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Abstract. Black-box mutational fuzzing is a simple yet effective method
for finding software vulnerabilities. In this work, we collect and analyze
fuzzing campaign data of 60,000 fuzzing runs, 4,000 crashes and 363
unique bugs, from multiple Linux programs using CERT Basic Fuzzing
Framework. Motivated by the results of empirical analysis, we propose a
stochastic model that captures the long-tail distribution of bug discovery
probability and exploitability. This model sheds light on practical ques-
tions such as what is the expected number of bugs discovered in a fuzzing
campaign within a given time, why improving software security is hard,
and why different parties (e.g., software vendors, white hats, and black
hats) are likely to find different vulnerabilities. We also discuss potential
generalization of this model to other vulnerability discovery approaches,
such as recently emerged bug bounty programs.

Keywords: Mutational fuzzing · Software vulnerability · Empirical
analysis · Stochastic modeling

1 Introduction

Software vulnerability is the root cause of many security breaches. However, it
has also been observed that discovering software vulnerability is hard. While soft-
ware companies invest heavily to eliminate vulnerabilities, other parties including
white hats [32] and black hats [27] are frequently able to find new vulnerabilities,
evenwhen endowedwith less resources (e.g. computingpower,manpower, informa-
tion). In addition, investment in software security exhibits diminishing returns [15],
which has also been discussed in the field of software reliability growth [6].

Understanding these phenomena has important theoretical and practical
implications. Existing work on the economy of security usually involves models
of software vulnerability discovery [16,18,29]. Such models can be improved by
empirical analysis of real vulnerability discovery data. The effort of studying vul-
nerability discovery also help practitioners. For example, software companies can
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make better decisions on the level of security investment and the extent of collab-
oration with outside security researchers (e.g., white hats) [32]. Cyber-insurance
organizations might also be able to assess the security of customers more accu-
rately [5].

In this work, we conduct an empirical analysis and propose models for black
box mutational fuzzing. Introduced in early 1990s [21], black box mutational
fuzzing remains an effective method for discovering real world vulnerabilities
[9,17]. Its basic idea is very simple. Given a program and a set of diverse seed
files, the fuzzing tool randomly mutates the files and use the program to process
them. Once the program crashes, a triaging tool identifies the underlying bug and
determines its properties such as exploitability. This simplicity makes black-box
mutational fuzzing not only easy to use, but also easy to analyze and model.

We first apply black-box mutational fuzzing to multiple Linux programs and
collect data from each fuzzing campaign, based on the CERT Basic Fuzzing
Framework (BFF) [14] (Sect. 3). Our dataset contains 60,000 fuzzing runs, 4,000
crashes and 363 unique bugs. Then, we empirically analyze the data and discuss
the long-tail distribution of discovery probability (Sect. 4), as well as the distri-
bution of exploitability of bugs (Sect. 6.3). Motivated by the empirical analysis,
we propose a stochastic model of black-box mutational fuzzing (Sect. 5.1). The
model is derived from software reliability growth models [4,6,10,23]. However,
one unique contribution of our model is that we assume the arrival rates of indi-
vidual bugs follow a power law distribution, which is consistent with our data.
Together with a simulation model (Sect. 5.2), we attempt to explain phenomena
discussed at the beginning of this section. First, we provide a method to estimate
the expected discovery outcome, which sheds light on the diminishing return of
security investment (Sect. 6.1). Next, we explain why it is hard for software com-
panies to eliminate the vulnerability stockpile of black hats (Sect. 6.2). Finally,
we discuss several potential directions for future work, including the general-
ization of this model to other vulnerability discovery mechanisms (Sect. 7). All
scripts and data are published online1 for reproducible research.

2 Related Work

Black-box mutational fuzzing has been widely used in software vulnerability dis-
covery since early 1990s, when Miller et al. surprisingly found out that random
inputs crash 25 % – 33 % of Unix utilities [21]. Since then, black-box mutational
fuzzing has been used to find numerous real world bugs and security vulner-
abilities in various programs [11,14,22]. Compared with other forms of more
sophisticated fuzzing approaches, such as generational fuzzing [20], whitebox
fuzzing [12], taint-based fuzzing [30], etc., black-box mutational fuzzing is sim-
pler and easier to use, but is usually inferior in terms of code coverage.

