conversion to the above to construct an RKA secure
signature scheme with respect to polynomial functions under standard assump-
tions. The proposed construction of an nm-KDF can furthermore be extended to
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provide security with respect to any RKD function class that has the properties
the authors denote “high output entropy” and “input-output collision resistant”.
Interestingly, the transformation into RKA-secure primitives shown in [12] can
be understood as applying an nm-KDF [17,27] to the secret key.

Since a signature scheme is an essential cryptographic primitive, clarifying
the RKA security of various constructions is of interest from both a practical and
a theoretical point of view. Specifically, studying the RKA security of well-known
signatures such as the Schnorr signature scheme and DSA is important due to
their widespread use, in particular in the case of DSA, which is employed in many
practical implementations. However, besides the negative result by Bao et al. [3],
who showed that the Schnorr signature scheme and DSA are not RKA secure
against bit flipping attack, it is not known whether either scheme can provide any
form of RKA security. Furthermore, simply applying the above transformations
might not always be desirable due to the relatively high performance penalties
these conversions imply.

1.2 Our Contributions

In this paper, we first show that both the Schnorr signature scheme and a DSA
variant are secure against a weak notion of RKA (wRKA) that does not allow
messages queried to the RKA signing oracle to be a part of a forgery. Second,
we show that the Schnorr signature scheme and the original DSA are vulnerable
to the standard notion of simple linear RKA. We then construct (standard)
RKA secure signature schemes based on the Schnorr signature scheme and DSA.
Specifically, as our main technical results, we show the following four results:

– The Schnorr signature scheme is secure against wRKA with respect to poly-
nomial functions.

– A well-known variant of DSA by [26] is secure against wRKA with respect to
polynomial functions.

– Slightly modifying the signing and verification algorithms of the Schnorr sig-
nature scheme yields an RKA secure scheme with respect to polynomial func-
tions.

– Slightly modifying the signing and verification algorithms of DSA yields an
RKA secure scheme with respect to polynomial functions.

In other words, the Schnorr signature scheme, which is secure against wRKA
with respect to polynomial functions, but not RKA secure even for weak attacks
with respect to linear functions, can achieve full RKA security with respect
to polynomial functions by slightly modifying the scheme. While DSA is not
RKA secure with respect to linear functions, the DSA variant from [26] is secure
against wRKA, and by slightly modifying this scheme, full RKA security with
respect to polynomial functions can be achieved. Both the improved Schnorr sig-
nature scheme and the improved DSA variant are proven to be RKA secure with
respect to polynomial functions in the random oracle model, under the d-strong
discrete logarithm (d-SDL) assumption. As a corollary, the improved signature
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schemes are RKA secure with respect to affine functions under the standard
discrete logarithm (DL) assumption, since the 1-SDL assumption is equivalent
to the DL assumption, and polynomials of degree 1 are affine functions.

Note that our modifications of the Schnorr signature scheme and DSA only
increase the computational cost of signing with a single exponentiation, while
the computational cost of verification, signature size, and key sizes remain
unchanged. Hence, in contrast to using a conversion based on continuous nm-
KDF [17,27] or RKA secure PRFs [2,4], our modifications maintain the effi-
ciency of the Schnorr signature scheme and DSA. Furthermore, unlike all of the
above mentioned conversions for achieving RKA security, our modifications of
the Schnorr signature scheme and DSA do not require the verification and signing
key to change. This is a virtue for schemes which are already deployed, such as
DSA, since key management and verification key certificates remain unchanged.
Lastly, we would like to emphasize that in our proofs of security for our improved
Schnorr signature scheme and the improved DSA, we do not restrict the num-
ber of RKA signing oracle queries or rely on a “self-destruct” mechanism [16,17]
which prevents the adversary from making any further queries once it is detected
that the signing key has been tampered with.

1.3 Related Work

Gennaro et al. [18] show how to recover the key of almost any cryptographic prim-
itive assuming the adversary can tamper arbitrarily with the key of the primitive.
This implies that RKA security cannot be achieved for every set of RKD func-
tions. On the other hand, Damg̊ard et al. [11,12] showed that in a security model
which restricts the number of RKA queries that an adversary is allowed to make,
it is possible to achieve security for arbitrary RKD functions. In contrast to this
model, which is denoted the bounded leakage and tampering model, we will in
this paper consider unrestricted adversaries which are allowed to make an arbi-
trary number of RKA signing oracle queries. Since Dziembowski, Pietrzak, and
Wichs introduced non-malleable codes [14], they have been studied and found to
have a good application in the construction of RKA secure cryptosystems. While
non-malleable codes in themselves are not sufficient to provide full RKA security,
continuous non-malleable codes, which were initiated in [16], enables this. How-
ever, the security of the constructions presented in [16] relies on a self-destruct
mechanism that will prevent an attacker from interacting with the system once it
has been detected that the internal state of the systems is being tampered with.
In contrast, the continuous nm-KDF proposed by Qin et al. [27] does not require
a self-destruct mechanism, and can be used to construct RKA secure public key
primitives for a large class of RKD functions. Jafargholi and Wichs [22] defined
two factors which yield four levels of security of continuous nm-KDF depending on
(I) whether tampering is applied to the original secret key persistently or applied
to the changed secret key (classified by “persistent” and “non-persistent”),
(II) whether tampering to an invalid codeword causes a “self-destruct” or not.
Lastly, Bellare, Cash, and Miller [4] showed how any RKA secure identity-based
encryption scheme leads to an RKA secure signature scheme, and Goyal et al. [21]
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showed that the Boneh-Boyen signature scheme [10] satisfied RKA security with
respect to a class of certain polynomial RKD functions.

We note that the signature schemes EdDSA by Bernstein et al. [7] and
ECDSA+ by Koblitz and Menezes [24] resemble our schemes provided in
Sects. 5.1 and 6.1, respectively, in the sense that one of the inputs to the hash
function is the verification key. However, the schemes in [7,24] are proposed for
a different context and RKA security is not considered.

2 Preliminaries

Here, we review basic notation and definitions of terminology.

2.1 Notation

Throughout the paper, we will use the following notation: For the set of natural
numbers N, let λ ∈ N be a security parameter. Let G be a group of prime order
q, where q is a λ-bit prime. Let g be a generator of G. Let Z

∗
q = Zq \ {0}. A

function F : N → R is negligible if it vanishes faster than the inverse of any
polynomial. We write Pr[A : B] to denote a probability that the predicate A is
true after the event B occurred. O(·) denotes an order.

2.2 d-Strong Discrete Logarithm Assumption

We recall the d-strong discrete logarithm (d-SDL) assumption introduced by
Goyal et al. [21]. Let d be a natural number. The d-SDL problem is to compute

x given an input (g, gx, gx2
, . . . , gxd

) ∈ G
d+1, where x

$← Zq.
For an adversary A that solves the d-SDL problem over G, we define the

advantage as follows:

Advd-sdl
A,G (λ) = Pr

[
x′ = x : x

$← Zq

x′ ← A(g, gx, gx2
, . . . , gxd

)

]
.

The d-SDL assumption over G says that the advantage Advd-sdl
A,G (λ) is negligible

for any polynomial time algorithm A.
It is clear that the 1-SDL assumption is equivalent to the standard DL

assumption. Similar to the d-Strong Diffie-Hellman problem [10], the d-SDL
problem is easier than the standard DL problem. In particular, more efficient
solving algorithms, similar to Jao and Yoshida’s algorithm [23] for the d-Strong
Diffie-Hellman problem, can likely be constructed for the d-SDL problem.

2.3 Signature

We recall the syntax of signature schemes, introduce functions with respect to
which RKA security is considered, and lastly define RKA security for a signature
scheme.
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Signature Scheme. A signature scheme Σ consists of three algorithms: key
generation algorithm, signing algorithm, and verification algorithm. We write

Σ = (KeyGen,Sign,Verify),

where these algorithms have the following interfaces:

(sk, vk) ← KeyGen(1λ),
σ ← Sign(m, sk),

1/0 ← Verify(m,σ, vk),

and sk, vk, and σ are a signing key, a verification key and a signature, respec-
tively. For any message m and any key pair (sk, vk) generated by KeyGen, the
following correctness should be satisfied:

Verify(m,Sign(m, sk), vk) = 1.

Related-Key Attack. In the ordinary attack model, an adversary is allowed
to obtain signatures on arbitrary messages of its choice. In the RKA model, an
adversary is also allowed to modify the signing key and obtain signatures on
arbitrary messages of its choice under the modified signing key.

The RKA model, for instance, captures a realistic attack in which an adver-
sary manipulates a hardware-stored secret key by electromagnetic radiation and
obtains the outputs of the signing algorithm. This is called tampering or a fault
injection attack. RKA is formalized as a security game that also allows an adver-
sary to obtain signatures for modified keys. Thus, an adversary is allowed to query
related-key deriving (RKD) functions [5] as well as messages to the signing oracle.

An RKD function is a function φ : K → K, where K is the signing key space.
Let Φ be a class of RKD functions. The RKD function class Φ consists of opera-
tions by which an adversary is allowed to manipulate a signing key. Normally, Φ
is assumed to contain the identity function id so that RKA security implies stan-
dard EUF-CMA [20]. We assume that it is easy to check whether a function is
contained in a class Φ, and that RKD functions are efficiently computable.

Following [6], we consider three types of RKD functions: linear functions,
affine functions, and polynomial functions. In the following, K is assumed to
have an appropriate algebraic structure (group or finite field). In this paper,
we will consider signature schemes whose signing key space is Zq with prime q,
which constitutes a field, as required.

Linear functions. Assume that (K, ∗) is a group. The class of linear functions
is defined as follows: Φlin = {φΔ | Δ ∈ K}, where φΔ(k) = k ∗ Δ for a key
k ∈ K. Note that “∗” represents addition or multiplication depending on the
group that is considered.

Affine functions. Assume that K is a finite field. The class of affine functions
is defined as follows: Φaff = {φα,β | α, β ∈ K}, where φα,β(k) = α · k + β for
a key k ∈ K.
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Polynomial functions. Assume that K is a finite field. The class of polynomial
functions is defined as follows: Φpoly(d) = {φf | f ∈ Kd[x]}, where Kd[x] is
the set of polynomials over K with degree at most d, and φf (k) = f(k) for
a key k ∈ K.

RKA security is getting stronger and harder to achieve, as it moves from
linear functions to affine functions to polynomial functions. In this paper, we
only consider such algebraic operations.

Φ-EUF-CM-RKA [4]. We recall existential unforgeability under chosen mes-
sage and RKA defined by RKD function class Φ. This security of a signature
scheme, which we will denote by Φ-EUF-CM-RKA, is formalized by the following
game between an adversary A and a challenger B.

Initialization. The challenger B runs KeyGen(1λ) to obtain a signing key sk
and a verification key vk. B sets a list M ← ∅. Then, B gives vk to A.

RKA signing oracle query. For adaptive queries (mi, φi) by A, B returns the
signatures σi ← Sign(mi, φi(sk)), where φi ∈ Φ. If φi(sk) = sk, B records
mi in the list M .

Output. Suppose that A outputs (m∗, σ∗). If Verify(m∗, σ∗, vk) = 1 and m∗ �∈
M , then B outputs 1. Otherwise, B outputs 0.

Let F be the event that B’s output is 1 in the above game. We define the
advantage of A against Φ-EUF-CM-RKA security as

AdvΦ-euf-cm-rka
A,Σ (λ) := Pr[F ].

If the advantage AdvΦ-euf-cm-rka
A,Σ (λ) is negligible for any probabilistic polynomial

time algorithm A, a signature scheme Σ is said to be Φ-EUF-CM-RKA secure.
We note that the security definition is strong in the sense that the adversary

can reuse the message mi as the forgery even if (mi, φi) has been queried to the
RKA signing oracle as long as φi(sk) �= sk.

Φ-wEUF-CM-RKA. We also consider a weaker variant of the above notion
following the traditional weak existential unforgeability against adaptive chosen-
message attacks [20] and the weak existential unforgeability of message authen-
tication codes against RKA [8]. By requiring that the adversary in the above
security experiment, produces a forgery on a message m∗ which has not previ-
ously been submitted to the RKA signing oracle, we obtain the weaker security
notion Φ-wEUF-CM-RKA.

Although it can be argued that, in some scenarios, the weaker notion
Φ-wEUF-CM-RKA is sufficient to guarantee security, we note that the stan-
dard notion used in the literature, corresponds to the stronger notion Φ-EUF-
CM-RKA defined above. We will show that the Schnorr signature scheme is
Φpoly(d)-wEUF-CM-RKA secure, but the scheme is vulnerable with respect to
Φlin-EUF-CM-RKA as we demonstrate in Sect. 4.1. The improved Schnorr signa-
ture scheme presented in Sect. 5.1 will be proven to be Φpoly(d)-EUF-CM-RKA
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secure. We furthermore show that one of the DSA variants from [26] is Φpoly(d)-
wEUF-CM-RKA secure, but the original DSA is vulnerable with respect to Φlin-
EUF-CM-RKA as we demonstrate in Sect. 4.2. Note that it is not known whether
the DSA variant is vulnerable to Φpoly(d)-EUF-CM-RKA, but the improved DSA
presented in Sect. 6.1 will be proven to be Φpoly(d)-EUF-CM-RKA secure. For
further details, see Sects. 4, 5, and 6.

We note that, stronger models of RKA security that is often called fault
attacks have been considered for round-based symmetric encryption schemes
[9,13,19]. These models allow the adversary to introduce faults (i.e. modifica-
tion of the input or the internal state) in the individual rounds of the encryption
algorithm, which, for example, lead to recovering a secret key. A similar exten-
sion, in which the adversary can choose when in the execution of the signing
algorithm it would like to modify the signing key, could be considered for the
RKA security of signature schemes. However, in this paper, we focus on the
standard RKA notion (and its weaker variant) introduced above.

2.4 Schnorr Signature Scheme

The Schnorr signature scheme was proposed by Schnorr in 1989 [28] and was
proven to be secure in the random oracle model based on the discrete logarithm
assumption [25]. Recall that G is a group of prime order q, and g is a generator.
The three algorithms, key generation, signing, and verification algorithms, are
defined as follows.

– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and
a verification key vk as follows.
1. Choose x

$← Zq and let y ← gx.
2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x, vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as
input, and generates a signature σ as follows.
1. Choose t

$← Zq and let r ← gt.
2. Let h ← H(m ‖ r).
3. Let s ← x · h + t mod q.
4. Output σ ← (h, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification
key vk as input, and verifies the signature as follows.
1. Let r′ ← gsy−h.
2. Let h′ ← H(m ‖ r′).
3. If h′ = h, return 1, otherwise return 0.

2.5 DSA

DSA was proposed as the US Digital Signature Standard [1] in 1994. First, we
recall the original DSA scheme.

Let p and q be primes, where q is a prime factor of p − 1. Let g ∈ Z
∗
p be a

generator of prime order q. DSA is defined by the following three algorithms:
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– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and
a verification key vk as follows.
1. Choose x

$← Z
∗
q and let y ← gx mod p.

2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x, vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as
input, and generates a signature σ as follows.
1. Choose t

$← Z
∗
q and let r ← (gt mod p) mod q.

2. Let s ← t−1(H(m) + x · r) mod q.
3. Output σ ← (r, s).

– Verify: This algorithm takes a message m, a signature σ = (r, s), and the
verification key vk = (y,H) as input, and verifies the signature as follows.
1. Let r′ ← (gH(m)/syr/s mod p) mod q.
2. If r′ = r, output 1, otherwise output 0.

Variants of DSA. While the original scheme has not been proven to be secure,
Pointcheval and Vaudenay [26] proved that two variants of DSA are secure in the
sense of standard security in the random oracle model. The first DSA variant
uses one additional random oracle H ′, and the first step of signing algorithm
computes r ← H ′(gt mod p). The second DSA variant’s main difference is that
a hash function takes as input not only a message but also the value r. Looking
ahead, we will consider a slight modified version of this second variant of DSA
in Sect. 6.

On the Collision Resistance of the DSA Mapping from Z
∗
p to Zq. Note

that in Step 1 of the signing algorithm of DSA, we have to map an element
gt ∈ Z

∗
p to an element r ∈ Zq. In [26], Pointcheval and Vaudenay considered

this mapping an abstract function from G to Zq, where G is a subgroup of
Z

∗
p of order q. To prove security of their second variant of DSA, Pointcheval

and Vaudenay made the assumption that this function has a certain collision
resistance property. In this paper, we take a similar approach as [26], and assume
this function, which we will denote Fp,q, has the following property:

Let Fp,q : G → Zq be the mapping defined by g 	→ g mod q, where g ∈ G,
and G, q, p are the parameters of the group over which DSA is constructed (i.e.
G is a subgroup of Z

∗
p of order q). We say that Fp,q is ε-collision-resistant if

no probabilistic polynomial time algorithm A can find two distinct elements
g1, g2 ∈ G such that Fp,q(g1) = Fp,q(g2) with probability more than ε. When ε is
negligible in the security parameter, we simply say that Fp,q is collision resistant.

3 wRKA Security of Signature Schemes

In this section, we show that the Schnorr signature scheme and the second variant
of DSA from [26] are Φpoly(d)-wEUF-CM-RKA secure. We remind the reader that
Φpoly(d)-wEUF-CM-RKA security requires that the message m∗ in the forgery
must be new and that it has not been submitted to the RKA signing oracle.

First, we show the following theorem regarding the Schnorr signature scheme.
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Theorem 1. Let d be a positive integer. Under the d-SDL assumption over G,
the Schnorr signature scheme is Φpoly(d)-wEUF-CM-RKA secure in the random
oracle model.

More precisely, for any probabilistic polynomial time algorithm A with run-
ning time tA, making qS RKA signing oracle queries, and qH random oracle
queries to H, there exists a probabilistic polynomial time algorithm B with run-
ning time tB = 2tA + O(qS + qH) that satisfies the following equation:

AdvΦpoly(d)-euf-cm-rka
A,Σ (λ) ≤

(
(qH + qS)

(
Advd-sdl

B,G (λ) +
2qS + 1

q

))1/2

.

We leave the proof for the full version of the paper.
Next, we show the following theorem regarding the second DSA variant

from [26].

Theorem 2. Let d be a positive integer, and assume the mapping Fp,q is colli-
sion resistant. Under the d-SDL assumption over G, the second DSA variant is
Φpoly(d)-wEUF-CM-RKA secure in the random oracle model.

More precisely, assume that Fp,q is ε-collision-resistant. Then, for any prob-
abilistic polynomial time algorithm A with running time tA, making qS RKA
signing oracle queries, and qH random oracle queries to H, there exists a prob-
abilistic polynomial time algorithm B with running time tB = 2tA + O(qS + qH)
that satisfies the following equation:

AdvΦpoly(d)-euf-cm-rka
A,Σ (λ) ≤

(
(qH + qS)

(
Advd-sdl

B,G (λ) +
1
q

+
2ε

qH + qS

))1/2

.

We leave the proof for the full version of the paper.

4 Related-Key Attacks Against Signature Schemes

In this section, we show related-key attacks against the Schnorr signature scheme
and DSA. As mentioned in Sect. 2.3, linear functions as RKD functions can be
described as addition or multiplication depending on the group used as the
signing key space.

4.1 Related-Key Attack Against Schnorr Signature

We show that the Schnorr signature scheme is not RKA secure with respect to
linear functions or addition by providing a simple and efficient attack. That is,
we show that the Schnorr signature scheme is not Φlin-EUF-CM-RKA secure.

An adversary A forges a signature as follows.

1. Choose an arbitrary message m′ ∈ {0, 1}∗ and an arbitrary value b ∈ Z
∗
q .

2. Query (m′, φ(x) = x−b) to the RKA signing oracle and obtain the signature
(h′, s′) as a response.

3. Output a message m′ and forgery (h′, s′ + b · h′).
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Now, let us confirm that the forgery is valid. First, the reply from the RKA
signing oracle, (h′, s′), must have been computed by the following procedure:

– Choose t′ $← Zq and let r′ ← gt′
.

– Let h′ ← H(m′ ‖ r′).
– Let s′ ← (x − b) · h′ + t′ mod q.

The forged signature (h′, s′ + b · h′) on the message m′ is verified as follows.

r′′ = gs′+b·h′
y−h′

= g(x−b)·h′+t′+b·h′
y−h′

= g(x−b)·h′+t′+b·h′−x·h′
= gt′

= r′.

4.2 Related-Key Attack Against DSA

We next show that DSA is not RKA secure with respect to linear functions or
multiplication by providing a simple and efficient attack. That is, we show that
DSA is not Φlin-EUF-CM-RKA secure.

An adversary A forges a signature as follows.

1. Choose two distinct messages m0,m1 ∈ {0, 1}∗ and let z0 ← H(m0), z1 ←
H(m1).

2. Let a ← z1

z0
mod q.

3. Query (m1, φ(x) = ax) to the RKA signing oracle and obtain the signature
(r, s = t−1(z1 + axr)).

4. Output a message m∗ = m0 and the signature (r∗, s∗) = (r,
s

a
mod q).

Note that even if a is 1, the attack still works.
The forged signature (r,

s

a
mod q) on the message m0 will be verified as

follows.
First, we compute w∗ = (s∗)−1 = a/s = ta/(z1 + axr) = ta/(a · z0 + axr) =

t/(z0 + xr). Then, we compute u1 = w∗z0 mod q and u2 = rw∗ mod q. Now
we can check

r′ = (gH(m0)/s∗
yr∗/s∗

mod p) mod q = (gu1yu2 mod p) mod q

= (gw∗z0yrw∗
mod p) mod q = (gw∗z0+xrw∗

mod p) mod q

= (gw∗(z0+xr) mod p) mod q = (gt mod p) mod q = r.

Thus, the forgery output by A is valid.

5 Improved Schnorr Signature Scheme and Its RKA
Security

As described in Sect. 4.1, the original Schnorr signature scheme is not RKA
secure with respect to linear functions. In this section, we show that a slight
modification yields an RKA-secure signature scheme with respect to polynomial
functions. We refer to this scheme as the improved Schnorr signature scheme.
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5.1 Construction

Our slight modification of the Schnorr signature scheme is as follows. The hash
function is modified to take an extra input, which will correspond to a recal-
culated value of the verification key. Suppose that G is a group of prime order
q, and g is a generator. The improved Schnorr signature scheme is defined as
follows:

– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and
a verification key vk as follows.
1. Choose x

$← Zq and let y ← gx.
2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x and vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as
input, and generates a signature σ as follows.
1. Choose t

$← Zq and let r ← gt.
2. Let ψ ← gx.
3. Obtain h ← H(m ‖ r ‖ψ).
4. Let s ← x · h + t mod q.
5. Output σ ← (h, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification
key vk as input, and verifies the signature as follows.
1. Let r′ ← gsy−h.
2. Let h′ ← H(m ‖ r′ ‖ y).
3. If h′ = h, output 1, otherwise output 0.

Note that the second step of the signing algorithm, computation of ψ ← gx,
should not be altered to simply use the verification key y as ψ. That is, the
signing algorithm computes ψ = gx each time it computes a signature.

Given that the verification key is recomputed from the signing key, one might
wonder whether RKA security can be achieved simply by comparing the recom-
puted verification key with the original (assuming that the original verifica-
tion key is available to the signing algorithm). However, for this to work, the
additional assumption that the original verification key is stored and remains
unchanged, is required. In the RKA setting, this seems unlikely to hold since the
adversary is assumed to be capable of modifying the signing key, which should
be better protected than the verification key. Furthermore, if the adversary is
capable of modifying the stored signing key, a similar attack to Sects. 4.1 and
4.2 will be possible: an attacker queries (m′, φ(x) = x − b) under the modified
verification key yg−b in the second step of the attack. In contrast, our schemes
provided in this section and in Sect. 6.1 can be shown RKA secure without any
additional assumptions regarding stored values.

5.2 Theorem Statement

We prove the following theorem about the improved Schnorr signature scheme.
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Theorem 3. Let d be a positive integer. Under the d-SDL assumption over G,
the signature scheme in Sect. 5.1 is Φpoly(d)-EUF-CM-RKA secure in the random
oracle model.

More precisely, for any probabilistic polynomial time algorithm A with run-
ning time tA, making qS RKA signing oracle queries, and qH random oracle
queries to H, there exists a probabilistic polynomial time algorithm B with run-
ning time tB = 2tA + O(qS + qH) that satisfies the following equation:

AdvΦpoly(d)-euf-cm-rka
A,Σ (λ) ≤

(
(qH + qS)

(
Advd-sdl

B,G (λ) +
2qS + 1

q

))1/2

. (1)

The proof is given in the full version of the paper.
The 1-SDL assumption is equivalent to the ordinary DL assumption, which

leads to the following result.

Corollary 1. The improved Schnorr signature scheme is RKA secure with
respect to affine functions in the random oracle model under the DL assump-
tion over G.

6 Improved DSA and Its RKA Security

As described in Sect. 4.2, the original DSA is not RKA secure with respect to
linear functions. In this section, we show that a slight modification yields an
RKA-secure signature scheme with respect to polynomial functions. We refer to
this scheme as the improved DSA.

6.1 Construction

Based on one of DSA variants (introduced as “second variant” in [26]), we con-
struct an RKA secure variant of DSA with respect to polynomial functions. The
slight modification of DSA variant is as follows. The hash function is modified to
take an extra input, which will correspond to a recalculated value of the verifica-
tion key. Suppose that q is a prime, p is a prime such that p−1 mod q = 0, and
G ⊆ Z

∗
p is a group of prime order q. Let g ∈ G be a generator. Let Fp,q : G → Zq

be the mapping defined by g 	→ g mod q, where g ∈ G, and G, q, p are the
parameters of the group.

The improved DSA is defined as follows:

– KeyGen: This algorithm takes 1λ as input, and generates the signing key sk
and the verification key vk as follows.
1. Choose x

$← Z
∗
q and let y ← gx mod p.

2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x and vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗, the verification key vk, and
the signing key sk as input, and generates a signature σ as follows.
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1. Choose t
$← Z

∗
q and let r ← Fp,q(gt mod p).

2. Let ψ ← gx mod p.
3. Let s ← t−1(H(m ‖ r ‖ψ) + x · r) mod q.
4. Output σ ← (r, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification
key vk as input, and verifies the signature as follows.
1. Let r′ ← Fp,q(gH(m ‖ r ‖ y)/syr/s mod p).
2. If r′ = r, output 1, otherwise output 0.

Note that the computation of a hash function at the third step of the signing
algorithm takes as input not only a message and the value r, but also ψ = gx.
This computation is different from that of the second DSA variant [26].

6.2 Theorem Statement

We prove the following theorem about the improved DSA.

Theorem 4. Let d be a positive integer, and assume the mapping Fp,q is col-
lision resistant. Under the d-SDL assumption over G, the signature scheme in
Sect. 6.1 is Φpoly(d)-EUF-CM-RKA secure in the random oracle model.

More precisely, assume that Fp,q is ε-collision-resistant. Then, for any prob-
abilistic polynomial time algorithm A with running time tA, making qS RKA
signing oracle queries, and qH random oracle queries to H, there exists a prob-
abilistic polynomial time algorithm B with running time tB = 2tA + O(qS + qH)
that satisfies the following equation:

AdvΦpoly(d)-euf-cm-rka
A,Σ (λ) ≤

(
(qH + qS)

(
Advd-sdl

B,G (λ) +
1
q

+
2ε

qH + qS

))1/2

. (2)

The proof is given in the full version of the paper.
The 1-SDL assumption is equivalent to the ordinary DL assumption, which

leads to the following result.

Corollary 2. If the DL assumption over G holds and the function Fp,q is
collision-resistant, then the improved DSA is RKA secure with respect to affine
functions in the random oracle model.

7 Conclusions

We analyzed the RKA security of the Schnorr signature scheme and DSA. We
showed that the Schnorr signature scheme and the second DSA variant from
[26] are weak RKA secure with respect to polynomial functions (Φpoly(d)-wEUF-
CM-RKA), but the Schnorr signature scheme and the original DSA are not
fully secure against relatively weak attacks based on linear functions (Φlin-EUF-
CM-RKA). It is not known whether the second DSA variant is vulnerable with
respect to Φpoly(d)-EUF-CM-RKA. We leave this as an open problem. However,
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we proved that simple modifications yield schemes, the improved Schnorr signa-
ture scheme and the improved DSA scheme, which are RKA secure with respect
to polynomial functions (Φpoly(d)-EUF-CM-RKA) in the random oracle model.
The RKA security with respect to polynomial functions is proven under the
d-SDL assumption. Interestingly, considering the case of d = 1, our results show
that our improved Schnorr scheme and the improved DSA are RKA secure with
respect to affine functions in the random oracle model under the ordinary DL
assumption. Moreover, our simple modification of the original Schnorr scheme
and the considered DSA variant does not require the public or private key from
the original schemes to change, and only increases the computational cost of the
signing algorithm with a single exponentiation while no other computational cost
or the signature size will increase. However, the improved schemes do not address
bit-flipping attacks, such as those highlighted by Bao et al. [3]. It remains future
work to construct schemes which are provably secure against these attacks.
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Abstract. Attribute-based signature scheme (ABS) is a functional vari-
ant of digital signature scheme proposed in 2008 by Maji et al. The two
basic requirements of ABS (and a hard task to achieve) is collusion resis-
tance and attribute privacy. In this paper, we employ the two-tier sig-
nature (TTS) technique to achieve the collusion resistance. Here TTS
was proposed in 2007 by Bellare et al., where a signer receives two tier
secret keys sequentially. The secondary secret key is served as a one-
time key at the timing of signing. First, we propose a definition of an
attribute-based two-tier signature scheme (ABTTS). Then we provide
ABTTS concretely that enjoys existential unforgeability against chosen-
message attacks, collusion resistance and attribute privacy, in the stan-
dard model. For the construction, enhancing the Camenisch-Lysyanskaya
signature, we construct signature bundle schemes that are secure under
the Strong RSA assumption and the Strong Diffie-Hellman assumption,
respectively. These signature bundle schemes enable ABTTS to achieve
attribute privacy. Then, using the signature bundle as a witness in the
Σ-protocol of the boolean proof, we obtain attribute-based identification
schemes (ABIDs). Finally, by applying the TTS technique to ABIDs, we
achieve ABTTSs. A feature of our construction is that ABTTS in the
RSA setting is pairing-free.

Keywords: Digital signature · Attribute-based · Two-tier keys

1 Introduction

Digital signature scheme is one of the most widely recognized cryptographic
primitives. Since its invention, functional variants have been proposed, which
include attribute-based signature schemes (ABS) developed by Guo and Zeng [12]
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and Maji et al. [14] in 2008. In ABS, a message m is associated with a signing
policy f that is described as a boolean formula over signers’ attributes. Then
only signers with attributes that satisfy f can make a legitimate signature σ
on m. A verifier can check whether the signature σ is valid in accordance with
the signing policy f . The two basic requirements of ABS (and a hard task to
achieve) is collusion resistance against collecting secret keys and attribute pri-
vacy. Intuitively, ABS is called to have attribute privacy if any cheating verifier
cannot distinguish two distributions of signatures each of which is generated by
different satisfying attribute set.

A two-tier signature scheme (TTS) is a digital signature scheme proposed
in 2007 by Bellare and Shoup [3], in which a signer receives two tier secret
keys sequentially, the latter of which is served as a one-time signing key at
the timing of signing. Accordingly, two tier public keys are issued sequentially.
These two-tier keys fit the Fiat-Shamir signature scheme and enable it to achieve
existential unforgeability against chosen-message attacks (EUF-CMA) in the
standard model.

Our Contribution. Our first contribution is to define the syntax of an
attribute-based two-tier signature scheme (ABTTS) for the first time. The reason
why we introduce ABTTS (in a construction of ABS) is to achieve the collusion
resistance by employing the TTS technique. The issuer of a secondary secret key
can check integrity of components in a primary secret keys so that the issuer can
avoid collusion attacks.

Our second contribution is to provide ABTTS concretely that enjoys exis-
tential unforgeability against chosen-message attacks, collusion resistance and
attribute privacy, in the standard model. It is interesting from the view point of
theory (and also efficiency) that our ABTTS in the RSA setting is pairing-free.

Our Approach to Concrete Construction. First, enhancing the Camenisch-
Lysyanskaya signature, we construct signature bundle schemes that are secure
under the Strong RSA assumption and the Strong Diffie-Hellman assumption,
respectively. These signature bundle schemes later enable ABTTS to achieve
attribute privacy. Then, using the signature bundle as a witness in the Σ-protocol
of the boolean proof, we obtain attribute-based identification schemes (ABIDs).
Finally, by applying the TTS technique to ABIDs, we achieve ABTTSs.

Comparison: Security, Functionality and Signature Length. We com-
pare our ABTTS with previously proposed schemes from the view point of secu-
rity, functionality and signature length. The comparison is summarized in Table 1
with notations as follows. A prime of bit length λ (the security parameter in the
discrete logarithm setting) is denoted by p. Though a pairing map e should be
analysed for the asymmetric bilinear groups [11], we simply evaluate the sym-
metric case in which both source groups are Gp of order p. We assume that an
element of Gp is represented by 2λ bits. l and r mean the number of rows and
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columns of the share-generating matrix for monotone access formula f (that
is, an access structure), respectively. CR means the collision resistance of an
employed hash function. q-SDH means the Strong Diffie-Hellman assumption
with q-type input for bilinear groups [4]. DLIN means the Decisional Linear
assumption for bilinear groups [16]. DDH means the Decisional Diffie-Hellman
assumption for a cyclic group [8]. DLog means the Discrete Logarithm assump-
tion for a cyclic group [8]. q-SRSA means the Strong RSA assumption with
q-type input [13]. DDH in QR(N) means the Decisional Diffie-Hellman assump-
tion for quadratic residues modulo N (the RSA modulus) [13]. “info.” means
information-theoretic security and “comp.” means computational security.
λrsa means the security parameter in the RSA setting, and λ̂ means the security
parameter in either the RSA setting or the discrete logarithm setting.

Table 1. Comparison of security, functionality and signature length.

Scheme Security Assump- Access Pairing Attribute Length of
Model tion Formula -Free Privacy Signature

Maji q 2(HDS- λ)×
et al. [14] Std. ∧DLIN Mono. - �(info.) (51l + 2r + 18λl)

2(NILDTO λ)×
[16] Std. ∧CR Non-m. - �(info.) (9l + 11)

Herranz q-SRSA∧[DDH in λrsa(5 + κ
λrsa

)l

[13] R.O. QR(N)]∧CR Mono. � �(comp.) +λrsa3 − κ(θ − 1)

Ghadafi q-SDH∧DDH∧ (2λ)(3l + r + 3)
et al. [8] R.O. DLog∧CR Mono. - - +λ(8l + 4)

Anada [DLog∨ 2(]vnIASR λ̂)l

et al. [2] R.O. ∧CR Mono. � - +λ̂(4l − 1)

Our ABTTS [q-SRSA∨q 2(]HDS- λ̂)2l

Std. ∧CR Mono. � �(info.) +λ̂2l

First, note that our scheme assumes the secondary secret key and the sec-
ondary public key are issued as one-time keys at the timing of signing. This
means the signer and the verifier should be on-line and they need to verify a cer-
tificate of the secondary public key. One possibility of executing such a process
is to use Online Certificate Status Protocol (OCSP) by RFC 6990 [9].

The scheme of [16] has advantages in the security model, access formula
and information-theoretically secure attribute privacy, whereas our ABS realizes
shorter length of signature (less than a half). The scheme of [13] is in the RSA
setting and its security parameter λrsa is almost 10 times longer than λ in the
DLog setting. For example, λrsa = 2048 is almost equivalent to λ = 224-bit
security [17]. (θ is the threshold value of the threshold-type access structure.
κ is explained in the work [13].) Therefore, our ABS in the DLog setting realizes
shorter length of a signature.
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2 Preliminaries

The security parameter is denoted as λ. Bit length of a string x is denoted as
|x|. The expression “a

?= b” returns a value 1 if a = b and 0 otherwise. The

expression “a
?∈ S” returns a value 1 if a ∈ S and 0 otherwise.

Σ-protocol [6,7]. A Σ-protocol on a binary NP relation R is a public coin
3-move protocol between interactive PPT algorithms P and V on initial input
(x,w) ∈ R for P and x for V. x and w are called a statement and a witness,
respectively. P sends the first message called a commitment Cmt, then V sends
a random bit string called a challenge Cha, and P answers with a third message
called a response Res. Then V applies a decision test on (x,Cmt,Cha,Res) to
return accept (1) or reject (0). If V accepts, then the triple (Cmt,Cha,Res) is
said to be an accepting conversation. Cha is chosen uniformly at random from
the challenge space ChaSp(1λ) := {1, 0}l(λ) with l(·) being a super-log function.

The Σ-protocol is written by a PPT algorithm Σ as follows. Cmt ←
Σ1(x,w): the process of selecting the first message Cmt according to the pro-
tocol Σ on input (x,w) ∈ R. Similarly we denote Cha ← Σ2(1λ), Res ←
Σ3(x,w,Cmt,Cha) and b ← Σvrfy(x,Cmt,Cha,Res). The Σ-protocol must
possess the three properties: completeness, special soundness and honest-verifier
zero-knowledge [6,7]. As a zero-knowledge proof-of-knowledge system, we denote
Σ as ZKPK[γ : Γ ], where γ is a knowledge to be proved and Γ is the condition
that γ should satisfy.

Signature Bundle Scheme [14]. A signature bundle (a credential bundle in
[14]) scheme SB is an extended notion of a signature scheme. It consists of three
PPTs: SB = (SB.KG,SB.Sign,SB.Vrfy).
SB.KG(1λ) → (PK,SK). Given 1λ as input, it returns a public key PK and a
secret key SK.
SB.Sign(PK,SK, (mi)n

i=1) → (τ, (σi)n
i=1). Given PK, SK and messages (mi)n

i=1,
it returns a tag τ and signatures (σi)n

i=1. n is bounded by a polynomial in λ.
SB.Vrfy(PK, (mi)n

i=1, (τ, (σi)n
i=1)) → 1/0. Given PK, messages (mi)n

i=1, a tag
τ and signatures (σi)n

i=1, it returns 1 or 0.
A PPT adversary F tries to make a forgery ((m∗

i )
n∗
i=1, (τ

∗, (σ∗
i )n∗

i=1)). Here
τ∗ is called a target tag . An existential forgery by a chosen-message attack is
defined by:

Expreuf-cma
SB,F (1λ,U)

(PK,SK) ← SB.KG(1λ), ((m∗
i )

n∗
i=1, (τ

∗, (σ∗
i )n∗

i=1)) ← FSBSIGN (PK)

If SB.Vrfy(PK, (m∗
i )

n∗
i=1, (τ

∗, (σ∗
i )n∗

i=1)) = 1
then Return Win else Return Lose

Giving a vector of messages (mi)n
i=1, F queries SBSIGN (PK,SK, ·) for a valid

signature bundle (τ, (σi)n
i=1). τ∗ should be different from any queried tag τ ,

or, whenever τ∗ is equal to a queried tag τ , it should hold that {m∗
i }n∗

i=1 �⊆
{mi}n

i=1 for any queried (mi)n
i=1. The advantage of F over SB in the experiment



40 H. Anada et al.

of existential forgery by chosen-message attack is defined as Adveuf-cma
SB,F (λ,U) def=

Pr[Expreuf-cma
SB,F (1λ,U) returns Win].

Definition 1. SB is called existentially unforgeable against chosen-message
attack if, for any PPT F , Adveuf-cma

SB,F (λ,U) is negligible in λ.

Access Structure [10]. Let U = {ati}u
i=1 be an attribute universe. |U| = u is

bounded by a polynomial in λ (U is called a small universe).
Let f = f(Xat1 , . . . , Xata

) be a monotone boolean formula over U = {Xat}at,
where boolean connectives are AND-gate (∧) and OR-gate (∨). In this paper, we
assume that no NOT-gate (¬) appears in f . In other words, we consider only a
monotone access formula f .1 We denote the set of subscripts (that is, attributes)
{at1, . . . , ata} as At(f) and the arity a as arity(f), respectively. For S ∈ 2U , we

evaluate the boolean value of f at S as: f(S) def= f
(
Xat ← [at

?∈ S]; at ∈ At(f)
) ∈

{1, 0}. We call a boolean formula f with this map an access formula over U . An
access formula corresponds to a signing policy in the case of attribute-based
signatures.

An access formula f can be represented by a finite binary tree Tf . Each
inner node corresponds to an AND-gate (∧) or OR-gate (∨) in f . Each leaf node
l corresponds to a term Xat (not a variable Xat) in f in one-to-one way. For a
finite binary tree T , we denote the root node, the set of all nodes, the set of all
leaf nodes, the set of all inner nodes (all nodes excluding leaf nodes) and the set
of all tree-nodes (all nodes excluding the root node) as r(T ), Node(T ), Leaf(T ),
iNode(T ) and tNode(T ), respectively. Then an attribute map ρ(·) is defined as:
ρ : Leaf(T ) → U , ρ(l) def= (at that corresponds to l). If ρ is not injective, then
we call the case multi-use of attributes.

Attribute-Based Identification Scheme [1]. An attribute-based identifi-
cation scheme, ABID, consists of four PPT algorithms: (ABID.Setup,
ABID.KG,P,V).

ABID.Setup(1λ,U) → (PK,MSK). Given the security parameter 1λ and an
attribute universe U , it returns a public key PK and a master secret key MSK.

ABID.KG(PK,MSK,S) → SKS . Given the public key PK, the master secret
key MSK and an attribute set S ⊂ U , it returns a secret key SKS that corre-
sponds to S.

P(PK,SKS ) and V(PK,f). P and V are interactive algorithms called a prover
and a verifier , respectively. P takes as input the public key PK and the secret
key SKS . Here the secret key SKS is given to P by an authority. V takes as
input the public key PK and an access formula f . P is provided V’s access
formula f by the first move. P and V interact with each other for at most
constant rounds. Then, V returns its decision 1 or 0. When it is 1, we say
that V accepts P for f . When it is 0, we say that V rejects P for f . We
demand correctness of ABID that for any λ, for any S and for any f such
1 This limitation can be removed by adding negation attributes to U for each attribute

in the original U though the size of the attribute universe |U| doubles.
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that f(S) = 1, Pr[(PK,MSK) ← Setup(1λ,U); SKS ← KG(PK,MSK, S); b ←
〈P(PK,SKS),V(PK, f)〉 : b = 1] = 1.

An adversary A tries to make a verifier V accept with an access formula f∗

of his choice. Here f∗ is called a target access formula. A concurrent attack is
defined by:

ExprmtcaABID,A(1λ,U)

(PK,MSK) ← ABID.Setup(λ,U), (f∗, st) ← AKG,Pj |qprv
j=1 (PK,U)

b ← 〈A(st),V(PK, f∗)〉, If b = 1 then Return Win else Return Lose

Giving an attribute set Si, A queries KG(PK,MSK, ·) for the secret key SKSi
.

In addition, A invokes provers Pj(PK,SK·), j = 1, . . . , q′
prv, . . . , qprv, by giv-

ing a pair (Sj , fj). Acting as a verifier with an access formula fj , A inter-
acts with each Pj(PK,SKSj

) concurrently. In the above we consider the adap-
tive target f∗. In key-extraction queries, each attribute set Si must satisfy
f∗(Si) = 0. In interactions with each prover, f∗(Sj) = 0. The advantage of

A over ABID in the game of concurrent attack is defined as Advca
ABID,A(λ) def=

Pr[ExprmtcaABID,A(1λ,U) returns Win]. ABID is called secure against concurrent
attacks if, for any PPT A, Advca

ABID,A(λ) is negligible in λ.

Strong RSA Assumption [5]. Let p = 2p′ + 1 denote a safe prime (p′ is
also a prime). Let N denote the special RSA modulus; that is, N = pq where
p = 2p′ + 1 and q = 2q′ + 1 are two safe primes such that |p′| = |q′| = λ −1. We
denote the probabilistic algorithm that generates such N at random on input 1λ

as RSAmod. Let QRN ⊂ Z
∗
N denote the set of quadratic residues modulo N ; that

is, elements a ∈ Z
∗
N such that a ≡ x2 mod N for some x ∈ Z

∗
N . The strong RSA

assumption [5] states that for any PPT A, the following advantage is negligible

in λ: Advsrsa
RSAmod,S(λ,U) := Pr[N ← RSAmod(1λ), g $← QRN , (V, e) ← A(N, g) :

e > 1 ∧ V e ≡ g mod N ].

Strong Diffie-Hellman Assumption [4]. Let p denote a prime of bit length
λ. Let e : G1 × G2 → GT denote bilinear groups of order p, where G1

is generated by g, G2 is generated by h and GT is generated by e(g, h) �=
1GT

. We denote the probabilistic algorithm that generates such parameters
params := (p,G1,G2,GT , e) on input 1λ as BlGrp. Let q denote a num-
ber that is less than a fixed polynomial in λ. The strong Diffie-Hellman
assumption [4] states that for any PPT A, the following advantage is neg-

ligible in λ: Advsdh
BlGrp,S(λ,U) := Pr[params ← BlGrp(1λ), α $← Zp, (u, e) ←

A(params, (g, gα, gα2
, . . . , gαq

, h, hα)) : uα+e = g].

3 Syntax of Attribute-Based Two-Tier Signature Scheme

In this section, we propose a definition of syntax of an attribute-based two-tier
signature scheme (ABTTS). Then, we define a chosen-message attack (CMA)
on ABTTS where an adversary makes an existential forgery, and we define the
existential unforgeability (EUF) against CMA.
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3.1 Definition: Syntax of ABTTS

An attribute-based two-tier signature scheme, ABTTS, consists of five PPTs:
ABTTS= (ABTTS.Setup, ABTTS.KG, ABTTS.SKG, ABTTS.Sign,
ABTTS.Vrfy).

ABTTS.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and the
attribute universe U , it returns a master secret key MSK and a public key PK.

ABTTS.KG(MSK,PK, S) → SKS . Given the master secret key MSK, the pub-
lic key PK and an attribute set S ⊂ U , it returns a secret key SKS that corre-
sponds to S.

ABTTS.SKG(MSK,PK,SKS , f) → (SSKS,f ,SPKf ). Given the master secret
key MSK, the public key PK, a secret key SKS and an access formula f , it
returns a pair (SSKS,f ,SPKf ) of a secondary secret key and a secondary public
key.

ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f)) → σ. Given the public key PK,
a secret key SKS , a secondary secret key SSKS,f , a secondary public key SPKf

and a pair (m, f) of a message m ∈ {1, 0}∗ and an access formula f , it returns
a signature σ.

ABTTS.Vrfy(PK,SPKf , (m, f), σ) → 1/0. Given the public key PK, a sec-
ondary public key SPKf , a pair (m, f) of a message and an access for-
mula and a signature σ, it returns a decision 1 or 0. When it is 1, we say
that ((m, f), σ) is valid . When it is 0, we say that ((m, f), σ) is invalid .
We demand correctness of ABTTS that, for any λ, any U , any S ⊂ U
and any (m, f) such that f(S) = 1, Pr[(MSK,PK) ← ABTTS.Setup
(1λ,U), SKS ← ABTTS.KG(MSK,PK, S), (SSKS,f ,SPKf ) ← ABTTS.SKG
(MSK,PK,SKS , f), σ ← ABTTS.Sign(SKS ,PK,SSKS,f ,SPKf , (m, f)), b ←
ABS.Vrfy(PK,SPKf , (m, f), σ) : b = 1] = 1.

3.2 Security Against Chosen-Message Attacks on ABTTS

A PPT adversary F tries to make a forgery ((m∗, f∗), σ∗) that consists of a
message, a target access formula and a signature. The following experiment
Expreuf-cma

ABTTS,F (1λ,U) of a forger F defines the chosen-message attack making an
existential forgery .

Expreuf-cma
ABTTS,F (1λ,U) :

(PK,MSK) ← ABTTS.Setup(1λ,U)

((m∗, f∗), σ∗) ← FABTTSKG,ABTTSSPK,ABTTSSIGN (PK)
If ABTTS.Vrfy(PK,SPKf , (m∗, f∗), σ∗) = 1
then Return Win else Return Lose

In the experiment, F issues key-extraction queries to its oracle ABTTSKG, sec-
ondary public key queries to its oracle ABTTSSPK and signing queries to its ora-
cle ABTTSSIGN . Giving an attribute set Si, F queries ABTTSKG(MSK,PK, ·)
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for a secret key SKSi
. Giving an attribute set S and an access formula f ,

F queries ABTTSSPK(MSK,PK,SK·, ·) for a secondary public key SPKf . Giv-
ing an attribute set Sj and a pair (mj , fj) of a message and an access formula,
F queries ABTTSSIGN (PK,SK·,SSK·,·,SPK·, (·, ·)) for a valid signature σ when
f(Sj) = 1. As a rule of the two-tier signature, each published secondary public
key SPKf can be used only once to obtain a signature [3].

f∗ is called a target access formula of F . Here we consider the adaptive target
case in the sense that F is allowed to choose f∗ after seeing PK and issuing
three queries. Two restrictions are imposed on F : (1) f∗(Si) = 0 for all Si in
key-extraction queries; (2) (m∗, f∗) was never queried in signing queries. The
numbers of key-extraction queries and signing queries are at most qke and qsig,
respectively, which are bounded by a polynomial in λ. The advantage of F over
ABTTS is defined as Adveuf-cma

ABTTS,F (λ,U) def= Pr[Expreuf-cma
ABTTS,F (1λ,U) returns Win].

Definition 2 (EUF-CMA of ABTTS). ABTTS is called existentially unforge-
able against chosen-message attacks if, for any PPT F and any U ,
Adveuf-cma

ABTTS,F (λ,U) is negligible in λ.

Then we define attribute privacy of ABTTS.

Definition 3 (Attribute Privacy of ABTTS). ABTTS is called to have
attribute privacy if, for all (PK,MSK) ← ABTTS.Setup(1λ,U), for all
message m, for all attribute sets S1 and S2, for all signing keys SKS1 ←
ABTTS.KG(PK,MSK, S1) and SKS2 ← ABTTS.KG(PK,MSK, S2), for all
secondary keys (SSKS1,f ,SPKf ) ← ABTTS.SKG(MSK,PK,SKS1 , f) and
(SSKS2,f ,SPKf ) ← ABTTS.SKG(MSK,PK,SKS2 , f) and for all access for-
mula f such that [f(S1) = 1 ∧ f(S2) = 1] ∨ [f(S1) �= 1 ∧ f(S2) �= 1], two
distributions
σ1 ← ABTTS.Sign(PK,SKS1 ,SSKS1,f ,SPKf , (m, f)) and
σ2 ← ABTTS.Sign(PK,SKS2 ,SSKS2,f ,SPKf , (m, f)) are identical.

4 Σ-protocol for Monotone Access Formula

In this section, we enhance the identification protocol by Okamoto [15] to the
boolean proof system Σf proposed by Anada et al. [2].

4.1 Our Language Lf

We assume R to be an NP-relation. Let R(·, ·) : ({1, 0}∗)2 → {1, 0} denote the

relation-function which returns (x,w)
?∈ R. Let f = f((Xij

)a
j=1) be a boolean

formula over boolean variables {Xi}i.

Definition 4 (Language for f). The relation Rf and the corresponding lan-
guage Lf for a boolean formula f are:

Rf
def
= {(

x = (xij
)a
j=1, w = (wij

)a
j=1

) ∈ {1, 0}∗ × {1, 0}∗; f(R(xij
, wij

)a
j=1) = 1},

Lf
def
= {x ∈ {1, 0}∗;∃w, (x,w) ∈ Rf}.
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We consider hereafter the case that w is divided into (wij
)a
j=1 = (eij

, sij
)a
j=1.

(In/after the next section, we will consider the special case that eij
, j = 1, . . . , a,

are all equal to a single element e. The common component e will be a tag τ of
a signature bundle.)

4.2 Our Σ-protocol Σf for Lf

Our Σ-protocol Σf is a zero-knowledge proof-of-knowledge ZKPK[w :=
(wρ(l))l := (eρ(l), sρ(l))l, l ∈ Leaf(Tf ) : x := (equations)] for the language Lf ,
where the equations are for all the leaf nodes:

Zρ(l) = Z
eρ(l)

ρ(l),1Z
sρ(l)

ρ(l),2, l ∈ Leaf(Tf ). (1)

In the above equation, Zρ(l) is represented by (eρ(l), sρ(l)) to the base
(Zρ(l),1, Zρ(l),2). A prover P(x,w, f) and a verifier V(x, f) execute our Σ-protocol
in the following way.
P(x,w, f). To prove the knowledge of those representations (eρ(l), sρ(l)), P com-
putes the first message, a commitment (Cmtl)l, as follows. Let Z̄ be the exponent
domain for the above expression. To do the computation honestly at a leaf l,
P chooses ηe,l, ηs,l

$← Z̄, and puts Cmtl := Z
ηe,l

ρ(l),1Z
ηs,l

ρ(l),2. To simulate the com-

putation at a leaf l, P chooses ηe,l, θs,l
$← Z̄, and in addition, (cn)n, cn ∈ Z̄.

Here (cn)n are chosen in accordance with the so called boolean proof system
of Anada et al. [2]. Then P puts for each leaf l θe,l := ηe,l + cleρ(l), and
Cmtl := Z−cl

ρ(l)Z
θe,l

ρ(l),1Z
θs,l

ρ(l),2. P sends (Cmtl)l to a verifier V.
V(x, f). Receiving (Cmtl)l, V(x, f) chooses the second message: a challenge

Cha
$← Z̄, uniformly at random, and sends Cha to P.

P(x,w, f). Receiving Cha, P completes to compute the third message; that is,
P completes the division (Chan := cn)n such that Char(Tf ) = Cha, and a
response (Resl := (θe,l, θs,l))l with θe,l := ηe,l + cleρ(l), θs,l := ηs,l + clsρ(l). P
sends (Chal)l and (Resl)l to V.
V(x, f). Receiving (Chal)l and (Resl)l, V checks the integrity of the division
(Chal)l. Then V verifies:

Cmtl
?= Z−cl

ρ(l)Z
θe,l

ρ(l),1Z
θs,l

ρ(l),2, l ∈ Leaf(Tf ). (2)

According to the division rule of Anada et al. [2], the integrity of (Chal = cl)l

can be checked as follows: From the leaves to the root, and at every inner node
n ∈ iNode(Tf ) as well as its two children ch1, ch2;

• If n is an AND node(∧), then verify cch1

?= cch2 . If so, put cn := cch1 .

• Else if n is an OR node (∨), then just putcn := cch1 + cch2 .

• If n is the root node, then verify cn
?= Cha.

• Repeat until all n ∈ iNode(Tf ) are verified.

Our Σf can be shown to possess the three requirements of Σ-protocol: com-
pleteness, special soundness and honest-verifier zero-knowledge.
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5 Signature Bundle Scheme in RSA

In this section, we propose a signature bundle scheme in the RSA setting by
extending the Camenisch-Lysyanskaya signature scheme [5]. We first construct
the scheme. Then we discuss its EUF-CMA security. (The scheme in the discrete
logarithm setting is proposed in Appendix A).

5.1 Construction of Our SB in RSA

Our signature bundle scheme SB = (SB.KG,SB.Sign,SB.Vrfy) is described
as follows. Let lM be a parameter. The message space M consists of all binary
strings of length lM. Let n = n(λ) denote the maximum number of messages
made into a bundle, which is a polynomial in λ.
SB.KG(1λ) → (PK,SK). Given 1λ, it chooses a special RSA modulus N = pq
of length lN = λ, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes. For i = 1
to n, it chooses gi,0, gi,1, gi,2

$← QRN . It puts PK := (N, (gi,0, gi,1, gi,2)n
i=1) and

SK = p, and returns (PK,SK).
SB.Sign(PK,SK, (mi)n

i=1) → (τ, (σi)n
i=1). Given PK,SK and messages (mi)n

i=1

each of which is of length lM, it chooses a prime e of length le = lM + 2 at
random. For i = 1 to n, it chooses an integer si of length ls = lN + lM + l at
random, where l is a security parameter, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 gsi

i,2)
1
e . (3)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)n
i=1).

SB.Vrfy(PK, (mi)n
i=1, (τ, (σi)n

i=1)) → 1/0. Given PK, (mi)n
i=1 and a signature

bundle (τ, (σi)n
i=1), it verifies whether the following holds: e := τ is of length le

and for i = 1 to n: Ae
i = gi,0g

mi
i,1 gsi

i,2.

5.2 Security of Our SB in RSA

Theorem 1 (EUF-CMA of Our SB in RSA). Our signature bundle scheme
SB is existentially unforgeable against chosen-message attacks under the Strong
RSA assumption.

6 Attribute-Based ID Scheme in RSA

In this section, we combine two building blocks to obtain our attribute-based
identification scheme; that is, the Σ-protocol Σf in Sect. 4.2 and the signature
bundle scheme SB in Sect. 5.1.
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6.1 Construction of Our ABID in RSA

ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an
attribute universe U , it chooses a special RSA modulus N = pq, p = 2p′ + 1, q =
2q′ + 1 of length lN = 2λ. For at ∈ U , it chooses gat,0, gat,1, gat,2

$← QRN and a

hash key μ
$← Hashkeysp(1λ) of a hash function Hashμ with the value in Zφ(N).

It puts PK := (N, (gat,0, gat,1, gat,2)at∈U , μ,U) and MSK := p. It returns PK and
MSK.

ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset S,
it chooses a prime e of length le. For at ∈ S, it computes aat ← Hashμ(at),

sat
$← Z of length le, Aat := (gat,0gaat

at,1g
sat

at,2)
1
e . It puts SKS := (e, (sat, Aat)at∈S).

P(SKS ,PK, f) and V(PK, f) execute Σf with the following precomputation. For

at ∈ At(f), P chooses rat
$← Z of length le. If at ∈ S then s′

at := sat+erat, A
′
at :=

Aatg
−rat

at,2 . Else s′
at

$← Z of length le, A′
at

$← Z
∗
N . P puts Zat := gat,0g

aat

at,1, Zat,1 :=
A′

at, Zat,2 := gat,2. Then the statement for Σf is x := (xat := (Zat, Zat,1, Zat,2))at
and the witness is w := (τ := e, (wat := s′

at)at), where at ∈ At(f) for x and w.
P sends the randomized values (A′

at)at to V for V to be able to compute the
statement x.

After the above precomputation, P and V can execute Σf for the language
Lf . In other words, P and V execute ZKPK[(e, s′

ρ(l))l, l ∈ Leaf(Tf ) : equations],

for the language Lf , where equations are: Zρ(l) = Ze
ρ(l),1Z

s′
ρ(l)

ρ(l),2, l ∈ Leaf(Tf ).
Note that V verifies whether the following verification equations hold or not for
all the leaf nodes:

Cmtl
?= Z−cl

ρ(l)Z
θe,l

ρ(l),1Z
θs′,l

ρ(l),2, l ∈ Leaf(Tf ). (4)

V returns 1 or 0 accordingly.

6.2 Security of Our ABID in RSA

Claim 1 (Concurrent Security of Our ABID Under a Single Tag). Our
ABID is secure against concurrent attacks if our signature bundle scheme SB

is existentially unforgeable against chosen-message attacks and if the extracted
values e by the extractor of the underlying Σ-protocol Σf is a single value.

Note that Claim 1 is needed only as intermediate result. That is, the assump-
tion that the extracted value e is a single value is assured by the two-tier keys
issuer, ABTTS.SKG, in the next section.

7 Attribute-Based Two-Tier Signature Scheme in RSA

In this section, we construct our ABTTS concretely. By applying the method
of two-tier keys to our ABID in the last section, we attain the ABTTS scheme.
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Our ABTTS enjoys EUF-CMA, collusion resistance and attribute privacy, in the
standard model.

The critical point is that the secondary key generator ABTTS.SKG can
issue a legitimate statement x for the boolean proof system Σf . Hence our
ABTTS can avoid collusion attacks on secret keys.

7.1 Construction of Our ABTTS in RSA

ABTTS.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an
attribute universe U , it chooses a special RSA modulus N = pq, p = 2p′ + 1,

q = 2q′ + 1 of length lN = 2λ. For at ∈ U , it chooses gat,0, gat,1, gat,2
$← QRN

and a hash key μ
$← Hashkeysp(1λ) of a hash function Hashμ with the value in

Zφ(N). It puts PK := (N, (gat,0, gat,1, gat,2)at∈U , μ,U) and MSK := p. It returns
PK and MSK.

ABTTS.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset
S, it chooses a prime e of length le. For at ∈ S, it computes aat ← Hashμ(at),

sat
$← Z of length le, Aat := (gat,0gaat

at,1g
sat

at,2)
1
e . It puts SKS := (e, (sat, Aat)at∈S)

and returns SKS .

ABTTS.SKG(MSK,PK,SKS , f) → (SSKS,f ,SPKf ). Given MSK, PK, the
secret key SKS and an access formula f , it first checks whether the components
eρ(l) in SKS , ρ(l) ∈ S, are equal to a single value e or not. If it is false, then it
aborts. Then it computes the statement for Σf , x := (xat := (Zat, Zat,1, Zat,2))at,
and the witness w := (τ := e, (wat := s′

at)at), where at ∈ At(f) for x and w.
Then it runs the prover P according to Σf as ((Cmtl)l, st) ← P(SKS ,PK, f).
Then it puts SSKS,f := (w, (Cmtl)l||st) and SPKf := (x, (Cmtl)l). It returns
SSKS,f and SPKf .

ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f)) → σ. Given PK, SKS , the sec-
ondary secret key SSKS,f , the secondary public key SPKf , and a pair (m, f)
of a message in {1, 0}lM and an access formula f , it computes Cha ←
Hashμ((A′

at)at ‖(Cmtl)l‖ m). Then, it runs the prover P according to Σf as
((Chal)l(Resl)l ← P((Cmtl)l ‖Cha‖ , st). Finally, it returns the signature
σ := ((A′

at)at, (Cmtl)l, (Chal)l, (Resl)l).

ABTTS.Vrfy(PK,SPKf , (m, f), σ) → 1/0. Given PK, the secondary public
key SPKf , a pair (m, f) and a signature σ, it first computes the statement
for Σf , x := (xat := (Zat, Zat,1, Zat,2))at, and the witness w := (τ := e,
(wat := s′

at)at), where at ∈ At(f) for x and w. Then it computes Cha ←
Hashμ((A′

at)at ‖(Cmtl)l‖ m). Then, it runs the verifier V according to Σf as
acc or 0 ← V(PK, f, (Cmtl)l ‖CHA‖ (Resl)l). It returns 1 or 0 accordingly.

7.2 Security of Our ABTTS in RSA

Theorem 2 (EUF-CMA of Our ABTTS in RSA). Our attribute-based two-
tier signature scheme ABTTS is existentially unforgeable against chosen-message
attacks under the Strong RSA assumption in the standard model.
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Theorem 3 (Attribute Privacy of Our ABTTS in RSA). Our attribute-based
two-tier signature scheme ABTTS has attribute privacy.

8 Conclusions

We defined the attribute-based two-tier signature scheme (ABTTS). Then we
provided ABTTS concretely that enjoys EUF-CMA, collusion resistance and
attribute privacy, in the standard model.

Acknowledgements. Concerning the first and the second authors, this work
is partially supported by Grants-in-Aid for Scientific Research; Research Project
Number:15K00029.

Appendix A Signature Bundle Scheme in Discrete Log

Our pairing-based signature bundle scheme, SB = (SB.KG,SB.Sign,
SB.Vrfy), is described as follows.

SB.KG(1λ) → (PK,SK). Given 1λ, it executes a group generator BlGrp(1λ) to

get (p,G1,G2,GT , e(·, ·)). For i = 1 to n, it chooses gi,0, gi,1, gi,2
$← G1, h0

$←
G2, α

$← Zp and it puts h1 := hα
0 . It puts PK := ((gi,0, gi,1, gi,2)n

i=1, h0, h1) and
SK := α, and returns (PK,SK).

SB.Sign(PK,SK, (mi)n
i=1) → (τ, (σi)n

i=1). Given PK,SK and messages (mi)n
i=1

each of which is of length lM, it chooses e
$← Zp. For i = 1 to n, it chooses

si
$← Zp, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 gsi

i,2)
1

α+e . (5)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)n
i=1).

SB.Vrfy(PK, (mi)n
i=1, (τ, (σi)n

i=1)) → 1/0. Given PK, (mi)n
i=1 and (τ, (σi)n

i=1),
it verifies whether the following holds: e(Ai, h

e
0h1) = e(gi,0g

mi
i,1 gsi

i,2, h0), breaki =
1, . . . , n.

Theorem 4 (EUF-CMA of Our SB in Discrete Log). Our signature bundle
scheme SB is existentially unforgeable against chosen-message attack under the
Strong Diffie-Hellman assumption.

Our ABID and ABTTS in the discrete logarithm setting will be given in the
full version.
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Abstract. Broadcasting is a very efficient way to securely transmit
information to a large set of geographically scattered receivers, and
in practice, it is often the case that these receivers can be grouped in
sets sharing common characteristics (or attributes). We describe in this
paper an efficient ciphertext-policy attribute-based broadcast encryption
scheme (CP-ABBE) supporting negative attributes and able to handle
access policies in conjunctive normal form (CNF). Essentially, our scheme
is a combination of the Boneh-Gentry-Waters broadcast encryption and
of the Lewko-Sahai-Waters revocation schemes; the former is used to
express attribute-based access policies while the latter is dedicated to
the revocation of individual receivers. Our scheme is the first one that
involves a public key and private keys having a size that is independent
of the number of receivers registered in the system. Its selective secu-
rity is proven with respect to the Generalized Diffie-Hellman Exponent
(GDHE) problem on bilinear groups.

Keywords: Attribute-based encryption · Broadcast encryption

1 Introduction

Broadcast channels allow transmitting information to a large set of geographi-
cally scattered receivers in a very efficient way. When this information is of high
value, such as a high-definition Pay-TV stream or when delivered by a military
geolocation system, for instance, one needs technical ways to enforce the signal
reception by authorized receivers only. More than twenty years ago, the prob-
lem of securing a broadcast channel has began to attract cryptographers: the
first works were the ones of Berkovits [2] and of Fiat and Naor [15], who coined
the term “broadcast encryption”. The underlying idea is that the broadcasting
center sends an encrypted message to a set of non-revoked receivers, which is a

This work was supported by the EUREKA-Celtic+ H2B2VS project and by the
University of Applied Sciences and Arts Western Switzerland (HES-SO). It was
performed while the first author was working at HES-SO/HEIG-VD.

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 53–68, 2016.
DOI: 10.1007/978-3-319-30840-1 4



54 B. Wesolowski and P. Junod

subset of all receivers. Obviously, revoked receivers (or other entities) spying the
broadcast channel must not be able to decrypt a ciphertext, even if they collude
together by sharing their private key material.

Precisely, if we denote by U, with n = |U|, the set of users (or receivers)
and by R, with � = |R|, the set of revoked receivers, respectively, a broadcast
encryption scheme is often meant to allow the secure transmission of information
to an arbitrary set of receivers, i.e., when n − � � n, while revocation systems
are designed to exclude a small set of rogue receivers, i.e. when � � n.

A key characteristic of broadcast encryption and revocation schemes is the
fact that no synchronism is assumed between the broadcasting center and the
receivers, besides the initial key setup procedure: one speaks from stateless
receivers. It means that, once each receiver is provisioned with its decryption
key material, all the information required to decrypt a ciphertext must be con-
tained in that ciphertext. Many stateless broadcast encryption schemes have
been proposed in the past, being in the secret-key [18,20,34]) or in the public-
key settings [6–8,12,13,17,27,37], while a large body of literature tackling the
same problem, but for stateful receivers, this time, is available; we refer the
reader to [9] and the references therein.

Attribute-Based Encryption. In practice, it is often the case that the receivers in
a system can be grouped by common characteristics (or attributes). If we stick
to a scenario around Pay-TV, receivers could be categorized by geographical
location (“receivers located in California”, “receivers located in a rural zone”), by
technical capabilities (“receivers supporting HD content”, “receivers supporting 4K
content”, “receivers having an OS with patch level 3.14.159”), by subscription type
(“receivers having access to the XYZ sport channels package”, “receivers having
access to the FGH adult channels package”), etc. Ideally, a broadcaster might
then be willing to grant access to receivers according to a complicated access
equation, such as to all “receivers having access to XYZ sport channels package,
having an OS with patch level 3.14.159, but not located in California”.

The idea of attribute-based encryption (ABE) has been proposed by Sahai
and Waters in [41], as a generalization of identity-based encryption [5,42]; it was
then formalized by Goyal and his co-authors in [19], who proposed the concepts
of ciphertext-policy (CP-ABE) and key-policy (KP-ABE) encryption schemes.
In the CP-ABE and KP-ABE models, the access policies are embedded in the
ciphertext and in the private key, respectively. Since then, numerous variants of
CP- and KP-ABE schemes have been published; see for instance [3,10,16,21,22,
26,28,29,35,38,40,43].

Attribute-Based Broadcast Encryption. Transforming an ABE encryption scheme
for using it in a broadcast scenario is a natural question, as in practice, broad-
casters are most of the time addressing sets of receivers sharing the same char-
acteristics, instead of individual ones. An exception where a receiver might be
addressed individually is when a key update is necessary, for example. This oper-
ation is rather costly in terms of bandwidth, as synchronism comes into play. It
means that the individual key update messages have to be broadcast sufficiently
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many times on a sufficiently long period to guarantee their reception with high
probability. This explains why addressing individual receivers is not possible in
practice to enforce access equations in a broadcast setting and why efficient state-
less broadcast encryption schemes are so useful.

The key difference between an attributed-based broadcast encryption (ABBE)
scheme and an ABE one is the additional possibility to revoke individual receivers
in an efficient way. Given an ABE scheme, it is possible to create a revocation
system by defining a dedicated unique attribute for each receiver and to specify
an access policy which rejects the revoked receivers. Unfortunately, this is in
general not efficient, since in an ABE scheme, the length of the keys or cipher-
texts depend often in a linear way from the number of attributes. This can
become unpractical when the number of receivers is large. Concretely, one could
use an ABE supporting negative attributes, such as [35], and assign individual
attributes to each receivers. A ciphertext can then be sent to the non-revoked
receiver identities by conjunctively adding the AND of negations of revoked
receivers attributes to the access policy. Implementing this idea with [35], this
would imply an acceptable overhead of O(�) group elements in the ciphertext,
with � = |R|, but the private key would involve O(n) attributes, where n is the
total number of receivers. Furthermore, this scheme would not be dynamic in the
sense of [12], i.e., one cannot easily add receivers in the system without sending
individual messages to the receivers, which is, as mentionned above, costly in
terms of bandwidth in a broadcast setting.

In a context where the number of receivers is way larger than the number
of attributes, one is therefore interested in splitting the revocation system from
the access structure. Motivated by this fact, a line of research has focused on
designing ABE schemes allowing to efficiently revoke individual receivers. In
other words, revoking a receiver is implemented conjunctively, meaning that
even if that receiver possesses compatible attributes for a given access equation,
but it belongs to the revoked receivers set R, it will not be able to correctly
decrypt the ciphertext.

Lubicz and Sirvent [33] have proposed a scheme allowing to express access poli-
cies in disjunctive normal form (DNF), i.e., with disjunctions (OR) of conjunctions
(AND), and able to handle negative attributes (NOT). Then, Attrapadung and
Imai [1] proposed another approach, namely using a separate broadcast encryption
scheme on the top of an ABE scheme, and they constructed both ciphertext-policy
and key-policy variants. Since then, other designs have been published as well, see
e.g. [24,32,45].

Finally, we note that attribute-based broadcast encryption schemes have
numerous applications besides the Pay-TV or the geolocation satellites scenarios
mentionned above. For instance, applications involving ABBE have been pro-
posed in the context of secure storage of personal health records [31], of securing
smart grids [14], and, more generally, in any data outsourcing systems requiring
privacy [23].

Our Contributions. In this paper, we describe an efficient ciphertext-policy
attribute-based broadcast encryption scheme (CP-ABBE) able to handle access
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policies in conjunctive normal form (CNF), i.e., as conjunctions of disjunctions
of attributes, and supporting negative attributes. Essentially, our scheme is a
combination of the Boneh-Gentry-Waters broadcast encryption scheme [6] and
of the Lewko-Sahai-Waters revocation system [27]. The former is used to express
attribute-based access policies while the latter is dedicated to the revocation of
individual receivers.

Denoting by B the set of attributes, our scheme requires a public key and
private keys of size O(N), where N = |B| is the total number of attributes.
Ciphertexts are of size O(ν̄ +�), where � = |R| is the number of revoked receivers
and ν̄ is the number of clauses in the access policy. We note that ν̄, N and �
are quantities independent of the number n of receivers registered in the system.
As a consequence, and to the best of our knowledge, our proposal is the first
ABBE scheme whose public and private key sizes do not depend on the number
of receivers in the system, while the ciphertext length keeps linear in the size
of the access policy and in the number of revoked receivers. This property is
especially important in scenarios involving large numbers of users, such as large-
scale Pay-TV or cloud-based storage systems, for instance.

Eventually, we prove the selective security of our scheme with respect to the
Generalized Diffie-Hellman Exponent (GDHE) problem on bilinear groups [4],
and we derive security bounds in the generic group model.

This paper is organized as follows: in Sect. 2, we recall the formal definition of
attribute-based broadcast encryption schemes, their underlying security model as
well as othermathematical preliminaries.Then,wedescribe our new schemeSect. 3
and we prove its security in Sect. 4. Finally, we compare its characteristics to other
existing ABBE schemes and we discuss some of its practical aspects in Sect. 6.

2 Mathematical Preliminaries

Let U denote a set of receivers (or users), R ⊂ U the set of revoked receivers and
B a set of attributes. Furthermore, let λ be a security parameter. A ciphertext-
policy attribute-based broadcast encryption (CP-ABBE) scheme consists of the
following four algorithms:

– Setup(λ) → (pk,msk) is a randomized algorithm which takes a security para-
meter λ as input and outputs the public key pk and a master key msk.

– KeyGen(u, ω,msk, pk) → dku is a randomized algorithm that takes as input a
receiver u ∈ U, a set of attributes ω ⊂ B, the master key msk and the public
key pk. It outputs a private, individual decryption key dk(u,ω) for the receiver
u. dk(u,ω) will be simply denoted dku if it is clear from the context that u has
set of attributes ω.

– Encrypt(R,A, pk) → (hdr, k) is a randomized algorithm that takes as input
a set of revoked receivers R ⊂ U, a Boolean access policy A expressed in
conjonctive normal form and the public key pk. It outputs a header hdr as
well as a session key k.
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– Decrypt(hdr, (R,A), dk(u,ω), (u, ω), pk) → k or ⊥ is an algorithm taking as
input a header hdr, a set of revoked receivers R, an access policy A, a decryp-
tion key dk(u,ω) for receiver u equipped with attributes ω as well as the public
key pk. It outputs the session key k if and only if ω satisfies A and u is not in
R; otherwise, it outputs ⊥.

The selective security notion for CP-ABBE is defined by the following proba-
bilistic game:

– Setup. The adversary chooses a distribution of attributes B : U → P(B),
declares a set of revoked receivers R∗ ⊂ U and an access policy A

∗. The chal-
lenger runs the Setup algorithm and gives the public key pk to the adversary
A.

– Query phase 1. The adversary is allowed to (adaptively) issue queries to
the challenger for private keys dku for receivers u ∈ U such that either u ∈ R∗

or B(u) does not satisfy the policy A
∗, i.e., receivers not able to decrypt a

ciphertext.
– Challenge. After having run the encryption algorithm Encrypt(R∗,A∗, pk),

the challenger gets a header hdr and a session key k. Next, he draws a bit b
uniformly at random, sets kb = k and picks k1−b uniformly at random in the
space of possible session keys. He finally gives the triple (hdr, k0, k1) to the
adversary.

– Query phase 2. The adversary is again allowed to (adaptively) issue queries
for private keys dku for receivers u ∈ U such that either u ∈ R∗ or B(u) does
not satisfy the policy A

∗.
– Guess. The adversary outputs a guess bit b′.

The adversary wins the game if b = b′ and its advantage is defined as

Advind(λ,U,B,A) = |2Pr[b = b′] − 1| .
The set of receivers u for which A requested the private keys is the set of colluding
receivers. Hence, selective security ensures semantic security against colluding
receivers if the advantage of the adversary is negligible.

We note that in the selective security model, the attacker must output the
access policy before seeing the public parameters. A stronger model, named full
security, has been proposed in [30]. While selective security is not the strongest
model one might hope for our scheme, we think that it is stronger than what one
could expect in practice, as the list of revoked nodes and the access equations
are typically defined by the broadcaster.

Now, let us recall the notion of bilinear group. Let G and GT be two (mul-
tiplicative) cyclic groups, and g a generator of G. A map e : G × G → GT is
a symmetric, non-degenerate pairing if it is bilinear, i.e. for any u, v ∈ G and
a, b ∈ Z, we have e(ua, vb) = e(u, v)ab, and if it is non-degenerate, i.e. e(g, g) �= 1.
Endowed with such a pairing, G is called a bilinear group. For practical purposes,
let us further assume that in a bilinear group G, both the action of G and the
pairing e are efficiently computable. Finally, we recall the Generalized Diffie-
Hellman Exponent (GDHE) Problem [4].
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Definition 1 (GDHE Decisional Problem). Let G and GT be two groups of
prime order p, g a generator of G, and e : G×G → GT a non-degenerate bilinear
map. Let f ∈ Fp[X1, . . . , Xn] be a polynomial in n variables over Fp, the finite
field with p elements, and P,Q ⊂ Fp[X1, . . . , Xn] be two sets of polynomials, both
containing 1. Choose x1, . . . , xn ∈ Fp and U ∈ GT uniformly at random. Given
the elements

gπ(x1,...,xn) and e(g, g)ρ(x1,...,xn)

for each π ∈ P and ρ ∈ Q, the Generalized Diffie-Hellman Exponent (GDHE)
Decisional Problem is the problem of distinguishing e(g, g)f(x1,...,xn) from U .

Observe that in this setting, the classical Decisional Diffie-Hellman (DDH)
problem reduces to an easy instance of the GDHE Decisional problem: let P =
{1, a, b}, Q = {1} and f = ab. Given ga and gb, we can distinguish gab from a
uniform random element h ∈ G by observing that e(ga, gb) = e(gab, g). This fact
justifies the following definition, as in this example, (P,Q) and f are dependent
functions.

Definition 2 (Dependent Functions). A function f is said to be dependent
on the sets P and Q if there exist constants aπ,π′ with π, π′ ∈ P and cρ with
ρ ∈ Q such that

f =
∑

π,π′∈P

aπ,π′ππ′ +
∑
ρ∈Q

cρρ.

With this independence notion, it is proven that the (P,Q, f)-GDHE Decisional
Problem is difficult in the generic group model.

Theorem 1 (Boneh et al. [4, Theorem A.2]). Let

d = max {2 deg(π),deg(ρ),deg(f) | π ∈ P, ρ ∈ Q} ,

and s = max{|P |, |Q|} If f is independent of P and Q, then for any adversary
A that makes a total of at most q queries to the oracle computing the group
operations in G, GT and the pairing e, we have

|2 Pr [A outputs 0] − 1| ≤ (q + 2s + 2)2 · d

p
.

3 The New Scheme

Basically, our new scheme is a secure combination of the Boneh-Gentry-Waters
(BGW) broadcast encryption scheme [6] and the Lewko-Sahai-Waters (LSW)
[27] revocation system. This design strategy, which is similar to the one of Junod
and Karlov [24], is motivated as follows.
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3.1 High-Level Description

The BGW scheme targets arbitrary sets of priviledged receivers and involves
ciphertexts with a constant size, if, as customary, one omits bandwidth consumed
by the description of the set of priviledged receivers to be addressed; its public
and private keys have a size depending on the number of receivers; note that,
with the BGW scheme, one needs the public key to decrypt. Hence, we use it to
express arbitrary access equations, that typically depend on a small number of
attributes when compared to the total number of receivers. On its side, the LSW
revocation scheme has ciphertexts whose size depends on the number of revoked
receivers; however, its encryption and decryption keys are independant of the
total number of users in the system. In systems potentially involving millions of
receivers, this is a decisive practical advantage.

Given an access structure in CNF form A = β1 ∧ · · · ∧ βN and a revocation
set R, our idea is to associate to each clause βi a fragment of the session key ki

which can be computed only by a receiver satisfying the corresponding clause,
and a fragment k0 computable by non-revoked receivers. Then, the session key
k can be derived out of the ki’s.

This alone would not resist to an attack from colluding receivers: if receiver u
is revoked but satisfies A, he can compute ki for i = 1, . . . , N , and v is not revoked
but does not satisfy A, he can compute k0; together, u and v can compute k. To
prevent this, we do not allow a receiver u to compute ki directly, but rather an
blinded value kεu

i thereof, where εu is a secret exponent unique for each receiver
u. Then, k can be derived from any collection (kεu

i )n
i=1. If u can compute kεu

i for
i = 1, . . . , N and v can compute kεv

0 , they cannot derive k.

3.2 Formal Definitions

Let us write B∗ = B ∪ ¬B the set of all attributes B and their negations ¬B.
Let B : U → P(B∗) be a distribution of attributes, i.e., a map such that for any
receiver u ∈ U and attribute a ∈ B, either a ∈ B(u) or ¬a ∈ B(u), but not both.
Let id : U → (Z/pZ)∗ be a public injection, and ı : B∗ → {2, 4, 6, . . . , t − 1} be a
public bijection where t = 4N + 1.

Setup(λ) → (pk,msk) According to the security parameter λ, choose two groups
G and GT of prime order p > 2λ as well as a non-degenerate bilinear pairing
e : G × G → GT . Additionnaly, choose two non-zero elements g, h = gξ ∈ G

and seven random exponents α, γ, b, β, δ, r and r′ in Z/pZ. Finally, let gi = gαi

.
The public key pk consists of the elements of G g, gγr′

n , gr, grr′
n+1, grr′b

n+1, grr′b2
n+1 ,

hbαn+1r′r, gδr, gn,
(
gr

ı(a)

)
a∈B∗

, and the two elements of GT e(g1, gn)rr′βγ and

e(g1, gn)rβ . The authority keeps the exponents secret.

KeyGen(u,B(u),msk, pk) → dku Let u ∈ U. Choose two random elements
σu, εu ∈ Z/pZ. Define

Du,0 =
(
gγgb2σu

)εu

,Du,1 =
(
gb·id(u)h

)σuεu

,Du,2 = g−σuεu ,Du,3 = g
r(β+εu)
1 .
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The private key of receiver u is

dku =
(

(Du,k)3k=0 ,
(
gεu

ı(a)

)
a∈B∗

,
(
gεu

n+1+ı(a)

)
a∈B∗

,
(
gδεu

ı(a)

)
a∈B(u)

)
.

Encrypt(R,A, pk) → (hdr, k) Given an access policy A = β1 ∧ . . . ∧ βN , with
βi = βi,1 ∨ . . . ∨ βi,Mi

(modeled as βi,j ⊆ B ∪ ¬B) and a revocation set R ⊂ U,
one chooses s0, . . . , sN ∈ Z/pZ at random and one defines s = γr′s0 +

∑N
i=1 si

(which needs not be computed). Also, one splits s0 =
∑

u∈R su. Let us define

C = gs
n =

(
gγ·r′

n

)s0

g
(∑N

i=1 si)
n .

For all i = 1, . . . , N , one defines the elements Ci,0 = grsi and

Ci,1 =

⎛
⎝grδ

∏
a∈βi

gr
n+1−ı(a)

⎞
⎠

si

,

as well as the corresponding N parts of the header hdri = (Ci,0, Ci,1). One defines
C0 = grr′s0

n+1 , and for each u ∈ R,

Cu,1 = grr′bsu
n+1 and Cu,2 =

(
gb2id(u)hb

)αn+1rr′su

.

Let hdr0 = (C0, (Cu,1)u∈R, (Cu,2)u∈R) and hdr = (C, hdr0, . . . , hdrN ). The global
session key k is given by

k = e(g1, gn)rβs =
(
e(g1, gn)rr′βγ

)s0 · e
(
gr
1, g

β
n

)(∑N
i=1 si)

Decrypt(hdr, (R,A), dku, (u, ω), pk) → k or ⊥ If u ∈ R or if there exists i ∈
{1, . . . , N}, such that βi ∩ B(u) = ∅, return ⊥. For i = 1, . . . , N , choose one
satisfying attribute a ∈ βi ∩ B(u) and compute

kεu
i =

e(gεu

ı(a), Ci,1)

e
(
gδεu

ı(a)

∏
a′∈βi\{a} gεu

n+1−ı(a′)+ı(a), Ci,0

) .

Also compute kεu
0 as

e(Du,0, C0)e

(
Du,1,

∏
u′∈R

C
1/(id(u)−id(u′))
u′,1

)−1

e

(
Du,2,

∏
u′∈R

C
1/(id(u)−id(u′))
u′,2

)−1

.

We have kεu
0 = e(g1, gn)rr′s0εuγ and kεu

i = e(g1, gn)rsiεu for i = 1, ..., N. Eventu-
ally, we can recover k as

k =
e(Du,3, C)∏N

i=0 k
εu
i

= e(g1, gn)rβs.
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One can observe that the public-key size depends only on the total number of
attributes defined in the system, and that the same holds for the decryption
keys. The header size linearly depends only on the number of revoked rogue
receivers.

If the number of attributes does not change during the lifetime of the system,
we note that our new ABBE scheme is fully dynamic in the sense of [12]. Indeed, the
deployment of new receivers does not imply to change the encryption or the decryp-
tion keys of other receivers, which is a desirable property for a stateless scheme.

At first sight, the system of attributes might look a bit less flexible in the sense
that all receivers decryption keys include elements depending on all positive and
negative attributes defined in the system. It means that the definition of new
attributes after the system start arrives with the necessity of transmitting them
to all receivers in a individual way, which comes with significant bandwidth issues
in a system involving millions of receivers. However, this burden keeps acceptable
if one considers the fact that one can define sufficiently many attributes at the
start of the system and thus easily keep the set of attributes completely static
during the system lifetime.

4 Security Analysis

To prove the security of our scheme, and similarly to the approach taken in [12],
we show that the CP-ABBE selective security of this scheme reduces to an
instance of a (P,Q, f)-GDHE problem [4]. We then prove that (P,Q) and f
are independent, which implies in particular that the corresponding problem is
difficult in the generic group model. This leads to a security reduction in the
standard model, and a proof of security in the generic group model. Thereafter,
all the polynomials considered are from the polynomial ring

Fp[α, β, γ, δ, ξ, b, r, r′, si, su, σu, εu : i ∈ N, u ∈ U].

Let A be an adversary for the CP-ABBE selective security game. It declares a
distribution of attributes B : U → P(B∗), an access structure A and a set R of
revoked receivers. Let C be the set of all receivers which do not satisfy the policy
A, and/or are revoked. Let P be the list of polynomials consisting of 1, and all
the following elements corresponding to the information in pk, hdr, and dku for
all the receivers u ∈ C.

1. Contribution of pk: the set Ppk of polynomials 1, αnγr′, r, αn+1rr′, αn+1rr′b,
αn+1rr′b2, ξbαn+1rr′, δr, αn and for a ∈ B∗, the element αı(a)r.

