
Juan Caballero
Eric Bodden
Elias Athanasopoulos (Eds.)

 123

LN
CS

 9
63

9

8th International Symposium, ESSoS 2016
London, UK, April 6–8, 2016
Proceedings

Engineering
Secure Software
and Systems

Lecture Notes in Computer Science 9639

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Juan Caballero • Eric Bodden
Elias Athanasopoulos (Eds.)

Engineering
Secure Software
and Systems
8th International Symposium, ESSoS 2016
London, UK, April 6–8, 2016
Proceedings

123

Editors
Juan Caballero
IMDEA Software Institute
Madrid
Spain

Eric Bodden
Paderborn University & Fraunhofer IEM
Paderborn
Germany

Elias Athanasopoulos
VU University
Amsterdam
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-30805-0 ISBN 978-3-319-30806-7 (eBook)
DOI 10.1007/978-3-319-30806-7

Library of Congress Control Number: 2016932517

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure to welcome you to the proceedings of the 8th International Sympo-
sium on Engineering Secure Software and Systems (ESSoS 2016). This event is part of
a maturing series of symposia that attempts to bridge the gap between the software
engineering and security scientific communities with the goal of supporting secure
software development. The parallel technical sponsorship from ACM SIGSAC (the
ACM interest group in security) and ACM SIGSOFT (the ACM interest group in
software engineering) demonstrates the support from both communities and the need
for providing such a bridge.

Security mechanisms and the act of software development usually go hand in hand.
It is generally not enough to ensure correct functioning of the security mechanisms
used. They cannot be blindly inserted into a security-critical system, but the overall
system development must take security aspects into account in a coherent way.
Building trustworthy components does not suffice, since the interconnections and
interactions of components play a significant role in trustworthiness. Lastly, while
functional requirements are generally analyzed carefully in systems development,
security considerations often arise after the fact. Adding security as an afterthought,
however, often leads to problems. Ad hoc development can lead to the deployment of
systems that do not satisfy important security requirements. Thus, a sound methodol-
ogy supporting secure systems development is needed. The presentations and associ-
ated publications at ESSoS 2016 contribute to this goal in several directions: First, by
improving methodologies for secure software engineering (such as flow analysis and
policy compliance). Second, with results for the detection and analysis of software
vulnerabilities and the attacks they enable. Finally, for securing software for specific
application domains (such as mobile devices and access control).

The conference program featured two keynotes by David Basin (ETH Zurich) and
Karsten Nohl (Security Research Labs), as well as research and idea papers. In
response to the call for papers, 50 papers were submitted. The Program Committee
selected 13 full-paper contributions, presenting new research results on engineering
secure software and systems. In addition, three idea papers were selected, giving a
concise account of new ideas in the early stages of research. Overall, the acceptance
rate was 32 %.

Many individuals and organizations have contributed to the success of this event.
First of all, we would like to express our appreciation to the authors of the submitted
papers and to the Program Committee members and external reviewers, who provided
timely and relevant reviews. Many thanks go to the Steering Committee for supporting
this series of symposia, and to all the members of the Organizing Committee for their
tremendous work and for excelling in their respective tasks. The DistriNet research

group of the KU Leuven did an excellent job with the website and the advertising for
the conference. Finally, we owe gratitude to ACM SIGSAC/SIGSOFT and LNCS for
continuing to support us in this series of symposia.

January 2016 Juan Caballero
Eric Bodden

Elias Athanasopoulos

VI Preface

Organization

Program Committee

Javier Alonso University of Leon, Spain
Eric Bodden Fraunhofer, Germany
Michele Bugliesi Università Ca’ Foscari Venezia, Italy
Juan Caballero IMDEA Software Institute, Spain
Werner Dietl University of Waterloo, Canada
Michael Franz University of California, Irvine, USA
Flavio D. Garcia Radboud University Nijmegen, The Netherlands
Christian Hammer Saarland University, Germany
Marieke Huisman University of Twente, The Netherlands
Martin Johns SAP Research, Germany
Stefan Katzenbeisser TU Darmstadt, Germany
Johannes Kinder Royal Holloway, University of London, UK
Andy King University of Kent, UK
Jacques Klein University of Luxembourg, Luxembourg
Andrea Lanzi Università degli studi di Milano, Italy
Wenke Lee Georgia Institute of Technology, USA
Zhenkai Liang National University of Singapore, Singapore
Benjamin Livshits Microsoft Research, USA
Heiko Mantel TU Darmstadt, Germany
Nick Nikiforakis Stony Brook University, USA
Martín Ochoa Technische Universität München, Germany
Mathias Payer Purdue University, USA
Frank Piessens Katholieke Universiteit Leuven, Belgium
Alexander Pretschner Technische Universität München, Germany
Awais Rashid Lancaster University, UK
Mark Ryan University of Birmingham, UK
Gianluca Stringhini University College London, UK
Pierre-Yves Strub IMDEA Software Institute, Spain
Helmut Veith Vienna University of Technology, Austria
Santiago

Zanella-Béguelin
Microsoft Research, UK

Additional Reviewers

Bai, Guangdong
Beckers, Kristian
Bissyande, Tegawende
Büscher, Niklas
Calzavara, Stefano
Chawdhary, Aziem
Chua, Zheng Leong
Denzel, Michael
Focardi, Riccardo
Grewal, Gurchetan
Gurov, Dilian
Kohnhäuser, Florian
Li, Li
Li, Xiaolei
Liu, Jia

Muehlberg, Jan Tobias
Noorman, Job
Oortwijn, Wytse
Ordean, Mihai
Oswald, David
Pani, Thomas
Radu, Andreea-Ina
Rizzo, Claudio
Robbins, Ed
Starostin, Artem
Thomas, Sam L.
Thomas, Susan
Ulbrich, Mattias
Weber, Alexandra

VIII Organization

Contents

Security Testing Beyond Functional Tests . 1
Mohammad Torabi Dashti and David Basin

Progress-Sensitive Security for SPARK . 20
Willard Rafnsson, Deepak Garg, and Andrei Sabelfeld

Sound and Precise Cross-Layer Data Flow Tracking 38
Enrico Lovat, Martín Ochoa, and Alexander Pretschner

Automatically Extracting Threats from Extended Data Flow Diagrams. 56
Bernhard J. Berger, Karsten Sohr, and Rainer Koschke

On the Static Analysis of Hybrid Mobile Apps: A Report on the State
of Apache Cordova Nation. 72

Achim D. Brucker and Michael Herzberg

Semantics-Based Repackaging Detection for Mobile Apps 89
Quanlong Guan, Heqing Huang, Weiqi Luo, and Sencun Zhu

Accelerometer-Based Device Fingerprinting for Multi-factor Mobile
Authentication . 106

Tom Van Goethem, Wout Scheepers, Davy Preuveneers,
and Wouter Joosen

POODLEs, More POODLEs, FREAK Attacks Too: How Server
Administrators Responded to Three Serious Web Vulnerabilities 122

Benjamin Fogel, Shane Farmer, Hamza Alkofahi, Anthony Skjellum,
and Munawar Hafiz

HexPADS: A Platform to Detect “Stealth” Attacks 138
Mathias Payer

Analyzing the Gadgets: Towards a Metric to Measure Gadget Quality 155
Andreas Follner, Alexandre Bartel, and Eric Bodden

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 173
Mingyi Zhao and Peng Liu

On the Security Cost of Using a Free and Open Source Component
in a Proprietary Product . 190

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci

http://dx.doi.org/10.1007/978-3-319-30806-7_1
http://dx.doi.org/10.1007/978-3-319-30806-7_2
http://dx.doi.org/10.1007/978-3-319-30806-7_3
http://dx.doi.org/10.1007/978-3-319-30806-7_4
http://dx.doi.org/10.1007/978-3-319-30806-7_5
http://dx.doi.org/10.1007/978-3-319-30806-7_5
http://dx.doi.org/10.1007/978-3-319-30806-7_6
http://dx.doi.org/10.1007/978-3-319-30806-7_7
http://dx.doi.org/10.1007/978-3-319-30806-7_7
http://dx.doi.org/10.1007/978-3-319-30806-7_8
http://dx.doi.org/10.1007/978-3-319-30806-7_8
http://dx.doi.org/10.1007/978-3-319-30806-7_9
http://dx.doi.org/10.1007/978-3-319-30806-7_10
http://dx.doi.org/10.1007/978-3-319-30806-7_11
http://dx.doi.org/10.1007/978-3-319-30806-7_12
http://dx.doi.org/10.1007/978-3-319-30806-7_12

Idea: Usable Platforms for Secure Programming – Mining Unix for Insight
and Guidelines . 207

Sven Türpe

AppPAL for Android: Capturing and Checking Mobile App Policies. 216
Joseph Hallett and David Aspinall

Inferring Semantic Mapping Between Policies and Code: The Clue is in the
Language . 233

Pauline Anthonysamy, Matthew Edwards, Chris Weichel,
and Awais Rashid

Idea: Supporting Policy-Based Access Control on Database Systems 251
Jasper Bogaerts, Bert Lagaisse, and Wouter Joosen

Idea: Enforcing Security Properties by Solving Behavioural Equations. 260
Eric Rothstein Morris and Joachim Posegga

Author Index . 269

X Contents

http://dx.doi.org/10.1007/978-3-319-30806-7_13
http://dx.doi.org/10.1007/978-3-319-30806-7_13
http://dx.doi.org/10.1007/978-3-319-30806-7_14
http://dx.doi.org/10.1007/978-3-319-30806-7_15
http://dx.doi.org/10.1007/978-3-319-30806-7_15
http://dx.doi.org/10.1007/978-3-319-30806-7_16
http://dx.doi.org/10.1007/978-3-319-30806-7_17

Security Testing Beyond Functional Tests

Mohammad Torabi Dashti and David Basin(B)

Department of Computer Science, ETH Zurich, Zürich, Switzerland
basin@inf.ethz.ch

Abstract. We present a theory of security testing based on the basic dis-
tinction between system specifications and security requirements. Speci-
fications describe a system’s desired behavior over its interface. Security
requirements, in contrast, specify desired properties of the world the
system lives in. We propose the notion of a security rationale, which
supports reductive security arguments for deriving a system specifica-
tion and assumptions on the system’s environment sufficient for fulfilling
stated security requirements. These reductions give rise to two types of
tests: those that test the system with respect to its specification and those
that test the validity of the assumptions about the adversarial environ-
ment. It is the second type of tests that distinguishes security testing
from functional testing and defies systematization and automation.

1 Introduction

Security testing plays an essential role in quality assurance for information tech-
nologies ranging from traditional software applications to cyber-physical control
systems. Various security testing tools and techniques are available today, and a
wide range of systems are regularly subjected to security tests. Yet, the literature
lacks the necessary frame of reference to articulate and answer basic questions
regarding security testing. For example, most practitioners would agree that
security testing is harder than functional testing, measuring the adequacy of
security tests is challenging, and some kinds of security testing, such as pene-
tration testing, defy systematization and automation. However, there exists no
coherent explanation for these phenomena.

We rationally reconstruct security testing around the notion of security
requirements. Our starting point is the key distinction between system spec-
ifications and security requirements. A system specification describes how an
artifact, or system, must behave in an environment. A security requirement, in
contrast, expresses desired properties of the environment controlled by the sys-
tem. Consider, for example, an office. A system specification for an electronic
lock installed as part of the office’s door might state that the lock opens the
door if and only if a valid key is presented. A security requirement might be
that access to the office is restricted to employees working there. Under certain
assumptions, if the system (here, the lock) satisfies its specification, then the
requirement is satisfied in the actual environment. In our example, these envi-
ronmental assumptions include: the office has no entrance other than the door
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 1–19, 2016.
DOI: 10.1007/978-3-319-30806-7 1

2 M.T. Dashti and D. Basin

controlled by the lock, and only those working in the office have a valid key.
What distinguishes security requirements from other requirements is that they
must hold in the presence of an adversary. In the office example, if the adversary
can climb through an open window, then the requirement is violated, regardless
of whether or not the deployed lock satisfies its specification. Accounting for the
adversary’s capabilities is therefore integral to testing security requirements.

We introduce the notion of a security rationale, which supports reductive
security arguments for deriving a system specification and the assumptions on
the system’s environment sufficient for fulfilling stated security requirements.
These reductions give rise to two types of tests: (1) those that test the sys-
tem with respect to its specification and (2) those that test the validity of the
assumptions about the adversarial environment. These types sharply distinguish
security testing from functional testing. The purpose of functional tests is to
refute the hypothesis that the system satisfies its (functional, security, or other)
specification; this corresponds to just the first type. In contrast, security testing
requires both types of tests. This distinction allows us to precisely explain in
what sense security testing is harder than functional testing. It also provides a
frame of a reference for delimiting the scope and reach of existing security test-
ing techniques and procedures. We illustrate this point through examples from
fuzz testing, fault injection, risk-based security testing, and vulnerability-driven
security testing.

We describe why measuring the adequacy of security tests is challenging by
demonstrating that security tests are inherently incomplete. This incomplete-
ness, we argue, stems from the open-ended nature of the assumptions that are
part of security rationales. It is therefore orthogonal to the incompleteness of
functional tests, which is rooted in the infinite cardinality of the domains where
test inputs are selected. The open-ended nature of the assumptions also explains
why security testing intrinsically depends on the testers’ creativity and resources,
thereby defying automation and systematization. Finally, we clarify testing and
vulnerability remediation procedures associated with our two test types.

The theory of security testing that we develop is novel. The most closely related
work comes from the domain of requirements engineering, where one studies the
relationship between systems and the domains in which they operate; see, for
example, Jackson’s world-machine model [13], which inspired our notion of secu-
rity rationales. Security testing itself is a broad topic and an extended literature
review is outside this paper’s scope. Nevertheless, we discuss along the way various
prominent security testing techniques and procedures, such as [11,19,24].

Structure of Paper. We define specifications and requirements in Sect. 2. We intro-
duce the notion of a security rationale in Sect. 3, which relates specifications and
security requirements. Security cases, introduced in Sect. 4, justify the confor-
mance of a concrete system to a security rationale in the presence of a specific
adversary. In Sect. 5, we define two types of security tests whose purpose is to
refute the hypothesis that a security requirement is satisfied in an adversarial
environment. We also discuss the role of these two types in practice and comment
on vulnerability remediation. We draw conclusions in Sect. 6.

Security Testing Beyond Functional Tests 3

2 Specifications and Requirements

Our starting point is valuable resources worth protecting, such as data on a com-
pany’s web server or documents in an office. We consider security requirements
that pertain to these resources. For instance, if our resources are the books in
a library, the security requirement might be that only those possessing a valid
library card may borrow books. In general, such requirements reflect the con-
straints that stakeholders impose on access to the resources.

What distinguishes security requirements from other requirements, such as
functional requirements, is that they must hold in the presence of an adversary.
The adversary (or threat agent) is the entity against whom the resources must
be protected. Examples of adversaries include disgruntled employees, curious tres-
passers, and nation-state attackers. A security requirement that is satisfied in the
presence of one adversary might not hold in the presence of a more capable one.
A resource’s security is therefore not a meaningful property without fixing the
adversary’s capabilities, which is left implicit in the above library example. Risk
analysis can for example be used to identify the adversary in whose presence a
security requirement must be satisfied.

To satisfy a security requirement, we construct systems and deploy them in
the (resource’s) environment. A system is an artifact whose behaviors can be
regulated and controlled. A system affects its environment by interacting with it
through an interface. To control access to an office, we may for example install an
electronic lock system. This system changes the environment by restricting who
may enter through the office’s door. A specification describes the desired behav-
iors of a system over its interface. For instance, for the lock system, described in
more detail in Example 1 below, its specification relates input received by its sen-
sors, e.g., a smart-card reader, with output to its actuators, which control the
lock’s cylinder. Note that specifications need not directly constrain a system’s
internal structure. Our electronic lock specification does not for instance express
a preference for a particular memory layout for the lock’s software.

There is a fundamental distinction between specifications and requirements.
Specifications constrain a system’s behaviors over its interface. Requirements, in
contrast, constrain an adversary’s access to resources in an environment. There-
fore, requirements neither directly prohibit nor oblige any system behaviors, and
systems do not directly guarantee a requirements’ satisfaction. The following
example illustrates this point.

Example 1. An R&D laboratory contains sensitive documents. To limit access to
the documents, an electronic lock system is installed at the lab’s door. A secu-
rity requirement for the documents states that only those staff members working
in the lab may read them. This does not prohibit (or oblige) any input-output
behavior for the lock. In contrast, a specification for the lock states: the output
signal open is produced only after receiving as input a key that belongs to the
set validKeys. Here open is the signal that, say, triggers an actuator that opens
the lock. The satisfaction of this specification, which describes the lock’s desired

4 M.T. Dashti and D. Basin

input-output behavior over its interface, does not entail the requirement’s satis-
faction. The lab may have an open window.

As a side remark, the above requirement is rather weak. It does not, for exam-
ple, prohibit information flow arising from a careless staff member leaking a docu-
ment’s content to an outsider. This requirement’s satisfaction, therefore, does not
entail the documents’ confidentiality. �
The fundamental distinction between specifications and requirements is at the
heart of our development, and we explore its implications in detail. Two comments
are however due here. First, while a specification applies to a system’s (input-
output) interface, a requirement cannot be attributed with an interface because
resources and environments do not have definite interfaces. The following example
illustrates this point.

Example 2. A publishing company’s database stores data that is subject to the
following integrity requirement : only copy editors may delete data. Dynamite that
explodes in the database’s vicinity constitutes an “input” that can delete the
data, thereby affecting its integrity. Similarly, formatting the database’s storage
media or invoking the database’s rollback operation are both “inputs” that can
also delete the stored data. Clearly the integrity requirement above cannot be
attributed to a specific interface.

Now suppose that the database’s input-output interface is realized through
an API. A specification for the database system, which applies to this interface,
states: only the users who have the role copy editor may execute the API’s
delete command. An input is a user’s identity (or roles) together with the API
command the user requests to execute. The system then either executes the com-
mand or denies the request. �
Second, a system’s interface may consist of multiple communication channels
between the system and its environment. A nominal channel is a channel that
has been anticipated in the system’s specification. A trusted computing device, for
example, has a nominal channel, realized through its API. A side channel is an
unanticipated communication channel between the system and its environment,
and by extension, the adversary. Measuring a trusted device’s power consump-
tion may for instance reveal a secret key stored on the device. Similarly, magnetic
fields can degauss, and hence write to, the device’s magnetic storage, and row-
hammer attacks [16] can write to protected memory locations. These constitute
side channels when the device’s specification does not describe the device’s behav-
ior on these channels. Whether an adversary can exploit a nominal channel or a
side channel to communicate with a system depends on the adversary’s capabili-
ties and the system’s environment.

The relationship between specifications and requirements is central to security
design and analysis. The problem security engineers solve is that of satisfying a
security requirement in an adversarial environment. A solution to the problem

Security Testing Beyond Functional Tests 5

consists of one or more systems that are deployed in the environment; cf. [13].
No single solution however solves all problems, because solutions are invariably
contingent upon assumptions about the environment they address. We call these
environmental assumptions. The following example illustrates this notion.

Example 3. Consider the scenario of Example 1. The lock system addresses the
stated security requirement for the documents, provided various environmental
assumptions are satisfied. These include that the only way to enter the lab is
through the door controlled by the lock system. The adversary’s capabilities affect
this assumption’s validity. Suppose that the lab has a window. If the adversary
can climb in through the window, then this environmental assumption, and con-
sequently the requirement, are violated. �
The distinction between specifications and requirements is similar to the dis-
tinction between mechanisms and the policies they are intended to enforce [17].
A system is a mechanism that maps symbols to symbols, independently from
the environment where it is deployed. This is of course desirable: a XACML pol-
icy enforcement point, an AES encryption module, and a lock system should do
what their specifications promise, regardless of where they are deployed. In this
sense, systems are just symbol manipulators, oblivious to their deployment envi-
ronment. In contrast, a resource’s security requirements impose certain (access)
relations among actual entities in an environment. A symbol-manipulation entity
can contribute to security only based on the environmental assumption that its
input-output behavior is given an appropriate interpretation; cf. [22]. The follow-
ing example illustrates this point.

Example 4. Consider the database scenario of Example 2. The database’s specifi-
cation (for its nominal channel) contributes to the security of the data under envi-
ronmental assumptions, including: only copy editors have the role copy editor,
and there is no way to delete the data except by executing the API’s delete
command. These assumptions reflect the condition that the symbolic notions of
a role and a command are interpreted appropriately in the context of the given
scenario. �
To capture the relationship between requirements, specifications, and environ-
mental assumptions, we next introduce the notion of a security rationale.

3 Security Rationales

To address a security requirement RQ in an environment E , we deploy a sys-
tem in E . The system’s design, construction, and analysis are guided by a system
specification SP . Moreover, deploying the system contributes to RQ if an environ-
mental assumption EA holds true. Reducing RQ to SP and EA must clearly be
justified: not every combination of SP and EA contributes to satisfying RQ . Secu-
rity rationales embody such justifications. A security rationale for the four tuple
(E ,RQ ,SP ,EA) is a justification for the following condition: for any system S and
adversary A,

6 M.T. Dashti and D. Basin

S |= SP ∧ S‖E‖A |= EA → S‖E‖A |= RQ . (†)

Here |= and ‖ represent satisfaction and composition. Moreover, SP , EA and RQ
can each consist of multiple conjuncts, as illustrated subsequently in Example 5.

Intuitively, a rationale for (E ,RQ ,SP ,EA) explains that, to address the
requirementRQ in the environment E in the presence of the adversary A, it suffices
to deploy the system S provided that S |= SP and S‖E‖A |= EA. The condition
(†) can be used from right to left to reduce a security requirement into a system
specification and an environmental assumption sufficient for its establishment;
see Fig. 1.

AdversaryA

System

S

Environment E

Specification SP

Assumption EA

Requirement RQ

Fig. 1. A security rationale reduces (thick arrows) a security requirement to a specifica-
tion and an environmental assumption. The validity of the environmental assumption
depends on the adversary’s capabilities. The adversary interacts (thin arrows) with the
system over the environment.

In (†), the premise S |= SP guides the design, construction, and analysis of sys-
tems, as mentioned above. The inclusion of the system S in the premise S‖E‖A |=
EA, which concerns the environmental assumptions, may appear counterintu-
itive. The adversary’s role clarifies this point. The specification SP regulates the
system’s behaviors over its nominal channels. The adversary, against whom the
requirement RQ must hold, may however interact with the system over side chan-
nels, i.e. channels not anticipated by SP . The system’s interactions with the adver-
sary over these channels must therefore be constrained as well. The environmental
assumption EA includes such constraints.

In the following, we further clarify the condition (†). First, there are numer-
ous frameworks for formalizing, verifying, and testing the relation S |= SP in
a precise manner. The two other relations in (†) cannot however be readily for-
malized. In particular, the nebulous entities E and A often have no clear bound-
aries. This poses a major challenge to formalizing the notion of a security rationale.
For the rest of this paper, we therefore treat the condition (†) as an informal guide-
line and as a way to classify verification and refutation objectives.

Security Testing Beyond Functional Tests 7

Second, environmental assumptions and requirements have, in essence, the
same type. In particular, (†) would be trivially satisfied ifEAwereRQ . The result-
ing reduction would however clearly not help with the requirement’s analysis.
Moreover, whether a statement is seen as a requirement or an assumption depends
on the task at hand. For instance, in Example 3, the assumption that one cannot
enter the lab through its window constitutes a requirement if we are interested
in constructing the lab building. To satisfy this requirement we may, for exam-
ple, install window bars; this would be preceded by a specification that would fix
the window bars’ construction in a way that is deemed sufficient to resist a given
adversary.

Third, in the security literature, the environment is sometimes conflated with
the adversary. To denote such an adversarial environment, let E∗ = E‖A. Then (†)
boils down to S |= SP ∧ S‖E∗ |= EA → S‖E∗ |= RQ .

Finally, note that any security rationale can account for only a small set of enti-
ties and their interactions: we cannot reason about everything in the world. There-
fore, any rationale inevitably relies upon the assumption that the excluded entities
and interactions play no role in the requirement’s satisfaction. This assumption in
effect excludes certain adversarial actions. A prominent example is the assump-
tion that the system has no side channels for communicating with the adversary;
otherwise, its protection mechanisms can potentially be subverted. This further
explains why we cannot dispense with S in S‖E‖A |= EA above.

The following example illustrates the above notions.

Example 5. Consider the R&D laboratory of Example 1. The requirement RQ
states that only staff members may enter the lab. The lab has a door that is con-
trolled by an electronic lock system. We reduce RQ to the requirement (SRQ): the
lock opens the door only after a valid key is presented to it. The reduction relies on
the following three environmental assumptions. (EA1) Only staff members have a
valid key. (EA2) The door opens only after receiving the lock’s signal1. (EA3) The
only way to enter the lab is through the door. Laws of logic justify the reduction.

(EA1) hasValidKey(X) → isStaff(X)
(EA2) doorOpensFor(X) → signalFor(X)
(EA3) enterLab(X) → doorOpensFor(X)
(SRQ) signalFor(X) → hasValidKey(X)
(RQ) enterLab(X) → isStaff(X)

(�)

The assumptions constrain the adversary’s capabilities. The assumption EA1, for
instance, excludes numerous adversarial actions, both simple and elaborate. For
example, according toEA1, an adversary is not capable of bribing staff members to
obtain a valid key. Similarly, the adversary cannot forge a valid key. The excluded
adversarial actions clearly cannot be feasibly enumerated.
1 We will abstract away from further temporal aspects in this example. For instance,

once the door has been closed, it remains closed until the next signal arrives, and only
one person can pass through the door while it is open.

8 M.T. Dashti and D. Basin

In the final step, we reduce the requirement SRQ to the following specifica-
tion for the lock system’s nominal communication channel: (SP) the output sig-
nal open is produced only after receiving as input a key that belongs to the set
validKeys. This reduction is justified by two assumptions EAI and EAS . The
assumption EAI states that the set validKeys, the input key, and the signal open
are interpreted as expected, and that an entity cannot send a key to the lock
system unless the entity has the key. The latter conjunct intuitively bridges the
gap between the predicate hasValidKey(X) and the key the lock system receives
from an entity X. The assumption EAS states that all the communication channels
between the lock system and the adversary are regulated by SP . It excludes for
instance the possibility that the lock system has a hidden backdoor that bypasses
its functionalities, or that disrupting the lock’s electricity supply (which consti-
tutes an “input” to the lock system) would leave the door open.

The arguments above constitute a security rationale for the tuple
(E ,RQ ,SP ,EA), where E is the lab’s environment, RQ and SP are defined above,
and EA is the conjunction of the assumptions EA1, EA2, EA3, EAI , and EAS .
Note that EAI and EAS cannot be expressed as assumptions on the environment
alone: the lock system must be considered too. �
The reduction steps carried out in a security rationale can be graphically repre-
sented as a reduction tree. Formally, a reduction tree is simply an and-or tree
where the root denotes a security requirement, and the leaves are system specifi-
cations and environmental assumptions; see Fig. 2.