More recently, various methods were proposed to improve the effectiveness
of black-box mutational fuzzing. Householder and Foote studied the problem
of selecting seeds and fuzzing ratio using BFF [14]. The basic idea is to have
more selection weight on parameter values that yield higher crash density in
1 http://github.com/movingname/fuzzingModel.
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the past. Woo et al. considered a similar scheduling problem in which the target
program of each fuzzing run is also selected on the fly [31]. They designed several
online scheduling algorithms and showed an average of 1.5× improvement over
the one used in BFF. Rebert et al. designed and evaluated 6 seed selection
algorithms [28]. The motivation of our work is different from but complementary
to these work. Instead of optimizing the fuzzing process, we want to understand
the fuzzing process better, based on empirical analysis and theoretical modeling.

The stochastic model built in this paper is derived from software reliabil-
ity models [4,6,10,23], since fuzzing or vulnerability discovery in general is one
particular approach to improve the software reliability. However, different from
existing work, we assume that the arrival rates of the individual bugs follow
power law distribution. This enables us to obtain similar observations on the dif-
ficulty of software reliability growth [4,6], or in other words, diminishing returns
of software vulnerability discovery. In addition, we also uniquely use the power
law-based stochastic model to explain why other parties (e.g. black hats) seem
always being able to discovery unique vulnerabilities in Sect. 6.2. We further
analyze the exploitability of bugs in Sect. 6.3, which is missing from software
reliability growth models.

This paper assumes that the discovery probability of bugs follows power
law distribution. Such long-tail distributions have been observed and discussed
in various cyber security domains recently. Allodi showed that vulnerability
exploitation in several common programs may follow power law distribution [2],
which can be used for vulnerability prioritization. Maillart and Sornette showed
that the sizes of personal identify theft follow power law distribution [19]. Finally,
Edwards et al. found that data breach size is log-normally distributed while the
daily frequency of breaches can be described by a negative binomial distribu-
tion [8]. These results can be used to predict data breaches and their associ-
ated cost.

3 BFF and Data Collection

Figure 1 shows the workflow of black-box mutational fuzzing. We have created
several Python scripts for seed collection, code coverage, seed selection and data
analysis. The fuzzing tool and triaging tool is from the CERT Basic Fuzzing
Framework (BFF) [14]. BFF is shown to be effective in finding real vulnerabilities
in various programs, and has been used in previous work on improving black-box
mutational fuzzing [28,31] as well. Next, we outline the details of our experiment.

Step 1. Target Selection. By combining the lists of target programs used in
the literature [7,14,28,31], we have collected 18 programs that handle various
types of video, audio, graphical, and document inputs. Table 1 list all 9 programs
in which BFF has successfully found bugs. We have also tried to apply fuzzing
to the following programs: a2mp3, eog, gifsicle, mplayer, mp3blaster, mpg123,
moc, Outside In Viewer 8.5.2, and pdf2svg. However, for any of these programs,
BFF triggers less than 3 or even 0 crashes. We therefore exclude them from the
following analysis.
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Fig. 1. The fuzzing experiment workflow.

Step 2. Seed Collection and Selection. We have collected thousands of
candidate seeds files, including pdf documents, mp3 files, videos and images,
from search engines like Bing and Google. The # cand columns of Table 1 shows
the number of candidate seed files for each program. We then write a script to
collect the basic blocks (bbls) covered by each seed using the Intel Pin framework.
In general, the higher coverage of seeds, the more vulnerabilities will be found
in fuzzing [28]. Next, we select 50 seed files to form the final seed set for each
program, using a simple greedy algorithm that maximizes the coverage in each
iteration. Table 1 shows that the final seed sets still achieve similar levels of
coverage (% bbls column).