2. Contribution of dku, for any u ∈ C: the set Pdku of polynomials εu(γ + b2σu),
σuεu(b · id(u) + ξ), σuεu, αr(β + εu), for each a ∈ B∗, αı(a)εu, αn+1+ı(a)εu,
and for each a ∈ B(u), αı(a)δεu;

3. Contribution of hdr: the set Phdr of polynomials αns, αn+1rr′s0, for each
i = 1, . . . , N , rsi, rsi

(
δ +

∑
a∈βi

αn+1−ı(a)
)
, and for each revoked receiver

u ∈ R, αn+1rr′bsu, αn+1rr′su(b2 · id(u) + ξb).
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The list Q is simply (1, αn+1rr′βγ, αn+1rβ) and f = αn+1rsβ.

Lemma 1. If the adversary A solves the CP-ABBE selective security game with
advantage ε, then a simulator can be constructed to solve the (P,Q, f)-GDHE
problem with advantage ε in polynomial time, with one oracle call to A.

Proof. The proof is available in the full version of this paper [44].

According to Lemma 1, an adversary for the CP-ABBE selective security game
gives rise to an adversary for the (P,Q, f)-GDHE problem. It now needs to
be justified that the (P,Q, f)-GDHE problem is difficult. The end of Sect. 2
explains that we can suppose this problem to be difficult when (P,Q) and f
are independent: it is proven to be difficult in the generic group model, and
assumed to remain difficult in cryptographic bilinear groups. Thus, it remains
to show that (P,Q) and f are indeed independent.

Lemma 2. (P,Q) and f are independent.

Proof. The proof is available in the full version of this paper [44].

We are now able to derive a bound on the security of our new scheme in the
generic group model.

Theorem 2. For any probabilistic algorithm A that totalizes at most q queries
to the oracle performing group operations in (G,GT ) and evaluations of e(·, ·),
and declaring a set of revoked receivers of size at most η, as well as an access
policy with at most N clauses (A = β1 ∧ · · · ∧ βN ), then Advind(λ,U,B,A) is
smaller or equal to

(q + 4(N + N + η) + 22 + |U|(10N + 8))2(8N + 3)
2λ−1

.

Proof. This is a direct consequence of Lemmas 1 and 2, and Theorem 1, with
|Ppk| = 9 + 2N, |Pdku | = 4 + 5N, |Phdr| = 2 + 2N + 2� and d = 16N + 6.

5 Optimizing the Bandwidth and Computational
Overheads

As the number of revoked receivers grows, the computation of kεu
0 can become

expensive for the receivers. The heavy computations are the products
∏

u′∈R

C
1/(id(u)−id(u′))
u′,i

for i = 1, 2, which require O(�) exponentiations. This could be optimized if
the Cu′,1’s and Cu′,2’s did not change from a message to another: those products
could be computed the first time and reused, and any new revoked receiver would
only require one exponentiation and multiplication for each of the receivers.
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To do so, the broadcaster chooses a random su′ for every revoked receiver u′ ∈ R,
and reuses it for all the following communications, thus generating the same
Cu′,1’s and Cu′,2’s.

This optimization requires a new proof of security. We can show that even
if the adversary is given access to old ciphertexts hdr(1), . . . , hdr(m), (in addition
to the challenge hdr) for which the sets of revoked receivers are subsets R(j) of
the set of revoked receivers R for hdr, and the access policies have N (j) clauses
denoted β

(j)
i , for each j = 1, . . . , m, the underlying (P,Q, f)-GDHE is still diffi-

cult (i.e., (P,Q) and f are independent). We need to suppose N (j) > 0 for each
j = 1, . . . , m.

This technique reduces the computational cost, but in a fully stateless sit-
uation, the broadcaster still needs to send all the Cu′,1’s and Cu′,2’s with each
message. In a context where it is possible to maintain a synchronized state, via
a two-way connection with a possibly very limited bandwidth, it is possible for
the broadcaster to send with each ciphertext only the Cu′,1’s and Cu′,2’s for the
newly revoked receivers. Then, the ciphertexts’ lengths drop from O(N + �) to
O(N + |ΔR|) (where ΔR is the set of newly revoked receivers, for example those
revoked during the last day or the last week).

The only thing we have to change from the setting of the original security proof
is to add to P the contribution of the ciphertexts hdr(1), . . . , hdr(m), where the
secret exponents of hdr(j) are denoted s(j), s

(j)
0 , s

(j)
i and s

(j)
u′ for i = 1, . . . , N (j) and

u′ ∈ R(j). This contribution consists, for each j = 1, . . . , m, of the polynomials
αns(j), αn+1rr′s(j)0 and for each i = 1, . . . , N (j), the polynomials

rs
(j)
i , rs

(j)
i

⎛
⎜⎝δ +

∑
a∈β

(j)
i

αn+1−ı(a)

⎞
⎟⎠ .

Only a few observations are needed to adapt the original security proof to this
new setting. The first thing is to notice that we now have new terms with a fac-
tor αn+1β. Those are, for any j = 1, . . . , M and u ∈ C, αn+1rs(j)(β + εu). But
those terms cannot have a non-zero coefficient in the linear combination forming
f , because for each j, αn+1rs(j)(β + εu) is the only term containing the mono-
mial αn+1rs

(j)
1 (β + εu), thus the later could not be canceled by any other linear

combination of terms (here we use our assumption that N (j) > 0).
The second thing to notice is that the terms which can cancel the monomials

αn+1rεur′γsv for v ∈ R are now not only αn+1rr′s0εu(γ + b2σu), but also the
terms αn+1rr′s(j)0 εu(γ + b2σu) for all the j’s such that v ∈ R(j). We can then
deduce that there is a linear combination of those terms such that the resulting
coefficient of the monomial αn+1rεur′γsv is non-zero, and this coefficient is the
same as the one of αn+1rr′svεub2σu, which therefore is also non-zero. The end of
the proof, consisting in showing that this coefficient of αn+1rr′svεub2σu cannot
be canceled, remains unchanged. In conclusion, one can safely reuse the secret
exponents su.



64 B. Wesolowski and P. Junod

6 Practical Aspects

In this section, we compare the practical properties of our scheme to the other
existing ABBE schemes listed in Table 1.

Table 1. Bandwidth and key storage complexity comparison. Denoting the set of all
receivers by U, the set of all attributes by B, the set of revoked receivers by R, then
ku is the number of attributes assigned to a receiver u ∈ U, ν the length of the access
structure, ν̄ the number of clauses in a CNF access structure, N = |B|, n = |U| and
� = |R|.

Scheme Access structure Size of pk Size of dku Size of hdr

Attrapadung-Imai [1] Monotone O(N + n) O(N + n) O(ν)

Lubicz-Sirvent [33] AND & NOT O(N + n) O(ku) O(ν + �)

Junod-Karlov [24] CNF O(N + n) O(N + n) O(ν̄)

Zhou-Huang [45] AND & NOT O(N + log n) O(N + log n) ≈ O(log n)

Li-Zhang [32] Monotone O(N + n) O(ku + n) O(ν)

This paper CNF O(N) O(N) O(ν̄ + �)

Size of Keys. First, we observe that our scheme is the only one where the public
and private key sizes do not depend on the total number of receivers n = |U|
registered in the system. Except for the Zhou-Huang scheme, whose dependency
is of logarithmic nature, this dependence in n is linear in the competing schemes,
which is highly impractical for a large scale deployment potentially involving
millions of receivers, such as a Pay-TV system, for instance. The length of the
keys in our scheme only depends linearly on the total number of attributes
N = |B| defined in the system. This allows high scalability: the broadcaster can
initially decide on a large set of possible receivers U without affecting the length
of the keys. Adding new receivers to the system can be done efficiently, whereas
with a key size linear in n, the broadcaster should choose the smallest possible
U and change all the settings and keys when there are too many new receivers.
This is undesirable in practice, as changing all the keys is way too expensive,
especially when they are so long. In a nutshell, from the point of view of the key
lengths, the Zhou-Huang scheme and our scheme are the only really practical
candidates for large-scale deployment, while the Lubicz-Sirvent scheme can also
be considered as acceptable since only its public key size is large, the private
keys being pretty small.

Ciphertexts Size. The overhead on the ciphertext is O(N +�) for our scheme, which
is the same as the Lubicz-Sirvent scheme. The three schemes presenting a smaller
overheadof sizeO(N) have to compensatewithprivate keyswhose size is linear inn.
The Zhou-Huang scheme can in theory reach an overhead as small as O(log n). This
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length relies on an optimization phase, which leads to an average length in O(log n)
and a worst case length in O(n); the worst case however occurs with small proba-
bility. This optimization phase is a Sum-of-Product Expression (SOPE) minimiza-
tion, which is known to be an NP-Hard problem, so we can only hope for approxi-
mations. Finally,wewould like to emphasize that ν and ν̄ have a somewhat different
cardinality in the case of access structures involving only AND and NOT gates or
in the case of complete CNF formulas. In the first case, ν represents the number of
atomic variables, i.e., the number of attributes or their negation, while in the case
of a complete CNF formula, ν̄ represents the number of clauses, and it is indepen-
dent of the number of atomic variables in the clauses. Hence, ν̄ is always smaller or
equal, if not significantly smaller, than ν.

Overall Comparison. As mentionned before large-scale deployments rule out the
schemes with a private key of length linear in n = |U|. Remain the Lubicz-Sirvent
and the Zhou-Huang schemes, which we will compare to ours. Compared to the
Lubicz-Sirvent scheme, our scheme allows a much shorter public key; our private
keys can be slightly larger, but still bounded by O(N), which should not make
a significant difference as long as the set of attributes remains reasonably small.
The ciphertext overhead is the same. Our scheme allows a more flexible access
control model via CNF formulas. The Lubicz-Sirvent only allows AND and NOT
gates; one can also add OR gates, allowing access control by CNF formulas,
via ciphertext concatenation, but the ciphertext overhead is then multiplied by
the number of clauses. Note that, similarly to the Junod-Karlov scheme, our
scheme allows to implement access policies in DNF form by concatenation as
well. Overall, as long as N = B is of reasonable size, our scheme is more flexible
and efficient than the Lubicz-Sirvent one. Compared to the Zhou-Huang scheme,
the lengths of the public and private keys are similar; even though there is this
additional term log n in the Zhou-Huang’s scheme, there is no difference under
the reasonable assumption that N = O(log n). As for the Lubicz-Sirvent scheme,
the Zhou-Huang scheme only allows AND and NOT gates, and OR gates via
ciphertext concatenation and a ciphertext overhead multiplied by the number of
clauses. Furthermore, as mentioned above, the ciphertext overhead depends on
the SOPE minimization phase, which is a NP-hard problem.

Practical Performances. We have implemented our new scheme using the C
programming language and with help of the PBC library1 for the elliptic curve
arithmetic and pairings. The curve used let us work in a group of 160-bit long
order and a base field of 512-bit long order, suitable for cryptographic use (it is
a Type A curve, in PBC’s classification). We ran an example with 5 attributes,
on a 2.3 GHz Intel Core i7; the setup phase, including the generation of the
public key takes 237 ms, generating the private key of a receiver takes 75 ms, the
decryption of a message with 3 clauses, and without new revocations takes 25 ms,
and each new revocation adds 4 ms to the first decryption after the revocation.

1 This open-source library is freely available at http://crypto.stanford.edu/pbc/.

http://crypto.stanford.edu/pbc/
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7 Conclusion

This paper describes, to the best of our knowledge, the first attribute-based
broadcast encryption scheme for which the length of the encryption and decryp-
tion keys does not depend on the total number of users, but only on the number
of attributes defined in the system. This property has been achieved by com-
bining the Boneh-Gentry-Waters broadcast encryption scheme with the Lewko-
Sahai-Waters revocation system in a secure way. Our scheme requires also a
modest bandwidth, as the length of the header depends only of the number of
revoked rogue receivers. The access equations can be defined in conjunctive nor-
mal form, i.e., as AND of clauses involving ORs of attributes, and it supports
negative attributes. We have proven the security of this scheme relatively to a
GDHE problem in the standard model, which additionnaly allows us to derive
corresponding security bounds in the generic group model. In summary, we are
convinced that our scheme is fully practical in a number of real-life scenarios,
including Pay-TV or cloud-storage ones involving millions of users.

References

1. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

2. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of IEEE-S&P 2007, pp. 321–334. IEEE Computer Society
(2007)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer [11], pp. 440–456

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian [25], pp. 213–229

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

7. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke sys-
tem. In: Proceedings of ACM-CCS 2006, pp. 211–220. Association for Computing
Machinery, New York, NY, USA (2006)

8. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

9. Burmester, M.: Group key agreement. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 520–526. Springer, New York
(2011)

10. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

11. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)



Ciphertext-Policy Attribute-Based Broadcast Encryption with Small Keys 67

12. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

13. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

14. Fadlullah, Z.M., Kato, N., Lu, R., Shen, X., Nozaki, Y.: Toward secure targeted
broadcast in smart grid. IEEE Commun. Mag. 50(5), 150–156 (2012)

15. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

16. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

17. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

18. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004)

19. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
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1 BridgingIT GmbH, Mannheim, Germany
oezguer.dagdelen@bridging-it.de

2 NEC Research Labs, Heidelberg, Germany
sebastian.gajek@neclab.eu

3 Flensburg University of Applied Sciences, Flensburg, Germany
4 Technische Universität Darmstadt, Darmstadt, Germany

fgoepfert@cdc.informatik.tu-darmstadt.de

Abstract. The Snowden revelations have shown that intelligence agen-
cies have been successful in undermining cryptography and put in ques-
tion the exact security provided by the underlying intractability problem.
We introduce a new class of intractability problems, called Learning with
Errors in the Exponent (LWEE). We give a tight reduction from Learn-
ing with Errors (LWE) and the Representation Problem (RP) in finite
groups, two seemingly unrelated problem, to LWEE. The argument holds
in the classical and quantum model of computation.

Furthermore, we present the very first construction of a semantically
secure public-key encryption system based on LWEE in groups of com-
posite order. The heart of our construction is an error recovery “in the
exponent” technique to handle critical propagations of noise terms.

Keywords: Lattice theory · Group theory · Public-key encryption ·
Intractability amplification

1 Introduction

Among the most carefully scrutinized cryptographic problems are probably the
discrete logarithm in finite groups and factorization. Shor’s celebrated theo-
rems [1,2] curtailed for the first time the confidence of founding cryptosystems
on group-theoretic assumptions. Shor showed the existence of polynomial-time
solvers for integer factorization and discrete logarithm computation in the non-
classical quantum computation model. Researchers have then begun to look for
alternative computational problems. In this line of work Regev explored a lat-
tice problem class known as learning with errors (LWE) [3]. Given a distribution
of noisy equations (a, b = 〈a, s〉 + e) ∈ Z

n
q × Zq where e is taken from a small

Gaussian error distribution, the search learning with error problem states it is
hard to compute the solution s whereas the decisional variant assumes it is hard
to distinguish (a, b) from uniformly random elements in Z

n
q × Zq. Several argu-

ments flesh out LWE’s intractability [4]: First, the best known solvers run in
exponential time and even quantum algorithms do not seem to help. Second,
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 69–84, 2016.
DOI: 10.1007/978-3-319-30840-1 5
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learning with errors is a generalization of learning from parity with error, which
is a well-studied problem in coding theory. Any major progress in LWE will most
likely cause significant impact to known lower bounds of decoding random lin-
ear codes. Lastly and most importantly, breaking certain average-case problem
instances of LWE breaks all instances of certain standard lattice problems [3,5–7].

Taking the findings from lattices in presence of errors into account we carry
on the study of noise as a non-black box intractability amplification technique.
Specifically, we ask if noise effects the intractability of group-theoretic problems
as well? If so, is non-trivial cryptography possible in such groups? The main
challenge is to handle the propagation of “noise in the exponent”. Error terms
require a careful treatment, because they may easily distort the cryptographic
task. Apart from the theoretical interest, our work has concrete practical moti-
vation. Recent large-scale electronic surveillance data mining programs put in
question the security provided by present cryptographic mechanisms. (See also
the IACR statement and mission on mass surveillance.1) One of the problems
is that many security protocols in the wild are based on a single intractability
problem and we do not know the exact security. What if somebody has found
a clever way to factor numbers? This already suffices to decrypt most of the
TLS-protected Internet traffic and eavesdrop emails, social network activities,
and voice calls.2 Answering the above questions in an affirmative way adver-
tises a novel family of computationally hard problems with strong security and
robustness properties in the superposition of group and lattice theory.

1.1 Our Contribution

Blending Group and Lattice Theory. The idea of blending intractability problems
is not new and is subject to several Diffie-Hellman related problems in groups
of composite order which assume the hardness of the discrete log or factoriza-
tion problem [8,9]. In this work, we address the blending of group and lattice
related problems, and introduce the notion of Learning with Errors in the Expo-
nent (LWEE). The LWEE distribution consists of samples (ga, g〈a,s〉+e) ∈ G

n ×G

where a is sampled uniformly from Z
n
q , and s ←R χn

s , e ←R χe from some distri-
butions χs, χe. Learning with errors in the exponent comes in two versions: The
search version asks to find the secret vector s while in the decisional variant one is
supposed to distinguish LWEE samples from uniformly random group elements.
Except for the error the assumption bears reminiscence to the representation
problem RP [10]. Given a tuple of uniformly sampled elements g1, . . . , g�, h from
G, the (search) representation problem (�-SRP) asks to compute the “represen-
tation” x1, . . . , x� ← χ with respect to h for χ the uniform distribution such that
Π�

i=1g
xi
i = h. We give a tight reduction from �-SRP to the search LWEE problem.

1 http://www.iacr.org/misc/statement-May2014.html.
2 TLS’s preferred cipher suite makes use of RSA-OAEP to transport the (master) key

in the key establishment process. Once the ephemeral master key for the session is
known it is possible to derive session keys and decrypt all encrypted messages.

http://www.iacr.org/misc/statement-May2014.html
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Relations between Group and Lattice Assumptions. Looking at the decisional
problem, we first define the decisional variant of the representation problem
(�-DRP): Given a tuple g, g1, . . . , g�, g

x1 , . . . , gx� , h from G, where x1, . . . , x� ←
χ are sampled from some distribution χ, �-DRP asks to distinguish between
Π�

i=1g
xi
i = h and a randomly sampled value h in G. Note, for � = 1 and uniform

distribution over Zq, DRP coincides with the decisional Diffie-Hellman (DDH)
problem. For � > 1, we prove in the generic group model that �-DRP belongs
to the class of progressively harder assumptions [11]. We then show that DRP
is reducible to LWEE. This implies that if we select a group G for which DDH
is believed to be hard, the hardness carries over to an instantiation of LWEE in
that group G. It is worth mentioning that both of our reductions are tight. They
hold for (potentially non-uniform) distributions χ, if the underlying RP problem
is hard for representations sampled from the same distribution. Investigating
the relation to lattices, we show that an algorithm solving either the search
or decisional LWEE problem efficiently can be turned into a successful attacker
against the search or decisional LWE problem. Our reductions are tight and hold
as well for (potentially non-uniform) distribution χ if LWE is hard for secret s
sampled from the same distribution.

A Concrete Cryptosystem. We give a first construction of a public-key encryp-
tion scheme. One may size the magnitude to which the RP and LWE intractabil-
ity contribute to the security of the system. The selection of parameters (e.g.,
modulus, dimension) offers great flexibility to fine-tune the cryptosystem’s
resilience against (quantum)-computational progress in attacking the underly-
ing intractability problems. Concretely, one may choose the parameters to obtain
short keys and ciphertexts, make the scheme post-quantum secure or immuni-
ties the scheme for the case that at some point in time either the DRP or DLWE
becomes computationally tractable.

Although our construction serves the sole purpose of showcasing the feasi-
bility of cryptosystems (in practical applications, it would be preferable to split
the message information-theoretically into two shares and encrypt each share
with a different encryption scheme, say El-Gamal and Regev encryption) based
on “errors in the exponent”, learning with errors in the exponent is an inter-
esting concept in its own right. We leave it open for future work to find novel
applications and to study the instantiation based on the learning with errors
assumptions in rings. We discuss related work in the full version [12].

1.2 Extensions and Open Problems

While learning with errors in the exponent is an interesting concept in its own
right, it requires further inspection. Here we point out a few possible directions
for future research:

– It would be interesting to cryptanalyze the assumption. This would help
nail down concrete security parameters, in particular for the case of double-
hardness where both underlying assum1ptions contribute to the overall secu-
rity.
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– We are unaware of any existential relation between the representation and
learning with errors assumption neither in the classical nor quantum model of
computation. In fact, any insight would require progress in solving the hidden
subgroup problem (HSP) in certain finite Abelian and non-Abelian groups.
Shor’s discrete-log quantum algorithm crucially relies on the HSP in Abelian
groups. However, efficient quantum algorithms for the HSP in non-Abelian
groups are unknown as they would give an efficient algorithm for solving the
unique shortest-vector problem, being a special case of the shortest vector
problem (SVP) [13].

– Clearly, building further cryptosystems based on the search or decisional vari-
ant of learning with errors in the exponent is an interesting direction.

2 Preliminaries

2.1 Notation

Random Sampling, Negligibility and Indistinguishability. If D is a probability
distribution, we denote by d ←R D the process of sampling a value d randomly
according to D. If S is a set, then s ←R S means that s is sampled according to
a uniform distribution over the set S. We write [m] for the set {0, 1, . . . ,m − 1}.
The expression �x� denotes the nearest integer to x ∈ R, i.e., �x� = �x − 0.5�.

A function ε() is called negligible (in the security parameter κ) if it decreases
faster than any polynomial poly(κ) for some large enough κ. An algorithm A
runs in probabilistic polynomial-time (PPT) if A is randomized—uses internal
random coins— and for any input x ∈ {0, 1}∗ the computation of A(x) termi-
nates in at most poly(|x|) steps. If the running time of an algorithm is t′ ≈ t, we
mean that the distance between t′ and t is negligible.

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N ¡¡¡¡¡¡¡ .mine be two distribution ensem-
bles. We say X and Y are (t, ε)-computationally indistinguishable if for every
PPT distinguisher A with running time t, there exists a function ε(κ) such that
|Pr[A(X) = 1] − Pr[A(Y ) = 1]| ≤ ε(κ) (and we write X ≈(t,ε) Y ). If A is PPT
and ε(κ) is negligible, we simply say ======= be two distribution ensem-
bles. We say X and Y are (t, ε)-computationally indistinguishable (and write
X ≈(t,ε) Y ) if for every PPT distinguisher A with running time t, there exists
a function ε(κ) such that |Pr[A(X) = 1] − Pr[A(Y ) = 1]| ≤ ε(κ). If A is PPT
and ε(κ) is negligible, we simply say ¿¿¿¿¿¿¿ .r342 X and Y are (computation-
ally) indistinguishable (and we write X ≈ Y ). We say a distribution ensemble
X = {Xκ}κ∈N has (high) min-entropy, if for all large enough κ, the largest prob-
ability of an element in Xκ is 2−κ. We say a distribution ensemble X = {Xκ}κ∈N

is well-spread, if for any polynomial poly(·) and all large enough κ, the largest
probability of an element in Xκ is smaller than poly(κ). (In other words, the
max-entropy of distributions in X must vanish super-logarithmatically.) Under
the Gaussian distribution Dσ with parameter σ > 0, the probability of sampling
an integer x ∈ Z is proportional to exp[−x2/(2σ2)].
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Vectors and Matrices in the Exponent. We denote vectors by bold lower case
letters and matrices by bold upper case letters. The ith row of a matrix A is
denoted by A[i], the jth element of a vector a is denoted by aj , To ease notation
we sometimes write ai for the ith row vector, and ai,j for the element in the ith

row and jth column of matrix A. Let G be a group of order q, g a generator of
G, a a vector in Z

n
q , and A a matrix in Z

m×n
q . We use the notation ga ∈ G

n

to denote the vector ga
def= (ga1 , · · · , gan) and gA ∈ G

m×n to denote the matrix
gA

def= (ga1 , · · · , gam)�.

Computations in the Exponent. Given ga and b, the inner product of vectors a
and b in the exponent, denoted by g〈a,b〉, is

n∏
i=1

(gai)bi =
n∏

i=1

gai·bi = g
∑n

i=1 ai·bi = g〈a,b〉 .

Likewise, a matrix-vector product in the exponent, given a vector v and gA for
a matrix A =

(
a1 a2 . . . an

)
can be performed by

∏n
i=1(g

ai)vi =
∏n

i=1 gai·vi =
g
∑n

i=1 ai·vi = gAv . Adding (and subtracting) in the exponent is computed via
element-wise multiplication (and division) of the group elements ga · gb = ga+b.

Quadratic Residuosity. The Legendre symbol verifies whether an integer a ∈ Zp

is a quadratic residue modulo a prime p, i.e., x2 ≡ a mod p for some x. If
L(a, p) := a(p−1)/2 = 1, this is the case; otherwise L(a, p) = −1. More generally,
for n ≥ 2, we define L(a, p)n := a(p−1)/gcd(n,p−1). If the modulus N is of the
form N = p1 · · · pk where the pi are odd primes, one uses its generalization,
namely the Jacobi symbol, which is defined as J(a,N) =

∏k
i=1 L(a, pi). Note that

J(a,N) = 1 does not imply that a is a quadratic residue modulo N . However,
if J(a,N) = −1, a is certainly not. The set of quadratic residues modulo N is
denoted by QRN := {a2 : a ∈ Z

∗
N}. By JN we denote the subgroup of all

elements from Z
∗
N with Jacobi symbol 1, i.e., JN = {a ∈ Z

∗
N : J(a,N) = 1}.

Note that QRN is a subgroup of JN . It is widely believed that one cannot
efficiently decide whether an element a ∈ JN is a quadratic residue modulo N if
the prime factors of N are unknown (For more details, full version).

2.2 Standard Group-Theoretic Problems

We will make use of the rank hiding assumption introduced by Naor and Segev [14]
(and later extended by Agrawal et al. [15]).3 It was proven to be equivalent to the
DDHG,χ assumption for groups of prime order and uniform χ [14].

Definition 1 (Rank Hiding). Let G be a group of order q with generator
g, and i, j, n,m ∈ N satisfying i = j and i, j ≥ 1. The Rank Hiding problem
(RHG,i,j,m,n) is (t, ε)-hard if

{(G, q, g, gM) : M ←R Rki(Zm×n
q )} ≈(t,ε) {(G, q, g, gM) : M ←R Rkj(Zm×n

q )}
3 The assumption was first introduced by Boneh et al. [16] under the Matrix DDH

assumption.
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where Rkk(Zm×n
q ) returns an m × n matrix uniformly random from Z

n×m
q with

rank k ≤ min(n,m).

2.3 Representation Problem

The representation problem in a group G assumes that given l random group
elements g1, . . . , gl ∈ G and h ∈ G it is hard to find a representation x ∈ Z

�
q

such that h =
∏�

i=1 gxi
i holds. Brands shows an electronic cash system based on

the problem. Recently, the assumption was extensively applied to show leakage
resiliency [15,17,18].

We now state a more general version of the search representation problem
where vector x ←R χ� is sampled from a distribution χ with (at least) min-
entropy and where an adversary is given m ≥ 1 samples instead of a single one.

Definition 2 (Search Representation Problem). Let χ be a distribution
over Zq, and �,m be integers. Sample M ←R Z

m×�
q and x ←R χ�. The Search

Representation Problem (SRPG,χ,�,m) is (t, ε)-hard if any algorithm A, running
in time t, upon input (g, gM, gx, gMx), outputs x′ ∈ Z

�
q such that gMx′

= gMx

with probability at most ε. If χ is the uniform distribution, we sometimes skip χ
in the index and say that SRPG,�,m is (t, ε)-hard.

Brands proves the equivalence of the representation problem and the discrete
logarithm problem for uniform χ and m = 1. It is easy to verify that the reduction
holds for every distribution for which the discrete logarithm problem holds.

To establish relations to the learning with errors in the exponent problem
(cf. Sect. 3.2), we need a decisional variant of the representation problem. To
our surprise, the decisional version has not been defined before, although the
assumption is a natural generalization of the decisional Diffie-Hellman problem
to �-tuples (similar in spirit as the �-linear problem in G [11]). Given � random
group elements g1, . . . , g� ∈ G together with h ∈ G and gx1 , . . . , gx� ∈ G where
x1, . . . , x� ←R Z

∗
q , it is hard to decide if h =

∏�
i=1 gxi

i or h is a random group
element in G. Our definition below generalizes this problem to the case, where
m ≥ 1 samples are given to an adversary and x1, . . . , x� are sampled from any
min-entropy distribution χ.

Definition 3 (Decisional Representation Problem). Let χ be a distrib-
ution over Z

∗
q , and �,m be integers. Sample M ←R Z

m×�
q , h ←R Z

m
q , and

x ←R χ�. The Decisional Representation (DRPG,χ,�,m) problem is (t, ε)-hard if

(g, gM, gx, gMx) ≈(t,ε) (g, gM, gx, gh).

If χ is the uniform distribution over Z
∗
q , we say DRPG,�,m is (t, ε)-hard.

Remark 1. DRPG,χ,�,m can be stated in the framework of the Matrix-DDH
assumption recently introduced by Escala et al. [19] and thus we put another
class of hardness problems to the arsenal of their expressive framework.
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We now give evidence that the family of DRPG,χ,�,m problems is a class of
progressively harder problems (with increasing �). Proofs of following proposi-
tions can be foound in the full version.

Proposition 1. If DRPG,χ,�,m is (t, ε)-hard, then for any �,m ≥ 1 with t′ ≈ t
and distribution χ with min-entropy DRPG,χ,�+1,m is (t′, ε)-hard.

Proposition 2. In the generic group model DRPG,χ,�+1,m is hard for distribu-
tion χ with minimal entropy, even in presence of a DRPG,χ,�,m-oracle.

Remark 2. DRPG,χ,1,1-problem with χ being the uniform distribution over Zq

coincides with the decisional Diffie-Hellman (DDH) problem. Hence, we obtain
the corollary that for uniform distributions χ, the decisional Diffie-Hellman
problem implies the representation problem DRPG,χ,�,1 for � ≥ 1. In fact,
Proposition 1 suggests a stronger argument. Assuming the decisional Diffie-
Hellman problem holds for well-spread and min-entropy distributions χ, then
the DRPG,χ,�,1 holds for χ and � ≥ 1.

While Propositions 1 and 2 show that the DRP problem progressively
increases with �, the following proposition states that the problem remains hard
with increasing number of samples m. More precisely, we show that DRPG,χ,�,m+1

is hard as long as DRPG,χ,�,m and the Rank Hiding problem RHG,m,m+1,m+1,2�+1

(cf. Definition 1) is hard. The proof is given in the full version.

Proposition 3. If RHG,m,m+1,m+1,2�+1 is (t, ε)-hard and DRPG,χ,�,m is (t′, ε′)-
hard in a cyclic group G of order q, then for any distribution χe and any m > 0
with t′ ≈ t and ε′′ ≤ (1 − ε)−1ε′ DRPG,χ,�,m+1 is (t, ε′′)-hard.

2.4 Learning with Errors

The learning with errors assumption comes as a search and decision lattice prob-
lem. Given a system of m linear equations with random coefficients ai ∈ Z

n
q in

the n indeterminates s sampled from some distribution χs and biased with some
error ei from the error distribution χe, it is hard to compute vector s or distin-
guish the solution bi =

∑n
i ais + ei from a uniform element in Zq.

Definition 4 (Learning with Errors). Let n,m, q be integers and χe, χs be
distributions over Z. For s ←R χs, define the LWE distribution LLWE

n,q,χe
to be the

distribution over Z
n
q ×Zq obtained such that one first draws a ←R Z

n
q uniformly,

e ←R χe and returns (a, b) ∈ Z
n
q ×Zq with b = 〈a, s〉 + e. Let (ai, bi) be samples

from LLWE
n,q,χe

and ci ←R Zq for 0 ≤ i < m = poly(κ).

– The Search Learning With Errors (SLWEn,m,q,χe
(χs)) problem is (t, ε)-hard if

any algorithm A, running in time t, upon input (ai, bi)i∈[m], outputs s with
probability at most ε.

– The Decisional Learning with Errors (DLWEn,m,q,χe
(χs)) problem is (t, ε)-hard if

(ai, bi)i∈[m] ≈(t,ε) (ai, ci)i∈[m]

for a random secret s ←R χs.

If χs is the uniform distribution over Zq, we simply write LWEn,m,q,χe
.
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A typical distribution for the error is a discrete Gaussian distribution with an
appropriate standard deviation. There are several proposals for the distribution
of the secret. While the uniform distribution is the most standard one, it is
shown that setting χs = χe, known as the “normal form”, retains the hardness
of LWE [20,21]. We also note that the learning with errors problem where the
error is scaled by a constant α relatively prime to q is as hard as the original
definition [22]. The “scaled” LWE distribution then returns (a, b) with a ←R Z

n
q

and b = 〈a, s〉 + αe.

3 Learning with Errors in the Exponent

3.1 Definition

For self-containment, the assumption is stated both as a search and decision
problem over a group G of order q, and exponents sampled from distributions
χe, χs over Z. We demonstrate the versatility and general utility of the decisional
version in Sect. 4.

Definition 5 (Learning with Errors in the Exponent). Let G be a group
of order q where g is a generator of G. Let n,m, q be integers and χe, χs be
distributions over Z. For any fixed vector s ∈ Z

n
q , define the LWEE distribution

LLWEE
G,n,q,χe

to be the distribution over G
n × G obtained such that one first draws

vector a ←R Z
n
q uniformly, e ←R χe and returns (ga, gb) ∈ G

n × G with b =
〈a, s〉 + e. Let (gai , gbi) be samples from LLWEE

G,n,q,χe
and ci be uniformly sampled

from Z
∗
q for 0 ≤ i < m = poly(κ).

– The Search Learning With Errors in the Exponent (SLWEEG,n,m,q,χe
(χs)) prob-

lem is (t, ε)-hard if any algorithm A, running in time t, upon input (gai ,
gbi)i∈[m], outputs s with probability at most ε.

– The Decision Learning With Errors in the Exponent (DLWEEG,n,m,q,χe
(χs)) prob-

lem is (t, ε)-hard if(gai , gbi)i∈[m] ≈(t,ε) (gai , gci)i∈[m] for a random secret
s ←R χn

s . If χs is the uniform distribution over Zq, we write DLWEEG,n,m,q,χe
.

We let AdvDLWEE/SLWEE

G,n,m,q,χe,χs
(t) denote a bound on the value ε for which the deci-

sional/search LWEE problem is (t, ε)-hard.

One may interpret learning with errors in the exponent in two ways. One
way is to implant an error term from a distribution χe into the Diffie-Hellman
exponent. Another way to look at LWEE is as compressing an LWE instance
within some group G of order q.

3.2 Relations to Group and Lattice Problems

We connect the representation and learning with errors problem to learning
with errors in the exponent. The essence is that there exist tight reductions
from the search (resp. decision) learning with errors in the exponent problem to
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either the search (resp. decision) representation problem and the search (resp.
decision) learning with errors problem. This has several interesting property
preserving implications. As a corollary we infer that for appropriate parameter
choices LWEE preserves the hardness and robustness properties of the represen-
tation and/or learning with errors problem. Essentially then LWEE boils down
to the security of either of the two underlying problems. This way, the cryp-
tosystem can be instantiated to leverage leakage resistance and post-quantum
hardness thanks LWE [3,23]. On the flip side, the cryptosystem may offer short
instance sizes through the underlying RP problem (when instantiated on elliptic
curves). Of particular interest for many emerging applications is the partnering
of the two hardness assumptions. One may choose parameters such that both RP
and LWE hold. We call the case double-hard, which appeals to provide in some
sense hedged security.

Following four propositions summarize our main results. Proofs appear in
the full version.

Proposition 4. If SRPG,χs,�,m is (t, ε)-hard in a cyclic group G of order q, then
for any distribution χe and any number of samples m > 0 SLWEEG,�,m,q,χe

(χs)
is (t′, ε)-hard with t′ ≈ t.

Proposition 5. If SLWEn,m,q,χe
(χs) is (t, ε)-hard, then for any cyclic group G

of order q with known (or efficiently computable) generator SLWEEG,n,m,q,χe
(χs)

is (t′, ε)-hard with t′ ≈ t.

Proposition 6. If DRPG,χs,�,m is (t, ε)-hard in a cyclic group G of order q, then
for any distribution χe and any number of samples m > 0 DLWEEG,�,m,χe

(χs)
is (t′, ε)-hard with t′ ≈ t.

Proposition 7. If DLWEn,m,q,χe
(χs) is (t, ε)-hard, then for any cyclic group G

of order q with known (or efficiently computable) generator DLWEEG,n,m,χe
(χs)

is (t′, ε)-hard with t′ ≈ t.

3.3 On the Generic Hardness of LWEE

With Propositions 4–7 in our toolbox we conjecture LWEE to be harder than
either of the underlying RP or LWE problems. The argument is heuristic and
based on what is known about the hardness of each intractability problem (see
full version for more details).

Fix parameters such that RP and LWE problem instances give κ bits security.
The only obvious known approach today to solve the LWEE instance is to first
compute the discrete logarithm of samples (gai , gbi) and then solve the LWE
problem for samples (ai, bi). Note that an adversary must solve n2+n many dis-
crete logarithms because the secret vector s is information-theoretically hidden,
if less than n samples of LWE are known. Solving N := n2+n discrete logarithms
in generic groups of order q takes time

√
2Nq while computing a single discrete

logarithm takes time
√

πq/2 [24,25].4 In fact, this bound is proven to be optimal
4 Solving N -many discrete logarithms is easier than applying N times a DL solver for

a single instance.
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in the generic group model [26]. Note, parameters for LWEE are chosen such that
computing a single discrete logarithm takes time 2κ. Hence, in order to solve the
LWEE instance for N = O(κ2), one requires time 2√

π

√
N · 2κ + 2κ > 2κ+2 log(κ).

This shows that generically the concrete instance of LWEE is logarithmically
harder in the security parameter κ.

4 Public-Key Encryption from LWEE

4.1 The High-Level Idea

The idea behind our scheme is reminiscent of Regev’s public-key encryption
scheme. In a nutshell, the public key is an LWEE instance (gA, gAs+x) ∈
G

n×n × G
n. Similarly to [27,28] and as opposed to Regev [3], for efficiency

reason we avoid the use of the leftover hash lemma –instead we impose one fur-
ther LWEE instance– and make use of a square matrix A. Ciphertexts consist of
two LWEE instances C = (c0, c1) where c0 = gAr+e0 encapsulates a random key
r ∈ Z

n
q and c1 = g〈b,r〉+e1 ·gαμ encrypts the message μ (we discuss the exact value

of α below). The tricky part is the decryption algorithm. All known LWE-based
encryption schemes require some technique to deal with the noise terms. Oth-
erwise, decryption is prone to err. Regev’s technique ensures small error terms.
One simply rounds c1 − c0s to some reference value cb indicating the encryption
of bit b. While rounding splendidly works on integers, the technique fails in our
setting.

Our approach explores a considerably different path. Instead of rounding, we
synthesize the pesky error terms. To this end, we adapt the trapdoor technique
of Joye and Libert [29] and recover partial bits of the discrete logarithm (by
making use of the Pohlig-Hellman algorithm [30]). The main idea is to tweak
the modulus in a smart way. Given composite modulus N = pq with p′, q′, such
that p = 2kp′ + 1 and q = 2kq′ + 1 are prime, there exists an efficient algorithm
for recovering the k least significant bits of the discrete logarithm. We choose
the parameters so that the sum of all error terms in the exponent is (with high
probability) at most 2k−�. This leads to a “gap” between error bits and those bits
covert by the discrete log instance. We plant the message in this gap by shifting
it to the 2k−�’s bit, where � is the size of the message we want to decrypt. Hence,
we choose α = 2k−� in our construction to shift the message bits accordingly.
We leave it as an interesting open problem to instantiate the scheme in prime
order groups.

4.2 Our Construction

The scheme is parameterized by positive integers n, k, � < k and Gaussian para-
meters σs, σe.

KeyGen: Sample prime numbers p′ and q′, such that p = 2kp′+1 and q = 2kq′+1
are prime. Set N = pq and M = 2kp′q′. Sample s ←R Dn

σs
, A ←R Z

n×n
M and

x ←R Dn
σe

and compute b = A�s+x. Sample g ∈ JN \QRN of order M . The
public key consists of pk = (g, gA, gb, N), and the secret key of sk = (p, s).
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Algorithm 1.

Input: Generator g of a group with order p − 1 = 2kp′, p and k
Output: k least significant bits of logg(h)

begin
a = 0, B = 1;
for i ∈ {1, . . . , k} do

z ← L(h, p)2i mod p;
t ← L(g, p)a2i mod p;
if z �= t then

a ← a + B;
end
B ← 2B;

end
return a

end

Encrypt(pk, μ): To encrypt � bits μ ∈ {0, 1, . . . 2� −1} given public key pk choose
r ←R Dn

σs
, e0 ←R Dn

σe
and e1 ←R Dσe

. Use gA, r and e0 to compute gAr+e0 ,
and gb, r and e1 to compute g〈b,r〉+e1 . The ciphertext is c0, c1 with

c0 = gAr+e0 , c1 = g〈b,r〉+e1 · g2
k−�μ.

Decrypt(sk, (c0, c1)): To decrypt the ciphertext (c0, c1) given secret key sk =
(p, s), first compute g〈s,Ar+e0〉 and then h = c1/g〈s,Ar+e0〉. Run Algorithm 1
to synthesize v = logg(h) mod 2k and return

⌊
v

2k−�−1

⌉
.

4.3 Correctness

To show correctness of our construction we build upon two facts. First, Algorithm1
synthesizes the k least significant bits of a discrete logarithm. The algorithm’s cor-
rectness for a modulus being a multiple of 2k is proven in [29, Section 3.2]. Second,
noise in the exponent does not overlap with the message. To this end, we bound
the size of the noise with following lemma.

Lemma 1 (adapted from [28, Lemma 3.1]). Let c, T be positive integers such
that

σs · σe ≤ π

c

T√
n ln(2/δ)

and
(

c · exp(
1 − c2

2
)
)2n

≤ 2−40.

For x, s ←R Dn
σe

, r, r0 ←R Dn
σe

, e1 ←R Dσe
, we have |〈x, r〉 − 〈s, e0〉 + e1| < T

with probability at least 1 − δ − 2−40.

We are now ready to prove the following theorem.

Theorem 1. Let c, T be as in Lemma 1. Then, the decryption is correct with
probability at least 1 − δ − 2−40.
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4.4 Ciphertext Indistinguishability

Theorem 2. Let G = 〈g〉 be the cyclic group of composite order generated by g.
If the decisional LWEE problem DLWEEG,n,n+1,q,Dσe

(Dσs
) is (t, ε)-hard, then the

above cryptosystem is (t, 2ε)-indistinguishable against chosen plaintext attacks.

Proof. In a high level, our proof works as follows. Instead of showing IND-CPA
security via a direct argument we show that the distribution (pk, c0, c1) is indis-
tinguishable from the uniform distribution over (Gn×n × G

2n+1). That is, a
ciphertext (c0, c1) under public key pk appears completely random to an adver-
sary. This holds, in particular, in the IND-CPA experiment when the adver-
sary chooses the underlying plaintext. We prove the theorem via a series of
hybrid arguments, Hybrid0 to Hybrid2, where in each consecutive argument we
make some slight changes with the provision that the adversary notices the
changes with negligible probability only. In the following, we use the abbrevia-
tions u = Ar + e0 and v = 〈b, r〉 + e1 + 2k−�μ.

Hybrid0: In this hybrid we consider the original distribution of the tuple

(pk, (c0, c1)) = (gA, gb, gu, gv).

Hybrid1: In this hybrid we modify the distribution and claim

(gA, gb, gu, gv) ≈c (gA
′
, gb

′
, gA

′r+e0 , g〈b′·r〉+e1 · g2
k−�μ)

for a uniformly sampled elements gA
′
, gb

′ ∈ G
n×n × G

n. We argue that
any successful algorithm distinguishing between Hybrid0 and Hybrid1 can be
easily turned into a successful distinguisher B in the DLWEEG,n,n,q,Dσe

(Dσs
)

problem. The DLWEE-adversary B is given as challenge the tuple (gA, gb)
and is asked to decide whether there exist vectors s ←R Dσs

, x ←R Dn
σe

such that gb = gA
�s+x or gb was sampled uniformly from G

n.
Let Pr[Hybridi(t)] denote the probability of any algorithm with runtime t to
win the IND-CPA experiment in hybrid i. Then, we have

Pr[Hybrid0(t)] ≤ Pr[Hybrid1(t)] + AdvDLWEE

G,n,n,q,Dσe ,Dσs
(t).

Hybrid2: In this hybrid we modify the distribution and claim

(gA
′
, gb

′
, gA

′r+e0 , g〈b′·r〉+e1 · g2
k−1μ) ≈c (gA

′′
, gb

′′
, gu

′
, gv′ · g2

k−1μ)

for a uniformly sampled elements gA
′′
, gb

′′
, gu

′
, gv′ · gμ ∈ G

(n+1)×n × G
n+1.

We argue that any successful algorithm distinguishing between Hybrid1 and
Hybrid2 can be easily turned into a successful distinguisher B against the
DLWEEG,n,n+1,q,Dσe

(Dσs
) problem. Note that gb

′
, g〈b′·r〉+e1 is an additional

sample from the LWEE distribution from which gA
′
, gA

′r+e0 is sampled.
We have

Pr[Hybrid1(t)] ≤ Pr[Hybrid2(t)] + AdvDLWEE

G,n,n+1,q,Dσe ,Dσs
(t).

Note that now all exponents are uniformly distributed, and, in particular,
independent of μ and thus, independent of b in the IND-CPA game. Hence,
any algorithm has in Hybrid2 exactly a success probability of 1/2.

This completes the proof of semantic security.
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4.5 Candidate Instantiations of Our Encryption Scheme

We give three possible instantiations to derive a system with short key sizes, post-
quantum security or double hardness. Throughout this section we instantiate our
scheme such that the encryption scheme from Sect. 4.2 encrypts only a single bit.
Nonetheless, parameters can easily be upscaled to many bits.

Table 1. Key sizes in kilobytes (kB) for our encryption scheme basing security on DRP
or LWE, respectively.

Sizes/Security DRP-based instantiation LWE-based instantiation

80-bit 128-bit 256-bit 80-bit 128-bit 256-bit

Public-key size 0.565 kB 1.500 kB 7.500 kB 235 kB 417 kB 1233 kB

Secret-key size 0.212 kB 0.563 kB 2.813 kB 0.976 kB 1.302 kB 2.237 kB

Ciphertext size 0.283 kB 0.750 kB 3.750 kB 0.980 kB 1.306 kB 2.241 kB

The Classical Way. Here, we instantiate our encryption scheme such that the
underlying DRP is intractable, and neglecting the hardness of the underlying
LWE. In the full version, we recall some groups where we believe DRP is hard to
solve. Our encryption scheme works in the group JN := {x ∈ ZN : J(x,N) = 1}
for N = pq with p, q being k-safe primes. In fact, we can even take safe primes
p, q (i.e., k = 1) since we do not need any noise in the exponent if we neglect the
underlying LWE hardness. Thus, we embed the message to the least significant
bit in the exponent. For this reason, we can sample g ←R JN/QRN where 〈g〉
has order 2p′q′. Since the LWE instance within LWEE is not an issue here we
select n = m = 1, σs = ∞ and σe = 0.

We obtain 80-bit security for the underlying DRP problem if we choose safe
primes p and q such that log p = log q = 565 (see full version for more details).
Table 1 lists possible key sizes for our encryption scheme. Recall that the public
key consists of pk = (g, gA, gb, k,N) (i.e., 4 group elements if we fix k = 1) and
the secret key of sk = (p, s).

The Post-Quantum Way. Here we give example instantiations of our encryption
scheme when it is based on a presumably quantum-resistant LWEE assump-
tion. That is, we select parameters such that the underlying LWE assumption
is intractable without relying on the hardness of DRP. For this, we modify the
scheme slightly by choosing fixed values for p′ and q′ instead of sampling. A good
choice is k = 15, since it allows to choose p′ = 2 and q′ = 5, which are very small
prime numbers such that 2kp′ +1 and 2kq′ +1 are prime. For the LWE modulus,
this leads to M = 2kp′q′ = 327680. Like Lindner and Peikert [28], we choose the
Gaussian parameter such that the probability of decoding errors is bounded by
1%. We choose furthermore the same parameter for error and secret distribution
(i.e. σs = σe = σ), since a standard argument reduces LWE with arbitrary secret
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to LWE with secret chosen according to the error distribution. For this choice
of k, p′ and q′, we obtain 80-bit security by choosing n = 240 and σ = 33.98.
Table 1 lists the key sizes when our encryption scheme is instantiated such that
its security is based on LWE only (see full version for more information about
the concrete hardness of LWE).

The Hardest Way (Double-Hardness). The most secure instantiation of our
encryption is such that even if one of the problems DRP or LWE is efficiently solv-
able at some point, our encryption scheme remains semantically secure. Selecting
parameters for double hardness, however, is non-trivial.

To select appropriate parameters for the case of double hardness, we apply
the following approach: For a given security level (say κ = 80), we select N
such that the Number Field Sieve needs at least 2κ operations to factor N .
A possible choice is log N = 1130 (See full version). Since factoring N must
also be hard for McKee-Pinch’s algorithm, which works well when (p − 1) and
(q − 1) share common factor, k must be chosen such that N1/42−k ≥ 2κ, i.e.
k ≤ log(N)

4 −κ. This leads to k = 203. Given N and k, we can calculate the sizes
of the primes log(p′) ≈ log(q′) ≈ 362 and log(p) ≈ log(q) ≈ 565 and the LWE
modulus log(M) ≈ 927. Taking n = 67000 and σ = 297, Lemma 1 shows that
the algorithm decrypts correctly with high probability.
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Abstract. LowMC is a family of block ciphers developed particularly
for use in multi-party computations and fully homomorphic encryption
schemes, where the main performance penalty comes from non-linear
operations. Thus, LowMC has been designed to minimize the total quan-
tity of logical “and” operations, as well as the “and” depth. To achieve
this, the LowMC designers opted for an incomplete S-box layer that does
not cover the complete state, and compensate for it with a very dense,
randomly chosen linear layer. In this work, we exploit this design strat-
egy in a cube-like key-recovery attack. We are able to recover the secret
key of a round-reduced variant of LowMC with 80-bit security, where
the number of rounds is reduced from 11 to 9. Our attacks are indepen-
dent of the actual instances of the used linear layers and therefore, do
not exploit possible weak choices of them. From our results, we conclude
that the resulting security margin of 2 rounds is smaller than expected.

Keywords: Cryptanalysis · LowMC · Higher-order cryptanalysis · Key
recovery · Zero-sum distinguisher

1 Introduction

The recently proposed family of block ciphers LowMC [1] addresses the need
for new block cipher structures suited for multi-party computation and fully
homomorphic encryptions schemes, where the non-linear operations of a cipher
contribute much more to the overall computational execution costs than the
linear operations. Therefore, LowMC combines an incomplete S-box layer with
a strong linear layer to reduce the multiplicative depth and size of the cipher.
However, this is a quite uncommon approach and can be risky as shown for
Zorro [3,9,14,17]. Therefore, LowMC comes with strong security arguments
(bounds) against standard cryptanalytic attacks like differential and linear crypt-
analysis. In more detail, the authors show that for the proposed instances of
LowMC, no good differential and linear characteristics exist for more than 5
rounds. However, they do not provide such strong security arguments against
other attack vectors including algebraic attacks.

In this work, we show that the security of LowMC against algebraic attacks is
lower than expected. Our attacks are based on the ideas previously used in cube
attacks [8], higher order differential cryptanalysis [13], AIDA [16], bit-pattern
based integral attacks [18], or the square [6] and intergral [12] attacks. To be
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-30840-1 6
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more specific, our attacks make use of the rather low algebraic degree of one
round of LowMC to construct cube testers [2]. The fact that the S-box layers
are incomplete can be exploited to efficiently construct vector spaces at the
input which allow to create cube testers of low dimension covering a rather
high number of rounds. The incomplete S-box layer also facilitates the existence
of linear relations with probability 1, which allow to attack additional rounds.
This leads to attacks on round-reduced variants of LowMC with 80-bit security,
where the number of rounds is reduced from 11 to 9. Note that these attacks do
not exploit any specific property of the linear layers and are thus applicable for
randomly chosen linear layers.

Our results show that the security margin of LowMC with 80-bit security
is smaller than expected, being only 2 rounds. Therefore, we conclude that the
design of primitives with an incomplete S-box layer has not been fully understood
yet. Therefore, it is recommendable to be more conservative when choosing the
security margin in those designs.

Related Work. In very recent independent research, Dinur et al. [7] also inves-
tigate the security of LowMC against high-order differential cryptanalysis. By
developing an optimized variation of interpolation attacks for key recovery,
they are able to identify large classes of weak keys for LowMC-80, and also
demonstrate attacks on up to 10 of 11 rounds of LowMC-80 and on full-round
LowMC-128.

2 Description of LowMC

LowMC [1] is a family of block ciphers, where each instance is characterized by
several parameters: the block size n and key size k, the number m of S-boxes per
substitution layer, a (logarithmic) data complexity limit d, the number of rounds
r, the concrete instantiations of the linear layers fL, and the key derivation
function used in fK .

The encryption of LowMC starts with a key whitening layer f
(0)
K , followed

by r iterative applications of the round function

f (i) = f
(i)
K ◦ f

(i)
L ◦ fS ,

consisting of the substitution layer fS (identical for each round), the linear layer
f
(i)
L , and the round-key addition f

(i)
K , as illustrated in Fig. 1.

The substitution layer is the parallel application of the same 3-bit S-box
S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab) on the right-most (least significant)
3 ·m bits of the state. On the remaining � = n−3m bits, the identity mapping is
applied. The used S-box has a maximum differential and linear probability of 2−2,
and algebraic degree 2 (the maximum possible degree for a 3-bit permutation).

The linear layer fL multiplies the n-bit state with a randomly chosen and
invertible n × n matrix over F2. The matrix differs for each round.
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· · · S S · · · SfS

Lif
(i)
L

· · · Ki
f
(i)
K

Fig. 1. The round function of LowMC: f (i) = f
(i)
K ◦ f

(i)
L ◦ fS .

In f
(i)
K , the whitening key K0 and round keys K1, . . . , Kr are added in the

respective rounds. These round keys are generated by binary multiplications of
randomly generated, full-rank n × k matrices with the master key K, followed
by an addition with a randomly chosen n-bit round constant.

Albrecht et al. [1] propose two concrete instances, with the parameter sets
shown in Table 2. The first set provides “PRESENT-like” security using an
80-bit key, while the second set provides “AES-like” security using a 128-bit
key. To generate the used random matrices, the recommended instantiations use
the Grain LSFR [10] as a source of random bits. Since our analysis does not
depend on concrete instantiations of matrices, only on the parameters given in
Table 2, we omit a description of the matrices.

We will denote LowMC with key size k, state size (permutation size) n and m
S-boxes per round as LowMC-kn,m. We abbreviate the recommended parameter
sets as LowMC-80 = LowMC-80256,49 (“PRESENT-like security” variant) and
LowMC-128 = LowMC-128256,63 (“AES-like security” variant).

3 Higher-Order Attacks in the Known-Key Setting

In the known-key setting [11], we assume that the round keys have known values.
The attack goal is to find non-random properties of the resulting permutation.
More specifically, we will focus on (families of) zero-sum distinguishers: finding
sets of inputs to the permutation such that both the sum (over Fn

2 ) of the inputs,
as well as the sum of their outputs, equal zero. It should be remarked that
LowMC’s designers make no security claims for the known-key setting, and it is
hardly a practical attack scenario. Rather, it serves as an introductory setting,
and we will reuse and adapt the results for the secret-key setting in Sect. 4.

3.1 Basic Zero-Sum Distinguisher

A well-known result from the theory of Boolean functions is that if the algebraic
degree of a vectorial Boolean function (like a permutation) is d, then the sum over
the outputs of the function applied to all elements of a vector space of dimension
≥ d+1 is zero (as is the sum of all inputs, i.e., the elements of the vector space).
The same property holds for affine vector spaces of the form {v + c | v ∈ V } for
some vector space V and constant c. Therefore, in the remaining text, we also
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refer to affine vector spaces as vector spaces for simplicity. This property allows
to exploit a low algebraic degree of cryptographic functions to create zero-sum
distinguishers and has been applied, for example, to Keccak [4,5].

For this reason, the designers of LowMC included bounds for the algebraic
degree of multiple rounds of the permutation in their design paper [1]. Their
bounds are based on the observation (see [5]) that if the degree after r rounds
(with m S-boxes per round of the n-bit permutation) is d

(n,m)
r , then the degree

d
(n,m)
r+1 after r + 1 rounds is bounded by

dr+1 ≤ min
{
2 · dr, m + dr,

1
2 · (n + dr)

}
,

since the degree of one round is d1 = 2. The resulting bounds for up to 15 rounds
are given in Table 1.

Table 1. Upper bounds for the algebraic degree d
(n,m)
r after r rounds of the LowMC

permutation on n = 256 bits with m ∈ {49, 63} S-boxes.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d
(256,49)
r 2 4 8 16 32 64 113 162 209 232 244 250 253 254 255

d
(256,63)
r 2 4 8 16 32 64 127 190 223 239 247 251 253 254 255

Based on these numbers, the designers recommend that the number of rounds
r satisfies r ≥ rdeg + router, where rdeg is the number of rounds necessary for a
sufficiently high degree (drdeg ≥ d − 1 for the logarithmic data complexity limit
d), and router = 5 is a heuristic estimate for the number of rounds that can be
“peeled off” in the beginning and end of the cipher, based on the bounds for
linear and differential cryptanalysis. This leads to the round numbers stated in
Table 2 for the recommended parameter sets.

Table 2. Recommended number of rounds r ≥ rdeg + router [1].

Key size k Block size n S-boxes m Data complexity d rdeg router Rounds r

80 256 49 64 6 5 11

128 256 63 128 7 5 12

The degree bounds from Table 1 clearly show that 11 or 12 rounds of the
unkeyed round function cannot be considered an ideal random permutation,
although the complexity of a straightforward zero-sum distinguisher is far beyond
the claimed security level: if we choose any subspace V ≤ F

256
2 with dimension

≥ 245 (resp. ≥ 252), we get
∑
v∈V

v =
∑
v∈V

f11(v) = 0
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(resp.
∑

v∈V f12(v) = 0) for LowMC-80 (resp. LowMC-128) with m = 49
(resp. m = 63) S-boxes per round, where f is the round with some fixed, known
key. However, it is easy to obtain distinguishers with a much lower complexity.

3.2 Initial Structure, Direct-Sum Construction, and Partial
Zero-Sums

First, since we are considering the known-key setting, we are not limited to start-
ing computation before the first round. We can also define an initial structure as
input for one of the middle rounds – say, round 7 – and compute backwards and
forwards from there to again get zero-sums at input and output, with a much
lower data complexity. Since LowMC uses 3-bit bijective S-boxes, the degree of
the inverse S-box and thus of the inverse round function f−1 is also at most 2.
Thus, for any subspace V ≤ F

256
2 with dimension ≥ 65, we get

∑
v∈V

f−6(v) =
∑
v∈V

f5(v) = 0

(resp.
∑

v∈V f6 = 0). The set of 265 zero-sum input values {f−6(v) | v ∈ V } is
below the data complexity limit d for LowMC-128, and only slightly above for
LowMC-80.

Second, by choosing a vector space V of a particular structure as a starting
point, we can add a free round in the middle. Assume that V is the direct sum
of any subspace of F256−3·m

2 , and m trivial subspaces of F3
2 (i.e., each is either

F
3
2 or {(0, 0, 0)}). Since the bijective 3-bit S-box maps any trivial subspace of

F
3
2 to itself, applying the S-box layer to this vector space produces another

vector space V ′ ≤ F
256
2 (of the same form). This reduces the data complexity of

the distinguisher below the data complexity limit for LowMC-80: for any V of
dimension ≥ 33 of the above direct-sum format and the corresponding V ′,

∑
v∈V

f−5(v) =
∑

v′∈V ′=fS(V )

(f5 ◦ fK ◦ fL)(v′) = 0,

so the set {f−5(v) | v ∈ V } is a zero-sum distinguisher for LowMC-80 with
known key, with a data complexity of 233. The attack is illustrated in Fig. 2.

∑
=0

f−1
K ◦ f−5

deg ≤ 32

V

fS

V ′

f5 ◦ fK ◦ fL

deg ≤ 32

∑
=0

Fig. 2. Zero-sum distinguisher for r = 11 rounds of LowMC-80 with a data complexity
of 233 message blocks.
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Third, we can take advantage of the special structure of the S-box layer,
which only applies S-boxes to part of the state, while the rest is left unchanged
by an identity map. In the inverse round f−1, the linear layer is applied before
the S-box layer. This means that (the leftmost/most significant) � = n − 3 · m
bits of the output of each inverse round f−1 only depend linearly on the round
input bits (� = 109 bits for LowMC-80, � = 67 bits for LowMC-128). If we add
such an inverse round to a function, the degree of � output bits is bounded by the
same limit as the original function output, so the inverse round (corresponding
to a round in the beginning of the cipher) is essentially “for free” on these bits.
A similar idea can be used to also add a free forward round at the end. To
compensate for the additional linear layer after the last S-box layer, however,
we need to generalize the partial zero-sum property further: instead of a zero-
sum property on some of the output bits, we get a zero-sum property on some
(linearly independent) linear combinations of the cipher’s output bits. Note that
the final linear transformation fK ◦ fL can be swapped to fL ◦ fK′ with some
equivalent key K ′. Since the addition of K ′ does not change the partial zero-
sum property, the linear combination of output bits that sums to zero does
not depend on the key. Since � is relatively large (� > k for LowMC-80), even
a zero-sum distinguisher only for � bits of the input and (linearly combined)
output gives us a detectable distinguishing property. With the above approach,
we get �-bit partial zero-sums with 2 more rounds for free, so the dimension of
V can be reduced to 17 (for LowMC-80) and 33 (for LowMC-128) to cover the
recommended full round sizes, as illustrated in Fig. 3. Table 3 summarizes the
best attacks for the known-key setting.

�∑��=0

f−1
K f−1

S

∑
=0

f−1
L ◦ f−4

deg ≤ 16

V

fS

V ′

f4 ◦ fK ◦ fL

deg ≤ 16

∑
=0

fS fK′

�∑��=0

f−1
L

Fig. 3. Partial 109-bit zero-sum distinguisher for r = 11 rounds of LowMC-80 with a
data complexity of 217 message blocks.

Table 3. Distinguishers for LowMC in the known-key setting.

Zero-sum Partial zero-sum

Target Rounds Complexity Zero-sum bit size Rounds Complexity

LowMC-80 11/11 233 109/256 11/11 217

LowMC-128 12/12 265 67/256 12/12 233
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4 Higher-Order Attacks in the Secret-Key Setting

In this section, we investigate the applicability of higher-order attacks in the
secret-key setting. While the basic observations about the degree of the round
functions and the zero-sum property still hold in this setting, it is no longer
easily possible to define an initial structure in the middle of the cipher as in
Sect. 3.2 and compute in both directions. Attack goals in the secret-key setting
include output distinguishers and key recovery. For simplicity, we demonstrate
our attacks for the LowMC variant LowMC-80 (“PRESENT-like security”), and
only briefly discuss the applicability and complexity for LowMC-128 and more
general LowMC configurations at the end of the paper.

4.1 Basic Zero-Sum Key Recovery

Based on the basic observations from Sect. 3.1, an attacker can trivially distin-
guish the output of up to 3, 4, or 5 rounds of LowMC-80 from random values
with a data complexity of 29, 217, or 233, respectively (all below the logarith-
mic data complexity of d = 64): he requests the ciphertexts for all values of an
(affine) vector space V of the given size, and verifies the zero-sum property of
the corresponding outputs.

By choosing a vector space of the same direct-sum form as in Sect. 3.2 for V ,
we can add an additional free round in the beginning: the output values after
applying the initial key whitening fK and the first S-box layer fS to all vectors
in V is another (affine) vector space V ′ of the same direct-sum form, and the
remaining added round functions fL, fK , both of degree ≤ 1, can be added to the
following 3, 4, or 5 rounds for free, without increasing the necessary dimension
of V .

Additionally, we can add another final round without increasing the data
complexity, by turning the distinguishing attack into a key recovery attack: to
recover the key from r ∈ {5, 6, 7} rounds of LowMC-80, the attacker chooses a
vector space V of the previous direct-sum form with |V | = 22

r−2+1 elements as
inputs (corresponding to 29, 217, or 233 plaintexts, respectively). As previously,
the corresponding outputs after r−1 rounds will sum to zero. This property can
be used to recover the final round key Kr in 3-bit chunks, which in turn allows to
easily recover the original key K. Let S

(r−1)
i denote the state after r − 1 rounds

applied to input Pi ∈ V , and S
(r)
i = Ci the corresponding ciphertext obtained

by the attacker, so

Ci = (f (r)
K ◦ f

(r)
L ◦ fS)(S(r−1)

i ) = (f (r)
L ◦ fS)(S(r−1)

i ) + Kr.

Since the key addition f
(r)
K and linear layer f

(r)
L can be swapped (replacing the

original Kr with a transformed K ′
r), the zero-sum property translates to

∑
i

S
(r−1)
i =

∑
i

f−1
S

(
K ′

r + f
(r)
L

−1
(Ci)

)
= 0.
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For the 109 bits of the identity part of fS , this property holds irrespective of
the value of the corresponding bits of K ′

r. For each of the m = 49 S-boxes,
however, the property can be checked independently for each possible value of
the corresponding 3 bits of K ′

r. Since we expect to require about 80 bits of K ′
r

to recover Kr and consequently K, we guess the keys for 27 S-boxes, which leads
to an overall complexity of 22

r−2+1 queries (plus 22
r−2+1 · 8 · 27 xor operations).

The approach is illustrated in Fig. 4. The complexity is 29 encryption queries
for 5 rounds, 217 for 6 rounds, and 233 for 7 rounds. Note that this attack is
relatively generic for SPNs with degree 2, without using any particular properties
of LowMC (in particular, independent of the number m of S-boxes per layer).

V

fK fS

V ′

fr−2 ◦ fK ◦ fL

deg ≤ 22r−2

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 4. Key recovery attack on r = 5, 6, or 7 rounds of LowMC, with a data complexity

of 22r−2+1 = 29, 217, or 233 plaintexts, respectively.

4.2 Adding Rounds: Initial Key-Guessing

In addition to the generic attack strategy applied so far, we can take advantage
of the special structure of LowMC’s substitution layer. So far, we were able to
add one free initial round by using a direct-sum construction to obtain a vector
space again after applying one round f . We will now try to define an initial
structure that yields a vector space after 2 rounds f2.

Consider the first 2 rounds f2 = fK ◦fL ◦fS ◦fK ◦fL ◦fS of LowMC-80. The
final linear components fK◦fL pose no constraints. Let V = {(0, . . . , 0)}×F

109
2 ≤

F
256
2 be the vector space of elements that are zero except for the bits processed

by the identity part of the substitution layer fS . Thus, for any subspace W ≤ V ,
fS(W ) = W . We want to find a suitable subspace W ≤ V that will yield another
vector space W ′′ even after applying the second substitution layer fS . The input
space W ′ to the second fS is an affine transformation of W , W ′ = (fK ◦fL)(W ).
Ideally, this space W ′ would be of the same structure as W : zero (or constant)
in all bits except the identity part. However, this requirement would impose 147
linear constraints (one for each S-box input bit) on the 109-dimensional space
V , so we cannot expect any suitable (nontrivial) solution space W .

However, it is not actually necessary to require all S-box input bits to be
zero or constant. Consider an input set where two of the input bits to an S-box
are fixed, but one bit is toggled. The two different input values will produce two
different output values, i.e., toggling one input bit will toggle some of the output
bits. This is essentially “linear” behaviour, so the S-box is linear with respect
to one input bit. Thus, an input space that allows up to one bit per S-box to
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be toggled (non-constant) will produce another affine space as the output of the
S-box layer. Note that due to the key addition fK just before the S-box layer, we
cannot know or control the constant values of the constant bits, and thus do not
know the linear behaviour of the S-box. However, we can be sure that if W is
such that after the linear layer fL, two of the three input bits to each S-box of fS

are constant, then the input space W will be mapped to another vector space by
2 rounds f2 of LowMC-80. This corresponds to 2 · 49 = 98 linear constraints on
the 109-dimensional V , so we will get a solution space W of dimension at least
109 − 98 = 11. W can be precomputed and depends only on the matrix of the
linear layer of the first round of LowMC-80. The dimension of 11 is sufficient for
our previous attack on 5 rounds, which required an input space of 29 elements,
and allows us to extend this attack to 6 rounds at no additional cost. The attack
is illustrated in Fig. 5.

S

f−1
K

guess
3 (or 21) bits

f−1
S

W ≤ V

fL fK

W ′

fS

W ′′

solve

fr−3 ◦ fK ◦ fL

deg ≤ 22r−3

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 5. Key recovery attack on r = 6 rounds of LowMC-80, with complexity 29.

Unfortunately, the dimension is too small to extend the previous attacks on 6
and 7 rounds, which required input spaces of 217 and 233 elements, respectively.
To increase the dimension of W to 17 or higher, we need to allow for more
freedom either in the first or in the second substitution layer fS . First consider
the first substitution layer. If we want to choose our inputs so as to ensure a
specific vector space structure after the first substitution layer, we can achieve
this trivially if the target vectors are non-constant only in the identity part.
If we want specific values at the output of an S-box, we need to guess the
corresponding 3 bits of the first whitening key, which is added right before the
substitution layer. By guessing these 3 bits, we can increase the dimension of W
by 3. Note that if we “activate” an S-box this way, the required message input
set S to produce W is no longer necessarily a vector space. In particular, its
elements no longer necessarily sum to zero. However, this is not required for our
key recovery attacks, so the loss of the input zero-sum property is not a problem.
To apply the technique to extend the previous 6-round attack of Sect. 4.1 and
increase W to dimension 17, we need to activate 2 S-boxes and thus guess 6 key
bits. This increases the attack complexity for the extended 7-round attack to
217 ·26 = 223. For the previous 7-round attack of Sect. 4.1, we need dimension 33
and thus need to activate 8 S-boxes with 24 guessed key bits, and the complexity
for the extended 8 rounds is 233 · 224 = 257.

We can, however, also consider additional freedom in the second substitution
layer in order to decrease the necessary number of activated S-boxes in the
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first layer. We previously chose a fixed bit per S-box of the second fS which
was allowed to toggle, while the other two bits needed to remain constant. But
this is not actually necessary: we have the freedom to choose any of the 3 bit
positions of each S-box as the toggle-bit, so we have a total of 349 ≈ 277.7 options
to choose the 98 (out of the total 147) constraints imposed by the second layer.
The 147 available constraints are specified by the (roughly uniformly randomly
generated) rows of the linear layer matrix. In addition, we have the freedom to
select the activated S-boxes of the first layer. For each option, we have a very
small chance that the selection of 98 constraints is redundant (with respect to
the 109 + 3s-dimensional V , if we guess s S-box keys in the first substitution
layer), and the remaining solution space has a dimension larger than 11 + 3s.

Consider again the 8-round attack, with its required input space of 233 =
211 · 222 elements. To increase the dimension by 22, we had to activate s = 8
S-boxes. We only needed 1 bit of freedom from the last of the 8 S-boxes, but still
had to guess all the corresponding 3 key bits. There is a reasonable chance that if
we activate only s = 7 S-boxes (and start with V of dimension 109+7 · 3 = 130)
and add the 98 constraints of the second layer, the remaining solution space
has the required dimension 33 instead of the expected 130 − 98 = 32. This
is equivalent to the event that 98 randomly selected vectors from F

130
2 span a

subspace of dimension 97, or that a randomly selected 130 × 98 matrix over F2

has rank 97. The probability of picking a rank-r matrix uniformly random from
F

n×m
2 , n ≥ m [15] is given by

P (n,m, r) =
∏r−1

i=0 (2m − 2i) · ∏r−1
i=0 (2n − 2i)∏r−1

i=0 (2r − 2i) · 2n·m ,

so our success chance for one selection of constraints is P (130, 98, 97) ≈ 2−32.0.
Even though the available selections of constraints are not independent, we

verified experimentally that the measured distribution of the rank of random
selections closely matches the theoretic expectations. Thus, it is reasonable to
expect that a suitable selection exists among the available choices, and that it
can be efficiently found (e.g., after trying about 232 random selections). Since
the selection depends only on the corresponding matrix of the linear layer, it can
be precomputed in advance.

The same strategy can also be applied to the 7-round attack, although at a
higher precomputation cost: we activate s = 1 instead of s = 2 S-boxes in the
first layer, and compensate by reducing the rank of the 98 selected constraint
vectors by 3 to 95. The success chance for one selection is P (112, 98, 95) ≈ 2−49.4.
The modified attack for 7 and 8 rounds is illustrated in Fig. 6. The final attack
complexities are 29 for 6 rounds, 220 (with 249.4 precomputation) or 223 (without
precomputation) for 7 rounds, and 254 for 8 rounds.

4.3 Adding Rounds: Final Key-Guessing

We can not only guess the round keys of the first round to increase the number
of attacked rounds, but also the last round keys. We want to combine a linear
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W ≤ V

fK fS

W

fL fK

W ′

fS

W ′′

solve

fr−3 ◦ fK ◦ fL

deg ≤ 22r−3

∑
=0

f−1
S f−1

K′

guess

f−1
L

Fig. 6. Key recovery attack on r = 7 (or 8) rounds of LowMC-80, with complexities
220 and 254, respectively.

mask for the linear layer of the second-to-last round with key guesses for some
S-boxes of the last round. This combination will allow us to derive 1 bit of key
information per input set, and can be repeated to learn more.

For an attack on r rounds, assume we have constructed a zero-sum attack for
r−2 rounds, that is, we can generate sets of inputs such that their corresponding
outputs after r − 2 rounds sum to zero. If we denote the intermediate states and
rearrange the key addition layer as in Sect. 4.1, we get

Ci = S
(r)
i =

(
f
(r)
L ◦ f

(r)
K′ ◦ fS ◦ f

(r−1)
L ◦ f

(r−1)
K′ ◦ fS

)(
S
(r−2)
i

)
.

Since
∑

i S
(r−2)
i = 0, we also get the partial zero-sum

⌊ ∑
i

(
f
(r−1)
K′ ◦ fS

)(
S
(r−2)
i

)⌋
109

= 0,

where �x	� is the value x truncated to the most significant � bits, i.e., the identity
part of the S-box layer. Now let

xi =
(
f
(r−1)
K′ ◦ fS

)(
S
(r−2)
i

)
, yi =

(
f−1

S ◦ f
(r)
K′

−1 ◦ f
(r)
L

−1)(
Ci

)
,

so xi and yi are the states right before and after the linear layer of the second-
to-last round, yi = f

(r−1)
L (xi).

Now assume (a, b) is a pair of consistent linear input- and output masks for
f
(r−1)
L , that is, for all x ∈ F

256
2 ,

〈a, x〉 = 〈b, f (r−1)
L (x)〉.

We will call the mask pair (a, b) suitable if a is zero on its 147 least significant
bits (i.e., all bits except the identity part of fS), and b is zero on most of its 147
least significant bits. We refer to the S-boxes where b is non-zero on one of the
corresponding 3 input bits as active.

We target mask pairs (a, b) with at most 6 active S-boxes. For a random
matrix, the probability that an input mask a is mapped to an output mask b in
which only 6 of 49 S-boxes are active is, by the inclusion-exclusion principle,

P [≤ 6 S-boxes active] =
6∑

i=0

(−1)i ·
(

6
i

)
·
(

49
i

)
· 2−3·(49−i) ≈ 2−105.4.
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Since we have a total of 2109 possible input masks a available, we can expect
a suitable mask pair to exist. In practical experiments, we were able to find
suitable masks with 6 or even fewer active S-boxes in reasonable time.

Observe that if (a, b) is a suitable mask pair, then∑
i

〈b, yi〉 =
∑

i

〈
b, f

(r−1)
L (xi)

〉
=

∑
i

〈a, xi〉 =
〈
a,

∑
i

xi

〉
= 0,

since a only selects from the 109 most significant bits, and the xi have the partial
zero-sum property �∑i xi	109 = 0. This modified zero-sum property of the yi

depends only on the last-round key bits (of the equivalent key K ′) added to
the active S-boxes, i.e., for 6 active S-boxes, on 18 key bits. The other key bits
are either not selected by b (inactive S-boxes), or cancel out during summation
(identity part). The probability of the 1-bit property to hold for a random key
guess is 1

2 , so applying the attack to one zero-sum input set will eliminate half of
the key guesses for the 18 key bits, or win 1 bit of key information. By repeating
the attack for 18 input sets S (e.g., by adding 18 different constants to the
original input set), we expect to recover all 18 round key bits. The attack is
illustrated in Fig. 7.

S

fr−2 ◦ fK

∑
=0

fS fK′

∑
a=0

fL

∑
b=0

find a, b

f−1
S f−1

K′

guess
18 bits

f−1
L

Fig. 7. Key recovery attack on r = 7, 8, or 9 rounds of LowMC-80, with 1-bit sums∑
a =
∑

i 〈a, xi〉 and
∑

b =
∑

i 〈b, yi〉 (details of fr−2 ◦ fK as in Fig. 6).

To learn more key bits, we need to find more linear mask pairs (a, b), with dif-
ferent active S-boxes. Since the previously active S-boxes with previously recov-
ered key bits can now be active for free, finding such masks becomes easier. In
addition, we can re-use the same ciphertexts for different masks, so the data com-
plexity does not increase. In summary, after precomputing suitable mask pairs,
this attack described so far allows to recover the complete key for r instead of
r −1 rounds at an additional cost factor of 18 ≈ 24.2 data complexity and about
218 · 80 ≈ 224.3 computational complexity.

However, the computational complexity can be further reduced by optimizing
the repeated evaluation of the modified zero-sum check. Instead of summing all
inputs for each of the 218 key guesses, we can precompute partial bit sums, and
only combine those to compute the final sum for each of the 218 key candidates.
The idea is to decompose the target sum into its S-box-wise components as

∑
i

〈b, yi〉 =
∑

i

〈 49∑
s=0

bs, yi

〉
=

49∑
s=0

∑
i

〈bs, yi〉 ,
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Table 4. Key-recovery attacks for LowMC-80: number of rounds with computational
and data complexity (all below logarithmic data complexity limit d = 64).

Basic (Sect. 4.1) Initial key guess (Sect. 4.2) Final key guess (Sect. 4.3)

Cube degree Rounds Compl. Rounds Compl. Rounds Compl.

8 (f3) 5/11 29 6/11 29 7/11 214

16 (f4) 6/11 217 7/11 223 8/11 228

32 (f5) 7/11 233 8/11 254 9/11 259

where bs equals b on the 3 bit positions corresponding to S-box s, 1 ≤ s ≤ 49 (or
the 109 bits of the identity part for s = 0), and is zero otherwise. Then

∑
i 〈bs, yi〉

depends only on the 3 round key bits corresponding to S-box s (and 3 bits of
f−1

L (Ci), see the definition of yi), and can be precomputed in a first phase for all
23 possible values of these key bits, for each active S-box s. Then, in the second
phase, to determine the test bit for each of the 218 key candidates, it suffices to
sum the 6 corresponding partial sums (of the active S-boxes). Considering that
each linear layer alone needs about 216 xor operations, the complexity of both
phases is significantly smaller compared to the computational effort of generating
all the required ciphertexts Ci. This step can be repeated 4 times with different
mask pairs (a, b) to recover about 4 · 18 = 72 key bits; the remaining bits can
easily be determined by brute force testing.

With this improvement, the computational complexity overhead factor
incurred by this approach over the attack on r − 1 rounds is dominated by
the data complexity increase by a factor of about 24.2. Based on the attacks of
Sect. 4.2, we get full key recovery for 7 rounds with 214 complexity, for 8 rounds
with 228, and for 9 rounds with 259. We summarize all attacks in Table 4.

Acknowledgments. The work has been supported in part by the Austrian Sci-
ence Fund (project P26494-N15) and by the Austrian Research Promotion Agency
(FFG) and the Styrian Business Promotion Agency (SFG) under grant number 836628
(SeCoS).

A Application to Other Parameter Sets

Besides the recommended versions LowMC-80 and LowMC-128, the designers
also propose several alternative parameter sets for the 80-bit and 128-bit security
level. For 128-bit security, the design document discusses the performance of
LowMC-128256,63 (r = 12 rounds, main variant) and LowMC-128512,86 (r =
11 or 12 rounds), all with data complexity limit d = 128; for 80-bit security,
LowMC-80256,49 (r = 11 rounds, main variant, or r = 10) and LowMC-80128,34

(r = 11 rounds), all with data complexity limit d = 64.
For LowMC-128256,63, the attacks of Sect. 4.1 apply for the same number of

rounds, with the same complexity. Furthermore, due to the increased logarithmic
data complexity limit, an additional round can be added here (for a total of 8
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rounds), and the data complexity increased accordingly. However, the size of the
identity part, � = 67, is too small to append rounds with initial-key-guessing as
in Sect. 4.2: the necessary number of about 3 ·40 guessed S-box key bits becomes
prohibitive. Final-key-guessing as in Sect. 4.3, on the other hand, is applicable in
a similar way. Again, the smaller identity part increases the complexity: instead
of masks b with 6 active S-boxes, about 24 active S-boxes are necessary for
a reasonably high probability. If the correct 3 · 24-bit subkey is recovered as
described in Sect. 4.3, the computational complexity is about 272 (for up to 9
rounds). However, it is possible to optimize this step at the cost of a slightly
higher data complexity.

For LowMC-128512,86, on the other hand, the size of the identity part � = 254
is almost as large as the S-box part of 3·m = 258 bits. This allows the application
of initial-key-guessing for free, and 1 active S-box is expected to be sufficient for
final-key-guessing. Additionally, due to the higher logarithmic data complexity
limit of d = 128, the core cube degree can be increased to 64 (f6) to add another
round, for a total of 10 attacked rounds (out of 11 or 12).

For LowMC-80128,34, � = 26, so the same problems as for LowMC-128256,63

apply. For the final-key-guessing, about 14 active S-boxes would be required to
find suitable a, b, to attack a total of 8 rounds.

We want to stress that all described attacks are generic for the design of
LowMC, without requiring specific instances of the linear layer fL or the key
schedule matrices. For specific “weak” choices of the random matrices, it is likely
that attacks on more rounds are feasible.
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Abstract. Integral attack is an extremely important and extensively
investigated cryptanalytic tool for symmetric-key primitives. In this
paper, we improve the integral attack against bit-oriented ciphers. First,
we propose the match-through-the-Sbox technique based on a specific
property of the Sbox. Instead of computing the inverse of the Sbox in
partial decryption, we independently calculate two Boolean functions
which accept less input bits. The time complexity is thus reduced and the
number of attacked rounds will be stretched. Second, we devise an easy-
to-implement algorithm for construction of the integral distinguisher,
which is then proved to be very effective for constructing lower order dis-
tinguishers. It shows SIMON 32, 48, 64, 96 and 128 has 13-, 14-, 17-, 21-
and 25-round integral distinguisher, respectively, significantly improving
the recent results from EUROCRYPT 2015. Finally, our techniques are
applied to several ciphers. We attack one more round than the previous
best integral attack for PRESENT and first evaluate the securities of
SIMON family (except for SIMON 32) and RECTANGLE with integral
attack.

Keywords: Bit-oriented block cipher · Integral attack · Meet-in-the-
middle · Algebraic normal form · PRESENT · SIMON

1 Introduction

Integral attack was firstly proposed by Daemen et al. to evaluate the security of
Square cipher [5] and then formalized by Knudsen and Wagner [7]. It consists
of two phases, the integral distinguisher construction and the key recovery. An
attacker starts with a set of 2d plaintexts, which travel all values at d bit positions
and take a constant value at others. If he proves that the state after r encryption
rounds has a property with probability 1, e.g., the XOR of all values of the state
equals to 0 at some bits which are known as balanced bits, a d-order integral
distinguisher containing r rounds is thus achieved. Then for the second phase,
the key space is reduced by checking balanced property. More specifically, the
attacker guesses a part of subkeys and computes the balanced bits for every
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 102–118, 2016.
DOI: 10.1007/978-3-319-30840-1 7
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Table 1. Summary of integral attack results

Target #Rounds Time Data Mem Technique Ref.

PRESENT-80 6 241.7 222.4 - Bit-pattern [14]

9 260 220.3 220 7-round IND [12]

10 235 221.5 235.9 MTTS Sect. 4.1

PRESENT-128 7 2100.1 224.3 280 Bit-pattern [14]

10 299.3 222.4 284 7-round IND [12]

11 294.8 221.2 232.1 MTTS Sect. 4.1

SIMON(2n, m) 19/20/21/ 2m−1 22n−1 2cc New IND Sect. 4.2

23/24/27/

28/32/33/34

RECTANGLE-80 11 269.5 239.6 245.6 New IND and MTTS Sect. 4.3

RECTANGLE-128 12 2120.7 245 239 New IND and MTTS Sect. 4.3

IND: integral distinguisher. MTTS: match-through-the-Sbox technique. 2n: block
size. m: key size. c = 42/52/76/55/84/56/89/89/130/179.

ciphertext by the partial decryption. If the XOR of the results is 0, the guessed
value is a candidate for the right subkey, otherwise, it must be wrong.

Several techniques were proposed to optimize integral attack. In 2000,
Ferguson et al. [6] introduced the partial-sum technique, which reduces the com-
plexity of the partial decryption by guessing each subkey byte one after another
and timely discarding the redundant data. The meet-in-the-middle technique for
integral attack against Feistel ciphers was proposed by Sasaki et al. [8,9]. It
employs the characteristic of Feistel structure and represents the balanced state
by the XOR of two variables. Then, the partial decryption is separated into
two independent parts, which greatly diminishes the time complexity. In 2014,
Todo and Aoki applied the FFT technique to integral attack [11]. As the partial
decryption is performed by Fast Walsh-Hadamard Transform, the time complex-
ity does not depend on the number of chosen plaintexts, which is useful in an
integral attack with enormous number of chosen plaintexts.

Recently, block ciphers which can be implemented in resource constraint envi-
ronment, e.g., RFID Tags for a sensor network, have received much attention.
This kind of block ciphers are called lightweight block ciphers. Lots of them are
bit-oriented, such as PRESENT [3], PRINCE [4], PRIDE [1], RECTANGLE [15],
as well as EPCBC [13] and SIMON family [2]. Traditional integral attack is less
effective for these ciphers, which impels the cryptanalysts to develop new tech-
niques. In FSE 2008, Z’aba et al. introduced a method of constructing integral
distinguishers for bit-oriented ciphers [14]. Several bit-wise integral properties,
denoted by bit-patterns, were defined and after that they showed the propagation
of bit-patterns which will indicate the existence of integral distinguishers. This
method requires the set of plaintexts to be ordered, and bit-patterns are easily
destroyed after a few encryption rounds. Thus, the applications are limited. In
EUROCRYPT 2015, Todo proposed a generalized integral property [10], named
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division property, which evaluates the sum of the outputs of a parity function.
A multi-set Λ has the division property Dn

k if and only if for all Boolean functions,
f : Fn

2 → F2, with algebraic degree < k, the sum of f on Λ is always 0. It has
been pointed out that the propagation characteristic of division property for the
nonlinear function totally depends on the algebraic degree. Hence, ciphers with
low-degree functions are vulnerable to this analysis. Another generic method is
by directly evaluating the algebraic degree, which is often called “higher-order
differential attack”. It utilizes the facts: (1) any state bit can be computed by
a Boolean function taking plaintext and key bits as variables. (2) If the degree
of the Boolean function is less than d for any value of the key, this state bit is
balanced for 2d chosen plaintexts. But, unfortunately, the existing approaches
of degree evaluation are mostly rough, which will result in the misjudgment of
balanced bits. In 2013, Wu et al. discovered that some properties of PRESENT’s
Sbox help to make a more accurate evaluation of the degree and they extended
the integral distinguisher to 7 rounds [12]. However, their improvement is ded-
icated for PRESENT. The generic approach to improve the accuracy of degree
evaluation is still unavailable.