EA2EA1

EAI EAS

SRQ

RQ

EA3

SP

Fig. 2. A reduction tree for Example 5. Requirements and environmental assumptions
are depicted as ovals, while specifications are depicted as rectangles. The dotted polygon
contains the environmental assumptions. All branches here are and-branches.

Security rationales justify a reductive strategy for addressing security require-
ments. Such justifications can, in part, be formalized in a suitable proof system
and justified using laws of logic, as (�) suggests. Laws of physics, such as noth-
ing travels faster than the speed of light, can also be part of a security rationale.
Formal models of the problem domain can assist security engineers with this task;
cf. [1,5,14].

Security Testing Beyond Functional Tests 9

4 Security Cases

In this section, we introduce the notion of a security case. Intuitively, a security
case explains why a rationale for a given security requirement is applicable to a
concrete system in the presence of a specific adversary. Suppose we have a secu-
rity rationale for the tuple (E ,RQ ,SP ,EA). Then, deploying a system S in the
environment E guarantees that RQ holds in the presence of an adversary A if the
following condition holds:

S |= SP ∧ S‖E‖A |= EA . (‡)

This statement is a direct consequence of (†). A security case is an argument
for (‡)’s truth, for a concrete system S and a specific adversary A. If the ratio-
nale’s reduction steps are represented as a reduction tree, then a security case is
an argument for the satisfaction of the tree’s leaves.

Three remarks are due here. First, security cases are analogous both to safety
cases, which argue for the safety of, say, vehicles (see for example ISO 26262-
1:2011), and to dependability cases [12]. Security cases are (ideally) provided by
security designers and analysts who explain why deploying S in the environment
E solves the problem of addressing RQ in the presence of the adversary A. For
example, software verification techniques that demonstrate that a software sys-
tem S satisfies a specification SP can contribute to a security case.

Second, the adversary’s capabilities do not enter into a security rationale itself.
Instead, once a specific adversary has been identified, for example, through risk
analysis, the security case is given to justify the environmental assumptions’ valid-
ity in the adversary’s presence. The following example illustrates this point.

Example 6. Consider the security rationale of Example 5. This rationale does not
depend on any particular adversary or system. However, the validity of the envi-
ronmental assumptions critically depends on the adversary’s capabilities, and the
validity of the specification depends on the system’s behaviors. For instance, the
assumption EA1 is violated if the adversary can threaten or bribe a staff mem-
ber and thereby obtain a valid key. A security case here must argue that the
given adversary, say, curious visitors, cannot violate this assumption. Similarly,
the security case explains why a given lock system’s behaviors over its nominal
channels satisfy SP . �
Third, whether or not a system satisfies a specification does not depend on the
adversary’s capabilities, as is evident in the condition (‡). This is a central point:
systems can be designed, developed, and evaluated without knowledge about the
environment where they will be deployed. That a system contributes to the secu-
rity of protected resources in a given adversarial environment must be justified
using security cases. This observation may seem counterintuitive as, for exam-
ple, buffer overflow attacks and SQL injections, where an adversary takes control
of a system by providing it with “malicious” inputs, are prevalent. We remark
that these attacks exploit a system’s inadequate handling of malformed inputs.

10 M.T. Dashti and D. Basin

They can therefore be addressed by providing an adequate specification for the
system’s interface and requiring that the system satisfies it.

As mentioned in Sect. 3, the environmental assumptions always exclude
certain adversarial actions. These exclusions cannot be justified without account-
ing for all interactions in the world, which is clearly infeasible. Therefore, to con-
struct a manageable model of the environment, security cases invariably depend
on closed-world assumptions, stating that what has not been considered plays
no role in satisfying the given security requirement. Closed-world assumptions
thus complete security cases in this merely formal sense [25]; see also Simon’s
empty world hypothesis [26]. The following example illustrates this point.

Example 7. Consider the security rationale of Example 5. The validity of EAS ,
which states that the system has no side channels, depends on the adversary’s
capabilities and the system’s behaviors. Suppose the lock system leaves the door
open if its power is disrupted. The assumption EAS is then not valid in the pres-
ence of an adversary who can cut off the system’s power. It might however be
valid for a weaker adversary. A security case here explains why a given system
and adversary cannot communicate over this particular side channel in the envi-
ronment E . Alternatively, if the system leaves the door locked when the power is
disrupted, then the security case can argue that although an adversary can affect
the system over this side channel, the result does not adversely affect RQ ’s satis-
faction. To complete the argument for EAS ’s validity, all possible channels should
be considered. These, however, cannot all be enumerated and argued for. The secu-
rity case must therefore ultimately rely on the closed-world assumption that the
considered side channels are the only ones relevant for RQ ’s satisfaction. �

5 Security Testing

In this section, we define functional testing and security testing, and clarify their
relationship. We then introduce two types of security tests, and illustrate them
through examples from practice. Finally, we discuss vulnerabilities and their reme-
diation, associated with these two test types.

By functional testing we refer to any process aimed at refuting the hypothe-
sis that a system satisfies its (functional, security, or other) specifications. That is,
given a system S and a specification SP , functional testing aims at refuting the
hypothesis S |= SP . Here we do not distinguish between black-box and white-
box analysis. By security testing we refer to any process aimed at refuting the
hypothesis S‖E‖A |= RQ , for a system S, environment E , adversary A, and secu-
rity requirement RQ . Note that the purpose of both types of testing is to refute a
hypothesis, rather than to verify it. This understanding, which is well-established
in the literature [9,21], sharply separates constructing security cases from security
testing.

We remark that our notion of functional testing is more general than the term’s
conventional denotation in the literature, e.g., [2,4,21]. This is simply because,

Security Testing Beyond Functional Tests 11

in our theory, a specification need not be confined to a system’s desired func-
tions, distilled, say, from its use cases. A bound on the system’s delay in produc-
ing outputs, as well as a threshold on the system’s electromagnetic radiation level
are examples of system specifications. Tests aiming to refute these specifications
therefore constitute functional tests in our theory. Conventionally, they are usu-
ally not deemed as functional tests because a system’s delays and radiation levels
are typically not considered to be part of a system’s functionality; see also [10] for
the murky boundary between functional and non-functional specifications. In our
theory, the essence of a functional test is that it applies to the system’s commu-
nication channels that are described in and constrained by the system’s specifica-
tion. To avoid confusion, we refer to the conventional forms of functional tests as
restricted functional tests.

We now turn to security testing. Suppose that, in an environment E , a require-
ment RQ is intended to be satisfied based on a rationale for (E ,RQ ,SP ,EA).
Let S be a system deployed in E that is intended to satisfy (‡), in the presence
of an adversary A. Perhaps surprisingly, refuting either conjunct of (‡) does not
entail refuting S‖E‖A |= RQ , which is the objective of security testing. However,
the refutation of S |= SP or S‖E‖A |= EA does, of course, demonstrate that
the intended rationale’s premises are false for the system S and the adversary A:
the condition (†) is true due to the failure of its antecedent and one cannot con-
struct a security case here. Therefore, the refutation of one of (‡)’s conjuncts sug-
gests that the requirementRQ is violated because it is unlikely thatRQ is satisfied
due to unintended causes. This observation motivates the following hypothesis:
If S‖E‖A |= RQ , for a system S and an adversary A, then S |= SP and S‖E‖A |=
EA. We call this the intentional security hypothesis, in short H.

Intuitively, H states that a security requirement is never satisfied unintention-
ally: a system addresses a security requirement by design, not by accident. Note
that the hypothesis amounts to the condition (†)’s converse. This is expected: the
condition (†) supports constructing security cases for verifying a security require-
ment’s satisfaction. Security testing, whose goal is to refute the requirement’s sat-
isfaction, must rely on (†)’s converse, namely H. We show in Sect. 5.2 that H has
been tacitly assumed in the literature.

5.1 S-Tests and E-Tests

Based on H, the tester can refute the hypothesis S‖E‖A |= RQ by refuting one
of (‡)’s conjuncts. This results in the following two types of security tests.

S-Tests: Test the system with respect to its specification.

A test of this type, called an S-test, is intended to refute S |= SP , which is an
instance of functional testing. Tools and techniques for generating and automat-
ing functional tests can therefore be used here; see for example [2,4]. Note that
S-tests pertain to symbol manipulating entities and are therefore independent of
the adversary. Moreover, restricted functional tests are instances of S-tests. For
example, suppose a radio transmission system must satisfy the specification that

12 M.T. Dashti and D. Basin

transmitted messages should be encrypted with 1024-bit keys. Restricted func-
tional tests can be applied to this system because the specification describes a use
case of the system.

E-Tests: Test the validity of the environmental assumptions.

A test of this type, called an E-test, is intended to refute the hypothe-
sis S‖E‖A |= EA. Refuting this hypothesis is what distinguishes security testing
from functional testing. Namely, functional tests pertain to a system’s behaviors
over its interface, described by a specification. In contrast, security E-tests apply
not only to systems but also to a nebulous environment and an adversary with
no interface (see Sect. 2). Therefore, testing the validity of environmental assump-
tions cannot be reduced to providing an input and observing an output over a def-
inite interface. These tests are therefore not an instance of functional tests: they
pertain to actual entities in the world. In particular, they depend on the adver-
sary’s capabilities. The diagram of Fig. 3 illustrates the relationship between these
two types of tests.

Restricted Functional Tests

S-Tests E-Tests

Fig. 3. S-tests, whose purpose is to refute the hypothesis that a system satisfies its speci-
fication, include restricted functional tests, which apply to the functionalities the system
must offer. E-tests, in contrast, attempt to violate an environmental assumption in an
adversarial environment.

Example 8. Consider the scenario of Example 5, with the reduction tree depicted
in Fig. 2 for the requirement RQ . The purpose of security testing is to refute the
hypothesis that RQ is satisfied in the presence of a given adversary A. As pre-
viously explained, refuting the validity of the reduction tree’s leaves (which is
the goal of E-tests and S-tests) does not entail that RQ is violated, because RQ
can be satisfied due to unanticipated reasons. It is only by H that design errors
imply RQ ’s violation. We consider the task of violating some of Fig. 2’s leaves in
the following.

To violate the leaf SP , the tester tries to refute the hypothesis that the lock
system satisfies the specification SP . The tester may, for instance, input very large
keys into the lock system, where a key is a sequence of bits. If a buffer overflow
is discovered, then the adversary might be able to take control of the lock and
produce an open signal without possessing a valid key. Note that to violate SP the
tester need not elicit the adversary’s capabilities. The lock system must satisfy SP
on its nominal channel for all possible inputs and outputs. This is an S-test. In
contrast, the tests below are E-tests.

Security Testing Beyond Functional Tests 13

To violate EAI , the tester checks if the lock system’s local variables are mis-
interpreted, for example, the set validKeys might not actually consist of valid
keys. If a staff member leaves the R&D team, then his key might still be stored
in validKeys. The tester also checks whether the lock system is susceptible to
replay attacks. If so, then EAI is violated because the adversary can simply record
the interaction between a valid key and the lock system and later send a valid
key to the lock without legitimate possession of the key. Whether these scenarios
refute EAI ’s validity in the presence of a given adversary clearly depends on the
adversary’s capabilities.

To violateEA2, the tester may try to intercept the communication between the
lock and the door to inject an open signal. The tester may also assess the feasibil-
ity of breaking, or unhinging, the lab’s door. To violate EA3, the tester may try
climbing through the window. The feasibility of these attacks naturally depends
on the environment and the adversary’s capabilities. If, for instance, the window
is barred and the adversary neither has a metal saw nor is capable of squeezing
through the bars, then climbing in through the window is infeasible, indicating
that EA3 is not refuted in these scenarios. �
As the above example illustrates, when testing environmental assumptions and
requirements, the tester must take the adversary’s capabilities into account. For
each goal the tester may ask whether the adversary can achieve it. Specific goals,
such as unhinging a door, lead to specific questions regarding the adversary’s capa-
bilities. General goals, such as violating the assumption EA2, which excludes a
wide range of adversarial actions, lead to generic questions that cannot be directly
answered. The tester must then elicit a list of attack scenarios and determine
whether the adversary can realize them. This list can be developed by brainstorm-
ing and using experience with similar requirements. This can also be aided by
consulting sources like [7], which go beyond enumerating common system vul-
nerabilities and consider malicious interaction from the environment. The investi-
gated scenarios will however never be complete, because accounting for all possible
interactions in the world is infeasible. Security testing is therefore an open-ended
processes, hence inherently incomplete. Note that this incompleteness is orthogo-
nal to the incompleteness of functional tests, which is rooted in the infinite cardi-
nality of the domains where test inputs are selected. The difference is that in func-
tional testing one picks inputs from a delimited, albeit infinite, domain, whereas
E-tests come from a domain with no boundaries.

The following example illustrates the essentially unlimited creativity required
by a security tester to anticipate all possible attack scenarios.

Example 9. A British secret operation, known as the Four Square Laundry affair,
was carried out in Northern Ireland to collect information about the residents of
a troubled neighborhood [20]. A rogue laundry service van visited the neighbor-
hood regularly, and sent the collected laundry for various tests and inspections
before washing it. The tests included checking for traces of explosive material or
blood. The service also noted changes in the amount or kinds of clothing sent by
each household for washing, which could indicate the presence of guests, and so
forth. �

14 M.T. Dashti and D. Basin

The separation between S-tests and E-tests explains why security testing is harder
than functional testing. A system specification describes the system’s behaviors
over its interface. It can therefore be used to construct functional tests, for example
S-tests, independently from the adversary’s capabilities and the environment in
which the system is deployed. When it comes to security testing, the tester must
also check the validity of requirements in an adversarial environment. Environ-
ments and adversaries are nebulous entities, with no clear interface. How, say, an
environmental assumption can be violated depends on the adversary’s capabili-
ties, the environment’s properties, and the system’s behaviors. E-tests for check-
ing an assumption’s validity are only as thorough as the attack scenarios the tester
anticipates.

5.2 S-Tests and E-Tests in Practice

Applying security testing in practice is challenging. If the security case (or the
security rationale) intended to guarantee a resource’s security is unavailable, then
the tester must reconstruct, or approximate, it. This includes eliciting the adver-
sary’s capabilities and explicating specifications and environmental assumptions.
These tasks are notoriously hard in practice; see for example [14,30]. Even when
the security case and the security rationale are available, security E-tests amount
to anticipating how the adversary can invalidate an environmental assumption or
a requirement. This task defies prescriptive guidelines such as those available for
functional testing. The effectiveness of E-tests therefore depends largely on the
tester’s creativity and resources; see the Four Square Laundry example above.

These observations imply that security testing is largely a manual task that
defies specific, thorough guidelines. It is therefore not surprising that existing
methods fall short when it comes to E-tests. Below, we substantiate this claim by
showing that existing security testing techniques have little to say in this regard.

Risk-Based Security Testing. Risk-based security testing [18,19,24] starts by
explicating system specifications from risk analysis, misuse case diagrams, and
other design and analysis documents. Roughly speaking, a risk corresponds to
a security requirement that demands the risk’s mitigation. The countermeasure
that is intended to reduce or eliminate the risk can then be seen as a specification
that defines how a system must implement the mechanisms that address the cor-
responding requirement. Afterward, risk-based security testing reduces security
testing to S-tests applied to the mitigation mechanisms. E-tests are absent here
because the environmental assumptions and the adversary that would make up a
corresponding security rationale are not identified.

Fuzz Testing and Fault Injection. Fuzz testing [11,27] and fault injection tech-
niques [29] aim at refuting generic system specifications such as: the system does
not access unallocated memory areas. That is, they refute S |= SPg, for generic
specifications SPg and they therefore amount to S-tests. These techniques can be
seen as generating S-tests guided by security-relevant fault models. For example,

Security Testing Beyond Functional Tests 15

programs often fail to check their inputs length or format, and they have inade-
quate exception handling when dependency relations fail. Such fault models reflect
how an adversarial environment may interact with the system. Consequently, they
give rise to tests that are tailored to violate security-relevant specifications. E-tests
are nonetheless absent here, simply because the resulting tests pertain to a sys-
tem’s nominal channels only; they do not analyze side channels and environmental
assumptions.

Vulnerability-Driven Security Testing. Tests that try to identify a known, antic-
ipated vulnerability in a particular system are sometimes said to be driven by
that vulnerability. Since these tests are concerned with systems, they are clearly
S-tests. OWASP’s security test patterns fall under this class of security tests [24].

A more elaborate example of vulnerability-driven security testing is the NIST
proposal [23] that associates security tests with security features of cryptographic
modules. An example is that “environmental failure protection [. . .] features shall
protect the cryptographic module against unusual environmental conditions or
fluctuations (accidental or induced) outside of the module’s normal operating
range that can compromise the security of the module” [23]. The document asso-
ciates a number of tests to this security feature, including “the tester shall extend
the temperature and voltage outside of the specified normal range and determine
that the module either shuts down to prevent further operations or zeroizes all
plaintext secret and private keys and other unprotected [critical security parame-
ters]”. The NIST proposal is helpful in explicating how a module should behave
in abnormal conditions, but it cannot describe under which assumptions on the
adversary’s capabilities and the environment a security requirement can be trans-
lated into the specifications subjected to functional tests. Note that although the
NIST’s suggested tests are not instances of restricted functional tests, they nev-
ertheless apply to a system’s communication channel that has been regulated by
the system’s specifications. They are therefore S-tests. E-tests are absent here as
well.

In short, existing security testing methods and tools ignore E-tests. Since they
all address security specifications, they tacitly assume that if the system violates
its specification, then the security requirement is also violated. This amounts to
the intentional security hypothesis, introduced in Sect. 5, about which the litera-
ture has not been explicit. The aforementioned shortcomings should not be con-
strued as a criticism of the existing techniques’ value. Rather, our security test
types should be seen as a tool for delimiting their scope and reach. As mentioned
before, E-tests depend on the adversary and target closed-world environmental
assumptions that are impossible to delimit. It is therefore not surprising that, in
contrast to S-tests, E-tests do not admit automation.

We conclude this section with two remarks. First, adversary models themselves
are not subjected to E-tests (or S-tests). For example, discovering that a safe can
be opened using standard office equipments demonstrates that the assumption
that a curious co-worker could not open the safe has been false all along. It how-
ever does not help us decide whether a curious co-worker is a suitable adversary
model for the documents protected by the safe. In general, E-tests and S-tests do

16 M.T. Dashti and D. Basin

not account for flaws rooted in unelicited requirements or weak attacker models.
Requirements and the adversary are the parameters with respect to which these
test types are defined. They are not themselves subject to these tests.

Second, the observations above shed light on the notion of adequacy for secu-
rity tests. It is immediate that the adequacy of S-tests can be defined based on
functional adequacy measures, such as coverage [31] and mutation analysis [8],
and security-specific metrics such as [28]. The adequacy of E-tests, however, is an
entirely different matter. Ideally, the validity of each environmental assumption
must be “adequately” tested. These assumptions are however not only hard to
explicate, but their validity also relies upon closed-world assumptions that can
never be thoroughly tested. No finite set of security tests can therefore constitute
an adequate set of E-tests. We return to this conundrum in Sect. 6.

5.3 Vulnerability Remediation

We can classify security vulnerabilities based on our test types. Let S be a system,
E an environment, A an adversary, and RQ a security requirement. By a security
vulnerability we refer to any cause for the violation of the security requirement,
i.e., the violation of S‖E‖A |= RQ . Clearly this notion of a vulnerability is more
general than, say, programming flaws.

We introduce two classes of vulnerabilities: S-vulnerabilities, and E-
vulnerabilities. S-vulnerabilities are those vulnerabilities in the system S that
lead to a violation of its specification SP . Due to H, these are indeed vulnerabili-
ties as they lead to a violation of RQ . These vulnerabilities are revealed through
S-tests, and remediating them amounts to fixing the system. E-vulnerabilities
are those vulnerabilities that invalidate the environmental assumption EA. That
is, vulnerabilities in this class cause the relation S‖E‖A |= EA to fail. These too
are vulnerabilities due to H, as they lead to a violation of RQ . To remediate an
E-vulnerability, fixing the system alone is insufficient. The system must be re-
engineered and the security rationale must be updated.

After fixing a system to address an S-vulnerability, only the system must be
analyzed using S-tests; carrying out E-tests is unnecessary. Moreover, since the
system’s specification has not changed, these S-tests can be seen as regression
tests. However, after re-engineering the design and updating the security rationale
to address an E-vulnerability, both S-tests and E-tests must, in general, be carried
out to analyze the security of the new design. Since these tests must address the
new design’s specification and environmental assumptions, they cannot be seen
as simple regression tests. The following example illustrates these classes.

Example 10. Consider the scenario of Example 5, analyzed in part in Example 8.
A window through which the adversary can enter the office is an E-vulnerability.
To address it, new systems, such as window bars, can be installed in the environ-
ment. This system must then be tested with respect to its specification. As a sec-
ond example, suppose that former staff members still have keys that are accepted
by the lock system. This causes the environmental assumption EA1 to fail.
To address this E-vulnerability, the specification SP must be extended with the

Security Testing Beyond Functional Tests 17

specification of a suitable key revocation mechanism. This likely entails changing
the lock system entirely, installing a key revocation server, and so forth. These
systems must then be tested with respect to the extended specification. �
We have ignored flaws due to changes in the requirements or a mismatch between
the stake-holder’s expectations and the requirements. Although such cases are
common in practice [15], they fall outside this paper’s scope.

6 Concluding Remarks

Starting with the fundamental distinction between a system specification and a
security requirement, we have provided a simple theory of security testing. Its
ingredients — security rationales, security cases, the intentional security hypoth-
esis, S-tests and E-tests — provide a basis for explaining the verification and
refutation of security requirements in general, and security testing in particular.
Our theory highlights the limitations of many testing and other quality assurance
methods for reasoning about the security of systems: the vast majority of meth-
ods target the relationship between systems and their specifications, but not the
assumptions made on their environments.

Targeting environmental assumptions is hard. One must ultimately resort to
a closed-world assumption and posit that the adversary can only interact with
the system and the environment in limited ways. As a result, the set of possible
counter-examples is not only infinite, its domain cannot be precisely delimited.
Hence, E-tests, which target environmental assumptions, defy automation and
systematization.

The above difficulties raise the question of how practitioners can best app-
roach E-testing and judge the quality of the resulting E-tests. We do not have the
answer to this question. And any answer will certainly not be in terms of a logi-
cal method or formalism with conventional notions of completeness or coverage.
Since testers’ creativity and experience play a central role in refuting environmen-
tal assumptions, there is value in studying and learning from attacks [3,6]. We
believe our theory can help in this regard as it suggests a frame of reference for
documenting, classifying, and reusing the knowledge obtained through such stud-
ies. This includes explicating the assumptions that have been violated, associating
common assumptions with attacks, and exploring possibilities for generalizations.
Moreover, threats on different classes of systems and environments can be cata-
loged along with countermeasures; see, e.g., [7]. These catalogs can be analyzed
using this frame of reference, highlighting cases where the attacks and mitigation
methods refer to assumptions or specifications that are left implicit. Making these
explicit can contribute to the body of knowledge developed around E-tests.

Security testing requires an open mind and a vivid imagination. It goes far
beyond the well-charted territory of functional tests. One must raise one’s sights
to look beyond the machine and target the world as well.

Acknowledgment. We thank Peter Müller and Petar Tsankov for their comments on
this paper.

18 M.T. Dashti and D. Basin

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, New York (2008)

3. Basin, D.A., Capkun, S.: The research value of publishing attacks. Commun. ACM
55(11), 22–24 (2012)

4. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold, New
York (1990)

5. Bjorner, D.: Software Engineering 3: Domains, Requirements, and Software Design.
Texts in Theoretical Computer Science. An EATCS Series. Springer, New York
(2006)

6. BSI. A penetration testing model, The German Federal Office for Information Secu-
rity(2003)

7. BSI. IT Grundschutz Kataloge, (Version: 14). The German Federal Office for Infor-
mation Security (2014)

8. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Comput. 11(4), 34–41 (1978)

9. Dijkstra, E.W.: Notes on structured programming. Technical report T.H. Report
70-WSK-03, Technological University Eindhoven, April 1970

10. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference, RE, pp. 21–26. IEEE Computer Society (2007)

11. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security test-
ing. ACM Queue 10(1), 20 (2012)

12. Jackson, D.: A direct path to dependable software. Commun. ACM 52(4), 78–88
(2009)

13. Jackson, M.: The world and the machine. In: Proceedings of the 17th International
Conference on Software Engineering, ICSE 1995, pp. 283–292. ACM, New York,
NY, USA (1995)

14. Jackson, M.: Problem Frames. Addison-Wesley, Reading (2001)
15. Johnson, A.: Hitting the Brakes: Engineering Design and the Production of Knowl-

edge. Duke University Press, London (2009)
16. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.-H., Lee, D., Wilkerson, C., Lai, K.,

Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ACM/IEEE 41st International Symposium on
Computer Architecture, ISCA, pp. 361–372. IEEE Computer Society (2014)

17. Levin, R., Cohen, E., Corwin, W., Pollack, F., Wulf, W.: Policy/mechanism sepa-
ration in Hydra. SIGOPS Oper. Syst. Rev. 9(5), 132–140 (1975)

18. McGraw, G.: Software Security: Building Security In. Addison-Wesley Professional,
Boston (2006)

19. Michael, C.C., van Wyk, K., Radosevich, W.: Risk-based and functional security
testing, Accessed 05 July 2013. https://buildsecurityin.us-cert.gov/

20. Moloney, E.: A Secret History of IRA. Penguin, Canada (2003)
21. Myers, G., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley,

New York (2011)
22. Nelson, R.: What is a secret - and - what does that have to do with computer secu-

rity? In: Proceedings of the Workshop on New Security Paradigms, pp. 74–79. IEEE
(1994)

https://buildsecurityin.us-cert.gov/

Security Testing Beyond Functional Tests 19

23. Derived test requirements for FIPS PUB 140–2, security requirements for crypto-
graphic modules, NIST, CSEC and CMVP Laboratories Draft (2011)

24. OWASP. Testing guide v. 4, Accessed on 9 March 2014. https://www.owasp.org
25. Reiter, R.: On closed world data bases. In: Gallaire, H., Minke, J. (eds.) Logic and

Data Bases, pp. 55–76. Plenum Press, New York (1978)
26. Herbert, A.: Simon.: The architecture of complexity. Proc. Am. Philos. Soc. 106(6),

467–482 (1962)
27. Takanen, A., DeMott, J., Miller, C.: Fuzzing for Software Security Testing and Qual-

ity Assurance, 1st edn. Artech House Inc., Norwood (2008)
28. Tsankov, P., Dashti, M.T., Basin, D.A.: Semi-valid input coverage for fuzz testing.