Step 3. Fuzzing. We use BFF as the fuzzing tool and use its default fuzzing con-
figuration. The main configuration parameter is the seed used in each fuzzing run,
and the fuzzing ratio, which indicates how many bits in the seed will be flipped.
We use the default probability-based parameter selection method implemented
in BFF [14]. The outcome of a fuzzing run is either a crash or nothing, while the
result of a fuzzing campaign is a sequence of crashes caused by software bugs in
the program. Since multiple crashes could correspond to the same bug, we need
a triaging step to map a crash to the corresponding bug.

Step 4. Triaging. Once a crash is encountered, BFF will run the triaging
step, which calculates the hash for the underlying bug based on the stack trace2,
minimizes the input that triggers the crash, and determines whether the bug
is exploitable or not. Similar to other triaging tools such as the !exploitable
for Windows OS and CrashWrangler for Mac OS X, the CERT Triage Tools in
BFF assigns one of the following exploitability levels to each crash: unknown,
not exploitable, probably not exploitable, probably exploitable and exploitable.
2 The method used to generate the hash is an extension of the fuzzy stack hash method

proposed in the literature [24].
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Step 5. Data Analysis. At the end, we know the, seed file, configuration,
and outcome of each fuzzing run, as well as the hash and exploitability of each
bug discovered. We then analyze the data and show statistics of the results in
Table 1. We present our main analysis results in the next section.

Table 1. Seed selection and fuzzing statistics of selected programs. # cands is the
number of candidate seed files we collected from the Internet. # bbls is the number
of unique basic blocks recored when parsing the candidate seed files. % bbls is the
percentage of basic blocks covered by the final seed set.

Seed Selection Fuzzing

Program # cand # bbls % bbls # runs # crashes # bugs max freq

xpdf 3.02-2 2,161 188,023 93.1 % 4,303 185 37 73

mupdfa - - - 9,900 201 25 61

convert 5.2.0b - - - 79,636 32,161 134 3,197

ffmpeg 0.8 787 121,875 86.7 % 16,055 3,872 96 863

autotrace 0.31.1 149c - 100 % 29,729 2,548 23 593

jpegtran 1.2.0 320 6,837 99.4 % 303,898 116 33 31

gif2png 2.5.4-2 1,084 12,772 99.8 % 136,768 2,305 7 34

feh 2.2 1,332 56,266 94.8 % 5,209 159 5 51

mp3gain 1.5.2 214 7,224 99.9 % 1,369 1,451d 7 861
a mupdf and xpdf share same seeds.
b We use the seeds provided in the default BFF vm image for convert.
c Since the size is small, we use all of the seeds in fuzzing.
d Here, # crashes is actually larger than # runs. This is caused by a stack corrup-
tion bug that confuses triaging process to correlate the same crash into different
bugs [28].

4 The Long-Tail Distribution of Bugs

The major goal of fuzzing and any bug discovery effort is to find as many bugs as
possible. Moreover, it has been observed that the easiness of discovering different
bugs is different. In black-box mutational fuzzing, we can quantify easiness of
discovering bug i as its discovery probability (λi):

λi =
ci

t
(1)

where ci is the number of crashes caused by bug i, and t is the number of fuzzing
runs in the fuzzing campaign. Then the question is, what is the distribution for
bug discovery probability?

In Fig. 2, we plot the empirical probability distribution of bugs for all 6 pro-
grams with more than 20 bugs discovered. We see that these distributions all
have the long-tail shape; that is, a few bugs trigger a large number of crashes,
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Fig. 2. Probability distributions of bugs triggered in fuzzing campaigns. The color of
a bar represents the exploitability of the bug. The meaning of colors are: exploitable
(red), probably exploitable (blue), probably not exploitable (yellow), not exploitable
(green), unknown (grey) (Color figure online).

while most bugs have only triggered crashes a few times. Many such distribu-
tions [26], including vulnerability exploitation [2], have been proposed to follow
the power law distribution. We thus propose the following hypothesis:

Hypothesis 1. The discovery probability of bugs in a program follows a power
law distribution.