Our Contributions. In this paper, we first attempt to optimize the key recov-
ery phase by the property of Sboxes and propose match-through-the-Sbox tech-
nique for bit-oriented block ciphers. In previous key recovery, attackers compute
the inverse of the Sbox to get the value of balanced bits. We discover that the
computation can be divided into two independent parts when the Sbox has a
specific property. This leads to a great decrease of the time complexity and
furthermore leads to an extension of the number of attacked rounds. Then, we
propose an algorithm of constructing integral distinguishers. It is inspired by
[12], however our improvement is generic. The algorithm focuses on the terms
occurring in the algebraic normal form of the Boolean function mapping plain-
text bits to the state bit, which shows a tighter upper-bound of the degree.
Therefore, integral distinguishers can be more effectively constructed. Moreover,
it can be automatically implemented, that is to say, it does not require the
complicated and tedious manual deductions, such as the proof of the 7-round
distinguisher for PRESENT in [12]. As applications, we prove 13-, 14-, 17-, 21-
and 25-round distinguisher for SIMON 32, 48, 64, 96 and 128, which contains 4,
3, 6, 8 and 12 more rounds than the previous best result, respectively. We also
reduce the order of the integral distinguisher for RECTANGLE to 36 from 56,
and thus the required number of chosen plaintexts for the integral attack can be
decreased 220 times. Finally, our techniques are applied to the integral attacks
against PRESENT, SIMON family and RECTANGLE. The comparison of the
results to previous integral attacks is summarized in Table 1.

Organization. Section 2 gives a brief review of Boolean function and integral
attack. The techniques for improving integral attack against bit-oriented block
ciphers are proposed in Sect. 3. In Sect. 4, we apply our techniques to PRESENT,
SIMON family and RECTANGLE. Finally, Sect. 5 concludes this paper.
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2 Preliminaries

2.1 Boolean Function

A Boolean function f on n variables is a mapping from Fn
2 to F2. It can be

expressed with algebraic normal form (ANF), that is

f(x) =
⊕

Γ∈P(N )

aΓ

∏
k∈Γ

xk,

where P(N ) is the power set of N = {0, 1, · · · , n − 1} and x = (xn−1, · · · , x0) ∈
Fn

2 . The algebraic degree of f, denoted by deg(f), is the number of variables in
the highest order term with the nonzero coefficient. It has following properties,

deg(fg) ≤ deg(f) + deg(g), (1)

deg(f ⊕ g) ≤ max{deg(f), deg(g)}. (2)

A vectorial Boolean function F is a mapping from Fn
2 into Fm

2 . Such function
being given, the Boolean functions fm−1, · · · , f0 defined, at every x ∈ Fn

2 , by
F (x) = (fm−1(x), · · · , f0(x)), are called the coordinate Boolean functions of
F. The algebraic degree of F is defined as the highest degree of its coordinate
Boolean functions. And the linear combinations, with non all-zero coefficients,
of the coordinate functions are called the component functions of F.

2.2 Integral Attack

A well-known result from the theory of Boolean functions is that if the algebraic
degree of a Boolean function is less than d, then the sum over the outputs of
the function applied to all elements of an affine vector space of dimension ≥ d
is zero. This property allows to exploit the algebraic degree to create integral
distinguishers.

In a key-alternating block cipher, the intermediate state Xi is iteratively
computed from the plaintext X0 as:

Xi = F (Ki−1 ⊕ Xi−1),

where F is the round function. We denote the j-th bit of Xi by xi
j . Assuming

the block size is l, then, xi
j can be expressed as a Boolean function on l plain-

text bits, x0
0, x

0
1, · · · , x0

l−1. To construct a d-order integral distinguisher, we first
choose d bits in the plaintext as variables, supposing they are x0

0, x
0
1, · · · , x0

d−1

for simplicity, and then evaluate the degree of the function (treating the rest of
l − d plaintext bits as constants). If the degree is less than d for any key, the
sum of the values of xi

j must be zero for a plaintext set whose elements travel
all values of x0

0, x
0
1, · · · , x0

d−1 and have a fixed value of remaining bits, i.e., xi
j is

a balanced bit.
A generic method of the degree evaluation is by recursion. Supposing the

upper-bounds of the degrees for xi−1
t , 0 ≤ t < l, are known, we can evaluate the

degree for xi
j according to property (1), (2).
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3 Improvements of Integral Attack

In this section, we first propose the match-through-the-Sbox technique, which is
very simple and effective for integral attacks against some bit-oriented ciphers.
After that, we scrutinize and improve the integral distinguisher construction
described in Sect. 2.2.

3.1 Match-Through-the-Sbox Technique

A property of the Boolean function is firstly defined. Then, the match-through-
the-Sbox technique based on this property is developed, which is used in the key
recovery phase to reduce the time and memory complexities and even extend
the number of attacked rounds.

Definition 1. Let f be a Boolean function on n variables. If there exist two
Boolean functions on less than n variables, denoted by g1 and g2, satisfying

f = g1 ⊕ g2

f is said to be a separable Boolean function. In addition, if g1 and g2 do not
share any variable, f is completely separable.

Example 1. Suppose f is a Boolean function on 4 variables.

– Let f = x3x2x1 ⊕ x2x1x0 ⊕ x3x0 ⊕ 1. f is not a separable Boolean function.
– Let f = x3x2x1 ⊕ x2x1x0 ⊕ 1. f is separable, while it is not completely

separable.
– Let f = x3x2 ⊕ x1x0 ⊕ x0. f is completely separable.

Separable property commonly occurs for the component functions of 4-bit
Sboxes (or their inverse mappings) in lightweight block ciphers, such as
PRESENT, LBlock, PRINCE, etc., because lightweight block ciphers prefer the
Sbox with compact algebraic expression for the sake of low cost. We will explain
how to optimize the key recovery by using this property, which is called the
match-through-the-Sbox technique.

Match-Through-the-Sbox Technique. Assume that y is a balanced bit. Let
f be the coordinate Boolean function of S−1 such that y = f(x3, x2, x1, x0),
where xi is the state bit outputted from the Sbox. In previous key recovery,
attackers decrypt to the values of y and check whether the sum is zero for a
plaintext set (denoted by Λ). However, if f is separable and f = g1(x3, x2, x1)⊕
g2(x2, x1, x0) without loss of generality, we can write the checking equation⊕
Λ

y = 0 as the equivalent form:

⊕
Λ

g1(x3, x2, x1) =
⊕

Λ

g2(x2, x1, x0). (3)



Integral Attack Against Bit-Oriented Block Ciphers 107

Fig. 1. Left: previous approach; right: match-through-the-Sbox technique

We then compute x3||x2||x1 and x2||x1||x0, independently, and finally check
whether they match each other according to the Eq. (3).

The difference between the previous approach and our match-through-the-
Sbox technique is depicted in Fig. 1. We now analyze their complexities with-
out considering any optimal technique, for example, the partial-sum technique.
Let K be the subkey information which needs to be guessed to obtain the
value of y by partial decryption. Let C be the ciphertext bits involved in
the computation of y. The previous attack costs time complexity 2|K|+|C|.
Let KL and KR be the subkey that needs to be guessed to obtain the value
of x3||x2||x1 and x2||x1||x0, respectively. And let CL and CR be the cipher-
text bits involved in two partial decryption phases, respectively. Our method
costs time complexity 2|KL|+|CL| + 2|KR|+|CR|. Since K is the combination of
KL and KR, we have |KL| < |K| and |KR| < |K|. Similarly, |CL| < |C|
and |CR| < |C| hold. Therefore, the time complexity of our method is much
lower than the previous approach. Meanwhile, the cost of storing ciphertext
bits will be reduced to 2|CL||CL| + 2|CR||CR| from 2|C||C|. However, additional
min{2|KL||KL|, 2|KR||KR|} bits of memory is required to find the matches.

3.2 Integral Distinguisher Construction

The traditional integral distinguisher construction, as shown in Sect. 2.2, only
focuses on the upper-bound of the degree. Here we further pay attention to
the terms occurring in the algebraic expression and then propose a searching
algorithm.

We assume that x0
0, x

0
1, · · · , x0

d−1 are chosen as d variables from l plaintext
bits. The j-th bit of the state after i encryption rounds, xi

j , is uniquely repre-
sented as a polynomial on these variables with coefficients in F2, i.e.,

xi
j =

⊕
Γ∈S(D)

ρΓ(k, c)

(∏
t∈Γ

x0
t

)
, (4)

where S(D) denotes a subset of the power set of D = {0, 1, · · · , d−1}, k denotes
the key, c is the constant in plaintext, and ρΓ(k, c) either takes value 1 or else
depends on k and c. The polynomial (hereinafter referred to as the “Poly(xi

j)”)
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Algorithm 1. Construction of integral distinguishers

1: INDSearch(d, l, {t0, t1, · · · , td−1})
2: r = 0
3: for i = 0 to l − 1 do

4: Ai Δ
= ai

2d−1|| · · · ||ai
0 = 0|| · · · ||1

5: end for
6: for i = 0 to d − 1 do
7: ati

2i
= 1

8: ati
0 = 0

9: end for

10: while al−1

2d−1
· · · a1

2d−1a
0
2d−1 = 0 do

11: for i = 0 to l − 1 do
12: T i = Ai

13: end for
14: r = r + 1
15: for i = 0 to l − 1 do
16: Ai = EvalFunc(fi, T

l−1, · · · , T 0)
17: end for
18: end while
19: return r − 1

can be deduced from the coordinate functions of the round function by recursion,
however, it is a tedious procedure since k is unknown. Therefore, we consider a
collection of several monomials instead, denoted by Ω(xi

j), which contains every
term in Poly(xi

j) no matter which values k and c take. Thus if the highest order
term x0

d−1 · · · x0
1x

0
0 does not occur in Ω(xi

j), it certainly has deg(xi
j) < d. The

challenge is how to estimate the set Ω(xi
j) as small as possible. We realize it by

a straightforward method as follows.
Obviously, Ω(x0

j ) only contains term x0
j if x0

j is a variable, otherwise, it
only contains constant term 1. Ω(x1

t ) can be evaluated from Ω(x0
j ), 0 ≤ j < l,

according to the t-th coordinate function of the round function. This process
involves two basic operations, XOR and AND, which comply with the rules:

Ω(x ⊕ y) = Ω(x) ∪ Ω(y) and Ω(xy) = {ab|a ∈ Ω(x), b ∈ Ω(y)}. (5)

where x and y are state or key bits. By noting that Ω(x) = {1} when x is a key
bit, we can easily prove Eq. (5). In the recursive manner, Ω(xi

j) is evaluated.

Search Algorithm. The basic idea has been explained above. We further
describe each term by a d-bit string ad−1|| · · · ||a1||a0, where as (0 ≤ s < d)
takes 1 if the variable x0

s occurs in the term, otherwise it takes 0. Then, Ω(xi
j)

corresponds to a 2d-bit string a2d−1|| · · · ||a1||a0, where s-th bit (0 ≤ s < 2d)
takes 1 if the term [s]2 (the binary representation of s) is in the set. Thereafter,
the construction of the integral distinguisher can be performed by Algorithm 1.

In the algorithm, fi is the i-th coordinate Boolean function of the round
function. And EvalFunc(fi, T

l−1, · · · , T 0) evaluates Ω(xr
i ) from Ω(xr−1

j ), 0 ≤
j < l, by the rules:

(1) Ω(x ⊕ y) = (a2d−1|| · · · ||a0) ∨ (b2d−1|| · · · ||b0), where ∨ is bit-wise OR.
(2) Ω(xy) = a′

2d−1|| · · · ||a′
0, where a′

[i]2∨[j]2
= 1 if ai = 1 and bj = 1.

for Ω(x) = a2d−1|| · · · ||a0 and Ω(y) = b2d−1|| · · · ||b0. The time and memory
complexity is 22d simple computations and l2d bits, respectively.
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Table 2. Integral distinguishers for RECTANGLE and SIMON family.

r
Orders of r-round integral distinguishers

RECTANGLE SIMON32 SIMON48 SIMON64 SIMON96 SIMON128
[15] Ours [10] Ours [10] Ours [10] Ours [10] Ours [10] Ours

6 - - 17 1 17 - 17 - 17 - 17 -
7 56 36 25 2 29 1 33 - 33 - 33 -
8 - - 29 8 39 3 49 1 57 - 65 -
9 - - 31 16 44 10 57 2 77 - 97 -
10 - - - 23 46 21 61 8 87 1 113 -
11 - - - 28 47 33 63 18 92 2 121 -
12 - - - 31 - 42 - 31 94 8 125 1
13 - - - 31 - 47 - 44 95 18 127 2
14 - - - - - 47 - 54 - 31 - 8
15 - - - - - - - 60 - 46 - 18
16 - - - - - - - 63 - 62 - 31
17 - - - - - - - 63 - 76 - 46
18 - - - - - - - - - 86 - 62
19 - - - - - - - - - 92 - 78
20 - - - - - - - - - 95 - 94
21 - - - - - - - - - 95 - 108
22 - - - - - - - - - - - 118
23 - - - - - - - - - - - 124
24 - - - - - - - - - - - 127
25 - - - - - - - - - - - 127

The generic method loses too much information and thus has a rough esti-
mation, which is improved by our approach. Hence, our algorithm can more
effectively construct the integral distinguishers, especially for ciphers with sim-
ple confusion components.

Results. We apply Algorithm 1 to construct integral distinguishers for REC-
TANGLE and SIMON family. Since the complexities grow exponentially with d,
we choose small d and get a lower order integral distinguisher, and then extend
it by applying the higher order integral method as shown in [16]. The results are
displayed in Table 2, where the distinguishers colored red are directly achieved,
and others are constructed based on them. Note that, we built the 7-round
distinguisher for RECTANGLE by extending a 4-order distinguisher with 4
rounds constructed by Algorithm 1. Besides, the distinguishers marked in bold
type are free extensions of previous ones. They choose the plaintext set as
{(R,F (R) ⊕ L)|(L,R) ∈ Λ}, where F is the round function and Λ is a plaintext
set of the previous distinguisher. Compared with the previous best known results,
our distinguishers have much lower order under the same number of rounds, fur-
thermore, the longest distinguisher for each member of SIMON family contains
4/3/6/8/12 more rounds than the distinguisher in [10] which is constructed by
the division property.

4 Applications

In this section, we demonstrate several applications of our techniques. Based
on the match-through-the-Sbox technique we attack one more round than the
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previous best integral attacks against PRESENT for both two versions. Besides,
new integral distinguishers are used to launch the attacks against SIMON family
and RECTANGLE.

4.1 Application to PRESENT

PRESENT is a 31-round SPN (Substitution Permutation Network) type block
cipher with block size 64 bits. It supports 80- and 128-bit master key, which
will be denoted by PRESENT-80 and PRESENT-128, respectively. The round
function of PRESENT is the same for both versions and consists of standard
operations such as subkey XOR, substitution and permutation. At the beginning
of each round, 64-bit input is XORed with the subkey. Just after the subkey
XOR, 16 identical 4 × 4 Sboxes are used in parallel as a non-linear substitution
layer and finally a bit-wise permutation is performed so as to provide diffusion.

The subkeys Ki for 0 ≤ i ≤ 31, where K31 is used for post-whitening, are
derived from the master key by the key schedule. We provide the key schedule
of PRESENT-80: 80-bit master key is stored in a key register and represented as
k79||k78|| · · · ||k0. At i-th round, the 64 leftmost bits of actual content of the key
register are extracted as the subkey Ki, that is, Ki = k79||k78|| · · · ||k16. After
that, the key register is rotated by 61 bit positions to the left, then the Sbox is
applied to left-most four bits of the key register and finally the round counter
value, which is a different constant for each round, is XORed with k19k18k17k16k15.
The key schedule of PRESENT-128 is similar with PRESENT-80 except two
Sboxes are applied. For more details, please refer to [3].

We denote by Xi the internal state which is the input to the i-th round
and denote by Y i its output after subkey XOR, i.e., Y i = Xi ⊕ Ki. We further
describe 64 bits inside of Xi as Xi = Xi[63]|| · · · ||Xi[1]||Xi[0]. A plaintext is
loaded into the state X0 and Y 31 is produced as the ciphertext.

In 2013, Wu et al. proposed a 7-round integral distinguisher of PRESENT
[12], that is, for a set of 216 plaintexts where X0[0, · · · , 15] are active bits, the
rightmost bit of Y 7 is balanced. We adopt this distinguisher in following attacks.

Property of the Sbox. Let x = (x3, x2, x1, x0) be the input of S−1, and y0

be the rightmost bit of the output. It has

y0 = x3x1 ⊕ x2 ⊕ x0 ⊕ 1. (6)

Suppose that g1 = x3x1 and g2 = x2 ⊕x0 ⊕ 1. We get y0 = g1 ⊕ g2, which means
the coordinate Boolean function of S−1 is completely separable.

Key Recovery Against 10-Round PRESENT-80. Choose X0[0, · · · , 15]
as active bits and then Y 7[0] is balanced. From Eq. (6), it has Y 7[0] =
X8[48]X8[16] ⊕ X8[32] ⊕ X8[0] ⊕ 1. Applying the match-through-the-Sbox tech-
nique, we need to check the following equation in the key recovery:⊕

Λ

X8[48]X8[16] =
⊕

Λ

(X8[32] ⊕ X8[0]). (7)
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As shown in Fig. 2, the computation of
⊕
Λ

X8[48]X8[16] and
⊕
Λ

(X8[32]⊕X8[0])

involves the bits marked with red lines and black lines, respectively. One obser-
vation is that we only need to get the rightmost bit of the output from each S−1,
which is computed by this form: (x3 ⊕ k3)(x1 ⊕ k1) ⊕(x2 ⊕ k2) ⊕ (x0 ⊕ k0) ⊕ 1,
where k0, · · · , k3 are subkey bits. Therefore, we actually require 3-bit subkey
information, k0 ⊕ k2, k1, k3, instead of 4-bit. The details of the attack are as
follows:

Fig. 2. 10-round key recovery (Color figure online)

1. Choose N plaintext sets, Λ0, · · · , ΛN−1, satisfying the integral distinguisher,
and get the ciphertexts after 10-round encryption.

2. Compute
⊕
Λs

X8[48]X8[16] for 0 ≤ s < N .

– We guess 12-bit subkey: K10[i] ⊕ K10[i + 32],K10[i + 16],K10[i + 48] for
i ∈ {1, 3, 9, 11}, and compute the value of Y 9[4]⊕Y 9[36], Y 9[12]⊕Y 9[44]
for each ciphertext. Count how many times each 14-bit value appears:
Y 9[4]⊕Y 9[36], Y 9[12]⊕Y 9[44] and Y 10[i]⊕Y 10[i+32], Y 10[i+16], Y 10[i+
48] for i ∈ {5, 7, 13, 15}, and then save the values which appear odd times
in a table.

– Guess 3 subkey bits, K10[5] ⊕ K10[37],K10[21] and K10[53]. Compress
the data into 212 texts of Y 9[4] ⊕ Y 9[36], Y 9[20], Y 9[12] ⊕ Y 9[44] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {7, 13, 15}.
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– Guess 3 subkey bits, K10[13] ⊕ K10[45],K10[29] and K10[61]. Compress
the data into 210 texts of Y 9[4] ⊕ Y 9[36], Y 9[20, 52], Y 9[12] ⊕ Y 9[44] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {7, 15}.

– Guess 3 subkey bits, K10[7] ⊕ K10[39],K10[23] and K10[55]. Compress
the data into 28 texts of Y 9[4] ⊕ Y 9[36], Y 9[20, 28, 52], Y 9[12] ⊕ Y 9[44]
and Y 10[15] ⊕ Y 10[47], Y 10[31], Y 10[63].

– Guess 3 subkey bits, K10[15] ⊕ K10[47],K10[31] and K10[63]. Compress
the data into 26 texts of Y 9[4]⊕Y 9[36], Y 9[20, 28, 52, 60], Y 9[12]⊕Y 9[44].

– Thanks to the key schedule, K9[44] is obtained due to previous guessed
subkey bit K10[25], and K9[28] ⊕ K9[60] = K10[9] ⊕ K10[41]. Therefore,
we only need to guess 2-bit K9[12, 60], compute Y 8[48] and compress the
data into 24 texts of Y 8[48], Y 9[4] ⊕ Y 9[36], Y 9[20, 52].

– Similarly, we have K9[36] = K10[15] and K9[20] ⊕ K9[52] = K10[1] ⊕
K10[33]. Hence, we guess 2-bit K9[4, 52], compute Y 8[16] and compress
the data into 22 texts of Y 8[16, 48].

– Guess 2-bit value of K8[16, 48], compute
⊕
Λs

X8[48]X8[16] for 0 ≤ s < N

and save the values of 30-bit guessed subkey, K1, in a hash table H
indexed by the N -bit result.

3. Similar to Step 2, we compute
⊕
Λs

(Y 8[32]⊕Y 8[0]) (notice that it is
⊕
Λs

(X8[32]⊕
X8[0])) for 0 ≤ s < N by guessing 30-bit subkey K2. The details are shown
in Appendix A. Save K2 in a hash table H ′ indexed by the N -bit sum.

4. Check the matches between H and H ′. If the indexes match each other and the
overlap information between K1 and K2 matches, K1||K2 is a key candidate.

Complexities. We have |K1| = 30 and |K2| = 30. Due to the key schedule, K1

and K2 overlap in 3 bits, K9[40, 48] and K9[24] ⊕ K9[56]. Therefore, the total
guessed subkey K contains 30 + 30 − 3 = 57 bits. 257−N candidates for K are
left after checking the matches. They are then exhaustively searched together
with the remaining 23 subkey bits. The time complexity of Step 2 is evaluated
as

212 × 216 × 4 + 23 × 212 × 214 + · · · + 22 × 228 × 22

= 230 + 229 + 230 + 231 + 232 + 232 + 232 + 232

= 234.3

computations of the Sbox. The time complexity of Step 3 is 235 as explained
in Appendix A. For the trade-off between time and data complexity, we choose
N = 46. Hence, the attack totally costs (234.3 + 235) × 1

16 × 1
10N + 280−N = 235

10-round encryptions. The data complexity is 216N = 221.5 chosen plaintexts.
The memory complexity depends on the storage of two hash tables, which is
2 × (230 × 30) = 235.9 bits.

For the integral attack against 11-round PRESENT-128, we first guess 64-bit
K11 and decrypt the ciphertexts to Y 10. After that, procedures of the partial
decryption are similar with the 10-round case. Specifically, we guess 27-bit and
25-bit subkeys to compute

⊕
Λ

X8[48]X8[16] and
⊕
Λ

(Y 8[32]⊕Y 8[0]), respectively,
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as K11 has been guessed. They only overlap in one bit, K8[16]⊕K8[48], therefore,
the total guessed subkey K contains 64 + 27 + 25 − 1 = 115 bits. We analyze
38 plaintexts sets for the optimization of time complexity. The data complexity
is hence 221.2 chosen plaintexts. The memory complexity is evaluated by 216 ×
64 × 38 + 227 × 27 + 225 × 25 = 232.1 bits, and time complexity is 264 × (232 +
232) × 1

16 × 1
11 × 38 + 2128−38 = 294.8 11-round encryptions.

4.2 Application to SIMON

SIMON is a family of lightweight block ciphers, optimized for performance on
hardware devices, proposed by NSA. It is based on a classical Feistel construction
operating on two n-bit branches. Denote the state entering i-th round by (Li, Ri),
which is further described as (Li[n − 1]|| · · · ||Li[0], Ri[n − 1]|| · · · ||Ri[0]). At
each round, the round function F transforms the left branch in the following
way,

F (Li) = ((Li <<< 8)&(Li <<< 1)) ⊕ (Li <<< 2).

The output of F is then XORed with the subkey Ki and with the right branch
to form the left input of the next round. There exist in total ten members of the
SIMON family, each one characterized by different block and key size. We denote
a member of the SIMON family by SIMON(2n/m), where 2n is the block size and
m is the key size. The key schedule processes different procedures depending on
m
n . While, it is always linear, and the master key can be derived if any sequence
of m

n consecutive subkeys are known. For detailed description, please refer to [2].

Key Recovery Against SIMON Family. We use the longest integral dis-
tinguisher shown in Table 2 for each member. Assume that s is the number of
rounds of the distinguisher. We append t rounds to the distinguisher and give
the key recovery attack against (s + t)-round SIMON(2n/m).

We only decrypt to one balanced bit for the sake of less subkey involved.
Suppose it is Rs[b]. It has Rs[b] = (Rs+1[b − 1]Rs+1[b − 8]) ⊕ Rs+1[b − 2] ⊕
Ls+1[b] ⊕ Ks[b]. Therefore, we check the following equation in key recovery:

⊕
(Rs+1[b − 1]Rs+1[b − 8]) =

⊕
(Rs+1[b − 2] ⊕ Ls+1[b]). (8)

If Eq. (8) holds for a guessed value, it is regarded as a candidate for the right
subkey, which will be exhaustively searched together with the remaining key
information. To check Eq. (8), we first decrypt to

⊕
(Rs+1[b − 2] ⊕ Ls+1[b]) by

applying the partial-sum technique. After that, a hash table is achieved, which
saves the values of guessed subkey indexed with the result. Then we compute⊕

(Rs+1[b−1]Rs+1[b−8]) similarly and finally we find matches in the hash table.
Now we analysis the complexities of our attack. Let K1 and K2 be

the subkey involved in the computation of
⊕

(Rs+1[b − 2] ⊕ Ls+1[b]) and⊕
(Rs+1[b − 1]Rs+1[b − 8]), respectively. Denote the total subkey guessed in

key recovery phase by K1 ∪ K2. We count the number of bits in K1, K2 and
K1 ∪ K2 for each cipher in SIMON family, without considering the key schedule.
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Table 3. Size of guessed subkey for t-round key recovery against SIMON family

(2n/m) s t Size of guessed subkey

|K1| |K2| |K1 ∪ K2|
(32/64) 13 6 42 45 49

(48/72) 14 6 52 59 65

(48/96) 14 7 76 83 89

(64/96) 17 6 55 63 69

(64/128) 17 7 84 93 99

(96/96) 21 6 56 65 73

(96/144) 21 7 89 101 109

(128/128) 25 7 89 101 110

(128/192) 25 8 130 145 155

(128/256) 25 9 179 197 207

The results are summarized in Table 3. Then the memory complexity is calcu-
lated by 2|K1||K1|. The subkey space can be reduced by 1 bit for a plaintext set,
furthermore, the master key space is accordingly reduced by 1 bit since the sub-
keys are related with linear relations. Hence, the time complexity of exhaustive
search is 2m−1 (s + t)-round encryptions, which dominates the time complexity
of the entire attack. The data complexity is 22n−1 chosen plaintexts.

4.3 Application to RECTANGLE

RECTANGLE is a 25-round SPN cipher with bit-slice design. The 64-bit
state Xi = (Xi[63], · · · ,Xi[1],Xi[0]) has equivalent representation as Fig. 3.
The round function consists of three steps: AddSubkey, SubColumn, ShiftRow.
Denote the state after AddSubkey in i-th round by Y i, i.e., Y i = Xi ⊕ Ki.
SubColumn is parallel application of Sboxes to the 4 bits in the same column.
ShiftRow is a left rotation by 0, 1, 12 and 13 offset for row 0, 1, 2, and 3,
respectively. The key schedule is similar to the encryption with less Sboxes and
different rotations. Limited by the space, please refer to [15] for the details.

⎡

⎢
⎢
⎣

X[15] X[14] · · · X[1] X[0]
X[31] X[30] · · · X[17] X[16]
X[47] X[46] · · · X[33] X[32]
X[63] X[62] · · · X[49] X[48]

⎤

⎥
⎥
⎦ ⇔

⎡

⎢
⎢
⎣

X(0f) X(0e) · · · X(01) X(00)
X(1f) X(1e) · · · X(11) X(10)
X(2f) X(2e) · · · X(21) X(20)
X(3f) X(3e) · · · X(31) X(30)

⎤

⎥
⎥
⎦

Fig. 3. Two-dimensional representation of the state
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Our search algorithm constructs a 36-order integral distinguisher containing
7 rounds, which improves the 56-order distinguisher proposed by the designers.
More specifically, for a set of 236 plaintexts with X0(i0, i2, i3, i4, i6, i7, i8, ie, if),
0 ≤ i < 4, being active, the state after 7 encryption rounds has 22 balanced bits:
X7(00, 10, 20, 01, 11, 21, 31, 12, 32, 03, 04, 14, 05, 15, 16, 2b, 2c, 2d, 3d, 3e, 0f, 2f).

Key Recovery Against RECTANGLE. Since Y 7(01) and Y 7(11) are bal-
anced bits,

⊕
Λ

(Y 7(01) ⊕ Y 7(11)) = 0 holds. Applying the match-through-the-

Sbox technique, we have
⊕

Λ

X8(12)X8(01) =
⊕

Λ

{X8(3e)X8(12) ⊕ X8(3e) ⊕ X8(12)}. (9)

We first prepare N sets of 236 plaintexts satisfying the integral distinguisher.
48 bits of the ciphertext are related to the partial decryption for X8(01, 12), and
also 48 bits of the ciphertext are related to the partial decryption of X8(3e, 12).
Let K1 and K2 be the subkey involved in the computation of X8(01, 12) and
X8(3e, 12), respectively. From the key schedule, |K1| = 60, |K2| = 61 and they
overlap in 45 bits. We first guess 20 subkey bits shared by them for saving
memory. Then we independently guess the rest of bits in K1 and K2 and inde-
pendently compute the left and right of Eq. (9). Finally, the matches between
the results are checked in order to sieve the guessed keys. Due to the limitation of
space, we only show the complexities. The total time complexity of the attack is
evaluated by (256+272.3+271.7)N× 1

16× 1
11+280−N = 265.3N+280−N encryptions.

Choose N = 12, and then the time complexity is optimized to 269.5 encryptions.
The memory complexity is 236×64N +260−20×40+261−20×41 = 245.6 bits. The
data complexity is 236N = 239.6. In a similar manner, we can attack 12-round
RECTANGLE-128 with the time, memory and data complexity being 2120.7

12-round encryptions, 245 bits and 239 chosen plaintexts, respectively.

5 Conclusion

In this paper, we raised the power of integral attack against bit-oriented ciphers
in both aspects. We first proposed the match-through-the-Sbox technique, which
reduces the time and memory for the key recovery phase by using the separa-
ble property of the Sbox. It works similarly to the meet-in-the-middle tech-
nique for integral attack against Feistel ciphers, however, its application is not
restricted by the structure but by the property of the Sbox. Therefore, it can
be applied to SPN ciphers, such as PRESENT and RECTANGLE. Then, we
devised a generic algorithm for increasing the accuracy of the degree evaluation
and thereby improving the integral distinguisher. Limited by the memory cost,
it is suitable for constructing lower order distinguishers, which can be extended
to more rounds by the higher order method. The effect of this algorithm was
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demonstrated for several ciphers. For instance, it constructed 13-, 14-, 17-, 21-
and 25-round integral distinguisher for SIMON 32, 48, 64, 96 and 128, respec-
tively, which are all the best results as we known. Besides, it reduced the order
of the distinguisher for RECTANGLE to 36 from 56.

As applications, we launched the integral attack on several ciphers. For
PRESENT, we can attack one more round than the previous best integral attack
for two versions. Moreover, for SIMON family and RECTANGLE, we first eval-
uated their securities against integral attack (except for SIMON 32). Although
our attacks do not pose a threat to these ciphers, it shows that the integral
attack against bit-oriented ciphers has more room to be enhanced.

As we shown, both of our techniques are relevant to the property of the
confusion component, for example the Sbox, hence, we conclude that integral
attack is also sensitive to the Sbox for bit-oriented ciphers, except for the linear
layer. Since the lightweight block ciphers is an actively discussed topic, we hope
that this paper returns some useful feedback to future design and analysis.

A Details of Step 3

Compute
⊕
Λs

(Y 8[32] ⊕ Y 8[0]) for 0 ≤ s < N .

– We guess 12-bit subkey: K10[i] ⊕ K10[i + 32],K10[i + 16],K10[i + 48] for
i ∈ {0, 2, 8, 10}, and compute the value of Y 9[0] ⊕ Y 9[32], Y 9[8] ⊕ Y 9[40] for
each ciphertext. Count how many times each 14-bit value appears: Y 9[0] ⊕
Y 9[32], Y 9[8] ⊕ Y 9[40] and Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for
i ∈ {4, 6, 12, 14}. And then pick the values which appear odd times.

– Guess 3 subkey bits, K10[4] ⊕ K10[36],K10[20] and K10[52]. Compress the
data into at most 212 values of Y 9[0] ⊕ Y 9[32], Y 9[16], Y 9[8] ⊕ Y 9[40] and
Y 10[i] ⊕ Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {6, 12, 14}, which appear
odd times.

– Guess 3 subkey bits, K10[12] ⊕ K10[44],K10[28] and K10[60]. Compress the
data into 210 texts of Y 9[0] ⊕ Y 9[32], Y 9[16, 48], Y 9[8] ⊕ Y 9[40] and Y 10[i] ⊕
Y 10[i + 32], Y 10[i + 16], Y 10[i + 48] for i ∈ {6, 14}.

– Guess 3 subkey bits, K10[6] ⊕ K10[38],K10[22] and K10[54]. Compress the
data into 28 texts of Y 9[0]⊕Y 9[32], Y 9[16, 24, 48], Y 9[8]⊕Y 9[40] and Y 10[14]⊕
Y 10[46], Y 10[30], Y 10[62].

– Guess 3 subkey bits, K10[14] ⊕ K10[46],K10[30] and K10[62]. Compress the
data into 26 texts of Y 9[0] ⊕ Y 9[32], Y 9[16, 24, 48, 56], Y 9[8] ⊕ Y 9[40].

– Guess 3 subkey bits, K9[0]⊕K10[32],K10[16] and K10[48]. Compress the data
into 24 texts of Y 8[0], Y 9[24, 56], Y 9[8] ⊕ Y 9[40].

– Guess 3 subkey bits, K9[8]⊕K10[40],K10[24] and K10[56]. Compress the data
into 22 texts of Y 8[0, 32].

– Compute
⊕
Λs

(Y 8[32] ⊕ Y 8[0]) for 0 ≤ s < N and save the 30-bit guessed

subkey K2 in a hash table H ′ indexed by the corresponding N -bit result.

The time complexity is 230+229+230+231+232+233+234 = 235 computations
of the Sbox.
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Abstract. The Kalyna block cipher has recently been established as
the Ukranian encryption standard in June, 2015. It was selected in a
Ukrainian National Public Cryptographic Competition running from
2007 to 2010. Kalyna supports block sizes and key lengths of 128,
256 and 512 bits. Denoting variants of Kalyna as Kalyna-b/k, where b
denotes the block size and k denotes the keylength, the design spec-
ifies k ∈ {b, 2b}. In this work, we re-evaluate the security bound of
some reduced round Kalyna variants, specifically Kalyna-128/256 and
Kalyna-256/512 against key recovery attacks in the single key model.
We first construct new 6-round distinguishers and then use these distin-
guishers to demonstrate 9-round attacks on these Kalyna variants. These
attacks improve the previous best 7-round attacks on the same.

Our 9-round attack on Kalyna-128/256 has data, time and mem-
ory complexity of 2105, 2245.83 and 2226.86 respectively. For our 9-round
attack on Kalyna-256/512, the data/time/memory complexities are 2217,
2477.83 and 2451.45 respectively. The attacks presented in this work are
the current best on Kalyna. We apply multiset attack - a variant of
meet-in-the-middle attack to achieve these results.

Keywords: Block cipher · Kalyna · Key recovery · Differential enumer-
ation · Single key model

1 Introduction

The block cipher Kalyna proposed by Oliynykov et al. has been recently
selected as Ukranian encryption standard in 2015. Kalyna block cipher adopts
an SPN (substitution-permutation network) structure, similar to AES [2] but
with increased MDS matrix size, a new set of four different S-boxes, pre-and
post-whitening modular 264 key addition and a new key scheduling algorithm.

The official version of Kalyna specification (in English) available publicly does
not include any security analysis of the design. A preliminary study in [9], before
this cipher was standardized, reports attack complexities for Kalyna-128/128
against various attacks such as differential, linear, integral, impossible differential,
boomerang etc. and shows that upto 5 rounds of this variant can be broken. Sim-
ilar results are claimed for other Kalyna variants as well. The designers of Kalyna
thus claim brute force security against Kalyna for rounds ≥ 6.
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 119–135, 2016.
DOI: 10.1007/978-3-319-30840-1 8
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In this work, we extend the number of rounds attacked and show the
first 9-round key recovery attack against Kalyna-128/256 and Kalyna-256/512.
Similar to [1], our attack is inspired from the multiset attack demonstrated by
Dunkelman et al. on AES in [6]. Multiset attack is a variant of meet-in-the-
middle attack presented by Demirci et al. on AES in [4]. However, Demirci et
al.’s attacks suffered from a very high memory complexity. To reduce the mem-
ory complexity of Demirci et al.’s attacks on AES, Dunkelman et al. in [6],
proposed multiset attack which replaces the idea of storing 256 ordered byte
sequences with 256 unordered byte sequences (with multiplicity). This reduced
both memory and time complexity of MITM attack on AES. They also intro-
duced the novel idea of differential enumeration technique to significantly lower
the number of parameters required to construct the multiset. Derbez et al. in [5]
improved Dunkelman et al.’s attack on AES-192/256 by refining the differen-
tial enumeration technique. By using rebound-like techniques [7], they showed
that the number of reachable multisets are much lower than those counted in
Dunkelman et al.’s attack. Due to structural similarities between Kalyna and
AES, a similar attack was applied to 7-rounds of Kalyna by AlTawy et al. in [1].
The multiset attack on AES-192/256 was further improved by Li et al. in [8] by
using the concept of key sieving. Recently, in [11], Li et al. demonstrated the
most efficient multiset attack on AES-256 by exploiting some more key sieving
properties and clever MixColumn properties. On similar lines, we investigate the
effectiveness of improved multiset attack on Kalyna in this work.

In our attacks, we examine Kalyna-128/256 and Kalyna-256/512. We con-
struct new 6-round distinguishers for both the variants and use it to extend our
attacks up to 9 rounds. For Kalyna-256/512, we significantly reduce the data
and time complexities of the previous best 7-round attack on the same [1]. The
key schedule algorithm of Kalyna does not allow recovery of all subkeys or the
master key from one subkey only unlike AES [2]. However, it allows recovery
of odd-round keys from even-round keys and vice-versa. This property will be
used by us in our attacks to reduce the attack complexities. To the best of our
knowledge, our attacks are the first attacks on 9-round Kalyna-128/256 and
Kalyna-256/512 respectively.

Organization. In Sect. 2, we provide a brief description of Kalyna and notations
used throughout the work. In Sect. 3, we give details of our 6-round distinguisher
for Kalyna-128/256 followed by Sect. 4 where we present our 9-round attack on
the same. In Sect. 5, we briefly describe our 6-round distinguisher for Kalyna-
256/512 and report the attack complexities for our 9-round attack on the same.

Finally in Sect. 6, we conclude our work. Our results are summarized in
Table 1.
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Table 1. Comparison of cryptanalytic attacks on round reduced variants of Kalyna.
The blank entries were not reported in [9]. (The memory complexity header represents
the number of 128-bit blocks for Kalyna-128 and 256-bit blocks for Kalyna-256 required
to be stored in memory.)

Algorithm Rounds Attack type Time Data Memory Reference

attacked complexity complexity complexity

Kalyna-128/128 2 (of 10) Interpolation − - - [9]

3 (of 10) Linear Attack 252.8 - - [9]

4 (of 10) Differential 255 - - [9]

4 (of 10) Boomerang 2120 - - [9]

5 (of 10) Impossible Differential 262 - 266 [9]

5 (of 10) Integral 297 - 233+4 [9]

Kalyna-128/256 7 (of 14) Meet-in-the-Middle 2230.2 289 2202.64 [1]

9 (of 14) Meet-in-the-Middle 2245.83 2105 2226.86 This work, Sect. 4

Kalyna-256/512 7 (of 18) Meet-in-the-Middle 2502.2 2233 2170 [1]

9 (of 18) Meet-in-the-middle 2477.83 2217 2451.45 This work, Sect. 5

2 Preliminaries

In this section, we describe Kalyna and mention the key notations and definitions
used.

2.1 Description of Kalyna

The block cipher Kalyna-b/k has five variants namely - Kalyna-128/128, Kalyna-
128/256, Kalyna-256/256, Kalyna-256/512 and Kalyna-512/512 where, b is the
block size and k is the key size. The 128-bit, 256-bit and 512-bit internal states
are treated as a byte matrix of 8 × 2 size, 8 × 4 size and 8 × 8 size respec-
tively where, the bytes are numbered column-wise. The pre-whitening and post-
whitening keys are added modulo 264 to the plaintext and ciphertext respectively
columnwise. Each internal round consists of 4 basic operations -SubBytes (SB),
Shift Rows (SR), MixColumn (MC) and Add Round Key (ARK). For detailed
description of these operations, we refer the reader to [10].

Key Scheduling Algorithm. The key scheduling algorithm of Kalyna first involves
splitting of the master key K into two parts - Kα and Kω. If the block size and
key size are equal, i.e., (k = b), then Kα = Kω = K, otherwise if (k = 2b), then
Kω || Kα = K, i.e., Kα is set as b/2 least significant bits of K and Kω is set
as b/2 most significant bits of K. Using these two parameters, an intermediate
key Kσ is generated which is then used to independently generate even indexed
round keys. For complete details of the key schedule algorithm, one may refer
to [10]. Two properties which are important for us are as follows:

1. Recovery of a subkey does not allow recovery of master key better than brute
force.
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2. The keys for round i where i is an odd number can be linearly computed
from the key used in round (i − 1) and vice- versa as follows:

Ki = Ki−1 ≪ (b/4 + 24) (1)

where, ≪ denotes circular left shift operation.

2.2 Notations and Definitions

The following notations are followed throughout the rest of the paper.

P : Plaintext
C : Ciphertext
i : Round number i, where, 0 ≤ i ≤ 8
Kalyna-b : Kalyna with state size of b-bits
Kalyna-b/k : Kalyna with state size of b-bits and key size of k-bits
Ki : Subkey of round i
Ui : MC−1(Ki), where MC−1 is the inverse MixColumn operation
Xi : State before SB in round i
Yi : State before SR in round i
Zi : State before MC in round i
Wi : State after MC in round i
Δs : Difference in a state s
si[m] : mth byte of state s in round i, where, 0 ≤ m ≤ l and l = 15

for Kalyna-128/256 and l = 31 for Kalyna-256/512
si[p − r] : pth byte to rth byte (both inclusive) of state s in round i,

where 0 ≤ p < r ≤ l and l = 15 for Kalyna-128/256 and
l = 31 for Kalyna-256/512

In some cases we interchange the order of the MixColumn and Add Round
Key operations. As these operations are linear, they can be swapped, by first
xoring the intermediate state with an equivalent key and then applying the
MixColummn operation. This is exactly similar to what one can do in AES [5].
As mentioned above, we denote the equivalent round key by Ui = MC−1(Ki).
We utilize the following definitions for our attacks.

Definition 1 (δ-list). We define the δ-list as an ordered list of 256 16-byte
(or 32-byte) distinct elements that are equal in 15 (or 31) bytes for Kalyna-128
(or Kalyna-256). Each of the equal bytes are called as passive bytes whereas
the one byte that takes all possible 256 values is called the active byte [2]. We
denote the δ-list as (x0, x1, x2, . . . , x255) where xj indicates the jth 128-bit
(or 256-bit) member of the δ-list for Kalyna-128 (or Kalyna-256). As mentioned
in the notations, xj

i [m] represents the mth byte of xj in round i.

Definition 2 (Multiset). A multiset is a set of elements in which multiple
instances of the same element can appear. A multiset of 256 bytes, where each
byte can take any one of the 256 possible values, can have

(
28+28−1

28

) ≈ 2506.17

different values.
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Definition 3 (Super S-Box). The Kalyna Super S-box (denoted as SSB) can
be defined similar to AES Super S-box [3]. For each 8-byte key, it produces a
mapping between an 8-byte input array to an 8-byte output array.

Two important properties that will be used in our attacks are as follows:

Property 1a (Kalyna S-box). For any given Kalyna S-box, say Si (where,
i = 0, 1, 2 or 3) and any non-zero input - output difference pair, say (Δin, Δout)
in F256 × F256, there exists one solution in average, say y, for which the equation,
Si(y)⊕ Si(y ⊕ Δin) = Δout, holds true.

Proof. The proof of this will be provided in the extended version of the paper.

Property 1b (Kalyna Super S-box). For any given Kalyna Super S-box, say
SSB and any non-zero input - output difference pair, say (Δin, Δout) in F264 ×
F264 , the equation, SSB(z)⊕SSB(z ⊕Δin) = Δout has one solution in average.

Property 2 (Kalyna MixColumns). If the values (or the differences) in any
eight out of its sixteen input/output bytes of the Kalyna MixColumn operation
are known, then the values (or the differences) in the other eight bytes are
uniquely determined and can be computed efficiently. This is similar to AES
MixColumn property stated in [11].

Proof. The proof of this will be provided in the extended version of the paper.

The time complexity of the attack is measured in terms of 9-round Kalyna
encryptions required. The memory complexity is measured in units of b-bit
Kalyna (where, b = 128 or 256) blocks required.

3 Construction of Distinguisher for 6-Round
Kalyna-128/256

In this section, we construct a distinguisher on the 6-inner rounds of Kalyna-
128/256. Before, we proceed further, we first establish the following relation for
Kalyna-128/256. According to Property 2, we can form an equation using any
11 out of 16 input-output bytes in the Kalyna MixColumn operation. For any
round j, where, 0 ≤ j ≤ 8:

0xCA · Zj [12] ⊕ 0xAD · 0xZj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15]
= 0x94 · Wj [8] ⊕ 0xB4 · Wj [9] ⊕ 0x4E · Wj [10] ⊕ 0x7E · Wj [11]

⊕ 0xC0 · Wj [13] ⊕ 0xDA · Wj [14] ⊕ 0xC5 · Wj [15] (2)

or, 0xCA · Zj [12] ⊕ 0xAD · Zj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15]
= 0x94 · (Kj [8] ⊕ Xj+1[8]) ⊕ 0xB4 · (Kj [9] ⊕ Xj+1[9]) ⊕
0x4E · (Kj [10] ⊕ Xj+1[10]) ⊕ 0x7E · (Kj [11] ⊕ Xj+1[11])
⊕ 0xC0 · (Kj [13] ⊕ Xj+1[13]) ⊕ 0xDA · (Kj [14] ⊕ Xj+1[14])
⊕ 0xC5 · (Kj [15] ⊕ Xj+1[15]) (3)
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where, Wj = Kj ⊕ Xj+1. Let,

Pj = 0xCA · Zj [12] ⊕ 0xAD · Zj [13] ⊕ 0x49 · Zj [14] ⊕ 0xD7 · Zj [15] (4)
Qj = 0x94 · Xj+1[8] ⊕ 0xB4 · Xj+1[9] ⊕ 0x4E · Xj+1[10] ⊕

0x7E · Xj+1[11] ⊕ 0xC0 · Xj+1[13] ⊕ 0xDA · Xj+1[14] ⊕ 0xC5 · Xj+1[15]
Const = 0x94 · Kj [8] ⊕ 0xB4 · Kj [9] ⊕ 0x4E · Kj [10] ⊕ 0x7E · Kj [11] (5)

⊕ 0xC0 · Kj [13] ⊕ 0xDA · Kj [14] ⊕ 0xC5 · Kj [15] (6)

then, Eq. 3 can be rewritten as,

Pj = Qj ⊕ Const (7)

Eq. 7 will be used to establish the distinguishing property as shown next.

3.1 Distinguishing Property for Kalyna-128/256

Given, a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}128 �→
{0, 1}128 and a 120-bit constant T , we define a multiset v as follows:

Ci = f(T || M i),where (0 ≤ i ≤ 255) (8)
ui = 0x94 · Ci[8] ⊕ 0xB4 · Ci[9] ⊕ 0x4E · Ci[10] ⊕ 0x7E · Ci[11]

⊕ 0xC0 · Ci[13] ⊕ 0xDA · Ci[14] ⊕ 0xC5 · Ci[15] (9)
v = {u0 ⊕ u0, u1 ⊕ u0, . . . , u255 ⊕ u0} (10)

Note that, (T || M0, T || M1, . . ., T || M255) forms a δ-list and atleast one
element of v (i.e., u0 ⊕ u0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations
on 128-bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the

aim is to find how many multisets v (as defined above) are possible when, f
$←− F

and T
$←− {0, 1}120.

In case, when F = family of all permutations on 128-bit and f
$←− F.

Under such setting, since in the multiset v, we have 255 values (one element is
always 0) that are chosen uniformly and independently from the set {0, 1, . . .,
255}, the total number of possible multisets v are at most

(
28−1+28−1

28−1

) ≈ 2505.17.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F. Here,

f
$←− F ⇔ K

$←− {0, 1}256 and f = EK . Let us consider the 6 inner rounds of
Kalyna-128/256 as shown in Fig. 1. Here, C in Eq. 8 is represented by X6 and
Eq. 9 is defined as:

ui = 0x94 · Xi
6[8] ⊕ 0xB4 · Xi

6[9] ⊕ 0x4E · Xi
6[10] ⊕ 0x7E · Xi

6[11]
⊕ 0xC0 · Xi

6[13] ⊕ 0xDA · Xi
6[14] ⊕ 0xC5 · Xi

6[15] (11)
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It is to be noted that under this setting, for each i where, (0 ≤ i ≤ 255),
Eq. 11 is same as Eq. 5 computed at round 5, i.e., ui = Qi

5. Now, we state the
following Observation 1.

Observation 1. The multiset v is determined by the following 52 single byte
parameters only :

• X0
1 [0 - 7] (8-bytes)

• X0
2 [0 - 15] (16-bytes)

• X0
3 [0 - 15] (16-bytes)

• X0
4 [0 - 3, 12 - 15] (8-bytes)

• X0
5 [4 - 7] (4-bytes)

Thus, the total number of possible multisets is 252×8 = 2416 since, each 52-byte
value defines one sequence.

Proof. In round 0 (in Fig. 1), the set of differences {X0
0 [15] ⊕ X0

0 [15], X1
0 [15] ⊕

X0
0 [15], . . ., X255

0 [15]⊕X0
0 [15]} (or, equivalently the set of differences at X0[15])

is known to the attacker as there are exactly 256 differences possible. This is so,
because in the plaintext we make the most significant byte as the active byte.
Hence, when the pre-whitening key is added (columnwise), the carry-bit in the
most significant bit is ignored limiting the possible values (and the differences)
at X0[15] to 256 only. Since S-box is injective, exactly 256 values exist in the set
{Y 0

0 [15] ⊕ Y 0
0 [15], Y 1

0 [15] ⊕ Y 0
0 [15], . . ., Y 255

0 [15] ⊕ Y 0
0 [15]}. As Shift Row (SR),

MixColumn (MC) and Add Round Key (ARK) are linear operations, the set of
differences at X1[0 − 7] will be known to the attacker.

Owing to the non-linearity of the S-box operation, the set of differences at
Y1[0 − 7] cannot be computed to move forward. To allievate this problem, it
is sufficient to guess X0

1 [0 − 7], i.e., values of the active bytes of the first state
(out of 256 states) at X1 as it allows calculating the other Xi

1[0 − 7] states
(where, 1 ≤ i ≤ 255) and cross SB layer in round 1. Since, SR, MC and ARK
operations are linear, the set of differences at X2[0−15] is known. Continuing in
a similar manner as discussed above, if the attacker guesses full states X0

2 [0−15]
and X0

3 [0 − 15], then the set of differences at Z3, i.e., {Z0
3 ⊕ Z0

3 , Z1
3 ⊕ Z0

3 , . . .,
Z255
3 ⊕ Z0

3} can be easily computed. Now at this stage, she can easily calculate
the set of differences at W3 [0, 1, 2, 3, 12, 13, 14, 15] which is equal to the set of
differences at X4 [0, 1, 2, 3, 12, 13, 14, 15]1. By guessing X0

4 [0, 1, 2, 3, 12, 13,
14, 15], the attacker can cross the SB layer in round 4 and calculate the set of
differences at W4 [4, 5, 6, 7]. By guessing X0

5 [4, 5, 6, 7], the attacker can obtain
the set of values {Z0

5 [12−15], Z1
5 [12−15], . . ., Z255

5 [12−15]}. Using these, she can
compute P i

5 at Zi
5 as P i

5 = CAx ·Zi
5[12]⊕ADx ·Zi

5[13]⊕49x ·Zi
5[14]⊕D7x ·Zi

5[15]
(according to Eq. 4) and thus the set {P 0

5 ⊕P 0
5 , P 0

5 ⊕P 1
5 , . . . , P 255

5 ⊕P 0
5 }. Since,

according to Eq. 7, P i
j ⊕ P 0

j = (Qi
j⊕ Const) ⊕ (Q0

j⊕ Const) = Qi
j ⊕ Q0

j and
ui = Qi

5 (mentioned above), the attacker can easily calculate the multiset v =
{Q0

5 ⊕ Q0
5, Q1

5 ⊕ Q0
5, . . ., Q255

5 ⊕ Q0
5}. This shows that the multiset v depends on

52 parameters and can take 2416 possible values. 
�
1 In Fig. 1, byte 3 in states W3, X4, Y4 and Z4 have not been colored grey for a purpose

which will be cleared when we reach Observation 2.
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Since, there are 2416 possible multisets, if we precompute and store these
values in a hash table, then the precomputation complexity goes higher than
brute force for Kalyna-128/256. In order to reduce the number of multisets,
we apply the Differential Enumeration technique suggested by Dunkelman et al.
in [6] and improved by Derbez et al. in [5]. We call the improved version proposed
in [5] as Refined Differential Enumeration.

Refined Differential Enumeration. The basic idea behind this technique is
to choose a δ-set such that several of the parameters mentioned in Observa-
tion 1 equal some pre-determined constants. To achieve so, we first construct a
6-round truncated differential trail in round 0 - round 5 (as shown in Fig. 1)
where, the input difference is non-zero at one byte and output difference is non
zero in 7 bytes. The probability of such a trail is 2−112 as follows: the one byte
difference at ΔP [15] and correspondingly at ΔX0[15] propagates to 8-byte dif-
ference in ΔX1[0 − 7] and 16-byte difference in ΔX2[0 − 15] and further till
ΔZ3[0 − 15] with probability close to 1. Next, the probability that 16-byte dif-
ference in ΔZ3[0 − 15] propagates to 7-byte difference in ΔW3[0 − 2, 12 − 15] (=
ΔX4[0− 2, 12− 15]) is 2−72. This 7-byte difference in ΔX4 propagates to 4-byte
difference in ΔW4[4 − 7] followed by 7-byte difference in ΔW5[8 − 11, 13 − 15]
with a probability of 2−32 and 2−8 respectively. Thus, the overall probability of
the differential from ΔP to ΔZ5 is 2−(72+32+8) = 2−112.

In other words, we require 2112 plaintext pairs to get a right pair. Once, we
get a right pair, say (P 0, P 1), we state the following Observation 2.

Observation 2. Given a right pair (P 0, P 1) that follows the truncated differ-
ential trail shown in Fig. 1, the 52 parameters corresponding to P 0, mentioned
in Observation 1 can take one of atmost 2224 fixed 52-byte values (out of the
total 2416 possible values), where each of these 2224 52-byte values are defined
by each of the 2224 values of the following 39 parameters:

• ΔZ0[7] (1-byte)
• X0

1 [0 − 7] (8-bytes)
• Y 0

3 [0 − 15] (16-bytes)
• Y 0

4 [0 − 3, 12 − 15] (8-bytes)
• Y 0

5 [5 − 7] (3-bytes)
• ΔZ5[12 − 14] (3-bytes)

Proof. Given a right pair (P 0, P 1), the knowledge of these 39 new parameters
allows us to compute all the differences shown in Fig. 1. This is so because the
knowledge of ΔZ0[7] allows us to compute ΔX1[0 − 7]. Then, if the values of
X0

1 [0 − 7] are known, one can compute the corresponding X1
1 [0 − 7] and cross

the S-box layer in round 1 to get ΔX2. From the bottom side, we know that
ΔW5[12] = ΔZ5[8] = ΔZ5[9] = ΔZ5[10] = ΔZ5[11] = 0. Thus, if ΔZ5[12, 13, 14]
are known, then using Property 2 (as 9 bytes are known), we can deduce ΔZ5[15]
(and ΔW5[8−11, 13−15]). Then, the knowledge of Y 0

5 [5−7], allows us to easily
determine the corresponding Y 1

5 [5−7] and compute ΔX5[5−7] (and ΔW4[5−7]).
We know that ΔW4[0] = ΔW4[1] = ΔW4[2] = ΔW4[3] = ΔZ4[3] = 0. Using
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Property 2, we can deduce ΔW4[4] and hence ΔX5[4] and since we already know
ΔY5[4] (from ΔZ5[12] guessed previously), using Property 1a. the possible values
of X5[4] and Y5[4] can be computed. We can compute ΔY4[0 − 2, 12 − 15] from
ΔW4[0−7]. By guessing Y 0

4 [0−2, 12−15], we can obtain ΔY3[0−15]. Using the
value of Y 0

3 [0 − 15], we can compute ΔY2. Then using Property 1a., the possible
values of X0

2 and Y 0
2 can be computed. At this stage, the total possible values

of these 39 parameters are 239×8 = 2312.

However, for each value of this 39-byte parameter, the following key bytes -
U2[0 − 3, 12 − 15], K3[0 − 15], K4[0 − 2, 12 − 15] and K5[4 − 7] can be deduced
as follows:

1. Knowledge of X0
1 [0 − 7] allows us to compute the corresponding Z0

1 [0 −
3, 12 − 15]. Xoring these values with X0

2 [0 − 3, 12 − 15] helps us in deducing
U2[0 − 3, 12 − 15].

2. Knowledge of X0
2 allows us to compute the corresponding W 0

2 . Xoring W 0
2

with X0
3 helps us in deducing K3.

3. Similarly, knowledge of X0
3 and X0

4 [0 − 2, 12 − 15] (from Y 0
4 [0 − 2, 12 − 15])

can be used to deduce K4[0 − 2, 12 − 15].
4. Again, knowledge of X0

4 [0 − 3, 12 − 15] and X0
5 [4 − 7] (from Y 0

5 [4 − 7]) helps
in deducing K5[4 − 7].

Now, according to the key schedule algorithm of Kalyna-128/256, from K3,
we can compute K2 (according to Eq. 1) which allows us to compute the cor-
responding U2. Thus, by comparing the computed U2[0 − 3, 12 − 15] with the
deduced U2[0−3, 12−15], a sieve of 8-bytes (since matching probability is 2−64)
can be applied to eliminate the wrong guesses. Similarly, again from Eq. 1, knowl-
edge of K5[4 − 7] allows us to compute K4[12], K4[13] and K4[14] as K4[12] =
K5[5], K4[13] = K5[6] and K4[14] = K5[7]. This allows us a filtering of further
3-bytes. Thus by key sieving, the total possible guesses of 39-byte parameter
reduces from 239×8 to 2(39−(8+3))×8 = 228×8 = 2224.

Using Observation 1 and Observation 2, we state the following third Obser-
vation 3 :

Observation 3. Given (M0, M1, . . ., M255) and f
$←− F and T

$←− {0, 1}120,
such that T || M0 and T || M j , (where, j ∈ { 1, . . ., 255}) is a right pair that
follows the differential trail shown in Fig. 1, then atmost 2224 multisets v are
possible.

Proof. From Observation 1, we know that each 52-byte parameter defines one mul-
tiset and Observation 2 restricts the possible values of these 52-byte parameters
to 2224. Thus, atmost 2224 multisets are only possible for Kalyna-128/256. 
�
As the number of multisets in case of 128-bit random permutation (= 2505.17)
is much higher than 6-round Kalyna-128/256 (= 2224), a valid distinguisher is
constructed.
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Fig. 1. 6-Round distinguisher for
Kalyna-128/256. Here, P i denotes
(T || M i) and Xi
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j , Zi
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intermediate states corresponding to
P i in round j. The round subkeys Kj ,
where, 0 ≤ j ≤ 6 are generated from
the master key K.
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Fig. 2. 9-round attack on Kalyna-
128/256. The subkey bytes guessed are
shown dotted.

4 Key Recovery Attack on 9-Round Kalyna-128/256

In this section, we use our Observation 3 to launch meet-in-the-middle attack
on 9-round Kalyna-128/256 to recover the key. The distinguisher is placed in
round 0 to round 5, i.e., plaintext is considered as the δ-list with byte 15 being
the active byte and the multiset sequence is checked at X6 (as shown in Fig. 2).
Three rounds are added at the bottom of the 6-round distinguisher. The attack
consists of the following three phases:
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4.1 Precomputation Phase

In this phase, we build a lookup table T to store 2224 sequences to be used for
comparison in the online phase. The construction of this table requires us to
create two more hash tables (T0 and T1) in the intermediate steps. The entire
procedure is as follows:

1. For each K3

– We guess ΔZ1[0−3, 12−15]||ΔX4[0−2, 12−15] to compute the difference
ΔX2 and ΔY3 respectively. We resolve (ΔX2 - ΔY3) using Property 1b
to compute the corresponding X2||X3. We then deduce K2 from K3 and
compute the corresponding value of Z1[0−3, 12−15]. Using the guessed
value of ΔZ1[0 − 3, 12 − 15] and the computed value of Z1[0 − 3, 12 −
15], we compute ΔZ0[0 − 7]. If ΔZ0[0 − 6] = 0 (which happens with
a probability of 2−56), we store the corresponding X1[0 − 7]||ΔZ1[0 −
3, 12−15]||X2||X3||W3[12−14]||ΔX4[0−2, 12−15] at index K3 in table
T0. There are about 264 entries for each index.

2. For each guess of ΔZ5[12 − 14]
– We compute ΔZ5[15] using Property 2.
– We guess Y5[5 − 7], compute X5[5 − 7] and ΔX5[0 − 3, 5 − 7] where,

ΔX5[0 − 3] = 0. Since, ΔX5[0 − 3, 5 − 7] = ΔW4[0 − 3, 5 − 7] and we
know that ΔZ4[3] = 0, thus we can compute ΔX5[4] (= ΔW4[4]) and
ΔZ4[0 − 2, 4 − 7] again using Property 2. Since ΔY5[4] is known from
ΔZ5[12], we can resolve (ΔX5[4]-ΔY5[4]) to get X5[4].

– We guess Y4[0−3, 12−15] and compute corresponding X4[0−3, 12−15]
in the backward direction and W4[4 − 7] in the forward direction. This
allows us to calculate K5[4−7] and deduce the corresponding K4[12−14].
We use this to compute W3[12 − 14].

– We store X4[0−3, 12−15]||X5[4−7] at index value W3[12−14]||ΔX4[0−
2, 12 − 15] in table T1. There are about 232 entries for each index.

3. For each of the 2128 index of K3 in table T0, we have 264 entries of W3

[12−14]||ΔX4[0−2, 12−15] and corresponding to each of these we have 232

entries of X4[0 − 3, 12 − 15]||X5[4 − 7] in table T1. So in all, after merging
T0 and T1, we get 2128+64+32 = 2224 unique set of 39-byte parameters, that
are required to construct the multiset v.

4. For each of these 2224 39-byte parameters, we calculate the corresponding
52-byte parameters for all the elements of the δ-list and compute the multiset
v = {u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}. We store the multiset along with the
52-byte parameters in the table T .

The time complexity to construct T0 = 2(16+8+7)×8 × 2−2.17 = 2245.83. The
time complexity to construct T1 = 2(3+3+8)×8 × 2−2.17 = 2109.83. The time com-
plexity to merge T0 and T1 = 2128+64+32 = 2224. Finally, the time complexity to
construct T = 2224 × 28 × 2−0.58 = 2231.41.
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4.2 Online Phase

In this phase we extend the differential trail shown Fig. 1, by adding 3 more
rounds at the bottom (as shown in Fig. 2). The steps of the online phase are as
follows:

1. We encrypt 297 structures of 28 plaintexts each where byte 15 takes all pos-
sible values and rest of the bytes are constants. We store the corresponding
ciphertexts in the hash table.

2. For each of the 2112 (P0, P ′
0) plaintext pairs, do the following:

– We guess 2128 values of K9 and deduce the corresponding values of K8

from K9. We decrypt each of the ciphertext pairs through 2 rounds, to
get X7 and ΔX7. Then, we deduce the corresponding ΔW6 and ΔZ6.

– We filter out the keys, which do not give zero difference at ΔZ6[0 − 4,
12 − 15]. 256 key guesses are expected to remain.

– We pick one member of the pair, say P0, create the δ-list by constructing
the rest of the 255 plaintexts as Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get
their corresponding ciphertexts.

– For each remaining 256 key guesses of K8 and K9, we guess U7[5 − 11],
compute the corresponding Z6[5 − 11] and Y6[8 − 11, 13 − 15] and then
obtain the multiset { u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}.

– We check whether this multiset exists in the precomputation table T or
not. If not, then we discard the corresponding guesses.

The probability for a wrong guess to pass the test is 2224×2−467.6 = 2−243.6.2

Since we try only 2112+56 = 2168 multisets, only the right subkey should verify
the test.

4.3 Recovering the Remaining Subkey Bytes

The key schedule algorithm of Kalyna does not allow recovery of master key
from any subkey better than brute-force [10]. However, knowledge of all round
keys enables encryption/decryption. We follow a similar approach as described
in [1] to recover all the round subkeys. When a match with a multiset is found
using a given plaintext-ciphertext pair, we choose one of the ciphertexts and
perform the following steps:

1. We already know the corresponding K8 and K9 and U7[5 − 11].
2. We guess the remaining 9 bytes of U7, and deduce the corresponding 272

values of K7 and K6.
3. For each 272 guesses of (K7,K6), from X7 we compute X5. We discard the

key guesses for which X5[4 − 7] does not match with the values of X5[4 − 7]
obtained from the corresponding matched multiset in the pre-computation
table.

2 Note that the probability of randomly having a match is 2−467.6 and not 2−505.17

since the number of ordered sequences associated to a multiset is not constant [6].
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4. For the remaining 272−32 = 240 guesses of (K9, K8, K7, K6), we guess
2128 values of K5. We deduce X4 and discard the key guesses for which
X4[0− 2, 12− 15] does not match with the values obtained corresponding to
the correct multiset sequence from the precomputation table. From a total
of 2128+40 = 2168 key guesses, 2112 key guesses are expected to remain.

5. We deduce K4 from K5 for the remaining key guesses and compute X3.
We compare this to the value obtained from the precomputation table cor-
responding to the correct multiset sequence and discard those that do not
match. Only one value of (K9, K8, K7, K6, K5, K4) is expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already
known from the pre-computation table. We deduce X1 for the remaining one
value of (K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2128 values of K1, deduce K0 and compute the plaintext. We
compare this to the plaintext corresponding to ciphertext being decrypted.
We are left with only one value of (K9, K8, K7, K6, K5, K4, K3, K2, K1,
K0).

Complexities. The time complexity of the precomputation phase is dominated
by step 1 and is 2248 × 2−2.17 = 2245.83 Kalyna-128/256 encryptions. The time
complexity of the online phase is dominated by step 1 and is 2112 × 2128 ×
2−2.17 = 2237.83. The time complexity of the Subkey recovery phase is dominated
by step 4 which is 2168 × 2−3.17 = 2164.83. Clearly the time complexity of the
whole attack is dominated by the time complexity of the precomputation phase,
i.e., 2245.83. It was shown in [5] that each 256-byte multiset requires 512-bits
space. Hence, to store each entry in table T, we require 512-bits to store the
multiset and 52 × 8 = 416-bits to store the 52-byte parameters, i.e., a total of
928-bits (= 29.86). Therefore, the memory complexity of this attack is 2224 ×
29.86−7 = 2226.86 Kalyna 128-bit blocks. The data complexity of this attack is
2105 plaintexts.

5 Key Recovery Attack on 9-Round Kalyna-256/512

In this section, we briefly describe our meet-in-the-middle attack on 9-round
Kalyna-256/512. We first establish the following relation for Kalyna-256/512.
According to Property 2, we can form an equation using any 12 out of 16 input-
output bytes in the Kalyna MixColumn operation. For any round j, where,
0 ≤ j ≤ 8:

Zj [8] ⊕ Zj [9] ⊕ Zj [12] ⊕ Zj [13] = EAx · Wj [8] ⊕ 54x · Wj [9] ⊕ 7Dx · Wj [10]
⊕ C3x · Wj [11] ⊕ E0x · Wj [12] ⊕ 5Ex · Wj [13]
⊕ 7Dx · Wj [14] ⊕ C3x · Wj [15] (12)
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Similar to as shown in Sect. 3, since, Wj = Kj ⊕ Xj+1, If

Pj = Zj [8] ⊕ Zj [9] ⊕ Zj [12] ⊕ Zj [13] (13)
Qj = EAx · Xj+1[8] ⊕ 54x · Xj+1[9] ⊕ 7Dx · Xj+1[10] ⊕

C3x · Xj+1[11] ⊕ E0x · Xj+1[12] ⊕ 5Ex · Xj+1[13] ⊕
7Dx · Xj+1[14] ⊕ C3x · Xj+1[15] (14)

Const = EAx · Kj [8] ⊕ 54x · Kj [9] ⊕ 7Dx · Kj [10] ⊕ C3x · Kj [11]
⊕ E0x · Kj [12] ⊕ 5Ex · Kj [13] ⊕ 7Dx · Kj [14] ⊕ C3x · Kj [15](15)

then, Eq. 12 can be rewritten as,

Pj = Qj ⊕ Const (16)

For Kalyna-256/512, instead of counting multisets, we count 256-byte ordered
sequence as shown next.

5.1 Construction of 6-Round Distinguisher for Kalyna-256/512

Given a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}256 �→
{0, 1}256 and a 248-bit constant T, we define an ordered sequence ov as follows:

Ci = f(T || M i),where (0 ≤ i ≤ 255) (17)

oui = EAx · Ci[8] ⊕ 54x · Ci[9] ⊕ 7Dx · Ci[10] ⊕ C3x · Ci[11]

⊕ E0x · Ci[12] ⊕ 5Ex · Ci[13] ⊕ 7Dx · Ci[14] ⊕ C3x · Ci[15] (18)

ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0} (19)

Note that, (T || M0, T || M1, . . ., T || M255) forms a δ-list and the first
element of ov (i.e., ou0 ⊕ ou0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations
on 256-bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the
aim is to find how many ordered sequences ov (as defined above) are possible

when, f
$←− F and T

$←− {0, 1}248.
In case, when F = family of all permutations on 256-bit and f

$←− F.
Under such setting, since, ov is a 256-byte ordered sequence in which the first
byte is always zero and the rest 255 bytes are chosen uniformly and independently
from the set {0, 1, . . ., 255}, the total possible values of ov are (256)255 = 22040.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F. Here,

f
$←− F ⇔ K

$←− {0, 1}512 and f = EK . Let us consider the first 6 rounds of
Kalyna-256/512 as shown in Fig. 3. Here, C in Eq. 17 is represented by X6 and
Eq. 18 is defined as:

oui = EAx · Xi
6[8] ⊕ 54x · Xi

6[9] ⊕ 7Dx · Xi
6[10] ⊕ C3x · Xi

6[11]
⊕ E0x · Xi

6[12] ⊕ 5Ex · Xi
6[13] ⊕ 7Dx · Xi

6[15] ⊕ C3x · Xi
6[15] (20)
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Fig. 3. 9-round attack on Kalyna-256/516. The subkey bytes guessed are shown dotted.

It is to be noted that here, for each i where, (0 ≤ i ≤ 255), Eq. 20 is same
as Eq. 14 computed at round 5, i.e., oui = Qi

5. Under this setting, by applying
differential enumeration technique [5,6] and key sieving technique [8,11], the
total possible values of ordered sequence ov is 2448. Due to space constraints,
we are unable to provide proofs of the same in this work3.

As the number of ordered sequences in case of 256-bit random permutation
(= 22040) is much higher than 6-round Kalyna-256/512 (= 2448), a valid distin-
guisher is constructed.

5.2 Key Recovery Attack

Following a similar approach as used in Kalyna-128/256, it is possible to launch
an attack on 9-round Kalyna-256/512 (as shown in Fig. 3). Due to space limita-
tions, we omit the full details of the key recovery attack here and just report the
attack complexities4. The time complexity of the precomputation phase is 2453.83

3 The details of this distinguisher will be provided in the extended version of this
paper.

4 The complete details of this attack will be provided in the extended version of this
paper.
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Kalyna encryptions. The time complexity of the online phase is 2477.83 and the
time complexity of the Subkey recovery phase is 2412.83. Clearly the time com-
plexity of this attack is dominated by the online phase, i.e., 2477.83. The memory
complexity of this attack comes out to be 2451.45 Kalyna-256 blocks. In this
attack, we require 2224 plaintext pairs to guarantee the existence of a right pair.
Thus, the data complexity of this attack is 2217 plaintexts.

6 Conclusions

In this work, we utilize multiset attacks to launch key recovery attack on Kalyna-
128/256 and Kalyna-256/512. We improve the previous 7-round attack on both
the variants to demonstrate the first 9-round attacks on the same. Our attacks
on Kalyna-256/512 even improve upon the previous 7-round attack on the same
variant in terms of time and data complexities. We obtain these results by con-
structing new 6-round distinguishers on Kalyna and applying MITM attack on
the rest of the rounds. Currently, this line of attack only works on Kalyna-b/2b
variants and Kalyna variants in which block size and key size are equal appear
to be safe. It would be an interesting problem to try applying multiset attacks
on Kalyna-b/b. Presently, all five variants of Kalyna have been included in the
Ukranian standard. However, our results as well as the previous 7-round attack
show that compared to Kalyna-b/2b variants, Kalyna-b/b variants appear to be
more robust.

References

1. AlTawy, R., Abdelkhalek, A., Youssef, A.M.: A meet-in-the-middle attack on
reduced-round kalyna-b/2b. IACR Cryptol. ePrint Arch. 2015, 762 (2015).
http://eprint.iacr.org/2015/762

2. Joan, D., Vincent, R.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, New York (2002)

3. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,
Heidelberg (2006)
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Abstract. LBlock is a 32-round lightweight block cipher with a 64-bit
block size and an 80-bit key. This paper presents a new impossible dif-
ferential attack on LBlock by improving the previous best result for 1
more round. Based on the nibble conditions, detailed differential proper-
ties of LBlock S-Boxes and thorough exploration of subkey relations, we
set up well precomputation tables to collect the data needed and pro-
pose an optimal key-guessing arrangement to effectively reduce the time
complexity of the attack. With these techniques, we launch an impossible
differential attack on 24-round LBlock. To the best of our knowledge, this
attack is currently the best in terms of the number of rounds attacked
(except for biclique attacks).

Keywords: Lightweight block cipher · LBlock · Impossible differential
cryptanalysis

1 Introduction

In the past few years, the wide applications of RFID tags and sensor networks
have stimulated the needs of lightweight cryptographic primitives that require
very limited resources (the area size on the chip, memory, power consumption
etc.) while still providing good security. In accordance with this tendency, many
lightweight block ciphers were proposed, such as TWINE [19], PRESENT [4],
LED [7], LBlock [23], SIMON and SPECK [2] etc. For all of them, LBlock is
a relatively recent proposal and its security analysis is still under the heated
discussions.
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The LBlock block cipher was introduced by Wu and Zhang at ACNS 2011
[23] and the designers gave corresponding cryptanalysis. As a lightweight prim-
itive, LBlock has 64-bit block size and 80-bit key length. Since its proposal, the
security of LBlock has been analyzed by various cryptanalysis methods, such as
differential [11], impossible differential [5,6,8,12,14,22,23], integral [16,17,23],
zero-correlation linear [18,20], cube cryptanalysis [10], biclique attacks [1,21]
and so on.

Impossible differential cryptanalysis was independently introduced by
Knudsen [9] and Biham et al. [3], which allowed the adversary to discard wrong
keys as many as possible by distinguishing the impossible differential character-
istics, and exhaustively search the rest of the keys. Up to date, the impossible
differential attack is a relatively effective method in terms of attacked rounds of
LBlock. Boura et al. proposed the latest impossible differential result to attack
23-round LBlock with a time complexity 275.36 and a data complexity 259 [5,6].
In [6], the authors provided new generic formulas to compute the data, time
and memory complexities of impossible differential attacks. As to LBlock specif-
ically, they presented some new key-bridging techniques for discarding wrong
keys and therefore improved the time and data complexities of their attack.
Boura et al.’s work simplified the computation of impossible differential crypt-
analysis by a general equation. By comprehensive studying on their works of
LBlock and utilizing the 14-round impossible differential in [6], we further found
that the time complexity could be improved.

Our Contributions. The contributions of this paper are summarized in three
folds as follows:

– In this paper, we thoroughly explore the relations of the subkeys involved
to find an optimal arrangement for key guessing. Based on this and some
precomputations, a new key-guessing technique based on nibble is proposed
to reduce the guessed key space greatly, which is similar to dynamic key-
guessing technique [15] that is valid for block ciphers based on bit operations
such as SIMON.

– We make a more detailed investigation of the differential properties of S-Boxes.
These properties enable us to build some precomputation tables that help us
to collect available plaintext (ciphertext) pairs more efficiently and simplify
the operations in the online phase.

– The number of bit-conditions ascends to 88 after extending the 14-round
impossible differential to attack 24-round LBlock. According to the formu-
las given in [6], the smallest amount of input (or output) pairs N should be
approximately 288 so that the 24-round attack is seemingly unavailable. We
lower the high data complexity and make the 24-round attack a success with
277.50 encryptions and 259 chosen plaintexts by using our techniques.

Table 1 outlines our impossible differential attack on 24-round LBlock com-
pared with some previous cryptanalysis.

This paper is organized as follows, Sect. 2 reviews the LBlock cipher and
investigates detailed differential properties of S-Boxes used in round function.
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Table 1. Summary of some main attacks on LBlock

Model Attacks Rounds Time Data Memory Reference

Single-key Impossible differential 20 272.7 263CP 268 [23]

21 273.7 262.5CP 255.5 [12]

21 269.5 263CP 275 [8]

22 279.28 258CP 276 [8]

23 275.36 259CP 274 [6]

24 277.50 259CP 275 Sect. 3

Integral 22 270.54 264CP N/A [23]

22 271.27 262.1CP 235 [17]

22 279 260CP 263 [16]

Zero-correlation linear 20 263.7 264KP 264 [18]

20 239.6 263.6KP 264 [18]

22 270 261KP 264 [18]

23 276 262.1KP 260 [20]

Biclique attack 32 278.4 252CP 28 [21]

32 278.338 22KP 27FC [1]

Related-key Differential 22 267 263.1RKCP N/A [11]

Impossible differential 22 270 247RKCP N/A [14]

23 278.3 261.4RKCP 261.4 [22]

CP : Chosen Plaintext; KP : Known Plaintext; RKCP : Related-Key Chosen Plaintext.

We give detailed analysis on 24-round LBlock in Sect. 3. Section 4 concludes the
paper.

2 Preliminaries

In the first part of this section, we make a brief description of LBlock. In the
second part, we present some detailed properties about LBlock S-Boxes which
are helpful to launch our impossible differential attack.

2.1 Description of LBlock

Encryption Algorithm. LBlock adopts a 64-bit block with an 80-bit key,
which is a variant of 32-round Feistel network. Let P = L0||R0 be the 64-bit
plaintext, Li−1||Ri−1 be the input of the i-th round, Li||Ri be the output, Ki be
the subkey of the i-th round, and Li = (Xi

7, ...,X
i
0), Ri = (Xi

15, ...,X
i
8), where

Xi
j(0 ≤ j ≤ 15) are 4-bit nibbles. We denote the j-th nibble subkey of i-th round

as ki
j . Then the data processing procedure is expressed as follows.

1. For i = 1, 2, ..., 32, do

Li = F (Li−1, Ki) ⊕ (Ri−1 ≪ 8),

Ri = Li−1

2. C = (R32, L32) as the 64-bit ciphertext.
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Round Function. The round function F of LBlock is composed of three
basic operations: subkey addition, S-Box transformation and nibble permuta-
tion. There are 8 different 4-bit bijective S-Boxes (S7, S6, ..., S0) in S-Box trans-
formation. The round function is shown in Fig. 1.

Fig. 1. Round function of LBlock

Key Schedule. The key schedule function takes an 80-bit masterkey K, and
produces 32-bit subkeys for each round. Let Ki(i = 1, ..., 32) be an 80-bit internal
state for the key schedule function for the i-th round. Then, the 32-bit subkeys
Ki(i = 1, ..., 32) are derived as follows.

– K1 ← K;
– K1 ← K1[79, ..., 48];
– for i = 2, ..., 32 do

• Ki ← Ki−1 ≪ 29;
• Ki[79, 78, 77, 76] ← S9(Ki[79, 78, 77, 76]);
• Ki[75, 74, 73, 72] ← S8(Ki[75, 74, 73, 72]);
• Ki[50, ..., 46] ← Ki[50, ..., 46] ⊕ [i − 1]2, where [i − 1]2 is the binary repre-

sentation of i − 1;
• Ki ← Ki[79, ..., 48].

2.2 Observations on Differential Properties of S-Boxes

Some differential properties of LBlock S-Boxes have been given in [5]. Let A,B
be the input and output of S-Boxes, i.e. B = Si(A) (i = 0, ..., 7), and ΔA,ΔB be
the input and output differences respectively. We represent ΔA

Si−→ ΔB for the
pair (ΔA,ΔB) satisfying difference transition of Si excluding (ΔA,ΔB) = (0, 0),
which is available for difference transition of Si.

Property 1. (from [5]) For any given ΔA and ΔB, the probability Pr{ΔA
Si−→

ΔB} = 96
256 ≈ 2−1.41. For each differential pair (ΔA, ΔB) satisfying following

conditions,
{

Si(A) ⊕ Si(A ⊕ ΔA) = ΔB,

(ΔA,ΔB) �= (0, 0).
(1)

there are on average 240
96 ≈ 21.32 values that verify condition (1).
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In this paper, we further investigate the detailed differential distribution tables
of S-Boxes that draw connections between differences and exact values, and
give the more detailed differential properties of LBlock S-Boxes which are useful
in impossible differential attack of LBlock similar to the early abort technique
proposed by Lu et al. [13]. For example, the detailed differential distribution
table of S0 is given in Table 5 in Appendix A.

Property 2. For condition (1), the following differential properties of S-Boxes
are derived:

– If ΔA �= 0, then the probability Pr{ΔA
Si−→ ΔB | ΔA �= 0} = 96

240 ≈ 2−1.32.

Similarly, Pr{ΔA
Si−→ ΔB | ΔB �= 0} = 96

240 ≈ 2−1.32.

– If ΔA �= 0 and ΔB �= 0, then the probability Pr{ΔA
Si−→ ΔB | ΔA �= 0,ΔB �=

0} = 96
225 ≈ 2−1.22.

– Furthermore, for condition (1), when input and output differences of a S-Box
are known, we could directly get the input values that satisfy the differen-
tial transition of the S-Box by looking up the detailed differential distribution
tables.

Example. For the differential equation ΔS1(X0
1 ⊕ k1

1) ⊕ ΔX0
14 = 0, and the

given (ΔX0
1 , ΔX0

14) make the equation hold, we could directly get about 21.32

values of X0
1 ⊕ k1

1 by accessing the detailed differential distribution table of S1.
Furthermore, if X0

1 is known, then corresponding values of k1
1 that satisfy the

differential equation could be also obtained by one table looking up.

3 Impossible Differential Cryptanalysis of 24-Round
LBlock

In this section, we describe our attack on 24-round LBlock by utilizing the 14-
round impossible differential in [6]. In the remainder of this paper, we denote
a zero-difference nibble by “0”, nonzero-difference nibble by “1” and unknown-
difference (either 0 or 1) by “∗”. Therefore, the 14-round impossible differential
characteristic is represented as: (00000000, 00001000) � (00000100, 00000000).

Before introducing the whole attack, we thoroughly explore the relations of
the subkeys and build some precomputation tables. Based on these, we present an
efficient data collection and a new key-guessing technique to mount an impossible
differential attack on 24-round LBlock.

3.1 Conditions of Extended Impossible Differential Paths

We add 5 rounds to the top and bottom of the 14-round impossible differential
respectively to attack 24-round LBlock (see Fig. 2). We find the sufficient nibble
conditions to conform the extended 10-round differential propagation. Then,
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Fig. 2. Impossible differential attack against 24-round LBlock

we deduce the differential equations related to subkeys for chosen plaintext-
ciphertext pairs from the nibble conditions. These equations are effective for
filtering the incorrect subkey candidates. The acquired conditions, corresponding
differential equations and subkeys involved in conditions are listed in Table 2.
(subkeys in bold mean that the subkeys also involve in some other rounds).