In: International Symposium on Software Testing and Analysis, ISSTA, pp. 56–66.
ACM (2013)

29. Voas, J., McGraw, G.: Software Fault Injection. Wiley, New York (1998)
30. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating

SDKs: Uncovering assumptions underlying secure authentication and authoriza-
tion. In: Proceedings of the 22nd USENIX Conference on Security, pp. 399–414
(2013)

31. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997)

https://www.owasp.org

Progress-Sensitive Security for SPARK

Willard Rafnsson1(B), Deepak Garg2, and Andrei Sabelfeld3

1 Carnegie Mellon University, Pittsburgh, USA
willardthor@cmu.edu

2 Max Planck Institute for Software Systems, Kaiserslautern
and Saarbruecken, Germany

3 Chalmers University of Technology, Gothenburg, Sweden

Abstract. SPARK 2014 is a safety critical language subset of Ada devel-
oped by Altran and used for developing safe and secure software by major
industrial players in the aviation, commercial, medical, space, and mili-
tary domains. This paper puts a spotlight on the SPARK flow analysis.
Articulating the boundaries of what is achievable by the analysis, we
spell out attacks to exploit termination, progress, resource exhaustion,
and timing channels. We harden the analysis to achieve security against
stronger attackers, with the focus on progress-sensitive security as our
baseline. Instead of redesigning and reimplementing the enforcement, we
leverage known flow analyses for weaker attackers by a transform on
program dependence graphs. We establish the soundness of this app-
roach for a core language and demonstrate that it can be applied as a
source-to-source transform of SPARK code when modifying the compiler
is undesirable. A case study, derived from publicly available code for a
control unit of a missile, indicates the usefulness of the approach.

1 Introduction

SPARK is a safety critical language subset of Ada developed by Altran and
used by industry in the aviation, commercial, medical, space, and military
domains. Applications range from programming jet engines (Lockheed Mar-
tin) to military aviation (EuroFighter), UK’s air traffic control system (Altran),
cross-domain guards (Rockwell Collins), smart card OS (MULTOS), biometrics
software (NSA), and multi-level security systems (Secunet) [42].

SPARK 2014. A recent major overhaul of SPARK has led to SPARK 2014 [44],
a language and accompanying tools for developing safe and secure software. To
aid security verification, a flow analysis is integrated in the compiler to track
information flow in SPARK programs and is used in applications like separation
kernels [29] and multi-level workstations [39].

Information Flow Security. The security model of SPARK programs draws
on information flow tracking. The goal is to track the propagation of data from
sources (inputs) to sinks (output) as information is manipulated by programs.
For systems whose sources and sinks are classified into secret and public (or more

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 20–37, 2016.
DOI: 10.1007/978-3-319-30806-7 2

Progress-Sensitive Security for SPARK 21

complex classifications [18]), the baseline policy is noninterference [16,21] that
prevents secret inputs from affecting public outputs.

There are different ways in which noninterference can be broken, corre-
sponding to different information flow channels. An explicit flow results from
a data flow from the right-hand side to the left-hand side in an assignment. An
implicit [19] flow is via control flow: for example, branching on a secret and
outputting different public values in the branches is an implicit flow that leaks
information about the secret without any explicit leaks. The termination chan-
nel [48] is another source of potential leaks: a program that loops on a secret
and outputs a public value on exiting the loop reveals whether the loop has
terminated and therefore leaks information about the secret guard. A gener-
alization of this channel is the progress channel [7] that can be used to leak
information about secrets via the progress of public outputs. In contrast to the
one-bit termination channel, this channel allows leaking secrets in their entirety
by brute force attacks [7]. Other channels of interest are resource exhaustion and
timing [37], which allow the attacker to learn secret information by observing
abnormal behavior and time variation, respectively.

SPARK Security Examined. Usage of the SPARK flow analysis in industry
is encouraging. It makes the following questions important. What attacks does
it prevent? How can it be extended to achieve security against more powerful
attackers? Can it lead to a general methodology applicable to similar analyses?

This paper puts a spotlight on the flow analysis in SPARK GPL 2015.
Released April 28 2015, it is, as of January 1 2016, the latest GPL edition
of SPARK 2014. To articulate the boundaries of what it can achieve, we demon-
strate that the analysis successfully tracks explicit and implicit flows and spell
out attacks to exploit termination, progress, resource exhaustion, and timing
channels.

SPARK Security Improved. With the goal to harden the analysis against
stronger attackers, we set our baseline at the progress-sensitive security pol-
icy [8,12,31,32]. This policy is a natural generalization of noninterference to
programs with output, in contrast to its progress-insensitive counterpart [7,8,12]
that needs to carve out leaks due to computation progress. Further, as mentioned
earlier, ignoring the progress channel implies opening up brute force leaks that
may extract secrets in their entirety. Our key goal is to design a general app-
roach that allows leveraging existing analysis and tools for explicit and implicit
flows, such as SPARK flow analysis to enforce the stronger progress-sensitive
security. This goal is particularly important given the state of the art where the
vast majority of the information flow tools in addition to SPARK (e.g. Flow-
Fox [22], JSFlow [24] and IFC4BC [10] for JavaScript, Jif [30], Paragon [14]
and JOANA [23] for Java, FlowCaml [40] for Caml, all discussed in Sect. 8) are
currently only able to enforce progress-insensitive security.

Achieving Progress-Sensitive Security. With this main goal at hand, the
core idea for enforcement is as follows. We set out to leverage two independent
components: graph-based analysis for explicit/implicit flows and termination

22 W. Rafnsson et al.

analysis. There have been many successful efforts on developing such compo-
nents, with the above-mentioned information flow tools for the former and much
encouraging progress on the latter [17,27,45]. Facilitated by the latter, Moore
et al. [28] show how to use termination oracles for termination-sensitive infor-
mation flow analysis. Similarly, we parametrize our approach in the termina-
tion analysis to determine which loops terminate and perform a graph trans-
form on the program dependence graph where we represent termination and
progress flows by injecting additional edges going out of potentially diverging
loops. This lets us reuse graph-based analyses, e.g. the one by Horwitz [26] that
is behind the SPARK flow analysis, since we can simply apply it to the trans-
formed graph. The elegance of this approach is that even if a trivial termination
analysis (“all loops might diverge”) is plugged into the framework, we get a sound
and meaningful enforcement of progress-sensitive noninterference corresponding
to Smith’s and Boudol and Castellani’s canonical restrictions for the termination
channel [13,41].

We establish the soundness of this approach for a core language and demon-
strate that it can be applied as a source-to-source transform of SPARK code
when modifying the compiler is undesirable. We apply the source-to-source trans-
formation on a case study with a control unit of a missile, loosely based on pub-
licly available code by Hilton [25]. We formulate desired properties, such as “the
orientation sensors may not affect self-destruction”, in terms of information-flow
policies and demonstrate how our enforcement verifies these properties.

Contributions. The paper’s major contributions are (i) the attacks on the
SPARK flow analysis to demarcate its boundaries, (ii) leveraging a progress-
insensitive SPARK flow analysis (by changing the analyzer conservatively, or
through source-to-source transformation) to enforce progress-sensitive noninter-
ference, and (iii) a case study with a missile code controller to demonstrate
the usefulness of the approach. While our work is motivated by improving the
SPARK flow analysis, we believe the overall idea is portable to other approaches
and tools. Thus, we present our results more generally. For example, our frame-
work is graph-based, which opens up possibilities for natural adoption to other
graph-based tools such as JOANA [23]. Combining the major and minor contri-
butions, the paper contributes the following:

– Attacks illustrating the boundary of what SPARK’s flow analysis can achieve,
leaking via termination, progress, resource exhaustion, and timing (Sect. 2);

– A policy framework for expressing progress-(in)sensitive security conditions
(Sect. 4) for an imperative language (Sect. 3) at the heart of SPARK;

– A general graph-based approach for dependency analysis using termination
oracles to achieve progress-sensitive security (Sect. 5);

– A general graph-based framework for dependency analysis of reactive pro-
grams, also distinguishing output content from output presence (Sect. 5);

– Soundness of the graph-based enforcement for the core language (Sect. 5);
– Source-to-source transform leveraging existing graph-based flow analyses in

a modular fashion (Sect. 6) to achieve progress-sensitive security; and

Progress-Sensitive Security for SPARK 23

– Case study with a control unit of a missile that verifies desired security
properties (Sect. 7).

Our code compiles with GNAT GPL 2015. Released April 28 2015, it is, as of
January 1 2015, the latest GPL edition of the Ada 2012 compiler. Our code can
be found online [49].

Scope. While resource exhaustion and timing channels are important, we leave
their consideration and exploration of more sophisticated attacks on the SPARK
security analysis for future work. Typically, attacks on these channels require
more efforts from the attacker and result in attacks with lower bandwidth [37].
For similar reasons, we leave declassification [38] out of the scope of the present
work. Although important and wished for by the SPARK developers [35], the
flow analysis in SPARK is useful even without declassification, as indicated by
its deployments by Secunet [29,39] and as highlighted by our case study.

2 Attacks

We begin by providing evidence that SPARK’s flow analysis is termination-,
progress-, and timing-insensitive. We do this by providing minimal example pro-
grams which pass analysis yet leak information. Since SPARK’s flow analysis
implementation has no proof of soundness, this helps us identify the property it
is meant to enforce, and thus how to improve it.

All our examples share the same structure: a Main file that reads a byte from
standard input, and invokes a procedure Leak on said byte.

0 procedure Leak (H : in out Byte)
with Global => (In_Out => Standard_Output),

Depends => (H => H, Standard_Output => Standard_Output);

This specification states that Leak performs I/O on its parameter H and the
global Standard Output, and that output on Standard Output only depends on
Standard Output. That last bit is the flow policy of Leak. Our attacks, which
differ only in how they implement Leak, aim to violate this flow policy while
passing analysis, by making output on Standard Output depend on H.

The source code for our attacks is in the appendix. In this section, we focus
on the two attacks most relevant to our technical contributions (termination and
progress), and summarize the other attacks when closing the section.

Termination. A flow analysis is termination sensitive when it tracks whether a
value can affect termination behavior. To gauge whether SPARK’s flow analysis
is termination sensitive, we design Leak on the left of Fig. 1 such that the presence
of output on standard output depends on whether the program enters an infinite
loop, which depends on H. Main passes analysis with this implemetation of Leak.
However, invoking Leak on input values 1 and 2 produces different observable
behavior: with input 1, we see ‘!’ on the standard output; with input 2, Main
diverges. Thus, SPARK’s flow analysis is termination insenstive.

24 W. Rafnsson et al.

0 procedure Leak (H : in out Byte) i s
begin

H := H;

-- if H is even: nontermination.
5 -- else terminate with output "!".

i f H mod 2 = 0 then
while True loop

H := H;
end loop;

10 end i f ;
Write (Standard_Output ,

Character ’Pos(’!’));
end Leak;

0 procedure Leak (H : in out Byte) i s
K : Byte := 0;

begin
H := H;
while True loop

5 Write (Standard_Output , K);
i f K >= H then

while True loop
H := H;

end loop;
10 end i f ;

K := K + 1;
end loop;

end Leak;

Fig. 1. Termination leaks (left) and progress leaks (right) in SPARK

Progress. A termination insensitive flow analysis permits one bit to leak
through termination observations. Programs that pass such an analysis can leak
much more when a value can affect the progress the program makes on producing
its intermediate output [7]. A flow analysis that tracks such flows is progress sen-
sitive. The right panel of Fig. 1 shows the brute force attack by Askarov et al. [7]
modelled in SPARK. Here, Leak outputs on standard output all characters in
their ASCII number order up to the character numbered H, and diverges, thus
leaking all of H. Again, this program passes SPARK’s flow analysis, indicating
that the flow analysis is progress insensitive.

Summary. We studied SPARK’s flow analysis under three additional attacks:

– Resource Exhaustion: We replace nontermination in the progress attack with
abnormal termination (a stack overflow). We give two examples; one allocates
an array too large to fit on the stack, the other creates infinitely many stack
frames through infinite mutual recursion. Both pass analysis.

– Timing: A flow analysis is timing sensitive when it tracks whether a value can
affect the time an effect occurs. We replace nontermination in the termination
attack with a computation which takes considerable time (selection-sorting
216 bytes). The attack passes analysis.

– Explicit and Implicit flows: As a sanity check, we provide two implementations
of Leak: one creates an explicit flow from H to Standard Output, the other
an implicit flow. The attacks do not pass analysis.

Since SPARK detected the explicit and implicit flows, but failed to detect our
other attacks, it appears that SPARK enforces progress-insensitive security. As
demonstrated above, whole secrets can leak through progress. In this paper,
we harden SPARK’s flow analysis to detect progress leaks, to enforce progress
sensitive security. Addressing the other attacks is out of scope of this paper.

Progress-Sensitive Security for SPARK 25

3 Programs and Policies

We explain our ideas and results using a simple while language with flow annota-
tions, inputs, outputs, and arrays, which is a stripped down version of SPARK.
For a formal semantics and illustrative examples, see the appendix.

Programs. The syntax for our language is given in Fig. 2. Let p range over
programs, b over blocks, x over array names, e over expressions, n over integers,
c over channels, and � over (total) binary integer operators. Here, x[e] denotes
index e in array x . To model non-array variables, we write x as syntactic sugar
for x[0]. Statement c <- e outputs integer e to channel c, and c -> x[e] inputs
an integer on c and stores it in x[e]. The rest is standard.

Fig. 2. Program syntax (left) and CFG (right)

Control Flow Graphs. A control flow graph (CFG) represents a program as
a directed graph. The CFG of a program p is defined by → in Fig. 2; p′ is a
node iff p →∗ p′, and (p′, p′′) is an edge iff p′ and p′′ are nodes and p′ → p′′.
We distinguish two nodes in the CFG of program p: the START node p and
the END node skip. START is defined as the root of the graph. END has no
outgoing edges. Conventionally, CFG nodes are blocks, b. This representation is
obtained by dropping p from nodes of the form b; p and replacing if e { } { }
and while e { } nodes with branch e. See the appendix for an illustrative CFG.

Semantics. A program executes in a memory m : X × N → Z, which provides
a (mutable) binding for every location of every array (initially all set to 0 in the
initial memory m0), and an environment e : C → Z

ω, which provides an infinite
stream of input values on every channel. We use a small-step reduction relation
(e ,m, p)

o→(e ′,m ′, p′). Here, o: := • | !cv is the output of the reduction step; if
p = c <- e; p′, then o = !cv where v is the value e evaluates to; otherwise, o = •.
The full definition of

o→ is shown in the appendix. Let ō = o1 . . . on denote a
finite sequence of outputs, and let

ō→ = (
•→)*

o1→ (
•→)* . . . (

•→)*
on→, (

•→)*.
Our environments are total [32], i.e., never block output, and always pro-

vide input on request. This is a natural fit for SPARK, as safety-critical systems
typically perform nonblocking I/O (e.g. on files and POSIX shared memory
using read() and write() from the Single UNIX Specification). The endpoints
of channels thus, in general, form a collective store which can change indepen-
dently of the program, and provide input that depends on past output. However,

26 W. Rafnsson et al.

Clark and Hunt [15] have shown that when reasoning about security of deter-
ministic programs (as in our case), environments can be simplified to streams.
We use this simplification here. Programs can be composed securely under these
environments as long as their scheduler is secure and deterministic. For a more
complete and general treatment of composition, see [32,33].

Flow Policies. A flow policy expresses permitted flows between input and out-
put channels. We are interested in two kinds of dependencies: where input affects

Fig. 3. Syntax of flow policies

the presence (i.e. occurrence) resp. content (i.e.
value) of an output. The syntax of our flow pol-
icy language is given in Fig. 3. Let f range over
flow policy specifications, and d over dependen-
cies. The syntax c => c′ (resp. c -> c′) means
that content (resp. presence) of output on c is
allowed to depend on input on c′. For instance, a flow policy stating that (only)
the presence of output on StdErr (standard error) is allowed to depend on input
on StdIn (standard input) can be written as StdErr -> StdIn; null. Every flow
policy f straightforwardly yields a pair of functions (π, κ) where π(c) (resp. κ(c))
is the set of input channels on which the presence (resp. content) of output on c
may depend. We lift these functions to sets of channels: π(C) =

⋃
c∈C π(c) and

κ(C) =
⋃

c∈C κ(c).

4 Security Property

Consider a fixed policy (π, κ). Our attackers observe all outputs on some output
channels. An attacker or observer ω = (ωπ, ωκ) is a pair where ωπ (resp. ωκ) is
the set of channels on which the presence (resp. content) of outputs is observed.
If an observer sees the content of outputs on a channel, it can certainly detect the
presence of outputs on the channel, so we require ωκ ⊆ ωπ. Two environments
are equivalent to an observer ω if the environments agree on all input channels
that may flow to outputs visible to ω.

Definition 1 (ω-equivalence of e). e and e′ are ω-equivalent, e ∼ω e′, iff
∀c ∈ π(ωπ) ∪ κ(ωκ) � e(c) = e′(c).

The observables in an output are defined as follows: !cv�ω = !cv if c ∈ ωκ,
!cd if c ∈ ωπ \ ωκ, and • otherwise (here d is a default output, like null or
0). We remove the unobservables of a sequence of outputs ō follows: ε�ω = ε,
(o.ō)�ω = ō�ω if o�ω = •, and (o�ω).(ō�ω) otherwise.

Definition 2 (ω-equivalence of ō). ō and ō′ are ω-equivalent, ō ∼ω ō′, iff
ō�ω = ō′�ω.

Our security property, progress-sensitive noninterference (psni), requires
that under observably equivalent environments, a program must be able
to componentwise observably-equivalently match observable outputs in its
behaviors [8,12,31,32]. For an example involving psni, see the appendix.

Progress-Sensitive Security for SPARK 27

Definition 3 (Progress-sensitive Noninterference). p satisfies psni iff

∀ω, e, e′ � e ∼ω e′ =⇒ ∀ō � (e,m0, p)
ō→ =⇒ ∃ō′ � (e′,m0, p)

ō′
→ ∧ ō ∼ω ō′.

5 Enforcement

SPARK implements a dependency analysis on control flow graphs that pre-
vents all explicit and implicit information leaks, but does not prevent leaks due
to progress and termination. In this section, we explain how to augment such
a dependency analysis with a loop termination oracle to enforce the stronger
property progress-sensitive noninteference (psni, Definition 3). While loop ter-
mination oracles have been combined with type sytems to enforce psni in prior
work (e.g., [28]), our technical development makes three novel contributions:
(1) We use a graph-based analysis to enforce psni (2) Our dependency analy-
sis handles reactive programs, and (3) Our dependency analysis accounts for
the difference between output content and output presence. In the following,
we describe our analysis for the core language from Sect. 3 and prove that it
enforces psni. The core language captures all essential features of SPARK, so
generalizing the analysis to all of SPARK should not be difficult.

Standard Data- and Control-Dependency Analysis. SPARK’s flow analy-
sis uses standard dependency analysis [20,26], which we review briefly. We say
that a node b in a CFG reads array x if b contains x in at least one location
other than x[. . .] := Dually, b writes to array x if b = (x[e] := e ′). Node
b reads a channel c if b = (c -> . . . [. . .]). Dependency analysis outputs all the
nodes of the CFG on which a given node is data dependent or control dependent.
Data dependence arises due to data flow. E.g., in x = 1; y = 3; z = x + 2;
a = z, the statements z = x + 2 and a = z are data dependent on the state-
ment x = 1, but not on y = 3. Similarly, in the example of Fig. 1 (right), the
statements on lines 5 and 6 (output and branch K >= H, respectively) are data
dependent on the statement K := K + 1 on line 11.

Definition 4 (Data Dependence). A node b is data dependent on node b′ in
a CFG G, written ddG(b′, b), if there is a path b′ →∗ b ∈ G and there is an
array that b′ writes and b reads, or there is a channel that both b and b′ read.

Note that the statement in b does not have to be an assignment; the definition
implies a data dependence from x = y to c <- x in program x = y; c <- x.
Also, as commonly assumed by flow analyses in prior work, e.g. Jif [30] and
Paragon [14], our definition of data dependence is flow-insensitive. This means
it ignores the effects of writes in nodes strictly between b′ and b ; in program x
= y; x = 0; z = x, node z = x is data dependent on the node x = y by our
definition, even though x is overwritten by a constant between the nodes. (We
use some lemmas from [1] in our proofs, but this difference does not impact those
lemmas.) For clues on how to make this definition flow-sensitive, see [23].

Control dependence captures influence due to branches. In the program
if (x > 0) { y = 1 } else { y = 2 }; z = 1, both the nodes y = 1 and

28 W. Rafnsson et al.

y = 2 are control dependent on the branch node x > 0. However, the node
z = 1 is not control dependent on x > 0 because it executes irrespective of
the outcome of the test x > 0. There are many different definitions of control
dependence in literature (see [34] for a survey). We define here the most standard
notion of control dependence, which suffices for our purposes. We say that node
b post-dominates b′ if every path from b′ to END passes through b.

Definition 5 (Control Dependence [1]). A node b is control dependent on
node b′ in a CFG G, written cdG(b′, b), if the following hold: (1) Either b = b′ or
b does not post-dominate b′ in G, and (2) There is a nontrivial path b1 → . . . →
bk ∈ G with b1 = b′, bk = b such that for all i ∈ 2 . . . k − 1, b post-dominates bi.

For block-structured languages such as SPARK and the core calculus of
Sect. 3, a node b is control dependent on node b′ iff b is a branch or loop condition
and b′ lies within that branch or loop. However, control dependence is defined on
arbitrary CFGs, even those without block structure (we exploit this generality
later). Combining data- and control-dependency analysis, we define dependence
as the reflexive-transitive closure of the data- and control-dependence relations.
For example, in the program of Fig. 1 (right), the while loop on line 7 is depen-
dent on the statement K := K + 1 on line 11 because the condition K >= H on
line 6 is data-dependent on line 11, and line 7 is control-dependent on line 6.
The set of all nodes on which a node b depends is called b’s backward slice.

Definition 6 (Dependence and Backward Slice). The dependence relation
depG for CFG G is defined as (ddG ∪ cdG)∗. The backward slice of node b,
BSG(b) = {b′ | depG(b′, b)}, is the set of all nodes on which b is dependent.

Information Flow Control Using Dependency Analysis. The dependence
relation depG captures all explicit and implicit flows, and, hence, can be used
for enforcement of information flow policies. There are well-known algorithms
to compute dependencies and backward slices efficiently, e.g., [26]. This analy-
sis is already implemented in SPARK. However, noninterference enforced this
way is progress-insensitive because the dependency analysis described above
does not take into account nonterminating loops. For instance, the program of
Fig. 1 (right) passes SPARK’s dependency analysis, even though it leaks H to
a progress-sensitive adversary who can observe K. Additionally, the method so
far has been limited to sequential programs where the adversary makes only
one observation at the end of the program. We explain how the method can
be adapted to enforce progress-sensitive noninterference on reactive programs,
additionally accounting separately for output content and output presence.

Progress-sensitive Dependence. A leak due to progress happens when an
attacker-visible output is pre-empted due to the nontermination of a branch
with a secret branch condition. Our simple insight is that such leaks can be
detected by a dependence analysis if we ensure the following:

Requirement 1. An output that can be reached after the end of a branch is
dependent on the branch point if some loop in the branch may diverge.

Progress-Sensitive Security for SPARK 29

To implement Requirement 1, we use a static termination analysis, often
called a termination oracle [17,27,45]. This oracle determines which loops in
the program may diverge. We add an edge from every node in such a loop to
the END node of the CFG. It is easy to check that the modified CFG satisfies
Requirement 1 if the termination oracle is sound, i.e., it flags all loops that
diverge on some input. A trivial, sound termination oracle marks every loop as
potentially non-terminating. The use of this oracle in our analysis causes every
program that contains an attacker-visible output after a loop with a secret loop
condition to be marked as leaky, irrespective of whether or not the loop diverges,
which may result in false positives. This corresponds exactly to termination-
sensitive analyses developed by Smith [41] and Boudol and Castellani [13]. False
positives can be reduced using a more precise termination oracle. For example,
the program while (h <> h) { }; l = 1 does not have a flow (via progress
or otherwise) from the input variable h to the output variable l, but the trivial
oracle above will cause this program to be marked leaky by the analysis. On
the other hand, a slightly better oracle that uses symbolic analysis to infer that
(h <> h) is always false will cause the program to be accepted. In general,
fewer false positives in the termination oracle translate to fewer false positives in
our dependence analysis. Consequently, we present our analysis parametrically
in the termination oracle, leaving it to the specific implementation to decide
how many resources to devote to the oracle (and, hence, how much precision to
obtain).

Definition 7 (Termination Oracle). A termination oracle T is a function
that maps a CFG to a subset of the CFG’s nodes. T is sound if for every CFG
G and every node b ∈ G, b ∈ T (G) if there is a memory m and environment e
such that b appears infinitely often in the reduction sequence starting from the
state (e,m,START).

Definition 8 (Progress-sensitive Graph). Given a control flow graph G and
a termination oracle T , the progress-sensitive CFG psT (G) is defined by adding
to G the edges {(b,END) | b ∈ T (G)}.

For the program of Fig. 1 (right), a sound termination oracle T will say that
the while loop on line 7 is nonterminating and, hence, psT (G) will contain an
edge from the branch condition of the loop to the end of the program. This makes
the output statement on line 5 dependent on the branch condition K >= H and,
hence, a dependency analysis will discover the progress leak in the program.
Note that psT (G) may not correspond to any block-structured program.

Enforcing PSNI with Content and Presence Distinction. Our analysis
takes as input a policy f and a program p. It works as follows. Let G be p’s
CFG. We compute the progress-sensitive CFG G′ = psT (G). Then, for each
node b ∈ G′ that outputs to some channel c, we compute the backward slice
of b in G′, and check that the policy relation κ allows a flow to c from any
channel c′ on which an input is made in the backward slice. This ensures that
information flows to the content of messages on c only in accordance with the

30 W. Rafnsson et al.

policy. To account for flows due to presence of outputs on c, we compute a second
backward slice from the same node b, but after erasing the payload of the output
in b. We check that the policy relation π (not κ) allows a flow to c from any
channel c′ on which an input is made in this backward slice. Thus, by computing
two backward slices per output node, we capture separate observations of content
and presence. In the sequel, we assume a fixed policy f = (κ, π).

Definition 9 (Enforcement of PSNI). Let p be a program with CFG G. Let
G′ = psT (G). We say p passes the psni enforcement, written checkT (p), if the
following hold for any node b of the form c <- e in G′:

1. If c′ -> x[e ′] ∈ BSG′(b) then c′ ∈ κ(c).
2. If c′ -> x[e ′] ∈ BSĜ′(b̂) then c′ ∈ π(c), where Ĝ′ is obtained by replacing b

with b̂ = c <- d in G′.

Our main theorem is that the enforcement above is sound: If checkT (p),
then p satisfies psni. We prove the theorem using bisimulations on backward
slices [1]. Our proof is inspired by a related proof for enforcement of progress-
insensitive noninterference in a sequential language [50]. In contrast to that proof,
our proof captures progress-sensitive noninterference for a reactive language.
Handling reactivity is quite involved: With multiple outputs, we have to argue
that the order of observable outputs (at different program points) is independent
of secret inputs. To do this, we construct a hypothetical slice that is the union of
slices from all outputs visible to a given adversary. See the appendix for details.