More specifically, we assume the following discrete power law distribu-
tion [26]:

P (discover bug i in a fuzzing run) = λi =
i−α

ζ(α)
(2)

where α is the scaling factor of the power law distribution, ζ(α) is the Riemann
ζ-function as the normalizer. As we will show in Sect. 6, a smaller α leads to more
bugs discovered in the same number of fuzzing runs. i is the rank id of the bug
among all bugs sorted by their discovery probability inside the program. A bug
with a larger rank id (lower rank) has lower probability to be discovered, as Eq. 2
tells. To complete the probability distribution, we also use λ1 to represent the
probability of no crash. We can think about no crash as a special bug, and it
has the highest probability in these 6 fuzzing campaigns.

We next need to estimate the scaling factor α of a power law distribution
from the empirical distribution. The most common approach is to use Maximum
Likelihood Estimators (MLEs) [3,26]. However, we could not apply these esti-
mators because we do not know the true rank id of a bug discovered in fuzzing.



Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 179

We only know a bug’s rank among all discovered bugs. For example, the 20th
bug in the empirical data could have the true rank id of 100.

We propose a simulation method to estimate α. We could think a fuzzing
campaign with t runs as generating t values form the corresponding power law
distribution. We then choose the α that minimizes the difference between the
number of unique bugs discovered in the experiment and the number of unique
values generated from the distribution. Table 2 shows the estimates of α.

Table 2. Estimates of α.

Program α

xpdf 2.39

mupdf 2.88

convert 2.38

ffmpeg 2.21

autotrace 3.25

jpegtran 3.53

Because we do not know the true rank id of bugs discovered, it is also difficult
to apply goodness-of-fit tests, either through bootstrapping or by comparing with
alternative distributions [2,3]. In this work, we will test the estimates of α by
comparing the predicted number of bugs discovered with the actual number of
bugs discovered in Sect. 6.1. More rigorous methods of estimating α and testing
the goodness-of-fit are left as future work. In the following sections, we will show
that this power law hypothesis enables us to answer some interesting questions
related to vulnerability discovery and software security.

5 Modeling a Fuzzing Campaign

We then build models for a fuzzing campaign. First, we propose a stochastic
model based on existing software reliability literature [4,6,10,23], in Sect. 5.1.
Although expressive, this stochastic model has two assumptions that might not
be realistic. We remove one assumption by proposing a simulation model in
Sect. 5.2 (Table 3).

5.1 A Stochastic Model

Since each fuzzing run is independent from other runs, and the outcome of a
fuzzing run is either 1 (crashed) or 0 (not crashed), it is natural to consider the
fuzzing process as a Poisson Process {N(t), t ≥ 0}, where N(t) is the number of
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Table 3. Notations.

Variable Explanation

N(t) The Poisson process for number of crashes in a fuzzing campaign

Ni(t) The Poisson process corresponding to bug i

λi The rate for Ni(t) and the discovery probability of bug i

n Total number of bugs in the program

N ′(t) The non-homogeneous Poisson process for number of unique bugs

D(t) The set of discovered bugs by time t.

D(t) Number of discovered bugs by time t. D(t) = |D(t)|.
L(t) The set of remaining bugs by time t

crashes seen till time t. Furthermore, since crashes are caused by different bugs,
we can expressed N(t) as:

N(t) =
∞∑

i=2

Ni(t) (3)

Here, i is the rank id of a bug and t is the number of fuzzing runs.
{Ni(t), t ≥ 0} is the corresponding Poisson process for the i-th bug, and Ni(t)
is the number of crashes for the i-th bug we have seen till time t. We can see
that the discovery probability of the i-th bug we have discussed in the previous
subsection is actually the rate λi of the Poisson process Ni(t). A larger λi means
that bug i causes crashes more frequently.