3.2 Relationship Among Involved Subkeys

We reveal that 75 bits of key-information are well enough to deduce all the
subkeys involved in the conditions by thoroughly exploring the relations among
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Table 2. Differential conditions of extended impossible differential paths

Round Nibble conditions Subkeys involved Known

(differential equations) in conditions equations

1 ΔX1
0 = 0 : ΔS1(X0

1 ⊕ k1
1) ⊕ ΔX0

14 = 0 k1
1

ΔX1
1 = 0 : ΔS3(X0

3 ⊕ k1
3) ⊕ ΔX0

15 = 0 k1
3

ΔX1
3 = 0 : ΔS2(X0

2 ⊕ k1
2) ⊕ ΔX0

9 = 0 k1
2

ΔX1
4 = 0 : ΔS5(X0

5 ⊕ k1
5) ⊕ ΔX0

10 = 0 k1
5

2 ΔX2
4 = 0 : ΔS5(X1

5 ⊕ k2
5) ⊕ ΔX0

2 = 0 k2
5 ,k1

7

ΔX2
5 = 0 : ΔS7(X1

7 ⊕ k2
7) ⊕ ΔX0

3 = 0 k2
7 ,k1

6 ΔX1
7 = ΔX0

13

ΔX2
7 = 0 : ΔS6(X1

6 ⊕ k2
6) ⊕ ΔX0

5 = 0 k2
6 ,k1

4 ΔX1
6 = ΔX0

12

3 ΔX3
0 = 0 : ΔS1(X2

1 ⊕ k3
1) ⊕ ΔX0

12 = 0 k3
1 ,k2

3,k1
2 ΔX2

1 = ΔX0
7

ΔX3
1 = 0 : ΔS3(X2

3 ⊕ k3
3) ⊕ ΔX0

13 = 0 k3
3 ,k2

2 ,k1
0 ΔX2

3 = ΔX0
1

4 ΔX4
5 = 0 : ΔS7(X3

7 ⊕ k4
7) ⊕ ΔX0

1 = 0 k4
7 ,k3

6 ,k2
4 ,k1

5,k1
7 ΔX3

7 = ΔX1
5

5 ΔX5
1 = 0 k5

3 , k4
2 , k3

0, k2
1 , ΔX4

3 = ΔX0
7

ΔS3(X4
3 ⊕ k5

3) ⊕ ΔX1
5 = 0 k2

3,k1
2,k1

3,k1
1,k1

7

23 ΔX23
9 = 0 : ΔS2(X24

10 ⊕ k24
2 ) ⊕ ΔX24

3 = 0 k24
2

ΔX23
11 = 0 : ΔS7(X24

15 ⊕ k24
7 ) ⊕ ΔX24

5 = 0 k24
7

ΔX23
12 = 0 : ΔS4(X24

12 ⊕ k24
4 ) ⊕ ΔX24

6 = 0 k24
4

ΔX23
15 = 0 : ΔS3(X24

11 ⊕ k24
3 ) ⊕ ΔX24

1 = 0 k24
3

22 ΔX22
10 = 0 : ΔS5(X23

13 ⊕ k23
5 ) ⊕ ΔX24

12 = 0 k23
5 ,k24

6

ΔX22
8 = 0 : ΔS0(X23

8 ⊕ k23
0 ) ⊕ ΔX24

10 = 0 k23
0 ,k24

0 ΔX23
8 = ΔX24

2

ΔX22
13 = 0 : ΔS6(X23

14 ⊕ k23
6 ) ⊕ ΔX24

15 = 0 k23
6 ,k24

1 ΔX23
14 = ΔX24

0

21 ΔX21
12 = 0 : ΔS4(X22

12 ⊕ k22
4 ) ⊕ ΔX24

0 = 0 k22
4 ,k23

4 ,k24
4 ΔX22

12 = ΔX24
14

ΔX21
14 = 0 : ΔS1(X22

9 ⊕ k22
1 ) ⊕ ΔX24

2 = 0 k22
1 ,k23

2 ,k24
5 ΔX22

9 = ΔX24
11

20 ΔX20
15 = 0 : ΔS3(X21

11 ⊕ k21
3 ) ⊕ ΔX24

11 = 0 k21
3 ,k22

7 ,k23
3 ,k24

7 ,k24
6 ΔX21

11 = ΔX23
13

19 ΔX19
9 = 0 k20

2 ,k21
5 ,k22

6 ,k23
1 , ΔX20

10 = ΔX24
14

ΔS2(X20
10 ⊕ k20

2 ) ⊕ ΔX23
13 = 0 k23

4 ,k24
4 ,k24

2 ,k24
3 ,k24

6

subkeys. This enable us to find an optimal arrangement for key guessing in key
recovery in order to reduce the time complexity of the attack. We show relations
among subkeys involved in conditions and the masterkey in Table 3.

For a S-Box S and its input x, we denote the 4 output bits by (S(x)0, S(x)1,
S(x)2, S(x)3), simply as ((x)0, (x)1, (x)2, (x)3). In LBlock, a subkey bit may
be both the s-th output bit of a S-Box and the boolean function of partial
masterkey bits K[i ∼ j]. On this occasion, we denote such a bit by K(i ∼ j)s.
For example, k2

7 = S9(47, 48, 49, 50), we denote its 4 bits by S9(47, 48, 49, 50)0,
S9(47, 48, 49, 50)1, S9(47, 48, 49, 50)2, S9(47, 48, 49, 50)3 or simply (47 ∼ 50)0,
(47 ∼ 50)1, (47 ∼ 50)2, (47 ∼ 50)3 without causing ambiguities.

3.3 Precomputation

Firstly, in the remainder of this paper, we refer a pair that makes an equa-
tion hold as an available pair for this equation. From Table 2, we observe that
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Table 3. Relations among subkeys involved in conditions and masterkeys

Round Relations between subkeys and masterkeys

1 k1
1 : (55,54,53,52)

k1
3 : (63,62,61,60)

k1
2 : (59,58,57,56)

k1
5 : (71,70,69,68)

2 (k2
5 : (42, 41, 40, 39), k1

7 : (79,78,77,76))

k2
7 : S9(47, 48, 49, 50), k1

6: (75, 74, 73, 72)

k2
6 : S8(43, 44, 45, 46), k1

4: (67, 66, 65, 64)

3 k3
1 : (77, 76, 75, 74),k2

3 : (34,33,32,31),k1
2

k3
3 : (5, 4, 3, 2), k2

2: (30, 29, 28, 27), k1
0 : (51, 50, 49, 48)

4 k4
7 : (S9(69, 70, 71, 72), k3

6: (S8(14, 15, 16, 17), k2
4 : (38, 37, 36, 35), k1

5,k1
7

5 k5
3 : (27, 26, 25, 24), k4

2:(52,51,(S9(47, 48, 49, 50)0,S9(47, 48, 49, 50)1),

k3
0 : (73, 72, 71, 70), k2

1: (26, 25, 24, 23), k2
3,k1

2,k1
3,k1

1,k1
7

23 k24
2 : ((29 ∼ 39)1, (29 ∼ 39)2, (26 ∼ 39)0, (26 ∼ 39)1)

k24
7 : S9((47 ∼ 61)0, (47 ∼ 61)1, (47 ∼ 61)2, (47 ∼ 61)3)

k24
4 : ((36 ∼ 46)0, (36 ∼ 46)1, (36 ∼ 46)2, (33 ∼ 46)0)

k24
3 : ((33 ∼ 46)1, (33 ∼ 46)2, (33 ∼ 46)3, (29 ∼ 39)0)

22 k23
5 : ((69 ∼ 76)0, (69 ∼ 76)1, (69 ∼ 76)2, (69 ∼ 76)3),

k24
6 : S8((43 ∼ 54)0, (43 ∼ 54)1, (43 ∼ 54)2, (43 ∼ 54)3)

k23
0 : ((51 ∼ 61)2, (51 ∼ 61)3, (47 ∼ 54)0, 47 ∼ 54)1),

k24
0 : ((22 ∼ 32)2, (22 ∼ 32)3, (18 ∼ 25)0, (18 ∼ 25)1)

k23
6 : S8((77 ∼ 3)3, (73 ∼ 76)0, (73 ∼ 76)1, (73 ∼ 76)2),

k24
1 : (26 ∼ 39)2, (26 ∼ 39)3, (22 ∼ 32)0, (22 ∼ 32)1)

21 k22
4 : ((14 ∼ 21)0,(14 ∼ 21)1,(14 ∼ 21)2,(11 ∼ 21)0),

k23
4 : ((65 ∼ 72)0, (65 ∼ 72)1, (65 ∼ 72)2, (62 ∼ 72)0),k24

4

k22
1 : ((4 ∼ 17)2, (4 ∼ 17)3, (0 ∼ 10)0, (0 ∼ 10)1),

k23
2 : ((58 ∼ 68)1, (58 ∼ 68)2, (55 ∼ 68)0, (55 ∼ 68)1),

k24
5 : ((40 ∼ 50)0, (40 ∼ 50)1, (40 ∼ 50)2, (40 ∼ 50)3)

20 k21
3 : (40 ∼ 50)1, (40 ∼ 50)2, (40 ∼ 50)3, (36 ∼ 46)0),

k22
7 : (26 ∼ 39)0, (26 ∼ 39)1, (26 ∼ 39)2, (26 ∼ 39)3),

k23
3 : (62 ∼ 72)1, (62 ∼ 72)2, (62 ∼ 72)3, (58 ∼ 68)0), k24

7 ,k24
6

19 k20
2 : ((65 ∼ 72)1, (65 ∼ 72)2, (62 ∼ 72)0, (62 ∼ 72)1),

k21
5 : ((47 ∼ 54)0, (47 ∼ 54)1, (47 ∼ 54)2, (47 ∼ 54)3),

k22
6 : ((22 ∼ 32)0, (22 ∼ 32)1, (22 ∼ 32)2, (22 ∼ 32)3),

k23
1 : ((55 ∼ 68)2, (55 ∼ 68)3, (51 ∼ 61)0, (51 ∼ 61)1), k23

4 ,k24
4 ,k24

2 ,k24
3 ,k24

6
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some conditions of extended impossible differential paths are closely related
rather than independent. The input differences of some conditions could also be
output differences of other conditions, and plaintext- (ciphertext-) differences
have determined whether corresponding conditions held. Based on these, we
construct well precomputation tables by combining some related conditions to
provide higher efficiency for collecting available pairs. The connections between
input/output differences and conditions of active S-Boxes are depicted in Fig. 3.

Fig. 3. Connections between input/output differences and conditions

Secondly, in order to reduce time complexity of key recovery phase, we set
up five precomputation tables TKi (i = 1, 2, 3, 4, 5). When some key bits in a
condition equation have been known, the other related key bits could be obtained
by one table looking up rather than redundant online computations.

Precomputation Tables of Plaintext-Pairs. We first consider three condi-
tions (ΔX3

1 = 0, ΔX2
5 = 0, ΔX1

1 = 0), and deduce follow equations,

ΔS3(X
2
3 ⊕ k3

3) ⊕ ΔX0
13 = 0, (2)

ΔS7(X
1
7 ⊕ k2

7) ⊕ ΔX0
3 = 0, (3)

ΔS3(X
0
3 ⊕ k1

3) ⊕ ΔX0
15 = 0. (4)

Since ΔX2
3 = ΔX0

1 and ΔX1
7 = ΔX0

13, the Eq. (2) holds with probability 2−1.41

for any given (ΔX0
1 , ΔX0

13) according to Property 1. When (2) holds, it is easy to
verify that ΔX0

13 �= 0. In this case, (3) holds with probability 2−1.32 according to
Property 2. Similarly, the Eq. (4) holds with probability 2−1.32. Therefore, for any
given (ΔX0

1 , ΔX0
13, ΔX0

3 , ΔX0
15), all the three equations hold with probability

2−4.05. That is to say, for each value of (X0
1 , X0

13, X0
3 , X0

15), there are about
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211.95 values of (X0
1 ′, X0

13′, X0
3 ′, X0

15′) such that the corresponding differences
(ΔX0

1 , ΔX0
13, ΔX0

3 , ΔX0
15) make all these three equations hold.

A table T1 on nibbles (X0
1 , X0

13, X0
3 , X0

15) is set up. The row address of T1

is natually
i = X0

1‖X0
13‖X0

3‖X0
15, (5)

the column index is
j = ΔX0

1‖ΔX0
13‖ΔX0

3‖ΔX0
15 (6)

where the nibble difference (ΔX0
1 ,ΔX0

13,ΔX0
3 ,ΔX0

15) conforms that all the three
equations hold. We store (X0

1 ⊕ ΔX0
1 , X0

13 ⊕ ΔX0
13, X0

3 ⊕ ΔX0
3 , X0

15 ⊕ ΔX0
15)

in the corresponding location of table T1, denoted by T1(i, j). Therefore, there
are 216 rows, and about 211.95 columns in each row of table T1. The size of the
table T1 is about 216 × 211.95 = 227.95 words.

In the same way, considering the three equations

ΔS1(X
2
1 ⊕ k3

1) ⊕ ΔX0
12 = 0,

ΔS6(X
1
6 ⊕ k2

6) ⊕ ΔX0
5 = 0,

ΔS5(X
0
5 ⊕ k1

5) ⊕ ΔX0
10 = 0

we also set up a table T2 with (X0
7 , X0

12, X0
5 , X0

10) as row address, index of
difference (ΔX0

7 , ΔX0
12, ΔX0

5 , ΔX0
10) satisfying the three equations as column

address.

Precomputation Tables of Ciphertext-Pairs. We know that the three con-
ditions (ΔX21

14 = 0, ΔX22
8 = 0, ΔX23

9 = 0) in Table 2 hold with probability
2−4.05 for any given (ΔX24

11 , ΔX24
2 , ΔX24

10 , ΔX24
3 ). A precomputation table T3

is set up with
i = ΔX24

11‖ΔX24
2 ‖ΔX24

10‖ΔX24
3 (7)

being index and T3(i) = 1 when (ΔX24
11 , ΔX24

2 , ΔX24
10 , ΔX24

3 ) satisfy the three
conditions, otherwise T3(i) = 0. There are about 211.95 “1”s out of 216 locations
in table T3. In other words, ciphertext pair (C,C ′) is an available pair for the
characteristic in Fig. 2 only if their nibble difference satisfying T3(i) = 1 where
i is defined as (7).

In the same way, for (ΔX24
14 , ΔX24

0 , ΔX24
15 , ΔX24

5 ), we also set up a table T4.

Precomputation Tables of Key Bits. For condition ΔX2
5 = 0 in round 2,

by partially decrypting 2 rounds, we deduce that
⎧
⎪⎪⎨

⎪⎪⎩

ΔS7(X
1
7 ⊕ k2

7) ⊕ ΔX0
3 = 0,

X1
7 = S6(X

0
6 ⊕ k1

6) ⊕ X0
13,

ΔX1
7 = ΔX0

13.

(8)

According to the detailed difference properties of S-Box S7, we could set up a
precomputation table TK1 with (ΔX0

13, ΔX0
3 , X0

6 , X0
13) as row address, store

(k2
7, k1

6) satisfying (8) in the corresponding row. Therefore, there are 216 rows,
and about 25.32 bytes in each row of table TK1.

By using the same method, we also set up other precomputation tables used
in key recovery phase, and list them in Table 6 in Appendix A.
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3.4 Data Collection

In the data collection phase, we adopt the idea which is similar to the “prelimi-
nary sieving of pairs” in [5], but our method only needs to process those available
pairs satisfying that all equations hold. By dividing the whole 264 plaintexts into
several sets according to some plaintext- and ciphertext-nibbles, and accessing
precomputation tables Ti (i = 1, 2, 3, 4), we apply the divide-and-conquer tech-
nique to collect available plaintext-ciphertext pairs such that the corresponding
equations hold. This enables us to reduce the time complexity of collecting avail-
able pairs.

We demonstrate the available-pair-collecting procedure as follows.

1. Encrypt 2n sets of plaintexts whose nibbles X0
0 , X0

4 , X0
6 , X0

8 are constants while
other nibbles traverse all 248 values. We therefore acquire 2n+48 plaintexts P and
their corresponding ciphertexts C.

2. Within each set, we collect the available pairs satisfying the extended conditions by
taking the following steps:
(a) The plaintexts/ciphertexts (P, C) of every set are divided into 248 subsets

according to (X24
4 , X24

8 , X24
9 , X24

13 , X0
1 , X0

13, X0
3 , X0

15, X0
7 , X0

12, X0
5 , X0

10).
There is about 1 plaintext/ciphertext in every subset.

(b) For every subset A, we find corresponding subset A′ by accessing tables T1,
T2, and combine each element of A with each element of A′ to construct pairs.
Furthermore, for each obtained pair, we verify whether this pair is available by
accessing tables T3 and T4. Therefore, we construct about 248−1 × 211.95×2 ×
2−4.05×2 ≈ 262.8 pairs for each set, and need about (248+11.95×2) × 2 ≈ 272.9

times table looking-up equivalent to 272.9/(8×24) ≈ 265.3 24-round encryptions.
(c) For the 262.8 remaining pairs, we verify whether condition equations (ΔX1

0 = 0,
ΔX1

3 = 0, ΔX23
12 = 0, ΔX23

15 = 0) in Table 2 hold by testing corresponding plain-
text (ciphertext) nibble differences appeared in conditions. According to Prop-
erties 1 and 2, there are about 262.8 ×2−1.41×2−1.32×2 ≈ 257.34 pairs remaining
for each set.

In data collection phase, we could collect about 2n+57.34 pairs, the complexity
of the data collection is about 2n+65.3 24-round encryptions.

3.5 Key Recovery

By thoroughly exploring the relations of subkeys, we find that many key bits are
determined accordingly only by solving some simple equations after some key
bits have been guessed. Based on these, we present an optimal arrangement for
guessing key bits and identifying wrong guesses as early as possible. With the
optimal arrangement of guessing key and precomputation tables, we effectively
reduce the key-guessing space in the procedure of “wrong key filtering” to reduce
the time complexity of key recovery phase. We repeatedly follow steps of “wrong
key filtering” for 2n sets to calculate and discard wrong keys as many as possible,
and exhaustively search the rest of the equivalent keys. The masterkey will be
recovered with the key schedule after discarding wrong keys.
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Wrong Key Filtering. From the round function of LBlock, we know that the
calculations of X1

5 , ΔX1
5 , X23

13 and ΔX23
13 involved in the remaining six equations

in Table 2 depend on (k1
7, k

24
6 ). Hence, we guess (k1

7, k
24
6 ) in advance to only store

pairs that satisfy these 6 conditions. For each value of guessed (k1
7, k

24
6 ), there

are about 257.34−1.22×4−1.32×2 ≈ 249.82 pairs such that these 6 equations hold.
Therefore, within each set, we have N1 = 249.82 × 28 ≈ 257.82 available pairs
with their corresponding (k1

7, k24
6 ) satisfying that all the equations in Table 2

have solutions.
For an available pair, we further guess other subkey bits and filter wrong

keys by taking the following steps.

1. For conditions ΔX1
0 = 0, we get about 21.32 values of k1

1 with corresponding X1
0

by accessing differential distribution table of S1. Similar method is applied for 9
conditions (ΔX1

1 = 0, ΔX1
3 = 0, ΔX1

4 = 0, ΔX2
4 = 0, ΔX23

9 = 0, ΔX23
11 = 0,

ΔX23
12 = 0, ΔX23

15 = 0, ΔX22
10 = 0) in rounds 1, 2, 23, and 22 one by one, and we get

about 21.32 values for k1
3, k1

2, k1
5, k2

5, k24
2 , k24

7 , k24
4 , k24

3 , k23
5 with corresponding X1

1 ,
X1

3 , X1
4 , X2

4 , X23
9 , X23

11 , X23
12 , X23

15 , X22
10 respectively. For 2 conditions (ΔX2

5 = 0,
ΔX2

7 = 0) in round 2, we get about 25.32 values of (k2
7 , k1

6) with (X2
5 , X1

7 ) and 25.32

values of (k2
6 , k1

4) with (X2
7 , X1

6 ) by accessing the corresponding precomputation
tables TK1,TK2 respectively.

2. In this step, we combine partial obtained subkeys to diminish the candidate key
space. Firstly, because k23

5 is determined by k1
7 , k1

5, (k2
7 , k1

6) according to relations
among subkeys, we combine them to get 2(1.32×3) values of ( k1

7 , k1
5 , k2

7 , k1
6 , k23

5 ) and
corresponding key information K[47 ∼ 50, 68 ∼ 79]. Secondly, we get 2(1.32×5+1)

values of K[43 ∼ 55, 64 ∼ 79] by combining them with k1
1, (k2

6 , k1
4) and guessing

K[51] to verify k24
6 . Thirdly, We get 2(1.32×8−3) values of K[43 ∼ 79] by further

combining k1
2, k1

3 to verify k24
7 . In the end, we get 2(1.32×9−3) values of K[39 ∼ 79]

by combining them with k2
5.

3. For every subkey candidate obtained in step 2, we deduce k23
3 , k21

3 [0, 1, 2] with corre-
sponding X22

15 by the key schedule and partial decryptions. For condition ΔX20
15 = 0

in round 20, we obtain about 2(1.32+1) values of (k22
7 , k21

3 [3]) by accessing table
TK3. Therefore, we get about 2(1.32×10−2) values of K[39 ∼ 79], K(26 ∼ 39)0,
K(26 ∼ 39)1, K(26 ∼ 39)2, K(26 ∼ 39)3, K(36 ∼ 46)0 in total.

4. Similarly, we get about 2(1.32×13−6) values of K[26 ∼ 79] by guessing 1 bit K(26 ∼
32)3 and combining obtained subkeys of step 4 with k24

2 , k24
4 , k24

3 one by one. Then,
we apply obtained values to verify condition ΔX3

0 = 0 in round 3 and get about
21.32×14−10 values of K[26 ∼ 79] with corresponding X2

1 .
5. We further compute k23

1 , k23
4 , k21

5 , k20
2 and X22

12 , X22
14 with the knowledge of the

subkeys. For condition ΔX19
9 = 0 in round 19, we get about 21.32 values of k22

6 by
accessing tables TK4 for each one of guessed key and plaintext/ciphertext infor-
mations obtained. Because K(26 ∼ 32)3 could also be deduced from k22

6 , we get
2(1.32×15−11) values of K[26 ∼ 79], K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2,
K(22 ∼ 32)3.

6. Under each one of obtained subkeys of step 5, we deduce k24
1 and X23

14 . For condition
ΔX22

13 = 0 in round 22, and get about 21.32 values of k23
6 by accessing the differential

distribution table of S6. Because k23
6 can also be computed from K[73 ∼ 79] and

(0 ∼ 3)3 according to key schedule, we get about 2(1.32×16−14) values of K[26 ∼ 79],
K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2, K(22 ∼ 32)3, K(0 ∼ 3)3. Similar method
is applied to ΔX22

8 = 0, with repeated 2 bits of k24
0 , we get 2(1.32×17−16) values of
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K[26 ∼ 79], K(22 ∼ 32)0, K(22 ∼ 32)1, K(22 ∼ 32)2, K(22 ∼ 32)3, K(0 ∼ 3)3,
K(18 ∼ 25)0, K(18 ∼ 25)1.

7. We can deduce K[22 ∼ 25] by guessing K(22 ∼ 25)3 and above subkeys obtained,
thus k4

2 , k3
0 and k2

1 and corresponding X2
0 , X3

2 , X4
3 are known. For ΔX5

1 = 0 in round
5, we get about 21.32 values of k5

3 for each one of subkeys obtained by accessing the
differential distribution table of S3. Because 3 bits of k5

3 are repeated, then we get
2(1.32×18−19) values of K[22 ∼ 79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1.

8. Similarly, we can acquire key materials step by step as follows:
(a) For equation ΔX4

5 = 0 in round 4, we get 2(1.32×19−19) values of K[14 ∼ 17, 22 ∼
79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1 by TK5.

(b) For ΔX21
12 = 0 in round 21, we get 2(1.32×20−19) values of K[14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(14 ∼ 21)0, K(14 ∼ 21)1, K(14 ∼
21)2, K(11 ∼ 21)0.

(c) For ΔX21
14 = 0 in round 21, we get 2(1.32×21−21) values of K[14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼
17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1.

(d) For ΔX3
1 = 0 in round 3, we get 2(1.32×22−21) values of K[2 ∼ 5, 14 ∼ 17, 22 ∼

79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1, K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼
17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1.

Therefore, for each available pair, there are about 21.32×22 × 2−21 ≈ 28.04 values of
75-bit keys (K[2 ∼ 5, 14 ∼ 17, 22 ∼ 79], K(0 ∼ 3)3, K(18 ∼ 25)0, K(18 ∼ 25)1,
K(18 ∼ 21)3, K(11 ∼ 21)0, K(4 ∼ 17)2, K(4 ∼ 17)3, K(0 ∼ 10)0, K(0 ∼ 10)1) to be
discarded.

Exhaustive Search. For every remaining candidate key after filtering wrong keys, we
search the rest of key bits to recover the masterkey as follows.

According to key schedule, we deduce keys (K(4 ∼ 10)3,K[0, 1, 2, 3]) from each
one of candidate keys (K(0 ∼ 10)0, K(0 ∼ 10)1), K(0 ∼ 3)3) and guessed 2-bit
(K(0 ∼ 10)2, K(0 ∼ 10)3). Because subkeys K[2, 3] are also involved in candidate
subkeys, we get about 1 value of (K(4 ∼ 10)3,K[0,1]) for each remaining candidate key.
Similarly, 2 values of K[18, 19, 20, 21], 1 value of (K(7 ∼ 17)3, K(7 ∼ 10)3, 6), and 24

values of subkeys K[7, 8, 9, 10, 11, 12, 13] would be deduce in sequence.
Hence, there are 25 values of 80-bit masterkey left to be exhaustively searched by

24-round encryptions test for every remained candidate subkey.

3.6 Complexity Analysis

From wrong key filtering phase, there are about 2(1.32×22−21) = 28.04 values of the
75-bit keys to be discarded for each one of available pairs. In other words, for every
available pair, a key is discarded with probability P1 = 28.04−75 = 2−66.96. Thus, we let
N be the amount of available plaintext-ciphertext pairs such that all equations hold
rather than the previous sense of amount of pairs only satisfying input and output
differences. By repeatedly processing with N different available plaintext-ciphertext
pairs, the probability that one key is kept in the candidate set is

P = (1 − P1)
N � e−N×P1 .
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Table 4. Complexity in wrong key filtering

Step Time complexity

1 N × ( 21.32×10
8×24 + 25.32×2

8×24 ) 24-round encryptions

2 N × ( 2(1.32×3+4)
8×24 + 2(1.32×5+5)

8×24 + 2(1.32×8+1)
8×24 + 2(1.32×9−3)

8×24 ) 24-round encryptions

3 N × 2(1.32×9−3)×4
8×24 24-round encryptions

4 N × ( 2(1.32×11−2)
8×24 + 2(1.32×12−4)

8×24 + 2(1.32×13−4)
8×24 + 2(1.32×13−6)

8×24 24-round encryptions

5 N × 2(1.32×14−10)×8
8×24 24-round encryptions

6 N × ( 2(1.32×15−11)×2
8×24 + 2(1.32×16−14)×2

8×24 ) 24-round encryptions

7 N × 2(1.32×17−15)×5
8×24 24-round encryptions

8 N × ( 2(1.32×18−19)
8×24 + 2(1.32×19−19)

8×24 + 2(1.32×20−19)
8×24 + 2(1.32×21−21)

8×24 ) 24-round encryptions

When N = 21.86

P1
= 268.82, we calculate:

P � e2
1.86 ≈ 25.23,

n = N − N1 = 68.82 − 57.82 = 11.

Thus we need C = 211+48 = 259 plaintexts. The complexity of data collection is about
265.3+11 = 276.3 24-round encryption. The complexity of exhaustive search is about

280−25.76=274.77 24-round encryption tests.
In the following Table 4 , we discuss the time complexity of each step in wrong key

filtering phase.
From Table 4, we know that the total time complexity of wrong key filtering is

about 268.82+7.4 = 276.22 24-round encryptions.
Therefore, the total time complexity of the impossible differential attack on 24-

round LBlock is: 276.3+276.22+274.77 ≈ 277.50 24-round encryptions. Its data complexity
is 259 chosen plaintexts.

4 Conclusion

In this paper, we propose a 24-round impossible differential attack on LBlock, one
round more than the best previous result. This attack is achieved by employing sev-
eral advanced techniques including dynamic key-guessing, more detailed properties
of S-Boxes, optimal key-guessing arrangement etc. This attack is, to the best of our
knowledge, the best result on LBlock (except biclique attacks) in terms of the number
of attacked rounds.
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A Detailed Differences Distribution of S-Box
and Precomoutation Tables

Table 5. Distribution of input and output differences of S0

Input Values satisfying difference propagation Available Unavailable

difference number number

0 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0 16

1 0, (6, 7, 12, 13), 0, (8, 9), 0, 0, 0, (0, 1), 0, (4, 5, 14, 15), 0, (10, 11), 0, 0, 0, (2, 3) 6 10

2 0, (0, 2, 9, 11), 0, (13, 15), 0, 0, 0, (4, 6), 0, (1, 3, 8, 10), 0, (12, 14), 0, 0, 0, (5, 7) 6 10

3 0, 0, (8, 11, 12, 15), 0, 0, 0, (1, 2, 4, 7), 0, 0, 0, (9, 10, 13, 14), 0, 0, 0, (0, 3, 5, 6), 0 4 12

4 0, 0, 0, (0, 4), (9, 10, 13, 14), (2, 6), (8, 11, 12, 15), 0, 0, 0, 0, (3, 7), 0, (1, 5), 0, 0 6 10

5 0, 0, 0, 0, (1, 2, 4, 7), (9, 12), 0, (8, 13), 0, 0, (0, 3, 5, 6), 0, 0, (10, 15), 0, (11, 14) 6 10

6 0, 0, (1, 2, 4, 7), 0, (0, 3, 5, 6), (11, 13), 0, (9, 15), 0, 0, 0, 0, 0, (8, 14), 0, (10, 12) 6 10

7 0, 0, 0, (1, 6), (8, 11, 12, 15), (0, 7), 0, 0, 0, 0, 0, (2, 5), 0, (3, 4), (9, 10, 13, 14), 0 6 10

8 0, 0, (5, 13), (3, 11), 0, 0, (6, 14), (2, 10), 0, 0, (4, 12), (1, 9), 0, 0, (7, 15), (0, 8) 8 8

9 0, 0, 0, (5, 12), 0, 0, 0, (7, 14), (1, 3, 8, 10), 0, 0, (4, 13), (0, 2, 9, 11), 0, 0, (6, 15) 6 10

10 0, (4, 5, 14, 15), (3, 9), 0, 0, 0, (0, 10), 0, 0, 0, (1, 11), 0, 0, (6, 7, 12, 13), (2, 8), 0 6 10

11 0, (1, 3, 8, 10), 0, 0, 0, 0, 0, 0, (4, 5, 14, 15), 0, 0, 0, (6, 7, 12, 13), (0, 2, 9, 11), 0, 0 4 12

12 0, 0, (6, 10), (2, 14), 0, (3, 15), (5, 9), 0, (7, 11), (0, 12), 0, 0, (4, 8), 0, 0, (1, 13) 8 8

13 0, 0, 0, (7, 10), 0, (5, 8), 0, 0, (0, 13), (6, 11), (2, 15), 0, (3, 14), 0, (1, 12), (4, 9) 8 8

14 0, 0, (0, 14), 0, 0, (4, 10), (3, 13), (5, 11), (2, 12), (7, 9), 0, (6, 8), (1, 15), 0, 0, 0 8 8

15 0, 0, 0, 0, 0, (1, 14), 0, (3, 12), (6, 9), (2, 13), (7, 8), (0, 15), (5, 10), 0, (4, 11), 0 8 8

Table 6. Precomputation tables of keys

Table Index Content Size

TK1 (ΔX0
13, ΔX0

3 , X0
6 , X0

13) (k2
7, k1

6) 216 × 25.32

TK2 (ΔX0
12, ΔX0

5 , X0
4 , X0

12) (k2
6, k1

4) 216 × 25.32

TK3 (ΔX23
13 , ΔX24

11 , X22
15 , X23

13 , k21
3 [0, 1, 2]) (k22

7 , k21
3 [3]) 219 × 22.32

TK4 (ΔX24
14 , ΔX23

13 , X22
14 , X23

15 ⊕ k21
5 , X22

12 ⊕ k20
2 ) k22

6 220 × 21.32

TK5 (ΔX1
5 , ΔX0

1 , X2
6 , X1

5 ⊕ k4
7) k3

6 216 × 21.32
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Abstract. We analyze the point decomposition problem (PDP) in
binary elliptic curves. It is known that PDP in an elliptic curve group
can be reduced to solving a particular system of multivariate non-linear
equations derived from the so called Semaev summation polynomials.
We modify the underlying system of equations by introducing some aux-
iliary variables. We argue that the trade-off between lowering the degree
of Semaev polynomials and increasing the number of variables provides
a significant speed-up.

Keywords: Semaev polynomials · Elliptic curves · Point decomposition
problem · Discrete logarithm problem

1 Introduction

The point decomposition problem (PDP) in an additive abelian group G with
respect to a factor base B ⊂ G is the following: Given a point1 R ∈ G, find
Pi ∈ B such that

R =
m∑

i=1

Pi

for some positive integer m; or conclude that R cannot be decomposed as a sum
of points in B. The discrete logarithm problem (DLP) in G with respect to a
base P ∈ G is the following: Given P and Q = aP ∈ G for some secret integer a,
compute a. DLP can be solved using the index calculus algorithm in two main
steps. In the relation collection step, fix a factor base B, and find a set of points
Ri = aiP + biQ for some randomly chosen integers ai, bi, such that Ri can be
decomposed with respect to B, i.e.,

Ri =
∑

j

Pij , Pij ∈ B.

Here, we may assume for convenience that Pij are not necessarily distinct. Note
that each decomposition induces a modular linear dependence on the discrete
1 We prefer to use point rather than element because elliptic curve group elements

are commonly called points.
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logarithms of Q ∈ G and Pij ∈ B with respect to the base P . After collecting
sufficiently many relations2, linear algebra step solves for the discrete logarithm
of Q ∈ G, as well as the discrete logarithms of the factor base elements. Clearly,
the success probability and the running time of the index calculus algorithm
heavily depend on the decomposition probability of a random element in G, the
cost of the decomposition step, and the size of the factor base. In particular,
the overall cost of the relation collection and the linear algebra steps must be
optimized with a non-trivial success probability.

In 2004, Semaev [11] showed that solving PDP in an elliptic curve group is
equivalent to solving a particular system of multivariate non-linear equations
derived from the so called Semaev summation polynomials. Semaev’s work trig-
gered the possibility of the existence of an index calculus type algorithm which
is more efficient than the Pollard’s rho algorithm to solve the discrete logarithm
problem in elliptic curves defined over Fqn , which we denote ECDLP(q, n). Note
that Pollard’s rho algorithm is a general purpose algorithm that solves DLP in
a group G, and runs in time O(

√|G|). Gaudry [7] showed that, for a fixed n,
Semaev summation polynomials can be effectively used to solve ECDLP(q, n) in
heuristic time O(q2− 2

n ), where the constant in O(·) is exponential in n. For exam-
ple, Gaudry’s algorithm and Pollard’s rho algorithm solve ECDLP(q, 3) in time
O(q1.33) and O(q1.5), respectively. Due to the exponential in n constant in the
running time of Gaudry’s algorithm, his attack is expected to be more effective
than Pollard’s rho algorithm if n ≥ 3 is relatively small and q is large. Diem [2]
rigorously showed that ECDLP(q, n) can be solved in an expected subexponential
time when a(log q)α ≤ n ≤ b(log q)β for some a, b, α, β > 0. On the other hand,
Diem’s method has expected exponential running time O(en(log n)1/2) for solving
ECDLP(2, n). As a result, the index calculus type algorithms presented in [2,7]
do not yield ECDLP solvers which are more effective than Pollard’s rho method
when q = 2 and n is prime. The ideas for choosing an appropriate factor base in
[2] have been adapted in [5,10], and the complexity of the relation collection step
have been analyzed. In both papers [5] and [10], a positive integer m, which we
call the decomposition constant, is fixed to represent the number of points in the
decomposition of a random point in the relation collection step. The factor base
consists of elliptic curve points whose x-coordinates belong to an n′-dimensional
subspace V ⊂ F2n over F2, where n′ is chosen such that mn′ ≈ n. We refer to
PDP in this setting by PDP(n,m, n′) throughout the rest of this paper.

Faugère et al. [5] showed, under a certain assumption, that ECDLP(2, n)
can be solved in time O(2ωn/2), where 2.376 ≤ ω ≤ 3 is the linear algebra
constant. The running time analysis in [5] considers the linearization technique
to solve the system of multivariate nonlinear of equations which are derived from
the (m + 1)’st Semaev polynomial Sm+1 during the relation collection step to
solve PDP(n,m, n′). Faugère et al. further argue that, Groebner basis techniques
may improve the running time by a factor m in the exponent, where m is the
decomposition constant. This last claim has been confirmed in the experiments
in [5] for elliptic curves defined over F2n with n ∈ {41, 67, 97, 131} and m = 2.

2 This is roughly when the number of relations exceeds |B|.
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Petit and Quisquater’s heuristic analysis in [10] claims that ECDLP(2, n) can
asymptotically be solved in time O(2cn2/3 log n) for some constant 0 < c < 2. The
subexponential running time in [10] is based on a rather strong assumption on
the behavior of the systems of equations that arise from Semaev polynomials. In
particular, it is assumed in [10] that the degree of regularity Dreg and the first
fall degree DFirstFall of the underlying polynomial systems to solve PDP(n,m, n′)
are approximately equal. The analysis in [10] also assumes that n′ = nα and
m = n1−α for some positive constant α. Experiments with a very limited set of
parameters (n,m, n′), n ∈ {11, 17}, m ∈ {2, 3}, n′ = �n/m� were conducted in
[10] in the favor of their assumption.

A recent paper by Shantz and Teske [13] presented some extended exper-
imental results on solving PDP(n,m, n′) for the same setting as in the Petit
and Quisquater’s paper [10]. In particular, [13] validates the degree of regu-
larity assumption in [10] for the set of parameters (n,m, n′) such that n ∈
{11, 13, 15, 17, 19, 23, 29}, m = 2, n′ = �n/m�; and for (n,m, n′) such that
n ∈ {11, 13, 15, 17, 19, 21}, m = 3, n′ = �n/m�. Shantz and Teske [13] were
able to extend their experimental data for the parameters (n,m, n′,Δ), n ≤ 48,
m = 2, and where Δ = n − mn′ is chosen appropriately to possibly improve
the running time of ECDLP(2, n). In another recent paper [8], Huang et al.
exploit the symmetry in Semaev polynomials, and improve on the running time
and memory requirements of the PDP(n,m, n′) solver in [5]. The efficiency of
the method in [8] is tested for parameters (n,m, n′) such that n ≤ 53, m = 3,
n′ = 3, 4, 5, 6.

Petit and Quisquater’s heuristic analysis [10] claims that index calculus meth-
ods for solving ECDLP(2, n) is more effective than the Pollard’s rho method
for n > 2000, m ≥ 4 and mn′ ≈ n. However, all the experiments reported
so far on solving PDP(n,m, n′) for the set of parameters (n,m, n′,Δ) with
Δ = n − mn′ ≤ 1 and m = 3 are limited to n ≤ 19; see [8,13]. Similarly,
all the experiments for the set of parameters (n,m, n′,Δ) with m = 3 are lim-
ited to n′ ≤ 6, which forces Δ ≥ 2 for n ≥ 20. In general, it is desired to have
n′ increasing as a function of n, rather than having some upper bound on n′, so
that n ≈ mn′ as assumed in the running time analysis of ECDLP(2, n) solvers
in [5,10]. Therefore, it remains a challenge to run experiments on an extensive
set of parameters (n,m, n′) with larger prime n values, m ≥ 4, and mn′ ≈ n.
For example, it is stated in [8, Sect. 4.1] that

On the other hand, the method appears unpractical for m = 4 even for
very small values of n because of the exponential increase with m of the
degrees in Semaev’s polynomials.

In a more recent paper [6], Galbraith and Gebregiyorgis introduce a new
choice of variables and a new choice of factor base, and they are able to solve
PDP with various n ≥ 17, m = 4, n′ = 3, 4 using Groebner basis algorithms;
and also with various n ≥ 17, m = 4, n′ ≤ 7 using SAT solvers.

In this paper, we modify the system of equations, that are derived from
Semaev polynomials, by introducing some auxiliary variables. We show that
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PDP(n,m, n′) can be solved by finding a solution to a system of equations
derived from several third Semaev polynomials S3 each of which has at most
three variables. For a comparison, PDP(n,m, n′) in E(F2n) with decomposition
constant m = 5 would be traditionally attacked via considering the Semaev poly-
nomial S6 with 5 variables, which is likely to have a root in V 5, where V ⊂ F2n

is a subspace of dimension n′ = 	n/5
. On the other hand, when m = 5, our
polynomial system consists of third Semaev polynomials S3,i (i = 1, 2, 3, 4), and
a total of 8 variables which is likely to have a root in V 5 × F

3
2n , where V ⊂ F2n

is a subspace of dimension 	n/5
. As a result, our technique overcomes the dif-
ficulty of dealing with the (m + 1)’st Semaev polynomial Sm+1 when solving
PDP(n,m, n′) with m ≥ 4. We should emphasize that choosing m ≥ 4 is desir-
able for an index calculus based ECDLP(2, n) solver to be more effective than
a generic DLP solver such as Pollard’s rho algorithm. Our method introduces
an overhead of introducing some auxiliary variables. However, we argue that
the trade-off between lowering the degree of Semaev polynomials and increasing
the number of variables provides a significant speed-up. In particular, we present
some experimental results on solving PDP(n,m, n′) for the following parameters:

– n ≤ 19, m = 4, 5, and n′ = 	n/m
. We are not aware of any previous experi-
mental data for n > 15 and m = 5.

– n ≤ 26, m = 3, n′ = 	n/m
. We are not aware of any previous experimental
data for n > 21, m = 3, and Δ = n − mn′ ≤ 2.

We observe in our experiments that regularity degrees of the underlying systems
are relatively low. We also observe that running time and memory requirement
of algorithms can be improved significantly if the Groebner basis computations
are first performed on a subset of polynomials and if the ReductionHeuristic
parameter in Magma is set to be a small number; see Sect. 5 for more detail.
We would like to emphasize that these techniques are applied for the first time
in this paper to solve the point decomposition problem. As a result, we gain
significant improvement over the recently published experimental results [12].
For a comparison, we are able to solve PDP(15, 5, 3) instances in about 7 s (with
256 MB memory). Note that, PDP(15, 5, 3) is solved in about 175 s (with 2635
MB memory) in [12]. In general, our experimental findings with m = 3, 4, 5
extend and improve on the recently reported results in [8,12,13].

The rest of this paper is organized as follows. In Sect. 2, we recall Semaev
polynomials and their application to ECDLP(2, n). In Sect. 3, we describe and
analyze a new method to solve PDP(n,m, n′) in E(F2n). In Sect. 4, we present
our experimental results. In Sect. 5, we extend our results from Sect. 3.

2 Semaev Polynomials and ECDLP

Let F2n = F2[σ]/〈f(σ)〉 be a finite field with 2n elements, where f(σ) is a monic
irreducible polynomial of degree n over the field F2 = {0, 1}. Let E be a non-
singular elliptic curve defined by the short Weierstrass equation

E/F2n : y2 + xy = x3 + ax2 + b, a, b ∈ F2n .
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We denote the identity element of E by ∞. The i’th Semaev polynomial associ-
ated with E is defined as follows:

Si(x1, x2, . . . , xi) =

{
(x1x2 + x1x3 + x2x3)

2 + x1x2x3 + b if i = 3

ResX(Si−j(x1, . . . , xi−j−1, X), Sj+2(xi−j , . . . , xi, X)) if i ≥ 4,

(1)

where 1 ≤ j ≤ i − 3.
For n′ ≤ n, let

V = {a0 + a1σ + · · · + an′−1σ
n′−1 : ai ∈ F2} ⊂ F2n

and define the factor base

B = {P = (x, y) ∈ E : x ∈ V }.

Recall that in PDP(n,m, n′), we are looking for Pi = (xi, yi) ∈ B such that

P1 + · · · + Pm = R, (2)

for some given point R = (xR, yR) ∈ E. We refer to (2) as an m-decomposition
of R in B. We expect that, on average, a random point R ∈ E has an m-
decomposition in B with probability 2mn′

/2nm! simply because |B| ≈ 2n′
and

permuting Pi does not change the sum
∑

Pi (see [7]). As described in Sect. 1,
the DLP in E can be solved via an index-calculus based approach by computing
about |B| explicit m-decompositions and solving a sparse linear system of about
|B| equations. Therefore, the cost of solving ECDLP(2, n) may be estimated as

2n′ 2nm!
2mn′ Cn,m,n′ + 2ω′n′

, (3)

where Cn,m,n′ is the cost of solving PDP(n,m, n′), and ω′ = 2 is the sparse
linear algebra constant. Semaev [11] showed that a decomposition of the form
(2) exists if and only if the x-coordinates of Pi and R are zeros of the (m + 1)’st
Semaev polynomial, that is, Sm+1(x1, . . . , xm, xR) = 0. In the rest of this paper,
we focus on solving PDP(n,m, n′) (and estimating Cn,m,n′) via modifying the
equation induced by Sm+1.

3 A New Approach to Solve the Point Decomposition
Problem

Let E/F2n , V , and B be as defined in Sect. 2. Recall that an m-decomposition
of a point

R = P1 + · · · + Pm,

where R = (xR, yR) ∈ E, Pi = (xi, yi) ∈ B, can be computed (if exists) by
identifying a tuple (x1, . . . , xm) ∈ V m that satisfies

Sm+1(x1, . . . , xm, xR) = 0 (4)
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Note that xi belong to an n′-dimensional subspace of F2n . Therefore, (4) defines
a system Sys1 of a single equation over F2n in m variables. In [5,10], the Weil
descent technique is applied, and a second system Sys2 of n equations over
F2 in mn′ boolean variables is derived from Sys1. The cost Cn,m,n′ of solving
PDP(n,m, n′) in [5,10] is estimated through the analysis of solving Sys2 using
linearization and Groebner basis techniques. Next, we describe a new approach
to derive another system Sys3 of boolean equations such that a solution of Sys3
yields an m-decomposition of a point R.

Notation. Throughout the rest of this paper, we distinguish between
two classes Semaev polynomials. The first class of Semaev polynomials is
denoted by Sm,1(x1, . . . , xm), which represents the m’th Semaev polynomial
with m variables. The second class of Semaev polynomials is denoted by
Sm,2(x1, . . . , xm−1, xR), which represents the m’th Semaev polynomial with
m − 1 variables (i.e., the last variable xm is evaluated at a number xR).

3.1 The Case: m = 3

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 − R = ∞
if and only if there exist Pi ∈ B and P12 ∈ E such that{

P1 + P2 − P12 = ∞
P3 + P12 − R = ∞ (5)

Therefore, a 3-decomposition of R = P1 + P2 + P3 may be found as follows:

1. Define the following system of equations derived from Semaev polynomials{
S3,1(x1, x2, x12) = 0
S3,2(x3, x12, xR) = 0.

(6)

Note that this system is defined over F2n and has 4 variables x1, x2, x3, x12.
2. Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, and

x12 =
n∑

j=0

x12,jσ
j .

Apply the Weil descent technique to (6) and define an equivalent system of
2n equations over F2 with 3n′ + n boolean variables

{xi,j : i = 1, 2, 3, j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n − 1}.
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Solve this new system of boolean equations and recover x1, x2, x3 ∈ F2n from
xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
3n′ + n boolean variables rather than solving a system of n equations over F2

with 3n′ boolean variables.

3.2 The Case: m = 4

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 − R = ∞

if and only if there exist Pi ∈ B and P12 ∈ E such that
{

P1 + P2 − P12 = ∞
P3 + P4 + P12 − R = ∞ (7)

Therefore, a 4-decomposition of R = P1 +P2 +P3 +P4 may be found as follows:

1. Define the following system of equations derived from Semaev polynomials
{

S3,1(x1, x2, x12) = 0
S4,2(x3, x4, x12, xR) = 0

(8)

Note that this system is defined over F2n and has 5 variables x1, x2, x3, x4, x12.
2. Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, and

x12 =
n∑

j=0

xi,jσ
j .

Apply the Weil descent technique to (8) and define an equivalent system of
2n equations over F2 with 4n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4 j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n − 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
4n′ + n boolean variables rather than solving a system of n equations over F2

with 4n′ boolean variables.
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3.3 The Case: m = 5

Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 − R = ∞

if and only if there exist Pi ∈ B and P123 ∈ E such that
{

P1 + P2 + P3 − P123 = ∞
P4 + P5 + P123 − R = ∞ (9)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as
follows:

1. Define the following system of equations derived from Semaev polynomials
{

S4,1(x1, x2, x3, x123) = 0
S4,2(x4, x5, x123, xR) = 0

(10)

Note that this system is defined over F2n and has 6 variables x1, x2, x3,
x4, x5, x123.

2. Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, 5, and

x123 =
n∑

j=0

x123,jσ
j .

Apply the Weil descent technique to (10) and define an equivalent system of
2n equations over F2 with 5n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′ − 1} ∪ {x123,j : j = 0, . . . n − 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with
5n′ + n boolean variables rather than solving a system of n equations over F2

with 5n′ boolean variables.

3.4 Analysis of the New Polynomial Systems

One of the methods to solve a system of multivariate non-linear equations is
to compute the Groebner basis of the underlying ideal. Groebner basis com-
putations can be performed using Faugère’s algorithms [3,4], which reduce the
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problem to Gaussian elimination of Macaulay-type matrices Md of degree d. The
Macaulay matrix Md encodes degree (at most) d polynomials, that are generated
during Groebner basis computation. Therefore, the cost of solving a system of
equations is determined by the maximal degree D (also known as the degree of
regularity of the system) reached during the computation. If N is the number
of variables in the system, then the cost is estimated as O

((
N+D−1

D

)ω
)
, where(

N+D−1
D

)
is the maximum number of columns in MD and ω is the linear algebra

constant. In general, it is hard to estimate D. In the recent paper [10], it is con-
jectured that the degree of regularity Dreg of systems arising from PDP(n,m, n′)
satisfies Dreg = DFirstFall+o(1), where DFirstFall is the first fall degree of the system
and defined as follows.

Definition 1. [10] Let R be a polynomial ring over a field K. Let F :=
{f1, . . . , f�} ⊂ R be a set of polynomials of degrees at most DFirstFall. The first
fall degree of F is the smallest degree DFirstFall such that there exist polynomials
gi ∈ R with maxi (deg(fi) + deg(gi)) = DFirstFall, satisfying deg(

∑�
i=1 gifi) <

DFirstFall but
∑�

i=1 gifi �= 0.

Experimental studies in recent papers [10,13] give supporting evidence that
Dreg ≈ DFirstFall. However, experimental data is yet very limited (see Sect. 1)
to verify this conjecture. In this section, we compute the first fall degree of the
systems proposed in Sects. 3.1, 3.2, and 3.3. Our experimental results in Sect. 4
support that Dreg ≈ DFirstFall.

DFirstFall of the system when m = 3. In this case, one needs to solve the
system of 2n equations over F2 with 3n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (6) that consists of two Semaev
polynomials S3,1 and S3,2. The monomial set of S3,1(x1, x2, x12) is

{1, x2
1x

2
2, x

2
1x

2
12, x

2
2x

2
12, x1x2x12}.

Therefore, the Weil descent of S3,1(x1, x2, x12) yields a 2n′ + n variable poly-
nomial set {fi} over F2 such that maxi(deg(fi)) = 3. On the other hand, the
monomial set of x1 · S3,1(x1, x2, x12) is

{x1, x
3
1x

2
2, x

3
1x

2
12, x

2
2x

2
12, x

2
1x2x12}.

Therefore, the Weil descent of x1 · S3,1(x1, x2, x12) yields a polynomial set
{Fi} over F2 such that maxi(deg(Fi)) = 3. It follows from the definition that
DFirstFall(S3,1) ≤ 4 because the maximum degree of polynomials obtained from
the Weil descent of x1 is 1. Similarly, the monomial set of S3,2(x3, x12, xR) is

{1, x2
3x

2
12, x

2
3, x

2
12, x3x12}.

Therefore, the Weil descent of S3,2(x3, x12, xR) yields a n′+n variable polynomial
set {fi} over F2 such that maxi(deg(fi)) = 2. On the other hand, the monomial
set of x3

3 · S3,2(x3, x21, xR) is

{x3
3, x

5
3x

2
12, x

5
3, x

3
3x

2
12, x

4
3x12}.
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Therefore, the Weil descent of x3
3 · S3,2(x3, x12, xR) yields a polynomial set

{Fi} over F2 such that maxi(deg(Fi)) = 3. It follows from the definition that
DFirstFall(S3,2) ≤ 4 because the maximum degree of polynomials obtained from
the Weil descent of x3

3 is 2. We conclude that DFirstFall ≤ 4.

DFirstFall of the system when m = 4. In this case, one needs to solve the
system of 2n equations over F2 with 4n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (8) that consists of two Semaev
polynomials S3,1 and S4,2. From our above discussion, DFirstFall(S3,1) ≤ 4. Now,
analyzing the monomial set of S4,2(x3, x4, x123, xR), we can see that the Weil
descent of S4,2(x3, x4, x123, xR) yields a 2n′ + n variable polynomial set {fi}
over F2 such that maxi(deg(fi)) = 6 (this follows from the Weil descent of
the monomial (x3x4x123)3). On the other hand, analyzing the monomial set of
x3 ·S4,2(x3, x4, x123, xR), we see that the Weil descent of x3 ·S4,2(x3, x4, x123, xR)
yields a polynomial set {Fi} over F2 such that maxi(deg(Fi)) = 6. It follows from
the definition that DFirstFall(S4,2) ≤ 7 because the maximum degree of polyno-
mials obtained from the Weil descent of x3 is 1. We conclude that DFirstFall ≤ 7.

DFirstFall of the system when m = 5. In this case, one needs to solve the
system of 2n equations over F2 with 5n′ + n boolean variables. The system of
equations is derived by applying Weil descent to (10) that consists of two Semaev
polynomials S4,1 and S4,2. From our above discussion, DFirstFall(S4,2) ≤ 7. Now,
analyzing the monomial set of S4,1(x1, x2, x3, x123), we can see that the Weil
descent of S4,1(x1, x2, x3, x123) yields a 3n′ + n variable polynomial set {fi}
over F2 such that maxi(deg(fi)) = 8 (this follows from the Weil descent of the
monomial (x1x2x3x123)3). On the other hand, analyzing the monomial set of
x3 ·S4,1(x1, x2, x3, x123), we see that the Weil descent of x3 ·S4,1(x1, x2, x3, x123)
yields a polynomial set {Fi} over F2 such that maxi(deg(Fi)) = 8. It follows from
the definition that DFirstFall(S4,1) ≤ 9 because the maximum degree of polyno-
mials obtained from the Weil descent of x3 is 1. We conclude that DFirstFall ≤ 9.

4 Experimental Results

We implemented the methods proposed in Sect. 3 on a desktop computer
(Intel(R) Xeon(R) CPU E31240 3.30GHz) using Groebner basis algorithms in
Magma [1]. For each parameter set (n,m, n′), we solved 5 random instances of
PDP over a randomly chosen elliptic curve E/F2n . In Table 1, we report on our
experimental results for solving PDP(n,m, n′ = 	n/m
) with m = 3, 4, 5. In
particular, for each of these 5 computations, we report on the maximum CPU
time (seconds) and memory (MB) required for solving PDP. We also report on
the maximum of the maximum step degrees D in the Groebner basis computa-
tions. Recall that in Sect. 3, we estimated DFirstFall ≤ 4 when m = 3; DFirstFall ≤ 7
when m = 4; and DFirstFall ≤ 9 when m = 5. In our experiments, we observe that
Dreg = 4 when m = 3; Dreg = 7 when m = 4; and Dreg ≤ 8 when m = 5.

Let m = 5 and n′ = 	n/m
. Based on our experimental data, it is tempting
to assume that the underlying system of polynomial equations has Dreg ≤ 9.
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Table 1. Experimental results on solving PDP(n,m, n′ = �n/m�). Time in seconds;
Memory in MB; D is the maximum step degree.

m = 3 m = 4 m = 5

n Time Memory D Time Memory D Time Memory D

11 0.520 25.8 7

12 0.670 33.0 7

13 0.890 42.8 7

14 4.260 126.7 8

15 350.100 1839.5 8

16 414.320 5100.7 7 408.270 2633.9 8

17 1.690 38.8 4 1395.170 5632.8 7 506.340 4050.3 8

18 26.680 264.5 4 497.770 5632.8 7 920.790 6186.9 8

19 15.270 321.8 4 509.330 5634.1 7 1265.090 8282.9 8

20 49.350 397.6 4

21 163.100 1228.3 4

22 126.290 1413.2 4

23 248.820 1668.7 4

24 1266.610 5142.2 4

25 1623.180 6363.8 4

26 1645.78 6596.9 4

Moreover, the system has N = 5n′ + n ≈ 2n boolean variables. Therefore, when
m = 5, we may estimate the cost of solving ECDLP(2, n) (see (3)) as

2n′ 2nm!
2mn′

(
N + Dreg − 1

Dreg

)w

+ 2w′n′

≈ 2n/5m!(2n)9w + 2w′n/5

≈ 2342n/5n27 + 22n/5,

where we assume w = 3 and w′ = 2. For example, when n ≈ 1200, the cost of
solving ECDLP(2, n) is estimated to be 2550 which is significantly smaller than
the cost 2600 of square-root time algorithms.

5 Extensions and Optimization

In Sect. 3, we introduced a single auxiliary variable to lower the degree of Semaev
polynomials. The degree of polynomials can further be lowered by introducing
more auxiliary variables. As an example, we consider the case m = 5. Let R =
(xR, yR) ∈ E, as before. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 − R = ∞
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if and only if there exist Pi ∈ B and P12, P34, P50 ∈ E such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1 + P2 − P12 = ∞
P3 + P4 − P34 = ∞
P5 − P50 − R = ∞
P12 + P34 + P50 = ∞

(11)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as
follows:

1. Define the following system of equations derived from Semaev polynomials
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S3,1(x1, x2, x12) = 0
S3,1(x3, x4, x34) = 0
S3,2(x5, x50, xR) = 0
S3,1(x12, x34, x50) = 0

(12)

Note that this system is defined over F2n and has 8 variables
x1, x2, x3, x4, x5, x12, x34, x50.

2. Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, 5, and

xi,j =
n∑

k=0

xi,jσ
j ,

for i = 12, 34, 50. Apply the Weil descent technique to (12) and define an
equivalent system of 4n equations over F2 with 5n′ + 3n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′−1}∪{xi,j : i = 12, 34, 50, j = 0, . . . n−1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n

from xi,j ∈ F2.

Note that the proposed method solves a system of 4n equations over F2 with
5n′ + 3n boolean variables rather than solving a system of n equations over F2

with 5n′ boolean variables. Similar to the analysis in Sect. 3, we can show that
DFirstFall ≤ 4.

In Table 2, we report on our experimental results for solving PDP(n,m, n′ =
	n/m
) with m = 5 deploying only the third Semaev polynomials; see (12).
The time and memory results in the second and third column of Table 2 are
obtained using the Groebner basis implementation of Magma with the grevlex
ordering of monomials. We observe that the maximum step degree is Dreg = 4 for
11 ≤ n ≤ 19. The time and memory results in the last two columns of Table 2 are
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Table 2. Experimental results on solving PDP(n,m, n′ = �n/m�). Time in seconds;
Memory in MB; D is the maximum step degree; DHeuristic is set to be 4 in Groebner
basis computations.

DHeuristic = 4

m = 5 m = 5

n Time Memory D Time Memory

11 2.380 58 4

12 4.150 116.7 4

13 6.390 124.1 4

14 9.510 245.2 4

15 393.170 6421.9 4 7.130 256.3

16 242.500 5911.7 4 6.900 320.4

17 365.460 7063.8 4 6.660 320.4

18 836.080 8619.4 4 11.700 394.6

19 531.420 8864.2 4 45.570 2505.3

obtained using the Groebner basis implementation of Magma with the grevlex
ordering of monomials in a boolean ring. We also introduced two modifications
in the computations: We set the ReductionHeuristic parameter in Magma to 4;
and we first computed Groebner bases of partial systems described by single
equations in (12), and merged them later. These two techniques yield non-trivial
optimization both in time and memory. For a comparison, when n = 15 and
m = 3, (Time, Memory) values decrease from (393.170, 6421.9) to (7.130, 256.3)
when this modification is deployed in the computation; see Table 2. For the
same parameters (n = 15 and m = 3), (Time, Memory) values are reported as
(174.47, 2635.4) in [12].

Based on our experimental data, it is tempting to assume that the underlying
system of polynomial equations has Dreg ≤ 4 for all n. Moreover, the system has
N = 5n′ + 3n ≈ 4n boolean variables. Therefore, when m = 5, we may estimate
the cost of solving ECDLP(2, n) (see (3)) as

2n′ 2nm!
2mn′

(
N + Dreg − 1

Dreg

)w

+ 2w′n′

≈ 2n/5m!(4n)4w + 2w′n/5

≈ 2312n/5n12 + 22n/5,

where we assume w = 3 and w′ = 2. This running time outperforms square-
root methods when n > 457. For example, when n ≈ 550, the cost of solving
ECDLP(2, n) is estimated to be 2250 which is significantly smaller than the cost
2275 of square-root time algorithms.
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Abstract. In this paper, we present high speed parallel multiplication
and squaring algorithms for the Mersenne prime 2521 − 1. We exploit 1-
level Karatsuba method in order to provide asymptotically faster integer
multiplication and fast reduction algorithms. With these optimization
techniques, ECDH on NIST’s (and SECG’s) curve P-521 requires 8.1/4 M
cycles on an ARM Cortex-A9/A15, respectively. As a comparison, on
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acceptable performance particularly over embedded processors. Recently, an
increasing number of embedded processors started to employ Single Instruc-
tion Multiple Data (SIMD) instructions to perform massive body of multimedia
workloads. In order to exploit the parallel computing power of SIMD instruc-
tions, traditional cryptography software needs to be rewritten into a vectorized
format. The most well known approach is a reduced-radix representation for
a better handling of the carry propagations [6]. The redundant representation
reduces the number of active bits per register. Keeping the final result within
remaining capacity of a register can avoid a number of carry propagations. In
[2], vector instructions on the CELL microprocessor are used to perform multi-
plication on operands represented with a radix of 216. At CHES 2012, Bernstein
and Schwabe adopted the reduced radix and presented an efficient modular mul-
tiplication on Curve25519. At HPEC 2013, a multiplicand reduction method
in the reduced-radix representation was introduced for the NIST curves [8]. At
CHES 2014, the Curve41417 implementation adopts 2-level Karatsuba multi-
plication in the redundant representation as well as a clever method to reduce
inputs to the required multiplications rather than outputs [1]. Recently efficient
Karatsuba multiplication algorithm for P-521 by Granger and Scott is proposed
at PKC’15 which requires as few word-by-word multiplications as is needed for
squaring, while incurring very little overhead from extra additions [4]. The algo-
rithm shows high performance over 64-bit SISD architecture but it is not favor-
able for 32-bit ARM-NEON SIMD platforms because 32-bit SIMD architecture
does not conduct 64-bit wise multiplication efficiently and needs to group the
operands for parallel computations. Until now, there is relatively few studied on
NIST’s (and SECG’s) curve P-521 for ARM-NEON architecture. Since the curve
is NIST standard and ARM-NEON is the most well known smart phone proces-
sor, the efficient implementation of P-521 over ARM-NEON processor should be
deserved. In this paper, we present speed record of P-521 over ARM-NEON plat-
form. We exploit 1-level Karatsuba method in order to provide asymptotically
faster integer multiplication and fast reduction algorithms.

The remainder of this paper is organized as follows. In Sect. 2, we recap the
P-521 curve. In Sect. 3, we propose the efficient implementations of P-521 curve.
In Sect. 4, we evaluate the performance of proposed methods in terms of clock
cycles. Finally, Sect. 5 concludes the paper.

2 NIST Curve P-521

The Weierstrass form NIST curve P-521 as standardized in [3,7] and the finite
field Fp is defined by:

p = 2521 − 1

The curve E : y2 = x3 + ax + b over Fp is defined by:

a = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFC
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b = 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3

B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88

3D2C34F1 EF451FD4 6B503F00

and group order is defined by:

n = 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8

899C47AE BB6FB71E 91386409

Using Jacobian projective coordinates, for P1 = (X1, Y1, Z1) the point 2P1 =
(X3, Y3, Z3) is computed as follows:

T1 ← Z2
1 , T2 ← Y 2

1 , T3 ← X1 · T2, T4 ← X1 + T1, T5 ← X1 − T1,

T6 ← T4 · T5, T4 ← 3 · T6, T5 ← T 2
4 , T6 ← 8 · T3, X3 ← T5 − T6,

T5 ← Y1 + Z1, T6 ← T 2
5 , T5 ← T6 − T1, Z3 ← T5 − T2, T5 ← 4 · T3,

T6 ← T5 − X3, T5 ← T4 · T6, T6 ← T 2
2 , T4 ← 8 · T6, Y3 ← T5 − T4

For a point P2 = (X2, Y2, 1) which is affine point and not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed as follows:

T1 ← Z2
1 , T2 ← T1 · Z1, T1 ← T1 · X2, T2 ← T2 · Y 2, T1 ← T1 − X1

T2 ← T2 − Y1, Z3 ← Z1 · T1, T3 ← T 2
1 , T4 ← T3 · T1, T3 ← T3 · X1

T1 ← 2 · T3, X3 ← T 2
2 , X3 ← X3 − T1, X3 ← X3 − T4, T3 ← T3 − X3

T3 ← T3 · T2, T4 ← T4 · Y1, Y3 ← T3 − T4

For a point P2 which is projective point (X2, Y2, Z2) and not equal to P1, let
P3 = (X3, Y3, Z3) = P1 + P2. Then P3 is computed as follows:

T1 ← Z2
2 , U1 ← X1 · T1, T2 ← Z2

1 , U2 ← X2 · T2, T3 ← Y1 · Z2

S1 ← T3 · T1, T4 ← Y2 · Z1, S2 ← T4 · T2, H ← U2 − U1, R ← S2 − S1

T1 ← R2, T2 ← H2, T3 ← T2 · H, T4 ← U1 · T2, T1 ← T1 − T3

T2 ← 2 · T4, X3 ← T1 − T2, T3 ← S1 · T3T4 ← T4 − X3, T4 ← R · T4

Y3 ← T4 − T3, T1 ← Z1 · Z2, Z3 ← H · T1

3 Proposed Method

3.1 Multiplication

The prime of P-521 curve is 2521 − 1. This representation can be written in
2522−2 by following the idea of Langley in OpenSSL 1.0.0e approach. We choose
27/26-radix and this divides 522-bit into 20-limb as follows: (27, 26, 26, 26, 26,
26, 26, 26, 26, 26 ‖ 27, 26, 26, 26, 26, 26, 26, 26, 26, 26). Since the lower and
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Algorithm 1. Karatsuba-based multiplication mod p521
Require: Integer a, b satisfying 1 ≤ a, b ≤ p − 1.
Ensure: Results z = a · b mod p.
1: aL ← a mod 2261

2: aH ← a div 2261

3: bL ← b mod 2261

4: bH ← b div 2261

5: rL ← aL · bL
6: t ← (rL − aH · bH · 2261) mod p {direct reduction}
7: tH ← t div 2261

8: tL ← t mod 2261

9: tHL ← tH − tL
10: aK ← aL + aH

11: bK ← bL + bH
12: abK ← (tHL · 2261 + tL − 2 · tH + aK · bK · 2261) mod p {direct reduction}
13: return abK

higher 261-bit wise operands share identical radix representation, we applied 1-
level of Karatsuba multiplication which replaces the one 522-bit multiplication
complexity to three 261-bit multiplications with some addition and subtraction
operations. In this paper, we further improve the ordinary 1 level of Karatsuba
multiplication particularly over 2522 − 2. The detailed descriptions are available
in Algorithm 1. For starter, both operands are divided into lower and higher
parts from Steps 1 − 4. In Step 5, lower part of operands are multiplied each
other. In Step 6, higher parts are multiplied and then subtracted from the results
of Step 5. Since the intermediate results exceed the 522-bit length, we directly
reduce the intermediate results into range of modulus1. In Steps 7−9, the results
are divided into higher and lower parts and then lower parts are subtracted from
higher parts. In Steps 10 and 11, higher and lower parts of operands are added
each other. In Step 12, remaining several addition, subtraction and multiplication
operations are conducted with direct reduction techniques. Finally, in Step 13,
we obtained the results.

This approach introduces two advantages. First NEON engine over ARMv7
provides only 16 128-bit wise registers. For 261-bit multiplication, we need 5
registers for both 20-limb of 32-bit operands and 10 for 20-limb of 64-bit inter-
mediate results and 1 for temporal registers. If we retain whole 522 multiplication
results without reduction, the intermediate results exceed the size of general pur-
pose registers, which introduces a number of memory load and store operations.
Second this method follows basic concept of refined Karatsuba algorithm which
reduces the one time of addition operation.

For 261-bit multiplication of 10-limb operand in (27, 26, 26, 26, 26, 26, 26, 26,
26, 26) representation, we can conduct multiplication as follows. The variables
(a0 ∼ a9 and b0 ∼ b9) indicate the both operands and the other variables
(c0 ∼ c18) represents the intermediate results. The equation shows that some

1 We discuss the detailed direct reduction techniques in following section.



Faster ECC over F2521−1 (feat. NEON) 173

of the partial product needs doubling the intermediate results to align the bit
position. For example, the partial products including a0b2 and a1b1 are stored in
same destination (c2) but one (a0b2) is placed in 53-th and the other one (a1b1)
is 52-th bit. In order to store the results in right bit position, we should conduct
doubling on the partial product (a1b1) and get the doubled result (2a1b1) which is
finally located in 53-th bit as like opponent (a0b2). The bit-aligned multiplication
on 26/27 radix is as follows.

c0 ← a0b0

c1 ← a0b1 + a1b0

c2 ← a0b2 + a2b0 + 2a1b1
c3 ← a0b3 + a3b0 + 2(a1b2 + a2b1)

c4 ← a0b4 + a4b0 + 2(a1b3 + a3b1 + a2b2)
c5 ← a0b5 + a5b0 + 2(a1b4 + a4b1 + a2b3 + a3b2)

c6 ← a0b6 + a6b0 + 2(a1b5 + a5b1 + a2b4 + a4b2 + a3b3)
c7 ← a0b7 + a7b0 + 2(a1b6 + a6b1 + a2b5 + a5b2 + a3b4 + a4b3)

c8 ← a0b8 + a8b0 + 2(a1b7 + a7b1 + a2b6 + a6b2 + a3b5 + a5b3 + a4b4)
c9 ← a0b9 + a9b0 + 2(a1b8 + a8b1 + a2b7 + a7b2 + a3b6 + a6b3 + a4b5 + a5b4)

c10 ← 2(a1b9 + a9b1 + a2b8 + a8b2 + a3b7 + a7b3 + a4b6 + a6b4 + a5b5)
c11 ← a2b9 + a9b2 + a3b8 + a8b3 + a4b7 + a7b4 + a5b6 + a6b5

c12 ← a3b9 + a9b3 + a4b8 + a8b4 + a5b7 + a7b5 + a6b6

c13 ← a4b9 + a9b4 + a5b8 + a8b5 + a6b7 + a7b6

c14 ← a5b9 + a9b5 + a6b8 + a8b6 + a7b7

c15 ← a6b9 + a9b6 + a7b8 + a8b7

c16 ← a7b9 + a9b7 + a8b8

c17 ← a8b9 + a9b8

c18 ← a9b9

However, the aligned multiplication should be re-written in a SIMD friendly
form. Particularly, the NEON architecture supports 2-way 32-bit wise multipli-
cation, which means two consecutive 32-bit multiplications are computed and the
store the two consecutive 64-bit results in one 128-bit register. For this reason,
the alignments in the 128-bit register should be concerned in order to accumu-
late the multiplication results into correct destinations. We group the two adja-
cent partial product results as follows: (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8),
(c11, c10), (c13, c12), (c15, c14), (c17, c16). After then we re-arrange the partial
products that need doubling the results to correct bit position. Since the dou-
bling process can be computed together with multiplication by using instruc-
tion set (vqdmull), we can avoid one time of shift operation per each doubling
operation. However, all partial products aren’t grouped at once properly. We
re-locate the intermediate results by conducting the shift to left by word size.
This aligns the intermediate results as follows: (c2, c1), (c4, c3), (c6, c5), (c8, c7),
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(c10, c9), (c12, c11), (c14, c13), (c16, c15), (c18, c17) and conducts the vectorized par-
tial products.

(c1, c0) ← (a0b1, a0b0)

(c3, c2) ← (a0b3, a0b2) + (a3b0, a2b0)

(c5, c4) ← (a0b5, a0b4) + 2(a2b3, a2b2) + (a5b0, a4b0)

(c7, c6) ← (a0b7, a0b6) + 2(a2b5, a2b4) + 2(a4b3, a4b2) + (a7b0, a6b0)

(c9, c8) ← (a0b9, a0b8) + 2(a2b7, a2b6) + 2(a4b5, a4b4) + 2(a6b3, a6b2) + (a9b0, a8b0)

(c11, c10) ← (a2b9, 2a2b8) + (a4b7, 2a4b6) + (a6b5, 2a6b4) + (a8b3, 2a8b2)

(c13, c12) ← (a4b9, a4b8) + (a6b7, a6b6) + (a8b5, a8b4)

(c15, c14) ← (a6b9, a6b8) + (a8b7, a8b6)

(c17, c16) ← (a8b9, a8b8)

c ← c � word

(c2, c1) ← (2a1b1, a1b0)

(c4, c3) ← 2(a1b3, a1b2) + 2(a3b1, a2b1)

(c6, c5) ← 2(a1b5, a1b4) + 2(a3b3, a3b2) + 2(a5b1, a4b1)

(c8, c7) ← 2(a1b7, a1b6) + 2(a3b5, a3b4) + 2(a5b3, a5b2) + 2(a7b1, a6b1)

(c10, c9) ← 2(a1b9, a1b8) + 2(a3b7, a3b6) + 2(a5b5, a5b4) + 2(a7b3, a7b2) + 2(a9b1, a8b1)

(c12, c11) ← (a3b9, a3b8) + (a5b7, a5b6) + (a7b5, a7b4) + (a9b3, a9b2)

(c14, c13) ← (a5b9, a5b8) + (a7b7, a7b6) + (a9b5, a9b4)

(c16, c15) ← (a7b9, a7b8) + (a9b7, a9b6)

(c18, c17) ← (a9b9, a9b8)

In Step 6 of Algorithm1, it conducts the partial product of aH · bH together
with direct modular reduction. Since the reduction on our P-521 representation
(2522 − 2) only requires double addition/subtraction with values over 2522, we
conduct multiplication and double addition/subtraction with variables by calling
vqdmlal and vqdmlsl instructions, respectively. The lower part of multiplica-
tion (aH · bH) is subtracted from intermediate results from c10 to c19. Since
the higher part of multiplication (aH · bH) is larger than modulus (2522 − 2),
we directly conduct reduction on intermediate results from c0 to c9. More in
detail, firstly intermediate results are grouped in (c2, c1), (c4, c3), (c6, c5), (c8, c7),
(c10, c9), (c12, c11), (c14, c13), (c16, c15), (c18, c17). After then the lower parts of
multiplication (aH ·bH) are subtracted from intermediate results (c11 ∼ c19). The
higher parts of multiplication (aH · bH) are directly subtracted from intermedi-
ate results (c0 ∼ c9). After then intermediate results are shift to right by word
size and then conduct the remaining partial products in following group order:
(c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10), (c13, c12), (c15, c14), (c17, c16).

(a9 ∼ a0) ← (a19 ∼ a10)

(b9 ∼ b0) ← (b19 ∼ b10)

(c12, c11) ← (c12, c11) − (2a1b1, a1b0)



Faster ECC over F2521−1 (feat. NEON) 175

(c14, c13) ← (c14, c13) − 2(a1b3, a1b2) − 2(a3b1, a2b1)

(c16, c15) ← (c16, c15) − 2(a1b5, a1b4) − 2(a3b3, a3b2) − 2(a5b1, a4b1)

(c18, c17) ← (c18, c17) − 2(a1b7, a1b6) − 2(a3b5, a3b4) − 2(a5b3, a5b2) − 2(a7b1, a6b1)

(t1, t0) ← (4a1b9, 2a1b8) − (4a3b7, 2a3b6) − (4a5b5, 2a5b4) −
(4a7b3, 2a7b2) − (4a9b1, 2a8b1)

c19 ← c19 − t0

c0 ← c0 − t1

(c2, c1) ← (c2, c1) − 2(a3b9, a3b8) − 2(a5b7, a5b6) − 2(a7b5, a7b4) − 2(a9b3, a9b2)

(c4, c3) ← (c4, c3) − 2(a5b9, a5b8) − 2(a7b7, a7b6) − 2(a9b5, a9b4)

(c6, c5) ← (c6, c5) − 2(a7b9, a7b8) − 2(a9b7, a9b6)

(c8, c7) ← (c8, c7) − 2(a9b9, a9b8)

c ← c � word

(c11, c10) ← (c11, c10) − (a0b1, a0b0)

(c13, c12) ← (c13, c12) − (a0b3, a0b2) − (a3b0, a2b0)

(c15, c14) ← (c15, c14) − (a0b5, a0b4) − 2(a2b3, a2b2) − (a5b0, a4b0)

(c17, c16) ← (c17, c16) − (a0b7, a0b6) − 2(a2b5, a2b4) − 2(a4b3, a4b2) − (a7b0, a6b0)

(c19, c18) ← (c19, c18) − (a0b9, a0b8) − 2(a2b7, a2b6) −
2(a4b5, a4b4) − 2(a6b3, a6b2) − (a9b0, a8b0)

(t1, t0) ← (2a2b9, 4a2b8) − (2a4b7, 4a4b6) − (2a6b5, 4a6b4) − (2a8b3, 4a8b2)

c0 ← c0 − t0

c1 ← c1 − t1

(c3, c2) ← (c3, c2) − 2(a4b9, a4b8) − 2(a6b7, a6b6) − 2(a8b5, a8b4)

(c5, c4) ← (c5, c4) − 2(a6b9, a6b8) − 2(a8b7, a8b6)

(c7, c6) ← (c7, c6) − 2(a8b9, a8b8)

3.2 Squaring

Multi-precision squaring can be utilized with ordinary multiplication methods.
However, squaring method has two advantages over the multiplication methods.
Both partial products A[i]×A[j] and A[j]×A[i] output the identical results. By
taking accounts of these features, the parts are multiplied with doubled form (i.e.
2 × A[i] × A[j]) which provides the same results of conventional multiplication
(i.e. A[i] × A[j] + A[j] × A[i]). We applied squaring on 261-bit wise operand
as follows. Unlike multiplication operation, squaring can eliminate the almost
half of partial product with doubling but this introduces quadrupled results. In
order to resolve this matter, we firstly doubled the operands and preserve both
original and doubled operands in the registers. This is possible approach, because
squaring only needs one operand and remaining registers can retain the doubled
operands. This ensures the quadrupled multiplication with doubled operands
and double multiplication instruction such as vqdmull.
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c0 ← a0a0

c1 ← 2(a0a1)
c2 ← 2(a0a2 + a1a1)

c3 ← 2(a0a3) + 4(a1a2)
c4 ← 2(a0a4 + a2a2) + 4(a1a3)
c5 ← 2(a0a5) + 4(a1a4 + a2a3)

c6 ← 2(a0a6 + a3a3) + 4(a1a5 + a2a4)
c7 ← 2(a0a7) + 4(a1a6 + a2a5 + a3a4)

c8 ← 2(a0a8 + a4a4) + 4(a1a7 + a2a6 + a3a5)
c9 ← 2(a0a9) + 4(a1a8 + a2a7 + a3a6 + a4a5)
c10 ← 2(a5a5) + 4(a1a9 + a2a8 + a3a7 + a4a6)

c11 ← 2(a2a9 + a3a8 + a4a7 + a5a6)
c12 ← 2(a3a9 + a4a8 + a5a7) + a6a6

c13 ← 2(a4a9 + a5a8 + a6a7)
c14 ← 2(a5a9 + a6a8) + a7a7

c15 ← 2(a6a9 + a7a8)
c16 ← 2(a7a9) + a8a8

c17 ← 2(a8a9)
c18 ← a9a9

Similar with SIMD multiplication, squaring operation also needs to group the
two intermediate results in SIMD friendly way. Squaring has one more advan-
tage over that of multiplication. The whole squaring operation can be executed
in following representation (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10),
(c13, c12), (c15, c14), (c17, c16). Since squaring reduces the duplicated partial prod-
ucts, single group representation can cover the whole partial products without
re-arrangements.

(c1, c0) ← (2a0a1, a0a0)
(c3, c2) ← 2(a0a3, a0a2) + (4a1a2, 2a1a1)

(c5, c4) ← 2(a0a5, a0a4) + 4(a1a4, a1a3) + (4a2a3, 2a2a2)
(c7, c6) ← 2(a0a7, a0a6) + 4(a1a6, a1a5) + 4(a2a5, a2a4) + (4a3a4, 2a3a3)

(c9, c8) ← 2(a0a9, a0a8) + 4(a1a8, a1a7) + 4(a2a7, a2a6) +
4(a3a6, a3a5) + (4a4a5, 2a4a4)

(c11, c10) ← (2a2a9, 4a1a9) + (2a3a8, 4a2a8) + (2a4a7, 4a3a7) + (2a5a6, 4a4a6)
(c13, c12) ← 2(a4a9, a3a9) + 2(a5a8, a4a8) + 2(a6a7, a5a7)

(c15, c14) ← 2(a6a9, a5a9) + 2(a7a8, a6a8)
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(c17, c16) ← 2(a8a9, a7a9)
(t1, t0) ← (a6a6, 2a5a5)
(t3, t2) ← (a8a8, a7a7)

t4 ← a9a9

c10 ← c10 + t0

c12 ← c12 + t1

c14 ← c14 + t2

c16 ← c16 + t3

c18 ← c18 + t4

We also applied the direct reduction techniques described in Steps 6 and 12
in Algorithm 1 for the squaring method as well. Firstly intermediate results are
grouped in (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10), (c13, c12), (c15, c14),
(c17, c16). After then the lower part of multiplication (aH ·aH) is subtracted from
intermediate results (c11 ∼ c19). The higher part of multiplication (aH · aH) is
directly subtracted from intermediate results (c0 ∼ c9).

(a9 ∼ a0) ← (a19 ∼ a10)

(c11, c10) ← (c11, c10) − (2a0a1, a0a0)

(c13, c12) ← (c13, c12) − 2(a0a3, a0a2) − (4a1a2, 2a1a1)

(c15, c14) ← (c15, c14) − 2(a0a5, a0a4) − 4(a1a4, a1a3) − (4a2a3, 2a2a2)

(c17, c16) ← (c17, c16) − 2(a0a7, a0a6) − 4(a1a6, a1a5) − 4(a2a5, a2a4) − (4a3a4, 2a3a3)

(c19, c18) ← (c19, c18) − 2(a0a9, a0a8) − 4(a1a8, a1a7) −
4(a2a7, a2a6) − 4(a3a6, a3a5) − (4a4a5, 2a4a4)

(c1, c0) ← (c1, c0) − (4a2a9, 8a1a9) − (4a3a8, 8a2a8) − (4a4a7, 8a3a7) − (4a5a6, 8a4a6)

(c3, c2) ← (c3, c2) − 4(a4a9, a3a9) − 4(a5a8, a4a8) − 4(a6a7, a5a7)

(c5, c4) ← (c5, c4) − 4(a6a9, a5a9) − 4(a7a8, a6a8)

(c7, c6) ← (c7, c6) − 4(a8a9, a7a9)

(t1, t0) ← (2a6a6, 4a5a5)

(t3, t2) ← 2(a8a8, a7a7)

t4 ← 2a9a9

c0 ← c10 − t0

c2 ← c12 − t1

c4 ← c14 − t2

c6 ← c16 − t3

c8 ← c18 − t4

3.3 Inversion

Constant-time inversion is performed by powering by p521 − 2 = 2521 − 3. The
inverse can be computed at a cost of 520S + 13M by following Algorithm 2.
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Algorithm 2. Fermat-based inversion mod p521
Require: Integer a1 satisfying 1 ≤ a1 ≤ p − 1.
Ensure: Inverse z = ap−2

1 mod p = a−1
1 mod p.

1: a2 ← a2
1 · a1 { cost: 1S+1M}

2: a3 ← a2
2 · a1 { cost: 1S+1M}

3: a6 ← a23

3 · a3 { cost: 3S+1M}
4: a7 ← a2

6 · a1 { cost: 1S+1M}
5: a8 ← a2

7 · a1 { cost: 1S+1M}
6: a16 ← a28

8 · a8 { cost: 8S+1M}
7: a32 ← a216

16 · a16 { cost: 16S+1M}
8: a64 ← a232

32 · a32 { cost: 32S+1M}
9: a128 ← a264

64 · a64 { cost: 64S+1M}
10: a256 ← a2128

128 · a128 { cost: 128S+1M}
11: a512 ← a2256

256 · a256 { cost: 256S+1M}
12: a519 ← a27

512 · a7 { cost: 7S+1M}
13: a2521−3

1 ← a22

519 · a1 { cost: 2S+1M}
14: return a2521−3

1

3.4 Addition and Subtraction

Addition and subtraction over redundant representations do not introduce the
carry or borrow propagations from least significant word to most significant
word. Since SIMD instruction conducts the four different addition or sub-
traction operations with single instruction, we conduct 20 26/27-radix addi-
tion/subtraction with five times of 32-bit wise vector addition/subtraction oper-
ations. For point addition and doubling, several addition variants such as integer
doubling, tripling, quadrupling, octupling are required. We also exploit the vec-
tor addition by 1, 2, 2, 3 times for doubling, tripling, quadrupling and octupling
operations, respectively. Since the tripling, quadrupling and octupling operations
may generate the overflows in very next step, we conduct reduction right after
the operations.

3.5 Radix Adjustments

The multiplication and squaring computations produce a product of the 63-bit
20 limbs for intermediate results. We then use a sequence of carries to bring
each limb down to 26 or 27 bits. We vectorized between a carry c0 → c1 and
c10 → c11, between a carry c1 → c2 and c11 → c12. The computation order
is as follows: (c10, c0) → (c11, c1), (c11, c1) → (c12, c2), (c12, c2) → (c13, c3),
(c13, c3) → (c14, c4), (c14, c4) → (c15, c5), (c15, c5) → (c16, c6), (c16, c6) →
(c17, c7), (c17, c7) → (c18, c8), (c18, c8) → (c19, c9), (c19, c9) → (c0, c10),
(c10, c0) → (c11, c1). The computations output 20 limbs of results (27, 27, 26, 26,
26, 26, 26, 26, 26, 26 || 27, 27, 26, 26, 26, 26, 26, 26, 26, 26) (Table 1).

The addition and subtraction computations carry out the 31-bit wise 20
limbs. Similarly, we use a sequence of carries to bring each limb down to 26 or
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27 bits. The computation order is as follows: (c19, c9) → (c0, c10), (c10, c0) →
(c11, c1), (c11, c1) → (c12, c2), (c12, c2) → (c13, c3), (c13, c3) → (c14, c4),
(c14, c4) → (c15, c5), (c15, c5) → (c16, c6), (c16, c6) → (c17, c7), (c17, c7) →
(c18, c8), (c18, c8) → (c19, c9). This computation outputs 20 limbs as follows
(27, 26, 26, 26, 26, 26, 26, 26, 26, 27 || 27, 26, 26, 26, 26, 26, 26, 26, 26, 27).
Unlike multiplication case, we firstly conduct the radix adjustment on the most
significant group (c19, c9) which can reduce the one time of adjustment.

Table 1. Prime-field ECC timings from openssl speed ecdh on Cortex-A9 and
Cortex-A15 devices where Cortex-A9 with OpenSSL 1.0.2d on a Odroid-X2 develop-
ment board running at 1.7 GHz and Cortex-A15 with OpenSSL 1.0.2d on a Odroid-XU
development board running at 1.6 GHz

Curve A9 op/s Cycles A15 op/s Cycles

secp160r1 1014.4 1,700,000 1258.8 1,280,000

nist192 718.2 2,380,000 951.0 1,760,000

nist224 489.2 3,400,000 701.4 2,240,000

nist256 475.5 3,570,000 574.9 2,720,000

nist384 154.6 11,050,000 223.0 7,200,000

nist521 71.2 23,800,000 85.3 18,720,000

3.6 Scalar Multiplication

Constant time scalar multiplication is computed with the window method. This
consists of pre-computation of point and scalar multiplication by window width.
For unknown point, we tested over three different window sizes including 4, 5
and 6. For window size 4, pre-computation needs 1 time of doubling and 7 times
of addition. For window size 5, pre-computation needs 1 time of doubling and 15
times of addition. For window size 6, pre-computation needs 1 time of doubling
and 31 times of addition. Without point pre-computation, scalar multiplication
needs (131A+520D), (105A+520D), (87A+516D) for 4, 5, 6 window methods.
Total (138A+521D), (120A+521D), (118A+517D) are needed for 4, 5, 6 window
methods. For fixed point we conduct the comb window method. Since fixed point
can take advantages of online pre-computation which reduces the number of
point doubling, total overheads for 4, 5, 6 window methods are calculated in
(131A+130D), (105A+104D), (87A+86D), respectively.