Theorem 1 (Soundness of Enforcement). If T is a sound termination ora-
cle and checkT (p), then p satisfies psni.

6 Source-to-Source Transform

The previous section describes a CFG transformation which ensures Require-
ment 1 – that any outputs after a potentially divergent branch depend on the
branch’s condition, which is used to enforce psni. In this section, we describe a
source-to-source transform that also implies Requirement 1. The transform can
be used to enforce psni using a standard, unmodified (and, hence, closed-source)
dependency analysis of the kind that exists for SPARK.

The goal of our source-to-source transform, like the CFG transform, is to
add a direct path from every potentially infinite loop to the end of the program.
If the existing dependency analysis supports programmatic exceptions, then the
transform is trivial: Just before every potentially infinite loop (identified by the
oracle T), we add a statement to raise an unhandled exception, conditional on
an unsatisfiable predicate. This has the effect of simulating an edge from the
loop to the end of the program because the exception is not handled anywhere.
It is quite easy to see that this has the same effect as the CFG transform. For
example, the program in the right of Fig. 1 would be transformed to the program
in the left of Fig. 4. Observe the new line 12 with the raise statement.

Progress-Sensitive Security for SPARK 31

0 procedure Leak (H : in out Byte) i s
E : exception; -- new exception
X : Byte := 0;
K : Byte := 0;
O : File_Type := Standard_Output;

5 begin
H := H;
i f X = 1 then raise E; end i f ;
while True loop

10 Write (O, K);
i f K >= H then

i f X = 1 then raise E; end i f ;
while True loop

15 H := H;
end loop;

end i f ;
K := K + 1;

end loop;
20 end Leak;

0 procedure Leak (H : in out Byte) i s
E : Byte := 0; -- E := 1 when an

-- exception is raised
K : Byte := 0;
O : File_Type := Standard_Output;

5 begin
i f E = 0 then H := H; end i f ;
i f E > 0 then E := 1; end i f ;
while E = 0 and then True loop

E := E;
10 i f E = 0 then Write (O, K); end i f ;

i f E = 0 and then K >= H then
i f E > 0 then E := 1; end i f ;
while E = 0 and then True loop

E := E;
15 i f E = 0 then H := H; end i f ;

end loop;
end i f ;
i f E = 0 then K := K + 1; end i f ;

end loop;
20 end Leak;

Fig. 4. Source-to-source transformation of the program in the left of Fig. 1, using excep-
tions (left) and using an emulation of exceptions (right)

If the flow analysis, like SPARK, does not track flows through exceptions 1,
then the source-to-source transform can emulate an exception by adding a new
boolean variable, say E, initially set to 0. E is set to 1 where the exception is
to be raised, and the program is transformed to check that E is still 0 before
executing any statement or entering any branch of the original program. This
ensures that once the exception is “raised” (E is set to 1), no statement from
the original program executes and control propagates to the end of the program
silently. This transform can be defined formally, but we only illustrate it for the
progress leak in Fig. 1 in the right panel of Fig. 4. Observe that there is now a
dependency between the branch condition K >= H and the output statement on
line 10.

We note that to enforce psni, the dependency analysis should be applied
directly to the output of either of the two transforms described above, with-
out any intervening compiler optimizations. Such optimizations can negate the
effects of our transforms. For instance, constant propagation followed by dead
code elimination would remove the two raise statements on lines 7 and 12 in the
left panel of Fig. 4 and, hence, also remove the control dependencies introduced
deliberately by the transform.

7 Case Study

We demonstrate the usefulness of our approach on a nontrivial application by
implementing a control system for a cruise missile (derived from publicly avail-
able code by Hilton [25]), and applying our approach on the code to prove desired
1 The SPARK 2014 documentation states that SPARK programs are allowed to raise

exceptions, but may not handle them. However, in our experiments with SPARK
GPL 2015, we found that the flow analysis did not track flows through exceptions.

32 W. Rafnsson et al.

properties. The code steers the missile towards a target coordinate, and deto-
nates a nuclear warhead once within range, or self-destructs in the event that
a device fails. The code is intended to be an illustrative model native to the
domain of SPARK. The code makes several simplifications (e.g. the missile flies
in 2D space), and there are many safety- and mission-critical considerations for
more realistic missile control systems that we have not considered. For details
on such considerations, see Hilton [25]. We give an overview of our case study
(all our code is online [49]).

The missile has three sensors: a failure detector, which reports when a device
has failed; an intertial navigation system, which provides spatial orientation and
displacement readings (via accelerometers and a ring laser gyroscope) for naviga-
tion by dead reckoning; and a clock, used to calculate orientation and displace-
ment from accelerometer readings through integration. Using these readings,
the code controls three actuators: a watchdog, which, if not actuated at regu-
lar intervals, triggers self-destruction (to avoid unwanted consequences of device
or software failure); a nuclear warhead, which is detonated when the missile
reaches its target; and steering, consisting of aerodynamic fins which the code
actuates for trajectory corrections. Architecturally, our code draws inspiration
from an existing case study on implementing a controller for a water boiler [43,
Section 7]. The Main module consists of a sense-control-actuate loop, in which
it commands the sensor modules to read from their device, uses these readings
to compute values to control the actuators, and invokes the actuator modules to
actuate their device. The inter-module information flows are given in Fig. 5.

Fig. 5. Inter-module information flows in the missile control system

To illustrate our approach, we aim to prove that orientation does not affect
self-destruction. The body of the Main procedure, in the left of Fig. 6, is of
primary concern. Without our approach, since SPARK assumes loops terminate,
reaching “Watchdog.Actuate” in each iteration is deemed inevitable by SPARK,
so SPARK (incorrectly) claims the presence of a destruct event does not depend
on any input. However, if we instead apply the SPARK analysis on the code
resulting from applying our source-to-source analysis from Sect. 6 on the missile
control system source code, we get a different result: SPARK (correctly) infers
that the presence of a destruct event depends only on device failure. This can
be seen by inspecting the result of the transformation of the main loop, in the
right of Fig. 6. Since both loops are of the form “while True loop”, any sound

Progress-Sensitive Security for SPARK 33

termination oracle would flag them both as possibly diverging. Hence we emulate
a raised exception before both loops, and add a check on variable E to each
branch. SPARK no longer deems that reaching “Watchdog.Actuate” is inevitable;
it now depends on the value of E. SPARK deems that the value of E depends on
Destruct, since there is an assignment to E under a branch on Destruct. Since
Destruct depends only on device failure, and since the only other assignment
to E branches only on E, self-destruction depends only on device failure.

8 Related Work

We focus on the three most closely related areas of work: information flow tools,
progress-sensitive security, and information flow analysis for SPARK.

Information Flow Tools. As mentioned before, much progress has been made
on enforcement of increasingly rich policies for increasingly expressive program-
ming languages. This has resulted in tools for mainstream programming lan-
guages as FlowFox [22], JSFlow [24] and IFC4BC [10] for JavaScript, Jif [30],
Paragon [14] and JOANA [23] for Java, FlowCaml [40] for Caml, LIO [47]
for Haskell, and SPARK flow analysis [9] for SPARK. With the exception of
the latest versions of LIO, these tools target progress-insensitive noninterfer-
ence [7,8,12], allowing secrets to affect progress of public computation. With
the focus on the termination and timing channels, Stefan et al. [46] introduced
restrictions in LIO on side effects that follow secret branching, which help enforce
stronger policies.

0

while True loop
-- [...] (sense , control)
Steer.Actuate;
i f Destruct then

5 -- block watchdog.
while True loop

null;
end loop;

end i f ;
10 Watchdog.Actuate;

i f Detonate then
Warhead.Actuate;

end i f ; -- [...]
end loop;

0 i f E > 0 then E := 1; end i f ;
while E = 0 loop

E := E; -- [...] (sense , control)
i f E = 0 then Steer.Actuate; end i f ;
i f E = 0 and then Destruct then

5 i f E > 0 then E := 1; end i f ;
while E = 0 loop

E := E; null;
end loop;

end i f ;
10 i f E = 0 then Watchdog.Actuate; end i f ;

i f E = 0 and then Detonate then
Warhead.Actuate;

end i f ; -- [...]
end loop;

Fig. 6. Main loop, before (left) and after (right) transformation

Progress-sensitive Security. Progress-sensitive noninterference [6,8,12,31,32]
(psni) disallows progress leaks. psni is not susceptible to laundering secrets by
brute-force attacks [7] or re-running programs [11]. A typical approach to enforc-
ing psni is to disallow loops with secret guards, going back to Volpano and Smith’s
technique to deal with termination leaks [48], or to allow loops with secret guards
but prohibit assignments to public variables that follow such loops [13,41]. While

34 W. Rafnsson et al.

the theory of progress-sensitive security has been explored [6,8,12,31,32], our
work connects the theory with tools, showing how we can leverage a progress-
insensitive tool (SPARK’s flow analysis) to achieve psni. Related to our source-to-
source transform, Russo et al. [36] discuss magnification patterns in the context of
distinguishing flows in malicious and nonmalicious code. A magnification pattern
in a control-flow graph consists of a branching on a secret guard inside of a loop.
We note that in the absence of such patterns (as is sometimes the case in non-
malicious code [36]), progress-sensitive security and progress-insensitive security
coincide. Moore et al. [28] use termination oracles for termination-sensitive track-
ing. Their prototype implementation utilizes an SMT solver to analyze examples
in a simple imperative language. While related, there are several distinguishing
features of our work: we focus on practical information flow control in SPARK
and push the approach to the full SPARK language; our case study goes beyond
code snippets to a suite for a missile controller; on the theoretical side, our frame-
work is graph-based, which opens up possibilities for natural adoption to other
graph-based tools such as JOANA [23].

Information flow Analysis in SPARK. A line of work by Amtoft et al. shares
with our work the motivation to improve SPARK’s information flow analysis.
Based on an expressive information logic [2], they enhance the information flow
contract language to support compositional policies and conditional informa-
tion flows [5]. They improve the precision of the analysis by breaking out of a
limitation of the original analysis that treats arrays as indivisible entities and
evaluate the approach on a collection of SPARK programs [4]. They extend the
logical framework to produce machine-checkable formal certificates of correct-
ness for verified code [3]. Extending the results by Amtoft et al. to guarantee
progress-sensitive security is a promising direction for future work.

9 Conclusion

This paper puts a spotlight on the SPARK flow analysis. Articulating the bound-
aries of what is achievable by the analysis, we spell out the attacks to exploit
such channels as termination, progress, resource exhaustion, and timing chan-
nels. We suggest how to harden the analysis to achieve security against stronger
attackers, with the focus on progress-sensitive security as our baseline. Instead
of redesigning and reimplementing the enforcement, we show how to leverage
known flow analyses for weaker attackers by a transform on program depen-
dence graphs. The graph transform represents termination and progress flows
by injecting additional edges. We establish the soundness of this approach for
a core language and demonstrate that it can be applied as a source-to-source
transform of SPARK code when modifying the compiler is undesirable. A case
study with a control unit of a missile written in SPARK 2014 indicates the
usefulness of the approach. Future work is focused on enriching the policy and
enforcement mechanisms with possibilities for declassification [38], a feature on
the wish list of the SPARK developers [35]. We are also interested in extending

Progress-Sensitive Security for SPARK 35

the framework with treating resource exhaustion and timing leaks and exploring
more sophisticated attacks.

Acknowledgments. Thanks are due to Angela Wallenburg for inspiration and regular
updates about developments on SPARK. This work was funded by the European Com-
munity under the ProSecuToR and WebSand projects, the Swedish research agencies
SSF and VR and the German DFG priority program “Reliably Secure Software Sys-
tems” (RS3). This research was supported in part by US Navy grant N000141310156;
NSF grants 1320470.

References

1. Amtoft, T.: Slicing for modern program structures: A theory for eliminating irrel-
evant loops. Inf. Process. Lett. 106(2), 45–51 (2008)

2. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: POPL, pp. 91–102 (2006)

3. Amtoft, T., Dodds, J., Zhang, Z., Appel, A., Beringer, L., Hatcliff, J., Ou, X.,
Cousino, A.: A certificate infrastructure for machine-checked proofs of conditional
information flow. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and
Trust. LNCS, vol. 7215, pp. 369–389. Springer, Heidelberg (2012)

4. Amtoft, T., Hatcliff, J., Rodŕıguez, E.: Precise and automated contract-based rea-
soning for verification and certification of information flow properties of programs
with arrays. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 43–63.
Springer, Heidelberg (2010)

5. Amtoft, T., Hatcliff, J., Rodŕıguez, E., Robby, E., Hoag, J., Greve, D.: Specification
and checking of software contracts for conditional information flow. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 229–245. Springer,
Heidelberg (2008)

6. Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninterfer-
ence. In: CSF, July 2015

7. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008)

8. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: Proceeding of the IEEE Computer Security Foundations
Symposium, July (2009)

9. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

10. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
webkit’s javascript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS
2014). LNCS, vol. 8414, pp. 159–178. Springer, Heidelberg (2014)

11. Birgisson, A., Sabelfeld, A.: Multi-run security. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 372–391. Springer, Heidelberg (2011)

12. Bohannon, A., Pierce, B., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive nonin-
terference. In: ACM Conference on Computer and Communications Security, pp.
79–90, November 2009

13. Boudol, G., Castellani, I.: Non-interference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1), 109–130 (2002)

36 W. Rafnsson et al.

14. Broberg, N., van Delft, B., Sands, D.: Paragon for practical programming with
information-flow control. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp.
217–232. Springer, Heidelberg (2013)

15. Clark, D., Hunt, S.: Noninterference for deterministic interactive programs. In:
Workshop on Formal Aspects in Security and Trust (FAST 2008), October 2008

16. Cohen, E.S.: Information transmission in sequential programs. In: DeMillo, R.A.,
Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation,
Academic Press, pp. 297–335 (1978)

17. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426 (2006)

18. Denning, D.E.: A lattice model of secure information flow. Comm. ACM 19(5),
236–243 (1976)

19. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Comm. ACM 20(7), 504–513 (1977)

20. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

21. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of the IEEE Symposium on Security and Privacy, pp. 11–20, April 1982

22. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: A web browser
with flexible and precise information flow control. In: ACM Conference on Com-
puter and Communications Security (2012)

23. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009)

24. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking information
flow in JavaScript and its APIs. In: Proceeding of the 29th ACM Symposium on
Applied Computing (2014)

25. Hilton, A.J.: High Integrity Hardware-Software Codesign. Ph.D. thesis, The Open
University, April 2004

26. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI, pp. 35–46 (1988)

27. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

28. Moore, S., Askarov, A., Chong, S.: Precise enforcement of progress-sensitive secu-
rity. In: ACM Conference on Computer and Communications Security, pp. 881–
893(2012)

29. The Muen Separation Kernel. http://muen.codelabs.ch/
30. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java Infor-

mation Flow. Software release. Located at, July 2001 http://www.cs.cornell.edu/
jif

31. O’Neill, K., Clarkson, M., Chong, S.: Information-flow security for interactive pro-
grams. In: Proceedings of the IEEE Computer Security Foundations Workshop,
pp. 190–201, July 2006

32. Rafnsson, W., Hedin, D., Sabelfeld, A.: Securing interactive programs. In: Pro-
ceedings of the IEEE Computer Security Foundations Symposium, June 2012

33. Rafnsson, W., Sabelfeld, A.: Compositional security for interactive systems. In:
CSF, pp. 277–292 (2014)

34. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29, 5 (2007)

http://muen.codelabs.ch/
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

Progress-Sensitive Security for SPARK 37

35. Refined Information Flow Requirement. http://lists.forge.open-do.org/pipermail/
spark2014-discuss/2012-December/000683.html

36. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code.
2009 Marktoberdorf Summer School (IOS Press) (2009)

37. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

38. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

39. Workstation, M.: High-Security Framework, Pilot, and Formalization Architec-
ture. http://www.secunet.com/fileadmin//sina downloads/Produktinfo englisch/
SINA-Multilevel Brochure en.pdf

40. Simonet, V.: The Flow Caml system. Software release. Located at, July 2003.
http://cristal.inria.fr/∼simonet/soft/flowcaml

41. Smith, G.: A new type system for secure information flow. In: Proceedings of the
IEEE Computer Security Foundations Workshop, pp. 115–125, June 2001

42. SPARK (programming language). http://en.wikipedia.org/wiki/SPARK
%28programming language%29

43. Development, T.: Support: INFORMED Design Method for SPARK. http://docs.
adacore.com/sparkdocs-docs/Informed.htm

44. SPARK (2014). http://www.spark-2014.org/
45. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based

on path-length. ACM Trans. Program. Lang. Syst. 32(3), Article no. 8, 70 (2010)
46. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Maziéres, D.: Addressing

covert termination and timing channels in concurrent information flow systems. In:
ICFP, pp. 201–214 (2012)

47. Stefan, D., Russo, A., Mitchell, J., Mazières, D.: Flexible dynamic information
flow control in haskell. In Proceedings of the Haskell Symposium, pp. 95–106.
ACM (2011)

48. Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Pro-
ceedings of the IEEE Computer Security Foundations Workshop, pp. 156–168,
June 1997

49. Rafnsson, W., Garg, D., Sabelfeld, A.: Progress-Sensitive Security forSPARK. Full
version: http://research.precise.li/pub/2016essos

50. Wasserrab, D., Lohner, D., Snelting, G.: On PDG-based noninterference and its
modular proof. In: PLAS, pp. 31–44 (2009)

http://lists.forge.open-do.org/pipermail/spark2014-discuss/2012-December/000683.html
http://lists.forge.open-do.org/pipermail/spark2014-discuss/2012-December/000683.html
http://www.secunet.com/fileadmin//sina_downloads/Produktinfo_englisch/SINA-Multilevel_Brochure_en.pdf
http://www.secunet.com/fileadmin//sina_downloads/Produktinfo_englisch/SINA-Multilevel_Brochure_en.pdf
http://cristal.inria.fr/~simonet/soft/flowcaml
http://en.wikipedia.org/wiki/SPARK_%28programming_language%29
http://en.wikipedia.org/wiki/SPARK_%28programming_language%29
http://docs.adacore.com/sparkdocs-docs/Informed.htm
http://docs.adacore.com/sparkdocs-docs/Informed.htm
http://www.spark-2014.org/
http://research.precise.li/pub/2016essos

Sound and Precise Cross-Layer Data
Flow Tracking

Enrico Lovat1, Mart́ın Ochoa2(B), and Alexander Pretschner1

1 Technische Universität München, Munich, Germany
{enrico.lovat,alexander.pretschner}@in.tum.de

2 Singapore University of Technology and Design, Singapore, Singapore
martin ochoa@sutd.edu.sg

Abstract. We connect runtime monitors for data flow tracking at dif-
ferent abstraction layers (a browser, a mail client, an operating system)
and prove the soundness of this generic model w.r.t. a formal notion of
explicit information flow. This allows us to (1) increase the precision of
the analysis by exploiting the high-level semantics of events at higher
levels of abstraction and (2) provide system-wide guarantees at the same
time. For instance, using our model, we can soundly reason about the
flow of a picture from the network through a browser into a cache file or
a window on the screen by combining analyses at multiple layers.

1 Introduction

Research in data flow tracking [4,22] tackles the problem of monitoring flows of
data from sources (i.e. input parameters to methods, sockets, files) to sinks (i.e.
outputs to sockets, files). Data flow analysis systems can answer the question if
data has (potentially) flowed, or will (potentially) flow, from a source to a sink.

Dynamic approaches for data-flow tracking implement reference monitors
at various levels of abstraction: binary code, Java bytecode, operating systems,
and dedicated applications. Dynamic analyses can exploit layer-specific semantic
information and be precise in the presence of reflection or call-backs. They can-
not, by definition, detect flows that are a consequence of non-executed branches
and they do impose a non-negligible runtime overhead. In the absence of OS-layer
monitoring and if monitoring is not done at the binary level, dynamic analysis
results are confined to the considered layer. In this paper, we elaborate on the
idea of using multiple monitors at different layers, with the goal of improving
the precision of the single layers by exploiting known relations between them.

As an example, consider Fig. 1 where an application loads two files from
the OS and then saves one of them with a different name. Data d, contained
in the first file file f , enters the application via container src1 (1), is prop-
agated through the application internals (2) and finally leaves the applica-
tion (3). If dynamic monitoring was performed solely at the OS layer, the analysis
would report data e to have flowed to file i as well— which is sound but over-
approximating. If monitoring was solely performed at the application level, data
flows at the OS layer could not be observed, e.g., the flow of data d from file i
to file h.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 38–55, 2016.
DOI: 10.1007/978-3-319-30806-7 3

Sound and Precise Cross-Layer Data Flow Tracking 39

Fig. 1. Intra-app data flow example

Using monitors at multiple layers, two
in this example, allows us to increase preci-
sion of single-layer analyses, to detect and
control system-wide (rather than program-
wide) data flows, and to exploit semantic
information at various layers.

It has been shown [7,26,27] that
dynamic analyses can be performed at the
level of every piece of binary code that is
executed. This obviates the need for multi-
ple layers. However, in addition to overhead
issues of purely dynamic solutions, at low

levels it is also hard to detect and model semantics of high-level events (like
“take a screenshot”) or objects (like “a mail”). While implementations of such
system-wide information-flow trackers exist [7,26,27], we are not aware of any
formal description of the guarantees that can be provided. Using monitors at
levels different from the binary code, we decrease the number of events that
need to be intercepted and exploit semantic information of the single levels.

Information flow researchers consider both explicit and implicit flows (as in
non-interference [9]). Our work focuses on explicit data flows only, with the well-
known limitations that this choice entails. The reason is twofold: first, we want
to take advantage of the semantic information gained by monitoring high-level
events (e.g. “play” or “forward”) and those events typically involve only explicit
data flows (such as copying data from a file to another). Second, many implicit
flows are harmless in practice (e.g., the famous password-checking example [21]),
such that by enforcing strict non-interference one is likely to severely hamper
the intended functionality of a system. Enhancing our cross-layer analysis to
include some implicit information flows while preserving functionality requires
non-trivial declassification policies and is left to future work.

The problem that we tackle is the following. We assume that there are
dynamic analyses at two or more levels, all of them different from that of CPU-
level instructions, including operating system, application level, database, pro-
gramming language and window manager. How can we connect the analysis
results of the different layers, and what guarantees can we give?

Our contributions are (a) a formal definition of soundness of data flow
tracking for single levels different from that of the CPU; (b) a formal definition
of soundness of data flow tracking when multiple layers are combined; (c) a
generic schema to compose data flow analyses at various levels and that thus
enables us to detect system-wide data flows; and (d) a proof that this generic
schema returns sound data flow results, provided that the single layers are correct
and given some partial information about shared resources at both layers.

We do not discuss implementations of this model due to space restrictions,
but we point to examples in Sect. 7, where some strategies for cross-layer compo-
sition described here have been applied without a proper formal justification and
with implicit assumptions that we now make explicit. See [15] for more details.

40 E. Lovat et al.

The rest of the paper is organized as follows: Sect. 2 introduces fundamental
concepts and sets the notation for the rest of the paper. Section 3 discusses
the security guarantees for single layers. Section 4 defines layer composition and
extends the soundness notion to composed systems. Section 5 presents the main
result of the paper, i.e. an algorithm for soundly composing monitor results at
different abstraction layers. In Sect. 6 we review related work and we conclude
in Sect. 7.

2 Background and Roadmap

We consider flows in systems described as tuples (E ,D, C, Σ, σi,R) for system
events E , data items D (e.g., “a picture”), and containers C (these are repre-
sentations: a pixmap, a file, a memory region, a set of network packets, and so
on). For the time being, these systems can be understood as single layers. In the
following we assume that the alphabet of system events E , the set of data items
D and the set of containers C can be of arbitrary but finite size.

States Σ are defined by a storage function of type C → P(D) that describes
which set of data is potentially stored in which container. Data items will be
often referred to as labels in the following.

The transition function R : Σ × E → Σ is the core of the data-flow tracking
model, encoding how the execution of events affects the dissemination of data
in the system (and therefore also referred to as a monitor in the following). At
runtime, events are intercepted and the data state is updated according to R.
R applied to a sequence of events is the recursive application to each event in
the sequence (i.e. R(σ, 〈e1, 〈...〉〉) = R(R(σ, e1), 〈...〉).
Abstraction Layers: We will show desirable properties by relating the model
for one layer A to a very low level model ⊥ with intuitive completeness and
correctness properties. Layer A can be an operating system, a data base, a
windowing system, an application, etc. ⊥ is the level of the CPU and volatile as
well as persistent memory cells, and represents the real execution of the system.
Let V be the set of all total functions of type C⊥ → N that map containers
to actual values stored in memory. We provide level ⊥ with a function v ∈ V,
that indicates the current state of memory, and a trace execution semantics
eval : V × seq(E⊥) → V that describes the state after executing a trace, such
that the system at ⊥ is given by (E⊥,D⊥, C⊥, Σ⊥, σi,R⊥,V, eval).

A in contrast is some distinct higher layer. Set L denotes the set of all these
high levels, while L⊥ = L ∪ {⊥}. Data D is layer-independent. For † ∈ L,
C† denotes the set of representations of some data item at layer †. To relate
two layers, we assume pairs of functions γ and α that relate events and con-
tainers as follows. The idea is that an A-level container corresponds to a set of
⊥-level containers (volatile and persistent memory cells) and an A-level action to
a sequence of CPU -level instructions (machine instructions such as MOV, BNE,
ADD, LEQ). For a layer † ∈ L⊥, each state σ† ∈ Σ† is defined by the respective
storage function. Additionally, for ⊥, v ∈ V encodes the memory state.

Sound and Precise Cross-Layer Data Flow Tracking 41

Relating Events and States: In the following we will introduce abstraction and
concretization functions that relate events and states at a higher abstraction
level with ⊥. This notation will allow us to define formal soundness properties.
Note that our goal is to reason about what happened at the ⊥ level, without
monitoring it, by assuming availability of partial information on the abstrac-
tion/concretization functions. This will be made operational in practice by ora-
cles, as we will discuss in Sect. 5. For the moment, concretization and abstraction
functions are ideal : they relate to “what has really happened” in a monitored
system, and where for instance scheduling of concurrent processes has already
been fixed.

Traces are sequences of events that reflect the execution of some functionality
at a specified layer. A trace t ∈ seq(E†) at layer † ∈ L is thus the sequence of
events generated by the system during a specific run (e.g. “print x” or “mov
AX,BX”). At the ⊥-level, traces are sequences of CPU instructions.

We assume events to be unique to exactly one level and to contain an implicit
timestamp and duration, yielding a natural order on a trace’s events. Each event
at a higher layer corresponds to a sequence of CPU-level instructions. For sim-
plicity’s sake, we assume that we can bijectively map an abstract sequence
of events to a concrete sequence of ⊥-events. This embodies the fundamental
assumption of a single-core system: all traces can be uniquely sequentialized.
While a single-core can simulate parallelism alternating execution of different
tasks, we assume that events at high levels happen sequentially (e.g. first save
file1 and then load file2). This allows us to use a simpler notation in these
introductory sections. In Sect. 5 we relax this assumption, because serializable
traces can capture also concurrent executions.