In a fuzzing campaign, we are mostly interested in the first crash of a bug.
This is equivalent to the assumption in the software reliability models that a
bug is found and instantly fixed, while the fix does not influence the discovery
of other remaining bugs [4]. We define D(t) as the set of bugs that have already
been found by time t, and L(t) as the set of remaining bugs. So we have:

λ′(t) =
∞∑

i∈L(t)

λi =
∞∑

i=2

λi −
∞∑

i∈D(t)

λi (4)

Therefore, we obtain a new non-homogeneous Poission process, N ′(t), for the
discovery of unique bugs. λ′(t) is the arrival rate of new bugs, and the expected
time to discover the next bug is 1/λ′(t).

We currently do not know how to solve Eq. 4 analytically. Thus when doing
calculation, we replace ∞ with n, in order to obtain an approximate result.
Intuitively, we assume there are n bugs in total inside the program. By choosing a
larger n, we can further approximate the true result. In our following analysis, we
set n = 1000. The probability that i > 1000 is only 1.3e-4 for ffmpeg (α = 2.21),
and 9.03e-9 for jpegtran (α = 3.53).
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In addition, this stochastic model relies on the following two assumptions:

Assumption 1. In one fuzzing run, multiple bugs can be triggered.

However, in BFF, each fuzzing run stops at the first crash, which is then
triaged to one bug. Thus, with Assumption 1, the model will slightly overestimate
the number of bugs discovered, as we will see in Sect. 6.1. But we expected that
this effect is small because most bugs have low discovery probability (Fig. 2),
and the chance that multiple bugs are triggered in the same fuzzing run is even
lower.

Assumption 2. The discovery probability distribution is the same for all fuzzing
runs in a fuzzing campaign.

This assumption also oversimplifies the reality. Since the fuzzing seeds and
fuzzing ratio are different among fuzzing runs, each fuzzing run will explore a
unique input space and be able to trigger a different subset of all latent bugs.
We will discuss this more in Sect. 7.

Improving this stochastic model by relaxing these two assumptions is chal-
lenging, which is left as a future work. In the next sub section, we propose a
simulation model that removes Assumption 1.

5.2 A Simulation Model

Similar to the discussion in Sect. 4, we could think a fuzzing campaign with
t runs as generating t values form the corresponding power law distribution.
Algorithm 1 returns a simulated bug discovery sequence as well as unique bugs
discovered, given α and t as the inputs. Step 1 and 2 can be implemented using
existing software package [3]. In step 5, we add the condition id > n because we
will compare the simulation model with the stochastic model.

Algorithm 1. Simulate a fuzzing campaign.
input : α of the bug distribution, and t, the number of fuzzing runs
output: Simulated bug discovery sequence and unique bugs discovered

1 dist = powerlaw(α, xmin=1, discrete=True) ;
2 seq = dist.gen random(t);
3 bugs = {};
4 foreach id ∈ bugs do
5 if id == 1 or id > n then
6 continue;
7 if id /∈ bugs then
8 bugs.add(id);

9 return seq, bugs;

In this simulation model, we remove Assumption 1 since each fuzzing run
only yields at most one bug discovery. In Sect. 6.1, we will compare the predicted
numbers of bugs discovered by these two models, and the actual number of bugs
discovered.
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6 Analysis Results

We present 3 analysis results in this section. We first use the models presented in
the last section to calculate the expected number of bugs discovered, and discuss
the diminishing returns in software security. We then examine the order of bug
discovery to explain why different parties are likely to find different bugs. Finally,
we empirically study the exploitability of bugs and discuss its implications.

6.1 Expected Number of Bugs Discovered

The first question is, what is the expected number of unique bugs find by time
t? Under the stochastic model proposed in Sect. 5.1, we know that the time
of the first occurrence of each bug follows the exponential distribution with
parameter λi. Therefore, the probability of bug i undiscovered by time t is e−λit,
and the expected number of undiscovered bug at time t is

∑n
i=2 e−λit. We then

know that the number of expected bugs discovered by time t is:

E[D(t)] = n −
n∑

i=2

e−λit = n −
n∑

i=2

e− i−α

ζ(α) t (5)

We also use the simulation model proposed in Sect. 5.2 to obtain E[D(t)]. We
repeat the simulation 10 times and take the average number of bugs discovered
by time t as E[D(t)]. As we have discussed in Sect. 5.1, we set n = 1000 for both
models.