4 Evaluation

There are several works done over lower security levels including Curve41417 and
Ed448-Goldilocks [1,5]. However it is hard to retrieve the fair performance eval-
uations due to different parameters. One obvious difference is that smaller curve
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Table 2. Clock cycles for scalar multiplication

Target Unknown point Fixed point ECDH

w=4 w=5 w=6 w=4 w=5 w=6

Cortex-A9 6,291,936 6,098,946 6,011,768 3,056,410 2,527,714 2,147,404 8,159,172

Cortex-A15 3,097,904 3,003,728 2,970,976 1,503,661 1,243,027 1,056,902 4,027,878

Table 3. Clock cycles for finite field multiplication, squaring and inversion; point
addition and doubling

Target Finite field arithmetic Point operation

MUL SQR INV ADD DBL

Cortex-A9 708 578 311,451 12,453 8,036

Cortex-A15 350 276 149,208 6,176 3,962

only requires small number of general purpose registers which utilizes the more
number of temporal registers than longer curve. Furthermore target modulus
prime is different to each other which introduces totally different radix represen-
tations and fast reduction algorithms. For this reason, we evaluate the obvious
candidate, latest OpenSSL 1.0.2d implementations using the command openssl
speed ecdh. On the same architecture, OpenSSL 1.0.2d reports 71.2 and 85.3
operations per second for A9 and A15, which implies a count of approximately
23.8 M and 18.7 M cycles per ECDH. On the other hand, our implementations
described in Table 2 only require 8.1 M and 4.0 M cycles per ECDH for A9 and
A15, respectively. In Table 3, the detailed clock cycles for basic operations are
drawn where the clock cycles of finite field operations include reduction operation
and the point addition and doubling is calculated over Jacobian representations.

5 Conclusion

In this paper, we show efficient implementations of P-521 over ARM-NEON
processor. We conduct 1-level of Karatsuba multiplication together with direct
modular reduction on (2522 − 2). By taking advantages of several optimization
techniques, we improve the modular multiplication on P-521 significantly. Same
technique is also applied to squaring and reduces the complexities in similar
manner. Finally, we outperform the latest OpenSSL 1.0.2d over both A9 and
A15 ARM processors.
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Abstract. Secure multi-party computation (MPC) enables multiple
players to cooperatively evaluate various functions in the presence of
adversaries. In this paper, we consider non-interactive MPC (NIMPC)
against honest-but-curious adversaries in the information-theoretic set-
ting, which was introduced by Beimel et al. in CRYPTO 2014. Their
main focus is to realize stronger security while completely avoiding
interaction, and succeeded to show that every function admits a fully
robust NIMPC protocol. A drawback of this positive result is the com-
munication complexity, which is linear in the size of the input domain
(i.e., exponential in the input length). We first prove that this ineffi-
ciency is essentially unavoidable by deriving a lower bound on the com-
munication complexity. However, there is an exponential gap between
the derived lower bound and the previous construction. We then reduce
the gap between the lower and upper bounds to quadratic in the input
length by presenting a much more efficient construction of an important
building block, which is an NIMPC protocol for indicator functions.

Keywords: Multiparty computation · Information theoretical setting ·
Non-interactive · Communication complexity · Lower bound · Upper
bound

1 Introduction

Secure multi-party computation (MPC) aims to enable multiple players to coop-
eratively compute various functions in the presence of adversaries. MPC was
first introduced by Yao [10] and because of its importance in cryptography,
there have been presented many variants so far [3–5,7–9]. In CRYPTO 2014 [2],
Beimel et al. have introduced a novel type of MPC, called non-interactive MPC
(NIMPC), against honest-but-curious adversaries in the information theoretical
setting, which completely avoids interaction while realizing as strong security as
possible. They have succeeded to obtain unconditional positive results for some
special cases of interest. In particular, they have presented fully robust proto-
cols for various classes of functions including the class of arbitrary functions.
The fully robustness here means that any set of corrupted players cannot obtain
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Table 1. The communication complexity of n-player NIMPC protocols for a family of
functions h : X → {0, 1}m where X = X1 ×· · ·×Xn and d′ ≤ |Xi| ≤ d for all 1 ≤ i ≤ n.

Arbitrary functions Indicator functions (m = 1)

Previous protocols in [2] |X | · m · d2 · n d2 · n
Lower bound (Sect. 3) |X | · m log2 d

′ · n
Our protocols (Sect. 4) |X | · m · �log2(d + 1)�2 · n �log2(d + 1)�2 · n

any information other than those obtained by an oracle access to the function
restricted to the input values of uncorrupted players. However, except for special
functions like the summation in an abelian group, the communication complex-
ity is not less than polynomial in the size of the input domain (i.e., exponential
in the input length) (Table 1).

The question we ask is whether there is a room to reduce the communica-
tion complexity of NIMPC. Unfortunately, relatively less has been known about
limitations on the communication complexity of MPC. Recently, the research
to tackle the difficult problem of lower bounds for communication in MPC
becomes active like Data et al. in CRYPTO 2014 [6]. They have developed
novel information-theoretic tools to prove lower bounds on the communication
complexity in the traditional (i.e., interactive) model involving 3-parties.

In this paper, we study the communication complexity of NIMPC defined
in [2]. As a result, we show that the inefficiency on communication of NIMPC is
essentially unavoidable except for special classes of functions. The contributions
of this paper are as follows.

Communication complexity of NIMPC for the set of any functions:
We derive the first lower bound on the communication complexity of NIMPC
for any set of functions. The derived lower bound is the logarithm of the size
of the function set. In particular, for the set of arbitrary functions f : X →
{0, 1}m where X is the input domain and m is the output length, the lower
bound is |X | · m, i.e., exponential in the input length.

Communication complexity for the set of indicator functions: On the
other hand, for the set of indicator functions, where the number of functions
is linear in the input and output length, we have a significantly small lower
bound. However, the communication complexity of the previous NIMPC
protocol for indicator functions in [2] is exponential in the input length.
This gap implies an exponential gap between the lower and upper bounds of
NIMPC protocols for arbitrary functions because the NIMPC protocol for
indicator functions is used as a building block.

Efficient NIMPC protocol for indicator functions: We then reduce the
exponential gap between the lower and upper bounds on the communica-
tion complexity to quadratic by constructing a much more efficient NIMPC
protocol for indicator functions. Specifically, we present a construction of
NIMPC protocols for indicator functions whose communication complexity
is quadratic in the input length.
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Our technique for deriving lower bounds is quite simple and useful for approx-
imating the amount of communication. For the target class of functions, we first
assume the existence of a correct NIMPC protocol with some communication
complexity and show a method for a server to send data to a client by encoding
data into a function and evaluating the function with the use of the NIMPC
protocol. Thus, the communication complexity is bounded by the size of target
class. If the assumed communication complexity is smaller than the logarithm
of the size of the target class, the contradiction is implied. Thus, the commu-
nication complexity is lower bounded by the logarithm of the size of the target
class. A similar technique is used in [1] for proving impossibility of multiplicative
secret sharing rather than derivation of lower bounds.

2 Preliminaries

We recall the notations and definitions of NIMPC introduced in [2]. For an
integer n, let [n] be the set {1, 2, . . . , n}. For a set X = X1 × · · · × Xn and
T ⊆ [n], we denote XT�

∏
i∈T Xi. For x ∈ X , we denote by xT the restriction

of x to XT , and for a function h : X → Ω, a subset T ⊆ [n], and xT ∈ XT ,
we denote by h|T ,xT

: X → Ω the function h where the inputs in XT are fixed
to xT . For a set S, let |S| denote its size (i.e., cardinality of S).

An NIMPC protocol for a family of functions H is defined by three algo-
rithms: (1) a randomness generation function GEN, which given a description of
a function h ∈ H generates n correlated random inputs R1, . . . , Rn, (2) a local
encoding function ENCi (1 ≤ i ≤ n), which takes an input xi and a random input
Ri and outputs a message, and (3) a decoding algorithm DEC that reconstructs
h(x1, . . . , xn) from the n messages. The formal definition is given as follows:

Definition 1 (NIMPC: Syntax and Correctness). Let X1, . . . ,Xn, R1, . . .,
Rn, M1, . . . ,Mn and Ω be finite domains. Let X�X1 × · · ·×Xn and let H be a
family of functions h : X → Ω. A non-interactive secure multi-party computation
(NIMPC) protocol for H is a triplet Π = (GEN,ENC,DEC) where

– GEN : H → R1 × · · · × Rn is a random function,
– ENC is an n-tuple deterministic functions (ENC1, . . . ,ENCn), where ENCi :

Xi × Ri → Mi,
– DEC : M1 × · · · × Mn → Ω is is a deterministic function satisfying the

following correctness requirement: for any x = (x1, . . . , xn) ∈ X and h ∈ H,

Pr[R = (R1, . . . , Rn) ← GEN(h) : DEC(ENC(x,R)) = h(x)] = 1, (1)

where ENC(x,R)�(ENC1(x1, R1), . . . ,ENCn(xn, Rn)).

The individual communication complexity of Π is the maximum of log |R1|, . . .,
log |Rn|, log |M1|, . . ., log |Mn|. The total communication complexity of Π is
the summation of log |R1|, . . ., log |Rn|, log |M1|, . . ., log |Mn|.
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We next show the definition of robustness for NIMPC, which states that
a coalition can only learn the information they should. In the above setting,
a coalition T can repeatedly encode any inputs for T and decode h with the
new encoded inputs and the original encoded inputs of T . Thus, the following
robustness requires that they learn no other information than the information
obtained from oracle access to h|T ,xT

.

Definition 2 (NIMPC: Robustness). For a subset T ⊆ [n], we say that
an NIMPC protocol Π for H is T -robust if there exists a randomized func-
tion SimT (a “simulator”) such that, for every h ∈ H and xT ∈ XT , we have
SimT (h|T ,xT

) ≡ (MT , RT ), where R and M are the joint randomness and mes-
sages defined by R ← GEN(h) and Mi ← ENCi(xi, Ri).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is T -robust for every
T ⊆ [n] of size |T | ≤ t. We say that Π is fully robust (or simply refer to Π as an
NIMPC for H) if Π is n-robust. Finally, given a concrete function h : X → Ω,
we say that Π is a (t-robust) NIMPC protocol for h if it is a (t-robust) NIMPC
for H = {h}.
As the same simulator SimT is used for every h ∈ H and the simulator has
only access to h|T ,xT

, NIMPC hides both h and the inputs of T . An NIMPC
protocol is 0-robust if it is ∅-robust. In this case, the only requirement is that
the messages (M1, . . . , Mn) reveal h(x) and nothing else.

An NIMPC protocol is also described in the language of protocols in [2]. Such
a protocol involves n players P1, . . . , Pn, each holding an input xi ∈ Xi, and an
external “output server,” a player P0 with no input. The protocol may have an
additional input, a function h ∈ H.

Definition 3 (NIMPC: Protocol Description). For an NIMPC protocol Π
for H, let P(Π) denote the protocol that may have an additional input, a function
h ∈ H, and proceeds as follows.

Protocol P(Π)(h)

– Offline preprocessing: Each player Pi, 1 ≤ i ≤ n, receives the random input
Ri�GEN(h)i ∈ Ri.

– Online messages: On input Ri, each player Pi, 1 ≤ i ≤ n, sends the message
Mi�ENCi(xi, Ri) ∈ Mi to P0.

– Output: P0 computes and outputs DEC(M1, . . . , Mn).

Informally, the relevant properties of protocol P(Π) are given as follows:

– For any h ∈ H and x ∈ X , the output server P0 outputs, with probability 1,
the value h(x1, . . . , xn).

– Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set of players {Pi}i∈T ∪{P0}
can simulate their view of the protocol (i.e., the random inputs {Ri}i∈T and
the messages {Mi}i∈T ) given oracle access to the function h restricted by the
other inputs (i.e., h|T ,xT

).



On the (In)Efficiency of Non-Interactive Secure Multiparty Computation 189

– Π is 0-robust if and only if in P(Π) the output server P0 learns nothing but
h(x1, . . . , xn).

We show a claim in [2] stating that for functions outputting more than one
bit, we can compute each output bit separately. Based on this fact, in [2], a fully
robust NIMPC protocol for the set of indicator functions was first constructed,
and then NIMPC protocols for the set of arbitrary functions are constructed
based on it.

Proposition 1 (Claim 7 in [2]). Let X�X1 × · · · × Xn, where X1, . . . ,Xn are
some finite domains. Fix an integer m > 1. Suppose H is a family of boolean
functions h : X → {0, 1} admitting an NIMPC protocol with communication
complexity δ. Then, the family of functions Hm = {h : X → {0, 1}m|h = h1 ◦
· · · ◦ hm, hi ∈ H} admits an NIMPC protocol with communication complexity
δ · m.

Definition 4 (Indicator Functions). Let X be a finite domain. For n-tuple
a = (a1, . . . , an) ∈ X , let ha : X → {0, 1} be the function defined by ha(a) = 1,
and ha(x) = 0 for all a �= x ∈ X . Let h0 : X → {0, 1} be the function that
is identically zero on X . Let Hind�{ha}a∈X ∪ {h0} be the set of all indicator
functions together with h0.

Note that every function h : X → {0, 1} can be expressed as the sum of indicator
functions, namely, h =

∑
a∈X ,h(a)=1 ha.

We review the previous results on upper bounds on the individual communi-
cation complexity of NIMPC. As described above, the NIMPC protocols in [2]
are constructed from NIMPC for Hind. Thus, the previous upper bounds depend
on the upper bound for Hind. This means we have a better upper bound if we
obtain a more efficient NIMPC protocol for Hind.

Proposition 2 (Arbitrary Functions Hall, Proof of Theorem 10 in [2]).
Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n and let X�X1×
· · · × Xn. Let Hall be the set of all functions h : X → {0, 1}m. If there exists an
NIMPC protocol for Hind with individual communication complexity δ, then there
exists an NIMPC protocol for H with individual (resp. total) communication
complexity |X | · m · δ (resp. |X | · m · δ · n).

3 Lower Bounds on the Communication Complexity

We derive a lower bound on the total communication complexity for any finite
set of functions, Hall, and Hind, respectively.

As described in the introduction, the total communication complexity is
bounded by the size of target class. In other words, the total communication
complexity cannot be smaller than the logarithm of the size of the target class.

Theorem 1 (Lower bound for any Finite Set of Functions). Fix finite
domains X1, . . . ,Xn and Ω. Let X�X1, . . . ,Xn and H a set of functions
h : X → Ω. Then, any fully robust NIMPC protocol Π for H satisfies
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n∑
i=1

log |Ri| ≥ log |H|, (2)

n∑
i=1

log |Mi| ≥ log |Ω|. (3)

Proof. We first prove Eq. (2). Let H = |H|. Let ϕ be a one-to-one mapping
from H to {0, 1, . . . ,H − 1}. (That is, all functions in H are numbered on some
rule.) Suppose a server holding a random number a ∈ {0, . . . , H − 1} aims to
send a to a client. Suppose also that there is an NIMPC protocol (GEN, ENC,
DEC) for H that satisfies

∑n
i=1 log |Ri| < log H. For the function h = ϕ(a),

the server executes R ← GEN(h) and sends R to the client. The client obtains
a by executing ENC and DEC for all possible inputs x ∈ X and identifying the
function h. We conclude that the server can communicate any a ∈ {0, . . . , H −1}
to the client using R = (R1, . . . , Rn) of which domain size

∏n
i=1 |Ri| is smaller

than H, that is impossible. Thus, we have
∑n

i=1 log |Ri| ≥ log H.
In a similar way, we next prove Eq. (3). Suppose a server holding a random

element b ∈ Ω and aiming to send b to a client and that there is an NIMPC
protocol (GEN, ENC, DEC) for H that satisfies

∑n
i=1 log |Mi| < log |Ω|. For a

function h ∈ H and an element a ∈ X such that h(a) = b, the server executes
R ← GEN(h) and M ← ENC(a,R), and sends M to the client. The client obtains
b by executing DEC. We conclude that the server can communicate any b ∈ Ω to
the client using M = (M1, . . . , Mn) of which domain size

∏n
i=1 |Mi| is smaller

than |Ω|, that is impossible. Thus, we have
∑n

i=1 log |Mi| ≥ log |Ω|. �
The following corollary shows a lower bound on the total communication

complexity of NIMPC for the set of arbitrary functions. The lower bounds indi-
cate the impossibility of reducing the communication complexity to polynomial
in the input length.

Corollary 1 (Lower bound for Arbitrary Functions). Fix finite domains
X1, . . ., Xn such that |Xi| ≥ d for all 1 ≤ i ≤ n. Let X�X1×· · ·×Xn and Hall the
set of all functions h : X → {0, 1}m. Any NIMPC protocol Π for Hall satisfies

n∑
i=1

log |Ri| ≥ m · |X | ≥ dn · m, (4)

n∑
i=1

log |Mi| ≥ m. (5)

Proof. The proof is obvious from Theorem 1 by setting H = Hall. A function
maps each input value to some output value. Thus, |H| is given by multiplying
the number of all possible input values by the number of all possible output
values, i.e., 2m·|X |. Then,

∑n
i=1 log |Ri| ≥ log |H| = m · |X |. �

The following corollary shows a lower bounds on the total communication
complexity of NIMPC for Hind. The gap between this lower bound (linear in the
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input length) and the previous upper bound (exponential in the input length) is
large. In the next section, we will present an efficient NIMPC protocol for Hind

with individual (resp. total) communication complexity O(n·log2 d) (resp. O(n2 ·
log2 d)).

Corollary 2 (Lower bound for Indicator Functions). Fix finite domains
X1, . . ., Xn such that |Xi| ≥ d for all 1 ≤ i ≤ n and let X�X1 × · · · × Xn. Then,
any NIMPC protocol Πind for Hind satisfies

n∑
i=1

log |Ri| ≥ log |X | ≥ n · log d. (6)

Though the proof is obvious from Theorem 1, we give a more constructive proof,
which need not to assume an existence of a one-to-one mapping φ.

Proof. Suppose a server holding a random vector a = (a1, . . . , an) ∈ X and
aiming to send a to a client. Suppose that there is an NIMPC protocol (GEN,
ENC, DEC) for Hind that satisfies

∑n
i=1 log |Ri| < log |X |. The server executes

R ← GEN(ha) and sends R to the client. The client obtains a by executing ENC
and DEC for all possible inputs a′ ∈ X and checking whether the output is 1 or
not. The input a′ for which the output is 1 is considered as a. We conclude that
the server can communicate any a ∈ X to the client using R = (R1, . . . , Rn) of
which domain size

∏n
i=1 |Ri| is smaller than |X |, that is impossible. Thus, we

have
∑n

i=1 log |Ri| ≥ log |X |. �

4 Efficient Constructions

We now present an efficient construction of NIMPC for Hind. In the previous
construction in [2], all the possible input values are encoded in a unary way, and
thus the communication complexity depends on the size of the input domain.
Specifically, each possible input value is represented by a single vector over F2

so that the summation of vectors corresponding to a = (a1, . . . , an) is equal to
the zero vector while the other combination is linearly independent to satisfy
the robustness. Our idea to reduce the communication complexity is to encode
all the possible input values in a binary way. Specifically, for each bit in the
binary representation, two vectors representing “0” and “1” are generated so
that the summation of all vectors over the binary representation of a is equal
to zero. Since the proposed encoding reduces the required dimension of vectors,
the communication complexity of resulting NIMPC is greatly reduced, too.

The detailed description of the protocol is as follows. For i ∈ [n], let di =
|Xi| and φi a one-to-one mapping from Xi to [di]. Let li = �log2(di + 1)� and
s =

∑n
i=1 li. Fix a function h ∈ Hind that we want to compute.

The proposed NIMPC P (Πind)(h)

– Offline preprocessing: If h = h0, then choose s linearly independent ran-
dom vectors {mi,j}i∈[n],j∈[li] in F

s
2. If h = ha for some a = (a1, . . . , an) ∈ X ,
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denote the binary representation of φi(ai) by bi = (bi,1, . . . , bi,li) and define
a set of indices Ii by Ii = {j ∈ [li] | bi,j = 1}. Choose s random vec-
tors {mi,j}i∈[n],j∈[li] in F

s
2 under the constraint that

∑n
i=1

∑
j∈Ij

mi,j = 0
and there are no other linear relations between them (that is, choose all the
vectors mi,j except mn,max In , as random linear independent vectors and set
mn,max In = −∑n−1

i=1

∑
j∈Ii

mi,j − ∑
j∈In\{max In} mn,j). Define GEN(h) =

R = (R1, . . . , Rn), where Ri = {mi,j}j∈[li].
– Online messages: For an input xi, let b̂i = (b̂i,1, . . . , b̂i,li) be the binary

representation of φi(xi). Let Îi be the set of indices defined by Îi = {j ∈
[li] | b̂i,j = 1}. ENC(x,R) = (M1, . . . , Mn) where Mi =

∑
j∈Îi

mi,j .
– Output h(x1, . . . , xn): DEC(M1, . . . , Mn) = 1 if

∑n
i=1 Mi = 0.

Theorem 2. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X�X1 × · · · × Xn. Then, there is an NIMPC protocol Πind for Hind

with individual (resp. total) communication complexity at most �log2(d+1)�2 ·n
(resp. �log2(d + 1)�2 · n2).

Proof. For the correctness, note that
∑n

i=1 Mi =
∑n

i=1

∑
j∈Îi

mi,j . If h = ha for
a ∈ X , this sum equals 0 if and only if Ii = Îi for all i ∈ [n], i.e., a = x. If h = h0,
this sum is never zero, as all vectors were chosen to be linearly independent in
this case.

To prove robustness, fix a subset T ⊂ [n] and xT ∈ XT . The encodings MT

of T consist of the vectors {Mi}i∈T . The randomness RT consists of the vectors
{mi,j}i∈[n],j∈[li]. If h|T ,xT

≡ 0, then these vectors are uniformly distributed in
F
s
2 under the constraint that they are linearly independent. If h|T ,xT

(xT ) = 1
for some xT ∈ XT , then

∑
i∈T Mi +

∑
i∈T

∑
j∈Îi

mi,j = 0 and there are no other
linear relations between them. Formally, to prove the robustness, we describe
a simulator SimT : the simulator queries h|T ,xT

on all possible inputs in XT .
If all answers are zero, this simulator generates random independent vectors.
Otherwise, there is an xT ∈ XT such that h|T ,xT

(xT ) = 1, and the simulator
outputs random vectors under the constrains described above, that is, all vectors
are independent with the exception that

∑
i∈T Mi +

∑
i∈T

∑
j∈Îj

mi,j = 0.
The correlated randomness Ri is composed of li ≤ �log2(d+1)� binary vectors

of length s ≤ �log2(d + 1)� · n and the encoding is the summation of some of
them. Hence, the communication complexity is at most �log2(d + 1)�2 · n. �
Corollary 3. Fix finite domains X1, . . . ,Xn such that |Xi| ≤ d for all 1 ≤ i ≤ n
and let X�X1 × · · · × Xn. Then, there is an NIMPC protocol for Hall with
individual (resp. total) communication complexity at most |X |·m·�log2(d+1)�2 ·n
(resp. |X | · m · �log2(d + 1)�2 · n2).

From Proposition 2 and Theorem 1, it is obvious.

5 Conclusion

We have presented the first lower bound on the communication complexity of
n-player NIMPC protocols for any set of functions including the set of arbitrary
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functions and the set of indicator functions. We have constructed novel NIMPC
protocols for the set of arbitrary functions and the set of indicator functions.
The proposed protocols are much more efficient than the previous protocols. For
example, for the set of arbitrary functions, while the previous best known proto-
col in [2] requires |X | · m · d2 · n communication complexity, the communication
complexity of the proposed construction is only |X | ·m · �log2(d+1)�2 ·n, where
X denote the (total) input domain, d is the maximum domain size of a player,
and m is the output length. By this result, the gap between the lower and upper
bounds on the communication complexity is significantly reduced from d2 · n
to �log2(d + 1)�2 · n, that is, from the exponential in the input length to the
quadratic.

The lower bounds in this paper are derived from the correctness property
of NIMPC. While this approach is useful for approximating the communication
complexity, there may be a room to improve the lower bounds by taking the
robustness property into account. Thus, a possible future work is to derive a
tighter lower bound and present an optimum construction of NIMPC.
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Abstract. Fair conduct of elections is essential for the smooth existence
of democratic societies. In order to response voting security concerns,
security researchers have developed tamper-resistant and voter verifiable
methods. These end-to-end voting schemes are unique because they give
voters the option to both verify the voting scheme’s functionality and
to check that their votes have been recorded after leaving the polling
booth. Helios and Pr̂et á voter are the most usable voter verifiable, end-
to-end voting schemes using mixnet. Helios is a web-based open-audit
voting system utilizing mixnet and secure cryptographic primitives. It
satisfies almost all the security properties like privacy, individual and
universal verifiability, and mixnet integrity etc. However, the proof of
mixnet integrity is complex to understand and costly in terms of com-
putations that effects conducting large-scale elections. For a voter, it
is rarely impossible to verify the correctness of election results without
trusting on election administrator and the candidates for the correctness
of election result. In this paper, we address this issue by presenting a sim-
ple and fast method for conducting end-to-end voting and allowing public
verification of the correctness of the announced vote tallying results. Our
method is based on existing Helios structure, we call it Apollo that facil-
itates a direct proof of mixnet integrity, and also satisfies all the security
properties.

Keywords: E-voting · Re-encryption · Mixnet integrity · Verifiability

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries to
provide more efficient voting procedures. The trustworthiness of voting scheme is
crucial to record people consensus correctly. It should allow voters and election
observers to verify, independently of the hardware and software running the
election, that votes have been recorded, tallied and declared correctly. However,
in a large-scale implementation, it is very hard for an election authority to enforce
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 194–209, 2016.
DOI: 10.1007/978-3-319-30840-1 13
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these procedures. For a voter, it is impractical to verify that authorities followed
all the correctness measures and procedures, and there is no simple way to ensure
that his vote is properly included in the final tally. This makes voters trust on
election authority and rely on machinery as crucial components in the successful
conduct of an election. It can lead to creating doubts among voters about the
integrity of an election, and have the potential to break the smooth running of
democratic systems. To avoid such situations, researchers come up with a new
kind of election system, where the correctness of each and every step is verifiable
while preserving the voters’ privacy. Such type of schemes is known as end-to-
end verifiable voting schemes. The concept of election or end-to-end verifiability
that has emerged in the academic literature, e.g. [2,9] etc. aims to address this
problem.

In end-to-end verifiable voting schemes, an individual voter has the ability to
verify that his intended vote has been properly cast, recorded and tallied into the
election result. In this direction, Ben Adida [2] proposed Helios 1.0 that is a web-
based open-audit voting scheme. The main idea of Helios is based on verifiable
election schemes proposed by Benaloh [4]. However, the proof of mixnet integrity
is not directly verifiable, and the cost of verification in zero-knowledge interactive
proof setting is very high which is an obstruction to perform large-scale elections.
In this paper, we firstly explain the mixnet-based Helios structure in detail, and
then, motivated by Helios, we propose a new voting scheme called Apollo that
facilitates easy proof of mixnet integrity. Moreover, Apollo is significantly fast
in terms of computations during mixing in comparison to Helios.

1.1 Other Related Work

In [6], Chaum suggested for the first time that anonymous communication can
lead to voting systems with individual verifiability, i.e., the voters can verify that
their votes were counted correctly. In [19], Sako and Killian introduced explicitly
the notion of universal verifiability, that is, the ability for anyone to verify that
the election result derives from the cast votes.

The first end-to-end verifiable voting scheme was proposed by Cohen and
Fischer in 1985 [10], where election integrity was verifiable, but the government
was able to read any vote. Later on, researchers came up with several such
schemes [5,11,12,14,18,19]. Pr̂et à Voter [9], Scantegrity [7], ThreeBallot [20]
and Helios [2] are the recent major proposals. Pr̂et à voter [9] was proposed
by Peter YA Ryan in 2004 and it is a paper-based scheme uses mixnet using
onion encryption for voter privacy. It is an end-to-end verifiable scheme that
gives the voters a receipt when they submit their vote to verify that their votes
were never modified. Scantegrity [7] was proposed by David Chaum in 2008 and
later gone through several major modification. The current version is known as
Scantegrity II. It can be implemented using existing optical scan voting system
infrastructure. ThreeBallot [20] was proposed by Rivest in 2006, it is purely
paper-based, without using any cryptographic tools. But later, it turned out
that ThreeBallot is vulnerable to several attacks [13,15].
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1.2 Our Contribution

We introduce an improved version of Helios 1.0 voting scheme, so-called Apollo.
We model voting protocol in end-to-end verifiability using mixnet and introduce
the concept of hidden tweaks in existing Helios 1.0 for easy and straightforward
proof of mixnet integrity. The consideration of direct proof of mixnet integrity
is particularly interesting as it provides an assurance that the election outcome
corresponds to votes legitimately cast and hence provides an easy mechanism
to detect ballot stuffing. We also provide proof sketches for various security
properties required for a secret voting scheme.

1.3 Comparison of our Results

Summary of Comparison. Our comparison includes the most relevant elec-
tronic voting schemes based on mixnet implementation. A detailed comparison
for security properties has been shown in Table 1 below.

Table 1. Comparison between mixnet voting schemes. A: attacks found, C:
claimed achieved requirement, P: proved achieved requirement, S: supposed achieved
requirement, Complex: complex proof of mixnet integrity, Easy: easy proof of mixnet
integrity.

Security Voting protocols and schemes (using mixnet)

properties OMA LBD Web HS Abe ALBD Pr̂et à Helios Apollo (this paper)

[17] [16] [21] [14] [1] [3] voter [9] 1.0 [2]

Completeness - - - - - - C C C

Soundness A C C C - C C C C

Robustness A C C C P C C C C

Privacy C P C C P C C C C

Unreusability C C C S - C - C C

Eligibility C - C S - C - C C

Fairness C C C C - C C C C

Receipt-freeness A C C C - C C C C

Individual

verifiability

C - A C - - C C C

Universal

verifiability

A C C C P C C C C

Proof of mixnet

integrity

- - - - - - - Complex Easy

1.4 Outline of the Paper

In Sect. 2, we put forward the preliminaries such as notations and definitions of
a secret e-voting schemes. In Sect. 3, we introduce Helios 1.0 voting scheme and
analyze Helios 1.0 for mixnet integrity. In Sect. 4, we propose a new end-to-end
verifiable e-voting scheme called Apollo. In Sect. 5, we show the comparison of
the computational efficiency for Helios 1.0 and Apollo. In Sect. 6, we analyze the
security of proposed voting protocol Apollo. In Sect. 7, we conclude our results.
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2 Preliminaries

2.1 Notations

Throughout this work, we take λ to be a security parameter and p, q to be large
primes such that q|(p − 1). Let Z∗

n = {x ∈ Zn | gcd(x, n) = 1}. (Note that if
p is prime, Z∗

p = Zp\{0}). We denote a cyclic group generated Z∗
p by a group

element g by Z
∗
p = 〈g〉 satisfying Ordp(g) = q. Selecting a uniform and inde-

pendently distributed variable x from a set X is denoted by x
$←− X. We say

a probability function ε : R≥0 → R≥0 is negligible if ε(λ) is smaller than all
polynomial fractions for sufficiently large λ. Other notations used in this paper
are as follows:

N : the number of voters
Vi : the voter i

vi : the vote of voter Vi

ci : the encrypted vote of voter Vi

ri : one-time secret random number
generated for voter Vi

n : the number of mix-servers in mixnet

Mj : jth mix-server in mixnet
cj
i : ith output from mix-server Mj

sj
i : a random number used for

re-encryption of ith ciphertext by
mix-server Mj

dj
i : ith output from jth shadow

mix-server.

2.2 Security of Secret Voting Scheme

In this paper, we discuss security of secret voting scheme in following definition.

Definition 1. We say that the secret voting scheme is secure if we have the
following:

• Completeness. All valid votes are counted correctly.
• Soundness. The dishonest voter cannot disrupt the voting.
• Robustness. No coalition of voters can disrupt the election and any cheating

voter will be detected.
• Privacy. All votes must be secret.
• Unreusability. No voter can vote twice.
• Eligibility. No one who isn’t allowed to vote can vote.
• Fairness. Nothing must affect the voting.
• Receipt-freeness. A voter may not be able to create a receipt, i.e., any infor-

mation that can be used to convince an attacker or a coercer that he voted in
a specific manner.

• Verifiability. No one can falsify the result of the voting.
• Universal Verifiability. Anyone can verify the validity of individual votes

and of the final tally of the election.
• Individual Verifiability. Each voter can verify that his own vote was

correctly included in the final result.
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2.3 ElGamal Encryption

Given G = 〈g〉 where o(g) = q and q is a prime, private key x and public key
y = gx mod p, the encryption of message m is defined as

Enc(m) = (gα, yαm) where α
$←− Zp.

We also define a special instance of reblinding denoted by Reblind and works as

Reblind(Enc(m)) = (gα, yβ(yαm)) = (gα, yα+βm) where β
$←− Zp.

2.4 Re-encryption Mixnet

A mix network or mixnet is a cryptographic construction that invokes a set of
servers to establish private communication channels. One type of mix networks
accepts as input a collection of ciphertexts, and outputs the corresponding plain-
texts in a randomly permuted order. The main privacy property desired of such
a mixnet is that the permutation matching inputs to outputs should be known
only to the mixnet, and no one else. In particular, an adversary should be unable
to guess which input ciphertext corresponds to an output plaintext any more
effectively than by guessing at random.

One common variety of mixnet known as a re-encryption mixnet relies on a
public key encryption scheme, such as ElGamal, that allows for re-encryption
of ciphertexts. For a given public key, a ciphertext C ′ is said to represent a
re-encryption of C if both ciphertexts decrypt to the same plaintext. In a re-
encryption mixnet, inputs are submitted encrypted under the public key of the
mixnet. The batch of input ciphertexts is processed sequentially by each mix-
server. Each server in turn takes the set of ciphertexts output by the previous
server, and re-encrypts and mixes them. The set of ciphertexts produced by
the last server may be decrypted by a quorum of mix-servers to yield plaintext
outputs. Privacy in the mixnet construction derives from the fact that ciphertext
pair (C,C ′) is indistinguishable from a pair (C,R) for a random ciphertext R to
any adversary without knowledge of the private key.

In voting protocols using mixnets, mix-servers are authorities and each of
them possesses a public key and a corresponding secret key (or more). The
ballots have to be prepared before the elections using the mix-servers’ public
keys. During the election stage, each ballot is cast and passed through the mixnet
to be decrypted by the successive mix-servers’ secret keys before the final tally.

2.5 Mixnet Integrity

During mixnet operations, each mix-server receives a set of ciphertexts and gen-
erates another set of ciphertexts after re-encryption and permutation. To remove
the relation between input and output sets of ciphertexts, the re-encryption fac-
tors and permutations are kept secret by mix-server. So, each mix-server act
as a black box for non-participating observers (spectators). How do spectators
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know that the mixnet servers really have permuted the original ciphertexts, with-
out adding new ciphertexts, deleting old ones, or modifying any of the original
ciphertexts?

A mixnet is called to preserve its integrity if it has respected the integrity
goal while maintaining the voter’s anonymity/privacy.

3 Helios 1.0 [2]

Helios 1.0 [2] is a web-based open-audit voting system released in 2008 by Ben
Adida. Helios makes use of cryptographic tools such as ElGamal encryption,
ElGamal re-encryption and Sako-Killian mixnet [19]. It also allows independent
verification by voters and observers of election results. The implementation of
Helios follows web server-client architecture. For explaining in a modular way,
we divide the whole voting process into five stages: initialization, registration,
voting, mixing and tallying stages.

• Initialization Stage: The election administrator A sets up an ElGamal cryp-
tosystem.
− A chooses a private key x

$←− Z
∗
q .

− A computes a public key y ← gx mod p.
− (p, q, g, y) are published for registered voters.

• Registration Stage: Each voter Vi gets a credential from administrator A.
− A generates a unique credential (password) zi

$←− Zq for each eligible voter
Vi, and send it to him via his corresponding email address through an
untappable channel (Fig. 1).

• Voting Stage: Each voter Vi submits his encrypted vote with his credential
and keeps the fingerprint of encrypted vote with himself. (H is a hash function.)
− Vi chooses his vote vi from a set of possible votes.
− Helios ballot preparation system (BPS) generates a random number ri.
− Helios BPS encrypts the message mi = vi||ri using ElGamal encryption

as α
$←− Zp, ci

def= (gα, yαmi).
− Helios BPS returns the fingerprint of ci as H(ci) to the voter Vi.
(Ballot Auditing). Each voter Vi can audit the ballot as many times as he
wants until he gains the assurance on Helios BPS.
− Vi chooses the ballot audit option.
− Helios BPS reveals all the randomness used for the ballot encryption to

the voter Vi.
− Vi can verify the correctness of the ballot encryption in Helios BPS by

repeating encryption process in his trusted environment.
(Ballot Casting). After ballot auditing, Helios BPS discards all random
values used before and encrypt the ballot with a new random number. Once
voter Vi authenticates himself with password credential received on email,
Helios BPS sends the encrypted ballot to Helios server and server stores this
in a database.
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• Mixing Stage: To preserve the anonymity, Helios uses mixnet, a set of mix-
servers each managed by different authorities. Each mix-server re-encrypts
and permutes the set of encrypted votes to remove the relation between a
voter and the corresponding vote. Shuffling is a procedure which on the input
of N ciphertexts (cj−1

1 , cj−1
2 , . . . , cj−1

N ), outputs N ciphertexts (cj
1, c

j
2, . . . , c

j
N )

where:
− There exists a permutation π ∈ Perm(λ) such that D(cj

i ) = D(cj−1
π−1(i)) for

all i, 1 ≤ i ≤ N . Here, D is a decryption algorithm for ciphertexts, and
Perm(λ) be the set of all permutations on {0, 1}λ.

− Without the knowledge of D or π, (cj−1
1 , cj−1

2 , . . . , cj−1
N ) and (cj

1, c
j
2, . . . , c

j
N )

reveal no information on the permutation π.
Since we make use of ElGamal cryptosystem with public keys (p, q, g, y) and
private key x ∈ Zq such that y = gx mod p, therefore, given N ciphertexts
{cj−1

i } = {(gj−1
i ,mj−1

i )} where all {gj−1
i } and {mj−1

i } have the order q,
shuffled ciphertexts {cj

i} = {(gj
i ,m

j
i )} can be obtained by using randomly

chosen number {sj
i} from Zp,

gj
i = gsj

i gπ−1(i) mod p (1)

mj
i = ysj

i mπ−1(i) mod p (2)

− Thus, each Mj receives a batch of encrypted ballots from Mj−1. Mj re-
encrypts each ballot like described above and then permutes them before
handling them to Mj+1.

• Tallying Stage: Talliers verify the votes (by checking the proofs), and publish
the valid ballots. At last, ballots are decrypted and counted.
− For each shuffled and encrypted vote, write {cn

i } as {(gn
i ,mn

i )} =
{(gsn

i gn−1
π−1(i), y

sn
i mn−1

π−1(i))}.
− Administrator A using his secret key x, compute (gsn

i gn−1
π−1(i))

x and then
use it to divide (ysn

i mn−1
π−1(i)) to get mi. Now since mi = vi||ri, he finally

gets the vote vi cast for a candidate, and counts.

Remark 1 (A Note on Proof of Mixnet Integrity in Helios 1.0). The
proof of mixnet integrity in Helios 1.0 is based on zero-knowledge proof. There
are two approaches - one is interactive and the other is non-interactive. In both
approaches, prover needs to generate few shadow mixes for proving the mixnet
integrity whenever questioned by verifier. However, these proofs are not eas-
ily verifiable, and costly in terms of computations because of the generation of
shadow mixes. In another way, we can say that the proof of mixnet integrity is
not easy for Helios 1.0. To make it straightforward and easy to verify, we present
a new variant of Helios 1.0 which we call Apollo.

4 Our Proposed Voting Scheme: Apollo

We propose a new tweak-based scheme for the efficient verification of mixnet
integrity. The core idea is adding a hidden tweak in ElGamal ciphertext before
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Fig. 1. Initialization, registration and voting stage of Apollo voting protocol

passing through mixnet so that mix-server or anybody else cannot add a valid
ciphertext into the set of encrypted ballots. Any attempt to replace a genuine
ciphertext vote with a new ciphertext vote can be detected once decryption is
done. We divide the whole voting process into five stages: initialization, regis-
tration, voting, mixing and tallying stages. Moreover, mixing stage consists of
two phases: mix-and-tweak network phase, and mixnet phase. The Apollo voting
scheme works as follows:

• Initialization Stage: The election administrator A sets up an ElGamal cryp-
tosystem.
− A chooses a private key x

$←− Zq.
− A computes a public key y ← gx mod p.
− (p, q, g, y) are published for registered voters.

• Registration Stage: Each voter Vi gets a credential from administrator A.
− A generates a unique credential (password) zi

$←− Zq for each eligible voter
Vi, and send it to him via his corresponding email address through an
untappable channel.

• Voting Stage: Each voter Vi submits his encrypted vote with his credential
and keeps fingerprint of encrypted vote with himself. (H is a hash function.)
− Vi chooses his vote vi from a set of possible votes.
− Apollo ballot preparation system (BPS) generates a random number ri.
− Apollo BPS generates the message mi = vi||ri||MACri

(vi) where MAC(·)
is a message authentication generation algorithm. (The additional MAC
is added for verification of valid votes to nullify the generation of invalid
votes that may be added in between by adversary (malicious mix-server).

− Apollo BPS encrypts the message mi using ElGamal encryption as α
$←− Zp,

ci
def= (gα, yαmi).

− Apollo BPS returns the fingerprint of ci as H(ci) to the voter Vi.
(Ballot Auditing). Each voter Vi can audit the ballot as many times as he
wants until he gains the assurance on Apollo BPS.
− Vi chooses the ballot audit option.
− Apollo BPS reveals all randomness used for ballot encryption to Vi.
− Vi can verify the correctness of the ballot encryption in Apollo BPS by

repeating encryption process in his trusted environment.
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(Ballot Casting). After ballot auditing, Apollo BPS discards all random
values used before and encrypt the ballot with a new random number. Once
voter Vi has authenticated himself with authenticated credential received by
email, Apollo BPS sends the encrypted ballot to Apollo server and server
stores this in a database.

• Mixing Stage: To preserve the anonymity, Apollo uses mix-and-tweak oper-
ations and mixnet, a set of mix-servers each managed by different authorities.
Each mix-server re-encrypts and permutes the set of encrypted votes to remove
the relation between a voter and the corresponding vote. This is again a two
steps procedure. We separately describe both these steps.
i. (Mix-and-Tweak Network Phase). To shuffle the set of ciphertexts
received from Apollo server, we use this mix-and-tweak procedure. Mix-server
does this by ElGamal encryptions and reblinding for each of the cipher-
texts in the obtained set. Thus, on the input of a set of N ciphertexts
(c01, c

0
2, . . . , c

0
N ), mix-server outputs N ciphertexts (cn

1 , cn
2 , . . . , cn

N ) by perform-
ing: for j = 1 to n, each mix-server Mj does the following: on the input of
N ciphertexts (cj−1

1 , cj−1
2 , . . . , cj−1

N ), the mix-server Mj outputs N ciphertexts
(cj

1, c
j
2, . . . , c

j
N ) where:

− there exists a permutation π ∈ Perm(λ) such that D(cj
i ) = D(cj−1

π−1(i)) for
all i, 1 ≤ i ≤ N . Here, D is a decryption algorithm for ciphertexts, and
Perm(λ) be the set of all permutations on {0, 1}λ.

− without the knowledge of D or π, (cj−1
1 , cj−1

2 , . . . , cj−1
N ) and (cj

1, c
j
2, . . . , c

j
N )

reveal no information on the permutation π.

Since we make use of ElGamal and tweaked ElGamal encryptions with public
keys (p, q, g, y) and private key x ∈ Zq such that y = gx mod p, therefore,
given N ciphertexts {cj−1

i } = {(gj−1
i ,mj−1

i )} where all {gj−1
i } and {mj−1

i }
have the order q, the shuffled ciphertexts {cj

i} = {(gj
i ,m

j
i )} can be obtained

by using randomly chosen numbers {sj
i} and β from Zp,

gj
i = gsj

i gj−1
π−1(i) mod p (3)

mj
i = yβ(ysj

i mj−1
π−1(i)) mod p (4)

− Thus, each Mj receives a batch of encrypted ballots from Mj−1. Mj re-
encrypts each ballot, permutes and Reblind before handling them to Mj+1.

− At the end of mix-and-tweak stage, we obtain a new set of ciphertexts
(cn

1 , cn
2 , . . . , cn

N ). We denote this set of ciphertexts by (ĉ01, ĉ
0
2, . . . , ĉ

0
N ).

ii. (Mixnet Phase). We again mix the set of ciphertexts obtained at the end
of step 1. (This step is same as Helios mixing stage, however, it is different
from step 1 in the sense that we remove the Tweaked-Elgamal part). Thus, on
input of a set of N ciphertexts (ĉ01, ĉ

0
2, . . . , ĉ

0
N ), mixnet outputs N ciphertexts

(ĉn
1 , ĉn

2 , . . . , ĉn
N ) by performing: for j = 1 to n, each mix-server Mj does the

following: on input of N ciphertexts (ĉj−1
1 , ĉj−1

2 , . . . , ĉj−1
N ), the mix-server Mj

outputs N ciphertexts (ĉj
1, ĉ

j
2, . . . , ĉ

j
N ) where:
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− There exists a permutation π ∈ Perm(λ) such that D(ĉj
i ) = D(ĉj−1

π−1(i)) for
all i, 1 ≤ i ≤ N . Here, D is a decryption algorithm for ciphertexts, and
Perm(λ) be the set of all permutations on {0, 1}λ.

− Without the knowledge of D or π, (ĉj−1
1 , ĉj−1

2 , . . . , ĉj−1
N ) and (ĉj

1, ĉ
j
2, . . . , ĉ

j
N )

reveal no information on the permutation π.
Since we make use of ElGamal cryptosystem with public keys (p, q, g, y) and
private key x ∈ Zq such that y = gx mod p, therefore, given N ciphertexts
{ĉj−1

i } = {(ĝj−1
i , m̂j−1

i )} where all {ĝj−1
i } and {m̂j−1

i } have order q, shuffled
ciphertexts {ĉj

i} = {(ĝj
i , m̂

j
i )} can be obtained by using randomly chosen

numbers {ŝj
i} from Zp,

ĝj
i = ĝŝj

i ĝπ−1(i) mod p (5)

m̂j
i = yŝj

i m̂π−1(i) mod p (6)

− Thus, each Mj receives a batch of encrypted ballots from Mj−1. Mj re-
encrypts each ballot like described above and then permutes them before
handling them to Mj+1.

Finally, it outputs the set of shuffled ciphertexts (ĉn
1 , ĉn

2 , . . . , ĉn
N ).

After mixing stage, the administrator A publishes this set of ciphertexts
obtained in step 2 on the final bulletin board (which is public).

• Tallying Stage: Talliers verify the votes (by checking the proofs), and publish
the valid ballots. At last, ballots are decrypted and counted.
1. (Revealing Mix-and-tweak Variables). The variables used for the

mix-and-tweak operation are re-encryption exponents, permutations, and
tweak values. Now, since the operations performed inside mix-and-tweak
network are transparent, therefore, anybody can detect the malfunction
occurred while mixing.

2. (Removing Tweak Variable). In this step, the system will remove
all tweak values added by the mix-and-tweak operation. Let ĉ = (ĉ1, ĉ2)
be the tweaked ElGamal ciphertext and β ∈ Zq be the secret tweak
value added earlier during the tweaked-encryption. The removal of the
tweak value is done as follows: compute y′ = (yβ)−1 mod p, and then
get c = (ĉ1, y′.ĉ2). We apply this tweak removal process for all ciphertexts
and for each mix-servers.

3. (Decrypting the Encrypted Votes)
− For each shuffled and encrypted vote, write {ĉn

i } as {(ĝn
i , m̂n

i )} =
{(ĝŝn

i ĝn−1
π−1(i), y

ŝn
i m̂n−1

π−1(i))}.
− Administrator A using his secret key x, compute (ĝŝn

i ĝn−1
π−1(i))

x and
then use it to divide (yŝn

i m̂n−1
π−1(i)) to get mi. Now since mi =

vi||ri||MACri
(vi), he checks the whether MACri

(vi) is valid or invalid
for obtained vi and ri, and then he finally gets the vote vi cast for a
candidate.

4. (Counting the Votes). Administrator counts the votes received by
decrypting in step 3 above.
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4.1 Proof of Correctness for Decryption in Apollo

Once an ElGamal ciphertext is decrypted, this decryption can be proven using
the Chaum-Pedersen protocol [8] for proving discrete logarithm equality. Specif-
ically, given a ciphertext c = (a, b) and claimed plaintext m, the prover shows
that logg(y) = loga(b/m):

– The prover selects ω ∈ Zp and sends A = gω, B = aω to the verifier.
– The verifier challenges with c ∈ Zp.
– The prover responds with s = xc + ω.
– The verifier checks that gs = Ayc and as = B(b/m)c.

It is clear that, given c and s, A and B can be easily computed, thus pro-
viding for simulated transcripts of such proofs indicating Honest-Verifier Zero-
Knowledge. It is also clear that, if one could rewind the protocol and obtains
prover’s responses for two challenge values against the same A and B, the value
of x would be easily solvable, thus indicating that this is a proof of knowledge
of the discrete logarithm and that logg(y) = logA(b/m).

4.2 Proof of Mixnet Integrity in Apollo

In general, the integrity goal is that the decryption of the ciphertexts at the input
to the mixnet should yield the same (multi-) set of plaintexts as the decryption
of the ciphertexts at the output to the mixnet. The proof of mixnet integrity [2]
in Helios is based on Sako-Killian Shuffle and proof [19].

Unlike Helios, the mixing stage of our scheme consists of 2 phases: mix-and-
tweak network phase and mixnet phase. In this section, we want to show how
to defeat the adversarial behavior trying to destroy the integrity of the mixing
stage in a straightforward way.

First, the mix-and-tweak server can behave maliciously. However, after mix-
ing stage, all mix-and-tweak servers reveal the variables (re-encryption expo-
nents, permutations, and tweak values) used in the mix-and-tweak network
phase. It makes all the operations performed in the mix-and-tweak network
transparent. So if any malfunction occurred during mix-and-tweak network
phase, it can be detected.

Second, the mix-servers in mixnet phase can manipulate the integrity of input
and output set of ciphertexts. Next, we justify the proof of mixnet integrity in
Apollo by following three claims.

• Claim (i) : If a malicious mix-server adds or removes ballot, this can be easily
detected by comparing the number of input/output set in mixnet phase.

• Claim (ii) : If a malicious mix-server replaces an existing ballot with another
existing ballot, this can be easily detected by checking the duplicated ballot
after decryption. The duplicated ballot may occur when the voter chose the
same choice and the same random number was generated. But its probability
is almost negligible.
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• Claim (iii) : If a malicious mix-server replaces an existing ballot with another
ballot, it can be detected with high probability by checking the validity of
ballots in the tallying phase after the revelation of mix-and-tweak phase
secret factors (re-encryption exponents, tweaks as reblind factors). Now sup-
pose a particular c0 = (gα, yαm) is re-encrypted and reblinded by mix-
server in the mix-and-tweak network phase to c1 = (gα+u, yα+u+βm) for

u, β
$←− Zp, and then it is re-encrypted by mix-server in the mixnet phase

to c2 = (gα+u+v, yα+u+β+vm) for v
$←− Zp. Two possible cases can be exe-

cuted by the malicious mix-server:
− Case (i) : Suppose malicious mix-server in the mixnet phase replaces an

existing vote by a valid vote. Now since it does not know the mix-and-teak
secret factors, it cannot generate a valid ciphertext which is the output
of mixnet.

− Case (ii) : Consider malicious mix-server of mixnet phase modifies the
ciphertext c2 to c′

2 = (gα+u+v, yα+u+β+vmk) by multiplying some con-
stant k to second factor of the ciphertext, then in the tallying phase,
mix-and-tweak secret factors are revealed and removed, the new cipher-
text c′′

2 will be c′′
2 = (gα+v, yα+vmk). Now when server will decrypt the

ciphertext c′′
2 using his secret key x, it will be decrypted to km. Let’s

say m′ = km, i.e., m′ = (v′
i||r′

i||MACr′
i
(v′

i)). But since ri is not known
to the malicious server, so even if v′

i may be valid, the chances of a valid
MACr′

i
(v′

i) are very low. That is, if the output size of MAC is t-bits, then
the probability of generating a valid vote for a malicious server is 1

2t which
is negligible for a sufficiently large value of t.

5 Efficiency Comparison of Proposed Apollo with Helios

In this section, we compare computational requirement of proposed scheme with
mixnet-based Helios scheme. The major change in proposed schemes from Helios
1.0 is on proof of mixnet integrity part. So our comparison is mainly focused on
proof of mixnet integrity part only. The detailed comparison is given in Table 2
below. In Fig. 2, we draw a graph for computation costs in Helios and Apollo.

6 Security of the Proposed Scheme: Apollo

In this section, we briefly sketch the proof that the scheme presented in Sect. 4
has the essential properties of a secure e-voting scheme.

Theorem 1 (Completeness). The ballot of an honest voter is accepted by the
honest candidate and is counted with probability close to one.

Proof. For a valid vote, all the checks are performed by Apollo server and can-
didates in the tallying stage of the voting process on the final bulletin board.
It ensures that the valid ballot will always be accepted by candidates and is
counted by Apollo server with probability close to 1. Therefore, the result of the
casting is trustable.
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Table 2. Comparison of costs for proof of mixnet integrity for Helios 1.0
and Apollo. Re-enc: re-encryptions using ElGamal, Exp: number of modulo expo-
nentiations, Reblind: reblinding using ElGamal, N : number of voters, n: number of
mix-servers, t: number of shadows, λ: maximum number of mix-servers used in mixnet.

Number of Helios 1.0 Apollo

mix-servers (n) Plain mixes Shadow mixes Plain mixes Mix-and-tweak

# # # # # # # # #

Re-enc Exp Re-enc Exp Re-enc Exp Re-enc Reblind Exp

n = 1 N 2N Nt 2Nt N 2N N N 3N

n = 2 2N 4N 2Nt 4Nt 2N 4N 2N 2N 6N

n = 3 3N 6N 3Nt 6Nt 3N 6N 3N 3N 9N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = λ λN 2λN λNt 2λNt λN 2λN λN λN 3λN

t = 80 λN 2λN 80λN 160λN λN 2λN λN λN 3λN
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Fig. 2. Cost of mixing in Helios 1.0 and Apollo. Here, we fix the mixnet parame-
ters like n = 100, t = 80. If mix-server succeeds at responding all challenges in Helios,
then primary mix is correct with probability (1 − 2−t), so if t = 80, it guarantees
integrity with overwhelming probability. This graph clearly shows that cost of compu-
tations (exponentiations) during mixing in Apollo is relatively low in comparison to
Helios 1.0.

Theorem 2 (Robustness). If the Apollo server is honest and mixnet integrity
is preserved, then no one (a small set of voters or mix-servers) cannot disrupt
the election.

Proof (Sketch). One way to disrupt the election is for voters to send invalid
votes, Apollo server will not pass forward these invalid votes to the counter if
Apollo server is honest. Another way to disrupt the election is modifying the
encrypted votes by mix-servers, but again, Apollo server will reject these votes
during verification in tallying phase. Hence, cheating by mix-server can also be
caught. In any case, no one can disrupt the election.
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Theorem 3 (Privacy). Even if all the participants (the administrator, the
Apollo server, the counter, and the candidates) conspire, they cannot detect the
relationship between vote vi and voter Vi, i.e., the privacy of the votes is pre-
served.

Proof (Sketch). Assume that the Apollo server is honest and trustworthy, and
one of the mix-server in mixnet is also honest to maintain the anonymity in the
network. The relationship between the voters and their identity is firstly hidden
by ElGamal encryption when it is sent to Apollo server. Furthermore, it is again
mixed by mix-and-tweak network operations (re-encryption and reblinding) and
re-encryption mixnets. In the opening stage, when the counter doesn’t list the
voter’s ballot, the voter only show the pair (vi,H(ci)) to claim the disruption.
So, he can claim the disruption with keeping hs vote vi secret. This ensures the
voter’s privacy.

Theorem 4 (Unreusability). Given that Apollo server is honest, no voter can
vote more than once.

Proof (Sketch). To vote more than once, a voter must have valid tuples of the
ballot, password credential. This means that he has obtained one password cre-
dential from Apollo server through the proper procedures, and created extra
password credential himself. But when he sends his cast vote to Apollo server
along with password credential, this cheating will be caught during the authentic-
ity check by just matching with already stored password credential corresponds
to the identity of the voter. Thus, the voter cannot vote more than once.

Theorem 5 (Fairness). The counting of votes does not affect the voting.

Proof (Sketch). Fairness means no information that can influence voter’s decision
should be revealed before finishing voting phase. In Apollo, since counting is done
after the voting stage is completed, so it is impossible that the counting of the
voted affect the voting. (In Apollo, partial counting is not allowed before the
completion of voting, i.e., each voter has cast his vote).

Theorem 6 (Eligibility). Under the assumption that the Apollo server is hon-
est, only the eligible voters are able to vote.

Proof (Sketch). Assume that a dishonest person can vote. Administrator checks
the list of voters who have the right to vote. So the dishonest person must create
a valid pair of the ballot and a password credential himself, and then vote is
accepted. This contradicts that Apollo server is honest.

Theorem 7 (Receipt-freeness). The voter must neither obtain nor be able to
construct a receipt which can prove to a third party that he had cast a particular
vote.

Proof (Sketch). To achieve receipt-freeness, one-time secret random number ri is
used while ballot encryption in Apollo BPS so that the voter cannot repeat the
ballot encryption by himself without knowing ri. The only data the voter can
obtain is the fingerprint of his encrypted ballot, therefore, he cannot demonstrate
his choice to a third party.
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Theorem 8 (Verifiability). Assume that the Apollo server is honest, the
encryption scheme is secure, and mixnet integrity is preserved. Then the pub-
lished tally is equal to the actual result of the election. In other words, a voting
system is said to be verifiable if all voters can verify that their vote was counted.

Proof (Sketch). Once a voter has decided to cast the ballot, he is asked to authenti-
cate himself using password credential. After a successful authentication, the bal-
lot is sent to the server. The cast ballots are published in hashed form on a bulletin
board after the voting stage is finished. Each individual voter can verify that the
Apollo server stored his ballot is same as what he had cast. After a bulletin board
published in public, any observer can verify the validity of the vote result. These
encrypted ballots are now first sent through verifiable mix-and-tweak and then
decrypted and tallied by a trusted Apollo server. So we need the proof of mix-and-
tweak integrity (Sect. 4.2) and the proof of correctness for decryption(Sect. 4.1).
Through these proofs, any observer guaranteed that there is no malfunction dur-
ing tallying stage and validity of the vote result is preserved.

7 Conclusion

The major advantage of end-to-end verifiable voting schemes over traditional
voting schemes is, anybody can verify the integrity of election result. The Helios
is one of the latest and popular end-to-end verifiable voting scheme implemented
using mixnet. In this work, we proposed an improved Helios, called Apollo. The
main contribution to Apollo was introducing tweaks in hidden form, later on,
these hidden tweaks were being released during the tallying stage. This modifi-
cation gives two advantages - one that the proof of mixnet integrity is straight-
forward, i.e., directly verifiable, and second is that the cost of verification is
significantly reduced. Due to this, our proposed scheme becomes practical for
conducting large public elections as well.
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Abstract. In collaborative recommendation systems, privacy may be
compromised, as users’ opinions are used to generate recommendations
for others. In this paper, we consider an online collaborative recommen-
dation system, and we measure users’ privacy in terms of the standard
notion of differential privacy. We give the first quantitative analysis of
the trade-offs between recommendation quality and users’ privacy in such
a system by showing a lower bound on the best achievable privacy for
any algorithm with non-trivial recommendation quality, and proposing a
near-optimal algorithm. From our results, we find that there is actually
little trade-off between recommendation quality and privacy, as long as
non-trivial recommendation quality is to be guaranteed. Our results also
identify the key parameters that determine the best achievable privacy.

Keywords: Differential privacy · Collaborative recommendation
system · Lower bound · Online algorithm

1 Introduction

In this paper we consider an online collaborative recommendation system that
attempts to predict which objects its users will like. Imagine, for example, a
news website which publishes articles every day. When a user enjoys an article,
he/she votes on the article (e.g., upvotes it, likes it, +1s it, etc.). Users can
also ask the system for a recommendation, i.e., to suggest an article that they
might like. After reading the recommended article, the user gives the system
feedback on the recommendation so that it can improve its recommendation
quality. In this paper, we work with a simplified, abstract version of this very
common paradigm.

Due to the way it works, a collaborative recommendation system has the
risks of leaking its users’ privacy. Clearly, there are trade-offs between recom-
mendation quality and privacy: a system that gives completely random recom-
mendations certainly leaks no one’s privacy, but it is also useless; in contrast, a
recommendation system that gives high quality recommendations has to make
“full use” of its users’ data, which is more prone to privacy leakage.
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In this paper, we adopt ε-differential privacy [17] as our formal definition of
privacy, and we give the first quantitative analysis of these trade-offs for online
collaborative recommendation systems. Prior to this paper, the topic of differ-
entially private recommendation systems has primarily been examined under
offline matrix models [12,13,23,24,28,32,42]. From the theoretical perspective,
our recommendation model can be viewed as a variant of an online learn-
ing problem. Currently, there are only a limited number of existing papers on
differentially private online learning [18,26,41], and their privacy models do not
fit the recommendation problem (see Sect. 3 for more details).

We first study the best achievable privacy for a fixed recommendation quality
by showing a near-tight lower bound on the privacy parameter ε (smaller ε means
better privacy). For example, if we were to guarantee a trivial recommendation
quality only, then we can achieve “perfect privacy” (i.e., ε = 0) by ignoring users’
opinions on objects and recommending randomly. As we set better and better
target recommendation quality, it might be expected that the best achievable ε
smoothly gets larger and larger. However, we show that the transition is sharp:
although ε = 0 is achievable for the trivial recommendation quality, the lower
bound of ε rises to a certain level as long as non-trivial recommendation quality
is to be guaranteed, and it remains essentially the same (up to a logarithmic
factor) as the target recommendation quality increases.

We then propose a novel ε-differentially private algorithm. Our algorithm’s ε
is within a logarithmic factor to the aforementioned lower bound, and meanwhile
its recommendation quality is also near-optimal up to a logarithmic factor, even
when compared to algorithms providing no privacy guarantee.

Our near matching results surprisingly imply that there are actually little
trade-offs between recommendation quality and privacy — an inherent “amount
of privacy” (up to a logarithmic factor) must be “leaked” for any algorithm with
non-trivial recommendation quality. Our results also identify the key parameters
that fundamentally determine the best achievable recommendation quality and
privacy. We provide more details about our results in Sect. 4.

2 Model and Problem Statement

2.1 Recommendation System Model

We now describe the model in more detail, abstracting away some of the com-
plications in the scenario above in order to focus on the fundamental trade-offs.

We consider an online collaborative recommendation system that contains
voters, clients and objects, and it repeatedly recommends objects to clients based
on voters’ opinions on objects. A voter/client either likes or dislikes an object.
Voters submit their opinions on objects to the system in the form of votes, where
a vote by voter i on object j indicates that voter i likes object j; clients receive
recommendations from the system and provide feedback to the system which tells
whether they like the recommended objects or not. Since every client has his/her
own personalized preferences, the system will serve each client separately.

We now describe how the model operates for a particular client C. The system
runs for T rounds. In each round t ∈ {1, . . . , T}, a set of m new candidate objects
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arrives in the system, out of which the client C likes at least one of them. We
assume that m is a constant, and totally the system has mT objects over all
the T rounds. Let U denote the set of all the voters, and Bt denote the set of
candidate objects in the tth round. After Bt arrives, each voter i ∈ U votes on
one object in Bt; the system then recommends one object bt ∈ Bt to the client C
(based on the voters’ votes and the previous execution history), and C responses
the system with his/her feedback which tells whether he/she likes bt or not. The
system proceeds into the next round after that.

We measure the recommendation quality by loss, which is defined as the
number of objects that the algorithm recommends to the client C but C dislikes.

A client C is fully characterized by specifying C’s preferences on every object.
However, in a recommendation system, whether a client C likes an object j or not
is unknown until the system has recommended j to C and gotten the feedback.

We denote the votes of all the voters in U by V〈U〉, and we call V〈U〉 the voting
pattern of U , or simply a voting pattern when U is clear from the context. Given
a client C and a voting pattern V〈U〉, a (randomized) recommendation algorithm
A maps the pair (C,V〈U〉) to a (random) sequence of objects in B1 × · · · × BT .
We call a particular sequence in B1 × · · · × BT a recommendation sequence.

2.2 Differential Privacy in Recommendation Systems

Voters’ votes are assumed to be securely stored by the system, which are not
accessible from the public. Nevertheless, a curious client may still try to infer
voters’ votes by analyzing the recommendation results. In this paper, we adopt
differential privacy [17] as our definition of privacy. Roughly speaking, differen-
tial privacy protects privacy by ensuring that the outputs are “similar” for two
voting patterns V〈U〉 and V〈U ′〉 if they differ by one voter. Such a pair of voting
patterns are called adjacent voting patterns, and they are formally defined as:

Definition 1 (Adjacent Voting Patterns). Two voting patterns V〈U〉 and
V〈U ′〉 are adjacent voting patterns iff i) |U �U ′| = 1, and ii) for any voter
i ∈ U ∩ U ′ and in any round t ∈ {1, . . . , T}, i always votes on the same object
in both V〈U〉 and V〈U ′〉.
Generalizing Definition 1, we say that two voting patterns V〈U〉 and V〈U ′〉 are
k-step adjacent, if there exists a sequence of k + 1 voting patterns V〈U0〉 =
V〈U〉,V〈U1〉, . . . ,V〈Uk−1〉,V〈Uk〉 = V〈U ′〉 such that V〈U�〉 and V〈U�+1〉 are adja-
cent for any � = 0, . . . , k − 1.

Having defined adjacent voting patterns, we can then apply the standard
differential privacy in [17] to our setting:

Definition 2 (ε-Differential Privacy). A recommendation algorithm A pre-
serves ε-differential privacy if for any client C, any pair of adjacent voting pat-
terns V〈U〉,V〈U ′〉, and any subset S ⊆ B1 × · · · × BT ,

Pr[A(C,V〈U〉) ∈ S] ≤ eε Pr[A(C,V〈U ′〉) ∈ S],

where the probabilities are over A’s coin flips.
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2.3 Attack Model, Power of the Adversary

As indicated by Definitions 1 and 2, we protect voters’ privacy against the client.
We do not need to protect the client’s privacy because voters receive nothing
from the system.

Our research goal is to study the theoretical hardness of the aforemen-
tioned recommendation problem, therefore we assume that there is an adver-
sary with unlimited computational power who controls how the voters vote and
which objects the client likes. The adversary tries to compromise our algo-
rithm’s loss/privacy by feeding the algorithm with “bad” inputs. From the
perspective of game theory, our recommendation model can be viewed as a
repeated game between the algorithm, who chooses the objects to recommend,
and the adversary, who chooses the client’s preferences on objects and the voting
pattern. For our lower bounds, we consider an oblivious adversary that chooses
the client’s preferences on objects and the voting patterns in advance; for our
upper bounds, we consider an adaptive adversary whose choice in time t can
depend on the execution history prior to time t. By doing so, our results are
only strengthened.

2.4 Notations

Next we introduce some notations that characterize the system. Some of them
are also the key parameters that determine the best achievable loss/privacy.

The Client’s Diversity of Preferences. A client C’s diversity of preferences DC

is defined to be the number of rounds in which C likes more than one objects.

The Client’s Peers. Inherently, a collaborative recommendation system is able
to achieve small loss only if some voters have similar preferences to the client. Let
the distance between a client C and a voter i be the total number of objects that
are voted on by i but are disliked by C. Given a radius parameter R ∈ {0, . . . , T},
we define a voter i to be a client C’s peer if their distance is within R. Given
a client C, a voting pattern V〈U〉 and a radius parameter R, we can count the
number of C’s peers in U , and we denote it by PC,V〈U〉,R.

Other Notations. We define n to be an upper bound of |U| (i.e., the number
of voters), D to be an upper bound of DC (i.e., the client’s diversity of prefer-
ences), and P to be a lower bound of PC,V〈U〉,R (i.e., the number of the client’s
peers). The reader may wonder why these parameters are defined as upper/lower
bounds. The purpose is to give a succinct presentation. Take n as an example:
since differential privacy needs to consider two voting patterns with different
numbers of voters, if we define n as the number of voters, it would be unclear
which voting pattern we are referring to. The reader can verify that by choosing
the right directions for the parameters (e.g., we define n to be an upper bound,
and P to be a lower bound), our definition does not weaken our results.
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In general, we consider a large system that consists of many voters, many
objects (over all the rounds), and runs for a long time. That is, n and T can
be very large. In this paper, we also impose a (quite loose) requirement that
n = O(poly(T )), i.e., n is not super large compared to T .

In reality, a client shall find more peers as more voters join the system.
Otherwise, the client has an “esoteric tastes” and it is inherently hard for any
collaborative system to help him/her. Thus, in this paper, we consider the case
that P ≥ 6m, i.e., the client has at least a constant number of peers.

2.5 Loss/Privacy Goal

In this paper, we consider the worst-case expected loss of the algorithm, that is,
we aim to bound the algorithm’s expected loss for any client C and any voting
pattern V〈U〉 such that |U| ≤ n, DC ≤ D and PC,V〈U〉,R ≥ P . Notice that O(T )
loss can be trivially achieved by ignoring voters’ votes and recommending objects
randomly. However, such an algorithm is useless, and hence we consider the more
interesting case when non-trivial loss (i.e., o(T ) worst-case expected loss) is to
be guaranteed. It can be shown that the worst-case expected loss is Ω(R) for
any algorithm (Theorem 3). Therefore, sub-linear loss is achievable only when
R is sub-linear. In this paper, we focus on the case when R = O(T ν) for some
constant ν < 1.1

For the privacy, we aim to preserve ε-differential privacy. We study the best
achievable ε-differential privacy for any given target loss.

3 Related Work

Recommendation Systems and Online Learning. The research on recommenda-
tion systems has a long history [1,40]. A classic recommendation model is the
offline matrix-based model, in which the user-object relation is represented by
a matrix. In this paper, we consider a very different online recommendation
model. From the theoretical perspective, our model can be viewed as a variant
of the “Prediction with Expert Advice” (PEA) problem in online learning [9].
Such an approach that models the recommendation systems as online learning
problems has been adopted by other researchers as well, e.g., in [2,31,33,37,43].

Differential Privacy. There has been abundant research [14–16,18,20] on differ-
ential privacy. Much of the early research focused on answering a single query
on a dataset. Progress on answering multiple queries with non-trivial errors was
made later on, for both offline settings [4,19,25,38] (where the input is available
in advance), and online settings [5,10,11,18,26,29,41] (where the input continu-
ously comes). We will introduce the work on differentially private online learning
in [18,26,41] with more details soon after, as they are most related to this paper.
1 Technically, the assumptions that n = O(polylog(T )), P ≥ 6m and R = O(T ν) are

only for showing the near-optimality of our lower bound. Our lower bound itself
remains to hold without these assumptions.



On Differentially Private Online Collaborative Recommendation Systems 215

Protecting Privacy in Recommendation Systems. People are well aware of the
privacy risks in collaborative recommendation systems. Two recent attacks were
demonstrated in [34] (which de-anonymized a dataset published by Netflix) and
[6] (which inferred users’ historical data by combining passive observation of a
recommendation system with auxiliary information). The research in [34] even
caused the second Netflix Prize competition to be cancelled.

Many of the existing privacy-preserving recommendation systems adopted
privacy notions other than differential privacy (e.g., [3,7,8,35,36,39]). For stud-
ies on differentially private recommendation systems, prior to our paper, most
of them were for offline matrix-based models. Some experimentally studied
the empirical trade-offs between loss and privacy (e.g., [13,32,42]); the oth-
ers focused on techniques that manipulate matrices in privacy-preserving ways
(e.g., [12,23,24,28]). In a recent work [22], the authors proposed a modified ver-
sion of differential privacy (called distance-based differential privacy), and they
showed how to implement distance-based differential privacy in matrix-based
recommendation systems.

Differentially Private Online Learning. This paper is most related to differen-
tially private online learning, as our recommendation model is a variant of the
PEA problem in online learning. Currently, only a limited number of studies
have been done on this area [18,26,41]. In [18], Dwork et al. proposed a differ-
entially private algorithm for the PEA problem by plugging privacy-preserving
online counters into “Follow the Perturbed Leader” algorithm [27]. In [26,41],
differential privacy was considered under a more general online learning model
called “Online Convex Programming.”

Despite the similarity between our recommendation model and the learning
models in [18,26,41], there is an important difference. Since their research is
not for recommendation systems, they considered somewhat different notions of
privacy from ours. Roughly speaking, if interpreting their models as recommen-
dation problems, then their privacy goal is to ensure that each voter is “followed”
with similar probabilities when running the algorithm with two adjacent voting
patterns. Such a guarantee is not sufficient for a recommendation system. For
example, an algorithm that always “follows” voter Alice is perfectly private in
terms of their privacy definition, but completely discloses Alice’s private votes.2

Besides the difference in privacy definition, we provide both lower bound and
upper bound results, while [18,26,41] only have upper bound results.

4 Our Results and Contributions

Main Results. Our first result is a lower bound on the best achievable privacy:
2 On the other hand, our privacy definition does not imply their definitions either.

Therefore these two types of privacy models are incomparable.
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Theorem 1. For any recommendation algorithm that guarantees L = O(T η)
worst-case expected loss (η < 1 is a constant) and preserves ε-differential privacy,
ε = Ω( 1

P (D+R+log T
L )) = Ω( 1

P (D+R+log T )), even for an oblivious adversary.

Our second result is a near-optimal algorithm (the p-REC algorithm in Sect. 7.2):

Theorem 2. The p-REC algorithm guarantees O((R + 1) log n
P ) worst-case

expected loss, and it preserves O( 1
P (D + R + 1) log T

R+1 )-differential privacy,
even for an adaptive adversary.

It can be shown that the worst-case expected loss is Ω(R + log n
P ) even for

algorithms with no privacy guarantee (Theorem3). Thus, p-REC’s worst-case
expected loss is within a logarithmic factor to the optimal. Recall that R =
O(T ν) for a constant ν < 1 and log n = O(log T ), hence p-REC’s worst-case
expected loss is within O(T η) for some constant η < 1 too. Then, by Theorem1,
p-REC’s privacy is also within a logarithmic factor to the optimal.

Discussion of our Results. Theorem 1 shows that a minimal amount of “privacy
leakage” is inevitable, even for the fairly weak O(T η) target loss.

Moreover, unlike many other systems in which the utility downgrades linear
to the privacy parameter ε, the loss in an online recommendation system is much
more sensitive to ε: according to Theorem 2, we can achieve near-optimal loss for
an ε = O( 1

P (D + R + 1) log T
R+1 ); meanwhile, only trivial loss is achievable for

just a slightly smaller ε = o( 1
P (D + R + log T )). In other words, the trade-offs

between loss and privacy are rather little — the best achievable ε is essentially
the same (up to a logarithmic factor) for all the algorithms with O(T η) worst-
case expected loss.3 For this reason, instead of designing an algorithm that has
a tunable privacy parameter ε, we directly propose the p-REC algorithm that
simultaneously guarantees both near-optimal loss and privacy.

From our results, we identify the key parameters D, P and R that determine
the best achievable loss and/or privacy.

The parameter R characterizes the correlation between the client and the
voters, and it is not surprised that the best achievable loss is inherently limited
by R, because a basic assumption for any collaborative system is the existence of
correlation in the data (e.g., the low-rank assumption in matrix-based recommen-
dation systems), and the system works by exploring/exploiting the correlation.

We notice that a larger P gives better privacy. This is consistent with our
intuition, as an individual’s privacy is obtained by hiding oneself in a population.

We also notice that the best achievable privacy linearly depends on the
client’s diversity of preferences D and the radius parameter R. The parameter
D looks to be unnatural at the first sight, and no prior research on recommenda-
tion systems has studied it. The reason might be that most of the prior research
3 This statement actually holds for all the algorithms with o(T ) loss. In Theorem 1,

we choose O(T η) target loss to get a clean expression for the lower bound on ε, and
a similar (but messier) lower bound on ε holds for o(T ) target loss too.
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focused on the loss, and D has no impact on the loss (the loss should only be
smaller if a client likes more objects). Nevertheless, in this paper, we discover
that D is one of the fundamental parameters that determine the best achievable
privacy. We provide an intuitive explanation of ε’s linear dependence on D and
R with an illustrative example in Sect. 7.1.

5 Preliminaries

Let P and Q be two distributions over sample space Ω. The relative entropy
between P and Q is defined as

∑
ω∈Ω P(ω) ln P(ω)

Q(ω) , where P(ω) and Q(ω) is
the probability of ω in P and Q, respectively. We adopt the conventions that
0 log 0

0 = 0, 0 log 0
x = 0 for any x > 0 and x log x

0 = ∞ for any x > 0. It is well
known that relative entropy is always non-negative [30].

In this paper, we often simultaneously discuss two executions A(C,V〈U〉)
and A(C,V〈U ′〉) for some algorithm A, some client C and two voting patterns
V〈U〉 and V〈U ′〉. As a notation convention, we will use Pr[·] and Pr′[·] to denote
the probability of some event in the execution of A(C,V〈U〉) and A(C,V〈U ′〉),
respectively. For any recommendation sequence b = (b1, . . . , bT ) ∈ B1 × · · · × BT

and any round t, we define the random variables Et(b) = ln Pr[bt|b1,...,bt−1]
Pr′[bt|b1,...,bt−1]

and

E(b) = ln Pr[b]
Pr′[b] . It then follows that E(b) =

∑T
t=1 Et(b). We also define random

variable Lt to be the loss of execution A(C,V〈U〉) in the tth round.
Finally, we list the following lower bound for the worst-case expected loss.

Theorem 3 can be proved by constructing a client with random opinions on
objects. Please see the full version [21] of this paper for its proof.

Theorem 3. The worst-case expected loss of any recommendation algorithm is
Ω(R + log n

P ), even for an algorithm providing no privacy guarantee and an
oblivious adversary.

6 The Special Setting Where D = R = 0

In order to better explain our ideas, we start by discussing the simple setting
where D = R = 0. That is, the client likes exactly one object in every round, and
the client’s peers never vote on any object that the client dislikes. We discuss
the general setting where D + R ≥ 0 in the next section.

6.1 Lower Bound

When D = R = 0, we have the following lower bound on the privacy:

Theorem 4. For any recommendation algorithm that guarantees L = o(T )
worst-case expected loss and preserves ε-differential privacy, if D = R = 0,
then ε = Ω( 1

P log T
L ), even for an oblivious adversary.
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Proof (Sketch). Due to the limitation of space, here we provide a proof sketch
of Theorem 4. The reader can refer to [21] for the full proof of this theorem.
Our proof consists two main steps. In the first step, we consider a particular
round t and two clients Alice and Bob who have different preferences in the
tth round. Since the algorithm has to provide good recommendations to both
Alice and Bob, the output distributions must be very different. Meanwhile, we
carefully construct Alice’s and Bob’s executions, such that their voting patterns
are O(P )-step adjacent to each other, hence the output distributions cannot be
much different. From this dilemma we can establish a lower bound for the tth
round. In the second step, we then extend this lower bound to all the T rounds
using mathematical induction.

6.2 Algorithm

We propose the following Algorithm1 for the simple setting where D = R = 0.
As we will see, it is a special case of the general p-REC algorithm in Sect. 7.2.
Therefore, we call it the p-RECsim algorithm (“sim” is short for “simple”).

The p-RECsim algorithm maintains a weight value weight[i] for each voter i,
and it recommends objects according to voters’ weight in each round by invoking
the procedure RecommendByWeight(). When it receives the client’s feedback, it
invokes the procedure UpdateWeight() to update voters’ weight. In p-RECsim,
each voter’s weight is either 1 or 0. A voter with 0 weight has no impact on the
algorithm’s output, and once a voter’s weight is set to 0, it will never be reset
to 1. Therefore, we can think of that UpdateWeight() works by “kicking out”
voters from the system. We call the voters who have not been kicked out (i.e.,
those who have non-zero weight) surviving voters.

The p-RECsim algorithm shares a similar structure to the classic Weighted
Average algorithm for the PEA problem [9], as they both introduce weight to
voters and output according to the weight. Our core contribution is the dedicated
probability of recommending objects. In each round t, p-RECsim recommends
object j with probability γ · 1

m + (1 − γ) · φ(xj,t)∑
k∈Bt

φ(xk,t)
, where xj,t is the fraction

of surviving voters voting on object j in round t. We have:

Theorem 5. If D = R = 0, then the p-RECsim algorithm guarantees O(log n
P )

worst-case expected loss and it preserves O( 1
P log T )-differential privacy, even

for an adaptive adversary.

According to Theorem3, p-RECsim’s loss is within a constant factor to the opti-
mal. Then by Theorem 4, p-RECsim’s ε is also within a constant factor to the
optimal ε among all the algorithms that guarantee O(T η) worst-case expected
loss. We prove p-RECsim’s loss bound in [21]. Here we briefly introduce the main
steps to analyze p-RECsim’s privacy.

Consider the executions p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), where
C is any client and V〈U〉 and V〈U ′〉 are any pair of adjacent voting patterns (U
contains one more voter than U ′). To show that p-RECsim preserves O( 1

P log T )-
differential privacy, it is sufficient to show that |E(b)| = O( 1

P log T ) for any
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Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

3T−1
, λ ← 2m ln T , ρ ← 1

2m
, weight[i] ← 1 for each i ∈ U

Procedure Main()

foreach round t = 1, . . . , T do
obj ← RecommendByWeight(weight[ ]);
Recommend object obj to the client C;
feedback ← the client C’s feedback on object obj;
UpdateWeight(weight[ ], obj, feedback);

Procedure RecommendByWeight(weight[ ])
foreach object j ∈ Bt do

xj,t ←
∑

i∈Uj,t
weight[i]

∑
i∈U weight[i]

, where Uj,t is the set of voters who vote on object

j in round t;

Independently draw a Bernoulli random variable Zt with Pr[Zt = 1] = γ;
if Zt = 1 then

Independently draw an object obj from Bt uniformly at random;
else

Independently draw an object obj from Bt according to the following
distribution: each object j ∈ Bt is drawn with probability proportional

to φ(xj,t), where φ(x) =

{
0 if x ≤ ρ,

eλx − eλρ otherwise;

return obj;

Procedure UpdateWeight(weight[ ], obj, feedback)
if feedback = “dislike” then

weight[i] ← 0 for every voter i who votes on object obj;
else

weight[i] ← 0 for every voter i who does not vote on object obj;

Algorithm 1. The p-RECsim algorithm.

recommendation sequence b = (b1, . . . , bT ). From now on, we will consider a
fixed b, a fixed C and a fixed pair of V〈U〉 and V〈U ′〉.

Given b = (b1, . . . , bT ), let Wt(b) =
∑

i∈U weight[i] be the number of surviving
voters at the beginning of round t in execution p-RECsim(C,V〈U〉), conditioned
on that the recommendations in the first t − 1 rounds are b1, . . . , bt−1. Since
p-RECsim never kicks out the client’s peers, Wt(b) ≥ P ≥ 6m.

First, we upper-bound the “privacy leakage” in each single round:

Lemma 6. For any round t, |Et(b)| ≤ 3λ · 1
Wt(b)

.

Lemma 6 can be shown by a straightforward but rather tedious calculation, see
the full version [21] of this paper for the proof.

Next, we show that a constant fraction of surviving voters are kicked out
whenever there is non-zero “privacy leakage:”



220 S. Gilbert et al.

Lemma 7. For any round t, if |Et(b)| �= 0, then Wt+1(b) ≤ Wt(b) · (1 − 1
3m ).

Proof. Notice that |Et(b)| �= 0 iff Pr[bt|b1, . . . , bt−1] �= Pr ′[bt|b1, . . . , bt−1]. Let x
and x′ be the fraction of surviving voters voting on the recommended object
bt in execution p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), respectively. Since
there are Wt(b) surviving voters, |x − x′| ≤ 1

Wt(b)
≤ 1

P ≤ 1
6m .

We claim that x > 1
3m . Assume for contradiction that x ≤ 1

3m . Since |x−x′| ≤
1

6m , both x and x′ will be no larger than 1
3m + 1

6m = 1
2m = ρ. Notice that

φ(ζ) = 0 for any variable ζ ≤ ρ, it then follows that φ(x) = φ(x′) = 0 and
Pr[bt|b1, . . . , bt−1] = Pr′[bt|b1, . . . , bt−1] = γ · 1

m , contradiction.
If the clients dislikes the recommended object bt, by p-RECsim’s rule of updat-

ing weight, x > 1
3m fraction of surviving voters will be kicked out.

If the clients likes bt, then there must exist another object ξ ∈ Bt which is
different from bt, such that Pr[ξ|b1, . . . , bt−1] �= Pr′[ξ|b1, . . . , bt−1]. Otherwise, if
all the other objects are recommended with the same probability in executions
p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), so will be bt, contradiction. By
similar arguments, there are at least 1

3m fraction of surviving voters voting on the
object ξ in both p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉). Since p-RECsim

kicks out all the voters who do not vote on bt (including those who vote on ξ),
again we get the desired result. �

Lemma 6 states that |Et(b)| is O( λ
Wt(b)

) = O( 1
P log T ). Lemma 7 implies that

there can be at most O(log n
P ) rounds with |Et(b)| �= 0. A combination of these

two lemmas immediately shows that overall we have O( 1
P log T ·log n

P )-differential
privacy. With a bit more careful analysis, we can remove the extra log n

P factor.
We leave the details to [21].

7 The General Setting Where D + R ≥ 0

7.1 Lower Bound

In this section, we prove Theorem 1. If 0 ≤ D + R < 6 ln T and the target loss
L = O(T η), then Ω(log T

L ) = Ω(D+R+log T
L ) and hence Theorem 1 is implied by

Theorem 4. When D + R ≥ 6 ln T , we have the following Theorem 8. Theorem 1
is then proved because Ω(D + R) = Ω(D + R + log T

L ) if D + R ≥ 6 ln T .

Theorem 8. For any recommendation algorithm that guarantees L = o(T )
worst-case expected loss and preserves ε-differential privacy, if D + R ≥ 6 ln T ,
then ε = Ω( 1

P (D + R)), even for an oblivious adversary.

Before proving Theorem8, we first explain the intuition behind the proof by
a simple illustrative example. Imagine that there is one client Alice, and two
voting patterns V1 and V2. Both V1 and V2 contain only one voter named Bob,
but Bob may vote differently in V1 and V2. We let Bob be Alice’s peer in both
V1 and V2. For simplicity let us set R = 0, so Bob never votes on any object
that Alice dislikes. By Definition 1, V1 and V2 are 2-step voting patterns.
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Now consider a particular round t with two candidate objects. If Alice likes
only one of the objects, then there is only one way for Bob to cast vote; otherwise
Bob will no longer be a peer of Alice. However, if Alice likes both objects, then
Bob can vote on different objects in V1 and V2 without breaking the promise
that he is Alice’s peer. Since Bob is the only information source of the system,
an recommendation algorithm A has to somehow “follow” Bob, and hence the
distributions of the executions A(Alice,V1) and A(Alice,V2) will be different. If
Alice’s diversity of preferences is D, then this situation can happen for D times,
which results an ε ∝ D. The linear dependency of ε on R is for a similar reason.