Moreover, we deliberately discard events at ⊥ that do not correspond to an
event at a higher layer, e.g. those generated by an application for which there
is no explicit monitor. The implication is that our approach can only be sound
w.r.t. those CPU-level instructions for which a monitor at some level exists.

In the following, we define abstraction and concretization functions for events
and states. For this purpose, we redefine α and γ as follows. Let † ∈ L:

Events : γ† : seq(E†) → seq(E⊥), α† : seq(E⊥) → seq(E†)
States : γ† : Σ† → Σ⊥, α† : Σ⊥ → Σ†
Containers : γ† : C† → P(C⊥), α† : C⊥ → P(C†) such that

γ†(σ†) =
{
(c⊥, σ†(c†)) : c† ∈ dom(σ†) ∧ c⊥ ∈ γ†(c†)

}

α†(σ⊥) = {(c†, σ⊥(c⊥)) : c⊥ ∈ dom(σ⊥) ∧ c† ∈ α†(c⊥)}.

Additionally, ∀C ⊆ C† : γ†(C) =
⋃

c∈C γ†(c) and ∀C ⊆ C⊥ : α†(C) =
⋃

c∈C α†(c).
For each layer † ∈ L we assume the existence of a special container cU

† that
represents the abstraction of all those ⊥-level containers not observable at the
†-level (∀c⊥ ∈ C⊥ : (∀c† ∈ C† \ {cU

† } : α†(c⊥) �= c†) =⇒ (α†(c⊥) = cU
†)). By

definition σ(cU
†) = D for any state σ.

State and Trace Union: Given two states σ1 and σ2 at the same abstraction
level, let σ1 ��σ σ2 = {(c,D) | D = σ1(c) ∪ σ2(c)}. Recall that events at any

42 E. Lovat et al.

level are assumed to be unique and to contain an implicit timestamp, yielding
a natural order on a trace’s events. We denote by t1 ��t t2 the time-ordered trace
consisting of unique elements of t1 and t2.

Roadmap. In the following we give a high-level account on the strategy used
in the rest of the paper to justify the proposed cross-layer analysis algorithm.

(1) We relate the notion of taint propagation at the lowest abstraction layer
(⊥) with that of weak secrecy. (2) We define a notion of soundness for a single
layer A with respect to ⊥. The intuition behind this definition is that the taint
propagation in A (specified by RA) must be coherent with respect to taint prop-
agation happening at ⊥. This definition offers a semantic characterization for
single monitors at any level. (3) We then define composed states σA⊗B as pairs
of states (σA, σB) at different layers and give a notion of sound composed mon-
itor. (4) We construct and prove the soundness of a composed monitor R̂A⊗B

that relies on the soundness of monitors RA and RB at the single layers and on
partial information on γ. (5) We show an example where additional information
about A and B can lead to a more precise cross-layer tracking and (6) we use
it to motivate the usefulness of further oracles that encode partial information
about γ and α. (7) We construct a composed monitor ṘA⊗B that relies on the
soundness of single layer monitors RA and RB and on the information from the
oracles and show its soundness.

Thanks to the above construction, we can connect existing data-flow track-
ing analyses for different layers of abstraction (e.g. [13,16,25]) to capture data
flows across layers, and show overall soundness, or weak secrecy, respectively. All
proofs are provided in a technical report [17].

3 Security Guarantees at Single Layers

In the following, we define the notion of information flow which will be the
fundamental security property guaranteed by our framework. We use this notion
to show soundness of the propagating data flow monitors at various layers.

3.1 Step 1: Security Property at the ⊥ Layer

Data-flow tracking estimates which containers are “dependent” from the data
stored in some other containers after a system run. The strongest guarantees in
this sense are given by Non-Interference [9], which relates inputs and outputs in
terms of pairs of executions (or state of variables before and after executing a
program [24]).

Definition 1 (Non-interference). Let Ci
H , Co

H ⊆ C⊥ be sets of containers at
⊥ and Ci

L, Co
L their complements. A trace t⊥ ∈ seq(E⊥) respects non-interference

w.r.t. this partition of the containers if

∀v, v′ ∈ V :
∧

c∈Ci
L

v(c) = v′(c) =⇒
∧

c∈Co
L

eval(v, t⊥)(c) = eval(v′, t⊥)(c)

Sound and Precise Cross-Layer Data Flow Tracking 43

In other words, the values of a certain memory region (represented by low con-
tainers) are independent from its complement (the high containers) after execu-
tion of a trace at ⊥. This represents the notion of absence of flows from high
to low containers. As discussed in the introduction, in this work we focus on
explicit information flows. An information flow property which captures such
flows is weak-secrecy [23].

To formally define this property in our context, consider a trace t⊥ ∈ seq(E⊥).
We say that its branch-free version bf(t⊥) consists of the same assembly-level
instructions in the same order, except for branch statements such as BNE (branch-
non-equal), which are removed from the observed trace. Of course there are no
branches in one actually executed trace. There are, however, conditional jumps
like branch-not-equal that may lead to implicit, or control-flow-based informa-
tion flows. In order to cater to explicit flows only, these instructions are ignored,
i.e. removed. The resulting trace then corresponds to one path through the
CFG of the original program where all conditional nodes are replaced by empty
statements. By doing so, our notion of security becomes the verification of non-
interference on a sequence of explicit data flows only.

Definition 2 (Weak Secrecy). Let Ci
H , Co

H ⊆ C⊥ be sets of containers at ⊥.
A trace t⊥ ∈ seq(E⊥) respects weak-secrecy w.r.t. Ci

H , Co
H if its branch-free ver-

sion bf(t) respects non-interference w.r.t. Ci
H ,Co

H .

Note that non-interference in general, for arbitrary program languages, does not
imply weak secrecy. Moreover, our construction is not intended to guarantee
non-interference: we need it to define weak secrecy only.

A monitor R⊥ propagates labels (i.e. data items) in-between containers as
the consequence of the execution of a trace.

Definition 3. A monitor R⊥ is sound w.r.t. weak-secrecy if given an initial
state σi, for all data items d ∈ D, all traces t⊥ ∈ seq(E⊥) respect weak-secrecy for
the initial partition of the containers as induced by d: Ci

H = {c ∈ C⊥ | d ∈ σi(c)}
and, at the end of trace t⊥, the resulting partition of the containers as computed
by the monitor: Co

H = {c ∈ C⊥ | d ∈ R⊥(σi, t⊥)(c)}.
In other words, if R⊥ claims a container c does not hold data d after the execution
of a trace, then the values of c are independent from the values of d in the weak-
secrecy sense. In the following, R#

⊥ indicates the (virtual) most precise sound
monitor at level ⊥, i.e. for all d ∈ D and t⊥ ∈ seq(E⊥), the output partition Co

H

induced by any sound monitor includes that induced by R#
⊥.

Sources and Destinations. From the point of view of R#
⊥, events move data

from a container to another: an instruction typically reads from a certain memory
region and writes to another. For any given event e and a transition function
R#

⊥, the functions SR#
⊥
, DR#

⊥
: E⊥ → 2C⊥ denote the sets of source destination

containers of the events. We assume the two functions to be given as an oracle

44 E. Lovat et al.

of the event, such that for all ⊥-containers c, states σ and data items d,

d ∈ R#
⊥(σ, e)(c) =⇒ d ∈ σ(c) ∨ (∃c′ ∈ SR#

⊥
(e) : d ∈ σ(c′) ∧ c ∈ DR#

⊥
(e)),

i.e., if after executing e a container c holds d, then this was already present
before the execution of e, or there was a flow from a container in the sources of
e (making c a destination).

Note that there could be coarse partitions that fulfill this property. In
the following we assume that the oracle provides the most precise ones in
the sense that e respects weak secrecy w.r.t. SR#

⊥
(e), C⊥ \ DR#

⊥
(e), and w.r.t

C⊥ \ SR#
⊥
(e), DR#

⊥
(e). In other words, there is non-interference between the par-

titions induced by sources and destinations and their dual complement. Intu-
itively, this ensures that all relevant sources and all relevant destinations are
captured and no more.

We overload the notation of S and D for traces of events t ∈ seq(E⊥)
as SR⊥(t) =

⋃
e∈t SR#

⊥
(e) and DR#

⊥
(t) =

⋃
e∈t DR#

⊥
(e). A similar overloading

applies to sets of events. We also extend the notation for events and monitors at
higher layers of abstraction, SR† and DR† for † ∈ L, such that the same relation
between R†, containers and data holds at level †.

3.2 Step 2: Soundness at a Single Layer

An A-level state of the system, σA, is sound if, for every container cA, the set
of data stored in cA is a superset of the data “actually” stored in it, i.e. of the
data stored in the concretization of cA. For this reason, soundness is defined
w.r.t. a ⊥-state. In the following, we assume a fixed pair of γA/αA w.r.t. which
soundness is defined.

Definition 4. A state σA is sound w.r.t. σ⊥, written σ⊥ � σA, iff

∀cA ∈ CA : σA(cA) ⊇
⋃

c⊥∈γA(cA)

σ⊥(c⊥).

This implies that ∀σA ∈ ΣA : γA(σA) � σA and that ∀σ⊥ ∈ Σ⊥ : σ⊥ � αA(σ⊥).
The data flow analysis for A is sound w.r.t. ⊥ (i.e., it respects weak-secrecy) if
RA preserves the soundness of the state (w.r.t. the canonical R#

⊥ of Definition 3).

Definition 5 (Soundness of Single Layer Monitor). A monitor RA at a
level A is sound w.r.t. ⊥, written R#

⊥ � RA, if given an initial state σi
⊥ � σi

A,
modeling any trace of events tA ∈ seq(EA) results in a state σA which is sound
with respect to the state reached by the canonical R#

⊥ at ⊥ for γA(tA). Formally,
∀tA ∈ seq(EA), σi

A ∈ ΣA, σi
⊥ ∈ Σ⊥ : R#

⊥ � RA ⇐⇒ σi
⊥ � σi

A ∧ R#
⊥(σi

⊥, γA(tA)) � RA(σi
A, tA).

As direct corollary, SR#
⊥
(γA(e)) ⊆ γA(SRA

(e)) and DR#
⊥
(γA(e)) ⊆ γA(DRA

(e)).

Sound and Precise Cross-Layer Data Flow Tracking 45

4 Guarantees for Multiple Layers

A monitoring infrastructure is unsound if there exists a container at a higher
abstraction layer that ignores the presence of data in its concretization. Unless
one performs tracking at the level of single machine instructions, this situation
is likely, and we cannot expect to achieve system-wide soundness in practice.
What we can do, however, is to show cross-layer soundness: under the strong
assumption of having sound models of two (or n) layers, we can show that if data
moves exclusively within or in-between these layers, and we have information
about their shared resources, our cross-layer model captures all cross-layer flows.

4.1 Step 3: Layer Composition

We proceed to define a notion of layer composition and discuss possible ways
in which events observable at one layer may interfere with another layer. We
then show a first overly-conservative way to model composition and prove its
soundness. In the following, we focus on a system composed by two layers only;
n-layered systems can be modeled by applying the same concepts recursively
to each further layer. Without loss of generality we assume that CA ∩ CB = ∅
for each pair of distinct A,B ∈ L⊥. Given two sound models for two layers of
abstractions A and B in a system, our goal is to define a sound model for the
system composed by A and B, denoted A ⊗ B.

We begin by defining the composed system using the abstraction and con-
cretization functions to compose the observations of monitors at the single lay-
ers. Let CA⊗B = CA ∪ CB be the set of containers in the composed system and
TA⊗B ⊆ seq(EA) × seq(EB) the set of event traces, given by pairs of traces in A
and B. We denote the composed state σA⊗B ∈ ΣA⊗B ⊆ ΣA × ΣB as a pair of
states in layers A and B respectively. For this notion of states, we derive an ideal
(w.r.t ⊥) composed monitor given by concretization and abstraction functions.

When talking about the state of the system or about traces in a multilayered
system A ⊗ B, we use the notation |† to denote the projection to layer †.

Mathematically speaking, it is simple to compose two monitors as follows.

Definition 6 (Ideal Composed Monitor). Let tA and tB be traces at lay-
ers A and B, respectively, and σi

A and σi
B initial sound states. Let σ⊥

A⊗B =
γA(σi

A) ��σ γB(σi
B), t⊥A⊗B = γA(tA) ��t γB(tB) and σ

′⊥
A⊗B = R#

⊥(σ⊥
A⊗B , t⊥A⊗B).

The function R#
A⊗B : ΣA⊗B × TA⊗B → ΣA⊗B is defined as:

R#
A⊗B((σi

A, σi
B), (tA, tB)) = (αA(σ

′⊥
A⊗B), αB(σ

′⊥
A⊗B)).

Practically speaking, we usually do not have access to the particular sequence
of events occurring at ⊥, i.e., to the ideal R#

⊥ monitor and to precise concretiza-
tion/abstraction functions for the containers. However, as we did for the single
layers, we can characterize sound approximations of composed monitors.

46 E. Lovat et al.

Definition 7 (Soundness of Composing Monitor). A monitor RA⊗B is
sound w.r.t ⊥, written R#

A⊗B � RA⊗B if for all σA, σB , tA, tB with σ′ =
RA⊗B((σA, σB), (tA, tB)) the projections to A-level containers σ′|A and B-level
containers σ′|B are sound w.r.t. R#

⊥(γA(σA) ��σ γB(σB), γA(tA) ��t γB(tB)).

4.2 Step 4: Sound Monitor Based on the State Relation

Let two containers at different layers cA and cB be related, written cA ∼ cB , if
their ⊥-concretizations overlap, γA(cA) ∩ γB(cB) �= ∅. Without any additional
information about related containers in A and B, the only sound approximation
for σ′ = RA⊗B(σ, (tA, tB)) is ∀c ∈ CA⊗B : σ′(c) = D, i.e. every container possibly
contains any data. This is because some data d may be transferred to a container
cB by some event eB ∈ EB , and if cA ∼ cB , d would also be stored in γA(cA)
because of the non-empty intersection of the concretizations. Unless d is stored
in cA, this is a violation of the soundness of A ⊗ B (cf. Definition 4).

However, assuming information about related containers to be known (see
Sect. 5.2) it is easy to build a monitor R̂A⊗B that approximates the data-flows
induced by a trace of events by propagating the data from every source of
the trace to any destination of the trace and to any container related to the
destinations:

∀c ∈ CA⊗B ,

R̂A⊗B(σ, (tA, tB))(c) =

{
σ(c) ∪⋃c′∈SA⊗B

σ(c′) if c ∈ DA⊗B ∨ ∃ c̃ ∈ DA⊗B : c ∼ c̃

σ(c) otherwise

with SA⊗B = SRA
(tA) ∪ SRB

(tB) and DA⊗B = DRA
(tA) ∪ DRB

(tB).
R̂A⊗B is sound (see [17] for a proof) but overly conservative. The next section

shows how to leverage additional cross-layer information to increase precision.

5 Cross-Layer Models

Although the complete definition of γ and α may not be available, it is often the
case that, in some contexts, partial information about it is known by domain
experts (e.g. the set of related containers). The goal of this section is to model
such partial information in form of oracles and to formalize a refined data flow
tracking model that, leveraging these oracles, provides more precise results. The
key idea is that if more information about the relation between layers A and B
is available, a more precise sound model can be constructed.

After extending our notation to capture the duration of events, we illustrate
an example of using additional information to improve tracking precision; after-
ward, we abstractly define properties for the oracles (operationally, the oracles
are implementation-specific and have to be instantiated by experts); and finally,
we show an algorithm that, given two instances of the model and of the oracles,
soundly approximates their composition.

Sound and Precise Cross-Layer Data Flow Tracking 47

Fig. 2. Example of application loading a file, according to single layer monitors. Dotted
sets represent actual SR#

⊥
and DR#

⊥
sets.

Events in A ⊗ B: In the case of single layers, events are assumed to be instan-
taneous. However, in a multi-layer context the duration of an event at one layer
may span several timesteps at the other layer. For instance, an event like LOAD()
can be considered atomic at an application layer while it corresponds to many
system call events at the operating system layer. For this reason, it is useful to
distinguish between the moments in time when an event e begins and ends when
reasoning about multiple layers.

Without loss of generality, the following assumes that every monitor for a
layer † is defined over events in E−

† ⊆ E† ×{S,E}, where the suffixes S and E for
an event e indicate, respectively, the beginning and the end of the execution of e.
R−

† denotes a monitor for such traces. While for simplicity’s sake, we assume high
level events to happen sequentially, serialized traces could also capture interleav-
ing of events, e.g. 〈eS , e′

S , eE , e′
E〉. Note that at level ⊥, events are still serialized

(single-core assumption, Sect. 2). To simplify notation, whenever a trace con-
tains a certain event eS directly followed by eE , we write both events as e, e.g.
instead of 〈LOADs(), READs(), READe(), LOADe()〉 we write 〈LOADs(), READ(), LOADe()〉.
A precise formalization of all these concepts can be found in Appendix A.

5.1 Step 5: Increasing Precision — Example

Consider an application loading file f and two monitors, one for the application
(A) and one for the operating system (B), both sound w.r.t. ⊥. This generates
the trace t = 〈LOADs(f), OPEN(f, fd), READ(fd), CLOSE(fd), LOADe(f)〉 where
the first and last events happen at layer A and all the others at layer B Fig. (2).

Because files are not properly modeled in A, the source of the transfer in A
is given by cU

A (see definition of cU in Sect. 2). Because the file is unknown to
the application, it could possibly carry any data. This explains why ∀σ† ∈ Σ† :
σ†(cU

†) = D. The execution of t|A induces then a flow of all data D from cU
A to

cA, where cA is an internal container of the application, e.g. a document.
At the OS level, the file has a proper abstraction. Let filef be such a container

and d the data item stored in it. The execution of t|B is then modeled in B as
a flow from filef to container mapp representing the memory of the application.

48 E. Lovat et al.

If A and B were considered in isolation, the storage of cA and mapp after
the execution of t would be, respectively, D and d. Using the model pre-
sented in Step 4, instead, both containers would contain D, a sound but coarse
approximation.

A better approximation can be provided by observing that γB(file f) ⊆
γA(cU

A) and γA(cA) ⊆ γB(mapp), the latter because any internal object of the
application is stored within its process memory.

Assuming the application process has not accessed any other sensitive data,
the content of all the ⊥-containers in γB(mapp) after the execution of t, including
those in γA(cA), is at most d, as reported by R−

B and because of its soundness.
Therefore, a more precise monitor for the combined system would model t as a
flow from γB(file f) to γA(cA), thus estimating that after the execution both cA

and mapp contain d. Note that this result is more precise than R−
A’s estimation.

What this scenario illustrates is that one layer has a more precise knowledge
than the other about the sources of a certain event (e.g. the content of the
file), while the other layer has a finer-grained understanding of the destination
of the transfer (e.g. the app-specific container cA). Let the term cross actions
indicate those high-level operations, like “‘Application x loading file f’”
in the example (cf. Fig. 3), that correspond to traces of events at both layers in
which this intuition holds.

In the following, we characterize events in this kind of traces, by referring
to IN,OUT and INTRA as behaviors of events. If a certain cross action generates
two events eA ∈ E−

A and eB ∈ E−
B such that γA(SR−

A
(eA)) ⊆ γB(SR−

B
(eB)) and

γB(DR−
B
(eB)) ⊆ γA(DR−

A
(eA)), we say that eA is an OUT event and that eB is an

IN event. If an event is neither IN nor OUT then it is an INTRA event. In completely
independent layers or when a layer is considered in isolation, every event is an
INTRA event. In a multi-layer context an INTRA event at layer † propagates data
within † according to R−

† and, in turn, to any other layer via related containers.
Hence, in addition to the dependency between layers generated by related

containers and discussed in Sect. 4.2, we consider also a second class of cross-
layer flows, i.e. those due to IN and OUT events.

Definition 8. A cross-layer flow of data is generated by either: (1) the result of
executing an event that transfers data to a container at one layer that is related
with a container at the other layer, or (2) a cross action generating a sequence
of events at both layers that includes at least one IN event at one layer and at
least one respective OUT event at the other layer.

The intuition behind IN and OUT events is that, in spite of what the single layer
monitors may estimate, the only data flowed to the destinations of a certain IN
event (e.g. LOAD()) is at most the same data read by the respective OUT events
(e.g. READ()). In the next subsections we capture the two kinds of cross-layer
dependencies described in Definition 8 in form of two oracles, which describe the
relation between two layers. Provided an instantiation of these oracles, and the
models for the layers, it is possible to automatically generate a sound precise
model for the whole system composed by both layers (Sect. 5.3).

Sound and Precise Cross-Layer Data Flow Tracking 49

READe(fd′, pid)

LOADs(f)

OPENe(f, fd)

LOAD(f)

READe(fd, pid) CLOSEe(fd)

LOADe(f)

t
A

B
t0 t1 t2 t3 t4 t5

‘Application x loading file f’

Fig. 3. Example of cross action. The XB oracle applied to generic READe(..) events
at time t0 returns (INTRA, ∅). The READe(..) event at time t3 instead, being part of
the loading cross action, corresponds to (OUT,‘Application x loading file f’). The
respective IN event at layer A is the LOADe(..) event at time t5.

5.2 Step 6: Definition of Oracles

XA oracle : Information about related containers, as needed by the model
described in Step 4, is captured by oracle XA : CA⊗B → P(CA⊗B), which maps
each container c to the set of all the containers related to c at other layers.

Oracle Property 1. ∀c ∈ CA⊗B : XA(c) = {c′ ∈ CA⊗B | ∃l ∈ L : c′ ∈ Cl ∧ c /∈
Cl ∧ c ∼ c′}.

Leveraging XA, it is also possible to model the sync operator, which will
be useful in the following. Given a state of the system, sync : ΣA⊗B → ΣA⊗B

returns a new state in which all the data stored in each container have been
propagated to all the related containers at other layers, i.e. ∀c ∈ CA⊗B, σ ∈
ΣA⊗B • sync(σ)(c) = σ(c) ∪ ⋃

c′∈XA(c)
σ(c′). Because the sync operator only

adds data to containers, it is easy to prove that if σ is a sound state (cf. Sect. 3.2),
then σ′ = sync(σ) is also a sound state.

XB oracle : In a multi-layer system, the behavior of a given event may differ
in different contexts. For instance, a READ() event signaled by the operating
system is related to a LOAD() event at the application layer, only if the process
that invoked the system call is the application’s one and if the target file of
the system call is the same file being loaded by the application. Similarly, if
the application is loading two files at the same time, then a sound and precise
modeling needs to associate each LOAD() with the respective READ() events only.

To model this distinction, we use a unique identifier, called scope id, for each
distinct instance of a cross action. All the IN and OUT events at both layers that
pertain to a certain cross action are associated to that cross action’s scope id.

This is captured by oracle XB : E−
A⊗B × Σ → {IN, OUT, INTRA} × SCOPE ,

where SCOPE is the set of scope ids, like ‘Application x loading file f’.
XB maps each event to its respective behavior in the context of a cross action.

It is also important to aggregate and store the content of the data being
transferred by the OUT events in a way that is usable by the next corresponding
IN event, because multiple IN(OUT) events may correspond to the same OUT(IN)
event, e.g. one LOAD() event may correspond to multiple READ() system calls.

For each scope id sc, we model the existence of an intermediate container csc

for the cross layer flow. Storage information for the intermediate containers (Csc)
must be part of the system state in form of storage function ssc : Csc → P(D).

50 E. Lovat et al.

Let cs be a source of an OUT event and cd a destination of the respective
IN event. We model the flow from cs to cd in two steps: first as a flow from
cs to the intermediate container csc and then as a flow from csc to cd. For this
reason, in this work we consider only serialized traces, (i.e. where the sorting
of indexed events by timestamp is unique, cf. Definition 9 in Appendix A), and
where IN events take place after the respective OUT events. This assumption is
not restrictive in practice and always held in concrete instantiations [15,16].

In summary, augmenting the set of states for the composed system ΣA⊗B ⊆
ΣA × ΣB × (Csc → P(D)), we can encode the relation between two given layers
A and B by using the oracles XA : CA⊗B → 2CA⊗B and XB : E−

A⊗B × ΣA⊗B →
{IN, OUT, INTRA} × SCOPE , which, by definition, guarantee the following:

Oracle Property 2. Let t ∈ seq(E−
A⊗B) be a trace of events terminating with

the event ei, identified as IN by the oracle XB . Let EO ⊆ E−
A⊗B be a set of

respective (i.e. w.r.t. the same scope) events in t identified as OUT by the oracle
XB . Then, in an ideal monitoring (R#−

A⊗B) of t, the destinations of ei contains
at most the content of the sources of all the events in EO at the time of their
execution. Formally,

(
XB (σeI

, eI) = (IN, sc) ∧
∀e ∈ EO : XB (σe, e) = (OUT, sc)

)

=⇒ σeI

(DR#(eI)) ⊆ ⋃
e∈EO σe(SR#(e))

where R# stands for R#−
A⊗B, te denotes the subtrace of events in t from the

beginning until event e included, and σe is the state reached by the ideal monitor
R#−

A⊗B after executing te from the initial state, i.e. σe = R#−
A⊗B(σi, te)

The intuition is that if the oracle XB states that a certain event e is an IN event
in a trace, then the execution of e will transfer to e’s destination containers at
most the data stored in the sources of the respective OUT events in the past
trace. This is the key behind the refined precision offered by ṘA⊗B defined in
Algorithm 1 in comparison with R̂A⊗B .

5.3 Step 7: Algorithm for Sound Composition

We now come to the main result of this paper. Our goal is to show that, given
an instantiation of the oracles for which the two properties defined in Sect. 5.2
hold, a composition algorithm considering such oracles is sound w.r.t. an ideal
monitor at ⊥, and thus ensures weak-secrecy.

Let γA⊗B be the overloading of γ for CA⊗B , ΣA⊗B , E−
A⊗B and traces of

events in E−
A⊗B. Given the models for A and B and these two oracles, the model

A ⊗ B for the composed system is specified as follows: First, the set of con-
tainers in the system CA⊗B is given by CA ∪ CB ∪ Csc, where Csc is the set of
intermediate containers (which represent no real container in the system, i.e.
∀c ∈ Csc • γA⊗B(c) = ∅). Secondly, a state of the system σA⊗B ∈ ΣA⊗B cor-
responds to the state of the two layers A and B and the storage function for
intermediate containers ssc, σ = (σA, σB , ssc).