In Fig. 3, we show the plots of expected bugs discovered based on the Poisson
process and the simulation, and the real trajectory, of 6 fuzzing campaigns. We
see that the predicted curves from both models are close to the real curve,
except for autotrace. We suspect that the large prediction error for autotrace is
due to a poor fit of power law to its empirical distribution. We plan to further
investigate this in the future. In addition, the curve of the stochastic model is
generally above the other two. This can be partly explained by Assumption 1,
as we have discussed in Sect. 5.1. In general, the simulation model gives more
accurate prediction for the 6 fuzzing campaigns than the stochastic model.

The concave shape of all curves show the diminishing returns: as the fuzzing
campaign enters the long tail, the rate of discovery (λ′(t)) decreases, and the
number of bugs discovered in the same amount of time reduces. This diminish-
ing of return is consistent with our experience of fuzzing and software reliability
growth [10,23]. A software company can use the two models to decide how long
the fuzzing campaign shall run. First, the company need to run a fuzzing cam-
paign for a limited amount of time, in order to estimate α. Then, the company
needs to define the reliability and security utility gain of finding a bug, and
the fuzzing cost, which might include computing resource consumption, delayed
product release, etc. Next, the company can generate the accumulated utility
curve and the accumulated cost curve based on the curve of expected bug dis-
covery (E[D(t)]) proposed in this section. At the point when the utility of fuzzing
is below the cost, the fuzzing campaign should be terminated.
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Fig. 3. Plots of expected number of bugs discovered (E[D(t)]) and actual number of
bugs discovered (D) overtime. We have doubled the number of fuzzing runs in order
to observe how two models predict.

6.2 The Order of Bug Discovery

The diminishing of return discussed in Sect. 6.1 might appear to be a good thing
for security. If there is a strong order of bug discovery, then bugs with larger
discovery probability will almost always be eliminated first. Thus, as long as
the software company invests more resources than other parties, including black
hats [27] and white hats [32], in vulnerability discovery, these other parties will
not likely to find new vulnerabilities.

However, in reality, we see that many vulnerabilities of famous software have
been discovered by outside parties,many ofwhomare just individuals [1,13,25,32].
There aremultiple reasons to explain this. In thiswork,we propose one explanation
based on the power law hypothesis. The basic idea is that the order of bug discovery
is weak in the long-tail part of the distribution.

To further explain this, we first define the order of bug discovery. At the end
of a fuzzing campaign, the expected sequence of rank id (S) of discovered k bugs
is 2, 3 . . . k, because a higher ranked bug has higher discovery probability, and
thus is expected to be discovered earlier. However, due to the randomness, the
actual id sequence (Ŝ) would be different from the expected sequence S. We can
calculate the edit distance D(S, Ŝ) between these two sequences, and define the
order of bug discovery as:

order(Ŝ) = k − D(S, Ŝ) (6)

Intuitively, the bug discovery is strongly/weakly ordered if the distance
between S and Ŝ is small/large. However, since we do not know the true rank id
of bugs discovered, we cannot calculate the order of empirical sequences directly.
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Table 4. Simulated bug discovery sequence based on the ffmpeg case (α = 2.21). Bug
ids in the bold font are unique to that sequence.

Seq 1: 19 3 2 9 4 5 12 14 6 84 10 7 85 95 24

Seq 2: 2 3 7 4 5 17 10 13 40 8 6 49 12 11 9

Seq 3: 2 4 5 28 3 6 7 18 9 12 13 20 11 10 21

Seq 4: 2 5 6 3 4 9 15 12 99 10 8 46 7 225 20

Seq 5: 3 2 4 7 8 5 27 10 11 6 9 23 82 14 12

Instead, we run simulation to generated 5 sequences in Table 4. We see bugs dis-
covered in the beginning are more ordered, and tend to be rediscovered in other
sequences.