Proof (Sketch of Theorem 8). Due to the limitation of space, we provide a proof
sketch in the main text. The full proof can be found in [21].

We first prove Theorem 8 for the case where P = 1 and 6 ln T ≤ D + R ≤ T .
To show Theorem 8 for the case where P = 1, it is sufficient to show that
for any given algorithm A, we can construct a client C and a pair of 2-step
adjacent voting patterns V〈U〉,V〈U ′〉, such that ln Pr[b]

Pr′[b] = Ω(D + R) for some
recommendation sequence b ∈ B1 × · · · × BT .

We construct the client C by setting C’s preferences on objects. We will
always ensure that C likes multiple objects in at most D rounds. For the vot-
ing pattern V〈U〉 and V〈U ′〉, we let each of them contain one voter U and U ′,
respectively. We construct the voting patterns by setting U and U ′’s votes in
each round. We will always ensure that both U and U ′ vote on at most R objects
that are disliked by the client C, hence U and U ′ are both the client C’s peers.

We construct C, V〈U〉 and V〈U ′〉 round by round. Imagine that we are in
the beginning of the tth round, with the previous recommendation history being
b<t = (b1, . . . , bt−1). In order to better demonstrate our ideas, let us temporarily
assume an adaptive adversary who can also see the recommendation history
b<t. The adversary can then set C’s preferences on objects and U and U ′’s votes
based on the algorithm A’s behavior:

– Case 1 : A “follows” voter U with probability ≤ 0.75. In this case, the adver-
sary let C like exactly one object in round t, and it let U vote on the only
object that C likes. It then follows that E[Lt|b<t] ≥ 1 − 0.75 = 0.25, i.e., the
expected loss in round t is at least a constant.

– Case 2.a: A “follows” voter U with probability > 0.75, but it “follows” the
voter U ′ with probability ≤ 0.5. In this case, if the adversary let U and U ′

vote identically, then the distributions Pr[·|b<t] and Pr′[·|b<t] will be different.
In particular, we can show that the relative entropy E[Et|b<t] ≥ 0.13, i.e., the
expected “privacy leakage” in round t is at least a constant.

– Case 2.b: A “follows” voter U with probability ≥ 0.75, and it “follows” voter
U ′ with probability > 0.5. This case is symmetric to Case 2.a, and hence
the adversary can force E[Et|b<t] ≥ 0.13 by letting U and U ′ vote differently.
However, it is worth noting that during the entire execution of A, the adver-
sary can let U and U ′ vote differently for at most D + R times due to the
constraints imposed by D and R (see the full proof for more details).
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It can be shown that with the above adaptive construction, E[E ] = Ω(D+R) for
any algorithm A, which implies the existence of one recommendation sequence
b such that E(b) = ln Pr[b]

Pr′[b] = Ω(D + R). To see why E[E ] = Ω(D + R), we first
notice that there cannot be too many rounds in Case 1 on expectation, because
A has to ensure o(T ) expected loss. Therefore most of the rounds must be in
Case 2.a or Case 2.b. If there are many rounds in Case 2.a, then E[E ] must be
large because E[Et|b<t] ≥ 0.13 in every Case 2.a round, and E[Et|b<t] ≥ 0 in all
the other rounds (relative entropy is non-negative [30]). Otherwise, there must
be many rounds in Case 2.b. In this case, the adversary can force E[Et|b<t] ≥ 0.13
for Ω(D + R) times, and we have E[E ] = Ω(D + R).

The aforementioned adaptive adversary chooses a “bad setting” for the
algorithm A in each round based on which case A is in. We point out that
this is actually not necessary: we still have E[E ] = Ω(D + R) if the adversary
randomly chooses a “bad setting” in each round with a proper distribution. Such
a (random) adversary is oblivious, and it implies the existence of a “bad input”
that does not depend on A’s execution. This finishes the proof in the case of
P = 1.

Finally, we prove Theorem 8 for the cases where D + R > T and/or P > 1.
These proofs are just simple extensions of the above basic proof. �

7.2 Algorithm

We propose the following p-REC algorithm for the general setting where D+R ≥
0. The p-REC algorithm is a generalized version of the p-RECsim algorithm,
and it shares a similar structure as that of p-RECsim, except that the procedure
UpdateWeight() is replaced by UpdateCreditAndWeight(). In fact, we can get
back the p-RECsim algorithm by setting D = R = 0 in the p-REC algorithm.

Theorem 2 summarizes p-REC’s loss and privacy. According to the lower
bounds in Theorems 1 and 3, both its loss and privacy are within logarithmic
factors to the optimal.

In the beginning of the p-REC algorithm, each voter i ∈ U is initialized with
two credit values credit(D)[i] = 2D (which we call D-credit) and credit(R)[i] =
2R + 1 (which we call R-credit). In each round t, the algorithm recommends
objects by invoking the RecommendByWeight() procedure. After it receives the
client’s feedback, the algorithm updates each voter’s credit and then calculate
his/her weight by invoking the UpdateCreditAndWeight() procedure.

To see the intuition behind the p-REC algorithm, let us analyze why the
p-RECsim algorithm fails in the general setting where D + R ≥ 0. If we run
p-RECsim in the general setting, we may end up with a situation where all the
client’s peers are kicked out from the system. A client’s peer can be (wrongly)
kicked out in two scenarios:

– when the client likes more than one objects in some round, the peer votes on
one such object, but another such object is recommended;

– when the peer votes on an object that the client dislikes, and that object is
recommended to the client.
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Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

(3T/(R+1))−1
; λ ← 2m ln T

R+1
; ρ ← 1

2m
; for each i ∈ U :

credit(D)[i] ← 2D, credit(R)[i] ← 2R + 1, weight[i] ← 1

Procedure Main()

foreach round t = 1, . . . , T do
obj ← RecommendByWeight(weight[ ]);
Recommend object obj to the client C;
feedback ← the client C’s feedback on object obj;

UpdateCreditAndWeight(credit(D)[ ], credit(R)[ ], weight[ ], obj,
feedback);

Procedure UpdateCreditAndWeight(credit(D)[ ], credit(R)[ ], weight[ ], obj,
feedback)

if feedback = “dislike” then

credit(R)[i] ← credit(R)[i] − 1 for every voter i who votes on obj;
else

credit(D)[i] ← credit(D)[i] − 1 for every voter i who does not vote on obj;

foreach voter i ∈ U do

if credit(R)[i] > 0 and credit(D)[i] + credit(R)[i] > 0 then
weight[i] ← 1;

else
weight[i] ← 0;

Algorithm 2. Privacy-preserving RECommendation (p-REC) algorithm.

However, since these two scenarios can happen for at most D + R times, a
natural idea is to give a voter D+R more “chances” before we kick out him/her.
Motivated by this, we could initialize each voter i with D + R + 1 credit, and
deduct i’s credit by 1 when i is caught to vote on an object the client dislikes,
or when the client likes the recommended object but i does not vote on it. We
kick out a voter only when he/she has no credit.

For some technical reasons, p-REC needs to introduce two types of credit
(D-credit and R-credit), and deducts different types of credit in different situa-
tions. It also initializes each voter with 2D (instead of D) D-credit and 2R + 1
(instead of R + 1) R-credit. The analysis of the p-REC algorithm is similar in
spirit to that of the p-RECsim algorithm, and we leave the details to [21].
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Abstract. Stack-based attacks typically require that attackers have a
good understanding of the stack layout of the victim program. In this
paper, we leverage specific features on ARM architecture and propose a
practical technique that introduces randomness to the stack layout when
an Android application executes. We employ minimal binary rewriting
on the Android app that produces randomized executable of the same
size which can be executed on an unmodified Android operating system.
Our experiments on applying this randomization on the most popular
20 free Android apps on Google Play show that the randomization cover-
age of functions increases from 65 % (by a state-of-the-art randomization
approach) to 97.6 % with, on average, 4 and 7 bits of randomness applied
to each 16-bit and 32-bit function, respectively. We also show that it is
effective in defending against stack-based memory vulnerabilities and
real-world ROP attacks.

Keywords: Memory layout randomization · Android security

1 Introduction

Stack plays an essential part in maintaining and managing runtime data of an
execution, e.g., context of function invocation, parameters, and local variables.
Many attacks are based on disclosure or modification of such information on the
stack. Examples include traditional code injection attacks that overwrite sensi-
tive data, e.g., return addresses and function pointers, to execute the injected
malicious code [1], and more recent code reuse attacks that chain existing code
gadgets together to perform malicious activities [2–5].

A common requirement of such stack-based attacks is a good understanding
of the stack layout by attackers. Applications with predictable stack layout are
typically exposed to the high risks of such attacks. This requirement of knowing
the stack layout becomes more critical in recent Return-Oriented Programming
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(ROP) attacks because an attacker needs to put more efforts in arranging data
on the stack to chain various code gadgets together [2,6–9].

Randomizing the stack layout is a natural response to make it more diffi-
cult for attackers to locate critical data. Modifications have been proposed to
operating systems to introduce such randomness. For example, Address Space
Layout Randomization (ASLR) randomizes the base address of many code/data
segments, and is widely used in both x86 and mobile platforms [10–12]. However,
researchers have been questioning such randomization techniques with modified
operating systems in their effectiveness (or amount of randomness) [13,14], com-
pleteness [15–17], and many claim that they can be circumvented with advanced
attacking techniques like Return-Oriented Programming [5,8].

Randomness could also be introduced to the application alone without modi-
fications to the operating system [18–20]. However, this has since been considered
as a less favorable solution mainly due to the difficulty in binary rewriting the
application as well as the relatively low applicability and amount of random-
ness [21]. Binary rewriting an executable could be problematic especially when
the size of a function in the resulting binary increases, which means that all
instructions in the subsequent functions have to be shifted and all jump targets
affected have to be recalculated. This can sometimes be avoided with tricks like
re-ordering of functions [13], but is in general an unsolved problem that puts
heavy stress on its applicability.

In this paper, we explore how far we can go in terms of introducing random-
ness into the stack layout with some minimal rewriting to the executable binary
without any operating system support. By minimal binary rewriting, we exercise
the restriction that no insertion or deletion of instructions is allowed, which also
implies that the program size will remain unchanged.

We show that a reasonable amount of randomness of up to 7 bits to many
functions is possible by leveraging special features of the ARM architecture when
binary rewriting Android applications. Our solution does not require any mod-
ification to the Android operating system. The main idea is to randomize the
set of registers to be pushed onto the stack at prologue of a function (and the
corresponding registers to be popped). For example, a function might be sur-
rounded with push {r3,r4,r5,lr} and pop {r3,r4,r5,pc} to store registers
used in the caller function. Our technique randomly chooses a superset of the
registers, e.g., {r1,r3,r4,r5,r8,r9,lr}, to be pushed onto (and popped off)
the stack. This change effectively adds a random amount of data on the stack
and shifts all other data on the stack frame by a random offset. The intuition
behind such a design is that this change requires a simple mutation to the push
and pop instructions which change neither the length of the instructions nor the
overall size of the app on ARM architecture.

We implement a proof-of-concept binary rewriter to automatically apply this
randomization to Android apps. We show that many existing code reuse attacks
no longer work with our randomized Android apps. Our experiments with the
most popular 20 free Android apps on Google Play also show that the random-
ization successfully applies to more than 97.6 % of the functions, a noticeable
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increase from 65 % achievable by previous state-of-the-art randomization tech-
niques [15]. Every function receives, on average, 7 bits of randomness to their
location on the stack when it uses 32-bit ARM/Thumb instructions or 4 bits of
randomness if it uses 16-bit Thumb instructions. Experiments on a format-string
vulnerability and a real-world ROP attack show that our proposed randomiza-
tion is effective in defending against real-world attacks.

2 Background and Threat Model

As our proposed technique deals with binary rewriting of Android apps to be
executed on ARM devices, we first briefly present some necessary background of
ARM instructions and registers. We also present the threat model under which
our proposed solution works.

Any ARM binary (containing native code from shared libraries or Dalvik
bytecode compilation) may contain both ARM and Thumb-2 instructions. ARM
is a 32-bit fixed-length instruction set. Thumb-2, developed from 16-bit Thumb
instructions, constitutes an instruction set with 16-bit and 32-bit instructions
intermixed. This brings flexibility and performance; however, the difference in
instruction length also makes binary analysis and rewriting more difficult.

ARM architecture provides 16 core registers of 32-bit length for ARM and
Thumb-2 instructions. These registers are labeled r0 to r15. Registers from r12
to r15 are also known as the ip, sp, lr, and pc register. During a function call,
registers from r0 to r3 are used to store parameters if needed, lr is used to store
the return address, and r0 is used to keep the return value. A function typically
uses some but not all registers.

We assume a threat model in which the adversary has a copy of the original
application (without randomization) and understands the full details of our ran-
domization algorithm. The adversary may also have multiple copies of the ran-
domized app; although he/she does not have the specific randomized copy that
the victim is using. We also assume that the app might contain some exploitable
vulnerabilities that the adversary is aware of.

3 Randomizing Stack Layout and Application Scenarios

Recall that our objective is to introduce randomness to the stack layout when
an Android app executes, and to do so with minimal binary rewriting without
operating system support. In this section, we present the high-level idea of our
design and a few scenarios in which our proposed solution might be applied.

3.1 Randomization Design

Figure 1 shows the native code of a function in an Android app and the corre-
sponding stack layout when it executes. The function first pushes registers r4,
r5, r6, and lr onto the stack, performs its execution during which r4, r5, and
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r6 are used as temporary storage, and finally pops data out of the stack into
r4, r5, r6, and pc. Randomizing this stack layout is to make the location of
data on the stack frame unpredictable from the attacker. Considering possible
ways of doing so with binary rewriting only (recall that we do not want to mod-
ify the operating system), one could introduce random padding to the base (as
done in one of the previous state-of-the-art randomization techniques [10]), or
to introduce the random padding among data objects in the stack frame [15,16].

Fig. 1. An example of native code execution

However, we will not be able to introduce padding among the various data
objects due to our requirement of doing minimal binary rewriting without addi-
tion or deletion of instructions. What we could do, though, is to modify the
push instruction to have a random set of additional registers pushed, as shown
in Fig. 2, effectively randomizing the base of the stack frame. In this example,
we additionally push r2 and r7. In general, for 16-bit Thumb instructions, the
set of general registers that can be pushed and popped includes 8 registers r0
to r7. For ARM and 32-bit Thumb instructions, the set contains 13 registers r0
to r12. Besides them, lr and pc can also appear on the list.

This design of pushing and popping a random set of registers satisfies our
requirement of minimal binary rewriting because ARM architecture uses a sin-
gle push or pop instruction to push or pop any number of registers, and the
instructions to push/pop different sets of registers are of the same length — a
feature that is very different from the x86 platform.

To maintain semantic equivalence with the original app for proper execution,
there are a few things we have to take note. First, the same set of registers
are to be pushed and popped; otherwise our modification could have modified
the execution context of the caller function. Second, any references to memory
locations on the stack frame between the push and pop instructions are to be



Stack Layout Randomization with Minimal Rewriting of Android Binaries 233

Fig. 2. Randomized set of registers pushed onto the stack

updated with the modified offsets. Lastly, note that r0 cannot be added to the
set of padding registers when it is used to store the return value, since popping
r0 would overwrite the return value stored.

3.2 Application Scenarios

Our system can be implemented as a third-party Android app to introduce
randomization to the subject app (and potentially re-package it and re-sign
it). This satisfies our requirement of not modifying the operating system while
achieving the objective of randomizing stack layout. However, there are a few
ways in which we can gain better user experience and security.

We can perform the binary rewriting right after app installation. The binary
to be rewritten could be the original native code included in the installation
package or the oat file compiled during installation (when ART runtime is used).
This would not require re-packaging of the rewritten app.

We could also perform the binary rewriting every time the app starts its
execution. This has the advantage that a new and different randomization is
used every time the app is loaded, making it even harder for an attacker to
predict the stack layout.

In either case, minimal changes are needed to the Android application
installer or loader, and the binary rewriting becomes completely transparent
to the end user. Also note that our proposed randomization can be used in
conjunction with other existing security mechanisms, e.g., ASLR on Android.
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4 Implementation

As a proof-of-concept implementation, our automatic binary rewriting has been
implemented in Python with about 2000 LOC. It takes as input any Android app
and outputs the randomized app ready for installation and execution on Android
4.0 or later. We first extract the binary files from the Android app, disassemble
them, and discover functions and the push and pop instruction pairs. For each
pair identified, we flip a coin and apply our randomization design to change
the set of registers accordingly. After that, we update the offset of operands in
affected instructions to be consistent with the randomization applied. In the rest
of this section, we present details of our implementation in each step and show
the complexity involved.

4.1 Static Analysis

In this step, we discover all functions that are candidates of applying our random-
ization, find out all push and pop instruction pairs, and discover all instructions
for which the offsets need to be updated. We use Hopper1, a powerful disassem-
bler, to disassemble the binary file.

However, the mixture of ARM instructions (32-bit) and Thumb instructions
(16-bit and 32-bit) and the existence of embedded constants between instruc-
tions sometimes make Hopper incorrect in disassembling all instructions. We use
analysis results from Hopper as a reference and conduct more in-depth analysis
to ensure the completeness and correctness of static analysis.

Function Discovery. Our analysis performs recursive disassembling of instruc-
tions and functions by starting with functions listed in the exported function
table and tracing control flow targets of blx and bl. Hopper fails to recognize
blx and bl proceeded functions when the target of blx or bl is a function that
never returns back to its caller, e.g., when the target is an exception handler.
Listing 1 in AppendixA shows an example of this case.

We solve this problem by recognizing the multiple prologue instructions in a
function recognized by Hopper which signals the identification of a new function.

Push/Pop Instructions. For each function discovered, we need to find all
epilogue instructions to apply the randomization to ensure correct execution
and semantic equivalence. Here are some cases that require special attention.

CASE 1: Multiple Epilogue Instructions. It is not uncommon for a function
to have multiple returns and the corresponding (multiple) epilogue instructions
(Listing 2 in AppendixB shows an example). It is important that we identify and
change all these epilogue instructions to maintain balance of the stack. We make
sure not to miss any epilogue instructions by constructing the intra-procedure
control flow graph for each function and identifying all leaf nodes.
1 Hopper Disassembler: http://www.hopperapp.com.

http://www.hopperapp.com
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CASE 2: Push-Proceeded Prologue. There could be additional push instructions
before a function prologue (Listing 3 in AppendixB shows an example). For
simplicity, we randomize only the push and pop instructions pairs involving
register lr.

CASE 3: Unmatched Push and Pop. There are scenarios in which the set
of registers pushed and popped in a function prologue and epilogue does not
match (Listings 4 and 5 in AppendixB are two examples). To maximize the
opportunities of randomization, we go ahead and apply our binary rewriting in
both cases. We exercise extra care in these cases, though, to make sure that
the sequence (not just the set) of registers pushed and popped maintain the
same one-to-one mapping before and after randomization (see the examples in
AppendixB).

4.2 Randomization and Updating Offsets

We flip a coin here to determine the set of registers to be pushed in addition
to those included in the original prologue and epilogue. The candidate set of
registers from which we can choose includes r1 to r11 for ARM instructions
and r1 to r7 for Thumb (16-bit and 32-bit) instructions excluding those in the
original prologue and epilogue. Exception goes to some ARM instructions that
use a special constant encoding as explained below.

As discussed in Sect. 3.1, we have to modify instructions in the randomized
function to make sure that they can access the correct data on the stack which
is now shifted by a random offset. This typically applies to data addressed with
the stack pointer sp (or directly via r11). Figure 8 in AppendixB shows data in
four different regions that require different treatment in our updating.

With the exception of local variables, instructions involving access to data
including stored invocation context, function parameters, and data from the
previous stack frames need to be updated by adding to the original offset the
randomized amount of padding introduced. A complexity arises when trying to
update the offset to a number that cannot be properly represented in the ARM
instruction. This is due to the design of using only 12 bits of instruction space
to represent a useful set of 32-bit constants. If the new offset cannot be properly
represented in the 12-bit “rotation” format, we simply exclude the corresponding
set of registers from the randomization candidate. Note that the required offset
could potentially be represented with (multiple) alternative instructions; we do
not explore this option due to the minimal binary rewriting requirement.

5 Evaluation and Discussions

Our evaluation focuses on the security effectiveness in defending against stack-
based memory attacks. In this section, we present our analysis on the function
coverage, amount of randomness introduced, and demonstrate our capability in
mitigating real-world attacks. To put our analysis into the context of real-world



236 Y. Liang et al.

applications, we pick the top 20 free Android apps on Google Play as in Jan
2015 and apply our randomization on the native code included in these appli-
cation packages. One of these twenty apps, QRCode Reader, does not include
any native code in its application package, and we therefore did not include it in
our analysis; however, as discussed in Sect. 3, our randomization could also be
applied to the native code compiled at load time or installation time with some
engineering effort. Our experiments include some widely used native libraries,
e.g., libffmpeg.so and libcocos2dcpp.so. We directly execute every random-
ized app on a Google Nexus 5 phone with Android 4.4.4 to make sure that our
modification maintains the semantics and correctness of execution.

In terms of performance (not the focus of our evaluation in this section),
since there is no extra instruction inserted while performing the instruction ran-
domization and minimal binary rewriting, there is no observable performance
overhead at runtime.

5.1 Function Coverage and Amount of Randomness

Our first evaluation focuses on the number of functions that can be randomized
and the amount of randomness obtained with our proposed scheme. Functions
that cannot be randomized are those with their prologue and epilogue originally
covering all candidate registers, i.e., when r0-r7 were all pushed/popped in a
16-bit Thumb function or when r0-r11 were all pushed/popped in an ARM or
32-bit Thumb function.

Figure 3 shows the percentage of functions that have various numbers of reg-
isters for randomization (0 means that the function cannot be randomized). Our
evaluation shows that the percentage of functions that cannot be randomized
is 0.8 % and 2.4 % for 16-bit and 32-bit functions, respectively, which are both
small. We also notice that many functions have large (≥ 6 for 16-bit functions
and ≥ 10 for 32-bit functions) randomization opportunities, average of which
account for 32.75 % and 30.28 % of all 16-bit and 32-bit functions, respectively.

Here we compare our function coverage with another state-of-the-art stack
layout randomization technique that does not require operating system support
as well. Bhatkar et al. proposed to introduce a randomized padding between
the base of stack frame and the local variables by modifying instructions that
create the space for local variables, typically sub esp, #0x100 for example [15].
They reported a function coverage of 65 % – 80 %. We apply Bhatkar’s idea
on the 19 Android apps in our experiment and obtain even worse results with
an average function coverage of 9.94 % function. This relatively low coverage
is mainly because only functions with at least one local variable would have
instructions like sub esp, #immediate. Android, however, has more general-
purpose registers and applications typically favors using them rather than local
variables. With many functions not using local variable, the applicability of
Bhatkar’s approach on Android applications is low.

We also count the number of available registers for randomization as it tells
us the number of bits of the randomness we introduce for a function frame.
Our evaluation results show that 16-bit and 32-bit functions enjoy an average
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Fig. 3. Percentage of functions with various number of registers for randomization

of 4 bits and 7 bits of randomness, respectively, out of the maximum amount
of randomness of 8 (for the entire set of registers r0 to r7) and 12 (for the
entire set of registers r0 to r11) for 16-bit and 32-bit functions, respectively2.
Note that this is the amount of randomness applied to each individual function
(independently). Functions usually use only a small subset of the registers with
the rest being available for our introducing randomness.

5.2 Randomness Among Objects Inside a Function

The previous subsection evaluates the function coverage of our scheme and the
amount of randomness introduced. In this subsection, we walk inside each func-
tion and see the amount of randomness applied to various objects inside a func-
tion. In particular, we count the distribution of data objects over four different
stack regions in Fig. 4. We find that most of data objects that are accessed by the
current function residing in regions that can be randomized. These include invo-
cation context, parameters, and previous function frames. Only 4.83 % of data
objects on average reside in non-randomized invocation context and location
variable regions.

5.3 Defending Against Stack-Based Vulnerabilities

As shown earlier, our approach can randomize stack data objects with a wide
randomness coverage to defend against stack-based memory vulnerabilities (e.g.,
2 We utilized one fewer bit as we chose not to include r0 for simplicity since it usually

carries the return value; however, it could be included if the function does not return
anything.
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Fig. 4. How data objects are randomized and distributed in stack regions

buffer overflows). Here we further demonstrate this capability using a concrete
example. Figure 5 presents a self-designed format string vulnerability that causes
stack data leakage. sprintf in function vulnerable(char* fmt) enables the
attacker to insert an evil format-control string (e.g., "%s"+4×"%p") to retrieve
security-critical data key by supplying four more "%p". Our experiment demon-
strates that such a working exploit fails to succeed with our randomized app.
This is because our approach inserts random padding between objects on the
stack and changes the relative distance as shown in Fig. 5. These random padding
r7,r2,r3 successfully relocate the previous function frames in stack and ran-
domize locate the security-critical data key.

Fig. 5. Our randomization in defending against a format string vulnerability
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5.4 Mitigating ROP-Based Attacks

Our approach also randomizes gadgets that are potentially employed in build-
ing the execution path of an ROP attack. ROP attacks prefer using indirect
branch instructions residing in functions’ epilogue as gadgets to construct and
drive the malicious control flow. Our approach randomizes functions’ epilogue,
effectively lowering the attacker’s knowledge about gadgets and making ROP
attacks more difficult. We use a recent famous Android system vulnerability,
CVE-2014-7911 [22,23], as an example. This vulnerability can lead to arbitrary
code execution and be exploited to obtain the system privilege [24,25].

We test and analyze its publicly available exploit code [25]. In Fig. 6, we show
the gadgets used by this exploit and the pivoted stack constructed by attackers
(using the stack pivoting technique [26]).

By analyzing the four major gadgets shown in Fig. 6, we can find that two
of them are randomized by our approach. More specifically, the pop instructions
(marked in red color) in gadget and are added with random registers. Con-
sequently, the attacker-intended stack layout (for entering gadget ) is changed,
and the original control flow from gadget to will be disrupted. The exploit
code thus fails to invoke the system function. It is worth noting that besides

STATIC_ADDRESS + 
GADGET_BUFFER_OFFSET

...

...

Gadget buffer start -
0x4C
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string
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0xdeadbeef
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0xdeadbeef
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Fig. 6. The real-world exploit [25] for CVE-2014-7911, and it major gadgets (Color
figure online).
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pop-based instructions, some sp-based data-addressing instructions are random-
ized (see Sect. 4.2).

5.5 Limitations

Although our proposed technique is simple and effective in many aspects, there
are potential attacks that could circumvent our randomization. In particular, an
attacker might want to make use of memory leakage vulnerabilities to find out the
randomized set of registers pushed onto the stack, or the effective additional off-
set introduced. The recently proposed Just-In-Time code reuse attack [5] might
seem to be a reasonable strategy in achieving this. However, to the best of
our knowledge, this type of attacks have only shown to be possible on applica-
tions that support scripting environment to which most Android applications
are immune.

6 Related Work

Address space layout randomization (ASLR) is probably the most widely
deployed randomization technique to make memory attacks more difficult. The
traditional coarse-grained ASLR [10] randomizes the base address of data/code
segments for each program, providing relatively small entropy for randomization
especially on a 32-bit platform [13]. Fine-grained ASLR techniques [18,21,27]
proposed recently focus on randomizing code segments to defend against code
reuse technique.

In-place code randomization [21] permutes and substitutes instructions for
basic blocks. Our technique, instead, substitutes instructions to randomize
the memory layout rather than randomizing the code. STIR [18] randomizes
addresses of basic blocks at load-time with a focus on the code segment. Our
technique, on the other hand, randomizes more fine-grained elements in memory
layout of programs and focuses on the data segment. In addition to that, our
work is much easier to implement and has a higher chance to get user acceptance
due to the minimal binary rewriting by leveraging the fixed instruction length
on ARM architecture.

One of the advanced ASLR techniques, stack frame padding proposed by
Bhatkar et al. [15], is probably the closest to our work. Bhatkar et al. intro-
duce padding within a stack frame to randomize the base address by inserting
additional code into the original binary. Our approach achieves the same objec-
tive without inserting new code or deleting existing code while achieving higher
function coverage (see Sect. 5.1).

There are other randomization techniques proposed for improving security,
e.g., instruction set randomization [28,29] and control flow randomization [30].
There is also a wide body of research that defend against stack disclosure and
modification without randomization [10,31–33]. Being very different from these
techniques, our work reallocates different types of data on the stack frame and
could defend against more general memory attacks.



Stack Layout Randomization with Minimal Rewriting of Android Binaries 241

7 Conclusion

In this paper, we introduce a novel stack data randomization method which is
achieved by a lightweight ARM-specific instruction randomization strategy. By
randomly updating the number of registers in the operand of function’s prologue
push and epilogue pop instructions, randomized padding is inserted between
function’s invocation context. Evaluation on real-world applications shows that
out technique covers more than 97.6 % functions in an application and introduces
on average 4 and 7 bits of randomness to 16-bit and 32-bit functions, respectively.
More than 95 % of objects in functions are randomized with a new address. We
also show the effectiveness of our approach in defending against stack-based
memory vulnerabilities and real-world ROP attacks.
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Science Foundation of China (Grant No. 61202387, 61332019, and 61373168) and the
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Appendix

A Missing Functions in Static Analysis

Listing 1: Failure in discovering blx and bl proceeded functions

1 sub_7c893c:
2 007c893c push {r4, r5, r6, lr}
3 007c8940 mov r4, r0
4 ...
5 007c8990 mov r1, r5
6 007c8994 pop {r4, r5, r6, lr}
7 ...
8 007c899c bl sub_7a35e8
9 ---------------------------------

10 007c89a0 push {r4, r5, r6, r7, r8, r9,
r10, lr}

11 007c89a4 sub sp, sp,
12 ....
13 007c89e8 mov r0, r5
14 007c89ec add sp, sp, #0x208
15 007c89f0 pop {r4, r5, r6, r7, r8, r9,

r10, pc}
16 ---------------------------------
17 ...

18 ...
19 ---------------------------------
20 sub_7a35e8:
21 007a35e8 push {r3, r4, r11, lr}
22 007a35ec mov r0, #0x4
23 007a35f0 add r11, sp, #0xc
24 007a35f4 ldr r4, = 0x1f34a4
25 007a35f8 bl __cxa_allocate_exception
26 007a35fc ldr r3, = 0xfffffd60
27 007a3600 add r4, pc, r4
28 007a3604 ldr r3, [r4, r3]
29 007a3608 add r3, r3, #0x8
30 007a360c str r3, [r0]
31 007a3610 ldr r3, = 0xfffffd64
32 007a3614 ldr r1, [r4, r3]
33 007a3618 ldr r3, = 0xfffffd68
34 007a361c ldr r2, [r4, r3]
35 007a3620 bl __cxa_throw

In this example, jump target sub 7a35e8 is an exception handler that does
not return as a normal function would do, and Hopper fails in recognizing the
bl-proceeded function at 0x7c89a0.
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B Complexities in Identifying Push/Pop Instructions

Listing 2: A function with multiple
returns

1 000287bc push {r4, lr}
2 000287c0 subs r4, r0, #0x0
3 000287c4 mov r3, r1
4 000287c8 beq 0x28814
5 000287cc ldr r0, [r4, #0x14]
6 000287d0 cmp r1, r0
7 ...
8 000287e0 bne 0x28808
9 000287e4 ldr r1, [r4, #0x10]

10 000287e8 mov r0, #0x1
11 ...
12 00028804 pop {r4, pc}
13 ------------------------------
14 00028808 blx 0x449b4
15 0002880c mov r0, #0x0
16 00028810 pop {r4, pc}
17 ------------------------------
18 00028814 blx 0x44944
19 00028818 mov r0, r4
20 0002881c pop {r4, pc}

Listing 3: A function with push-
proceeded prologue

1 _Z12formatStringPKcz:
2 0045f628 push {r1, r2, r3}
3 0045f62a push {r4, r5, lr}
4 0045f62c sub.w sp, sp, #0x410
5 ....
6 0045f640 ldr r1, [r2], #0x4
7 0045f646 str r2, [sp, #0x8]
8 0045f648 str.w r3, [sp, #0x40c]
9 0045f64c blx vsprintf@PLT

10 0045f650 add r2, sp, #0x4
11 ...
12 0045f662 cmp r2, r3
13 0045f664 beq 0x45f66a
14 0045f666 blx __stack_chk_fail@PLT
15 ------------------------------
16 0045f66a add.w sp, sp, #0x410
17 0045f66e pop.w {r4, r5, lr}
18 0045f672 add sp, #0xc
19 0045f674 bx lr

In Listing 2, instructions at 0x28804, 0x28810, and 0x2881c are epilogue
instructions corresponding to the prologue instruction at 0x287bc.

Listing 3 shows an example in which there is another push instruction before
the prologue instruction that pushes register lr. Correspondingly, the last three
instructions first pop out whatever was pushed at 0x45f62a, adjust sp to offload
whatever was pushed at 0x45f628, and, in the end, use a direct branch instruc-
tion bx lr to return back to its caller.

Listing 4: Different registers in
prologue and epilogue

1 VTestURadio10cellCreateEi:
2 0045fc68 push {r0, r1, r4, lr}
3 0045fc6a adds r1, #0x1
4 ...
5 0045fc84 add r0, sp, #0x4
6 0045fc86 blx 0x7d3ca4
7 0045fc8a mov r0, r4
8 0045fc8c pop {r2, r3, r4, pc}

Listing 5: Different number of reg-
isters in prologue and epilogue

1 sub_46724:
2 004616d4 push {r0,r1,r4,r5,lr}
3 004616d6 mov r4, r0
4 004616d8 ldrb.w r3,[r0,#0x1a8]
5 004616dc cbz r3, 0x46171c
6 ...
7 0046171c add sp, #0x8
8 0046171e pop {r4, r5, pc}

Listing 4 shows an example where the same number of registers are pushed
and popped, but they are of different registers. Listing 5 shows another example
where different numbers of registers are pushed and popped.

Figure 7 presents examples of correct and incorrect randomization results for
the original function which is similar with the function shown in Listing 5.
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Fig. 7. Correct and incorrect random-
ization examples for unmatched push
and pop

Fig. 8. Data on stack with new offsets
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Abstract. Vulnerable software represents a tremendous threat to mod-
ern information systems. Vulnerabilities in widespread applications may
be used to spread malware, steal money and conduct target attacks. To
address this problem, developers and researchers use different approaches
of dynamic and static software analysis; one of these approaches is called
fuzzing. Fuzzing is performed by generating and sending potentially mal-
formed data to an application under test. Since first appearance in 1988,
fuzzing has evolved a lot, but issues which addressed to effectiveness
evaluation have not fully investigated until now.

In our research, we propose a novel approach of fuzzing effectiveness
evaluation and improving, taking into account semantics of executed code
along with a quantitative assessment. For this purpose, we use specific
metrics of source code complexity assessment specially adapted to per-
form analysis of machine code. We conducted effectiveness evaluation of
these metrics on 104 wide-spread applications with known vulnerabili-
ties. As a result of these experiments, we were able to identify the best
metrics that is more suitable to find bugs. In addition we proposed a
set of open-source tools for improving fuzzing effectiveness. The exper-
imental results of effectiveness assessment have shown viability of our
approach and allowed to reduce time costs for fuzzing campaign by an
average of 26–28 % for 5 well-known fuzzing systems.

Keywords: Fuzzing · Metrics · Complexity · Code coverage · Machine
code

1 Introduction

Nowadays each software product should meet a number of conditions and
requirements to be useful and successful on the market. Despite this fact, soft-
ware engineers and developers keep making mistakes (bugs) during software
development. In turn, these bugs can create favorable conditions for emergence
of serious vulnerabilities. This is particularly relevant for network applications
because vulnerabilities in this type of software create great opportunities for an
attacker, such as remote code execution or DoS attack. However, practice has
shown that vulnerabilities in local applications may also present a serious threat
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 246–261, 2016.
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to information systems if they allow to execute arbitrary code in the context of
vulnerable application. This severely endangers commercial success of the prod-
uct and can considerably decrease the security rate of infrastructure as well.
Critical vulnerabilities in widespread products deserve special attention because
they are often a target for mass malware attacks and persistent threats. Suffice
it to say that in 2014, US National Vulnerability Database registered 26 new
vulnerabilities per day on average [1].

There are two fundamentally different approaches for bugs detection in binary
executables: static and dynamic analysis. Static analysis is aimed at finding
bugs in applications without execution, while dynamic analysis performs bugs
detection at runtime.

In our research, we consider only binary code of the program. Binary code
(machine code, executable code) is a code (a set of instructions) executed directly
by a CPU. The reason of this is due to the presence of proprietary software that is
distributed in binary form only. The second problem related to transformations
performed by compilers and optimizer tools that may significantly change actual
behavior of the program in the binary form. This problem is called What You
See Is Not What You eXecute [2].

In the paper, we will use technique of dynamic analysis called fuzzing. Fuzzing
is performed by generating and sending potentially malformed data to an appli-
cation. The first appearance of fuzzing in software testing dates back to 1988
by Professor Barton Miller [7]; since then the fuzzing has evolved a lot and it
is now used for vulnerabilities detection and bugs finding in a large number of
different applications. There are a lot of instruments for fuzzing, such as Sulley
[3], Peach [4], SAGE [5] and many others. However, issues which addressed to
effectiveness evaluation have not fully investigated until now.

Today researchers often use several basic criteria for effectiveness evaluation:
the number of errors found, the number of executed instructions, basic blocks
or syscalls as well as cyclomatic complexity or attack surface exposure [6–9].

During the last several decades, the theory of software reliability has pro-
posed a wide range of different metrics to assess source code complexity and the
probability of errors. The general idea of this assessment is that more complex
code has more bugs. In this paper, our hypothesis is that source code complexity
assessment metrics could be adapted to use them for binary code analysis. Thus
it would allow to perform analysis based on semantics of executed instructions
as well as their interaction with input data.

We will provide an overview of technique, architecture, implementation, and
effectiveness evaluation of our approach. We will carry out separate tests to com-
pare effectiveness of 25 complexity metrics on 104 wide-spread applications with
known vulnerabilities. Moreover, we will perform assessment of our approach to
reduce time costs of fuzzing campaigns for 5 different well-known fuzzers.

The purpose of this research was to increase effectiveness of the fuzzing tech-
nique in general, regardless of the specific solutions. Thus, we did not develop
our own fuzzer, but focused on flexibility of our tools by making them easy to
use with any fuzzers. Thus we did not try to improve test cases generation or
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mutation to find more bugs but we try to make fuzzing campaign more efficient
in terms of time costs required to detect bugs in software.

The contributions of this paper are the following:

1. We adapted a set of source code complexity metrics to perform fuzzing effec-
tiveness evaluation by estimating complexity of executable code.

2. We conducted the comparative experimental evaluation of proposed metrics
and identified the most appropriate ones to detect bugs in executable code.

3. We implemented a set of tools for executable code complexity evaluation and
executable trace analysis. In addition, we also made our tools and experimen-
tal results accessible for everyone in support of open science [28].

The paper is structured as follows. In Sect. 2 we illustrate short overview
of fuzzing and problems of its effectiveness evaluation. Section 3 covers details
of metrics adaptation. Then, Sect. 4 provides an in-depth description of sys-
tem implementation. Detailed results of metrics effectiveness evaluation and
their comparison are presented in Sect. 5. Section 6 used to present experimen-
tal results of system integration with well-known fuzzers. Further, we outline
related works in Sect. 7 and describe the direction of our future research in
Sect. 8. Finally, we use Sect. 9 to present conclusions.

2 Problem Statement

In Sect. 1, we mentioned that fuzzing is performed by generating and sending
potentially malformed data to an application. Nowadays, fuzzing is used for test-
ing different types of input interfaces such as: network protocols [10], file formats
[11], in-memory fuzzing [12], drivers and many others software and hardware
products that process input data. Moreover, fuzzing is not limited to pseudoran-
dom data generation or mutation, but includes a mature formal data description
protocol and low-level analysis of binary code for generating data and monitor-
ing results. However, the question still remains: How can we evaluate fuzzing
effectiveness? Of course, we can assess it by the number of bugs detected in
an application. But this is not a flexible approach, since it does not provide any
information on how well the testing data was generated or mutated in case when
the analysis showed no errors at all. On the other hand, for this purpose, we can
use code coverage, assuming that the higher is code coverage, the more effective
the testing. Code coverage is a measure used to describe the degree to which the
code of a program is tested by a particular test suite. In most cases, researchers
assess code coverage by calculating the total number of instructions, basic blocks
or routines that have been executed in the application under test. However, they
do not take into account the complexity of tested code. For example, different
code paths may have equal values of code coverage but their complexity may be
different. Let us consider the example in Fig. 1.
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Listing A

push eax

push 0Ah

lea eax , [ebp+Source]

push eax

call fgets

add esp , 0Ch

lea eax , [ebp+Source]

push eax

lea ecx , [ebp+Format]

push ecx

call strcpy

add esp , 8

cmp [ebp+var_34], 0

jnz short loc_4135B6

Listing B

push eax

push offset Format

call scanf

add esp , 8

mov eax , [ebp+b]

imul eax , 6

add eax , 3

mov ecx , [ebp+b]

imul ecx , 6

add ecx , 3

imul eax , ecx

add eax , [ebp+a]

mov [ebp+a], eax

jnz short loc_4135AD

Fig. 1. Two different code blocks with equal code coverage measure

The code in Listing A handles user data and may contain buffer overflow,
whereas the code in Listing B reads an integer and performs some calculations
by using this value. Code coverage for these examples is the same, but the code
in Listing A is more interesting for analysis.

Basili [13], Khoshgoftaar [14], Olague [15] and other researchers have shown
that in general, increasing of code complexity leads to increase in the probability
of an error. This contention is supported by experimental results [6–9].

In this paper, we propose to adapt source code complexity assessment metrics
so as to take into account semantics of binary code. We propose the following
hypothesis: “There is a more effective complexity metric for fuzzing effective-
ness assessment than the number of executed instructions, basic blocks and rou-
tines, as well as than cyclomatic complexity”. Thus, we need to adapt complexity
metrics for binary code and then perform analysis of their effectiveness in com-
parison with traditional metrics.

In our research, we consider the following types of errors: buffer and heap
overflows, format string errors, read and write to invalid or incorrect memory
address, null pointer dereferences, use after free, as well as use of uninitialized
memory.

3 Metrics Adaptation

In the article, we adapted 25 metrics of source code complexity assessment.
Without getting into description of each metric, let us describe symbols and
references to the authors of each measure.

– Lines of code count (LOC ), basic blocks count (BBLs), procedure calls count
(CALLS);

– Jilb metric (Jilb) [16], ABC metric (ABC ), Cyclomatic complexity (CC ) [17],
Modified cyclomatic complexity (CC mod)[16], density of CFG (R) [18], Pivo-
varsky metric (Pi) [16], Halstead metrics for code volume (H.V ), length and
calculated length (H.N, H.N∗), difficulty (H.D), effort (H.E ), the number of
delivered bugs (H.B) [19];
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– Harrison and Magel metric (Harr) [20], boundary values metric (Bound), span
metric (Span), Henry and Cafura metric (H&C ) [21], Card and Glass metric
(C&G) [22], Oviedo metric (Oviedo) [23], Chapin metric (Chapin) [24];

– Cocol metric (Cocol) [16].

The detailed description of each adapted metric is also given in the
AppendixA. Metrics that take into account high level information such as source
code comments, name of variables or some object oriented information were
excluded from the scope of this analysis.

It should be noted that for most of the metrics we need to perform conversion
of routines code into control flow graph (CFG). CFG has only one entry and
one exit. A path in the CFG can be represented as an ordered sequence of
node numbers. In terms of binary code analysis, graph nodes are represented as
a basic block of instructions and edges describe control flow transfer between
basic blocks. Basic block (linear block) is a set of machine instructions without
conditional or unconditional jumps excluding function calls. Algorithm1 allows
to perform such conversion.

Algorithm 1. Routine to CFG translation
Data: Address of the first instruction, an empty set of links
Result: A set of nodes, A set of edges

while not end of routine do
Read instruction;
if First instruction in the node then

Save instruction address as the first address of the node;

Get links of the instriction;
if Number of links > 0 then

Save instruction address as the last address of the node;
Save edges in a set of edges;

Move the pointer to the next instruction;

The algorithm passes through all basic blocks in the routine. A link is condi-
tional or unconditional jump to some address within routine code. Note that the
link is not considered for call instructions. Each instruction at some address may
have from 0 up to n outgoing links. Unconditional jump always has two links,
the first one refers to the address of unconditional jump, and the second one is
the link to the address following immediately after jump instruction. Thus each
node is associated with the following information: address of the head, address
of the end, edge address 1 (optional) and edge address 2 (optional).

Note that bugs may arise from the use of unsafe library functions, such as
strcpy, strcat, lstrcat, memcpy and etc. These functions are banned or not
recommended to use, since they may cause overflows in the memory. Efficient



Improving Fuzzing Using Software Complexity Metrics 251

fuzzing campaign should take into account this fact and firstly cover the rou-
tines that call these functions. In the article, we propose to use the following
experimental measure based on Halstead B metric (rationale for the choice of
this metric is proposed in Sect. 5):

Exp = H.B ×
n∑

i=1

(vi + 1) (1)

n - a total number of banned or not recommended functions used in the rou-
tine. vi is calculated as the total number of calls of banned or not recommended
functions in the routine, multiplied by the coefficient of the potential danger asso-
ciated with this syscall. This coefficient calculated by using the banned functions
list proposed by Microsoft within their secure development lifecycle concept [25].
In our research, a function can take only two values: 0.5 for dangerous and 1
for banned syscalls. It should be noted that multiplication is used to prioritize
routines that calls unsafe functions.

4 System Overview

4.1 Fuzzing Strategy

Let’s describe all basic blocks in a program as an ordered set of nodes: CFG =
{node0, node1,...,noden}, where node is a basic block and n - total number of basic
blocks. Let’s define an array of test data as TD = [td0, td1,...,tdν ], ν- an array size
and td - one instance of test data (file, network packet, etc.) to make one fuzzing
iteration. Then code coverage for one test iteration may be written as:

Cover = [cov0, ..., covν ] (2)

Then, let’s assign weight for each test case and sort them in descending
order of weight. Weights for test cases is assigned using complexity of trace
which is calculated using metrics described above. Further we will send test
cases according with their position in the sorted array.

In the case of adding new test data in TD without associated coverages, new
instances take the highest priority with respect to existing elements, and passed
to the program in random order before existing test cases.

4.2 Trace Analysis

As it was noted in the second section, we need to save addresses of instruc-
tions, basic blocks or routines to assess complexity of code that has been exe-
cuted during analysis. In this research, we used technique called dynamic binary
instrumentation to perform code coverage analysis. Dynamic Binary Instrumen-
tation (DBI) is a technique of analyzing the behavior of a binary application
at runtime through the injection of instrumentation code. The main advantage
of DBI is the ability to perform binary code instrumentation without switching
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the processor context, which significantly improves performance. In our research
we use DBI framework called Pin [26]. Pin provides API to create the dynamic
binary analysis tools called PinTools. Pin performs dynamic translation of each
instruction and adds instrumentation code, if it required. Note that dynamic
translator performs code translation without intermediate stages in the same
architectures (IA32 to IA32, ARM to ARM and etc.).

4.3 Metrics Evaluation Module

Let us describe basic scheme of the tool for binary code complexity assessment
in Fig. 2.

Fig. 2. Scheme of the tool for binary code complexity assessment

At the first stage, we use IDA disassembler to perform preliminary analy-
sis and disassembling of executable module. Then assembler listing and trace is
passed to the module of CFG analysis that sequentially iterates through each exe-
cuted basic block in the program. The routine parser performs analysis of inter-
connections between basic blocks on the basis of which the tool builds graph of
a routine. This graph is used in the module of metrics calculation that performs
analysis and evaluation of each complexity measure for each required metric.
Where necessary, this module also uses the binary code translation to get infor-
mation required for some metrics. For example, the total number of assignments
could be in turn obtained by using high level listing obtained by the translator,
where operations like eax = eax + 1 may be considered as an assignment.

5 Metrics Effectiveness Evaluation

In Sect. 2, it was mentioned that we need to perform effectiveness comparison
between adapted and traditional metrics. To meet this challenge, we decided to
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Fig. 3. Average effectiveness of each metric. Experimental metric demonstrates maxi-
mum effectiveness. Y - percent interval.

use open database with vulnerable applications called exploit-db supported by
Offensive Security [27]. In our experiment, we randomly selected 104 different
vulnerable applications. This is minimum sample size which is required to eval-
uate the effectiveness of all the metrics in the 95 % confidence interval within an
error no more than 3 %. As a result we randomly selected the following types
of applications: video and audio players; FTP, HTTP, SMTP, IMAP and media
servers; network tools; scientific applications; computer games; auxiliary tools
(downloaders, torrent-clients, development tools and etc.); libraries (converters,
data parsers and etc.); readers (PDF, DJVU, JPEG and etc.); archivers and etc.
For details please visit [28].

Then exploit has been found for each program which allowed to locate vul-
nerable routine in the application. Each application was in turn analyzed by the
tool of code complexity assessment. Complexity of each metric has been obtained
for each routine in each vulnerable application. Then obtained measures were
ranked in descending order. Lastly, we selected ranks of all vulnerable routines
in each application (The results for each application may be found at [28]).
Obviously that obtained results do not allow to assess and compare effective-
ness of metrics, since they do not take into account total number of routines in
the application.An effective metric is a metric that takes a maximum complexity
value for vulnerable routines. Thus the following formula was used to solve this
problem:

PR = (1 − frang

TF
), (3)

frang - a routine rank and TF - a total number of routines. This expression
enables to answer the following question: How many routines in a program have
metric values less than for a vulnerable routine? This value in percent may
be obtained for each metric in each application. Now, it’s possible to calculate
average measures for each metric (Fig. 3).
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According to Fig. 3, Jilb, Global and R metrics showed the lowest average
values. Let’s exclude these metrics from further analysis. Also, it makes sense to
exclude H.D, H.V and H.N∗ metrics, since they’re used to calculate H.B and
showed comparable results.

Let us compare metrics using coefficient of variation (Fig. 4). Coefficient of
variation is used to show the extent of variability in relation to the mean of the
value.
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Fig. 4. Coefficients of variation for metrics (less is better). Y axis - coefficient of vari-
ation. Cyclomatic complexities, Chapin and Card & Glass demonstrate high level of
variation.

The obtained statistical results have shown that experimental metric exceeds
metrics based on cyclomatic complexity (by 12,31 %) the number of basic blocks
(by 11,23 %), calls (by 13,62 %), LOC (6.88 %) and at the same time has the
lowest coefficient of variation 9.4 %. Note that the statistical error for the exper-
imental metric is 2,54 % at 95 % confidence interval. Thus, all of these data prove
that hypothesis proposed in the Sect. 2 is correct.

In Sect. 3 it was noted that the basis of experimental metric is Halstead
B measure. We use this measure because Halstead B demonstrated the best
effectiveness compared to other known metrics.

6 Experiments

6.1 Code Coverage Analysis

According to Sect. 5, the system is based on 2 modules: module of metrics cal-
culation and module of trace analysis. Let’s describe the general scheme of the
system integration with fuzzer in Fig. 5.
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Fig. 5. General scheme of the system

The output of the fuzzer is redirected first in the database to perform test
cases prioritization according to fuzzing strategy. Then the system starts fuzzing
and executable code instrumentation. For each test case the system evaluates
new code coverage using obtained trace. Calculated coverages are written in the
database (to use them further) and results are visualized on the screen. It should
be noted that the process of complexity evaluation is performed in parallel with
fuzzing to increase performance of the system. The tools were developed taking
into account support of several platforms, thus making them easy to port across
different operating systems with minimal changes.

6.2 Experiments

For experimental analysis of proposed approach, it was decided to estimate time
costs for fuzzing campaign before and after integration of our system with 5
well-known fuzzers. We randomly selected 14 popular applications with known
bugs from exploit-db, so as to include each type of bug that is considered in the
article (stratification technique was used). Also we added 4 randomly selected
applications (2 for Linux and 2 for Windows) from exploit-db with two and more
bugs in one application to analyze capability of the system reduce time costs for
several bug detections. Each software product was deployed in the private virtual
environments within the following configurations: Windows 7 x64 (Intel Core i7
2.4 GHz with 2 Gb RAM), Windows Server 2008 SP2 x64 (Intel Core i7 2.4 GHz
with 4 Gb RAM), Ubuntu Linux 12.10 (Intel Core i7 2.4 GHz with 4 Gb RAM).
Experimental results presented in Fig. 6.

Thus experimental results have shown that proposed system allowed to reduce
time costs for testing by an average of 26–28% for any considered fuzzer.
Detailed results may be found at [29].

7 Related Works

There are a lot of researches which performs fuzzing using some knowledge
about testing application (white box fuzzing) to improve future tests gener-
ation, such as: symbolic execution or taint analysis [32–35]. Also, in several
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Fig. 6. The total time costs for fuzzing campaigns before and after integration of
proposed system. The ordinate represents the total number of hours spent on testing
all programs. White bar represents fuzzing campaign with proposed system. Zzuf [30],
CERT fuzzer [31]

researches, authors try to use evolution algorithms [6,36,37] for effective data
generation and increasing code coverage. Often, as an indicator of effectiveness is
used the following metrics: the number of detected bugs, executed instructions,
basic blocks and dangerous syscalls [6–9,37–42]. Moreover, authors may apply
special coverage criteria such as statements, decisions, and condition coverage
[12,38,39]. In other case, researchers use input-based coverage criteria based on
using input domain partitions and their boundary values [40].

In some way, our approach has certain features in common with this paper
[37]. Authors used a set of variables based on disassembly attribute information
and application for procedure, such as the number and size of function argu-
ments and local variables, the number of assembler code lines, procedure frame
stack size and also cyclomatic complexity. In [41], author uses cyclomatic com-
plexity metric to perform in-memory fuzzing for more complex functions finding
to increase a probability of bugs detection. In [12] author mentions about oppor-
tunity to apply cyclomatic complexity as a metric of effectiveness evaluation of
the fuzzing technique. In [42] authors use basic blocks coverage to pick seed files
to maximize the total number of bugs found during a fuzz campaign. In addition
to coverage, they also consider other attributes, such as speed of execution, file
size, etc. In [8] authors provide analysis of effective fuzzing strategies by using
targeted taint driving fuzzing. Researchers used a different set of complexity
metrics, such as cyclomatic complexity, attack surface exposure or static analy-
sis for potentially vulnerable syscalls. The basic difference of our approach is that
we use specially adapted metrics that take into account semantics of executed
instructions as well as their interaction with input data.
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8 Discussion and Future Work

While implementing the metrics evaluation module, we limited ourselves to only
general-purpose x86 instructions. Thus, in future, the module should also sup-
port co-processor group of instructions as well as applications for x64 and ARM
architectures. Also we did not consider obfuscated executables since analysis of
obfuscated code is a separate direction of research.

Secondly, we plan to start using metrics to automatically improve the effi-
ciency level of data generation. For example, it makes sense to perform in-
memory fuzzing for routines that have the highest level of complexity. It is also
possible to generate data using evolutionary algorithms, in which we could use
our set of efficiency assessment metrics as parameters for the data fitness func-
tion to improve data generation. Certainly, this approach needs to be confirmed
experimentally.

It should be noted that the limitation of our approach is the fact that to
reduce time costs, we need to have coverages array for each test case even before
fuzzing. However if we do not have such coverages, reducing of time costs is only
achieved at the second fuzzing campaign. This is justified when the system is
being integrated within existed secure development life cycle [25], when fuzzing is
performed on the regular basis after new patch or functionality has been released.
The system is also may be useful when existed set of test cases is applied for
similar type of applications. Such fuzzing strategy makes sense, demonstrates
positive results and is considered in this research [42].

9 Conclusion

In this article, we propose the novel approach to reduce time costs of fuzzing
campaign. We adapted 25 source code complexity assessment metrics to perform
analysis in binary code. Our experiments on the 104 vulnerable applications
have shown that Halstead B metric demonstrates maximum effectiveness to find
vulnerable routines in comparison with other metrics. We also proposed our own
metric based on Halsted B which shows more stable results. The experimental
results of effectiveness assessment have shown viability of our approach and
allowed to reduce time costs for fuzzing campaign by an average of 26–28 % for
5 well-known fuzzing systems. We have implemented our approach as a set of
open-source tools that allows test cases prioritization, binary code complexity
evaluation as well as performs code coverage analysis and results visualization.

This article is based upon work supported by the Russian Fund of Funda-
mental Research, research project 14-07-31350. This work was also supported by
the research grant for young Russian scientists 14.Z56.15.6012-MK.
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A Appendix: Adapted Metrics List

Metric Symbol Formula Description

Halstead metric

H.V H.V = N × log2n

Program volume
N = N1 + N2
N1 - the total number
of operators.
N2 - the total number
of operands.
n = n1 + n2
n1 - the total number of
unique operators.
n2 - the total number of
unique operands.

H.N∗ H.N∗ = n1 ×
log2n1 + n2 × log2n2

Calculated program
length.

H.D H.D = n1
2 × N2

n2
Program complexity.

H.B. H.B = E
2
3

3000

The number of delivered
bugs.
E = H.D × H.B

Jilb’s
metric

Jilb cl = CL
n

CL - the total number
of condition operators
(jmp, jxx, etc.).
N - the total number of
operators.

ABC
metric

ABC ABC =
√
A2 + B2 + C2

A - assignments count.
B - branches count.
C - calls count.

Cyclomatic
com-
plexity

CC CC = e − v + 2
e the number of edges;.
v - the number of nodes
(basic blocks).

Modified
cycl.
com-
plex.

CC mod CC mod = e − v∗ + 2
v∗ - the number of
nodes (switch cases are
considered as one node).

Pivovarskiy
metric

Pi Pi = CC mod + n
i=0 pi

pi - nesting level of
predicate node i.
n - the total number of
predicate nodes.

Harrison
&
Magel
metric

H&M H&M = n
i=0 ci

ci - node complexity.
n - the total number of
predicate nodes.
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Boundary
values
metric

Bound Bound = 1 − (n−1)
Sa

n - the total number of
nodes.
Sa = n

i vi - routine
complexity
vi = ei − eo,
ei - the total number of
input edges.
eo - the total number of
output edges.

Span
metric

Span Span = n
i=0 si

si - the number of
statements containing
the identifier.
n - the total number of
unique operators.

Henry
&
Cafura
metric

H&C
H&C = LOC ×
(fanin + fanout)2

fanin - the total
number of input data
flows.
fanout - the total
number of output data
flows.

Card
&
Glass
metric

C&G C&G = S + D

S = fan2
out,

D = v
(fanout+1)

v - the total number of
input and output
arguments.

Oviedo
metric

Oviedo Oviedo = n
i=0 DEF (Vj)

DEF (Vj) - a number of
occurrences of variable
Vj from R(i) set.
n - a set of variables
which is used in R(i).
R(i) - a set of local
variables defined in a
node i first time.

Chapin
metric

Chapin Chapin = P + 2M + 3C

P - the total number of
output variables.
M - the total number of
local variables.
C - the total number of
variables which are used
to manage CFG, such
as: cmp/test var and
then jxx.

Cocol
metric

Cocol Cocol = H.B + LOC + CC

References

1. NIST National Vulnerability Database. http://nvd.nist.gov
2. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: what you

see is not what you execute. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 202–213. Springer, Heidelberg (2008)

3. Sulley Fuzzing Framework. http://code.google.com/p/sulley/
4. Peach Fuzzing Framework. http://peachfuzzer.com/

http://nvd.nist.gov
http://code.google.com/p/sulley/
http://peachfuzzer.com/


260 M.O. Shudrak and V.V. Zolotarev

5. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20 (2012)

6. Miller, C.: Fuzz by number. In: CanSecWest (2008)
7. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational

fuzzing. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 511–522. ACM (2013)

8. Duran, D., Weston, D., Miller, M.: Targeted taint driven fuzzing using software
metrics. In: CanSecWest (2011)

9. Weber, I.M.: Evaluation. In: Weber, I.M. (ed.) Semantic Methods for Execution-
level Business Process Modeling. LNBIP, vol. 40, pp. 203–225. Springer, Heidelberg
(2009)

10. Banks, G., Cova, M., Felmetsger, V., Almeroth, K.C., Kemmerer, R.A., Vigna, G.:
SNOOZE: toward a stateful NetwOrk prOtocol fuzZEr. In: Katsikas, S.K., López,
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Abstract. Cell phones have evolved into general purpose computing
devices, which are tightly integrated into many IT infrastructures. As
such, they provide a potential malware entry point that cannot be eas-
ily dismissed if attacks by determined adversaries are considered. Most
likely, such targeted attacks will employ rootkit technologies so as to hide
their presence for as long as possible.

We have designed a rootkit detector that will allow to inspect the
complete state of a smart phone, turning up a rootkit if present. Our
solution draws on the strong isolation provided by virtualization to pro-
tect our detector from attempts to disable it. In comparison to main-
stream hypervisors such as Xen and KVM, our hypervisor consist of
only 7.000 SLOC, allowing for systems with a small trusted comput-
ing base. We implemented a full prototype using a low-cost embedded
board and a full Android stack and validated its effectiveness against an
exemplary rootkit that employs advanced countermeasures. Also, various
benchmark measurements of the prototype proved that the performance
degradation incurred by our design, while noticable, is not prohibitive.

Keywords: Hypervisor · Virtualization · ARM · Advanced persistent
threats (APT) · Kernel rootkit

1 Introduction

Over the last several years, the market for mobile devices, most of which are
ARM-based, has seen strong growth. The decreasing manufacturing costs and the
advances in computing and communication hardware has allowed smart phones
to evolve into general purpose computing devices. To support the increasing
complexity of software and hardware on smart phones, the operating system
(OS) has evolved in a similar fashion. Modern smart phones typically run gen-
eral purpose OS with tens of millions of lines of source code. This complexity has
rendered them vulnerable to malware, not unlike their desktop cousins before.
F-Secure’s mobile threat report [10] showed that 275 new threat families, includ-
ing new variants of known ones, were found for the Android OS during the first
quarter of 2014 alone.
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Although most attention related to mobile security centers on rather unso-
phisticated app-based threats, the potential risk of smart phones being used in a
targeted attack should not be dismissed. A targeted attack is a threat whereby
a determined attacker seeks to compromise the IT infrastructure of its victim
with the goal of ensuring long-term access, rather than immediate gains. Usual
targets encompass government agencies and high-tech industries such as finance,
pharmaceutical, or defence. The attacker, for its part, is well resourced and pos-
sesses enough stamina for long campaigns, involving a series of failed attempts
before a successful exploit is used to establish a beachhead in the targeted sys-
tem and widen it over time. As the goals of advanced persistent threats (APT)
emphasize long-term goals, it is critical for them to evade detection. That is
where rootkits come into play, programs that use stealth to maintain a per-
sistent and undetectable presence. Rootkits are a special form of malware that
strive to maintain control over a victim system while hiding its presence from the
owner of the device. Commonly rootkits are used to hide malicious user space
processes, install keyloggers, and disable firewalls and virus scanners.

Under the assumption that an adversary succeeds in implanting a kernel
rootkit into a system, the chances of reliably detecting and removing it in a
conventional – that is, non-virtualized – system are low. The underlying funda-
mental reason is that within a monolithic kernel, modularization is by convention
only. An attacker who has managed to gain access to the kernel, e.g. by load-
ing a kernel module, cannot be prevented from modifying kernel code and data
structures with the goal of thwarting any detection and removal attempt. Vir-
tualization offers a solution to that dilemma, providing strongly isolated virtual
machines (VMs). For all its advantages, virtualization has struggled to gain trac-
tion on mobile devices because of their resource limitations. However, previous
work [3,6,22] has shown that when carefully constructed, virtualization can be
a useful means to address security issues on mobile devices.

In this paper, we show that a rootkit detector can be constructed with off-
the-shelf smart phone hardware using virtualization technologies. In particular,
we make the following new contributions:

– We discuss the challenges of modern detection systems in the context of the
latest rootkits (e.g. hardware-supported rootkits).

– We present a hypervisor-based security architecture. The underlying hypervisor
provides a snapshotting capability whereby the complete system state (memory
and architectural register state) of a supervised VM can be captured. Detectors
running in dedicated virtual machines can then analyze these snapshots to the
extent deemed necessary without the need to halt the supervised VM.

– We design and implement a hypervisor that is suitable for the proposed archi-
tecture. While virtualization is a technology widely recognized for its contri-
butions to system security, it is important to ensure that the virtualization
layer does not itself introduce new vulnerabilities into the system. With ∼7000
SLOC, our hypervisor is much smaller than mainstream hypervisors such as
KVM and Xen, providing a firm foundation for systems that aim at a small
trusted computing base.
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– We develop a rootkit detector on top of the snapshot mechanism that is capa-
ble of detecting an extensive range of sophisticated rootkits. We validate the
effectiveness of our solution on an exemplary rootkits with advanced capabil-
ities.

– We evaluate our results on a low-cost embedded development board. We run
a full Android stack on top of our hypervisor to show the feasibility of our
approach. A wide range of benchmarks indicate that the performance overhead
incurred due to the virtualization is not prohibitively large.

The rest of the paper is structured as follows. In Sect. 2 we provide back-
ground information on malware and rootkits. In Sect. 3 we describe the our
system design, which will then be used to built a rootkit detector (Sect. 4). We
evaluate our system in Sect. 5. Related work is discussed in Sect. 6. Finally, in
Sect. 7, we discuss future work and draw a conclusion.

2 Rootkit Background

The term rootkit as defined by Hoglund [16] is a kit consisting of small programs
that allow an attacker to gain (and maintain) root, the most powerful user in
a (Unix-like) system. The principle nowadays also applies to non-Unix systems,
such as Windows, but the name has stuck.

2.1 Operation

Broadly speaking, the activities surrounding a rootkit infection fall into four
categories: infection, hiding its presence, staying in control, and hiding other
malicious activities of its conspirators.

In the infection phase, attackers first exploit vulnerabilities in applications
or services on the system to gain root privileges and then abuse these privileges
to install the rootkit. Rootkits typically infect the system by loading themselves
as a module into the kernel. Even though module loading is disabled on many
contemporary systems, the tendency towards kernels that run on more than one
device may revert this trend. Alternatively, an attacker may implant a rootkit
by modifying kernel data structures directly in kernel memory, e.g., through
interfaces such as /dev/mem and /dev/kmem [29,31]).

Once the OS has been successfully infected, a rootkit may take steps to hide
its presence. The particulars are system specific. For example, a rootkit loaded as
a kernel module may remove its module instance from the list of loaded modules.
This operation, which is only meant to be executed for modules being unloaded,
hides it from module listings. Another approach is to inject code in other kernel
modules [18]. A rootkit needs to make sure that it reliably gains control to
implement its functionality. It can use two techniques for that. First, it can
overwrite kernel code. This may affect specific kernel functions or generic code
such as the entry vector code. Alternatively, it can change existing indirection
mechanisms, the syscall table being the most prominent one. Also of note is that
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an indirection mechanism may also include hardware features, as shown in [7].
Finally, a rootkit provides cover for other unauthorized activities. To that end,
it may conceal selected processes, network connections, and files. Also, it may
provide a remote access mechanism, also known as backdoor.

Rootkit countermeasures may target any of the four sub-activities. However,
the infection stage is related to any sufficiently severe kernel vulnerability and is
thus beyond the scope of this paper; we assume that an attacker has succeeded
in putting a rootkit into the kernel. The detector we describe below will find
control flow manipulations. Moreover, it will detect hidden processes and network
connections.

2.2 Mobile Rootkits

The landscape of rootkits for mobile devices is relatively uncharted. Still, we
want to elaborate on various techniques used by actual mobile rootkits. We also
discuss attack vectors that are platform-independent and threats that might
arise in the future.

Table 1. List of existing rootkits and the features they use. (∗ Source code available)

Name Comment Arch. Module

loading

Module

hiding

Arch.

state

manipu-

lation

Use

raw

socket

Process

hiding

Syscall

table

manipu-

lation

Cloaker (POC) - Academic

rootkit

ARM X

knark∗ - Very old (ker-

nel v2.2)

x86 X X X X

- Already pro-

vided many

modern fea-

tures

Phrack rootkit I∗ - Concepts

described in

Phrack mag-

azine issue

58

x86 X

Phrack rootkit II∗ - Concepts

described in

Phrack mag-

azine issue

68

ARM X X

Suterusu∗ - Modern

rootkit (kernel

v3.x)

ARM/x86/ X X

- Can hide net-

work ports

x86 64

- Can disable

LKM

XOR.DDoS

(rootkit

component)

- One of the

latest wild

rootkits

ARM/x86/ X X X X

- Binary only x86 64
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Table 1 gives an overview of rootkits. Rootkits such as Suterusu use well-
understood techniques to hide themselves (e.g. process hiding, LKM hiding etc.).
XOR.DDoS [28], first spotted in September 2014, consists of a malware core with
an optional rootkit extension. It tries to determine the Linux kernel version it
is currently running on. This information is transmitted to a command-and-
control server, which then tries to build a module for this specific kernel. If it is
successful, the compiled module is sent back and loaded into the victims kernel;
otherwise XOR.DDoS operates just as user space malware. If XOR.DDoS is able
to inject the module, it provides the classical rootkit features (process hiding,
file/directory hiding, LKM hiding, etc.).

Several concepts that are known today have not been spotted in real-world
rootkits, yet. However, once described in academia, it is not difficult for adver-
saries to pick up the concepts. For example, the Cloaker malware [7] uses ARM’s
alternative vectors page address to hide its presence from rootkit scanners. Other
ideas to utilize the architecture state of the processor for a different purpose
are described in [4,12]. In both cases, special purpose registers (e.g. debug-
ging or NEON SIMD registers) are used to store key material (for encryp-
tion/decryption). However, a rootkit could make use of the concept to either
hide its presence, or to store its own encryption/decryption keys, thwarting sim-
ple signature-based scanners. It could then only store an encrypted copy of its
code in memory. Such a rootkit would be very hard to spot.

3 System Architecture

Before we present our rootkit detector in the next section, we will describe our
system architecture. Our architecture is based on a Type-I hypervisor. In recog-
nition of the security vulnerabilities in mainstream hypervisors [21], we decided
to develop our own with an emphasis on simplicity at the expense of features
not needed for our use case. Possibly the most important simplification is the
adoption of a static model, that is, VMs and the resources they are granted are
created at boot time and cannot be changed dynamically. Since the hypervisor
does not contain device drivers, access to devices is selectively granted to virtual
machines, which then are responsible for providing virtualized device interfaces
to other VMs. As our platform does not provide IOMMUs, the hypervisor cannot
prevent VMs with access to DMA-capable devices from using DMA to access
system memory arbitrarily. In terms of code size, with ∼7.000 SLOC, our sys-
tem is significantly smaller than XEN’s ARM port with ∼30.000 SLOC [26]. In
addition to simplifying code audits, the small size of our hypervisor may make
possible the application of formal methods. Formal proofs of small kernels [19]
stressed the importance a small code size, with 10.000 SLOC commonly assumed
as the largest feasible size for the object under examination beyond which the
problem becomes soon intractable.

We run two virtual machines under control of the hypervisor: the supervised
VM, a full Android stack, and the detector VM, a minimal Linux with a special
cross-VM inspection driver and our inspection tools. The detector VM can initi-
ate a state snapshot of the supervised VM, which is stored in a dedicated memory
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Fig. 1. System architecture.

region, the snapshot space. The snapshot buffer appears as special (guest physi-
cal) memory region in the detector VM, from where a kernel driver maps it into
the rootkit detectors, which run as user-space processes. Note that the right to
take a snapshot does not entail the privilege to change the state of the supervised
VM. The architecture is shown in Fig. 1.

Since taking a memory snapshot involves copying several hundreds MB, we
use a copy-on-write(COW) mechanism to incrementally copy the entire memory
of the supervised VM, that is, taking the snapshot and the execution of the
supervised VM are interleaved. That way, the operation of the supervised VM
is only slightly slowed, but not suspended for an appreciable duration, which
would result in undesirable starts and glitches. Our implementation leverages
the fact that under ARM VE the page table that translates guest physical to
host physical addresses, the Stage 2 page table1, can specify access rights. To
initiate a snapshot, the access rights in the Stage 2 page table of the supervised
VM are set to read only while it keeps executing. Whenever a (guest) physical
page for which no snapshot copy is taken yet is modified, an abort is raised in
the hypervisor, which makes a copy and sets the Stage 2 permissions to read-
write. Also, the detector VM can issue a hypercall that copies a page and sets
it read-write in the Stage 2 page table unless that page is already copied due to
a COW. These operations, which have to be repeated until a complete snapshot
is taken, are executed in the context of the detector VM and accounted to its
processing time by the system scheduler. Relying exclusively on a COW strategy
does not produce a full memory dump though, as the active memory working
set of the supervised VM is usually much smaller than its available memory. We

1 Similar concepts are known as nested page table (NPT) or extended page table (EPT)
on x86 systems.
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therefore complement this with a separate copy thread in the hypervisor which
completes the snapshot regardless of the memory access pattern of the target.

In addition to the memory snapshot, we also take a snapshot of the archi-
tecture state. This gives us access to control registers of the target which are
crucial in reconstructing the system state, e. g. TTBCR, TTBR0, and SCTLR.

4 Rootkit Detector

The snapshotting mechanism described in Sect. 3 alone is not capable of detect-
ing a rootkit by itself. In this section, we will describe the detector we have
developed.

4.1 Checking the Kernel’s Integrity

As described in Sect. 2.1, a rootkit will divert selected kernel operations. In this
section, we examine the details of how such an attack can be mounted on the
ARM architecture, using the example of the Linux kernel.

In Linux, a process denotes a request syscall by loading a value into a des-
ignated register2 before trapping into the kernel. There the value is used as an
index into a table, the syscall table, that holds function pointers to the kernel
functions implementing the requested syscall. Modifying the syscall table is thus
a convenient attack vector for an adversary. The address of the syscall table
can be either determined based on the kernel image or retrieved at runtime by
examining the entry path starting from the vectors page [13,31]. To prevent this
form of attack, we save a hash of the initial syscall table and check the memory
snapshot for changes. On ARM, every privilege transition from PL0 to PL13

involves a control flow transfer to the so called vectors page. Since syscalls also
use that mechanism, redirecting the control flow by changing the vectors page
would allow an attacker to get into control for each syscall. Hence, to detect
rootkits performing this kind of attack, we need to monitor the vectors page,
too. The virtual address of the vectors page is controlled through SCTLR and
VBAR. An attacker may try to relocate it to another address under its control
[7]. In order to counter this form of rootkit, our snapshot comprises the general
purpose registers, as well as all privileged architectural registers, which include
SCTLR and VBAR.

Finally, the rootkit could opt to overwrite selected functions in the kernel so
as to redirect the control flow. Such manipulations can be detected by comparing
the kernel text section in the snapshot with an unmodified original. To simplify
the operation, the comparison can be performed on a cryptographic hash sum
computed over the text section. However, in certain configurations, the Linux
kernel might patch its text section during startup as part of its normal oper-
ation. This renders precomputed hashes of the vmlinux file useless. Under the
2 The ARM EABI uses r7.
3 PL0 denotes USR, the only unpriviled processor state, whereas PL1 subsumes all

privileged processor states (SVC, SYS, IRQ, FIQ, ABT, UND).
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assumption that the bootloader checks the integrity of the kernel, we trust the
kernel to send a notification to the detector after it has set up itself. The detec-
tor then computes a checksum over the text section, which is then later used for
comparison.

4.2 Reconstructing Hidden Kernel Objects

Aside from detecting the rootkit itself as described in the previous section, undo-
ing the cloaking that is performed by the rootkit might be another goal of a
detector. In this section, we describe which hidden objects can be recovered by
our detector.

Modules. A common way whereby rootkits infect the kernel is loading a kernel
module. Naturally, they seek to hide the module’s presence afterwards. To do
so, attackers can overwrite entries in the inode operations structure belonging
to the module sysfs dirent structure. Our detector works in three steps. First, it
searches through the memory snapshot based on specific patterns to identify all
modules in the /sys/module folder. It then iterate over the memory snapshot
again and searches for a pattern that matches the module data structure. Finally,
it verifies that the inode operations for the module are correct and have not been
overwritten.

Processes. A wide range of Linux rootkits, such as [20,27,31], modify the func-
tionality of the proc filesystem (procfs) to hide select processes, e.g., a hidden ssh
server. To that end, they usually divert procfs operations by overwriting the file
operations structure of the procfs root node. Our detector bypasses the procfs
and searches directly in the memory snapshot for task structures. Our detection
method encompasses two passes: first we look for potentially kernel stacks. Each
kernel stack is contains a thread info structure, in which, among other things,
the address limits of the user-accessible portion of the address space are stored.
Since the thread info structure resides at a fixed offset in the aligned kernel
stack, we only need to check one value for each 2 KB chunk. Second, we check
if a candidate holds a pointer to a task structs, which in turn contains a pointer
to the thread info structure.

Sockets. Given the goal of long-term intelligence gathering, an advanced rootkit
is likely to communicate with an outside party over a network socket. This socket
needs to be hidden as well. Using the previously reconstructed task struct list,
we are able to identify open file descriptors, including those denoting sockets. By
looking up the kernel socket file ops and comparing it with the actual f ops of the
currently investigated file descriptor, we are able to distinguish between socket
and file handles. If the entry refers to a socket, the socket structure provides us
with information about the network connection. Alternatively, open sockets can
also be found by reconstructing the procfs content. That way, the file operations
of the procfs top level directory, which may be compromised, are bypassed.
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Files. Typically, rootkits serve as a means of hiding the infiltration of a system
and ensure its persistence. Often, further activities require data to be deposited
in the file system in an undetectable way. Instead of changing the entries for
the relevant syscalls – which is easily detected –, an attacker may choose to
replace function pointers in struct file operations pointed to by struct file [20]. For
the attacker, this approach has the advantage that file objects are dynamically
allocated, which makes their detection more complicated.

5 Evaluation

The evaluation section is split into three parts. First up is a test as to how
reliably our detector can detect a rootkit In the second part (Sect. 5.2), we mea-
sured the time the detector needs for a reconstruction of specific elements. We
performed multiple Android benchmarks as well as LMBench to measure the vir-
tualization overhead and the overhead induced by the snapshotting mechanism
(Sect. 5.3). All experiments were conducted on a Cubietruck (Allwinner A20,
2xCortex A7@1.06 GHz CPU, 2 GB RAM) running Android 4.4.2 on a Linux
3.4.0 kernel.

5.1 Detector Efficacy

To test the efficacy of our solution, we have tested it against two exemplary
rootkits: Suterusu [20] and nameless proof of concept [8] that started off as a
class project. The results are shown in Table 2a and b.

Our detector picks up manipulation to and relocation of the vectors page.
Since neither of the two specimen under test manipulates the vectors page, we
tested this ability with a small extension to Suterusu. Also, changes to the syscall
table are detected. Function hooking, overwriting function code, causes changes
in the checksum of the kernel text section, which our detector notices. Although
the integrity of genuine kernel modules is not checked in our system, standard

Table 2. Detector efficiency.
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techniques such as whitelisting of cryptographic hash of trusted modules or sig-
nature schemes could easily be used.

Function pointer manipulations are detected to the extent this attack vector
is used by the exemplary rootkits. However, the currently used mechanism is not
generic enough to detect arbitrary function pointer manipulations. Unlike the
processes and connections, for which the underlying kernel data structures are
guaranteed to be memory resident, file-associated data structures may or may
not reside in memory. As such, our detector cannot guarantee to reconstruct
them from a snapshot of the guest’s physical memory.

5.2 Kernel Object Reconstruction

Table 3 gives a short description for each tool we used in our analyses to describe
its purpose and examined property, as well as listing the required runtime to
extract the respective properties. The reconstruction of some kernel structures
is rather costly because we have to iterate through the memory snapshot multiple
times.

Table 3. Runtime of tools to extract specific information from the memory snapshot.

Tool Description Time (in sec.)

gsnps procfs Check procfs fops 0.3790

gsnps proc Extract task struct process list 0.1350

gsnps sysfs Extract sysfs module list 20.1980

gsnps mod Extract module structures 17.3520

gsnps sock Extract socket list 0.2130

gsnps exec Hash kernel .text section 0.5689

To check the integrity of the kernel text section, we used the mbed TLS
library [2] and compute a SHA1 hash over the text section.

5.3 Application Benchmarks

To measure the snapshotting overhead, we used the established LMBench suite
for Linux and two Android benchmarking suites: Antutu [1](v5.7) and Geek-
bench (v3.3.2). In the measurement results, Baseline refers to benchmarks run
on the device without a hypervisor.

As for LMBench (v3), we only ran the relevant latency and bandwidth bench-
marks. The results are shown in Fig. 2a and b. In most of the benchmarks, the
virtualized scenarios show only slightly inferior results. While a snapshot is in
progress, the bandwidth benchmark still show constantly stable and comparable
results. This is due to the fact that the bulk of copy operations is performed
by the second CPU core, i. e. by the copy thread instead of as a reaction to
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(a) LMBench syscall latency benchmark re-
sults (higher is better).

(b) LMBench bandwidth benchmark re-
sults (higher is better).

Fig. 2. LMBench benchmark results.

COW-incurred page faults of the supervised VM. A VM still has to trap into
the hypervisor to flush the TLB, though, which explains the small, but noticeable
increase in execution time. Figure 3a shows the results of the Antutu benchmark.
In comparison to the Baseline, the snapshotting only has a small impact on all
but I/O intensive apps. Taking a snapshot incurs a notable impact of ∼20 %
on the RAM Speed benchmark. This is not surprising as this benchmark exces-
sively accesses memory to measure the access time. On every write access to
a non-copied page, our COW mechanism has to suspend the VM and copy the
corresponding page. The snapshotting has only marginal impact on other bench-
marks. It’s almost on par with the hypervisor measurements when no snapshot
is in progress. Further worth mentioning is that the memory working set of the
Android system is quite large; after performing a single Antutu benchmark run
∼75 % of the memory pages were copied due to COW alone.

The results for Geekbench can be obtained from Fig. 3b. The results of the
scenarios Hyp (nosmp, mem=768) and Hyp (snapshot) again show a ∼3 % per-
formance penalty due to the virtualization. Apart from that, the numbers are in
line with the expected results.

CF-Benchmainly focusses onmeasuring theperformanceof integer andfloating
point operations, which should not differ between virtualized and non-virtualized
systems. Our measurements (Fig. 4a) is in keeping with that expectation. As
expected, the two smp setups are roughly twice as fast as the other scenarios
because they run with both CPU cores. The other scenarios are very close together.
Additionally, CF-Bench contains some memory read/write benchmarks. These
results are shown inFig. 4b. In linewith expectations, the benchmark reveal similar
results to the Antutu Benchmark. Again, the smp setups achieve roughly twice the
performance as the other benchmarks. The native Android setups without
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(a) LMBench syscall latency benchmark re-
sults (higher is better).

(b) LMBench bandwidth benchmark re-
sults (higher is better).

Fig. 3. Antutu and Geekbench benchmark results

multi-processing achieve a slightly higher score than the virtualized system (∼3 %
performance penalty). While a snapshot is in progress, the Overall Score drops
by again ∼10 % in comparison to the virtualized system. The reduced score is
mainly due to the inferior scores in the Memory Read and Memory Write bench-
marks, respectively. The working set of Android during the benchmark is ∼52 %
(400MBytes) as obtained from the number of snapshotted pages.

6 Related Work

Initial work on VMI was done by Garfinkel et al. [11] in 2003. They developed
various policy modules as well as detectors for suspicious behavior in the system
(e.g. a raw socket detector, a signature detector, etc.) and tested them against
various known rootkits and Trojan horses.

In 2004, Petroni et al. [23] proposed Copilot, a rootkit detection mechanism
based on a PCI-based coprocessor. They were able to detect rootkits in a time-
frame of ∼30 s. The shortcomings of the approach are that additional hardware
is required and the coprocessor does not have access to the internal state of the
processor being monitored, only to the main memory. Furthermore, the detection
requires a relatively large timeframe of ∼30 s in order to be successful.

Jiang et al. [17] introduced the term semantic view reconstruction. They recon-
structed the guest VM state from the raw memory as well as a disk snapshot.

Hay and Nance [14] proposed VIX for the Xen hypervisor, which allows for
digital forensic examination of volatile system data in virtual machines. They
provide a list of tools (e.g. vix-ps), which can be executed in the Dom0. The
tools perform the same tasks as their Unix counterparts but use the raw memory
of a DomU in Xen to reconstruct the required information.
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(a) CF-Bench arithmetic benchmark re-
sults (higher is better).

(b) CF-Bench Java/Native benchmark re-
sults (higher is better).

Fig. 4. CF-Bench benchmark results.

In [25] Riley et al. proposed a hypervisor-based memory shadowing scheme.
The hypervisor dynamically copies authenticated kernel instructions from the
standard memory to the shadow memory. At runtime, any instruction executed
in the kernel space is fetched from the shadow memory instead of from the stan-
dard memory. This approach prevents unauthorized code from being executed,
thus protecting against kernel rootkits.

OSck is a high-performance integrity scheme proposed by Hofman et al. [15],
using a hypervisor-protected detector that runs isolated from the supervised
VM. Built for x86, OSck extends KVM and thus inherits its large trusted com-
puting base. The OSck detector could be combined with our small, trustworthy
hypervisor, yielding a system with a small TCB.

Dolan et al. [9] presented an approach for automatically creating introspec-
tion tools for security applications. By analyzing dynamic traces of small pro-
grams contained in the target system that compute the desired introspection
information, they can produce new programs that retrieve the same information
from outside the target virtual machine.

In 2012 Yan and Yin [30] extended semantic view reconstruction to the
Android OS. DroidScope uses Qemu and extends it with various tracer capabili-
ties to find malware during runtime. Tracking rootkit footprints using a memory
analysis system was done by Cui et al. [5] in 2012. The proposed architecture is
called MAS and uses static analysis, memory traversal and integrity checking to
find rootkit signatures in memory and crash dumps of an OS kernel.

In 2015, Richter et al. [24] proposed a scheme based on a view comparison for
VMware vSphere to detect rootkits in Windows VMs. Zeng et al. [32] proposed
PEMU, which combines QEMU with the tool PIN. PIN is a dynamic binary
instrumentation framework for the x86 architecture that enables the creation of
dynamic program analysis tools. Zeng et al. extended QEMU with the capabil-
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ities of the tool PIN to be able to also instrument OS kernels. The architecture
is built in a way that existing PIN plug-ins can be reused to profile various
components of the OS (e.g. Jmp/branch/call profiling, Call trace tracing, etc.).

7 Conclusion and Future Work

In this paper, we proposed a hypervisor-based security architecture as generic
framework for security research dealing with advanced and aggressive threats
such as advanced persistent threats. The core functionality is a snapshotting
mechanism that allows to capture both the complete memory and the entire
architectural register state of a VM and makes them available for further analy-
sis. To demonstrate the efficacy of our architecture, we designed and built a
complementary rootkit detector and tested it against two exemplary rootkits.
Also, we measured the overhead incurred through our architecture with both
application and system benchmarks.