Sound and Precise Cross-Layer Data Flow Tracking 51

ALGORITHM 1. ṘA⊗B((σA, σB , ssc), e)
1 sscRET ←−ssc; σARET ←−σA; σBRET ←−σB ;
2 (beh, sc) ←−XB ((σA, σB , ssc), e);
3 switch beh do
4 case INTRA
5 if e ∈ E−

A then σARET ←−R−
A(σA, e);

6 else σBRET ←−R−
B(σB , e);

7 case IN
8 if e ∈ E−

A then σARET ←−(σA[t ← σA(t) ∪ ssc(csc)]t∈DR−
A

(e));

9 else σBRET ←−(σB [t ← σ(t) ∪ ssc(csc)]t∈DR−
A

(e));

10 case OUT
11 if e ∈ E−

A then
12 sscRET ←−ssc[csc ← σA(t)]t∈SR−

A

(e);

13 σARET ←−R−
A(σA, e);

14 else
15 sscRET ←−ssc[csc ← σB(t)]t∈SR−

A

(e);

16 σBRET ←−R−
B(σB , e);

17 return sync(σARET , σBRET , sscRET)

Given two sound instantiations of the model for A and B and the two oracles
defined above, a sound and precise model of the data flows within and across
these two layers is captured by ṘA⊗B defined in Algorithm 11.

Theorem 1. Given two oracles XA and XB , for which properties 1 and 2 hold,
two monitors for two layers R−

A, R−
B, an initial state σA⊗B = (σA, σB) and a

serializable trace of events t ∈ seq(E−
A⊗B), if σ⊥ � σA, σ⊥ � σB, R⊥ � R−

A and
R⊥ � R−

B, then ṘA⊗B((σA, σB), (tA, tB)) is sound, i.e. R#
A⊗B � ṘA⊗B.

A detailed proof is provided in [17]. The intuition is that, for INTRA events,
ṘA⊗B behaves similarly to R̂A⊗B, and therefore it is sound, and for OUT events
related to a scope sc, the content of the sources is also stored in a container csc,
from where it can be “read” by the corresponding IN events and transferred to
their destinations. The soundness then comes from Oracle Property 2.

6 Related Work

In terms of system-wide data flow tracking, we distinguish three classes of solu-
tions in the literature. The first class includes solutions that focus on a single
layer, like the operating system [8,10,12], the hypervisor [27] or the hardware
level [4]. With respect to our model, hardware level solutions could be seen as
the ⊥ layer. Despite recent improvements in efficiency both at the software [1]

1 Let m be a function of type S → T and X ⊆ S. m′ = m[x ← expr]x∈X indicates a
function S → T such that m′(y) = expr for any y ∈ X and m′(y) = m(y) otherwise.

52 E. Lovat et al.

and hardware level [6], solutions in this class fail to capture the high-level seman-
tics of events and objects (e.g. “forward a mail”).

The second class of solutions includes those approaches that consider multiple
instantiations of the same solution for one specific level of abstraction, usually
the application layer. This class of work includes solutions like [11,20], where
the inter-application flow tracking relies on the simultaneous execution of the
sender and the receiver events, both at the application layer. None of them can
model a flow of data toward resources at different layers, e.g. toward a file; given
a monitor for the second layer, this is instead possible with our model.

The third class of related work includes approaches that consider multiple
layers of abstractions at the same time. [18] is a work from the area of prove-
nance aware storage systems, where representations of data are considered at
three system layers at the same time (network, file system, workflow engine).
Depending on the type of the content being handled, this work relies on track-
ing solutions that interact with each other and exchange taint results across
different layers. Similarly, the Garm tool [7], aims at tracking data provenance
information across multiple applications and machines. Garm instruments appli-
cation binaries to track and store the data flow within and across applications,
and to monitor interactions with the OS. Although both [7,18] address multiple
layers of abstraction at the same time, none describes a general model applicable
to a different number or type of layers, but each rather focuses on hard-coded
solutions for the specific layers of abstraction considered.

[19] addresses multiple layers of abstraction generically by integrating a basic
data flow tracking schema with a usage control framework. Here, the specification
of the cross-layer dependencies is performed ad-hoc and all the monitors are
executed in parallel in an independent fashion. Step 6 of [19] defines the meaning
of cross-layer flows at the semantics model, but does not provide any notion of
soundness, nor any operationalized way to monitor such flows at runtime.

A work more related to ours is Shrift [16], a solution for system-wide hybrid
information flow tracking. Shrift replaces the runtime monitoring of an applica-
tion with a statically computed mapping between its inputs and outputs, which
is used at runtime by an operating system layer monitor to model data flows
through the application. While using the model presented here, [16] does not
describe cross layer flows in general.

7 Conclusions

In this paper we presented a formal definition of soundness, in terms of a notion
related to information flow (weak-secrecy), for system-wide data flow tracking
at and across different layers of abstraction. This semantic characterization of
soundness is the first of its kind and represents the paper’s first contribution.

We also proposed a generic schema to compose data flow analyses at various
levels. Our schema relies on the existence of partial oracles that spell out the
relation between the different levels in an actual system. The operationalization
of the composition as an algorithm for runtime monitoring and the proof of its
soundness represent the second major contribution of this research.

Sound and Precise Cross-Layer Data Flow Tracking 53

It is crucial to make the oracle assumptions explicit, even though in practice it
is challenging to prove that single layer monitors and oracles are accurate, due for
instance to non-deterministic low level interleavings and implementation details
such as temporary variables and files. Such assumptions are usually reasonable,
given that domain experts can accurately model the data-flow propagation of
single high-level events, and whenever relations between layers are well known.

We have instantiated the framework described in this work to connect instan-
tiations for different layers of abstraction, including a mail client [14], X86 bina-
ries [2], Java Bytecode [16], and different operating systems [10,25], proving its
feasibility. We argue that the genericity of the approach makes it possible to
capture other solutions for data flow tracking from the literature, e.g. [3,5,28],
as single-layer monitor instances, and to connect them to trackers at other layers
in a sound manner. We do not discuss implementation details and experiments
here because of space restrictions, but refer to [15] for more information.

In sum, our proposed cross-layer algorithm ṘA⊗B conservatively estimates
and synchronizes the data propagation state between layers or inside one layer
given that monitors are sound in isolation, that oracles are accurate, and that
traces are serializable. Our implementation experiments show that these con-
ditions are met often in practice, allowing for a sound and precise analysis.
If, however, some of these conditions are not met, then one is forced to use a
more conservative analysis (like R̂A⊗B) which propagates data from all sources
to all destinations of a trace. Ultimately, if sources and destinations are unknown,
the only possible sound analysis is to propagate all data to all containers.

Appendix

A Serialized Events

Let tS(e) : E → N and tE(e) : E → N be two functions that return, respectively,
the time at which a certain event e starts and ends. In the context of multiple
layers, we assume that for any event e† ∈ E† it holds that e† terminates only
after starting (tS(e†) < tE(e†)) and that for every event e observed, the single
layer monitors report an event eS at time tS(e) to notify the beginning of e and
an event eE at time tE(e) to notify its end. In concrete implementations it is
usually possible to observe or approximate these two aspects of any event.

For † ∈ L, let E−
† ⊆ E† ×{S,E} be the set of such indexed events that denote

when events in E† start and end. Let ser : seq(E†) → seq(E−
†) the operator that

converts a trace of events t† ∈ seq(E†) into its indexed equivalent t−† ∈ seq(E−
†)

by replacing every event e† ∈ t† with the sequence 〈eS
† , eE

† 〉.
Lemma 1. For each monitor R† († ∈ L), there always exists a monitor R−

† :
Σ† × E−

† → Σ† such that ∀σ† ∈ Σ†,∀t† ∈ seq(E†) : R†(σ, t†) = R−
† (σ, ser(t†)).

Proof. Given R†, the monitor R−
† , defined as R−

† (σ, (e†, i)) = σ if i = S and
R−

† (σ, (e†, i)) = R†(σ, e†) if i = E, respects the property. ��

54 E. Lovat et al.

It is hence safe to assume, without loss of generality, that every monitor for a
layer † is defined over events in E−

† . We denote such a monitor R−
† .

Definition 9 (Serializable Trace). A trace t = (tA, tB) is serializable if for
every pair of events eA ∈ tA, eB ∈ tB, tS(eA) �= tS(eB) and tE(eA) �= tE(eB).

Let EA⊗B = EA ∪ EB and E−
A⊗B = EA⊗B × {S,E}. If a trace t = (tA, tB) ∈

seq(EA) × seq(EB) is serializable, then it is possible to construct a trace t− ∈
seq(E−

A⊗B) that is equivalent to t, in the sense that it is possible to reconstruct
each one given the other. t− is given by the events in ser(tA) ��t ser(tB) sorted
by timestamp. The monitor for the composed system ṘA⊗B described in step 7
of this work assumes the trace of input events t = (tA, tB) to be serializable and
provided as a sequence of events in E−

A⊗B (ṘA⊗B : ΣA⊗B × E−
A⊗B → ΣA⊗B).

Note that we can relax the assumption on the serializable traces because
any trace of events tA⊗B = (tA, tB) in A ⊗ B can be seen as longest possible
concatenation of subtraces ti = (tiA, tiB), such that any event starting in ti also
terminates within ti and viceversa and such that (t1A :: t2A :: .. :: tnA) = tA and
(t1B :: t2B :: .. :: tnB) = tB . Then, for each ti,

RA⊗B(σ, ti) =
{ Ṙ(σ, ti) if ti is serializable

R̂(σ, ti) otherwise

RA⊗B is a sound monitor that is no less precise than R̂(σ, t) and does not
require t to be serializable.

References

1. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
ACM Sigplan Not. 44(8), 20–31 (2009)

2. Biswas, A.K.: Towards improving data driven usage control precision with intra-
process data flow tracking. Master’s thesis, Technische Universität München (2014)

3. Chin, E., Wagner, D.: Efficient character-level taint tracking for java. In Proceed-
ings of the ACM Workshop on Secure Web Services, pp. 3–12 (2009)

4. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: USENIX Security (2004)

5. Crandall, J.R., Chong, F.T.: Minos: control data attack prevention orthogonal to
memory model. In: Proceedings MICRO37, pp. 221–232. IEEE (2004)

6. de Amorim, A.A., Dénes, M., Giannarakis, N., Hritcu, C., Pierce, B.C.,
Spector-Zabusky, A., Tolmach, A.: Micro-policies (2015)

7. Demsky, B.: Cross-application data provenance and policy enforcement. ACM
Trans. Inf. Syst. Secur. 14(1), 1–22 (2011)

8. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: USENIX OSDI (2010)

9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy (1982)

10. Harvan, M., Pretschner, A.: State-based usage control enforcement with data flow
tracking using system call interposition. In: NSS (2009)

Sound and Precise Cross-Layer Data Flow Tracking 55

11. Kim, H.C., Keromytis, A.D., Covington, M., Sahita, R.: Capturing information
flow with concatenated dynamic taint analysis. In: ARES (2009)

12. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information flow control for standard OS abstractions. In: SOSP (2007)

13. Kumari, P., Pretschner, A., Peschla, J., Kuhn, J.-M.: Distributed data usage con-
trol for web applications: A social network implementation. In: Proceedings of the
First ACM Conference on Data and Application Security and Privacy, CODASPY
2011, pp. 85–96. ACM (2011)

14. Lörscher, M.: Usage Control for a Mail Client. Master thesis, TU Kaiserslautern
(2012)

15. Lovat, E.: Cross-layer Data-centric Usage Control. Ph.D. thesis, Technische
Univesität München (2015)

16. Lovat, E., Fromm, A., Mohr, M., Pretschner, A.: SHRIFT system-wide hybrid
information flow tracking. In: Federrath, H., Gollmann, D., Chakravarthy, S.R.
(eds.) SEC 2015. IFIP AICT, vol. 455, pp. 371–385. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-18467-8 25

17. Lovat, E., Ochoa, M., Pretschner, A.: Sound and precise cross-layer data flow
tracking. Technical Report TUM-I1629, Technische Universität München, January
2016. https://mediatum.ub.tum.de/node?id=1289467

18. Muniswamy-Reddy, K., Braun, U., Holland, D.A., Macko, P., Maclean, D., Margo,
D., Seltzer, M., Smogor, R.: Layering in provenance systems. In: USENIX (2009)

19. Pretschner, A., Lovat, E., Büchler, M.: Representation-independent data usage
control. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de Cap-
itani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS, vol. 7122,
pp. 122–140. Springer, Heidelberg (2012)

20. Rasthofer, S., Arzt, S., Lovat, E., Bodden, E.: Droidforce: Enforcing complex, data-
centric, system-wide policies in android. In: ARES (2014)

21. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

22. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. In: ACM SIGARCH (2004)

23. Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, p. 303. Springer, Heidelberg (1999)

24. Volpano, D., Smith, G.: A type-based approach to program security. In: Bidoit,
M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214, pp. 607–621. Springer, Heidelberg (1997)

25. Wüchner, T., Pretschner, A.: Data loss prevention based on data-driven usage con-
trol. In: 23rd IEEE International Symposium on Software Reliability Engineering
(ISSRE), pp. 151-160, November 2012

26. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: CCS (2007)

27. Zhang, Q., McCullough, J., Ma, J., Schear, N., Vrable, M., Vahdat, A.,
Snoeren, A.C., Voelker, G.M., Savage, S.: Neon: System support for derived data
management. SIGPLAN Not. 45(7), 63–74 (2010)

28. Zhu, Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Privacy scope: A precise
information flow tracking system for finding application leaks. Technical Report
UCB/EECS-2009-145, EECS Department, University of California, Berkeley,
October 2009

http://dx.doi.org/10.1007/978-3-319-18467-8_25
https://mediatum.ub.tum.de/node?id=1289467

Automatically Extracting Threats
from Extended Data Flow Diagrams

Bernhard J. Berger(B), Karsten Sohr, and Rainer Koschke

Center for Computing Technologies (TZI), Universität Bremen, Bremen, Germany
{berber,sohr,koschke}@tzi.de

Abstract. Architectural risk analysis is an important aspect of devel-
oping software that is free of security flaws. Knowledge on architectural
flaws, however, is sparse, in particular in small or medium-sized enter-
prises. In this paper, we propose a practical approach to architectural risk
analysis that leverages Microsoft’s threat modeling. Our technique decou-
ples the creation of a system’s architecture from the process of detecting
and collecting architectural flaws. This way, our approach allows an soft-
ware architect to automatically detect vulnerabilities in software archi-
tectures by using a security knowledge base. We evaluated our approach
with real-world case studies, focusing on logistics applications. The eval-
uation uncovered several flaws with a major impact on the security of
the software.

Keywords: Architectural risk analysis · Threat modeling · Automatic
flaw detection

1 Introduction

Software security is an important topic for software vendors. There are comple-
mentary measures to assess the security status of software systems. First, one
can assess the security at the architectural level to ensure that there are no secu-
rity flaws. This approach is based on software models and attempts to identify
conceptual problems, such as missing encryption of confidential data. Second,
static analyzers are available that can detect implementation-level bugs, such as
SQL injection and Cross-Site Scripting vulnerabilities.

Industry tends to make use of static security analyzers because they are
easy to use and do not require deep security knowledge to employ them. Find-
ing architecture-level security flaws using modeling techniques requires a deeper
understanding of security, typical security problems, security measures, and their
implications. In academia, other more formal approaches have been established,
notably, language-based security [20], model-driven development for security
[6], and stepwise refinement [15]. Nevertheless, it will take time until these
approaches have a practical impact on industry.

In this paper, we present a tool-supported, practical approach to architectural
risk analysis based on Microsoft’s Threat Modeling [9,24]. A manually-crafted
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 56–71, 2016.
DOI: 10.1007/978-3-319-30806-7 4

Automatically Extracting Threats from Extended Data Flow Diagrams 57

model of a security architecture can be automatically analyzed with the help
of security rules defined in a knowledge base. These rules identify well-known
architecture-level security flaws and existing countermeasures. The analysis leads
to a list of tackled security problems and a list of not handled security flaws.
The tool support speeds up the process of architectural risk analysis and hence
reduces the monetary effort.

In particular, our contributions are as follows:

1. introduction of extended data flow diagrams, a refinement of data flow dia-
grams, which are a representation of the system architecture and are used by
Microsoft’s Threat Modeling to identify security flaws [24],

2. provision of a catalog of threats based on well-known resources, such as
CAPEC and CWE,

3. a tool for automatically finding these threats in extended data flow diagrams,
4. an evaluation of the catalog with manually crafted data flow diagrams in the

context of three real-world applications.

2 Background

Threat Modeling and architectural risk analysis can be used to detect
architecture-level security flaws. These techniques target fundamental security
flaws in the software architecture rather than detecting low-level security bugs.
Consequently, it is expected that the impact of such flaws is higher than low-level
bugs [16].

Threat Modeling has been introduced by Microsoft [9,24]. It is part of the
design phase in Microsoft’s Security Development Lifecycle [17] and therefore is
employed every time the design phase is executed. In the first step of Threat
Modeling, data flow diagrams (DFDs) for the system in question are created. In
the second step, the STRIDE approach is used to identify security flaws based
on the data flow diagrams created in the first step. The STRIDE approach is an
attacker-centric approach where the analyst tries to find points of the software
where an attacker can breach the protection goals of information security. The
identified threats are a target for risk analysis to identify the most important
threats that must be addressed. Data flow diagrams are kept simple to ease their
usage. Different publications propose extensions of these diagrams to capture
more information of the system (see [3,8]).

Architectural Risk Analysis (ARA) is described by McGraw in Software
Security: Building Security In [16]. In the first step of ARA, an architecture
overview is created. How it is represented is not defined. In this way, the app-
roach fits into every software development process. This step is followed by three
different analysis steps with different priorities, namely, attack resistance analy-
sis, ambiguity analysis, and weakness analysis. Attack resistance analysis focuses
on finding well-known security flaws in the architecture, whereas the ambiguity
analysis targets security flaws that are specific to the analyzed system. The
weakness analysis searches for problems in external software components, such
as used frameworks.

58 B.J. Berger et al.

3 Analysis Approach

The goal of our analysis is to automatically identify threats (architectural flaws)
and mitigations. Since Threat Modeling employs DFDs to model an application’s
system architecture [24], our approach is also based on these diagrams. We follow
the Threat Modeling approach, which is used by many large software vendors
such as Microsoft, SAP, and EMC. Alternatively, we could have used a UML-
based approach to architectural risk analysis [2,12], but we employed Threat
Modeling due its relevance in industry.

To better support the automated analysis for security flaws, we introduce
Extended Data Flow Diagrams (EDFDs). EDFDs cover all concepts of tradi-
tional data flow diagrams, but use enhancements allowing us to add additional
semantics. Furthermore, we capture possible threats in a knowledge base that is
applicable to previously created software models. This results in a Threat Model
process linking threats to elements of a diagram. Here, the threats are noted in
the diagram as well as possible mitigations.

Fig. 1. Usage scenario

Figure 1 depicts the usage scenario and the responsibilities. Security experts
define a knowledge base with rules about common architectural security flaws (see
Sect. 3.4) and create a catalog with predefined patterns (see Sect. 3.3) as well as
an EDFD schema (see Sect. 3.2). The EDFD schema is used to initialize EDFDs
(see Sect. 3.2), which are then created by system experts (who are not necessarily
security experts). To create these EDFDs, the system expert consults the given
pattern catalog. The resulting concrete EDFD and the knowledge base are used as
input by a rule checker, which automatically creates a threat model (see Sect. 3.6).

3.1 Dataflow Diagrams

DFDs consist of five different modeling elements. Processes are active compo-
nents that process data. Data stores are components such as databases or files

Automatically Extracting Threats from Extended Data Flow Diagrams 59

that store data. Interactors are external systems or users who interact with the
analyzed system. All these elements can interact with each other using data flows.
Data flows may cross trust boundaries. A trust boundary symbolizes different
trust levels within a system. Figure 2a shows all available DFD elements.

3.2 Introducing EDFDs

We use EDFDs since we witnessed several shortcomings with the existing data
flow diagrams while we applied Threat Modeling to real industry systems. First
of all, DFDs do not capture knowledge on existing security measures or require-
ments. Therefore, an automated analysis of an already-defined security architec-
ture against security rules is not possible. Second, data flows are unidirectional
channels between arbitrary elements. Data that are transported in this chan-
nel are specified by simple labels that are attached to data flow edges. For this
reason it is hard to identify data that flow through the whole system. Further-
more, trust boundaries are used to indicate trust areas. There is no information
which components belong to a trust area making it impossible to identify dan-
gerous data flows or access paths. Therefore, we decided to model aspects, such
as data, communication, and security measures, in a more explicit way to allow
an automated analysis of DFDs.

Fig. 2. Exemplary Diagrams

EDFDs comprise four central concepts, namely Elements, Channels, Trust
Areas, and Data (see Fig. 2b). Each of these concepts is typable and allows us
to add additional information called annotations. These annotations help us
add information about security measures or requirements to these components.
Types and annotations are designed hierarchically allowing us to refine them.
An HTTP connection, for instance, is a special kind of interprocess data flow.
Each defined type may imply annotations to the component. The set of defined
types and annotation types is called EDFD schema, which allows us to adapt
EDFDs to the needs of new systems easily. Nevertheless, EDFDs come with a
predefined schema to provide a starting point for modeling systems.

Elements: EDFDs abstract the entities Data Store, Process, and Interactor
from traditional DFDs to the Element concept. We use corresponding types to
model these entities. A Java Process, for instance, is an element type and inherits
from Process implying the Java annotation.

60 B.J. Berger et al.

Elements can also be structured hierarchically, e.g., processes can consist of
subprocesses. In this case we can define a parent-child relationship (see Fig. 2b).

Channels: We use channels to model data flows. This allows us to model dif-
ferent kinds of communications, such as one-to-one, one-to-many, and many-to-
many communications. The predefined schema contains three root-channel types
InterProcessConnection, IntraProcessConnection and ManualInput.

Trust Areas: In software systems, several circumstances exist that group ele-
ments to trust areas. Therefore, there are quite different kinds of trust areas,
such as Network, Machine Boundary, or Software Area.

Data: The existing data instances depend on the current software system to
be modelled. Therefore, we introduce a small number of predefined data types,
such as User Data and its refinement Credentials. A frequently used annotation
for data is the flag IsConfidential.

In summary, we use types and implied annotations and not mere annotations
for the sake of usability. Since knowledge on architectural vulnerabilities is sparse
(in particular, in small and medium-sized enterprises) and the implications of
using certain security mechanisms are often unclear, we introduced the typing
mechanism. This typing mechanism takes the burden from the analyst.

3.3 Pattern Catalog

It showed that we had to model similar facts for different systems, for instance,
the usage of an SQL-based database or authentication using a login page. There-
fore, we provided a catalog of security-related design patterns. These patterns
are related to security patterns known in the research community [4,23]. The
pattern catalog helps a security analyst during the creation of EDFDs to focus
on modeling the system instead of thinking about the way certain technical
solutions can be modeled.

3.4 Knowledge Base Rules

Our knowledge base captures descriptions of common security flaws in a machine
readable form. A rule consists of a name, a description that explains the details
of the flaw, and an estimation of the severity and the likelihood of the flaw. The
rules contain queries to identify possible flaws and corresponding mitigations.
The queries are defined using a graph query language called Cypher Query Lan-
guage [10]. It is designed to describe subgraphs that should be matched in an
arbitrary graph. Therefore, it is possible to define properties of nodes and paths
within the subgraph. It is even possible to describe paths of infinite length.

3.5 Rule Checker

The detection of flaws consists of three steps. First the EDFD is lowered
to a labeled and attributed graph representation. Then all rules are applied

Automatically Extracting Threats from Extended Data Flow Diagrams 61

to the graph to identify possible threats. In the last step the threat model is
generated based on the findings. During the lowering all elements that can be
found in the EDFD are mapped to nodes or edges of a normal graph (see Fig. 3).
A trust area is mapped to a node and an include edge to each contained ele-
ment. Attributes and types are mapped to attributes in the resulting graph. For
matching the rules are all matching subgraphs for each flaw pattern are identi-
fied. If a match is found, a corresponding entry in the threat model is created.
Then the matching engine searches for possible mitigations starting with the
identified subgraph.

Fig. 3. Lowering of EDFDs to simple graphs

We implemented a graphical EDFD editor on top of Eclipse’s Graphiti. It
is able to create new EDFDs, initialized with a predefined schema, and mod-
ify existing ones. The visualization can be customized by type-dependent icons,
and arrow styles in case of channels. Hierarchical elements can be folded and
expanded. If channels exist where one of their endpoint elements is hidden
because its parent has been folded, we automatically lift this edge to the visible
parent [22].

3.6 Threat Model

The result of our automatic detection process is a threat model. Each threat
references a rule from our knowledge base. Furthermore, it links at least one
entity from an EDFD that is the target of the threat. Additionally, the threat
can link a set of mitigations in the EDFD.

4 Knowledge Base

We populated our knowledge base with threats from the Common Weak-
ness Enumeration (CWE) and the Common Attack Pattern Enumeration and

62 B.J. Berger et al.

Classification (CAPEC). The most common problems are aggregated in the
Top 25 Most Dangerous Software Errors [18]. Table 1 gives an overview of the
supported CWE entries1. If a rule belongs to the Top 25, the corresponding rank-
ing is given. The most interesting rules are those where we can give mitigation
rules, for instance, CWE-288: Authentication Bypass Using an Alternate Path
or Channel, or CWE-319: Cleartext Transmission of Sensitive Information. We
distinguish between threats where we are able to detect possible mitigations and
those where we are not able to do so. For the latter group a manual code review
or additional static analyses are necessary to check whether the threat has been
addressed.

MATCH (s r c : Element) −[f low : Channel]−> (tg t : Element)
WHERE f low . type . subtypeof (” InterProcessCommunication”)

ANDANY (d IN f low . data WHERE d . I sCon f i d e n t i a l)
AND NOT f low . IsEncrypted

Listing 1.1. Graph Query Rule for CWE-319

Listing 1.1 shows our rule for CWE entry CWE-319 as an example. The rule
looks for a channel between two elements that transports confidential informa-
tion. If the channel does not employ encryption, an attacker may capture the
transported information.

1 MATCH (s r c : Element) −[p1 : Channel ∗]−> (n1 : Element)

2 −[entry : Channel]−> (tg t : Element)

3 <− [: i n c lude] − (area : TrustArea {
Authent icat ion Required : true })

4 WHERE NONE (d in entry . data WHERE d . I sC r eden t i a l OR d . IsSess ionToken)

5 AND NOT (s r c) <−[: i n c lude]− (area)

6 AND NOT (n1) <−[: i n c lude]− (area)

7 AND NONE (n IN nodes (p1) WHERE (area) − [: i n c l ude s]−> (n))

Listing 1.2. Graph Query Rule for CWE-306

As a second example, we give the rule for CWE-306: Missing Authentication
for Critical Function in Listing 1.2. The corresponding pattern graph in Fig. 4.
We look for a path p1 from a node src to a node n1. n1 in turn is directly
connected to the second node tgt. At last, there is a trust area node area that
has an include relation to tgt. This part of the query searches for a path from
src to tgt where tgt is contained in a trust area that requires authentication
according to line 3 of the query. In line 4, we check that no session token or
credential exists that is sent to tgt. Lines 5 to 7 ensure that none of the nodes on
the p1 are contained in the same trust area area including src and n1. With the
help of these checks, we can find a flow to a component that is not authenticated.
1 For the sake of presentation, we only give the complete names of CWE as well as

CAPEC entries in the appendix.