We can use the stochastic model to explain this. The probability that the
next new discovery is bug i (assuming i ∈ L(t)) is:

P (bug i is the next one after time t) =
λi

(
∑

j∈L(t) λj)
∝ λi ∝ i−α (7)

For bug i and bug i + 1 (assuming i + 1 ∈ L(t)), we have:

Pi − Pi+1 ∝ i−α − (i + 1)−α (8)

which decreases to 0 as i → ∞. This means that when i is small (the fuzzing
process is in the “head part” of the distribution), a bug with higher discovery
probability is much more likely to be discovered first, and the fuzzing process
has a stronger order. However, as i increases and the fuzzing process enters the
long-tail, which vulnerability will come next is harder to predict. In addition, a
smaller α will make the fuzzing outcome less ordered, while a larger α makes
the process more ordered.

To understand its implication, we consider a “fuzzing competition” between a
software company and a black hat. Both sides run fuzzing and try to find as many
bugs as possible. We assume that the software company has a resource advantage
A over the black hat. That is, while the black hat can conduct a fuzzing campaign
with t runs, the company can do At runs, by having a larger fuzzing server farm.
We want to know how many unique bugs can the black hat find.

We simulate 10,000 fuzzing runs for the black hat, and simulate 10, 000 × A
runs for the software company. The two curves in Fig. 4 show the number of
unique bugs found by the black hat for two programs. We observe that although
in the beginning, the software company can quickly reduce the bug pool of the
black hat by investing more resources, the return of investment quickly dimin-
ishes as A further grows. When the software company has 30 times more fuzzing
resources, the black hat is still able to find 2 unique bugs for ffmpeg and 1 unique
bug for xpdf on average. Intuitively, it means that when the fuzzing enters the
long-tail, the outcome is more random, so the company is less capable of inter-
fering the black hat’s outcome. This partly explains why in the reality, outside
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Fig. 4. Simulated number of unique bugs discovered in two programs by the black hat
under different resource advantage A of the software company.

parties such as black hats and white hats are able to find security holes, despite
software companies have already spent significant effort in software security.
From Fig. 4, we can also see that when α is smaller, more unique bugs can be
found by the black hat.

In summary, the power law hypothesis favors attackers, since they are able
to find vulnerabilities even if the defender has much more resources. In addition,
there is an asymmetry between attackers and defenders: the attackers only need
to find a few exploitable bugs to succeed, while the defenders have to patch
all holes. On the other hand, this result also encourages software companies to
collaborate with outside benign white hats, through vulnerability disclosure and
bug bounty programs [32]. We will discuss this more in Sect. 7.2. But before
that, we need to ask one more question: are these unique bugs discovered by the
black hat exploitable?

6.3 Exploitability

Table 5 shows the distribution of bug exploitability in the data. We see that a
significant portion of the bugs are either exploitable or probably exploitable.

Then, we further ask the question: is there any correlation between discovery
probability and exportability? If there is a positive correlation, then it means that
harder to be discovered bugs are harder to be exploited, which favors the software
company side. To answer this question, we calculate the Pearson correlation
between the logarithm of discovery probability, and the exploitability which is
mapped to a 1–4 scale, with 1 meaning not exploitable and 4 means exploitable.
We exclude bugs of unknown exploitability. The result is shown in Table 5. We
see that although 5 out of 6 programs have a weak negative correlation (i.e.,
harder to be discovered bugs are easier to be exploited), there is only one that
is statistically significant (xpdf). We thus propose the following hypothesis:

Hypothesis 2. Bug discovery probability and exploitability do not have a strong
correlation.
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Table 5. Percentages of exploitability, and correlation between bug discovery proba-
bility (log) and exploitability. A correlation is significant if the p-value is less than 0.1.