Currently, our snapshotting mechanism captures all of the guest’s physical
memory, thereby effectively reducing the available memory by half. Yet, for
detecting a kernel rootkit, having a snapshot of the guest’s kernel memory would
be sufficient.Future work will seek to reliably identify this portion and limit the
snapshot to it.

Our detector has a lot of improvement potential. The biggest opportunity
lies in a more robust function pointer validation scheme. It would be helpful
if all kernel function pointer indirection could be identified automatically. As
these pointers are immutable, they could be included in the computation of the
kernel hashsum. Also, a more sophisticated detector could identify all executable
code in the kernel and check for suspicious changes in that set. However, such a
mechanism might involve changes to the Linux kernel.

Various publications show that adversaries can leverage complex DMA capa-
ble devices (e.g. GPU) to hide the presence of malicious code and attack the
running OS from the device. Right now our architecture cannot detect such
attacks. Future work would be to consider using SYSMMUs to restrict DMA
accesses or device para-virtualization with DMA buffer validation to prevent
such attacks.
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Abstract. It is common for attackers to launch famous Drive-by-
download attacks by using malicious JavaScript on the Internet. In a
typical case, attackers compromise legitimate websites and inject mali-
cious JavaScript which is used to bounce the visitors to other pre-set
malicious pages and infect them. In order to evade detectors, attackers
obfuscate their malicious JavaScript so that the maliciousness can be hid-
den. In this paper, we propose a new approach for detecting suspicious
obfuscated JavaScript based on information-theoretic measures and the
idea of novelty detection. According to results of experiments, it can be
seen the new system improves several potential weaknesses of previous
systems.

Keywords: Obfuscated JavaScript · Novelty detection · Renyi entropy

1 Introduction

The investigation of detecting suspicious JavaScript is always focused by
researchers since malicious JavaScript always play important roles for facilitat-
ing many kinds of network attacks. Traditional signature matching technique has
been proved as unreliable to against recent malicious JavaScript since attack-
ers usually obfuscate their scripts by varied and customized programs to hide
malicious contents such that signature matching systems could be easily evaded.
Recently, some researchers have begun to build new static detectors by utilizing
machine learning classifiers and statistical technique. In general, machine learn-
ing based detectors could make the detection become fuzzy and flexible, which
are extremely good at discovering variants of existing maliciousness as well as
unknown threats (i.e. novelty). Such classification systems can be utilized as
fast front-end filters since it can rapidly discard potential benign JavaScript and
only bounce the suspicious ones to a back-end sophisticated system who will
analyse the input on a deeper level but seriously resource and time intensive,
therefore the time and computational resources can be significantly saved. In
this investigation, we propose a system with similar functionality using a novel
and systematic approach on the basis of previous investigations.
c© Springer International Publishing Switzerland 2016
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A common viewpoint is that attackers always rely on obfuscation to hide
malicious JavaScript. Hence most of the previous investigations regarded obfus-
cation as potential maliciousness and capture its presence. This viewpoint was
again validated according to our recent observation such that we inherent it and
the work principle of our system is to detect potential maliciousness through
the occurrences of obfuscation. However, it is true that some benign JavaScript
is also obfuscated whereas malicious JavaScript may also come with plain-text,
such that the corresponding false-alarm and miss-detection may occur respec-
tively. For non-obfuscated maliciousness, detection systems based on signature
matching could deal well with it. Whereas for the obfuscated benign scripts,
since the amount of such JavaScript is much smaller compared to obfuscated
maliciousness, the false-alarm will only result in somewhat waste of computa-
tional resources. Furthermore, a system we aim to design is a filter that detects
suspicious but not exactly malicious JavaScript as much as possible, therefore
we only focus on the general viewpoint, namely the maliciousness always comes
in the form of obfuscation.

2 Related Work

Machine learning and data mining technique have been widely used for detect-
ing network maliciousness for achieving automation and intelligentization. For
instance, in the domain of network intrusion detection, machine learning clas-
sifiers such as SVM, neural network and cluster technique have been used as
common tools for outlier detection. On the other hand, for detecting mali-
cious programming codes, since the codes always can be processed as pure text
streams, the detection task can be converted to document classification problem
and it is feasible to utilize skills of natural language processing and information
retrieval to characterize the malicious codes. Under such a background, the fol-
lowing related solutions have been proposed for filtering suspicious obfuscated
JavaScript.

2.1 Detection Systems Based on JavaScript Language-Specific
Features and Machine Learning

Davide et al. [1] proposed a fast filter based on Support (SVM) Vector Machine to
detect maliciousness including malicious JavaScript in web pages. They pointed
out the necessity of a fast suspicious contents filter during large scale analysis. By
using SVM, their new static system achieved elastic detection and its detection
accuracy approximated to the sophisticated systems while still keeping the advan-
tage of time and resource efficiency compared to dynamic systems. Other anal-
ogous SVM-based systems such as [2,3,9] which are only used for scanning sus-
picious JavaScript have also been introduced. In these investigations, researchers
usually enumerate many rough and trivial JavaScript language-specific features to
attempt to cover all possible suspicious behaviors without evaluating the individ-
ual effectiveness of these features, hence the features are not guaranteed to have
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low redundancy and high robustness (e.g. in [1,2], researchers admitted that their
features may have potential robustness problem). On the other hand, the excessive
amount of trivial features also incurred increasing of dimensions of feature vectors
for describing each JavaScript (e.g. in [2], there are 65 features and in [9], there are
more than 150)which definitely downgrades the processing speed ofmachine learn-
ing classifiers and causes waste of computational resources. In addition, redundant
and weak features will also bring additional noises and confuse the classifiers to
carry out a worse detection rate.

It is possible to extend these investigations by refining more effective features
in order to reduce the dimensions of feature vectors. This is also a common
task called feature extraction in machine learning, which requires the extracted
features are concentrated and as few as possible.

2.2 Approach Based on Frequency and N-gram

In [4,5,7] researchers introduced new ways to extract features based on frequen-
cies (Unigram). Their detection approaches rely on the discrepancy on frequen-
cies of text characters between obfuscation and non-obfuscation and measure
such discrepancy by directly comparing the observed frequencies of each char-
acters and the results showed frequency-based approach is a feasible way for
detecting obfuscation. However, to straightly compare frequency of each char-
acter, one has to respectively calculate and process over the frequency values
of all 94 text characters of JavaScript. While the same amount of dimensions
of feature vectors have to be used for describing each JavaScript sample and
to process such high dimensional vectors will be definitely time and resource
inefficient.

The idea of Unigram also inspired researchers to propose feature extrac-
tion approaches based on N-gram model [6,14–16]. Unlike aforementioned Uni-
gram systems, which direct work with the original JavaScript text, most of the
N-gram approaches firstly convert the JavaScript into other forms such as binary
or lexical tokens then implement N-gram models to analyse the probabilistic
consequential relationships between adjacent objects in obfuscation and non-
obfuscation respectively in order to identify the differences. However, N-gram
systems suffer from a much more serious over-fitting problem compared to Uni-
gram systems. The over-fitting problem arises when the observed frequencies
are sparse (i.e. the amount of objects is big so that the probabilities of most
individual objects are tiny) so that they can be easily influenced by noises. For
instance, although the N-gram observed frequencies of text objects of two non-
obfuscated JavaScript are supposed to be similar so that such similarity can be
used to model the standard non-obfuscation, they still can be very different due
to the influence of noises since there are 94n objects and each object only share
extremely small probability and susceptible to noises. Even if several feature
selection approaches are available for reducing the number of N-gram objects
need to be counted, in most case the number is still big (e.g. several hundreds)
after reduction and accordingly, to process N-gram is always time and resource-
intensive.
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2.3 Contribution of This Investigation

In order to dive new ways for detection and improve previous systems, we intro-
duce new feature extraction approaches based on information theory. The new
features are expected to have high effectiveness since they capture the overall
statistical behaviours of a JavaScript but not depend on any trivial JavaScript-
specific feature.

Firstly, compared to previous investigations, we substantially reduced the
amount of extracted features from hundred-level to only 7 hence the machine
learning classifiers can be facilitated and computational resources can be saved
due to the drastic reduction of dimensions of feature vectors. For instance, many
machine learning classifiers such as SVM and k-nearest neighbours have to main-
tain and process the entire or a part of the training samples for future classi-
fication such that reducing dimensions of data points will directly decrease the
volumes of training data to help with saving the time and computational resource
as well as storage spaces for such classification tasks. We achieved the goal of
dimension reduction while still keeping high detection rates. Additionally, many
previous works require preprocessing the data into other forms while our system
can work directly with the original JavaScript text. Secondly, to the best of our
knowledge, most of the previous works failed to consider and conduct a deep
analysis on the distribution of data samples and choose suitable machine learn-
ing classifiers which fit such distributions. In most cases, researchers directly
utilized ordinary two class SVM, or simultaneously deployed several kinds of
multi-class classifiers and pick the one who gives best performance. Even if most
of these systems were claimed to have remarkable detection rates, in this inves-
tigation we challenge these results according to the following reason: even if
most obfuscation is different from the normal non-obfuscation and some of the
obfuscation may be accidently similar since they may be produced by several
common obfuscation schemes such as string encoding and splitting, according
to the high degree of customization of obfuscation programs and the fact that
obfuscation do not need to have any unified grammar restraint, we believe that
the amount of possible obfuscation patterns is essentially uncountable and could
be not classified into a finite number of classes so that assuming all or most
obfuscation belong to one single class (2-class classification) or several specific
classes (multi-class classification) may not be suitable. Our solution is to regard
obfuscation as outliers compared to the non-obfuscation class and propose a
novelty detection approach which utilizing one-class SVM for detection, which
is expected to fit this scenario much better than multi-class classification. In
addition, to train a one-class SVM, only samples of non-obfuscation are needed
so that the problem of unbalance data can be resolved: the obfuscation samples
are very few due to their rare occurrences and very short life time. [14] is the
only work that we could find to utilize one-class SVM for the similar purpose
to our investigation. However, their reason of choosing one-class SVM is only to
resolve the unbalanced data problem. Moreover, one could tune the sensitivity
of our system simply by changing the parameter setting of the classifier. For
example, according to the scenario of deploying the system as a front-end filter,
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the false-alarm (i.e. false positive) is less expensive as it only results in waste
of computational resources whereas miss-detection(i.e. false negative) will incur
exposure to maliciousness such that one may probably wish to minimize the
probability of miss-detection to make the system aggressively recognize a given
JavaScript as obfuscation. Our system satisfies this requirement well, while still
giving low false alarm rate.

3 Methodology

3.1 The Characteristic of Obfuscation

JavaScript can be obfuscated with varied programs by replacing the original
codes with other strings. According to observation, the most obvious character-
istic of obfuscation compared to non-obfuscation is un-readable: an obfuscated
payload does not need to obey any grammar rule of normal languages as long
as it could actually hide the maliciousness from detection. The un-readable is
mainly reflected in the abnormal observed frequencies of the text objects (i.e.
individual text characters or character tuples). For instance, obfuscated payloads
usually contain many text characters which usually have relatively few appear-
ances in non-obfuscation. In addition, as a special case of abnormal observed
frequencies, many obfuscation programs work in a way of tautologically produc-
ing similar text strings to form the building blocks of the obfuscation payload
so that the observed frequencies of several specific text objects that formed such
repeated strings (e.g. the punctuation “*”, number “5” and letter “f” in Fig. 1)
are significantly higher than others. Whereas in the case of non-obfuscation, the
overall observed frequencies are always relatively close to uniform due to the
restraints of English and JavaScript grammars. We name this phenomenon as
repeated-patterns. Logically, the appearance of repeated-patterns will definitely
give the arising of the abnormal observed frequencies but not vice versa.

Fig. 1. An example of obfuscation.

3.2 One-Class Support Vector Machine

In this investigation, we implement one-class SVM: a classifier that is always
utilized to detect novelty such as network intrusion. One-class SVM is a modifi-
cation of ordinary two-class version, proposed by Scholkopf et al. in [8]. To train
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a one-class SVM, only normal training samples are needed to form one normal
class and any new input will be either classified into normal class, or outside this
class as an outlier. Specifically, a set of normal training data points are firstly
mapped into a feature space by a kernel function and initially regards the origin
of the feature space as the only outlier. Then the image of the normal class S
which is a class that includes most of the mapped training data points can be
separated from the origin by a hyper-plane with maximum margin in order to
estimate a discriminant function which is positive on normal class S and nega-
tive on any point who is outside S. S is a small cluster with a simple geometric
shape capturing most of the normal training data points.

3.3 Information-Theoretic Measures for Extracting Features
of Suspicious Obfuscation

We consider an application of measures from information theory so that a given
JavaScript can be statistically characterized well by such measures. Discrepan-
cies of measure values are then used for classification between obfuscation and
non-obfuscation. For the purpose of comparison, the calculations of these mea-
sures are based on Unigram and Bigram. An input JavaScript is regarded as
a text stream and objects of the stream as observed values generated from an
identical random variable X. For Unigram frequencies, the objects are single
text characters so that X takes values from 94 characters of JavaScript. In the
case of Bigram, the objects tune to the combinations of each two characters (e.g.
“ab”, “c!”). Since the number of Bigram objects is big such that it is necessary
to select a part of the objects which are effective for classification and discard
the rest to decrease the dimensions of the feature vectors. However, since we are
using one-class SVM and there are only normal class samples contained within
the training data sets, it is hard to utilize common feature selection approaches
which are usually adopted in the case of multi-class classification, such as most
of the selection technique mentioned in [17] for two class classification, therefore
in this case we utilize the domain knowledge as well as the results gained from
observation to conduct the feature selection.

By observation, we noticed that among all Bigram objects, the frequencies of
2-lower case letter combinations are typically much higher than others in non-
obfuscation whereas in the case of obfuscation, their occurrences are relatively
much rarer. Specifically, the sum of frequencies of 2-lower case letter combina-
tions is about 55% in our non-obfuscation samples and only 18% in obfuscation
samples. Furthermore, in the case of non-obfuscation, 2-lower case letter combi-
nations are mainly appeared in readable English words so that their occurrences
are dominated by English grammar and their appearances are expected to be
stable and regular compared to the case of obfuscation, which there is almost no
grammar restraints exists and the occurrences of most Bigram objects are wild.
Consequently, such drastic differences are expected to be reasonable indicators
for classification such that in the experiments, we only focus on Bigram objects
formed by two lower case letters.
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The information-theoretic measures under consideration in this paper include
several kinds of entropy and divergence (see [13] for various and important results
in information theory) and they could be classified into two classes according to
their motivations. Meanwhile, our approach also can be regarded as an extension
of previous Unigram detection systems mentioned above. Specifically, the first
class includes uncertainty measures defined by one probability distribution. In
previous investigations, Shannon entropy has been shown as an effective measure
to examine the level of uncertainty and we introduce two more similar measures:
collision entropy and approximation of Shannon entropy in order to enhance
the examination of uncertainty. Theoretically, uncertainty measures could only
detect the abnormal uncertainty (i.e. repeated-patterns) but cannot be ensured
to be able to recognize the abnormal frequencies phenomenon. For instance,
to calculate Unigram Shannon entropy on the two text strings “function()” and
“%20EW4DC%3” will give exactly the same result of value but it is obvious that
latter one is more likely to be obfuscation. The second class includes distance
measures: Kullback Leibler divergence, Bhattacharyya distance and Euclidean
distance, which are defined by two probability distributions. Be different from the
uncertainty measures, the distance measures compare the observed frequencies
of text objects between two JavaScript hence they are expected to detect any
kinds of abnormal observed frequency phenomenon included repeated-patterns
since the repeated-patterns will surely incur the abnormal observed frequencies.
Meanwhile, unlike previous systems which straightly compared the frequencies of
all objects respectively, distance measures allow us to conveniently and explicitly
quantify such differences with scalar values. Overall, two classes of measures are
proposed for aiming to capture the two main characteristics of obfuscation and
we can expect improvement of the previous results obtained by Shannon entropy
and direct frequency comparison by using these new measures.

Shannon Entropy. In information theory, Shannon entropy measures the
uncertainty of a probability distribution. In existing investigations, it has been
utilized to identify suspicious randomness together with many JavaScript-specific
features but almost none of them gave out a systematical depiction on its effec-
tiveness. In our investigation, we reused it as one of our measures in order to (1)
conduct a comprehensive uncertainty examination together with the new uncer-
tainty measures proposed and (2) evaluate and compare its effectiveness with
the new measures.

Shannon entropy is expected to be helpful for detecting obfuscation since
theoretically it can detect the appearances of repeated-patterns. According to the
aforementioned features of repeated-patterns, the few text objects that are used
to form the repeated strings will have significantly higher observed frequencies
than others, which will result in a peculiar lower Shannon entropy value. For a
random variable X, the Shannon entropy H(X) is defined by:

H(X) = −
∑

x

p(x) log2 p(x), (1)
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where the probability distribution p(x) is associated with X. In our system, p(x)
is the observed frequency of a text object.

KullbackLeibler (K-L) Divergence. The K-L divergence DKL(Q||P ) or
DKL(P ||Q) measures the difference between two probability distributions P and
Q. We utilized it to measure if the probability distribution formed by observed
frequencies of a given JavaScript is close to the benign-distribution(see following
section), which is a probability distribution that describes the statistical feature
of a standard non-obfuscation. If so, it implies the given JavaScript has a similar
frequency distribution to the standard non-obfuscation JavaScript defined by
benign-distribution. Since the K-L divergence is a non-symmetric measure, we
calculate both DKL(Q||P ) and DKL(P ||Q) through following definition:

DKL(P ||Q) =
∑

x

p(x) log2
p(x)
q(x)

and DKL(Q||P ) =
∑

x

q(x) log2
q(x)
p(x)

, (2)

where Q and P denote the benign-distribution and the observed frequencies of
the given JavaScript respectively (usage of P and Q will be same below).

Approximation of Shannon Entropy. We introduce an approach to approx-
imate Shannon entropy based on asymptotic equipartition property (AEP). If
(x1, x2, . . . , xn) is an independent and identically distributed (i.i.d) sequence
according to a probability distribution p(x), then we have:

− 1
n

log2 p(x1, x2, . . . , xn) → H(X) in probability. (3)

We next define the notion of the typical set: An i.i.d sequence (x1, x2, . . . , xn)
will be included in the typical set A

(n)
ε if its probability satisfies the following

inequality:

H(X) − ε ≤ − 1
n

log2 p(x1, x2, . . . , xn) ≤ H(X) + ε, (4)

where ε is an arbitrarily small value. An important property of typical set
includes Pr(A(n)

ε ) > 1 − ε, if n is sufficiently large.
Assuming an input JavaScript (x1, x2, . . . , xn) is long enough and hence it

belongs to the typical set. Supposing the input is a non-obfuscation and we cal-
culate the probability p(x1, x2, . . . , xn) of the input JavaScript by using benign-
distribution (i.e. the value of each p(xi) is taken from the benign-distribution
where i = 1, . . . , n) so that the probability value calculated indicates the chance
of occurrence of the input JavaScript as a standard non-obfuscation. Then
we evaluate the value [− 1

n log2 p(x1, x2, . . . , xn)]. According to AEP, since we
have supposed the input is a non-obfuscation, this value would approach to the
Shannon entropy of the standard non-obfuscation which can be calculated by
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benign-distribution otherwise the input is not a member of the typical set. How-
ever, based on the property of typical set mentioned above, the probability of
an observed i.i.d sequence does not belong to typical set is negligible so that the
input (x1, x2, . . . , xn) then should be generated from another probability dis-
tribution which differs from benign-distribution and belongs to its typical set.
Therefore, we can determine if the value [− 1

n log2 p(x1, x2, . . . , xn)] of the input
approaches to the Shannon entropy of benign-distribution by evaluating the dif-
ference of these two values to indirectly identify the similarity between the under-
lying probability distribution of the input JavaScript and benign-distribution.
The input (x1, x2, . . . , xn) is considered to be suspicious once its underlying dis-
tribution is conspicuously different from the benign- distribution.

It is worth to mention that this approach is essentially a distance measure but
unlike measures such as K-L divergence, which compares the frequency values,
the AEP approach examines if the times of appearances of each object match
the times of appearances it “should” have within a non-obfuscation.

Bhattacharyya Distance. Similar to K-L divergence, the Bhattacharyya dis-
tance is also a measure for evaluating difference between two probability distri-
butions P and Q over a finite set. It is defined by

DB(P,Q) = − ln(
∑

x

√
p(x)q(x)). (5)

Collision Entropy. The collision entropy is defined by

H2(X) = − log
∑

x

p(x)2 = − log P (X = Y ), (6)

where random variables X and Y are given as independent and identically dis-
tributed according to a probability distribution p(x).

Except Shannon entropy, collision entropy is another metric to measure
uncertainty. According to the characteristic of repeated-patterns discussed
above, a minority of objects who have very high frequencies will cause a large col-
lision probability P (X = Y ) and results to an abnormal lower collision entropy.

Euclidean Distance. The Euclidean distance can be also utilized as a measure
to evaluate difference between two probability distributions. It is defined by

d(P,Q) = d(Q,P ) =
√∑

x

(q(x) − p(x))2. (7)

Benign-Distribution. Several distance measures are used to inspect if the
input JavaScript is statistically close to the standard non-obfuscation. By using
samples from non-obfuscation training data set we collected, we introduce the
benign-distribution to model the standard non-obfuscation. Intuitively, benign-
distribution is an empirical probability distribution that describes the frequency
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of occurrence of each text objects in the non-obfuscation training data set. Two
Benign-distributions for Unigram and Bigram are respectively obtained from
300 and 600 samples randomly selected. Each probability value p(x) of benign-
distribution is obtained by calculating the weighted average of frequency of each
text object in JavaScript. For example, for a certain text object x, we calculate
p(x) by the following formula

p(x) =
∑

n

C

T
· freq(x), (8)

where T denotes the total text length of all non-obfuscation samples within the
training data set; C denotes the length of a specific non-obfuscation sample in
which the object x occurs, freq(x) indicates the frequency of x observed in this
non-obfuscation, and n counts the total number of samples that x occurs.

4 Experiments and Results

4.1 Sample Data Collection

The main pages of sites of Alexa “The top 500 sites” URL list [12] were crawled
since December, 2014 and 2000 unique non-obfuscation samples were collected.
We also obtained 400 unique obfuscation samples from VirusTotal [10] and D3M
2010–2013 data sets [11]. For all samples, we manually sieved to ensure there is
no repeat.

4.2 Constructing the Classifier

The one-class SVM model is built and trained through the LIBSVM package with
R language, with a Radial basis function kernel and 10 cross-fold validations.
Same training data sets for calculating benign-distribution were used to train
one-class SVM, and the rest of non-obfuscation and all obfuscation samples were
utilized as test data.

4.3 Results of Calculations

Values of 7 selected measures were calculated and compared based on both
Unigram and Bigram frequencies around three data sets: Non-obfuscation train-
ing data, Non-obfuscation test data and Obfuscation test data. Figures 2 and 3
depict a part of the comparisons respectively.

By comparing the results gained from Unigram and Bigram frequencies, it
can be seen that the differences on measure values between obfuscation and non-
obfuscation are more conspicuous in the case of Unigram. While for the results of
Bigram, some measures such as two kinds of K-L divergences and Bhattacharyya
distance only performed ambiguous results of differences which can be hardly
used to identify these two types of scripts accurately.
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Fig. 2. Comparisons of 7 Unigram measure values among three data sets

Fig. 3. Comparisons of two Bigram measure values show loss of effectiveness

Overall, the values of non-obfuscation samples in most cases are much more
stable and concentrated since it can be seen that non-obfuscation data points in
most graphs tightly gather within narrow gaps while the values of obfuscation
are wild and random. Namely, for each measure, most of the non-obfuscation
samples are similar and stay within a 1-d cluster whereas the obfuscation samples
are randomly located outside this cluster. Such results proved our assumption
of obfuscation are outliers and could not be classified into a finite number of
specific classes.

Seven measures are used to characterize each JavaScript sample result in each
individual JavaScript is represented with a 7-dimensional vector. We visualized
these 7-dimensional data points in 3-dimensional coordinates through Classical
Multidimensional Scaling. Multidimensional scaling (MDS) is an approach to
visualize the similarity of a set of high dimensional points. Of particularly, it
relocates the high dimensional points into 2 or 3-dimensional space while the
Euclidean distance between each two points in original space are preserved as
well as possible. As can be seen in Fig. 4, the locations of data points again
explicitly indicate a “Normal class Versus Outlier” structure.

4.4 Training and Test Results

In order to test the effectiveness of each measure, firstly the one-class SVM
classifier is trained by only utilizing each single measure with slightly changes of
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Fig. 4. Mapping 7-dimensional data points into 3d coordinate

Fig. 5. Comparing effectiveness of measures among three data sets

parameter settings to conduct the detection on three data sets. The results are
shown in Fig. 5.

As can be seen, under Unigram most of these individual classifiers gave good
detection accuracies on both non-obfuscation and obfuscation data. Especially
for detecting obfuscation, compare to Shannon entropy which has been utilized in
previous investigations, 4 of proposed measures: K-L divergence DKL(Q||P ) and
DKL(P ||Q), AEP entropy approximation and collision entropy performed better.
It is also interesting to notice that distance measures averagely have better
performances compare to uncertainty measures, which justified our foregoing
assumption of distance measures could capture all kinds of abnormal observed
frequencies whereas uncertainty measures are only able to detect the repeated-
patterns, which is only a special case of the phenomenon of abnormal observed
frequencies so that distance measures are expected to cover and capture a wider
range of suspicious behaviours and more effective in this case.

Under Bigram, the effectiveness of all measures dropped and it is clear that a
part of the measures, mostly distance measures such as K-L divergence, could not
give explicit classification boundaries since their detection rates on obfuscation
and non-obfuscation test data sets cannot be balanced (i.e. the measure can-
not reach acceptable accuracies simultaneously on both data sets). The rank of
effectiveness between measures have been changed oppositely here which uncer-
tainty measures such as Shannon entropy and collision entropy give much better
performances than distance measures.
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Then multiple features are feed and combined into a one-class SVM in order
to improve the overall detection rates especially the accuracies of detecting obfus-
cation, as it can be seen Fig. 5, the effectiveness of most measures for detecting
obfuscation are relatively lower than non-obfuscation. The final detection accu-
racies of these combined systems are shown in Table 1. According to the foregoing
discussion, one may want to tune our system to minimize false-negative hence
the accuracy tests are conducted under different conditions. The balance mode
considers the trade-off between false-negative and false-positive, while mode of
minimizing false-negative favors false-negative as much as possible. Under bal-
ance mode, we respectively utilized all 7 features as well as only the top 4 effective
features ranked by the results of Fig. 5, which are K-L divergence DKL(Q||P )
and DKL(P ||Q), AEP entropy approximation and collision entropy in the case
of unigram and Shannon entropy, AEP entropy approximation, collision entropy
and Euclidean distance under Bigram model, to conduct the tests. For the results
presented in Fig. 5 and Table 1, the accuracy on obfuscation test data set is cal-
culated by TP

TP+FN and the accuracy on non-obfuscation training and test data
sets is obtained by TN

TN+FP .

Table 1. Final accuracy results among three data sets. OTest, NTest and NTrain are
short for obfuscation test, non-obfuscation test and non-obfuscation training data sets
respectively.

Mode/DataSet Unigram model Bigram model

OTest NTest NTrain OTest NTest NTrain

Balance 96.20 % 97.78 % 97.01 % 59.50 % 75.85 % 96.04 %

Balance(top 4 measures) 95.50 % 97.72 % 97.67 % 79.00 % 92.40 % 92.08 %

Minimizing false-negative 99.25 % 81.42 % 83.06 % 98.25 % 23.74 % 47.52 %

4.5 Time Consumption

The test of time consumption is conducted on 2000 non-obfuscation and 400
obfuscation samples respectively with a system environment of Window 7 Pro-
fessional 64 bits, with Intel Xeon CPU E3-1225 CPU and 16GB RAM. Build-in
functions “clock()” in C and “proc.time()” in R language are utilized to sur-
round the feature extraction and classification programs to measure the time
cost. The test results are shown in Table 2. Note that the values are the total
time to process the entire sample set but not for each individual sample. By
evaluating the results, it is clear that the system is extraordinarily fast which is
able to conduct large scale analysis.

4.6 Discussion

According to experiment results, it is obvious that the Unigram system aver-
agely gives much higher detection accuracies than Bigram system. The direct
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Table 2. Test results of time consumption. N(2000) and O(400) denote the 2000 non-
obfuscation and 400 obfuscation sample sets respectively.

Unigram model Bigram model

Feature extraction Classification Feature extraction Classification

N(2000) 2.029 s 0.04 s 4.634 s 0.03 s

O(400) 0.917 s <0.01 s 3.790 s <0.01 s

reason of obtaining such results are the discrepancies on effectiveness of mea-
sures under Unigram and Bigram models which can be evaluated by reviewing
Figs. 2 and 3. It can be seen for Unigram, non-obfuscation samples give highly
similar results of measure values and stay within thin gaps covered small range
of values whereas under Bigram, the ranges of such gaps became much wider
which indicates some similarities between non-obfuscation samples have lost.
Moreover, under Bigram most distance measures give relatively poor perfor-
mances which even carry out similar values between quite a part of obfuscation
and most non-obfuscation such that the measures are no longer effective for clas-
sification. The results of Bigram is also against our aforementioned assumption of
distance measures are expected to cover and capture a wider range of suspicious
statistical behaviours than uncertainty measures. We inference that the most
possible reason could be the benign-distribution of Bigram frequencies doesn’t
have a good generalization to describe the Bigram statistical features of most
non-obfuscation such that when the input is an obfuscation, even if abnormal
observed frequencies occur, since benign-distribution gives poor description for
non-obfuscation, the values of distance measures calculated will not be a good
pointer to identify if the input is obfuscated. In addition, we further inference
that the Bigram grammar constraints of JavaScript is essentially weak, which
results the discrepancies of frequencies between objects are more ambiguous,
random and irregular than Unigram objects such that one could hardly find a
suitable model (i.e. benign-distribution) that could give an acceptable general-
ization to describe the normal behaviours of most non-obfuscation. It’s worth to
mention that to the best of our knowledge, we could only find [15] which also
implemented Unigram and Bigram models at letter level using SVM which can
be compared with our results. Specifically, their Bigram system gave about 20%
error rate while their Unigram system reduced it to 10%. On the other hand,
the Unigram system gave about 90% F-measure value which is also a little bit
higher than Bigram system. Furthermore, such accuracies were gained directly
from the training data sets while our results are acquired from the separate test
data sets therefore more reliable. On the other hand, it also can be seen that the
uncertainty measures give much better performances under Bigram which their
loss of effectiveness are quite limited compared to distance measures after shift-
ing from Unigram to Bigram. We believe the reason has to be: the effectiveness
of uncertainty measures do not rely on frequency comparisons and the accuracy
of benign-distribution. Therefore uncertainty measures could still capture most
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of the occurrences of repeated-patterns whereas the distance measures failed to
capture quite a part of the abnormal observed frequencies phenomenon caused
by repeated-patterns, as well as many other kinds of obfuscation under Bigram.

5 Conclusion and Future Work

In this paper, we presented the experiment results of our new suspicious
JavaScript filter system by using both Unigram and Bigram models, and com-
pared the differences of performances.

Two proposed filter systems significantly reduced the dimensions of fea-
ture vectors. According to the fact that our measures do not count on specific
JavaScript-specific behaviours, as well as the results of Fig. 5 and Table 1, we
showed that these measures have high effectiveness especially under Unigram.
We also justified the correctness of our modelling approach of novelty detection
based on the results of data points distribution performed by Figs. 2 and 4, in
which the non-obfuscation samples behave strong similarity while the obfusca-
tion samples are randomly located outside the single cluster of non-obfuscation.
To sum it up, by conducting the experiments and comparing the performances
of two proposed systems, we found our Unigram system performed high accu-
racies with practical time and resource, which can be operated over large scale
smoothly for accurately recognizing the obfuscation. On the other hand, we also
analysed the problems occurred in the results of our Bigram system in detail.

Since our system only inspects obfuscation, one may have to combine our
system to others to conduct a comprehensive detection of maliciousness, hence
it will be necessary for us to test the compatibility of such combinations. On
the other side, we will consider the extension of our approach to detect other
malicious codes.
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MEXT Program of Promoting the Reform of National Universities, Japan.
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Abstract. Elliptic curve cryptosystem (ECC) is widely used in cryp-
tographic device. Despite its solid mathematical security, ECC is still
vulnerable to many kinds of physical attacks. In this paper, we present
two new lattice-based differential fault attacks (DFA) against the famous
ECC signature algorithm standard-ECDSA with wNAF algorithm of
scalar multiplication. Compared with the fault attack proposed in
Crypto’2000, our first attack adopts a different way to deduce parts of the
nonce k. The former recovered parts of k mainly by guessing technique,
while our attack combines the guessing technique and solving equation
with one unknown. So our attack is applicable for the weaker attack
scenes allowing more random faulty bits. In our second proposed attack,
instead of injecting faults during calculating kG, we focus on injecting
faults during calculating wNAF transformation of k before calculating
kG. If the targets during wNAF transformation of k are skipped by fault
injection, we can build some DFA models to retrieve parts of k. In both
of the two attacks, the attacker can mount lattice attack to recover the
private key in ECDSA with the derived parts of k. Finally, we verify the
feasibility of our proposed attacks by experiments.

Keywords: ECC · Fault attack · Lattice attack · ECDSA · wNAF

1 Introduction

Elliptic curve cryptosystem (ECC) has become one of the most popular cryp-
tosystems and is widely used in cryptographic device. From the view of mathe-
matics, the security of ECC relies on the difficulty of solving elliptic curve discrete
logarithm problem (ECDLP). However, in the sceneries of practical implemen-
tation, the attacker can often bypass the direct mathematical attack, and reveal
secret key with the help of some physical means. For example, during the signa-
ture procedure of ECC, one can mount a simple power attack [1] to recover the
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nonce k by observing the power leakage of the k. Once the nonce k is known,
the private key can be recovered at the same time.

Besides power attack, fault attack (FA) is another powerful physical attack.
The idea of fault attack was first proposed by Boneh, DeMillo and Lipton [2],
by which an RSA CRT can be broken if both a correct and a faulty signature of
the same message can be achieved by an attacker. Since then, a great amount
of fault attacks [3–6] have been proposed on various cryptosystems.

The first two fault attacks against ECC [3] were proposed by Biehl et al. in
CRYPTO’2000. The basic idea of the first fault attack was to change the original
curve into a weak curve with a low order, so that it becomes much easier to
solve ECDLP and get the nonce k. In order to get a weak curve, the attacker
had to induce some faults on the base point G. In the second fault attack, the
differential analysis technique was utilized, so it was also called differential fault
attack (DFA). When there were some faults injected in the intermediate point
(IP) Qi during the calculating of scalar multiplication (SM) kG, Qi was updated
into the faulty IP Q′

i with a few different bits. As the difference relationship
between the faulty result Q′ and correct result Q of SM was known, the least
or most significant bits of k could be obtained by using the differential analysis.
Later, some other FA on ECC were respectively presented. Johannes introduced
a method called sign change fault attack [7], in which the attacker can get parts of
k by changing the sign of the intermediate value Qi. Schmidt, et al. also proposed
a DFA method [8] against the algorithm ECDSA [9]. The attacker could mount
a fault injection (FI) so that some point doubling and addition operations were
skipped. Because the result Q′ of SM after the FI was still on the original elliptic
curve, the attacker could deduce Q′ from the signature results. Finally, he could
get parts of k with the difference between Q′ and Q.

Actually, if part information of the nonce k is leaked out in ECDSA-like sig-
nature algorithm, the attacker also can get the private key by lattice attack (LA).
The most popular leakage case for LA is that the nonce k is partly known [10–12].
There are also other cases: existing some same blocks in the sequence of every
nonce k [13], and sharing some unknown bits between different nonces [14]. At
present, only the first leakage case is used successfully for lattice-based fault
attack against ECDSA-like signature algorithm [8,15]. Hence, for lattice-based
fault attack, how to induce proper faults during the signature procedure to get
some leakage information of k is a key step. In [15], the FI experiments about
how to change parts of nonce k into all zeros were introduced in detail. Moreover,
as introduced above, in the attack proposed by Schmidt, et al. [8], the attacker
mounted a FI during the calculation of SM kG to skip some point doubling
and addition operations which can help to deduce the faulty result Q′ from the
signature result. From the difference between Q′ and correct Q, k can be partly
deduced. It is an effective FI model to get parts of k. However, there are almost
no published literatures to mention some other FI models in the signature pro-
cedure to obtain leakage information of nonce k. Due to the diversity of practical
fault attack conditions, we believe it is an interesting problem to explore new FI
models and present some other effective lattice-based fault attack methods.
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Our Contributions. In this paper, we present two new lattice-based differen-
tial fault attacks against ECDSA and the calculation of scalar multiplication
(SM) in ECDSA adopts the width-w non-adjacent form (wNAF) window algo-
rithm. Compared with the fault attack proposed in [3], our first attack adopts
a different way to deduce parts of the nonce k, in spite of the fact that both
of them are based the similar fault scene. That is, some random register faults
are induced into the intermediate point (IP) of SM by FI. The former recovers
parts of k mainly by guessing the values of parts of k and faulty IP, while our
attack combines the guessing technique and solving equation with one unknown
in finite field Fp. We only need to guess parts of k and deduce the corresponding
equation with the unknown faulty IP based on the rules under affine coordi-
nates. When the number of faulty bits in the faulty IP is smaller than the upper
bound L−3.9

√
L

2 , we can determine the correct values of faulty IP and parts of
k by solving the equation and comparing the derived faulty IP, where L is the
bit length of ECDSA. It is unnecessary to guess the value of faulty IP, so our
attack is applicable for the weaker attack scenes which allow more random faulty
bits in the IP to be induced. In our second proposed attack, instead of inject-
ing faults during calculating kG, we focus on injecting faults during calculating
wNAF transformation of k before calculating kG. If the targets during wNAF
transformation of k are skipped by FI, we can build some DFA models to retrieve
parts of k. In both of the two attacks, given a number of such faulty signature
results with the derived parts of nonces k, the attacker can mount lattice attack
to recover the private key in ECDSA. Moreover, we also analyze the success rate
of our proposed attacks. Finally, in order to verify the feasibility and correctness
of our proposed fault attack methods, real laser injection and simulation exper-
iments are carried on. All of results show that the proposed fault models and
attack methods are feasible and practical.

The remainder of the paper is organized as follows: Section 2 introduces
wNAF window algorithm, ECDSA, the basic theory of lattice, and the LA
against ECDSA based on known parts of nonce k. In Sect. 3, the first lattice-
based DFA against ECDSA is described. In Sect. 4, the second lattice-based DFA
against ECDSA is presented. The corresponding laser injection and simulation
experiments are presented in Sect. 5. Finally, conclusion is given in Sect. 6.

2 Preliminaries

2.1 Elliptic Curve Digital Signature Scheme

In this section, we will focus on the elliptic curve which is defined on prime finite
field Fp(p > 3). An elliptic curve E(a, b) is defined by the Weierstrass equation

E : y2 = x3 + ax + b mod p. (1)

Where a, b ∈ Fp, and 4a3 + 27b2 �= 0 mod p. The group E(Fp) of points on
curve E is defined as E(Fp) =

{
(x, y)|x, y ∈ Fp, y

2 = x3 + ax + b mod p
}∪{O} .

(E(Fp),+) is an additive abelian group [16], where infinity point O is identity
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element and −P (x, y) = P (x,−y). The point addition and doubling under affine
coordinates in E(Fp) are defined as follows.

- For P1(x1, y1) ∈ E(Fp) \ {O}, P2(x2, y2) ∈ E(Fp) \ {O}, x1 �=
x2, P3(x3, y3) = P1 + P2,where

{
x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1
(λ =

y2 − y1
x2 − x1

)

- For P1(x1, y1) ∈ E(Fp) \ {O}, P3(x3, y3) = P1 + P1,where
{

x3 = λ2 − 2x1

y3 = λ(x1 − x3) − y1
(λ =

3x1 + a

2y1
)

Given a point G ∈ E(Fp) and an integer k, there are several efficient algo-
rithms to calculate the scalar multiplication (SM) kG, such as binary algorithm,
wNAF window algorithm, montgomery ladder algorithm and so on [17]. As an
acceleration algorithm for SM, wNAF window algorithm is generally adopted
when the base point G of SM is fixed. As shown in Algorithm 2, before the
iterations start, the scalar k must be firstly transformed into NAFw(k) by the
transformation Algorithm 1, where −2w−1 ≤ ki < 2w−1.

Algorithm 1. wNAF transformation

Require: integer k
Ensure: NAFw(k)
1: i = 0;
2: while k ≥ 1 do
3: if k is odd then ki = k mod 2w

4: if ki ≥ 2w−1 then ki = ki −2w

5: k = k − ki

6: else ki = 0
7: k = k/2, i = i + 1
8: end while
9: return (ki−1, ki−2, · · · , k1, k0)

Algorithm 2. wNAF Window algorithm for scalar multiplication

Require: integer k, base point G ∈
E (Fp), window width w

Ensure: kG
1: Use Algorithm 1 to compute

NAFw (k) =
∑m−1

i=0 ki2
i;

2: pre-compute Gi = iG for i ∈{
1, 3, 5, · · · , 2w−1 − 1

}

3: Qm = O

4: for i = m − 1 to 0 do
5: Hi = 2Qi+1

6: if ki �= 0
7: if ki > 0 then Qi = Hi + Gki

8: else Qi = Hi − G−ki

9: else Qi = Hi

10: end for
11: return Q0

For a nonsingular elliptic curve E in Fp, assume that the order #E(Fp) of
group E(Fp) is divisible by a large prime number q and O(

√
q) is computationally

infeasible, then it is believed that it is hard to solve ECDLP. That is, given two
points P,Q ∈ E(Fp) (P �= Q), it is impossible to acquire the positive integer k
satisfying the equation Q = kP due to the computation complexity. The security
of ECC is based on the hardness of solving ECDLP.
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Algorithm 3. ECDSA Signature

Require: message m, private key dA.
Ensure: signature results r, s.
1: e = SHA (m);
2: select k ∈ [1, n − 1] randomly;
3: Q(x1, y1) = kG;

4: r = x1 mod n;
5: if r = 0 then goto step 2
6: s = k−1(e + dAr) mod n;
7: if s = 0 then goto step 2
8: return (r, s)

Algorithm 4. ECDSA Verification

Require: signature results m′, (r′, s′),
public key PA.

Ensure: whether verification succeeds.
1: if r′ xor s′ /∈ [1, n − 1] then return

false;
2: e′ = SHA(m′);

3: u1 = s′−1
e′ mod n, u2 = s′−1

r′

mod n;
4: Ω = u1G + u2PA;
5: if Ω �= O and r′ = xΩ mod n then

return true;
6: return false

ECDSA is an elliptic curve digital signature standard algorithm pushed by
NIST. In ECDSA, an elliptic curve E over prime finite field Fp and the base point
G ∈ E(Fp) with order n are chosen, where p, n are two primes with the same
size. The private key dA and the corresponding public key PA satisfy PA = dAG.
Algorithm 3 describes the detailed signature procedure. Signer signs the message
m with the private key dA and send the results (m, (r, s)) to verifier, where e is
the hash value of m. If verifier receives (m′, (r′, s′)), he can verify the signature
with public key PA according to Algorithm 4.

2.2 Lattice Attack Basis

A lattice L is a discrete additive subgroup of Rn [18,19], where R
n denotes n

dimensional space in real number field R. If all the vectors in vector set B =
{b1, b2, ..., bN} are linearly independent from each other, and any lattice vector
u ∈ L is a linear combination of these vectors, then B is defined as a basis of
L. Thus u = xA =

∑N
i=1 xi · bi, where x = (x1, x2, ..., xi, ..., xN ) ∈ R

N , xi ∈ R,
bi ∈ R

n and matrix A = (b1, ..., bN )T ∈ Mn×N (R). If the lattice L is a subgroup
of Zn about operation “+”, then it is the called integer lattice.

At present, the closest vector problem (CVP) is one of the famous hard prob-
lems in lattice theory. Given a lattice basis B of L and a target vector v ∈ R

n,
find a lattice vector w ∈ L satisfying ‖w − v‖ = λ (L, v), where λ (L, v) is the
closest distance between L and v , i.e., λ (L, v) = min {‖t − v‖ |t ∈ L}. It can
be solved in polynomial time by the combination of LLL algorithm and Babai’s
Nearest Plane algorithm [20]. The following attack is based on solving the CVP.

2.3 Lattice Attack Against ECDSA

Hidden number problem (HNP) is first proposed in [21]. For i ∈ {1, · · · , N},
it assumes ti ∈ Zn is selected randomly and uniformly and ui is any rational
number. Moreover, both of them meet the following inequations
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|αti − ui|n ≤ n1−ε. (2)

Where ε is a real number smaller than 1, and |x|n is defined as minb∈Z|x − bn|
for any x. How to obtain α ∈ Zn by solving such N inequations is a HNP.

How to construct a HNP for ECSDA is described in [11]. Assume the attacker
has obtained N signatures as follows.

si = k−1
i (ei + dAri) mod n(i = 1, · · · , N) (3)

Where ei, (ri, si), ki respectively represent the hash value, results of signature
and nonce in the i-th signature.

If the attacker has known l least significant bits (LSBs) ai =
(ki,l−1ki,l−2...ki,0)2 of the nonce ki, then ki = bi2l + ai, where ki,j ∈ {0, 1}(0 ≤
j ≤ l − 1) and bi which is the rest of nonce ki satisfies 0 < bi < n/2l. Thus, the
above equations can be rewritten as

2−ls−1
i ridA − 2−l

(
ai − s−1

i ei

)
= bi mod n(i = 1, · · · , N) (4)

Let ti = 2−ls−1
i ri mod n, ui = 2−l

(
ai − s−1

i ei

)
mod n and vi = ui2l+1+n,

then the Eq. 4 can be written as the following pattern of ECDSA-HNP, where
ε = logn

(
2l+1

)
< 1.

∣∣dAti − vi/2l+1
∣∣
n

< n/2l+1(i = 1, · · · , N) (5)

Thereby, the following equations can be given by the above HNP equations.

|dA2l+1ti + hi2l+1n − vi| ≤ n(i = 1, · · · , N) (6)

Where hi ∈ Z is the smallest integer making the above inequation true.
As described in [11], ECDSA-HNP can be transformed into CVP. The

attacker can construct a (N + 1)-dimensional lattice L by the row vectors of

the following matrix A =

⎛
⎜⎜⎜⎜⎜⎝

1 2l+1t1 2l+1t2 · · · 2l+1tN
0 2l+1n 0 · · · 0
0 0 2l+1n 0
...

...
. . .

...
0 0 · · · · · · 2l+1n

⎞
⎟⎟⎟⎟⎟⎠

∈ M(N+1)×(N+1)(Z).

So for any lattice vector w ∈ L, there exists a x ∈ Z
(N+1) satisfying w = xA.

For a non-lattice vector v = (0, v1, v2, ..., vN ) ∈ Z
(N+1) and x = (dA, h1,

h2, ..., hN ) ∈ Z
(N+1), the vector w satisfying w = xA = (dA, dA2l+1t1+

h12l+1n, ..., dA2l+1tN + hN2l+1n) is a lattice vector in L. Hence, for all
i = 1, · · · , N , the above Eq. 6 can be transformed into CVP as

‖w − v‖ ≤ n
√

N + 1,
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where n
√

N + 1 is shorter than the approximation of closest distance λ (L, v).
Hence, lattice vector v can be obtained in polynomial time based on Babai’s
CVP approximation algorithm [20], then the private key dA can also be revealed
by v .

It has been proved in [10] that the solution of CVP can be determined as
long as the number N of signatures satisfies log2 n/l < N . Hence, knowing l
bits of the nonce k, the attacker needs at least log2n/l signatures to reveal the
private key.

3 First Differential Fault Attack Against ECDSA

In [3], the authors show how to mount differential fault attack against ECC by
enforcing register faults during calculating scalar multiplication (SM) Q = kG
with binary algorithm. It assumes that there are a few random bits in the inter-
mediate point (IP) flipped intentionally by fault injection (FI). Based on the differ-
ence between the correct result Q and faulty result Q′ of SM, the attacker guesses
all possibilities of the remaining parts of k after FI and obtains the guessed faulty
SM result Q̃′. If Q̃′ = Q′, then the corresponding guessed parts of k is the correct
one. The attack is also applicable to the wNAF algorithm which is frequently used
for calculating the SM because of the fixed base point G in ECDSA.

The attack needs to know the number of flipped bits and guess the position
of flipped bits in the faulty IP. The time complexity for guessing is 2lCξ

L2ξ when
the number ξ of flipped bits is known, where L is the bit length of ECC and
l is the bit length of parts of k. However, in practical FI experiments, there
are usually more random register faulty bits in the IP with unknown position

and number. The time complexity will reach up to
ξ∑

t=1
2lCt

L2t when guessing

the position and number of the faulty bits. Moreover, the results Q′ and Q
may not be obtained directly and entirely in many applications of ECC such as
ECDSA. Hence, the traditional differential analysis technique will not work. In
this section, we will propose a new differential fault attack against ECDSA to
solve the above problems.

3.1 Fault Attack Model

In our attack, the fault mode is based on that the SM Q = kG is done with
wNAF window algorithm due to its special structure and wide application in
L-bit ECDSA signature, and the window width w is generally greater than 3.
It is assumed that some random register faults are induced into y-coordinate
yH(or x-coordinate xH) of the IP H(xH , yH) successfully during calculating
SM, so that yH(xH) is changed into yH′(xH′). Meanwhile, the faulty signature
results (r, s) are also obtained. It is imperative to note that we have no idea
about both the actual number and position of faulty bits in yH′(xH′).

Based on the above fault attack model, the basic attack idea can be described
as follows. Unlike the attack in [3], we can not execute the SM directly to get both
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Table 1. Comparison between the previous attack and ours

Attack
Item

fault attack model time maximum
faulty

ξ
position of

yQ
executing complexity number of ξ

point faulty bits correct SM

attack in [3] IP known unknown known yes 2lCξ
L2ξ 40

this paper IP unknown unknown unknown no 2l L
2

− 3.9
√

L
2

the faulty result Q′(xQ′ , yQ′) and the correct result Q. Instead, we can determine
the value of xQ′ and Q by deducing from the faulty signature results (r, s). Then,
we only need to guess all possibilities of the remaining parts of k after FI, and
the corresponding y-coordinate ỹH′(x-coordinate x̃H′) of the faulty IP can be
obtained by solving a equation with one unknown in Fp based on the rules under
affine coordinates. Meanwhile, we can also derive the corresponding guessed value
ỹH(x̃H) of yH(xH) from the guessed part of k and Q. If the hamming distance
between ỹH′(x̃H′) and ỹH(x̃H) which is also equivalent to the hamming weights
hw(ỹH′ ⊕ ỹH) (or hw(x̃H′ ⊕ x̃H)) of ỹH′ ⊕ ỹH (or x̃H′ ⊕ x̃H) is smallest, i.e.,
ξ = hw(yH′ ⊕ yH) = hw(ỹH′ ⊕ ỹH), then the corresponding guessed parts of k
is the correct one. Here the number ξ of faulty bits must be smaller than the
upper bound T . Given a number of such faulty signature results with the derived
parts of k, the whole secret key can be recovered by lattice attack (LA). Since
there is no need to guess the position and number of faulty bits of IP, the time
complexity is severely curtailed.

The Table 1 lists the comparison between the previous differential fault attack
presented in [3] and ours.

3.2 Description of the Fault Attack

In wNAF window algorithm, k must be first transformed into NAFw(k) denoted
as (km−1, km−2, . . . , ki, . . . , k0)w, where −2w−1 ≤ ki < 2w−1 and m is at most
1 more than the length of the binary representation of k. As shown in Algorithm
2, for i = m − 1, · · · , 0, we denote the result of point doubling as Hi and the
final result as Qi = Hi + kiG in i-th iteration of SM respectively. Consequently,
the result of SM is denoted as Q0 (xQ0 , yQ0).

For the general case in L-bit ECDSA with wNAF window algorithm, for
example w ≥ 4 and L = 256, we only focus on the IP H0 after point doubling in
the 0-th iteration of SM as the target of FI in our attack. When there exists a
point addition after FI in the 0-th iteration, i.e., the nonce k is odd, then w least
significant bits (LSBs) are disclosed by differential analysis. It is sufficient for us
to mount lattice attack in practice when knowing w(w ≥ 4) bits of nonce k. In
contrast, the faulty signatures whose nonces k are even will be eliminated during
analysis, since the attack model for recovering parts of k could not be built. In
other words, we only consider the case that nonce k is odd. So Q0 (xQ0 , yQ0) =
H0 (xH0 , yH0) + k0G, where k0 �= 0.
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The procedures for our attack mainly consist of the following 5 steps.

Step 1: make some faults and obtain faulty signature results (r, s)
by FI. As stated above, assume that some random register faults are enforced
into the y-coordinate of H0 in the 0-th iteration of SM, then H0 (xH0 , yH0) is
updated as H ′

0(xH0 , yH′
0
). Consequently, the corresponding SM result becomes

Q′
0(xQ′

0
, yQ′

0
). In spite of the fact that H ′

0 is not on the original curve, the
equation Q′

0

(
xQ′

0
, yQ′

0

)
= H ′

0

(
xH0 , yH′

0

)
+ k0G still holds according to the rules

of point addition. In addition, suppose that there is no countermeasure to detect
the faults, then the faulty signature results (r, s) can be obtained after FI.

Step 2: obtain Q0 from verification. The equation Q0 =
(
es−1 mod n

)
G + (rs−1 mod n)PA can be derived from verification. Thus, the correct SM
result Q0 can be recovered with the known signature results (r, s).

Step 3: obtain yH̃′
0
by guessing k0 and solving the equation with one

unknown. We guess all the possible values k̃0(−2w−1 ≤ k̃0 ≤ 2w−1) of k0, and
compute SM k̃0G = (x̃, ỹ). Knowing Q0 and (x̃, ỹ), we can get the corresponding
guessed IP H̃0(xH̃0

, yH̃0
) = Q0 − (x̃, ỹ).

As stated in Step 1, the equation H̃ ′
0

(
xH̃0

, yH̃′
0

)
+ (x̃, ỹ) = Q′

0

(
xQ′

0
, yQ′

0

)
holds if k̃0 = k0. Hence, according to the rules of point addition under affine
coordinates, we have

xQ′
0

= λ2 − xH̃0
− x̃ mod p. (7)

Where λ =
yH̃′

0
−ỹ

xH̃0
−x̃ mod p. The above equation can be rewritten as the following

quadric equation in Fp.(
yH̃′

0
− ỹ

)2

=
(
xQ′

0
+ xH̃0

+ x̃
) (

xH̃0
− x̃

)2 mod p (8)

Where xQ′
0

can be derived from xQ′
0

= r mod n in Algorithm 3 and has at most
2 solutions.

As only the y-coordinate yH̃′
0

of the guessed faulty IP H̃ ′
0 is unknown, we can

obtain at most 4 candidates yH̃′
0

by solving the quadric Eq. 8. If the equation

has no solution in Fp, then the guessed k̃0 is wrong. This can eliminate most of
the wrong guessed k̃0.

Step 4: determine k0 by comparing hw(yH̃0
⊕ yH̃′

0
). If the hamming

distance hw(yH̃0
⊕ yH̃′

0
) between yH̃0

and yH̃′
0

is smallest, i.e., ξ = hw(yH0 ⊕
yH′

0
) = hw(yH̃0

⊕yH̃′
0
), then the corresponding guessed k̃0 is the correct k0. Note

that k0 can be determined uniquely with smallest hamming distance only when
the number of faulty bits is smaller than the upper bound T . Otherwise, it will
not be distinguished from the wrong guessed values by comparing hw(yH̃0

⊕yH̃′
0
).

In addition, if we enforce some random register faults into the x-coordinate
of the IP H0(xH0 , yH0) by FI, i.e., H0(xH0 , yH0) is rewritten as H ′

0(xH′
0
, yH0),

then the above Eq. 8 will be transformed into the following cubic equation.

(yH̃0
− ỹ)2 = (xQ′

0
+ xH̃′

0
+ x̃)

(
xH̃′

0
− x̃

)2

mod p (9)
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Where only the guessed value xH̃′
0

of xH′
0

is unknown in Fp. In the same way, k0
also can be determined by solving the equation and comparing hw(xH̃′

0
⊕ xH̃0

).
Step 5: recover dA by LA. If this attack is applied on 2N(N > L/w + 1)

signatures, at least w LSBs of the nonces in about N signatures(k0 �= 0) can be
revealed. The rest of signatures(k0 = 0) are eliminated during solving equation.
Naturally, we can recover the private key dA by LA.

3.3 Analysis of the Attack

Firstly, we will discuss the upper bound T of the number ξ of faulty bits (namely
hamming distance) in our attack. If the guessed k̃0 is wrong, the hamming dis-
tance ξ̃ between intermediates ỹH0 and ỹH′

0
seems random and follows discrete

binomial distribution with probability 1
2 , mean value 1

2L and variance 1
4L, where

L is the bit length of ECDSA. Moreover, the limiting distribution of binomial
distribution with constant probability obeys approximatively Gaussian distri-
bution X ∼ N

(
1
2L, 1

4L
)
. Thus the approximate probability of all the wrong

assumptions leading ξ > T can be presented as

P
(
T < ξ̃ < L

∣∣∣k̃0 �= k0

)
= 1 − 1

2L

T∑
j=0

Cj
L ≈ Φ

(
L−L

2√
L
4

)
− Φ

(
T−L

2√
L
4

)

= Φ
(√

L
)

− Φ
(

2T√
L

− √
L

) (10)

According to cumulative distribution,
√

L is definitely larger than 3.9, so
Φ

(√
L

)
= 1, where Φ (3.9) = 1. To ensure that the above probability P is

equal to 1, Φ
(

2T√
L

− √
L

)
must be equal to 0. Hence,

√
L − 2T√

L
≥ 3.9, i.e.,

T ≤ L
2 − 3.9

√
L

2 . Supposing L = 256, ξ should be smaller than T = 96, which can
be easily achieved in FI experiments.

Next, we will analyse the success rate of FI when giving a fixed position and
time point. It is easy to find the right position because the memory area of H0 is
fixed, such as in one general area of RAM. However, it is impossible to determine
the exact time point for every FI except to rely on the probability of k, since
the nonce k is unknown and random before FI in every ECDSA signature. Thus,
before FI, we must preset a fixed time point which has highest probability to
be just after the point doubling in 0-th iteration of SM. In a L-bit ECDSA, let
m denote the length of NAFw(k) and β denote the number of nonzero values
in the sequence of NAFw(k) respectively, then the probability P (NAFw(k)|k0 �=
0, 1 < m ≤ L+1, 1 < β ≤ m/w) is Cm−wα−1

α+m−wα−2(
1
2 )L+α−wα, where α = β − 1. In

addition, it is known that the probability is
(
1
2

)i+1 when the binary bit length μ
of nonce k is equal to L − i for i ∈ {0, . . . , L}. Consequently, for NAFw(k) with
length m, we can conclude that m ∈ {L + 1, L, . . . , L − w + 2} has probability

1
w+1 , and m ∈ {L − w + 1, . . . , 0} has probability 1

w+1 ( 12 )L+2−m−w. Moreover,
the average density of nonzero value in the sequence of NAFw(k) is about 1

w+1
and the processing time for a point doubling or addition is constant. It implies
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that the fixed time point just after m ∈ {L + 1, L, . . . , L − w + 2} point doubling
and α = m/(w + 1) point addition is the best selection for FI. For example, we
consider the case that w = 8 and m = μ = L = 256, then the time after 256
point doubling and 28 point addition is the right time point with probability
0.023(k0 �= 0). So we need almost 1800 signatures to mount attack successfully.

Finally, for the special case (w < 4) of wNAF algorithm, the attack is also
feasible. For example, it is assumed that y-coordinate yHi

of Hi in the i-th
round iteration of SM has some bits flipped by FI, then yHi

is rewritten as
yH′

i
, where i is usually greater than 2w. Like the method above, guessing all

the possible values of the remaining parts of k, we also can deduce a high order
equation with the unknown faulty y-coordinate yH′

i
of the faulty IP in Fp after

the iterations step by step from i to 0. It can be solved by the method presented
in [22]. Analogously, we can determine the correct value of parts of k by solving
the equation and comparing the derived yH′

i
with the corresponding yHi

. By
the same way, the attack against binary algorithm is almost same except the
different position and time point of FI.

4 Second Differential Fault Attack Against ECDSA

Clearly, as in most of fault attack methods, the target of fault injection (FI) is
vital to success, and is usually located during calculating scalar multiplication
(SM). In this section, we will propose a kind of new differential fault attack
against ECDSA and the SM is still calculated with wNAF window algorithm.
The target is not located during calculating scalar multiplication (SM), but
during calculating wNAF transformation of k. Moreover, we adopt the way of
skipping instructions to implement FI. Since the FI is implemented at the begin-
ning of wNAF transformation, it is easier to locate the target for FI experiments
in ECDSA.

4.1 Fault Attack Model

As shown in Algorithm 1, we assume the instruction i = i+1 or k = k/2 in step
7 is skipped by FI during executing i-th iteration of wNAF transformation. This
indicates that the following transformation result NAFw(k)′ is not equivalent to
the original k. NAFw(k)′ as scalar is used for calculating SM, while k is called in
computing s = k−1(e+dAr) mod n for the sake of efficiency. Thus, a differential
relation between Q′ = NAFw(k)′G and Q = kG can be built, and it is easy to get
at least i + 1 least significant bits (LSBs) of the nonce k by differential analysis.

Under above assumption and analysis, we can employ lattice attack (LA) to
recover the private key used in ECDSA signature.

4.2 Description of the Fault Attack

As mentioned above, the nonce k should be first transformed into NAFw(k) =
(km−1, · · · , ki+1, ki, ki−1, · · · , k0)w by wNAF transformation. However, assume
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that the instruction i = i + 1 is skipped deliberately by FI during i-th itera-
tion of wNAF transformation, then the transformed result will be changed into
the faulty NAFw(k)′ = (km−1, · · · , ki+1, ki−1, · · · , k0)w rather than the correct
NAFw(k). Finally, we also get the faulty signature results (r, s).

Hence, we have the following computations.

NAFw(k)′ = (km−1, · · · , ki+1)w2i + (ki−1, · · · , k0)w

2NAFw(k)′ = k + (−ki, ki−1, · · · , k0)w

2Q′ = Q + (−ki, ki−1, · · · , k0)wG
(11)

Let k̃ = (−ki, ki−1, · · · , k0)w, then the following differential equation only relies
on the point G and k̃.

2Q′ − Q = k̃G (12)

As mentioned above, since the nonce k is used in step 6 of Algorithm 3 for
the sake of efficiency, then the correct output Q can be deduced by the equation
Q =

(
es−1 mod n

)
G + (rs−1 mod n)PA.

Guessing all possibilities of k̃ ∈ [−
i/w+1∑
j=0

2w+i−jw,
i/w+1∑
j=0

2w+i−jw) and substi-

tuting them into the above equation respectively, the real k̃ can be determined
uniquely when the equation is true, that is, at least i + 1 LSBs of nonce k are
disclosed.

Similarly, if the instruction k = k/2 is skipped in i-th iteration of wNAF
transformation, then the transformed result is changed into NAFw(k)′ = (km−1,
· · · , ki+1, 0, ki, · · · , k0)w. Let k̃ = (ki, · · · , k0)w, then the following differential
equations can be deduced.

NAFw(k)′ = (km−1, · · · , ki+1)w2i+2 + (ki, · · · , k0)w = 2k − k̃

2Q − Q′ = k̃G
(13)

By the same way as above, we can obtained at least i + 1 LSBs of nonce k. In
addition, if both of instructions k = k/2 and i = i+1 are skipped, the differential
analysis still works.

After applying this attack on enough signatures to reveal at least i + 1 LSBs
of their nonces k, we can derive the private key dA used in signature by LA.

4.3 Analysis of the Attack

In the following part, we will analyze the time complexity of attack and the
success rate of FI. As mentioned above, the time complexity is O(2w−2+i) when
recovering i LSBs of nonce k. In 256-bit ECDSA, for the general case w > 3,
i = w−1 is sufficient to satisfy the requirement for LA with complexity O(22w−3).
As for the case w ≤ 3, it is needed to meet i ≥ 2w − 1 and the complexity is
O(23w−3). It depends on the attacker. More bigger i can result in more known
bits of k, and it is easier for LA, but the complexity also becomes bigger.

In this attack, as same as the first attack, it is crucial for FI to select
a right time point with high success probability. As mentioned above, the
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faults are enforce in i-iteration of wNAF transformation. If it is assumed that
i + 1 = βw, clearly, the probability P (NAFw(k)|kwj+tj �= 0, tj+1 − tj ≥ w)
that there is a nonzero value kwj+tj in every w bits of NAFw(k) is highest, for
j ∈ {0, · · · , β − 1} and 0 ≤ tj ≤ w − 1. Here β is the number of nonzero values
in sequence {ki, . . . , k0}. Then we can obtain

P (NAFw(k)|kwj+tj �= 0, tj+1 − tj ≥ w) =
w−1∑
x=0

( 12 )β
Cx

β+x−1(
1
2 )x (14)

Moreover, for v ∈ {0, . . . , m − 1}, it is known that the processing time for an
iteration denoted by C1(C2) is fixed when kv is nonzero(zero) value during trans-
formation. Thereby, the fixed time point βC1 + (i + 1 − β)C2 − S is the best
choice for FI, in which the offset time S is just the execution time of the skipped
instruction. For example, in 256-bit ECDSA, if w = 8, we usually consider the
condition that i = 7 and β = 1. When the FI time is C1 + 7C2 − S, the success
rate 255

256 is approximately equal to 1.

5 Laser Injection and Simulation Experiments

In this section, real laser injection and simulation experiments are implemented
to verify the feasibility of our proposed attacks. As is shown in Fig. 1, we make
use of the laser injection device from Riscure Company for our experiments. The
computation of SM kG is implemented in a smart card whose CPU frequency
is 14 MHz, and the bus width is 32-bit. The key length of ECDSA is 256-bit.
The final lattice attack is performed in a computer with Inter Core i7-3770 at
3.4 GHz.

For the first fault attack, we first analyze the rate that the results of FI
satisfy hw(yH0 ⊕ yH′

0
) < T by experiments. We use the laser injection device

to induce some faults into the intermediate point H0 of SM Q = kG, then the
y-coordinate yH0 of H0 is rewritten into yH′

0
. In experiments, we implement

552 calculations of SM (Q = kG), in which the nonces are different from each
other and the bit length of curve is 256. By FI experiments, we find out there
are 330 cases satisfying hw(yH0 ⊕ yH′

0
) < 96, which account for about 60 % of

the total cases. Moreover, among the 330 calculations, most of the hamming
distance (HD) values are actually less than 30. The above statistic of HD values
could be illustrated by Figs. 2 and 3. In Fig. 2, the x-coordinate represents the
x-th computation of SM, and the y-coordinate represents the HD value after FI.
The red line shows the boundary value 96. In Fig. 3, the x-coordinate represents
hw(yH0 ⊕ yH′

0
), and the y-coordinate represents the corresponding number of x.

In Sect. 3, it has been proved that partial bits of the nonce can be determined
as long as the hw(yH0 ⊕ yH′

0
) is less than 96. Hence, the first fault attack can be

mounted with 60 % success probability for real fault injection.
Next, in order to analyze the number of signatures needed for FI and verify

the correctness of theoretical success rate of FI, we simulate respectively the
FI experiments toward 50000 256-bit ECDSA signatures for w = 3, . . . , 8. They
are all based on the assumption that hw(yH0 ⊕ yH′

0
) < 96. As stated in Sect. 3,
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Fig. 1. Laser injec-
tion platform

Fig. 2. HD values of SM Fig. 3. The number of HD values

μ represents the binary length of nonce k. m represents the length of sequence
of NAFw(k). β = α + 1 represents the number of nonzero value in the sequence
of NAFw(k), where α = m/(w + 1). Obviously, we only need to analyze the
best case, i.e., μ = m = 256, α = 256/(w + 1), and the theoretical success rate
σ is C255−wα

254+(1−w)α( 12 )256+(1−w)α. Finally, we summarize out the following Table 2
by experiments for w = 3, . . . , 8. As shown in Table 2, there are N available
signatures with right time for FI in 5000 signatures, i.e., the N signatures satisfy
that there are 256 point doubling, 256/(w +1)+1 point addition, and k0 �= 0 in
NAFw(k). N ′ represents the approximate number of signatures which is actually
needed for our attack in practical experiments. From the results, the number of
signatures needed is reasonable for practical experiments, and the experimental
success rate N/50000 is almost equal to the theoretical one.

Finally, we mount the attack based on fplll-4.0 Lattice Reduction Library [23]
for checking the validity of the upper bound of ξ. It is assumed that w = 8,
L = 256. We increase the number ξ of random faulty bits one by one starting
at 1 in simulation attack experiments. All the tests have essentially validated
the fact that the correct k0 can be distinguished and the LA is successful till
hw(yH0 ⊕ yH′

0
) > 100. The actual upper bound T is better than the theoreti-

cal one.
For the second attack, some similar simulation experiments for FI are also

implemented. For w = 2, . . . , 8, there are 50000 FI experiments done respectively

Table 2. Experimental results for the
first attack (L = μ = m = 256, α =
256/(w + 1))

Item w β N N/50000 σ N ′

1 3 65 904 0.018 0.018 5000

2 4 52 962 0.019 0.020 4200

3 5 43 963 0.019 0.020 3200

4 6 37 978 0.020 0.021 2400

5 7 33 1305 0.026 0.025 1800

6 8 29 1145 0.023 0.023 1800

Table 3. Experimental results for the sec-
ond attack (L = 256, i + 1 = wβ)

Item w i β N N/50000 σ N ′

1 2 7 4 9388 0.188 0.188 220

2 3 8 3 24881 0.498 0.500 70

3 4 7 2 40554 0.811 0.813 50

4 5 9 2 44531 0.891 0.891 40

5 6 5 1 49215 0.984 0.984 50

6 7 6 1 49602 0.992 0.992 45

7 8 7 1 49791 0.996 0.996 40
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in 256-bit ECDSA signature. As stated in Sect. 4, we implement the FI exper-
iments in the i-th iteration of wNAF transformation, where the selection of i
relies on the size of w. We only consider the best case that there is one nonzero
value in every w-bit block of sequence {ki, . . . , k0}, where i + 1 = wβ. That is,
the time point for FI experiments is βC1 + (i+ 1−β)C2 −S and the theoretical

success rate σ is
w−1∑
x=0

( 12 )β
Cx

β+x−1(
1
2 )x. As shown in Table 3, the number N of

successful fault injections(namely the available number of signatures) is almost
equal to 50000 when w > 5, and the number N ′ of signatures needed in practi-
cal experiments is obviously less than the one in the first attack because of the
higher success rate. Likewise, the experimental success rate N/50000 is approx-
imately equal to the theoretical one. Finally, according to the above selected i
and β, we mount the lattice attacks successfully with the N available signatures.

6 Conclusion

In this paper, two new lattice-based differential fault attacks against ECDSA
with wNAF algorithm of scalar multiplication are presented. The first attack
assumes that there are some random bits in x/y-coordinate of the IP during
calculating SM flipped by FI. As long as the number of random faulty bits in
the IP is smaller than the upper bound L−3.9

√
L

2 , the nonce k can be partially
deduced by guessing technique and solving the equation with one unknown in Fp

based on the rules under affine coordinate. In the second attack, the FI targets
are located during wNAF transformation of k rather than the calculation of
SM. If the targets are skipped by FI, we can build some differential fault attack
models to retrieve parts of k. Given a number of such faulty signature results
with the known parts of nonces, the attacker can recover the final private key
by using lattice attack. The following laser injection and simulation experiments
also verify the feasibility and correctness of our proposed attack methods. In
addition, if the calculation of SM Q = kG is base on other coordinate systems
such as Jacobian and projective coordinates, it is also vulnerable to the first fault
attack as long as the z-coordinate of faulty result Q′ is known. Furthermore, if
all the coordinate values of Q′ are known, the equation with one unknown in the
first attack will become more simple to be solved.
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Abstract. A cold boot attack is a kind of side-channel attack that
exploits a property of dynamic random-access memory. Using a cold
boot attack, attackers can extract decayed key material from a run-
ning computer’s memory, which is a serious threat to computers using
disk encryption software. Previously, an algorithm was presented that
recovers a secret key from a decayed Advanced Encryption Standard key
schedule. However, this method cannot recover a secret key if reverse bit
flipping occurs, even in only one position, because this algorithm assumes
a perfect asymmetric decay model. To remedy this limitation, we pro-
pose an algorithm based on the maximum likelihood approach, which
can recover a secret key in an imperfect asymmetric decay model, i.e.,
where bit flipping occurs in both directions. We also give the theoretical
bound of our algorithm and verify the validity thereof.

Keywords: AES · Cold boot attack · Maximum likelihood

1 Introduction

1.1 Cold Boot Attacks

A dynamic random-access memory (DRAM) loses its contents when the com-
puter’s power is turned off. However, for several seconds after the power has been
turned off, the DRAM retains its contents. Moreover, if the memory is kept at
a low temperature, the data in the DRAM can be retrieved for minutes or even
hours.

A cold boot attack is a kind of side-channel attack that exploits the DRAM
remanence effect to extract key material from a running computer. Because
data can be extracted from the memory, this is a serious threat even if the
target computer uses disk encryption software such as BitLocker or TrueCrypt.
For example, if attackers have physical access to the computer via the disk
encryption system, they can recover the secret key from the memory image and
decrypt the data on the encrypted disk.

Although many disk encryption software packages use block ciphers such as
Advanced Encryption Standard (AES) and Serpent, these block ciphers have a
high risk for a cold boot attack. Key schedules generated by the block ciphers are

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 314–328, 2016.
DOI: 10.1007/978-3-319-30840-1 20
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stored in the running computer’s memory to perform fast encryption, thus mak-
ing it possible for attackers to extract key schedules from the memory. Redun-
dancy of these key schedules makes a cold boot attack more serious.

Halderman et al. [2] demonstrated that it is practically possible to extract
data from a memory after turning off the power and cooling the memory. They
loaded a bit pattern into the memory and then, while the computer was still run-
ning, cooled the memory to −50◦C using a “canned air” product. Having kept the
computer at the cold temperature, they turned on the power and extracted the
data from the memory. They observed that 99.9 % of the bit patterns remained
in the extracted image after turning the power off for 60 s. They also observed
that decay tends to occur in a single direction, either 0 → 1 or 1 → 0, within
the memory region. Their experiments showed that the probability of opposite
bit flipping is less than 0.1 %.

1.2 Related Works

Many methods have been proposed to recover the secret key from decayed key
material. First, we model decay patterns in a cold boot attack and then, we
introduce existing methods for solving the key recovery problem.

We define δ0 as the probability of bit flipping from 1 to 0 and δ1 as the
probability of reverse bit flipping (i.e., from 0 to 1). We model decay patterns
as the following two cases.

– Perfect asymmetric decay model: δ0 > δ1 = 0.
– Imperfect asymmetric decay model: δ0 > δ1 > 0.

Previous works fixed δ1 = 0.001 in the imperfect asymmetric decay model
because experiments by Halderman et al. showed that δ1 is less than 0.001.
Thus, we also fix δ1 = 0.001 in this study.

Key Recovery Methods for AES. Halderman et al. [2] presented a key
recovery algorithm for AES-128 in the imperfect asymmetric decay model. They
consider a slice, consisting of four specific bytes of the first round key and three
relevant bytes of the second round key determined by the four bytes of the first
round key according to the AES-128 key schedule algorithm. Their algorithm
first calculates the likelihood of each slice and then expands the candidates of
the correct secret key into the key schedule in descending order of likelihood.
The algorithm outputs the key schedule whose likelihood is sufficiently high.
This algorithm can recover the secret keys for δ0 = 0.15 within a second and
about half of the secret keys for δ0 = 0.3 within 300 s.

Tsow [11] proposed an algorithm that can recover a secret key in the perfect
asymmetric decay model. His algorithm consists of an expansion phase and a
pruning phase. In each expansion phase, it guesses the byte of a specific posi-
tion in a key schedule and computes the other bytes according to the AES key
schedule algorithm. In each pruning phase, the algorithm prunes candidate key
schedules with a zero in the bit position where the decayed key schedule has a
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one. In other words, it deletes those candidates contradicting the perfect asym-
metric decay model. The algorithm can recover a secret key for δ0 = 0.7 within
300 s.

Some methods make use of SAT solvers or non-linear algebraic equations
with noise. Kamal and Youseff [6] modeled the key recovery problem in a per-
fect asymmetric decay model as a Boolean SAT problem. Liao et al. [9] improved
the method of Kamal and Youseff by using a MaxSAT solver with the result-
ing method able to recover a key in the imperfect asymmetric decay model.
Albert and Cid [1] reduced the key recovery problem to a Max-PoSSo problem,
which involves solving polynomial systems with noise. They further transformed
the Max-PoSSo problem into a mixed-integer programming (MIP) problem and
recovered a key using an MIP solver. Their method can be applied to Serpent.
The method of Huang and Lin [5], based on the incremental solving and back-
tracking search algorithm, improves that of Albert and Cid.

Key Recovery Methods for RSA. Some key recovery algorithms for RSA
private keys have been proposed. Let (N, e) be the public keys with the cor-
responding private keys (p, q, d, dp, dq) stored in the memory, where dp and dq

are used to realize fast decryption by the Chinese Remainder Theorem. The key
recovery problem for RSA involves recovering private keys given a public key
and decayed private keys.

Heninger and Shacham [4] presented an algorithm that recovers secret keys
given a random fraction of their bits. They showed that their algorithm can
recover private keys if more than 27 % of the correct keys remain. Henecka et
al. [3] proposed an algorithm that recovers a private key efficiently in the case
of symmetric decay, i.e., δ0 = δ1. Their algorithm can recover private keys for
δ0 = δ1 < 0.237 in polynomial time of the order log N with a success rate close
to one. The algorithm makes use of the Hamming distance in exploring the
candidate space and prunes candidate keys whose Hamming distances from the
decayed keys are greater than a threshold value.

Paterson et al. [10] improved the method of Henecka et al. [3]. Their method,
based on coding theory, can be applied to the imperfect asymmetric decay model.
The algorithm prunes candidate keys using the maximum likelihood estimate and
can recover the keys for δ0 = 0.5 within 23 s. Kunihiro and Honda [8] general-
ized the algorithm of Paterson et al. and adapted it for analog data. They also
proposed an algorithm that recovers secret keys without the decay distribution
and gave the theoretical bound of the success rates of their algorithms.

1.3 Our Contributions

In this paper, we propose a new algorithm for the imperfect asymmetric decay
model and give a theoretical analysis thereof. Previous works focusing on AES
did not analyze the proposed methods from a theoretical perspective. In con-
trast, some researchers focusing on RSA presented theoretical analyses of their
algorithms. Considering the research on RSA, we propose a new key recovery
algorithm for AES, which is analyzed and verified experimentally.
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First, we present our algorithm inspired by [8,10] and based on maximum
likelihood. The algorithm, which can naturally be applied to the imperfect asym-
metric decay model, consists of an expansion phase and a pruning phase, and
explores a 256-ary tree whose nodes correspond to the candidate key schedules.
The expansion phase of the algorithm is the same as that of Tsow’s algorithm
[11]. It guesses the byte in a specific byte position and generates the candidates
from each remaining candidate in the previous pruning phase. In the pruning
phase, having computed the log-likelihoods of the candidates, the algorithm
keeps the L candidates with the highest log-likelihood and prunes the remain-
ing candidates. After the final pruning phase, it keeps L candidates of the 0th
round keys (i.e., the secret keys) and outputs the correct key if it is among the
candidates.

We give the information theoretic bound for the algorithm in a similar way
to that in [8]. We introduce some assumptions on key schedules and show that
the error rate of the algorithm is bounded by L under a certain condition. For
example, in the case of AES-128, our algorithm can recover a secret key with
high probability for large L and δ0 < 0.822.

We implemented our algorithm for AES-128, AES-192, and AES-256. In par-
ticular, because previous works did not experiment with AES-192, we first imple-
mented the algorithm for this standard; however, in practice the algorithm can
be applied to any key lengths of AES. In addition, the experimental results show
that the algorithm can recover a secret key for δ0 ≤ 0.75 and L = 4096, thereby
confirming that the theoretical bound is valid.

Organization. In Sect. 2, we describe the AES key schedule algorithm and
give an overview of Tsow’s algorithm. In Sect. 3, we propose an algorithm based
on the maximum likelihood approach and give the theoretical bound for it. In
Sect. 4, we implement our algorithm for AES-128, AES-192, and AES-256, and
discuss the validity of the theoretical bound in Sect. 3.

2 Preliminaries

In this section, we describe the AES key schedule algorithm and Tsow’s key
recovery algorithm [11]. Although the former algorithm can be applied to AES-
128, AES-192, and AES-256, for simplicity, we introduce the case for AES-128.

2.1 AES-128 Key Schedule

We use the following notation for the AES-128 key schedule algorithm. Let
K ∈ {0, 1}11×128 be the entire key schedule consisting of 11 round keys with
length 128 bits. We define Kr, Kr

i , and Kr
i,j as the r-th round key of K, the

i-th word of Kr, and j-th byte of Kr
i , respectively, where 0 ≤ r ≤ 10, 0 ≤

i, j ≤ 3. The AES substitution box is denoted by sbox(·) : {0, 1}8 → {0, 1}8.



318 T. Tanigaki and N. Kunihiro

We define S(Kr
i ) = (sbox(Kr

i,0), sbox(Kr
i,2), sbox(Kr

i,2), sbox(Kr
i,3)). The func-

tion rot(·) : {0, 1}32 → {0, 1}32 is the left circular shift of 8-bit positions; that
is, rot(Kr

i,0,K
r
i,1,K

r
i,2,K

r
i,3) = (Kr

i,1,K
r
i,2,K

r
i,3,K

r
i,0). The r-th round constant is

denoted by Rcon[r].
The 0th round key is defined as a 128-bit secret key itself and the other round

keys are derived by the following equations.

{
Kr

0 = Kr−1
0 ⊕ S(rot(Kr−1

3 )) ⊕ Rcon[r]
Kr

i = Kr
i−1 ⊕ Kr−1

i (1 ≤ i ≤ 3)
(1)

2.2 Tsow’s Key Recovery Algorithm

Tsow’s algorithm consists of an expansion phase and a pruning phase, which are
repeated alternately 16 times. It explores a 256-ary tree whose nodes correspond
to the candidate key schedules.

Expansion Phase. We denote by Ci,j the j-th candidate key schedule with
depth i in the 256-ary tree, where 1 ≤ i ≤ 16 and 1 ≤ j ≤ 256i. Table 1 gives
the byte positions at which the algorithm guesses and computes the values in
each expansion phase. For example, the algorithm guesses the value in 00 in the
first expansion phase. Although it guesses the value in a0, the other values in
ab, b �= 0, are derived by Eq. (1). Note that the number of the derived bytes is
different in depth i. In the cases of AES-128, it is i bytes , for i = 1, · · · , 11 and
11 bytes for i = 12, · · · , 16.

In the i-th expansion phase, the algorithm generates the children Ci,j , j ∈
{256(j′ −1)+1, · · · , 256j′} of the remaining candidates Ci−1,j′ , j′ ∈ Li−1, where
Li−1 is the suvivor list in the (i−1)-th pruning phase. The generated candidates

Table 1. Order of the derived bytes for AES-128 [11]

Round Key Schedule

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 00 1410 1310 1210 11 149

1 10 139 129 22 148 21 138

2 20 128 33 147 32 137 31 127

3 30 44 146 43 136 42 126 41 55 145

4 40 54 135 53 125 52 66 144 51 65 134

5 50 64 124 63 77 143 62 76 133 61 75 123

6 60 74 88 142 73 87 132 72 86 122 141 71 85 99

7 70 84 98 131 83 97 121 140 82 96 1010 130 81 95 109

8 80 94 108 120 1510 93 107 1110 159 92 106 119 158 91 105 118

9 90 104 117 157 103 116 156 102 115 158 101 114 154

10 100 113 153 112 152 111 151 110 150
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are inserted into list L′
i. After the last expansion phase, all bytes of the 8th round

key have been computed. Therefore, the 0th round key (i.e., the secret key) can
be derived by Eq. (1).

The expansion phases for AES-192 and AES-256 are almost the same as
that for AES-128. Tables 2 and 3 show the order for AES-192 and AES-256,
respectively. Although the orders for AES-128 and AES-256 are given in [11], we
determined the order for AES-192.

Pruning Phase. Let D be a decayed key schedule extracted by a cold boot
attack. Tsow’s algorithm assumes the perfect asymmetric decay model, that is,
bit flipping from 1 to 0 occurs, but the reverse bit flipping never does. According
to this assumption, the algorithm compares the bit positions between Ci,j , j ∈ L′

i

and D, and prunes the candidate key schedules with a zero in the bit positions
where D has a one.

3 Proposed Algorithm

In this section, we present a key recovery algorithm based on the maximum
likelihood approach and give a theoretical bound for our algorithm. Although
Tsow’s algorithm cannot recover a secret key if bit flipping from 0 to 1 occurs
even in only one bit position, our algorithm can recover the key in the imperfect
asymmetric decay model.

3.1 Maximum Likelihood-Based Pruning

Our algorithm consists of an expansion phase and a pruning phase as in Tsow’s
algorithm. The expansion phase of our algorithm is the same as that in Tsow’s
algorithm, while the pruning phase is inspired by previous works [8,10].

We denote by nab for a, b ∈ {0, 1}, the number of bit positions where a
candidate key schedule Ci,j has a bit a and a decayed key schedule D has a bit
b. For example, in the first expansion phase, if C1,j has 0x0F and D has 0x08 in
the byte position 00, then n00 = 4, n01 = 0, n10 = 3 and n11 = 1. Note that the
number does not except the bytes that are not yet computed. The log-likelihood
of a candidate key schedule Ci,j for a decay key schedule D is given by

log Pr[D|C] = log ((1 − δ1)n00δn01
1 (1 − δ0)n11δn10

0 ) ,

= n00 log(1 − δ1) + n01 log δ1 + n11 log(1 − δ0) + n10 log δ0.

In each pruning phase, the algorithm computes the log-likelihood of each
candidate, keeps the top L candidates with the highest log-likelihood values and
prunes the remaining candidates. After the final pruning phase, our algorithm
computes the 0th round keys derived from the remaining L candidate key sched-
ules and returns the correct secret key if it is among the remaining candidates.

Because the algorithm keeps L candidates in each pruning phase, the com-
plexity of the search is linear in L, as confirmed in Sect. 4.
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3.2 Theoretical Bound

In this section, we give the information theoretic bound for our algorithm. Here R
denotes the code rate in information theory, which is the key length per number
of observed bits. For example, since the AES-128 key schedule algorithm extends
a 128-bit secret key to 11 round keys with length 128 bits, the code rate R is 1

11 .
The algorithms extend 192-bit and 256-bit secret keys to 13 and 15 128-bit
round keys, respectively. Thus, R = 3/26 and R = 2/15 for AES-192 and
AES-256. The sequence {n|a ≤ n ≤ b, n ∈ Z} is denoted by [a : b]. Let X ∈ {0, 1}
be a random variable uniformly distributed over {0, 1}. We denote by Y ∈ {0, 1}
a random variable that follows the imperfect asymmetric decay model. We define
mi as the number of the computed bytes with depth i and m[a:b] as

∑b
k=a mk.