Automatically Extracting Threats from Extended Data Flow Diagrams 63

Fig. 4. Pattern Graph for CWE-306

Table 1. Excerpt of Supported Rules

C(W)E
C(A)PEC

Rule Top 25 (T)hreat
(M)itigation

W 89 1 T
W 78 2 T
W 120 3 T
W 79 4 T
W 306 5 M
W 311 8 M
W 352 12 T
W 22 13 T
W 327 19 M
W 134 23 T

C(W)E
C(A)PEC

Rule Top 25 (T)hreat
(M)itigation

W 190 24 T
W 759 25 T
W 288 M
W 319 M
W 602 M
A 108 T
A 16 T
A 22 T (M)
A 66 T
A 94 (T) (M)

The currently supported CAPEC rules are listed in Table 1. Supporting them
is more complex than supporting CWE rules since they subsume complete classes
of attack patterns. Sometimes it is impossible to detect all possible variants of
an attack pattern. Therefore, we note some threats and mitigations in brackets
to show that we support just some special cases of this attack pattern.

We support additional rules that do not match CWE or CAPEC entries.
For instance, we are checking information flow policies with the help of our
rule set. This is useful for broadcast channels where sensitive data may flow to
processes that are not trustworthy enough to process this information. In total,
we currently support 25 security-related rules that are not application-specific.
In future we will add further rules depending on projects and use cases.

5 Evaluation

We evaluated our approach with the help of three industrial case studies from
different vendors. The effort to construct these EDFDs summed up to half a
day of work for each one. Two of the applications are from the logistics domain
having a similar purpose and the third one is from e-government. In particular,
we investigated the following questions.

1. Can we automatically identify threats and security flaws with EDFDs?
2. What is the impact of the identified security flaws?
3. Can we find similarities between the logistics applications?

64 B.J. Berger et al.

Logistics Application A. Our first application comes from the logistics domain
and is a company-specific application framework based on JavaEE technologies.
The vendor offers a large number of domain-relevant applications based on this
framework and wanted to identify framework-based flaws to improve the security
status of their complete product portfolio. The software is mainly offered on a
software-as-a-service (SaaS) base and has therefore a number of security require-
ments beyond the functional requirements. The applications help customers with
customs clearance and fleet and port management. Figure 5 shows a simplified
EDFD that we created during a workshop together with three system experts
who are responsible for the architecture and the main development of the frame-
work components. No-one of them had deep knowledge in the area of software
security at that time.

Fig. 5. Simplified EDFD for Logistics Application A

There are two possible clients. First, a browser-based client that is accessible
by the end user. Second, a Java-based rich client supporting a user interface
and an integrated request forwarder forwarding requests made by external cus-
tomer systems, such as enterprise resource planning software, to the server. The
server process and a related SQL-based database are running in the trust area

Automatically Extracting Threats from Extended Data Flow Diagrams 65

of the software vendor’s network. The server implements two interfaces for the
clients. One of them is a GWT-based web interface and the second is an RMI-
based interface for the rich client. Both interfaces consist of public and private
components that require authentication. The clients send credentials to the pub-
lic interfaces to authenticate the user and receive a session object for identifying
the user for subsequent requests in return. Please note that we omit the visual-
ization of transferred data and the annotations for the sake of clarity.

Our analysis approach identified several possible threats for this system
that we discussed with the system experts as well as detected mitigations. An
overview of the matching CWE entries can be found in Table 2. The rules iden-
tified correctly that there were confidential data that flowed between the clients
and the server process. Hence, an attacker can try to capture these data during
transmission. Our approach also found the mitigation that the channels were
using TLS for transport encryption and therefore secured the data.

The rule checker found an instance of CWE entry 306 (see Fig. 4). The exter-
nal ERP system sends requests to the Request Forwarder contained in the Rich
Client. The requests are then forwarded to the Request Processor on the server-
side. The forwarder in turn communicates directly with the MySQL database.
This communication path does not transport authentication data which indi-
cates that an authentication check is missing. The communication path was
added afterwards to the software since some clients wanted to integrate the
logistics application directly into their ERP software. Moreover, a possible SQL
injection was detected for the private RMI interface, but a review showed that
they used hand-written SQL statements in conjunction with a company-specific
API that ensured that an SQL injection could not occur. Consequently, this
finding is a false positive. Another problem we detected was the circumstance
that the client implemented authorization checks rather than the server. Hence,
this is an instance of the CWE entry 602. Our process detected more threats,
which were then examined in manual reviews and revealed additional security
flaws in this application framework.

Table 2. Detected Threats for Logistics Applications

CWE Top 25 (D)etected/(V)ulnerable

App A App B

89 1 D V
78 2 D V
120 3
79 4 V V
306 5 V
311 8 V
352 12 V V
22 13 D

CWE Top 25 (D)etected/(V)ulnerable

App A App B

327 19 V
134 23
190 24
759 25 V V
288 V
319 V
602 V V

The consequences and the impact of these findings are high if one considers
the sensitivity of the data and systems involved in port logistics. For example,

66 B.J. Berger et al.

an attacker can circumvent the client-side security checks and access all data
and functions available. This can be achieved by using the request forwarder or
simply by modifying the rich client. Since these problems occur in the applica-
tion framework, each of the applications based on the framework is vulnerable.
The consequence would be that seaports, international forwarding agents, and
parcel services are not able to do their job. In the end, this would result in a
major financial loss for the software vendor due to contractual penalties and for
economy due to outstanding delivery of goods.

Logistics Application B. The second application from the logistics domain is
similar to the first one. It helps manufacturing industry with customs declara-
tions, sanction lists checks, and commissioning. It is implemented based on the
JavaEE specifications and provides a web-based interface to the customers. The
software is distributed and sold on a SaaS basis as well. The data are stored in
a single database making multi-tenancy an important topic for the application’s
security. The application is divided into several products, such as import, export,
and sanction lists. In total there are seven different products that can be bought
by users (Fig. 6).

Fig. 6. EDFD for Logistics Application B

The software is structured like a typical Java Enterprise application. The
client of the web application is a browser and is divided into an public Login
page and one component for each aforementioned product. Each product on
the client side is independent of other products. We modeled this as different
trust areas. On the server side in the company’s network, a JBoss application
container runs a Tomcat web container and all product-specific Business Logic
components implementing the view-independent algorithms and the persistence.
Tomcat serves different Java Servlets (dynamic web content), a Login Page and
JSP pages as well as Struts actions for each product. Struts is a framework
that allows web programmers to implement the model view controller pattern

Automatically Extracting Threats from Extended Data Flow Diagrams 67

for dynamic web pages. For persistence purposes, the Business Logic compo-
nents talk to a Microsoft SQL database running on a different machine. Where
necessary, the Business Logic components communicate with external systems,
such as online sanction lists and the German electronic customs interface Atlas.

Our automated analysis identified several existing flaws. An overview of
detected threats is given in Table 2. First of all it contains injection-based vul-
nerabilities, such as XSS and SQLi. The application was vulnerable to these
kinds of attacks since the programmers neglected input validation and did not
use an SQL abstraction layer such as the Java Persistence API—also an architec-
tural flaw. Furthermore, we identified a threat based on CWE-602: Client-Side
Enforcement of Server-Side Security.

Similar to the findings in Logistics Application A the impact is crucial for
the security of the software system. It may be easy for attackers to bypass most
of the security measures if she has a valid account for the system. Furthermore,
if the communication between client and server is not protected by appropriate
transport encryption, an attacker has the possibility to steal the credentials of
an arbitrary user. Depending on the motivation of an attacker the vulnerabilities
can have different consequences. On the one hand, the attacker can be interested
in harming a specific customer and steal sensitive information, such as the list of
customers or exported goods. Furthermore, there can be a financial impact for
customers since some taxes are collected automatically on import or export in
advance. On the other hand, the attacker can be interested in compromising the
software provider and delete customer data or disrupt the functionality. Since
the contracts contain penalties for delays caused by the software, this finally can
lead to financial damage and may have legal consequences.

E-Government Application. The third case study, Governikus Service Com-
ponents, belongs to the e-government domain and is part of a service-oriented
architecture. Its purpose is to create qualified digital signatures that are legally
binding in Germany. These signatures are created with the help of signa-
ture cards and are used by authorities for signing documents, such as birth
certificates.

Therefore, security is an immanent requirement and is taken into account
during development. Hence, the software is being evaluated according to the
Common Criteria (CC) [7].

For reasons of space we cannot give an EDFD here, but briefly describe it.
An external system communicates with a public web service using an HTTPS
connection. The web service runs in a Tomcat instance and sends the signing
requests to a worker application using Java Message Service, an asynchronous
message bus. The worker application in turn dispatches the requests to different
signature cards according to their purpose. The signature is then returned to the
calling process. The automatic analysis process did not detect any threats, which
was not surprising due to the efforts spent into the CC evaluation. Nevertheless,
the EDFD produced for this application helped us find a serious security flaw
manually. One important security measure is to enforce proper access control
for the signature card. The implemented checks ruled out that an outsider could

68 B.J. Berger et al.

access the card. However, the case was not checked that a legitimate user tries
to access a card of another user, i.e., the user identity was not compared with
the identity required to access the card. Interestingly, the flaw was not detected
before, although an EAL 4+ evaluation according to the CC was carried out on
this system—an evaluation level with relatively high effort.

Results. Regarding the aforementioned questions, we can conclude from these
three case studies:

1. We were able to automatically identify threats and security flaws in EDFDs.
The detected flaws are known from collections such as the CWE or CAPEC.

2. In general we can see that these flaws lead to a major security breach, enabling
an attacker to circumvent most parts of the existing security measures.

3. The investigated logistics applications have major security problems. It is
obvious that security was not a concern that was addressed during develop-
ment. This is problematic given the purpose of the systems.

6 Discussion

Our work is not the first one that attempts to identify security flaws in software
architectures. Nevertheless, many companies try to avoid this step for budget
reasons. Therefore, we split the responsibilities and define the different roles
shown in Fig. 1. This way, we can reuse gathered knowledge and reduce the effort
necessary to conduct architectural risk analysis. The pattern catalog additionally
helps one decrease the time necessary to create an accurate EDFD. The approach
can be implemented using other modeling techniques such as UML.

Since the knowledge base is not complete, our approach produces false neg-
atives. A source of false positives and false negatives is the accuracy of the
checked system model. Specifically, application-specific flaws cannot be detected
automatically as we have seen in the context of the e-government case study.
Since the number of found threats is within the double-digit range for all case
studies, it is still possible to discuss the identified threats.

We are aware of the fact that our approach of finding possible threats and
mitigations is known as subgraph isomorphism problem that is NP-complete in
general. Nevertheless, our rule base is processed within a few minutes because
most of the rules are local or the search space can be reduced due to the attribute
and type constraints.

7 Related Work

In this paper, we focus on architectural security analysis and hence we discuss
related work from this perspective. Our technique can be differentiated from sta-
tic code analyzers [5]. Static code analyzers attempt to detect low-level program-
ming bugs, such as SQLi vulnerabilities, at code level. In contrast, our approach
works at the architectural level and aims to identify flaws, e.g., an application
basically does not carry out input validation to avoid SQLi vulnerabilities.

Automatically Extracting Threats from Extended Data Flow Diagrams 69

Microsoft provides a tool that supports the Threat Modeling process [9].
This tool, in essence, makes available a catalog of questions that an analyst
can apply to a given DFD rather than providing an analysis engine. Schaad
and Borozdin applied STRIDE to block diagrams and identified possible threats
and vulnerabilities introduced by the usage of third-party standard software
components [21]. They also support a question-based assessment.

There are also works based on the UML that allow one to analyze secu-
rity architectures [2,12,13]. The UML-based approaches let a software architect
formulate security requirements that a software architecture must satisfy, e.g.,
access control or confidentiality requirements. In general, the introduction of
UML and its constraint language OCL was meant to allow an architect to spec-
ify positive system requirements rather than anti-requirements (things that can
go wrong), although UML/OCL can also be used for this purpose. In contrast
to the aforementioned approaches, we utilize security knowledge and experience
as provided by CWE and CAPEC. Consequently, our technique complements
common UML-based approaches to security.

Almorsy et al. use formalized vulnerability signatures defined in OCL to auto-
matically detect different kinds of security issues in C#, C++, C and VB.Net
applications. Their approach allows them to detect implementation-level vul-
nerabilities, such as SQL-Injection and Cross-Site Scripting vulnerabilities [1].
Furthermore, they calculate security metrics, e.g. the attack surface metric (see
Manadhata and Wing [14]). Currently, they do not aim at detecting architecture-
level security flaws.

Jung et al. present a technique to check a service-oriented architecture imple-
mented using the Apache Tuscany Framework. Their security rules are decom-
posed using a tree structure and therefore resemble the Security Goal Indicator
Tree approach [19]. This approach, however, does not consider existing threats
of a system [11].

8 Conclusion and Outlook

In this paper, we proposed an approach to the automated security analysis of
software architectures. This analysis technique allows organizations to conduct
architectural risk analysis more cost-effectively. We employed extended data flow
diagrams as well as a knowledge base that contains information on architectural
weaknesses and possible mitigations. We applied this technique to three real-
world case studies and detected critical security flaws, in particular in the context
of a port logistics system.

In the future, we will extend the knowledge base including the supported
rule set with the help of further case studies from different domains. We can
also combine the knowledge base with a reverse engineering approach that auto-
matically extracts the EDFDs from legacy code. This allows us to integrate our
analysis technique in later steps of the Security Development Lifecycle.

Acknowledgement. This work was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 16KIS0069K (ZertApps project).

70 B.J. Berger et al.

A CWE and CAPEC Rules

CWE-22 Improper Limitation of a Pathname to a Restricted Directory
(‘Path Traversal’)

CWE-78 Improper Neutralization of Special Elements used in an OS Com-
mand (’OS Command Injection’)

CWE-79 Improper Neutralization of Input During Web Page Generation
(’Cross-site Scripting’)

CWE-89 Improper Neutralization of Special Elements used in an SQL Com-
mand (’SQL Injection’)

CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Over-
flow’)

CWE-134 Uncontrolled Format String
CWE-190 Integer Overflow or Wraparound
CWE-288 Authentication Bypass Using an Alternate Path or Channel
CWE-306 Missing Authentication for Critical Function
CWE-311 Missing Encryption of Sensitive Data
CWE-319 Cleartext Transmission of Sensitive Information
CWE-327 Use of a Broken or Risky Cryptographic Algorithm
CWE-352 Cross-Site Request Forgery (CSRF)
CWE-602 Client-Side Enforcement of Server-Side Security
CWE-759 Use of a One-Way Hash without a Salt

CAPEC-16 Dictionary-based Password Attack
CAPEC-22 Exploiting Trust in Client (aka Make the Client Invisible)
CAPEC-66 SQL Injection
CAPEC-94 Man in the Middle Attack

CAPEC-108 Command Line Execution through SQL Injection

References

1. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture secu-
rity risk analysis using formalized signatures. In: 35th International Conference on
Software Engineering (ICSE), pp. 100–109 (2013)

2. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Inf. Softw. Technol. 51, 815–831 (2009)

3. Berger, B., Sohr, K., Koschke, R.: Extracting and analyzing the implemented secu-
rity architecture of business applications. In: 2013 17th European Conference on
Software Maintenance and Reengineering (CSMR), pp. 285–294 (2013)

4. Bunke, M., Sohr, K.: An architecture-centric approach to detecting security pat-
terns in software. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011.
LNCS, vol. 6542, pp. 156–166. Springer, Heidelberg (2011)

5. Chess, B., West, J.: Secure Programming with Static Analysis. Addison-Wesley,
Reading (2007)

6. Clavel, M., da Silva, V., Braga, C., Egea, M.: Model-driven security in practice: an
industrial experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 326–337. Springer, Heidelberg (2008)

Automatically Extracting Threats from Extended Data Flow Diagrams 71

7. Criteria, C.: Common Criteria for Information Technology Security Evaluation-
Part 1: Introduction and general model (2009). http://www.commoncriteriaportal.
org/files/ccfiles/CCPART1V3.1R3.pdf

8. Dhillon, D.: Developer-driven threat modeling: lessons learned in the trenches.
IEEE Secur. Priv. 9(4), 41–47 (2011)

9. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Uncover Security Design Flaws
Using the STRIDE Approach. MSDN Magazine, November 2006. http://msdn.
microsoft.com/en-us/magazine/cc163519.aspx

10. Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison
of cypher, gremlin and native access in neo4j. In: Proceedings of the Joint
EDBT/ICDT 2013 Workshops, EDBT 2013, NY, USA, pp. 195–204. ACM, New
York (2013) http://doi.acm.org/10.1145/2457317.2457351

11. Jung, C., Rudolph, M., Schwarz, R.: Security evaluation of service-oriented systems
with an extensible knowledge base. In: 2011 Sixth International Conference on
Availability, Reliability and Security (ARES), pp. 698–703 (2011)

12. Jürjens, J., Shabalin, P.: Automated verification of UMLsec models forsecurity
requirements. In: Baar, T., Strohmeier, A., Moreira, A., Moreira, S.J. (eds.) UML
2004 - The Unified ModelingLanguage: Modeling Languages and Applications.
LNCS, vol. 3273. Springer, Heidelberg (2004)

13. Kuhlmann, M., Sohr, K., Gogolla, M.: Comprehensive two-level analysis of static
and dynamic rbac constraints with uml and ocl. In: Proceedings of the 2011 Fifth
International Conference on Secure Software Integration and Reliability Improve-
ment, pp. 108–117. IEEE Computer Society, Washington, DC (2011)

14. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

15. Mantel, H.: Preserving information flow properties under refinement. In:
IEEE Symposium on Security and Privacy, p. 78 (2001).http://computer.org/
proceedings/s%26p/1046/10460078abs.htm

16. McGraw, G.: Software Security: Building Security In. Addison-Wesley, Reading
(2006)

17. Microsoft: Microsoft Security Development Lifecycle (SDL) - Version 5.0. https://
www.microsoft.com/en-s/download/details.aspx?displaylang=en&id=12285
(2010)

18. Mitre: CWE/SANS Top 25 Most Dangerous Software Errors (2015). Accessed:
January 15, 2015 http://cwe.mitre.org/top25

19. Peine, H., Jawurek, M., Mandel, S.: Security goal indicator trees: a model of soft-
ware features that supports efficient security inspection. In: 11th IEEE High Assur-
ance Systems Engineering Symposium, HASE 2008, pp. 9–18 (2008)

20. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

21. Schaad, A., Borozdin, M.: Tam2: Automated threat analysis. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing, pp. 1103–1108 (2012)

22. Schrettner, L., Fülöp, L.J., Ferenc, R., Gyimóthy, T.: Visualization of software
architecture graphs of java systems: managing propagated low level dependencies.
In: Proceedings of the 8th International Conference on the Principles and Practice
of Programming in Java, PPPJ 2010, pp. 148–157. ACM, New York (2010). http://
doi.acm.org/10.1145/1852761.1852783

23. Schumacher, M.: Security Engineering with Patterns - Origins, Theoretical Models,
and New Applications. LNCS, vol. 2754. Springer, Heidelberg (2003)

24. Swiderski, F., Snyder, W.: Threat Modeling. Microsoft Press, Redmond (2004)

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://doi.acm.org/10.1145/2457317.2457351
http://computer.org/proceedings/s%26p/1046/10460078abs.htm
http://computer.org/proceedings/s%26p/1046/10460078abs.htm
https://www.microsoft.com/en-s/download/details.aspx?displaylang=en&id=12285
https://www.microsoft.com/en-s/download/details.aspx?displaylang=en&id=12285
http://cwe.mitre.org/top25
http://doi.acm.org/10.1145/1852761.1852783
http://doi.acm.org/10.1145/1852761.1852783

On the Static Analysis of Hybrid Mobile Apps

A Report on the State of Apache Cordova Nation

Achim D. Brucker1(B) and Michael Herzberg2

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

2 SAP SE, Vincenz-Priessnitz-Strasse 1, 76131 Karlsruhe, Germany
michael.herzberg@sap.com

Abstract. Developing mobile applications is a challenging business:
developers need to support multiple platforms and, at the same time,
need to cope with limited resources, as the revenue generated by an aver-
age app is rather small. This results in an increasing use of cross-platform
development frameworks that allow developing an app once and offering
it on multiple mobile platforms such as Android, iOS, or Windows.

Apache Cordova is a popular framework for developing multi-
platform apps. Cordova combines HTML5 and JavaScript with native
application code. Combining web and native technologies creates new
security challenges as, e. g., an XSS attacker becomes more powerful.

In this paper, we present a novel approach for statically analysing
the foreign language calls. We evaluate our approach by analysing the
top Cordova apps from Google Play. Moreover, we report on the current
state of the overall quality and security of Cordova apps.

Keywords: Static program analysis · Static application security
testing · Android · Cordova · Hybrid mobile apps

1 Introduction

Developing mobile applications is a challenging business: developers need to
support multiple platforms, but also have to cope with limited resources, as the
revenue generated by an average app is rather small. In principle, there are three
different approaches: (1) native apps, (2) mobile web apps, or (3) hybrid apps.
Native apps are built using platform specific technologies (e. g., Swift for iOS or
Java for Android). They have the advantage that they can use all platform spe-
cific features. Mobile web apps are on the other end of the spectrum: they are web
apps developed using standard web technologies (i. e., HTML5 and JavaScript)
and, thus, run on every device with a modern web browser. As a downside, they
are only very shallowly, if at all, integrated into the mobile platform and can

A.D. Brucker–Parts of this research were done while the author was a Security
Testing Strategist and Research Expert at SAP SE in Germany.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 72–88, 2016.
DOI: 10.1007/978-3-319-30806-7 5

On the Static Analysis of Hybrid Mobile Apps 73

only access device features that are supported by HTML5. Hybrid apps com-
bine the advantages of native and mobile apps; they allow developing most of
the application using platform independent technologies, where small platform
specific plugins enable the developer to access all device features that a native
application can access.

Due to the increased market pressure for supporting multiple mobile platform
as well as the increased demand to save development costs, more and more mobile
apps are developed as hybrid apps. Thus, hybrid development frameworks such as
PhoneGap (http://phonegap.com/), Trigger.io (https://trigger.io/), or Apache
Cordova (https://cordova.apache.org/) are becoming more and more popular.
This is not only true for small independent studios developing mobile apps, also
large enterprise software vendors such as SAP are recommending the hybrid
approach as the default development model to their developers. SAP offers its
own extension of Apache Cordova, called SAP Kapsel, that is used both by SAP
as well as its customers for developing mobile enterprise apps.

From a security development perspective, hybrid apps pose several challenges.
We need to be aware that, e. g., a XSS attacker becomes much more powerful
as he might be able to break out of the JavaScript environment and inject code
that is executed in the context of the native part of the app—resulting in a much
larger attack surface. The combination of web technologies and native mobile
code is not yet supported by state of the art automated security testing tools in
general and static application security testing (SAST) tools in particular. SAST
tools are the back-bone of a holistic security testing strategy [3] and are widely
used in the software industry [5,6].

We address this problem by developing a static code analysis approach that
supports hybrid mobile apps developed using Apache Cordova. In more detail,
our contributions are twofold: (1) we present a novel technique providing the
basis for detecting data-flows in hybrid mobile apps, and (2) we report on our
lessons learned from applying our approach to a large number of top Cordova
apps from Google Play.

2 Apache Cordova and Its Security Model

In this section, we briefly introduce Apache Cordova and provide a general
overview of the particular security challenges of Cordova apps.

2.1 Apache Cordova Architecture and Programming Model

Cordova is a framework for developing mobile apps using HTML5 and JavaScript
while still allowing full access to the device features.

Architecture. Figure 1 shows the architecture of an Android Cordova app.
The main part, i. e., the application logic and the user interface, are written in
HTML5, CSS, and JavaScript. This part is executed in an extended WebView
that provides, besides the HTML5 API, also a dedicated Cordova JavaScript

http://phonegap.com/
https://trigger.io/
https://cordova.apache.org/

74 A.D. Brucker and M. Herzberg

API. The latter allows, via the Cordova Native API, to access various Cordova
Plugins. The Cordova Plugins are written in the platform’s programming lan-
guage (e. g., in Java for Android). Cordova ships with many default plugins;
additional plugins are offered by third party providers or can implemented by
the application developer.

Fig. 1. The Android Cordova Architecture

Our approach also works for extensions of Cordova such as PhoneGap by
Adobe or SAP Kapsel by SAP that mostly provide additional plugins.

An Example Cordova Plugin. Let us assume we want to implement a Cor-
dova plugin that allows for searching the contacts database. Listing 1.1 (Listing
1.2) shows an excerpt of the JavaScript (Java) of the plugin implementation.

Listing 1.1 shows a JavaScript function showPhoneNumber that can be used
to implement the business logic of a Cordova app. The exec method (Line 5–6)
is the core of the foreign language interface of Cordova. It takes five arguments:
1. a callback that is invoked in case of a successful termination of the native
call, 2. a callback that is invoked in case of a erroneous termination of the native
call, 3. a string that identifies the name of Java class that implements the native
function, 4. a string that identifies the action that should be executed by the
native function, and 5. a list containing the arguments of the native function.

function showPhoneNumber(name) {

2 var successCallback = function(contact) {

alert("Phone�number:" + contacts.phone);

4 }

exec(successCallback , null , "ContactsPlugin", "find",

6 [{"name" : name }]);

}

Listing 1.1. Contacts Plugin Example: JavaScript

On the Static Analysis of Hybrid Mobile Apps 75

1 class ContactsPlugin extends CordovaPlugin {

boolean execute(String action , CordovaArgs args ,

3 CallbackContext callbackContext) {

if ("find".equals(action)) {

5 String name = args.get (0). name;

find(name , callbackContext);

7 } else if ("create".equals(action)) ...

}

9 void find(String name , CallbackContext callbackContext) {

Contact contact = query("SELECT�...�where�name=" + name);

11 callbackContext .success(contact);

}

13 }

Listing 1.2. Contacts Plugin Example: Java

The Cordova framework delegates this call to the execute method of the
Java class ContactsPlugin (Listing 1.2, Line 2), which delegates the call, based
on the action, to the find method (Line 9). The find method uses a SQL query
to find the contact information and passes it to the success callback (Line 11).
The information is then passed back to the corresponding JavaScript method
(Listing 1.1, Line 2).

2.2 Security Considerations for Cordova Apps

On the one hand, Cordova apps are HTML5 applications, i. e., they share all
typical features (e. g., JavaScript code that is downloaded at runtime) and secu-
rity risks (e. g., XSS) of web applications (see, e. g., [19,23] for an overview of
these risks). On the other hand, Cordova apps share the features (e. g., full device
access) and security risk (e. g., SQL injections, privacy leaks) of native apps (see,
e. g., [17,27] for an overview of these risks).

To limit the typical web application threats, WebViews are re-using the well-
known security mechanism from web browsers such as the same-origin policy [10].
Moreover, WebViews are separated from the regular web browsers on Android,
e. g., WebViews have their own cache and cookie store. Still, there are subtle
differences that make implementing secure Cordova apps even for experienced
web application developers a challenge [9,10].