Program Exp. Prob. Exp. Prob. Not Exp. Not Exp. Unknown Corr. p-value

xpdf 27% 32% 22 % 0 19 % −0.35 0.06

mupdf 24% 0 64 % 0 12 % −0.21 0.35

convert 33% 3% 7 % 0 57 % −0.05 0.68

ffmpeg 8% 17% 29 % 0 46 % −0.16 0.25

autotrace 39% 4% 4 % 0 52 % 0.02 0.95

jpegtran 79% 6% 0 0 15 % −0.03 0.87

Hypothesis 2 has several implications. First, it indicates that the next bug to
be found could be exploitable, no matter how many runs have been conducted
before. This gives an additional advantage for black hats, who not only are likely
to find unique bugs, but are also able to find exploitable ones. Second, by assum-
ing the independence between discovery probability and exploitability, one can
predict the exploitability of the next bug based on the empirical exploitability
distribution in Table 5. For example, in the case of xpdf and A = 30 in Fig. 4,
we can predict that the 1 unique bug discovered by the black hat has roughly
25 % probability of being exploitable. By combining the vulnerability discovery
models and the exploitability distribution, the software company can thus better
forecast potential attacks and allocate defense resources accordingly.

7 Discussion and Future Work

7.1 Apply Our Analysis to Larger Datasets

Although our dataset includes most of the programs studied in previous
work [7,14,28,31], it is still not enough to fully test the hypotheses we pro-
posed. Therefore, an important future work is to increase the scope of analysis
to other programs, other platforms (e.g., Microsoft Windows and Mac OS), and
other fuzzing frameworks [20]. It would also be helpful to run the fuzzing cam-
paign for much longer time.

Another important direction is to apply our analysis to different fuzzing con-
figurations, which include the selection of fuzzing ratio, seeds, etc. It is possible
that the same bug’s discovery probability might be significantly different in dif-
ferent configurations. This diversity gives an additional explanation to why other
parties are likely to find unique bugs, in addition to our discussion in Sect. 6.2.
That is, different parties tend to have different configurations, and thus the dis-
covery probability distribution is distinct to each of them. However, although
the discovery probability of a bug might be different under different fuzzing con-
figurations, we hypothesize that the discovery probability distribution will still
be a power law distribution:
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Hypothesis 3. The bug discovery probability under different fuzzing configura-
tions follow power law distributions.

7.2 Generalization to Other Vulnerability Discovery Approaches

We choose to study black-box mutational fuzzing first because it is probably
the simplest vulnerability discovery method. However, black-box mutational
fuzzing is just one method in the vulnerability discovery toolbox. Other methods
include code review, static analysis, symbolic execution, dynamic analysis, etc.
We hypothesize that these approaches might resemble fuzzing, and thus the bug
discovery “easiness”, a generalization of the discovery probability, could also fol-
low the power law distribution. Collecting empirical data from these approaches
and applying similar analysis would be an interesting future work.

Some other vulnerability discovery paradigms also share similarities with
black box mutational fuzzing. For example, many companies today collaborate
with a large number of outside security researchers (or white hats) through
vulnerability disclosure and bug bounty programs [32]. Actually, our discussion
in Sect. 6.2 provides one explanation of why such collaboration is necessary. In
addition, these white hats, with diverse background and skill levels, will often
test different parts of the system, or using various testing payload. This is similar
to the seed mutation in a black-box mutational fuzzing, although the distribution
of inputs might be more complex than random bit flipping. Therefore, we could
possibly generalize the proposed models to understand and analyze data from
these bug bounty programs.

8 Conclusion

Understanding the process of vulnerability discovery and why software secu-
rity is hard has important practical implications. In this work, we have collected
empirical data of black-box mutational fuzzing. We show that the fuzzing process
can be modeled as a non-homogeneous Poisson process with the rates of indi-
vidual bugs following a power law distribution. We then show how to calculate
the expected outcome of a fuzzing campaign. We further show that once the
vulnerability discovery enters the long-tail, there will be significant diminishing
returns, and less order in the bug arrival. These effects pose challenge for the
software companies that try to eliminate vulnerabilities before the black hats,
and call for collaboration with white hats. Finally, we show that the model can
potentially be extended to other vulnerability discovery mechanisms, such as
bug bounty programs, that have diversity and randomness.
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