We introduce the following assumptions on the key schedule.

Assumption 1. 1. Each Ci,j is a realization of a random variable Xi,j , uni-
formly distributed over {0, 1}8m[1:i]

2. There exists c ≥ 1 satisfying the following: for any i, l, j, j′ ∈ N s.t. c ≤ l ≤ i
and Xi,j and Xi,j′ have no common ancestors with depth [c : i] in the
tree, a pair of random variables (X l−c

i,j ,X l−c
i,j′ ) is uniformly distributed over

{0, 1}8m[i−l+c+1:i] , where X l−c
i,j corresponds to the generated bytes in the last

(l − c) expansion phases.
3. For any j, any pair of children of Xi,j almost surely do not have identical

values for the byte positions in the (i + 1)-th expansion phase.

Under Assumption 1, we can show the following theorem in a similar way to
the result of Kunihiro and Honda [8]1.

Theorem 1. Assume that
R < I(X;Y ). (2)

Then, under the proposed algorithm for any index j and parameter L, it holds
that

Pr[The correct key schedule Xn/8,j is pruned] ≤ nρ1L
−ρ2 , (3)

for some ρ1, ρ2 > 0, depending only on R, δ0, and δ1, where n is the length of
the secret key.

The right-hand side of Eq. (2) is called the mutual information between X and
Y . The proof sketch of Theorem 1 and the representation of ρ1, ρ2 are given in
Appendix A. Because the imperfect asymmetric decay model corresponds to a
binary asymmetric channel and the distribution of the input symbol (i.e., each
bit of the secret key) is fixed to be uniform, we have

I(X;Y ) = H
(

1 − δ1 + δ0
2

)
− 1

2
(H(δ0) + H(δ1)) ,

where H(·) is defined as the binary entropy function; that is, H(x) = −x log2 x−
(1 − x) log2(1 − x).
1 A similar analysis on RSA is shown in [7].
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Table 4. Theoretical bound of δ0 for δ1 = 0.001

AES-128 AES-192 AES-256

R 1/11 3/26 2/15

δ0 0.822 0.780 0.750

Table 5. Running times (s)

L Avg. Min Max Std. Dev. Med.

AES-128 1024 5.179 4.769 5.795 0.191 5.164

2048 10.405 9.577 11.568 0.431 10.505

4096 20.839 18.886 23.263 1.048 20.738

AES-192 1024 10.592 9.795 11.777 0.503 10.578

2048 21.123 19.605 23.418 0.848 21.1

4096 42.617 39.07 46.807 1.857 42.686

AES-256 1024 17.289 15.737 19.931 0.7 17.236

2048 34.595 31.906 39.103 1.478 34.447

4096 69.766 63.82 79.587 3.016 69.776

Table 4 gives the theoretical bound of δ0 for δ1 = 0.001 in Theorem 1 for each
key length. If δ0 is smaller than the bound, the error rate is bounded polynomially
in L; that is, our algorithm can recover a secret key with high probability for
large L. We calculate R

4 Implementation

We implemented our algorithm for AES-128, AES-192, and AES-256. The imple-
mentation was coded in Java 1.7.0 and executed on a 3.5 GHz single-core Intel
Core i7. We carried out experiments for δ1 = 0.001, 0.05 ≤ δ0 ≤ 0.75 in steps of
0.05 and with L = 1024, 2048, 4096. We randomly generated 1000 instances for
AES-128, AES-192 and 600 instances for AES-256.

Figures 1, 2, and 3 illustrate the success rates for AES-128, AES-192, and
AES-256, respectively. As can be seen in these figures, the success rates are
almost equal to one for δ0 ≤ 0.4 and greater than 0.1 for δ0 ≤ 0.65, with
our algorithm almost failing to recover a secret key for δ0 ≥ 0.75. Although a
gap exists between the theoretical bound and experimental values, these results
confirm the validity of the bound to some extent. A small L causes a gap because
the success rate for L = 4096 is, in fact, greater than that for L = 1024. Therefore,
a larger L is expected to reduce the gap and show that the bound is almost
optimal.
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Fig. 1. Success rates for AES-128 Fig. 2. Success rates for AES-192

Fig. 3. Success rates for AES-256 Fig. 4. Success rates for L = 4096

Figure 4 compares the success rates of AES-128, AES-192, and AES-256 in
the case of L = 4096. The figure shows that the success rates are almost inde-
pendent of the key lengths. This result does not change for L = 1024, 2048. See
Table 6 in Appendix B for details.

Table 5 gives the running times of our algorithm for different L values and key
lengths. The times are roughly proportional to L. This shows the time complexity
of the algorithm is O(L).

5 Conclusion

In this paper, we proposed a new algorithm that can recover a secret key from an
AES key schedule with noise. The algorithm, based on the maximum likelihood
approach, can be applied to the imperfect asymmetric decay model. It consists of
an expansion phase and a pruning phase: In an expansion phase, the algorithm
guesses the value in a specific byte position, whereas in a pruning phase, it
keeps the L candidates with the highest log-likelihood. The algorithm repeats
the phases and outputs the correct key if it remains after the last pruning phase.
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We also presented the theoretical bound for the algorithm. The algorithm can
recover a key with high probability if δ0 is less than some bound. We investigated
applications of the algorithm for AES-128, AES-192, and AES-256 to verify the
validity of the theoretical bound. The results show that the algorithm can recover
the key if δ0 is less than the bound, thereby confirming that the bound is almost
tight for the algorithm.

Acknowledgement. We would like to thank Junya Honda for helpful advice. This
research was supported by CREST, JST and supported by JSPS KAKENHI Grant
Number 25280001.

A Proof of Theorem 1

In this appendix, we show the sketch of proof of Theorem 1 in a similar way to
the result of Kunihiro and Honda [8]. First, we introduce some notation for the
proof.

We denote by 1[·] the indicator function and by E[X] the expectation
of a random variable X. Instead of log Pr[D|C], we use the score func-
tion R(x; y) = log dFx

dG (y), x, y ∈ {0, 1}, where Fx is the distribution of
the imperfect asymmetric decay model, G is the mixture distribution (F0 +
F1)/2 and dFx/dG is the Radon-Nikodym’s derivative. Then, R(Ci,j ;Dj) is∑i

r=1

∑mr

k=1 R(Ci,j [r][k];Di[r][k]), where Ci,j [r][k] is the k-th computed byte
with depth r and R(Ci,j [r][k];Di[r][k]) is the sum of the score for each bits
in Ci,j [r][k]. Note that R(x; y) is equivalent to log Pr[D|C] and the performance
of our algorithm does not change.

We use Lemmas 1 and 2 in [8]. Lemma 1 shows the Chernoff’s inequality
and Lemma 2 evaluates the score of the incorrect candidates. Our algorithm is
different from their algorithm in that our algorithm has a structure of 256-ary
tree. Thus, we use Assumption 1. (2) and modify Lemma 2 into the following
form.

Lemma 2 (modified Lemma 2 [8]). For ∀i > d, j ∈ {256d−1 + 1, · · · , 256d},

E[exp((ln 2)R(Xd
i,j ;Y

d
i ))] ≤ 28mcc.

Proof of Theorem 1 (sketch). Let l = 	log256 L
. We can assume without
loss of generality that the index of the correct key schedule is j = 1. By the
union bound and some transformation, the error probability of our algorithm
can be bounded by
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Pr[Xn/8,1 �∈ Ln/8] = Pr

⎡
⎣ n/8⋃

r=l+1

{{Xr,1 �∈ Lr} ∩ {Xr−1,1 ∈ Lr−1}}
⎤
⎦

≤
n/8∑

r=l+1

Pr [{{Xr,1 �∈ Lr} ∩ {Xr−1,1 ∈ Lr−1}}]

≤
n/8∑

r=l+1

Pr

⎡
⎣ r∑

d=l

256d∑
j=256d−1+1

1[R(Xd
r,j ;Y

d
r ) ≥ R(Xd

r,1;Y
d
r )] ≥ 255

256
L

⎤
⎦ . (4)

Letu ∈ (R, I(X;Y )) be arbitrary. Then the probability in (4) is bounded by

Pr

⎡
⎣

r∑
d=l

256d∑

j=256d−1+1

1[R(Xd
r,j ;Y

d
r ) ≥ R(Xd

r,1;Y
d
r )] ≥ 255

256
L

⎤
⎦

≤ Pr

⎡
⎣
⎧
⎨
⎩

r∑
d=l

256d∑

j=256d−1+1

1[R(Xd
r,j ;Y

d
r ) ≥ 8mddu] ≥ 255

256
L

⎫
⎬
⎭ ∪

r⋃
d=l

{R(Xd
r,1;Y

d
r ) ≤ 8mddu}

⎤
⎦

≤ 256

255L

r∑
d=l

256d∑

j=256d−1+1

Pr[R(Xd
r,j ;Y

d
r ) ≥ 8mddu] +

r∑
d=l

Pr[R(Xd
r,1;Y

d
r ) ≤ 8mddu]. (5)

The former and latter probabilities in (5) can be bounded by

Pr[R(Xd
r,j ;Y

d
r ) ≥ 8mddu] ≤ 28mcc−8mddu (by Lemma 1 in 9 and Lemma 2),

Pr[R(Xd
r,1;Y

d
r ) ≤ 8mddu] ≤ exp(−8mddΛ∗(u)), (by Lemma 1)

where Λ∗(u) = supλ≤0{λu − ln E[exp(λX)]}.
Combining the bounds with (5), we have

256
255L

r∑
d=l

256d∑
j=256d−1+1

Pr[R(Xd
r,j ;Y

d
r ) ≥ 8mddu] +

r∑
d=l

Pr[R(Xd
r,1;Y

d
r ) ≤ 8mddu]

≤ 256
255L

r∑
d=l

256d−1 · 28mcc−8mddu +
r∑

d=l

exp(−mddΛ∗(u))

≤ 256mcc

255L

256−l(u/R−1)

1 − 256−(u/R−1)
+

exp(−lΛ∗(u)/R)
1 − exp(−Λ∗(u)/R)

≤ 256mcc+u/R−1

1 − 256−(u/R−1)
L−u/R +

exp(Λ∗(u)/R)
1 − exp(−Λ∗(u)/R)

L− Λ∗(u)
R ln 256 . (6)

Note that we can consider md = 1/R for a larger L. We finish the proof with
(4) and (6) and obtain

ρ1 =
256mcc+u/R−1

1 − 256−(u/R−1)
+

exp(Λ∗(u)/R)
1 − exp(−Λ∗(u)/R)

, ρ2 = min
{

u/R,
Λ∗(u)

R ln 256

}
.
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B Experimental Results

Table 6 shows the success rates for different L values and key lengths in details.
As mentioned in Sect. 4, the result shows that a lager L raises the success rates.
On the other hand, the success rates is independent of key lengths.

Table 6. Success Rates

Key Length L
δ0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

128
1024 1.0 1.0 1.0 1.0 0.999 0.995 0.986 0.934 0.875
2048 1.0 1.0 1.0 1.0 1.0 0.997 0.986 0.965 0.924
4096 1.0 1.0 1.0 1.0 1.0 1.0 0.998 0.99 0.954

192
1024 1.0 1.0 1.0 0.999 0.999 0.992 0.984 0.952 0.866
2048 1.0 1.0 0.999 1.0 1.0 0.999 0.994 0.969 0.92
4096 1.0 1.0 1.0 1.0 1.0 0.999 0.996 0.987 0.956

256
1024 1.0 1.0 1.0 1.0 1.0 0.997 0.978 0.955 0.863
2048 1.0 1.0 1.0 1.0 1.0 0.998 0.985 0.978 0.912
4096 1.0 1.0 1.0 1.0 1.0 1.0 0.995 0.987 0.952

Key Length L
δ0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

128
1024 0.73 0.571 0.299 0.125 0.023 0.0 0.0 0.0
2048 0.8 0.597 0.395 0.154 0.041 0.006 0.0 0.0
4096 0.894 0.71 0.486 0.241 0.058 0.011 0.001 0.0

192
1024 0.726 0.512 0.272 0.116 0.025 0.004 0.0 0.0
2048 0.797 0.613 0.367 0.184 0.037 0.003 0.0 0.0
4096 0.878 0.682 0.52 0.228 0.05 0.006 0.0 0.0

256
1024 0.733 0.52 0.298 0.105 0.013 0.002 0.0 0.0
2048 0.82 0.617 0.385 0.182 0.03 0.002 0.0 0.0
4096 0.88 0.732 0.517 0.218 0.058 0.0 0.0 0.0
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Abstract. This paper proposes three new padding methods designed
to withstand padding oracle attacks, which aim at recovering a plain-
text without knowing the secret key by exploiting oracle’s characteristic
of checking the padding during decryption. Of the ten existing padding
methods, only two (ABYT-PAD and ABIT-PAD) can withstand padding
oracle attacks. However, these methods are not efficient since they either
use a random number generator or require MAC verification in applica-
tions. The three new padding methods proposed in this paper are secure
against padding oracle attacks and more efficient compared to the two
aforementioned padding methods.

Keywords: Padding methods · Padding oracle attack · CBC mode of
operation

1 Introduction

Various encryption algorithms are now widely applied to protect personal
information and sensitive data in applications such as Internet banking and
e-commerce. However, recent studies and attacks show that protected data can
still be leaked if the modes of operation are not proper, even when sensitive data
are encrypted using an encryption algorithm that is proven to be secure. The
padding oracle attack (POA) is a leading example of such an attack.

When a message is encrypted using an encryption algorithm, an appro-
priate value is added (padded) at the end of the message to fix the input
c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 329–342, 2016.
DOI: 10.1007/978-3-319-30840-1 21
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size. If an attacker possesses Oracle, which determines whether the message
padding is correct, the attacker can read the message (plaintext). This oracle
determines whether the padding of the plaintext obtained by decrypting the
ciphertext queried by the attacker is correct and answers VALID or INVALID
to the attacker. The attacker can intercept the text encrypted in the mode
of operation and obtain the correct plaintext using the acquired data and
the oracle. Such an attack is called POA. The POA has been widely stud-
ied and applied to many popular security protocols such as SSL, IPSec and
TLS([PSB1,BU1,RD1,PY1,AP1,AP2,MZ1,V1,DR1,STW1,KR1]).

This paper observes a POA using the ten existing padding methods and
analyzes their security and efficiency, thus enabling the identification of two
secure padding methods. Based on the results of the analysis, this paper proposes
five design criteria for secure and efficient padding for protection against POA.
Lastly, the paper proposes three new padding methods that conform to the
design criteria. The three new padding methods are designed to be secure against
POA and are more efficient than the conventional methods.

This paper is organized as follows: Sect. 2 presents the details of the simulated
POA; Sect. 3 analyzes the security of the ten conventional padding methods
after conducting a POA; Sect. 4 proposes five secure and efficient design criteria
for padding; Sect. 5 proposes three new padding methods; and, lastly, Sect. 6
presents the conclusion.

2 Padding Oracle Attack(POA)

The POA on modes of operation was first introduced by Vaudenay [V1] at
EUROCRYPT 2002. Vaudenay reported on POAs against the CBC mode used
in various application environments such as SSL/TLS, IPSec and WTLS.

The POA against the CBC mode is applied in the CBC decryption mode
[D1](Fig. 1), and CBC-PAD is assumed as the padding method.

CBC-PAD is a padding method specified in PKCS #7 [K1]. If the size of the
block cypher is 8 bytes and the size of the plaintext is (8×t+m) bytes, withm being
an integer greater than 0, (8 − m) bytes of (0x08 − m)(0x08 − m) · · · (0x08 − m)

Fig. 1. Descryption of CBC modes of operation
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are added at the end of the plaintext data to make the size of the plaintext data
a positive multiple of 8 bytes. If m is 0, an additional 8 bytes of 0x08 · · · 08 block
are attached to the plaintext.

Example(t = 1,m = 5) : 0x0102030405 → 0x0102030405030303

The attacker changes the initial vector or ciphertext and sends it to the server.
The server decrypts the ciphertext sent by the attacker to check the padding,
and then sends the response(VALID or INVALID) to the attacker(Figs. 2, 3).

Using this, the attacker modifies the ciphertext(gray block in Fig. 4) and
sends it to the server until the server responds with VALID. The attacker can
obtain the intermediary value(e.g., 0xeb in Fig. 4) using the value recorded at
the time the server sends the VALID response. The plaintext can be restored by
the exclusive-OR of the obtained intermediary value and the ciphertext before
the attacker changed it. The whole plaintext can be restored by restoring the
intermediary value one byte at a time by repeating the process.

Black and Urtubia proposed a POA that enhanced Vaudenay’s POA at 2002
USENIX [BU1]. The existing POA restores the plaintext one byte at a time
beginning with the last byte of the block. Such a method requires many queries.
However, the enhanced POA determines the length of the padding of the last
block through a binary search, and can obtain the padding value of the plaintext
data with fewer queries.

Fig. 2. VALID response

Fig. 3. INVALID response
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Fig. 4. Example of POA

3 Security of Existing Padding Methods Against POA

The padding method is divided into byte-wise padding and bit-wise padding
according to the unit of padding. The byte-wise padding methods include CBC-
PAD, ESP-PAD, XY-PAD, BOZ-PAD, PAIR-PAD, ABYT-PAD, while the bit-
wise padding methods include OZ-PAD, ABIT-PAD, ISO(9797-1)-PAD3, and
ISO(10118-1)-PAD3. [Table 1] shows the result of the POA on each padding
method.

Table 1. POA on the various padding methods

POA Padding Ref. POA Padding Ref.

Possible CBC-PAD [V1] Impossible ABYT-PAD [BU1]

ISO(9797-1)-PAD3 [PY1] ABIT-PAD [BU1]

ISO(10118-1)-PAD3 [PY1]

ESP-PAD [BU1]

XY-PAD [BU1]

BOZ-PAD [BU1]

PAIR-PAD [BU1]

OZ-PAD [BU1]

3.1 POA on CBC-PAD

CBC-PAD and its POA are described in Sect. 2

3.2 POA on ISO(9797-1)-PAD3

ISO(9797-1)-PAD3 is a bit-wise padding method. First, the length of the plain-
text is inserted in bits into the first plaintext block, and the last block bits are
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padded with 0. Since the length of the plaintext is added, no padding block is
added even if the length of the plaintext is a multiple of n.

Example : 0x0102030405 → 0x0000000000000028 0102030405000000

The POA on ISO(9797-1)-PAD3 is organized into two steps. First, the length
of the plaintext is obtained; then the plaintext is restored using the data. As the
length of the plaintext is padded in ISO(9797-1)-PAD3, the POA uses it for the
attack.

3.3 POA on ISO(10118-1)-PAD3

ISO(10118-1)-PAD3 is a bit-wise padding method that is similar to ISO(9797-
1)-PAD3, except that the length of the plaintext is padded in the last block, and
10· · · 0 is padded so that the length of the plaintext becomes a multiple of n.

Example : 0x0102030405 → 0x0102030405800000 0000000000000028

The POA on ISO(10118-1)-PAD3 is similar to the POA on ISO(9797-1)-
PAD3.

3.4 POA on ESP-PAD

ESP-PAD is a byte-wise padding method, for which the padding pattern is deter-
mined according to the number of bytes needed for padding. If the length of the
plaintext is a multiple of n, a padding block(0x0102 · · · 0n) is added to signal
that the padding is being used.

Example : 0x0102030405 → 0x0102030405010203

The POA on ESP-PAD is similar to the POA on CBC-PAD.

3.5 POA on XY-PAD

XY-PAD is a byte-wise padding method that pads by creating different bytes
X and Y . It pads a byte X first and then pads Y so that the length of the
plaintext becomes a multiple of n. If the length of the plaintext is a multiple of
n, a padding block(0xXY Y · · ·Y Y ) is added to signal that the padding is being
used. Here, the X and Y values are known by both transmitter and receiver.

Example : 0x0102030405 → 0x01020304050A0B0B(X = 0x0A, Y = 0x0B)

The POA on XY-PAD is similar to the POA on CBC-PAD.
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3.6 POA on BOZ-PAD(A Byte-Oriented Version of 10∗ Padding)

BOZ-PAD is a byte-wise padding method that pads 1 at the end of the plaintext
and then pads 0 so that the length of the plaintext becomes the multiple of n.
Since it consists of byte-wise padding, it is the same as the XY-PAD of which X
is 0x80 and Y is 0x00. If the length of the plaintext is a multiple of n, a padding
block(0x8000 · · · 00) is added to signal that the padding is being used.

Example : 0x0102030405 → 0x0102030405800000

The POA on BOZ-PAD is similar to the POA on XY-PAD, of which X is
0x80 and Y is 0x00.

3.7 POA on PAIR-PAD

PAIR-PAD is a byte-wise padding method that is the same as XY-PAD, except
that the transmitter selects X and Y , which are both unknown to the receiver.

Example : 0x0102030405 → 0x01020304050A0B0B(X = 0x0A, Y = 0x0B)

PAIR-PAD differs from XY-PAD in how the receiver removes the padding.
Since the receiver does not know X and Y , it checks the last byte of the plain-
text block and removes all bytes matching the value from the end(removal of
Y ). Then, it removes another byte(removal of X).

The POA on PAIR-PAD has an attack complexity almost equal to that of a
brute force, since it is an INVALID padding only when all bytes are equal in a
block.

3.8 POA on OZ-PAD(Obligatory 10∗ Padding)

OZ-PAD is a bit-wise padding method that can be considered as a bit-wise
padding version of BOZ-PAD.

The POA on OZ-PAD has an attack complexity almost equal to that of a
brute force, since it is an INVALID padding only when the last bit is not 0.

3.9 POA on ABYT-PAD(Arbitrary-Tail Padding)

ABYT-PAD is a byte-wise padding method similar to PAIR-PAD. First, it checks
the last byte of the plaintext block and selects it as X. It then generates another
value as Y by a random number generator, and pads the plaintext so that its
length becomes a multiple of n. If the length of the plaintext is a multiple of
n, it adds a padding block(0xY Y · · ·Y ) to the signal that the padding is being
used. Here, the transmitter selects Y , which is unknown to the receiver.

Example : 0x0102030405 → 0x01020304050B0B0B(X = 0x05, Y = 0x0B)
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The padding is removed in the following way: First, it checks the last byte
of the plaintext block and removes all bytes matching the value from the
end(removal of Y ). After that, it does not remove another byte since the byte is
the plaintext part. (X is one of the bytes of the plaintext).

Even when the padded part is changed, there is no INVALID padding since
only the bytes before the changed byte are removed. Therefore, ABYT-PAD is
secure against POA.

3.10 POA on ABIT-PAD(A Bit-Oriented Analog Padding)

ABIT-PAD is a bit-wise padding method and can be considered as the bit-wise
padding version of ABYT-PAD. In other words, it checks the last bit of the
plaintext block and pads its conflicting bits so that the length of the plaintext
becomes a multiple of n. If the length of the plaintext is a multiple of n, it adds
a padding block(0xXX · · ·X) to the signal that the padding is being used (if
the last bit of the plaintext is 0 then X = F ; otherwise, X = 0).

Example : 0x0102030405 → 0x0102030405000000

The POA on ABIT-PAD has the same as the POA on ABYT-PAD. Even
when the padded part is changed, there is no INVALID padding since only the
bits before the changed bit are removed. Therefore, it is secure against POA.

3.11 Proc and Cons of the ABYT-PAD and ABIT-PAD Secure
Against POA

Proc. The ABYT-PAD and ABIT-PAD are both secure against POA. This
is due to the fact that they do not allow any invalid padding. More precisely,
the server firstly decrypts the ciphertext (maybe modified by the attacker) to
obtain the corresponding plaintext. It secondly removes the padding part from
the decrypted plaintext according to the rule of the ABYT-PAD or the ABIT-
PAD. In this second step, the server always peels off the padding bytes even
though the target ciphertext is a modified one by the attacker. Therefore, the
ABYT-PAD and ABIT-PAD fundamentally do not allow the attacker to conduct
POA.

Cons. A padding method that does not allow any invalid padding does have
some loss of its efficiency when it is applied to widely used applications such
as TLS series. The reason is as follows: The TLS usually adopts the MAC-
then-Encrypt method instead of the Encrypt-then-MAC method. In such a case,
the MAC verification step is always required even though the padding bytes of
the plaintext are originally wrong. Because the ABYT-PAD and ABIT-PAD do
not include any invalid padding. This makes the applications somewhat slow.
Furthermore, the ABYT-PAD uses a random number generator to make its
padding, which is costly.
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4 Design Criteria of the New Padding Method

To prevent POAs, many protocols remove the padding oracle or check whether
the MAC is correct. However, the basic measure for defense against POAs con-
sists in designing and using a padding technique that can withstand POAs.
This paper selected ABYT-PAD and ABIT-PAD from among the ten existing
padding methods to be secure against POAs(in our best knowledge, there is no
known padding method secure against POAs rather than these three methods)
and analyzed their characteristics. The following design criteria are presented
on the basis of the results of that analysis([Table 2]). Some of our design criteria
are to overcome the demerit of ABYT-PAD and ABIT-PAD (criteria 2, 4 and
5) and others are inherited from them (criteria 1, 3). The first, second and third
design criteria are related to security, while the fourth and fifth are related to
efficiency.

5 New Padding Methods

This section proposes three new padding methods that are secure against POAs
and efficient as well. Our design strategy is to satisfy as many as design criteria
in Table 2(note that the third and fifth design criteria cannot be satisfied at the
same time). It is assumed that a block is 8 bytes in all padding methods.

5.1 New Padding Method 1 (NPM1)

This method performs the checksum operation to determine the padding bound-
ary (X) and padding value (Y ). Since it uses the plaintext to generate the
checksum, the checksum operation can be performed to determine whether the
ciphertext has been altered illicitly.

First, the checksum X is generated by xoring from the first byte of the second
last plaintext block (q− 1) to the last byte of the last plaintext block q in bytes.
Then the first byte of the plaintext block q − 1 is xor’ed to X to create Y . The
generated X is padded after the last byte of the plaintext block q, and Y is
padded so that the plaintext length becomes a multiple of n (Fig. 5).

Fig. 5. Example 1 of new padding method 1

X = 0x01 ⊕ 0x02 ⊕ 0x03 ⊕ 0x04 ⊕ 0x05 ⊕ 0x0A ⊕ 0x0B ⊕ 0x0C ⊕ 0x10 ⊕
0x30 ⊕ 0x50 = 0x7C
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Table 2. Design criteria of a secure and efficient padding method

noitpircseDairetirCngiseD

1. Non-leakage of padding
length from padding
values

o The key datum used in a POA is the padding length
o The leakage of padding length leads to the leakage

of plaintext length
o The padding data may be restored using them

2. Use of the second last
plaintext information to
make padding values

o Modifying the second last ciphertext block (mainly
done in POA) forces the change of the second last
plaintext block in the CBC.

o This makes difficult for the attacker to distinguish
the original plaintext part and padding part.

3. Inexistence of an invalid
padding

o POA is a method of attack that uses the invalid
padding

o In other words, the possibility of a POA is great if
the padding method includes the invalid padding

4. Non-use of pseudo-
random number genera-
tor

o A padding method that needs a pseudo-random num-
ber must use a pseudo-random number generator

o However, the pseudo-random number generator is
costly

5. Possibility of checking
padding value modifica-
tion

o The attacker arbitrarily modifies the ciphertext to
attack the protocol

o The efficiency of the protocol deteriorates if the mod-
ification of the ciphertext cannot be detected

Y = X ⊕ 0x01 = 0x7D
If the first byte of the plaintext block q − 1 is 0x00, X becomes Y , which

makes the padding has been incorrectly removed. In that case, we set Y = X⊕1.
If the length of the plaintext is a multiple of n, a padding block (0xXY · · ·Y )

is added to signal that the padding has been used. Since both X and Y must
be used, X is padded at the end of the plaintext and the block of 0xY · · ·Y is
added if the length of the last plaintext block is n − 1(Fig. 6).

To remove the padding, the bytes which have the same value as the last byte
(Y ) are removed, and then another byte (X) is removed. Next, the padding is
checked. The checksum is calculated with the restored plaintext to generate X ′,
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Fig. 6. Example 2 of new padding method 1

and this value is checked to determine if it is the same as the removed X. If they
are the same, X ′ is xor’ed with the first byte of the plaintext block q − 1, and
is checked to determine if it is the same as Y . If the first byte of the plaintext
block q − 1 is 0x00, it is checked if Y = X ⊕ 1.

5.2 New Padding Method 2 (NPM2)

This method determines the padding boundary (X) and padding value (Y ) using
the last second plaintext block, and is more efficient than NPM1 because it does
not require an additional operation for checksum. The first and second bytes of
the second last plaintext block (q − 1) are set to be X and Y , respectively. The
generated X is padded behind the last byte of the plaintext block q, and Y is
padded next so that the length of the plaintext becomes a multiple of n(Fig. 7).

Fig. 7. Example 1 of new padding method 2

If the first byte and the second byte of the plaintext block q−1 are the same,
the padding is incorrectly removed. In that case, Y is set to X ⊕ 1.

If the length of the plaintext is a multiple of n, a padding block (0xXY · · ·Y )
is added to signal that the padding has been added. Since both X and Y must
be used, X is padded at the end of the plaintext and the block of 0xY · · ·Y is
added if the length of the last plaintext block is n − 1(Fig. 8).

Fig. 8. Example 2 of new padding method 2
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To remove the padding, the bytes which have the same value as the last byte
(Y ) are removed, and then another byte (X) is removed. Next, the padding is
checked. With the restored plaintext, it is checked to determine if the first byte
of the plaintext block q − 1 is the same as X. If they are the same, it is checked
to determine if the second byte is the same as Y . If X and Y are the same, it is
xor’ed with 1 and checked to determine if Y = X ⊕ 1.

5.3 New Padding Method 3 (NPM3)

Like the new padding method 2, this padding method determines the padding
boundary (X) and padding value (Y ) using the last second plaintext block and
is more efficient than NPM1.

The last byte of the last plaintext block (q) is set to be X. Then the
(Xmodn)th byte of the second last plaintext block (q − 1) is picked as Y . The
Y is padded next to the last byte of the plaintext block q so that the length of
the plaintext becomes a multiple of n(Fig. 9).

Fig. 9. Example 1 of new padding method 3

If X and Y are the same, the padding is not correctly removed. In that case,
Y is set to X ⊕ 1. If the length of the plaintext is a multiple of n, a padding
block (0xY Y · · ·Y ) is added to signal that the padding is being used.

To remove the padding, the bytes whose values are the same as the last
byte (Y ) are removed. However, another byte (X) is not removed since it is the
correct plaintext byte. Next, the padding is checked. With the last byte of the
restored plaintext as X, it is checked to determine if the (Xmodn)th byte of the
plaintext block q − 1 is the same as Y . If not, 1 is xor’ed to Y and it is checked
if they are the same.

5.4 Comparison of New Padding Methods and Secure Padding
Methods

Security. The new padding methods proposed in this paper are designed to be
secure against POAs and to have invalid padding to ensure efficiency. Although
there is invalid padding, POAs cannot be effective. The reason is as follows:
The POA attacker generally modifies the second last ciphertext block to firstly
find the padding length and secondly do the plaintext block byte by byte. Our
padding methods all use the second last plaintext block to make paddings.
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So, in our padding methods, modifying the second last ciphertext block by the
POA attacker leads to a change of the second last plaintext block, which always
makes “Invalid Padding” with a very high probability. This means that there is
no indication to distinguish the padding length and plaintext block. In addition,
as they use the plaintext without a pseudo-random generator, one or two bytes
of the plaintext may be leaked if the padding value is known, but there is still
no problem with security since the padding length is not leaked. Therefore our
padding methods have resistance to the POAs.

Efficiency. As shown in Sect. 3, ABYT-PAD, and ABIT-PAD are padding meth-
ods that are secure against POAs among the conventional padding methods.
They are not subject to POAs because there is no invalid padding. Although
this is a desirable attribute in terms of security, the MAC verification is needed,
which makes the efficiency of protocol degraded. TLS version 1.0 and its above
versions frequently adopt the MAC-then-Encrypt method with the CBC mode.
In such a case, the server always checks the MAC verification if it uses the
ABYT-PAD or ABIT-PAD. This is due to the fact that they do not have any
invalid padding. However, our padding methods do not always force the server to
check the MAC verification since they may have “Invalid” sent from the oracle.
Furthermore, the ABYT-PAD need a pseudo-random number generator, while
ours do not. Hence, our methods are more efficient than the ABYT-PAD and
ABIT-PAD.

[Table 3] compares the security and efficiency of the three new padding meth-
ods proposed in this paper and the existing secure padding methods.

Table 3. Security and Efficiency Comparison

Design Criteria in Table 2 ABYT-PAD ABIT-PAD NPM1 NPM2 NPM3

Security 1 O O O O O

2 X X O O O

3 O O X X X

Efficiency 4 X O O O O

5 X X O O O

6 Conclusion

This paper analyzed the ten existing padding methods from the viewpoint of
defense against POAs and found two (ABYT-PAD and ABIT-PAD) to be secure
against POAs. We then analyzed these padding methods and proposed design
criteria that ensure security from POAs. We also proposed additional design
criteria to further enhance their efficiency.

Based on the proposed design criteria, we proposed three new padding meth-
ods that are both secure from POAs and efficient. The proposed new padding
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methods are as secure as the existing padding methods as well as being more
efficient.

There are many studies related to POAs, and the security of encrypted com-
munication such as SSL/TLS is being reviewed as a result. In most cases, the
padding oracle is removed or the MAC verification is added to defend against
POAs. However, these measures are not the root solution and ultimately degrade
the efficiency of encrypted communication. The new padding methods proposed
in this study, however, could be the root solution to POAs and are highly efficient.
As such, we are confident that the application of these new padding methods
will constitute good measures for secure communication in the future.
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Abstract. The last decade has witnessed a major change in the methods
of Integrated Circuit (IC) fingerprinting and random key generation.The
invention of Physically Unclonable functions (PUFs) was a milestone in
the development of these methods. Ring-oscillator (RO) PUFs are one
of the popular intrinsic PUF instances in authentication and random
number generation applications. Similar to other types of PUFs, unpre-
dictability and unclonability are the key requirements for the security
of RO-PUFs. However, these requirements cannot be perfectly met for
RO-PUFs, as demonstrated by studies investigating different attacks
against RO-PUFs. In addition to semi-invasive attacks, modeling attacks
have been proposed that aim to predict the response to an arbitrarily
chosen challenge. To this end, the adversary collects only a small number
of challenge response pairs (CRPs), and then attempts to constitute a
model of the challenge-response behavior of the PUF. Nevertheless, it is
not ensured that a model will be delivered after learning the seen CRPs,
whose number is solely estimated instead of being properly proved. Aim-
ing to address these issues, this paper presents a Probably Approximately
Correct (PAC) learning framework enabling the learning of an RO-PUF
for arbitrary levels of accuracy and confidence. Indeed, we prove that a
polynomial-size Decision List (DL) can represent an RO-PUF. Thus, an
arbitrarily chosen RO-PUF can be PAC learned by collecting only a poly-
nomial number of CRPs. The “hidden” polynomial size of the respective
representation of an RO-PUF therefore accounts for the success of the
previously proposed (heuristic) attacks. However, our proposed bound
is provably better, when comparing the number of CRPs required for
our attack with already existing bounds calculated by applying heuristic
techniques. Finally, by conducting experiments we complement the proof
provided in our PAC learning framework.

Keywords: Physically unclonable functions · RO PUFs · Decision lists ·
Machine learning · PAC learning

1 Introduction

Device authentication and random key generation methods have entered a new
phase of development, explained by growing and increasingly demanding user
c© Springer International Publishing Switzerland 2016
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need for security. Due to the vulnerability of legacy key storage in the non-volatile
memories (NVM) to semi- and fully-invasive attacks [8,11], the concept of Physi-
cally Unclonable Functions (PUFs) has emerged as an alternative solution [6,20].
The basic idea behind the concept of PUFs is using physical characteristics of
an integrated circuit (IC) corresponding to manufacturing process variations,
which make each IC slightly different from others. Regarding how these physi-
cal characteristics are exploited, several PUF instances have been introduced in
recent years [12]. Delay-based PUFs, such as arbiter PUFs and ring-oscillator
(RO) PUFs, is one of the PUF families, which attracts attention thanks to their
easy and inexpensive implementations on different platforms [12,26]. Arbiter
PUFs and RO-PUFs share the common feature of using the different propaga-
tion delays of identical electrical paths on the chip to generate a virtually unique
output.

Coming under several attacks, it has been shown that the security of delay-
based PUFs can be comprised, and therefore, the unclonability and unpredictabil-
ity features promised by the manufacturer are not absolutely supported. While
the PUF manufacturers have been contributing to improve the design and con-
sequently the security of the PUFs, adversaries are simultaneously develop-
ing different non-invasive and semi-invasive attacks. For instance, it has been
stated that RO-PUFs are subject to semi-invasive electromagnetic (EM) side
channel analysis [17]. Moreover, an arbiter PUF can be fully characterized by
semi-invasive temporal photonic emission analysis [27]. Being relatively cost-
effective and requiring no particular access to the chip in contrast to semi-invasive
attacks, adversaries can achieve greater advantages by applying modeling tech-
niques [19,22–24]. In this case, the adversary applies a relatively small set of
challenges (i.e., inputs of the PUF) and collects the responses (i.e., outputs of
the PUF) of the respective PUF to those challenges. Afterwards by applying
machine learning techniques, the adversary can build a model of the Challenge-
Response behavior of the PUF, which can predict the responses of the PUF to
new arbitrarily chosen challenges. Although the popularity of modeling attacks
has been a key driver for several studies on the security of PUFs, only recently it
has been demonstrated that after launching already existing modeling attacks,
the delivery of the model is not always ensured [4]. To address this issue, a
probably approximately correct (PAC) learning attack has been proposed and
successfully launched on arbiter PUFs [4]. Unfortunately, such a through analy-
sis has not been developed for RO-PUFs so far, and solely empirical modeling
attacks have been suggested.

As an instance of modeling attacks against RO-PUFs, Rührmair et al. have
applied Quicksort algorithm to model an RO-PUF in the case that the adversary
cannot control the challenges, although the challenges can be eavesdropped [22].
As another example, a new attack on RO-PUFs has been introduced, whose
key success factor is the availability of the helper data used to compensate
the impact of the noise on the responses [19]. Obviously, in the absence of the
helper data, which is a likely scenario in practice, their attack cannot succeed.
In another attempt to develop a machine learning method that can be applied
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to compromise the security of an RO-PUF, a genetic programming approach has
been employed [24]. Although their results are promising in terms of the predic-
tion accuracy of the obtained models, neither the scalability of the approach nor
the probability of delivering the final model has been discussed. On the other
hand, empirical results suggest to increase the number of ring oscillators as an
effective countermeasure against above mentioned modeling attacks. This claim
is supported by the observation that in this case the likelihood of the response
prediction is less probable. Moreover, the lack of thorough analyses of the secu-
rity of the RO-PUFs further supports the development of ad hoc solutions to
their security problems. Therefore, several different implementation methods
have been proposed in order to improve the security of RO-PUFs [16,18], despite
the fact that this primitive is inherently vulnerable to machine learning attacks.
Our work aims to address the following contributions:

Establishing a Fit-for-Purpose Representation of RO-PUFs. In addi-
tion to the feature of being polynomial-sized, our proposed representation can
be easily established by collecting CRPs. Therefore, when comparing to other
complicated and sophisticated representations, it can be rapidly established. Due
to this representation we propose an algorithm that can learn an RO-PUF for
given levels of accuracy and confidence.

Mathematical Proof of the Vulnerability of RO-PUFs to our Machine
Learning Attack. The number of CRPs required to launch our attack is care-
fully calculated. We prove that this small number is indeed polynomial in the
number of ring oscillators.

Providing a Proof of Concept of how our Attack Performs in Practice.
By conducting experiments we evaluate the effectiveness of our attack.

2 Notation and Preliminaries

This section contains the information required for a better understanding of
our approach. In addition to the brief description of the RO-PUF concept, this
section covers an introduction to the notion of decision lists and PAC learning.

2.1 RO-PUFs

The general concept of PUFs enables a mathematical description of inherent
silicon properties of a chip. For a given PUF, the function fPUF : C → Y,
where fPUF (c) = y describes the input to output mapping of the PUF. For
this mapping, C = {0,1}n and Y = {0,1} are the sets of challenges (inputs)
and responses (outputs), respectively [13]. The key features of a PUF are being
evaluable, unique, reproducible, unpredictable, one-way, and more importantly,
unclonable [12].

The manufacturing variations in the delays of circuit gates have been used
to design an RO-PUF [26]. The first architecture is composed of N identically
designed oscillator rings, whose frequencies are compared pairwise to generate
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the binary output of the RO-PUF, see Fig. 1. Although N(N −1)/2 pairs of oscil-
lators are possible for this architecture, the number of responses cannot exceed
log(N !) due to the particular ascending order of the frequencies [9]. Consider
the RO-PUF depicted in Fig. 1 that features N ring oscillators. By applying the
respective binary challenges the frequencies of two ring oscillators are compared
to generate the response. It is clear that the challenges applied to two multiplex-
ers should not be identical. Otherwise, only N different pairs of ring oscillators
can be selected, and consequently solely N responses can be obtained. Hence,
more formally, the k- bit challenge c1c2 · · · ck is applied to one of the multiplex-
ers (e.g., the upper one) to select the first ring oscillator, whereas the k- bit
challenge c′

1c
′
2 · · · c′

k is fed into the second multiplexer to select the second ring
oscillator (note that c′

i is not the complement of ci, and it is chosen randomly
and independently from ci). As required by our approach, without loss of gener-
ality, we denote the appropriate challenge applied to the RO-PUF by the binary
string c1c2 · · · ckc′

1c
′
2 · · · c′

k, where k = log2 N and ci �= c′
i (1 ≤ i ≤ k). It may be

thought that the number of bits in a challenge can represent a measure of the
security of this type of PUFs. However, in practice the number of ring oscilla-
tors implemented on a chip is a more limiting, and a determinant factor. The
influence of this factor on the uniqueness of the RO-PUF and the silicon area
footprint has been discussed in the literature, e.g., [16].

The vulnerability of RO-PUFs to modeling attacks has been revealed so
far [22]. When launching a modeling attack on this type of PUFs, two scenarios
can be defined. In the first scenario, the attacker can selectively apply the desired
challenges to figure out the ascending order of frequencies of the rings. In this
scenario, the number of CRPs can be O(N log2 N), or in an extreme case, N2/2,
where the attacker collects all the possible CRPs. Of course it is possible in
theory, but in practice the attacker may not have direct access to the challenges
and, consequently, this types of attacks may fail. On the other hand, in an
advance and a more realistic scenario that is considered in our paper, the attacker
can solely collect the challenges randomly applied to the PUF and the respective
responses.

Last but not least, without limiting the generality of our approach, we assume
that meta-stable conditions (i.e., related to noisy responses of the RO-PUF or
when having equal frequencies of ring oscillators) must have been resolved by
the manufacturer. Numerous mechanisms addressing the meta-stable condition
of RO-PUFs (so called unreliability of the PUF) have been proposed in the
literature. This issue is beyond the scope of our paper and for more details the
reader is referred to, e.g., [15,16].

2.2 Decision Lists

Here we briefly introduce the notion of decision lists, and refer the reader to [21]
for more details.

We first introduce the main building block that is the set of Boolean
attributes Vn = {x1, x2, · · · , xn}. Note that each attribute can be true or false ,
identified with “1” and “0”, respectively. Moreover, Xn denotes the set {0, 1}n
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Fig. 1. An RO-PUF with N ring-oscillators. By applying challenges to two multiplex-
ers, two ring-oscillators are selected and their outputs are connected to the clock inputs
of 2 counters. The counters count the number of the rising edges during a predefined
time period. Finally, the state of the counters are compared by the comparator placed
at the end of the PUF to generate a binary response.

of all binary strings containing n bits. xi and xi (complement of xi) are called
literals associated with the Boolean attribute xi. Let Ln = {x1, x1, · · · , xn, xn}
be the set of 2n literals. The mapping from Vn to {0, 1} that maps each Boolean
attribute to either “0” or “1” is an assignment. An assignment can be also rep-
resented as an n-bits string, where the ith bit indicates the value of xi (i.e., “0”
or “1”) for that assignment.

A Boolean formula is a mapping from assignments into {0, 1}. Each Boolean
attribute can be a formula so that xi and xi are two possible formulas. If for
an assignment the formula is “1”, that assignment is called a positive example
of the concept represented by the formula. Otherwise, it is a negative example.
Clearly, each Boolean formula defines a respective Boolean function from Xn to
{0, 1}. A term is the conjunction of Boolean attributes (i.e., a Boolean formula)
that can be true or false (“1” or “0”) depending on the value of its Boolean
attributes. The size of a term indicates the number of its attributes. The size 0
is given to only the term true. The set of all conjunctive terms of size at most
k is denoted by Cn

k , and it is known that

|Cn
k | =

k∑
i=0

(
2n

i

)
= O

(
nk

)
.

Hence, for a constant k, the size of Cn
k is polynomial in n.

Decision lists are one of the learnable representations of Boolean func-
tions. A useful and interesting interpretation of decision lists is that they define
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Fig. 2. (a) A sample of “if - then- else if - ...- else” rules. (b) Diagram of the decision
list corresponding to this rule.

a concept, which follows a general pattern but with some exceptions. As another
interpretation, a decision list can be thought of being an extended “if - then-
else if - ...- else” rule (see Fig. 2(a)). Hence, a decision list can be established
from such a rule, as shown in Fig. 2. More formally, a decision list is the list L
containing r pairs (f1, v1), · · · , (fr, vr), where the Boolean formula fi is a term
in Cn

k and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1. The formula fr is a constant function:
vr = 1. A Boolean function is associated with the decision list so that for a string
x ∈ Xn we have L(x) = vj , where j is the smallest index in L, where fj(x) = 1.
This relationship implies that common patterns are listed at the top of the deci-
sion list, whereas the exceptions can be found at the end of that. The set of all
terms, whose maximum size is k and defined by a decision list, is denoted by
k − DL.

2.3 PAC Model

The Probably Approximately Correct (PAC) model addresses the problem of
learning an unknown concept for pre-defined, given levels of accuracy and con-
fidence. As the name implies, after the learning phase a hypothesis is obtained
with high probability that can approximate the target concept for the pre-defined
level of accuracy. This definition can be formulated as follows [10].

Consider the instance space Xn = {0, 1}n, over which we define the target
concept Cn. The hypothesis space is denoted by Hn. We have also X = ∪n≥1Xn,
C = ∪n≥1Cn, and similarly H = ∪n≥1Hn. We assume that each instance is drawn
from Xn regarding an arbitrary probability distribution D defined on Xn. The
error of a hypothesis h ∈ H for the target concept c ∈ C can be defined as:

error(h) :=
∑

x∈h�c D(x),
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where � is the symmetric difference. Let L be a polynomial time algorithm,
and p(·, ·, ·) denote a polynomial. Assume that for all distributions D, all ε and
δ (0 < ε, δ < 1), p(n, 1/ε, 1/δ) examples of c are drawn independently and
regarding the distribution D. If these examples are given to the algorithm L,
with probability at least 1− δ the output of the algorithm is a hypothesis h ∈ H
so that error(h) ≤ ε. In this case, C is PAC learnable by H. If C = H, C is
called properly PAC learnable. Otherwise, if the following conditions are met, C
is PAC learnable: (a) C is PAC learnable by H, and (b) H can be evaluated in
polynomial time on given examples.

3 PAC Learning of RO-PUFs

In order to establish a proper representation of an RO-PUF, we focus on a widely
accepted implementation of RO-PUFs as proposed in [26], see Fig. 1. Neverthe-
less, modified architectures proposed in [29–31]. Potential attacks against them
are discussed briefly in Sect. 3.3. Consider an RO-PUF that features N ring oscil-
lators. The challenge is a 2k-bit binary string c1c2 · · · ckc′

1c
′
2 · · · c′

k as discussed
in Sect. 2.1. When applying this binary challenge to an RO-PUF, the string
c1c2 · · · ck determines the first ring oscillator to be selected, whereas the string
c′
1c

′
2 · · · c′

k determines the second one. By comparing the frequencies of these ring
oscillators, the final response of the RO-PUF is generated. We define the binary
to one-hot coded mapping fmap : {0,1}k → {0,1}N that maps a binary string,
e.g., c1c2 · · · ck, to a one-hot string x1x2 · · · xN . Therefore, all Boolean attributes
of the mapped string are “0”, except solely one of them, e.g., the jth attribute,
that is “1” corresponding to the selected ring oscillator.

By performing the mapping fmap on each challenge, we obtain two one-hot
coded strings, which can be merged to a single mapped challenge x1x2 · · · xN . In
other words, if fmap(c1c2 · · · ck) = x1x2 · · · xN , where xi = 1 and for the second
string we obtain fmap(c′

1c
′
2 · · · c′

k) = x′
1x

′
2 · · · x′

N , where xj = 1, we can merge the
mapped strings to a single string x1x2 · · · xN , where xi and xj are “1”. This step
can be performed easily by, e.g., adding the respective attributes of two stings
together. Let the set of all the attributes be denoted by VN = {x1,x2, · · · , xN}.
Moreover, the set XN = {0,1}N denotes the set of all mapped challenges. Note
that according to the definition of fmap, only two non-zero Boolean attributes
of each mapped challenge are drawn from VN .

Similar to the other types of PUFs, an RO-PUF can be represented by the
function fRO : XN → Y , where Y = {0,1}, and fRO(x1x2 · · · xN ) = y. Obvi-
ously, this mapping represents a Boolean function. More precisely, we define
each mapped challenge as being a term (e.g., fi) so that fi ∈ CN

2 . Now the list
L containing r CRPs represents a 2 − DL.

In order to prove that RO-PUFs are indeed PAC learnable under the decision
list representation, we follow the procedure introduced in [21]. We first prove that
a 2 − DL representing an RO-PUF has a polynomial size. Afterwards, we prove
the PAC learnability of RO-PUFs represented by the 2 − DL. To this end, we
apply a classical polynomial-time algorithm that learns a 2−DL for given levels
of accuracy and confidence, when it is given a polynomial number of CRPs.
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3.1 Size of a 2 − DL Representing an RO-PUF

The importance of the size of the representation is due to the fact that the time
complexity of learning algorithms greatly depends on this size. Defining the size
of a hypothesis, the mapping size : {0,1}k → N can be defined that associates
a natural number size(h) with each h ∈ H. Although this definition allows
size(·) to be any mapping as defined above, in our case the most appropriate
interpretation of it is the size of h in bits [10]. From this general definition, we
can now shift our focus to the following theorem.

Theorem 1. A 2 − DL representing an RO-PUF is polynomial-sized.

Proof : The maximum number of elements in a k −DL, in the general case, has
been determined as follows [21].

|k − DL| = O
(
3|CN

k |(|CN
k |)!) .

This can be proved since in the decision list, each term from CN
k can be labeled

by “0”,“1”, or “missing”. Furthermore, no order for the elements of the list is
defined.

Now we put emphasis on the size of the decision list representing an
RO-PUF. Obviously, according to our specific definition of the strings
x1x2 · · · xN , in our decision list the maximum number of possibles elements is
N(N − 1)/2. However, according to the ascending order of the frequencies of
the ring oscillators, a list containing O(N − 1) terms is completely expressive.
This can be easily understood due to the fact that the Boolean attribute xi has
a previously assigned meaning, which is directly related to the frequency of the
ith ring oscillator. Therefore, the size of our 2 − DL in bits (i.e., the size of the
representation) is O

(
(N − 1) log2(N − 1)

)
. �

3.2 PAC Learnability of the k − DL

To prove that the 2−DL representing the RO-PUF is PAC learnable, in addition
to Theorem 1, we have to provide a polynomial-time algorithm that can generate
a decision list, when being fed by a set of labeled examples (so called sample).
The upper bound of the number of examples required by the algorithm can be
calculated according to the polynomial learnability theorem proved by Blumer
et al. [2]. According to this theorem and the polynomial size of a 2 − DL, it
has been proved that in general, a 2 − DL can be PAC learned by applying a
simple algorithm [21]. For the sake of completeness, this section presents the
polynomial learnability theorem in the case of an RO-PUF represented by the
2 − DL as well as the algorithm proposed to PAC learn the respective decision
list. The reader is referred to [2] for the proof of the theorem and [21] for more
details on the algorithm.

Theorem 2. Assume that the learner has access to Oracle EX := fRO, and
can call it successively to collect m independently drawn examples (i.e., CRPs).
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In order to PAC learn the RO-PUF for given ε and δ, under the 2 − DL repre-
sentation, the number of CRPs required to be collected is bounded by:

m = O

(
1
ε

(
(N − 1) log2(N − 1) + log2

(1
δ

)))
.

As pointed out in Sect. 2.1, the number of ring oscillators heavily affects the
uniqueness and silicon area footprint of RO-PUFs. In other words, although
N = 2k and k can be increased in theory, N and consequently k cannot be
arbitrarily increased due to the restrictions imposed by the technological prop-
erties of ICs. Hence, not only in our approach but also in previously proposed
attacks (e.g., [22]) the number of CRPs required to characterize the challenge-
response behavior of RO-PUFs is presented as a function of N , the number of
ring oscillators. An important message conveyed by Theorem2 is that the max-
imum number of CRPs needed to be collected by the attacker is polynomial in
N , and more importantly, it is asymptotically better than the bound estimated
in [22].

In order to give a better understanding on the impact of a change in ε and
δ on the number of CRPs, the upper bound of the number of CRPs calculated
according to Theorem 2 is depicted in Fig. 3. The curve is drawn for N = 1024
and different ε and δ values.

The most important message given by the Theorem 2 is that the maximum
number of CRPs required to PAC learn an RO-PUF represented by the 2 − DL
is only polynomial in N . According to [21], a polynomial-time algorithm can
be applied to PAC learn this decision list. The main steps of this algorithm are
shown in Algorithm1.

Fig. 3. Upper bound of the number of CRPs required for PAC learning of an RO-PUF
with 1024 ring oscillators.
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Algorithm 1. Algorithm for PAC learning of a k − DL as proposed by [21]

Require: The set S containing r pairs (f1, v1), · · · , (fr, vr), where (1 ≤ r ≤ m)
Ensure: L that is a k − DL

1: T := ∅
2: j = 1
3: while S is not empty do
4: Find a term t in Cn

k so that all fi (1 ≤ i ≤ r) make t true, and their corresponding vi are
either“0” or “1”

5: T ← t
6: if t corresponds to positive examples then:
7: v = 1
8: else
9: v = 0

10: fi
11: return (t,v) as the jth item of L
12: S := S − T
13: j = j + 1
14: od

3.3 PAC Learnability of the self-decision RO-PUF

The rational behind the design of this type of PUFs [31], is that combination
of frequencies of the ring oscillators forming the PUF can be a countermeasure
against machine learning attack. Although this assumption was correct at the
time when this design has been proposed, recently the invalidity of that has been
proved in a series of work [3–5,28]. Here we briefly describe how the results of
their work can be further extended to prove the vulnerability of self-decision RO-
PUFs (so called sum RO-PUFs). The architecture proposed in [29,31] is similar
to the architecture of arbiter PUFs, however, the main difference is that the
frequencies of the ring oscillators (instead of delays of stages in an arbiter PUF)
are added together. Following the procedure proposed in [4], these real-valued
frequencies of ring oscillators can be mapped to a limited integer interval. This
enables us to construct a deterministic finite automaton (DFA) representing the
sum RO-PUF, and then PAC learn it.

A more interesting design suggested by Yu et al. [30] relies on the fact that
more complex recombination functions, e.g., XOR function can provide addi-
tional robustness against machine learning attacks for RO-PUF. The proposed
architecture shares several similarities with XOR arbiter PUFs, and in a similar
fashion can be represented by linear threshold functions (LTFs) [1]. It has been
proved that although in general the Vapnik-Chervonenkis dimension of PUFs
can be exponential is the number of ring oscillators (in the case of RO-PUFs),
when this number does not exceed the upper bound lnN , the RO-PUF is indeed
PAC learnable (for the proof see [5]). On the other hand, when the number of
ring oscillators exceeds this upper bound, hybrid attacks similar to what has
been proposed in [3,28] can be applied to break the security of the RO-PUF.

4 Results

In this section we provide simulation results to validate our theoretical findings.
To this end, one can adopt the results of large scale experiments reported in [14].
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In addition to these results, further measurement results are publicly accessible
in a dataset [25]. In this dataset the measurement results containing 100 sam-
ples of the frequency of each and every ring oscillators that RO-PUFs feature
are collected. Each RO-PUF is composed of 512 ring oscillators implemented on
193 90-nm Xilinx Spartan (XC3S500E) FPGAs. Since we aim to evaluate the
effectiveness of our attack against RO-PUFs with different number of ring oscilla-
tor, we develop an RO-PUF simulator, whose inputs are frequencies of the ring
oscillators. First, our simulator randomly selects N (N = 128, 256, 512, 1024)
frequencies associated with N different ring oscillators. Afterwards in order to
create a set of CRPs, random challenges are applied to the PUF to select a pair
of ring oscillators. The indexes of selected ring oscillators and their correspond-
ing responses were stored in a dataset to be learned by the machine learning
algorithm proposed in Sect. 3.2.

To learn the CRPs under the decision list representation, we have used the
open source machine learning software Weka [7], providing a firm platform for
conducting experiments. In our experiments 10GB RAM of our machine is used.
Moreover, the physical core of the machine is an Intel Core 2 Duo (Penryn) run-
ning at 2.4GHz. Experiments conducted in Weka consist of two phases, namely
the training and the validation phases. The examples fed into an algorithm can
be divided into equally sized subsets (so called folds) to perform cross-validation.
For instance, when 10 equally sized subsets are fed into an algorithm, the model
is established based on 9 subsets, and then the obtained model is validated on the
remaining subset. This process is repeated 10 times so that each subset is used
once as the validation dataset and 9 times as the training dataset. Finally, the
results obtained for all 10 experiments are averaged to generate a single model.
With respect to our setting, this 10 fold cross-validation method is applied in
order to evaluate the error of the obtained model (ε). Since the model is always
delivered in our experiments, it can be interpreted that δ is very close to zero in
our case, as pre-defined and have coded in Weka.

The results of the experiments for several different RO-PUFs have been
depicted in Fig. 4. As expected, for the same number of CRPs, the error of
the model is higher for RO-PUFs with the higher number of ring oscillators.
Furthermore, in our experiments we increase the number of CRPs fed into the
algorithm to the extent that a model with a sufficiently small error is obtained.
Nevertheless, the maximum number of CRPs given to the algorithm is far less
than the upper bound calculated in Sect. 3.2. It can be seen in Fig. 4(a) that for
each RO-PUF the error is significantly reduced, when increasing the number of
CRPs collected to launch the attack. The maximum time taken to deliver the
model of the RO-PUFs, corresponding to the maximum number of CRPs given
to the algorithm, is presented in Fig. 4(b). The time complexity is increased for
RO-PUFs with a higher number of ring oscillators. However, it is still polynomial
in the number of the ring oscillators.

In an attempt to compare our theoretical and practical findings with results
previously reported in the literature, we take into consideration the results
reported in [22,24]. We consider the worst-case scenario from the adversary



356 F. Ganji et al.

Fig. 4. (a) The number of CRPS required to PAC learn RO-PUFs with different num-
bers of ring oscillators. Clearly, when increasing the number of CRPs collected for the
attack, the error of the obtained model is reduced. (b) Time taken to deliver the model,
if the algorithm is fed by the maximum number of CRPs for each RO-PUFs.

perspective, where she can only eavesdrop the CRPs and cannot apply any
desired challenges. The crucial difference between the algorithm proposed in [22]
and our work is that the delivery of the model is not guaranteed in their frame-
work. Furthermore, although for different RO-PUFs virtually the same numbers
of CRPs are suggested in our work and [22], the number of CRPs required for
launching their attack is estimated empirically, and is heavily depending on their
limited number of experiments. On the contrary, the upper-bound of the num-
ber of CRPs required to launch our PAC learning attack is calculated precisely.
More importantly, the upper bound calculated with regard to our framework is
asymptotically better than their estimated bound.

In a similar fashion, in spite of the fact that the algorithm proposed in [24]
might deliver a kind of Boolean function for a given RO-PUF, neither the deliv-
ery of the model is ensured nor the scalability of the algorithm is discussed. The
experiments conducted to evaluate the feasibility of their attack are performed
only on RO-PUFs with 128 ring oscillators. Moreover, when increasing the num-
ber of CRPs to achieve a more accurate model, the time taken to generate their
proposed model is increased drastically. Unfortunately, the time complexity of
their model has not been discussed.

5 Conclusion

As a further step towards investigating the security of RO PUFs, we have pro-
posed a PAC learning framework that results in compromising the security of
these PUF instances. In contrast to previous empirical studies, we have math-
ematically proved that a polynomial-sized representation can be established to
learn an RO PUF for given levels of accuracy and confidence. We have proposed
the decision list representation of an RO PUF, which not only reflects the phys-
ical characteristics of an RO PUF, but also leads to the natural fact that the
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RO PUF is indeed PAC learnable. We have further demonstrated that since the
number of ring oscillator pairs characterizing the an RO-PUF is polynomial in
the number of ring oscillators, the size of the decision list representing the RO
PUF is also polynomial in the number of ring oscillators. By conducting experi-
ments we have validated our theoretical results. Last but not least, we conclude
that similar to virtually all other PUF instances, provably, RO-PUFs cannot be
considered secure regarding their current schemes.
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Abstract. We propose an anonymous authentication scheme which
security is based on Physical Unclonable Function. Our scheme is resis-
tant to typical attacks mounted against regular systems with security
based on computational assumptions. Its tampering and cloning resis-
tance is based on the assumption that cloning of the PUF device is impos-
sible. The scheme withstand collusion attacks: no coalition of adversaries
can successfully authenticate without a registered device. It provides
unconditional anonymity: it is infeasible to determine which device, out
of the all registered, was used for authorization. The anonymity feature
withstand attacks of the very powerful adversary which has access to all
public parameters, as well all secrets - including the master secret of the
system creator.

Keywords: Anonymous authentication · Anonymity · Physical unclon-
able function · PUF

1 Introduction

Authentication Scheme (AS) is a protocol usually involving two parties: an
authenticator which proves his identity, and a verifier which accepts or rejects
the authenticator’s proof. Typically the verifier checks some attribures of the
authenticator: what the authenticator has (key, token, etc.), what the authenti-
cator knows (secret, password, etc.), what the authenticator are (e.g. biometric
characteristics).

Anonymous Authentication Scheme (AAS) is such a AS protocol, in which
the verifier checks if the authenticator belongs to some predefined group of autho-
rized users, but without the possibility of learning the exact authenticator’s iden-
tity (see e.g. [1] for generic definitions). Thus if the group of authorized users
has the cardinality |A|, we usually limit the possibility of such a correct guess by
1/|A|. In this paper we concentrate on authentication schemes based on “what
the authenticator has” methodology. Usually in this scenario we think of small
authentication devices which securely store the authentication keys inside (e.g.

Partially supported by fundings from Polish National Science Center decision number
DEC-2013/09/B/ST6/02251.

c© Springer International Publishing Switzerland 2016
S. Kwon and A. Yun (Eds.): ICISC 2015, LNCS 9558, pp. 359–372, 2016.
DOI: 10.1007/978-3-319-30840-1 23



360 �L. Krzywiecki

electronic tokens, smartcards). However AS based on tokens may be subject to
common threats such as tampering and cloning. Once a device is tampered, it can
be duplicated and the adversary can use it since after. Conventional approaches
to securely managing secrets in a device memory suffers from a couple of short-
comings. Non-volatile memory modules are vulnerable to invasive attack. Side-
channel attacks or software attacks can lead to bit leakage, device modeling and
finally result in key exposure. Therefore much effort is undertaken to provide
unclonability property for token devices in order to prevent those attacks. The
recent research in this area indicates the notion of physical unclonable functions
(PUFs) as quite promising.

Physical Unclonable Function (PUF) is a hardware primitive that extracts
randomness from its physical characteristics acquired during natural variation of
fabrication process. Those variations are so unique that they cannot be repeated
exactly, even by the manufacturer, thus making the PUF device unclonable.
PUFs can be tested with external challenges, upon which (due to PUFs perplex
structure) they react with corresponding responses which are extremely difficult
to predict and are unique to each PUF. The inputs-outputs of PUF are tabular-
ized and are also refered as Challenge-Response Pairs (CRP). Here we will use
the both terms interchangeably. There are several types of PUFs discussed in
literature: [2–12], with different physical characteristics. However, in this paper
we abstract from the physical realization of the PUF device. We only require
that:

– it is infeasible to clone PUF device;
– the CRPs set is very large, so it is impossible to determine all CRPs by any

adversary who get the access to the attacked PUF;
– it is impossible to model the PUF and then predict its response for a randomly

chosen challenge, given a collection of previously obtained CRPs.

In this way we treat a PUF as unique hash function, modeled as a black box,
available only through its input and output interfaces. However, in the PUF
case, the inside randomness is the inherent part of the device which cannot be
extracted, modeled, cloned, and varies in each produced instance.

There are numerous cryptographic schemes which utilize PUF devices for
different purposes, e.g. [13–16]. In the context of security models, Brzuska
et al. in [17] denote the trusted PUF ideal functionality in universal compo-
sition (UC) framework of Canetti [18], and show efficient UC-secure protocols
for oblivious transfer, commitments, and key exchange. With the assumption
that PUFs are trusted and honestly devised the result is unconditional, with
no computational assumptions for proposed schemes. The later work of Ostro-
vsky et al. [19] extended [17] for maliciously generated PUFs. Authors construct
(computational) UC commitment scheme, as well as unconditional (but not UC)
commitment scheme in the malicious PUFs model. Positive results of [17,19]
enable to model various PUF based ideal functionalities, and encourage to seek
other scenarios for PUF usage.

Therefore, to the best knowledge of the authors, we propose the first detailed
instantiation of trusted PUF based anonymous authentication scheme, which is
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uconditionally secure. Our proposition is particularly inspired by the scheme
[16] which use PUFs for secure anonymous broadcast encryption. Specifically we
assume the same construction for the hardware setup: the PUF devices them-
selves and the PUF readers.

Regular authentication via PUF device. In regular setup the PUF device can
have a form of a token (or a card), which will be given to user u, and denoted as
Du. When a user u authenticates, it inserts the device Du into the reader. Then
the PUF part of Du denoted as Pu is inputed with the i-th challenge ci, and the
resulting response ri = Pu(ci) are captured by the reader (see Fig. 1).

PUF

response

reader device

r c
chellenge

Fig. 1. Authorization via PUF device.

The conventional usage of PUF in authentication process is divided into two
phases:

1. Learning phase:
(a) A user u enrolls into the system. A new PUF device is designated for u,

and denoted since them as Du

(b) A PUF device u is tested against the vector of challenges Cu =
(c1, c2, ..., cn) and outputs the vector of responses Ru = (r1, r2, ..., rn).
Both Cu, Ru are stored securely at the verifier side.

(c) The PUF device is given to the user.
2. Authentication phase:

(a) A PUF holder inserts the PUF into the PUF reader
(b) The PUF is challenged against the some challenge ci stored for u.
(c) If the answer from the PUF is equal to the corresponding response ri

previously stored for the device u, then the authenticator is identified
and accepted.
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Problem Statement. The problem with regular PUF-based authentication is the
following: once the verifier collects the input-output pairs in the learning phase
for the given PUF, it seems to be inevitable that it always uniquely identifies the
device during authentication phase. In the context of [17,19] we argue that this is
not a general rule. Note, that for non-PUF based authentication protocols there
exist anonymous solutions like group authentication schemes, see e.g. [20–22], or
solutions based on ring signatures [23]. In other words we would like to answer
the question: “How to design and instantiate a PUF based authentication scheme
which provides anonymity in the sense of” [1]. Such a protocol should provide,
that: (a) after the protocol execution the verifier is convinced the user belongs to
some predefined registered group of users; (b) the identity of the authenticator
is hidden, i.e. it could be any of the registered users.

Our Contribution. In this paper we propose:

– Security Model: We provide the security model that addresses the regu-
lar authenticity and anonymity requirements. Particularly, in the model we
address the specific aspects of the PUFs usage in the typical anonymous
and authentication security experiments. Here the PUFs themselves stand
for cryptographic secrets, and without the PUFs no adversary should be able
to complete its malicious goals against users’ authenticity and anonymity.

– PUFAAS Scheme: We propose the first detailed anonymous authentication
scheme - we called it PUFAAS - which security is based on physical unclonable
functions. The proposition is inspired by the scheme [16] - we use the same
construction for the PUF devices and the PUF readers. Moreover we utilize
the same procedures for initialization of the protocol and registration the new
PUF devices to users. These two procedures can be viewed as a ‘verbatim’
copy of the corresponding procedures from [16]. We treat that as the potential
advantage, as reusing existing libraries (here for initializing and registration)
can simplify the future implementation process. Specifically we propose the
challenge and response procedures to reflect the goals and feature of AAS
scheme. We prove the security of the scheme in our proposed model.

Particularly, the proposed scheme is immune to typical attacks against regular
systems based on computational assumptions (here the scheme is based on the
assumption of randomness of PUF’s output and their unclonability). This how-
ever is achieved at the price of additional initial tabularization of CRPs by the
verifier party and the memory used for that purpose. Our scheme combines the
features previously not achieved simultaneously by a single AAS scheme:

– Authentication Security: tampering and cloning resistance is based on the
assumption that cloning of the PUF device is impossible. The scheme with-
stand collusion attacks: no coalition of adversaries can sucessfuly authenticate
without a registered device.

– Unconditional anonymity: For our scheme it is infeasible to determine which
device, out of the all registered, was used for authorization. The scheme with-
stand attacks of the very powerful adversary which has access to all public
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parameters, as well all secrets - including the master secret of the system
creator.

– Small computational complexity: our scheme does not require heavy crypto-
graphic computation - no exponentiations are required on the authenticator
side, the only exponentiations on the verificator side are those involved in
obtaining polynomial values (these also can be omitted by using Horner’s
method).

2 PUF Based Anonymous Authentication Scheme

2.1 Scheme Architecture

First let us describe the system architecture for the proposed PUFAAS pro-
tocol. The hardware setup is inspired by the scheme [16] which use PUF for
secure broadcast encryption. The verifier is equipped with a reader for setup
and authentication phase of PUF devices. The uth PUF device - which is to
register to user u, and denoted by Du, consists of two pieces: (1) a PUF hard-
ware Pu which behaves as unclonable private hash function of its user u; (2) a
memory module build into Du, where some auxiliary data is stored. Moreover,
we assume that each device Du is configured in such a way, that its PUF part Pu

outputs effectively a value ri when inputed a value ci, thus we denote ri = Pu(ci).
We abstract from the technical aspects of this implementation. Specifically, for
the proposed scheme in Sect. 3, we assume that each Du utilize efficient coding
through which ci and ri can be interpreted as numbers from the chosen group
Zp setup in Init procedure of the system.

Below, in Definition 1 we describe the scheme. Table 1 presents the sequence
diagram of the authentication process.

Definition 1. PUFAAS scheme is a 5-tuple of algorithms
(Init,Reg,Chall,Resp,Ver) where:

– the initialization procedure Init receives as an input a security parameter ξ,
and returns the master secret MK; we denote MK ← Init(ξ)

– the registration procedure Reg receives as an input the master secret MK and
an index u associated with the device to register, and the device D itself; it
returns the user’s secret share SKu and stores it securely on the device; we
denote SKu ← Reg(MK,u,Du)

– the challenge procedure Chall receives as an input the master secret MK
and index of the challenge i, it returns the ith challenge ci; we denote
ci ← Chall(MK, i));

– the response procedure Resp receives a challenge block ci, and secret share
SKu of user u, the device Du; it returns the response ri; we denote ri ←
Resp(ci, u,Du, SKu)

– the verification procedure Ver receives a response block ri, and master secret
MK; it returns a bit d: 1 if Pu is an authorized device, or 0 otherwise; we
denote d ← Ver(ri, ci,MK)
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Table 1. Sequence diagram of the PUFAAS protocol.

Veirifier C PUF device u

setup:

MK ← Init(ξ)

SKu ← Reg(MK, u, Du) Du is given to the user u

challenge:

ci ←− Chall(MK, i)) ci−−−−→
d ← Ver(ri, ci, MK) ri←−−−− ri ← Resp(ci, u, Du, SKu)

2.2 Security Model for PUF Based AA

The following game based definitions define the security requirements for the
proposed PUFAAS:

– Authentication: it should be impossible to authenticate without the posses-
sion of the registered PUF device,

– Anonymity: it should be impossible to detect which registered device was
used during successful authentication, even for the adversary who possesses
the master secret key of the system.

Definition 2 (Authentication Game). The authentication game for the
PUFAAS scheme, the PPT adversary AAut, and the challenger C is as follows:

– Setup: C setups the system: MK ← Init(ξ).
– Phase 1: AAut can adaptively issue the following queries:

• RegQuery: in this case C runs Reg(MK,u,Du) to register a new user u,
and subsequently gives the registered device Du to AAut,

• AAut can query each device for an arbitrary number of n challenges of
its will: ĉ1, . . . , ĉi, . . . , ĉn, collecting responses Pu(ĉi) = r̂u,i from each uth
device.

• ChallQuery: in this case AAut authenticates by the means of the given
decoders.

– Challenge: AAut returns all the given decoders and enters authentication phase
of the PUFAAS protocol:

• C runs: ci ← Chall(MK, i)) for unused in the previous phase index i,
• C sends ci to AAut,
• A produces the response r̂i,
• C runs: d ← Ver(r̂i, ci,MK).

AAut wins the game if: d = 1.
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The advantage of AAut winning the above game is defined as

Adv(AAut) = Pr[d = 1]

We say that the PUFAAS scheme is a “secure-authentication” if the Adv(AAut)
is negligible.

In the following definition we formulate the anonymity requirements for the
proposed PUFAAS scheme. This definition addresses a very powerful adversary,
which can play a role of a system creator, and the verifier who knows the master
secret key MK. Even in this scenario it should not be able to distinguish which
registered device performs authentication.

Definition 3 (Anonymity Game). The Anonymity game for the PUFAAS
scheme, the PPT adversary AAno, and the challenger C is as follows:

– Setup: The adversary AAno setups the system. In this case it knows the master
secret key MK.

– Phase 1: AAno registers the arbitrary number q of new users, i.e.:
• it runs Reg(MK,u,Du) to register each new user device

D0, . . . , Du, . . . , Dq−1.
• AAno can query each device for an arbitrary number of n challenges of its
will: ĉ1, . . . , ĉi, . . . , ĉn, collecting responses Pu(ĉi) = r̂u,i from each uth
device.

– Challenge: AAut gives to C a set of n devices, say D1, . . . , Dn (for users
u1, . . . , un), then:

• C draws a random index j ∈ {1, . . . , n},
• C authenticates with device Dj to AAno according to the protocol.

– Guess: AAut outputs a guess index j′.

The adversary AAut wins the game if: j = j′. The advantage of AAno winning
the above game is defined as

Adv(AAno) = |Pr[j = j′] − 1/n|.
We say that the PUFAAS scheme is “anonymous” if the Adv(AAno) is negligible.

3 Proposed PUFAA Protocol

3.1 Idea: Anonymous Authentication via Lagrangian Interpolation

Let L : Zp → Zp be a polynomial of degree z, and A = 〈(x0, y0), . . ., (xz, yz)〉 be
a set of pairs such that: yi = L(xi), xi �= xj for i �= j. Lagrangian interpolation
formula (LI) enables reconstruction of the polynomial L from the set A (so
called interpolation set):

LI(x,A) =
∑z

i=0,(xi,.)∈A

(
yi

∏z
j=0,j �=i,(xj ,.)∈A

(
x−xj

xi−xj

))
. (1)

Here we depict the basic idea behind anonymous authentication based on
LI. Note that this is the straw-men solution used only as an illustration, and
it is vulnerable to numerous attacks such as collusion of users. The full secure
version of the protocol is proposed in the subsequent secion:
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1. Setup phase:
(a) A verifier chooses a number of private polynomials Li of degree z
(b) A verifier provides each user u with shares of the form (xu,i, L(xu,i) -

one for each polynomial Li.
2. Authentication phase:

(a) If the verifier want to test if some user has been given the share (which
would indicate it is an authorized user), it choses one unused polynomial
Li composes a challenge consisting of some random pairwise different z
shares of the form (x,Li(x)), and sends them to the user.

(b) The user uses its own ith share, and the shares from the challenge to
perform Lagrangian interpolation for reconstruction of the polynomial
Li. Then user computes yr = Li(xr) for some random xr.

(c) The user sends xr, yr to the verifier.
(d) The verifier accepts the proof if yr == Li(xr) and the pair (xr, yr) were

not included in the challenge.
(e) The verifier discards the polynomial Li as used.

In this setup the anonymity group consists of all users registered in the
step 1.(b). The verifier, at the end of the protocol execution, concludes that
the user must have used his secret share to compute the polynomial. Note that
all registered users can evaluate the same polynomial from the interpolation set
which includes the challenge shares and the share they were given at registration.
However the returned answer - computed for random xr - gives no clue which
user authenticates. This feature, that the user returns the value statistically
unrelated to the possessed share, is the main idea behind the anonymity of the
proposed protocol. Here the users anonymously prove they were given shares of
the same polynomial, so the group of users is defined by the polynomial used
during their registration. Discarding used polynomials prevent from repetition
attacks mounted by the adversary who capture communication messages.

3.2 Scheme Details

Preliminaries:

1. The proposed authentication protocol is based on Lagrangian interpolation
described in previous section.

2. Unless otherwise stated, from now on all arithmetic operations are executed
in Zp.

3. The notation r ←R Zp means that r is chosen uniformly at random from the
set Zp.

4. We assume the given Zp is large enough, so that in z random drawing ri ←R

Zp the obtained values are pairwise different w.h.p., and drawing the same
values is negligible.

5. We also assume that probability of obtaining the same outputs ru,i = Pu(ci)
from different PUFs Pu for the same input ci is negligible.
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The assumption 4, and 5 from above simplifies the algorithms description in the
following section, in which we produce pairwise different shares for Lagrangian
interpolation.

Initialization: Initialization procedure is performed by the verifier. It takes as
an input the total numbers of rounds T , the system security parameter ξ, and
produces as output T random polynomials Li of degree z altogether with 2T ran-
dom challenges ti, t

′
i. The random polynomial Li can be represented as the vector

of its coefficients. We denote MKi = (Li(x), ti, t′i) for each round i, where Li(x)
is represented by coefficients. The master secret is MK = {MKi|i = 1, . . . , T}.
Note, that here we assume that T is limited by the capacity of the storage mod-
ule of the users PUF devices. We do not require that this storage is encrypted
and tamper resistant. This can be realized by existing flash memory modules.
In rare case of running out of polynomials Li the process of initialization the
system and registration of users should be repeated.

Data: z - the degree of polynomials Li, the maximum numbers of rounds T ,
system security parameter ξ

Result: the master secret polynomial Li(x), and challenges ti, t
′
i for each

round: MK = {MKi|i = 1, . . . , T}
I1. begin
I2. choose p ∈ PRIME, such that p > ξ
I3. for i = 1, . . . , T do
I4. for j = 0, . . . , z do
I5. ai,j ←−R Zp

I6. Li(x) =
∑z

j=0 ai,jx
j

I7. ti, t
′
i ←−R U

I8. MKi = (Li(x), ti, t
′
i)

I9. MK ←− {MKi|i = 1, . . . , T}
I10. return MK;

Algorithm 1. Initializing procedure Init

Registration: In the registration procedure a fresh (e.g. newly produced) PUF
device D is assigned to user u, and denoted as Du since then. The verifier
challenges the PUF part Pu of the device Du against ti, t

′
i for each round i

obtaining values xu,i = Pu(ti) and mu,i = Pu(t′i). The value mu,i will be used as
a random mask for y part of the user share: yu,i = Li(xu,i) is stored in a masked
form as y′

u,i = yu,i + mu,i in the memory module of the Du device. In this way
the memory module of Du stores SKu = {y′

u,1, . . . , y
′
u,T }.
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Data: identifier u of the new device, PUF Pu of device u, master secret
MK = {(Li(x), ti, t′i)|i = 1, . . . , T} generated by Algorithm 1

Result: a private secret key SKu = {y′
u,1, . . . , y

′
u,T } of device u for

each round.
R1. begin
R2. SKu = ∅
R3. for i = 1, . . . , T do
R4. xu,i ←− Pu(ti)
R5. mu,i ←− Pu(t′i)
R6. yu,i ←− Li(xu,i)
R7. y′

u,i ←− yu,i + mu,i

R8. SKu ←− SKu ∪ {(i, y′
u,i)}

R9. return SKu;

Algorithm 2. Registration procedure Reg

Challenge: In the challenge procedure executed the verifier randomly generates
xj for j = 1, . . . , z and adds them to the set X. Subsequently it creates inter-
polation set Ψ = {(x,Li(x))|x ∈ X}. Finally it creates the challenging block
ci = 〈i, ti, t′i, Ψi〉 which is sent to the authenticator’s devices.

Data: the index i of the current round, the master secret MKi.
Result: ci = 〈i, ti, t′i, Ψi〉

E1. begin
E2. X ←− ∅
E3. for j = 1, . . . , z do
E4. xj ←−R Zp

E5. X ←− X ∪ {xj}
E6. Ψ ←− ∅
E7. foreach x ∈ X do
E8. Ψi ←− Ψi ∪ {(x,Li(x))}
E9. ci ←− 〈i, ti, t′i, Ψi〉

E10. return ci

Algorithm 3. Challenge encoding procedure Chall

Response: Response procedure takes as an input the challenge ci = 〈i, ti, t′i, Ψi〉.
It computes xu,i = Pu(ti). It unmasks yu,i = y′

u,i − Pu(t′i), constructs interpola-
tion set Ψ ′

i = Ψi ∪ {(xu,i, yu,i)}, interpolates the polynomial Li at some random
point xr, and returns the response ri = (xr, LI(xr, Ψ

′
i)).



Anonymous Authentication Scheme Based on PUF 369

Data: The secret key SKu of device u, the challenge ci = 〈i, ti, t′i, Ψi〉
Result: The response (xr, yr)

D1. begin
D2. xu,i ←− Pu(ti)
D3. mu,i ←− Pu(t′i)
D4. yu,i ←− y′

u,i − mu,i

D5. ψu ←− (xu,i, yu,i)
D6. Ψ ′

i ←− Ψi ∪ {ψu}
D7. xr ←−R Zp

D8. yr ←− LI(xr, Ψ
′
i)

D9. return (xr, yr);

Algorithm 4. Response encoding procedure Resp

Verification: Verification procedure takes the response (xr, yr) from a user,
computes Li(xr) and accepts if yr == Li(xr), and the pair (xr, Li(xr)) were not
included in the challenge. It rejects authentication otherwise.

Data: the index i of the current round, the master secret MKi, the
challenge ci = 〈i, ti, t′i, Ψi〉, the response Ri = (xr, yr)

Result: 1 for accept, or 0 for reject
V1. begin
V2. if (yr == Li(xr)) and ((xr, yr) /∈ Ψi) then
V3. return 1

V4. else
V5. return 0

Algorithm 5. Verification procedure Ver

4 Security Analysis

Security of the proposed scheme is based on the following assumption concerning
PUF’s unpredictability and unclonability. Moreover we assume that the PUF
hardware is created by the trusted producer, in such a way that it can be accessed
only via the prescribed procedure and with the well defined interfaces. In this
context we are close to the approach from [17] and [16].

Assumption 1 (PUF Assumption). Each physical unclonable hadware Pu

is a unique instantiation of a random function with inputs and outputs from a
given Zp, modeled as ROM, available only through its input-output interfaces.

This allows us to conclude that:

– it is infeasible to clone PUF device;
– the CRPs set is very large, so it is impossible to determine all CRPs by any

adversary who get the access to the attacked PUF;
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– it is impossible to model the PUF and then predict its response for a randomly
chosen challenge, given a collection of previously obtained CRPs.

Theorem 2. The PUFAAS scheme described in Sect. 3.2 is a “secure-
authentication” in the sense of Definition 2.

Proof. In the proof we follow the methodology from [16]. To win the “Authenti-
cation Game” the adversary AAut has to reconstruct the unused polynomial Li

(for the unused in “Phase 1” index i). Note that polynomials in the secret MK
are defined independently at random, so the knowledge about others polynomi-
als gained in “Phase 1” does not help AAut in answering the current challenge
related to Li.

In order to reconstruct the unknown polynomial Li the adversary has to solve
the system of equations: ai,0 + ai,1xu,i + . . . + ai,zx

z
u,i = y′

u,i −Pu(t′i) for devices
Du it does not possesses, where xu,i = Pu(ti), and yu,i = y′

u,i − Pu(t′i). The only
knowledge AAut could use to do this task is data obtained in “Phase 1”: the value
y′
u,i stored in the memory module for each Du, and a number of answers from each

Pu it tested against a finite number of inputs ĉ. But y′
u,i is a value of Li in some

point randomized by mu,i = Pu(t′u,i), unknown without the appropriate PUF
device Pu according to Assumption 1. The only help for AAut would be if inputs ĉ,
coined and probed in “Phase 1” would produced shares belonging to the searched
polynomial Li. However, probability of the right guessing is negligible. 
�
Theorem 3. The PUFAAS scheme described in Sect. 3.2 is “anonymous” for
“honest but curious adversary scenario” in the sense of Definition 3.

Proof. Assume that a device Dj authenticates in the unused round i by recon-
structing the polynomial Li. Note that each registered device would reconstruct
the same polynomial Li for that round. Subsequently Dj returns to the veri-
fier the response ri = (x,Li(x)) for x generated at random from Zp. Thus ri
is obtained randomly and stochastically independently from the index j of the
device, and each device could obtain the ri = (x,Li(x)) with the same probabil-
ity. Thus the advantage of the adversary is negligible.

Theorem 4. The “curious and malicious adversary” wins the anonymity game
of Definition 3 against the PUFAAS scheme described in Sect. 3.2 with probabil-
ity 1/(n − 1).

Proof. This is the additional scenario. The adversary in this case does not follow
the protocol. Thus his chances are slightly better. It first guesses which device
authenticates (index j′), and then tries to confirm that. It constructs new ran-
dom polynomial L̂i with interpolation set including the shares of the device in
question, and random shares. Then if in the response it gets back the shares
belonging to the challenging polynomial L̂i the adversary concludes that his
guess was correct. If the response is random the adversary outputs a random
index from 1, . . . n, but different than j′, so the probability of its success is lim-
ited to 1/(n − 1). Nevertheless in this case the probability of winning the game
depends on the probability of the initial right guess. 
�
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5 Conclusion and Further Modifications

We propose the anonymous authentication scheme - PUFAAS - based on physi-
cal unclonable functions and Lagrangian interpolation. We provide the security
model that addresses the regular authenticity and anonymity requirements and
specific unclonability aspects of the PUFs usage. We proved the security of the
proposed scheme in our model.

The further modification includes the utilizing of parameter z, which is the
degree of polynomial Li. This can be used in the system in the manner of the
Shamir’s secret sharing. Setting the number of shares, send in the challenge phase
of the protocol, to z−k+1, requires the usage of k different devices by the authen-
ticator. This opens the possibility to extended hierarchical access management
control, and more restricted authentication to some crucial resources, e.g., one
authenticator possesses more than one PUF device, or the protocol has to be
completed by many authenticators which altogether have k devices.
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