A plugin is a mechanism for drilling holes into the sandbox of a WebView,
making the traditional web attacker much more powerful as, e. g., an XSS attack
might grant access to arbitrary device features. The root cause for such vulnera-
bilities can be located in Cordova itself (e. g., CVE-2013-4710 or CVE-2014-1882)
or in programming and configuration mistakes by the app developer.

There have been several works introducing more fine-grained access control
mechanism for the cross-language interface in hybrid mobile apps, particularly
Cordova, such as NoFrak [10], MobileIFC [22], and others [12,21]. They all iden-
tified the breach of the sandbox security and that Cordova fails to restrict access

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4710
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1882

76 A.D. Brucker and M. Herzberg

to plugins by untrusted JavaScript code as the major security and privacy con-
cern. To remedy this breach, they propose modifications to the hybrid framework
which mitigate attacks by introducing fine-grained access control and modifica-
tions to Android’s permission model. Apache Cordova is certainly in need of
such additions. This way, existing hybrid applications could be secured without
modification, reducing the potential implications of vulnerabilities such as XSS.
This running time protection paired with tools helping the app developers to
secure their apps in the first place, such as presented in this paper, is certainly
a good combination to ensure a secure experience when using hybrid apps.

3 Static Analysis for Finding Cross-Language Flows

In this section, we present our approach for building a uniform call graph for
Cordova apps with connected Java and JavaScript parts. This call graph is the
basis for a cross-language data-flow analysis which enables an end-to-end static
program analysis of Cordova apps.

3.1 Modelling Cordova

The usage patterns of cross-language calls depends heavily on the underlying
framework, e. g., Cordova. Thus, to implement a cross-language analysis, one can
either model the underlying framework or analyse the application including the
cross-language framework itself. In our work, we decided to model the Cordova
framework due to two reasons: 1. Modelling Cordova avoids the need for re-
analysing the Cordova source code for each app and 2. data-flows within the
framework code are not of interest to the app developer.

Since the official documentation regarding plugins is rather sparse, many
observations are based on the officially provided plugins.

The usual cross-language control flow in a Cordova app follows a JavaScript-
to-Java-to-JavaScript scheme: Starting in the JavaScript part, a call to exec
transfers the flow to the Java side, where the requested native action is executed.
When finished, the Java part calls one of the two callbacks that were passed to
the exec call, after which the flow transfers back to the JavaScript part.

We model Cordova implicitly by four Cordova specific heuristics. The purpose
of the first two is finding the JavaScript callbacks passed to the exec call; they
are the targets of the Java-to-JavaScript call chain link. The third heuristic is
concerned with finding the Java callers of this link. The fourth one filters out
cross-language calls which have been reported by the first three heuristics, but
are very unlikely to be correct.

The JavaScript-to-Java calls are easier to detect and thus not addressed by
the heuristics, because the exec calls are rather static and carry enough infor-
mation in their service and action parameters1 to deduct the Java call target.

1 For more information on the usage of these two parameters, see https://cordova.
apache.org/docs/en/latest/guide/hybrid/plugins/.

https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/
https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/

On the Static Analysis of Hybrid Mobile Apps 77

Mocking the Cross-Language Call Interface. Cordova’s exec method is
the heart of its cross-language interface, thus a precise modelling of calls to
this method is key. The actual implementation of this method, androidExec
in cordova.js, is not useful for detecting cross-language calls statically for at
least two reasons: 1. The heavy use of dynamic language features by Cordova
is challenging; e. g., the callback functions passed to exec are being stored by
androidExec in a global dictionary and are only used much later. Thus, it is very
hard to determine statically when the callback functions are called. As a result,
these calls will not get modelled by typical building algorithms, which is fatal
as they are the targets of the calls from Java-to-JavaScript. 2. The algorithms
for building JavaScript call graphs are often context-insensitive. As all cross-
language calls from JavaScript-to-Java are done via the one exec method offered
by Cordova, this becomes a problem. We want to be able to relate the passed
callback functions to the other parameters, which provide important information
about the part on the Java side which will later call these callbacks. Therefore,
context-sensitivity for the calls to exec is vital.

Solution. Both issues are addressed by our heuristic ReplaceCordovaExec, which
automatically pre-processes the JavaScript source code. The core idea is to search
for all cordova.exec and exec calls and replace each of them with a call to a
freshly created method with a unique name that calls the callbacks.

function showPhoneNumber(name) {
var succCb = function(contact) {

alert("Number:"+contacts.phone);
}

exec(succCb , null ,
"ContactsPlugin",
"find", [{"name" : name }]);

}

Listing 1.3. Before: Example of mock-
ing the cross-language call interface

function showPhoneNumber(name) {
var succCb = function(contact) {

alert("Number:"+contacts.phone);
}
function stub1(succ , fail , service ,

action , args) {
succ(null);
fail(null);

}
stub1(succCb , null ,

"ContactsPlugin",
"find", [{"name" : name }]);

}

Listing 1.4. After: Example of mocking
the cross-language call interface

Recall the JavaScript part of our example, Listing 1.1. Listing 1.3 shows it
again in a shorter version, and Listing 1.4 shows the modifications made by
ReplaceCordovaExec. A new method stub1, which replaces the exec call, is
introduced that makes the calls to the success and fail callbacks explicit.

The renaming of the ReplaceCordovaExec takes into account that the result
of invoking require("cordova/exec") can be assigned to an arbitrary vari-
able. This call is not shown in the example, but often used to obtain the exec
method. Overall, ReplaceCordovaExec introduces local context-sensitivity into
our analysis approach.

78 A.D. Brucker and M. Herzberg

Emulating the Module Loading Mechanism. Cordova provides its own
JavaScript module mechanism, i. e., it provides two functions for structuring
JavaScript code: define and require. When a Cordova app is assembled, the
plugins’ JavaScript code is converted into modules, and bigger plugins use those
modules, too, to separate their code.

There are basically two major challenges when searching for uses of the plu-
gins: 1. determining which object gets returned by a call to require, and 2.
helping the call graph builder understand what is behind the global plugin vari-
ables under which Cordova makes the plugins available.

Solution. Both issues are addressed by our heuristic ConvertModules, which
automatically pre-processes the JavaScript source code. The object that gets
returned by the require call is determined by whatever gets assigned to the
module.exports field inside the factory function. Thus, we replace the require
and module.exports references with a global unique variable, derived from the
unique module id. Now, any call graph builder will be able to track this new
global object and connect the corresponding method calls. For the plugin mod-
ules, one additional transformation needs to be applied: For all global variables
(there may be more than one), which are specified in the plugin’s configuration
file, a statement is added to the plugin definition which assigns the variable that
is created by the first transformation to the queried global variable. Normally,
these variables get defined at runtime when Cordova loads the plugins, but this
transformation now hard-codes these definitions into the module.

define("com.contacts",
function(require , exports , module){

exports.find =
function(succCb , name) {

exec(succCb , null ,
"ContactsPlugin", "find",
[{"name" : name }]);

};
});

...
var succCb = function(contact) {

alert("Number:"+contacts.phone);
}
plugins.contacts.find(succCb ,

"Peter");

Listing 1.5. Before: Example of emulat-
ing the module loading mechanism

define("com.contacts",
function(require , exports , module){

plugins.contacts.find =
function(succCb , name) {

exec(succCb , null ,
"ContactsPlugin", "find",
[{"name" : name }]);

};
});

...
var succCb = function(contact) {

alert("Number:"+contacts.phone);
}
plugins.contacts.find(succCb ,

"Peter");

Listing 1.6. After: Example of emulating
the module loading mechanism

Recall our phone number example: Listing 1.5 shows an exemplary definition
of the contacts plug-in with an export declaration as it would look like after being
imported by Cordova. We transform this export declaration using the plugin’s
global variable (see Listing 1.6). As a result, the relation between this global
variable and the actual plugin method becomes statically apparent.

On the Static Analysis of Hybrid Mobile Apps 79

Data-Flow Heuristic Based on Action String. While the first two heuris-
tics enable finding the targets of the calls from Java-to-JavaScript related to
each exec call, finding the callers poses its own challenges: when execution is
transferred to the Java side, the passed callback functions can be called via
a CallbackContext Java object. This object offers three methods which get
mapped to the two callback calls: success, error, and sendPluginResult.
Given such a call somewhere on the Java side, how does one determine the
possible JavaScript targets?

All exec calls of a plugin are mapped to a single Java execute method.
Thus, it is not clear how calls to methods of CallbackContext object map to
the JavaScript callbacks. During runtime, Cordova decides based on the feature
string which class’s execute to call, and passes the supplied action string to
the plugin’s execute implementation. Commonly, each exec call has only one
possible value for each of the two parameters, so it is possible to lim it the number
of Java-to-JavaScript connections by utilising these context information.

Another challenge is the frequent use of the command pattern in the execute
method, e. g., when dealing with threads. As the calls on the CallbackContext
object are then actually done somewhere deep in the thread library, call graph
builders will not attribute this call even to the execute method, which is a
problem since the context information supplied by the JavaScript exec call is
needed.

Solution. As callbackContext calls are only of interest when an exec call is
encountered in the JavaScript code, the parameters passed to exec can be used
as context information when looking for the callbackContext calls. First the
Java class and its execute method that corresponds to the feature string need
to be found. As Cordova keeps a mapping from those string values to Java classes,
the class is looked up there.

Fig. 2. The control flow graph and call graph of the example in Listings 1.1 and 1.2,
including two cross-language edges

80 A.D. Brucker and M. Herzberg

To determine which callbackContext calls are reachable from the beginning
of the execute method, a two-fold reachability analysis is conducted for each
call site. Figure 2 illustrates the involved control flow graph and call graphs.

1. First, using the Java call graph, we compute all possible call chains without
cycles from the execute method to the method which contains the call to the
particular callbackContext. If the execute method is not a predecessor in
this call graph, the callbackContext call is considered not reachable. If it
is reachable though, all those invoke instructions in the execute method are
determined through which the callbackContext call is eventually reachable.

2. Using these invoke instructions as well as the action parameter and the
control flow graph of the execute method, a more precise reachability analy-
sis is conducted. For each invoke instruction, all possible paths through the
control flow graph from the entry of the execute method to the invoke
are determined. For all found paths, the action parameter is taken into
account; as many plugins implement an execute method using many if-else
clauses based on action, the paths are checked for statements similar to
"get".equals(action). If the action strings do not match, the path can be
discarded as impossible, as it can never be taken during runtime.

If there are any paths left after the two-fold reachability analysis, the reach-
able callbackContext calls need to be classified as either being a success or
fail callback call. This is done by deciding whether the method called on the
callbackContext is either success, error, or sendPluginResult (and here,
which status codes are possibly passed). Eventually, the corresponding success
and fail connections can be reported as calls from Java-to-JavaScript.

Filtering Frameworks. The static construction of precise call graphs for
JavaScript programs is challenging [7]. Approaches for building JavaScript call
graphs have to make a compromise between scalability and correctness. Large
and widely used frameworks such as jQuery (https://jquery.com/) or AngularJS
(https://angularjs.org) can currently only be handled with field-based call graph
builders that analyse field names non-context sensitively. Therefore, plugins that
define methods with popular names or the same names as those used in the core
JavaScript language such as call, apply, get, or open, result in many incorrect
edges in the call graph.

Solution. The preferred solution would be to use more precise (e. g., a context-
sensitive) call graph builder. Sadly, this would reduce our approach to small
applications with only a few hundreds lines of JavaScript code. Alternatively,
we could exclude such frameworks from our analysis. As this would make the
analysis of apps based on frameworks that change the way the JavaScript code is
written, e. g., frameworks promoting an asynchronous programming style, impos-
sible, this approach is also not feasible.

Thus, we filter the problematic functions after the call graph is constructed
based on further information such as the file names. This approach, on the

https://jquery.com/
https://angularjs.org

On the Static Analysis of Hybrid Mobile Apps 81

one hand, allows balancing correctness and scalability of the static analysis. On
the other hand, the configuration of the filter need to be adapted to fit new
frameworks that might emerge.

3.2 Implementation

We implemented our approach, in particular a unified call graph builder for
Cordova apps, using the WALA framework (http://wala.sf.net).2 Our prototype
allows to process Android binaries (i. e., APK files) directly. Using WALA’s Java
front-end, the analysis of Java source of Android apps can be supported easily
as well. For parsing the Dalvik binary code and the JavaScript, we rely on the
front-ends provided by WALA.

First, we apply the ReplaceCordovaExec and ConvertModules heuristic to
the JavaScript parts of the application. Then we use WALA for building the
call graphs for the JavaScript and Java parts of a Cordova app. After building
the Java and JavaScript call graphs independently, we traverse both call graphs
for connecting the cross-language calls. The result is a unified call graphs that
allows implementing further static analysis methods that can uniformly traverse
the Java and JavaScript parts of a Cordova app.

4 The State of Cordova App Security (and Quality)

In this section, we evaluate our approach for building uniform call graphs for
Cordova apps as well as report on our findings based on analysing Cordova apps
from the top Android app category of the Google Play Store, three Cordova apps
from SAP, and one artificial app specifically written for this work. Our evaluation
is two-fold in order to assess the scalability and quality of our analysis.

4.1 Popularity of Cordova and Benchmark Selection

We took the Top 1000 apps (as ranked by Google in spring 2015) from Google
Play and checked if these apps contain a config.xml file that belongs to the
Cordova framework. Using this criterion, we could identify 50 Cordova apps.
Thus, according to our analysis, only 5 % of the Top 1000 apps are using Cordova.

As SAP usually distributes its applications directly to its customers, we did
not expect SAP apps within the Top 1000 apps category. To include SAP apps
and their specific characteristics in our analysis, we have selected three mobile
enterprise apps from SAP that are based on SAP Kapsel and SAP’s OpenUI5
JavaScript framework (for details, see http://openui5.org/).

Finally, we implemented one test app, called Damn Vulnerable Hybrid Mobile
App (DVHMA), that intentionally contains vulnerabilities and different coding
styles to serve as a controlled test bed for our analysis.3

2 Our prototype is available at https://github.com/DASPA/DASCA.
3 The DVHMA app is available at https://github.com/ZertApps/DVHMA.

http://wala.sf.net
http://openui5.org/
https://github.com/DASPA/DASCA
https://github.com/ZertApps/DVHMA

82 A.D. Brucker and M. Herzberg

4.2 Scalability

To evaluate the runtime behaviour and, thus, the scalability of our approach,
we analysed all 54 apps of our test set. Our prototype is able to analyse 52 out
of the 54: two apps from the Top 1000 are obfuscated in such a way that the
WALA front-ends are not able to analyse them at all.

Our analysis can build the unified call graph for 50 % of the apps in under
30 min and for all but one within 12 h. The memory consumption was in all but
one cases under 8 GB. The benchmarks have been run on a virtual machine run-
ning Ubuntu 14.04 using six cores of an Intel Xeon CPU E7-4830v2 @ 2.20 GHz
and 12 GB of RAM. Due to space reasons, we omit the detailed results. Thus,
our prototype is able to analyse typical Android apps on modern modern work-
stations and notebooks.

In general, the runtime for building the language specific call graphs is mainly
influenced by the complexity in terms of the number of function calls as call depth
and only to a minor extend by the code size. This is true for both the Java as
well as the JavaScript part. For building the unified call graphs, the number of
cross-language calls is, given the pre-computed call graphs for each language,
the main influence for building the unified call graphs.

4.3 Quality

To assess the quality of our analysis, we selected eight apps (six from the top
apps as ranked by the Google Play Store, one from SAP, and our artificial test
app). We did a thorough manual code review either on the original source code
(for the app from SAP and our test app) or on the result of de-compiling the
binary (for the six apps from Google Play). Our manual code review focused on
finding all cross-language calls.

As a manual code review is a time consuming task, we limited the analysis
to eight apps that we consider a good representation of the overall population of
Cordova apps: Table 1 shows that the most commonly used plugins from the six
apps from Google Play are the same ones as from the 50 apps. In addition, we
have chosen a typical SAP app as well as our test apps that captures our expertise
based on a shallow analysis of a larger number of Cordova apps. We consider the
distribution of plugins as most relevant for our work, as cross-language calls are
most often located in plugins. Thus, this analysis allows us to assess the quality
of the unified call graphs with respect to capturing cross-language calls.

The following four sections will compare the manually found cross-language
calls with the ones reported from the prototype. We will focus on the calls from
Java-to-JavaScript. The calls from JavaScript-to-Java are relatively easy to find,
thanks to the structure of Cordova’s function interface. Therefore, the prototype
found all these calls.

Two values are especially important when evaluating the quality [1]:

R =
TP

TP + FN
(recall) P=

TP
TP + FP

(precision)

On the Static Analysis of Hybrid Mobile Apps 83

Table 1. The ten most used plugins from each test set

(a) Plugins from the 50 apps

Plugin #

device 26
inappbrowser 25
dialogs 20
splashscreen 18
network-information 14
file 14
console 12
camera 11
statusbar 11
PushPlugin 11

(b) Plugins from the six manually analysed apps

Plugin #

device 5
inappbrowser 5
dialogs 2
splashscreen 2
console 2
network-information 1
file 1
camera 1
statusbar 1
PushPlugin 1

where TP is the number of correctly found cross-language calls, FP the number
of falsely reported ones, and FN the number of missed calls.

Informally, recall is defined as the number of correctly found calls divided by
the number of calls which should have been found and precision is defined as
the number of correctly found calls divided by the number of calls reported.

ReplaceCordovaExec. This heuristic is necessary to identify any Java-to-
JavaScript calls at all. Without it, the callback functions on the JavaScript side
will not get modelled, which is bad since they are the targets of those calls from
the Java side. As can be seen in Table 2a, the precision with just ReplaceCor-
dovaExec is already very good. However, as is represented by the bad recall,
there are also many incorrect calls being reported. But before we will present
the results of FilterJavaCallSites and FilterJSFrameworks, which will lead to
less errors, we will present the results for another heuristic aimed at increasing
the number of found calls.

ConvertModules. The main purpose of this heuristic is to model the module
mechanism and thus allow finding more calls from Java-to-JavaScript. However,
this effect is only observed on one of the eight apps: our artificially created
one. The explanation is simple; this heuristic enables tracking callback functions
through the Cordova plugin mechanism, from the application code to the actual
call to exec. Surprisingly, our app was the only one of those eight to create and
pass callbacks from application code.

The errors for two apps are significantly reduced. This is because assigning
the functions to module.exports is not ambiguous anymore and does not result
in the field-based call graph builder vastly overestimating method invocations.

FilterJavaCallSites. Adding this heuristic, two effects can be observed in
Table 2c: The number of errors is greatly reduced, but at the cost of a few

84 A.D. Brucker and M. Herzberg

Table 2. The quality of the found cross-language calls from Java-to-JavaScript

(a) ReplaceCordovaExec

App Hits Misses Errors Recall Prec.

app01 4 0 400 1% 100%
app02 3 0 8 28% 100%
app03 30 0 5804 1% 100%
app04 1 0 2315 1% 100%
app05 3 0 47 6% 100%
app06 246 0 1567 14% 100%

sap01 3 0 32 9% 100%
DVHMA 5 5 8 39% 50%

(b) ReplaceCordovaExec and ConvertMod-
ules

App Hits Misses Errors Recall Prec.

app01 4 0 394 2% 100%
app02 3 0 8 28% 100%
app03 30 0 4574 1% 100%
app04 1 0 1157 1% 100%
app05 3 0 47 6% 100%
app06 246 0 1552 14% 100%

sap01 3 0 32 9% 100%
DVHMA 10 0 9 53% 100%

(c) ReplaceCordovaExec, ConvertModules,
and FilterJavaCallSites

App Hits Misses Errors Recall Prec.

app01 3 1 397 1% 75%
app02 2 1 0 100% 67%
app03 28 2 2829 1% 94%
app04 1 0 0 100% 100%
app05 2 1 12 15% 67%
app06 239 7 444 35% 98%

sap01 2 1 0 100% 67%
DVHMA 10 0 0 100% 100%

(d) Using all heuristics

App Hits Misses Errors Recall Prec.

app01 3 1 6 34% 75%
app02 2 1 0 100% 67%
app03 28 2 2323 2% 94%
app04 1 0 0 100% 100%
app05 2 1 4 34% 67%
app06 239 7 443 36% 98%

sap01 2 1 0 100% 67%
DVHMA 10 0 0 100% 100%

cross-language calls missed. The misses come from the fact that this heuristic
relies on being able to trace the callbackContext call back to the execute call.
Some plugins, however, store their CallbackContext object for later use, e. g.,
when a listener for changes of the network state triggers. In these cases, other
possibilities than simply discarding these call sites are also imaginable: Instead of
reporting the callback functions from no exec call as targets, the callbacks from
all exec calls could be reported, resulting possibly in a vast over approximation.

Most of the errors which are still reported are related to the file plugin. Here,
the developers used a utility method which translates a lot of different exception
types into different callbackContext calls. However, not all actions are able
to throw all of them. This distinction is not made by this heuristic and would
require a more sophisticated reachability analysis.

FilterJSFrameworks. Cordova apps contain significant amounts of framework
code. As expected, this heuristic increases the recall by a great amount as can
be seen in Table 2d, because cross-language calls related to these frameworks are
filtered. However, as the detection of framework code is currently only based on
the file name, apps who repackage all JavaScript code into one big file will not

On the Static Analysis of Hybrid Mobile Apps 85

see any improvements. Also, not all errors are related to JavaScript frameworks,
so some errors coming from incorrectly found calls within the apps themselves
will not get filtered.

4.4 Noticeable Findings About the Apps

How Developers Use the Cordova Framework. The way the Cordova
framework is used differs wildly among the 50 apps. Many apps do, in fact,
use Cordova as intended: The app is written in JavaScript, the Java part is
unmodified and simply loads the entry-point HTML file which is set in the
Cordova configuration file. Some apps, however, significantly change the Java
part. The most extreme apps do not ship any HTML or JavaScript code in the
APK and simply specify one hard coded URL in Java to be loaded, which is
often just the mobile version of their website, hosted in a remote location.

Some apps chose a middle ground: They may first load Activities like regular
Android apps, and may embed HTML and JavaScript code only into some parts
of the app, where Cordova Plugins may be used to communicate back and forth.
Such irregular Cordova apps are the exception and are significantly harder to
statically analyse, as they change the way Cordova is integrate into the app.

How Developers Use the Cordova Plugins. Many plugins take callback
functions and pass them through to their exec call. Especially for plugins which
do not simply yield a result which can be passed to the success callback, e. g.,
when the plugin is just supposed to execute a command, there are often no fail
callbacks being provided, either. Some of these actions could indeed fail, which
would not get propagated through to the app code itself, though, because no fail
callback has been passed. This seems to indicate a lack of proper error handling
for many apps, and is one of the reasons why the ConvertModules heuristic did
not find any additional calls in the apps.

How Cordova Plugins Are Written. Plugins generally have the character of
libraries, where the JavaScript part does rarely more than encapsulate the exec
calls. There are also no other mechanism used to conduct cross-language calls.
The official Cordova plugins adhere to these guidelines. Our work is intended for
this kind of plugins.

Anyone can write Cordova plugins, and not all developers adhere to these
guidelines. One found plugin, apparently written just for this specific app, does
not contain any JavaScript code; instead, the exec calls are done right in the
app code itself. Other plugins represent the other extreme and implement quite
a bit of the plugin logic on the JavaScript side, which could have been as well
written in Java. Again some other plugins do not even use exec to communicate
with their Java side, but use methods which are also used internally in the Cor-
dova framework. The reason for these unnecessary uses of workarounds remains
unclear.

86 A.D. Brucker and M. Herzberg

One plugin found in those Cordova apps is special in a different way: Com-
bining Java and JavaScript was apparently not enough, as the APK contained
some native libraries accessed via JNI to do some basic arithmetic calculations.
As JSON strings get passed from the JavaScript part via Java to the C part, the
attack surface gets even larger.

5 Related Work

There is a large body of work that uses static program analysis for finding
security vulnerabilities in JavaScript-based web applications [11,16,24,26] as
well as dealing with the privacy concerns of Android apps [4,13,18,20].

While cross-language calls in the form of foreign language interface such as
the Java Native Interface (JNI) are not new, there are surprisingly few works
that address the problem of static program analysis across such interface. Among
those few there is SafeJNI [25], which statically ensures that unsafe native code
cannot bypass Java’s type-safety. Another example is the work of Li and Tan [15],
who developed a static analysis framework to find bugs related to the different
use of exceptions in Java and native code.

The most closely related work is HybriDroid. The development of HybriDroid
seems to have started by Lee et al. [14] roughly at the same time as we started
our work. With HybriDroid, we share the overall goal: detecting security vulner-
abilities as well as leakage of private information in hybrid mobile applications
on Android. In contrast to our work, HybriDroid analyses not the cross language
interface of Cordova, but the low-level interface provided by Android and does
not yet support Cordova. Thus, HybriDroid works rather independently from
the framework (e. g., Cordova) used for developing a hybrid app and therefore
reports also cross-language calls that our approach might miss, e. g., in case a
Cordova developer does use the low-level functions in addition to the mechanism
offered by Cordova. In exchange, our approach allows for better explanations of
found issues to Cordova developers. Moreover, we expect a better scalability of
our approach. Still, as both approach are very young, it is too early for a detailed
comparison of the actual implementations.

The next most closely related works are FlowDroid [2] and SCanDroid [8].
Both are tools supporting the Android life-cycle model and are able to build call
graphs for native Android apps as well as perform a static data-flow analysis
for finding security vulnerabilities as well as privacy violations. For our work,
SCanDroid is of particular interest, as it is based on Wala which makes it very
attractive to extend its data flow analysis to support our unified call graphs.
Extending the data flow analysis of SCanDroid would require developing support
for the JavaScript part of our unified call graph as well as the cross language
calls. In addition, the Android life-cycle events that are specific to the JavaScript
part need to be added.

On the Static Analysis of Hybrid Mobile Apps 87

6 Conclusion and Future Work

We presented a novel approach for constructing a uniform call graph for hybrid
mobile apps using the Cordova framework. Our evaluations show that the gen-
erated calls graphs are, with respect to the cross language calls, very accurate.
Their quality, though, depends on the used call graph builder for JavaScript.

As future work, we plan to develop a data-flow analysis (e. g., extending
SCanDroid [8]) on top of the uniform call graphs that will allow for detecting
programming related vulnerabilities in Cordova apps such as SQL injections and
to enforce policies such as “only local JavaScript code shall be allowed to access
the address book” statically, i. e., at development time.

Still, the presented approach is already applicable to real Cordova applica-
tions. When the apps from the test set have been manually examined, it quickly
became apparent that any tool helping with properly programming Cordova apps
is useful. One app even used a custom Cordova plugin which contains libraries
written in C++ that were used by the Java code, so detecting cross-language
calls does not stop at just Java and JavaScript and can certainly be extended.

Acknowledgements. We would like to thank Jens Heider and Stephan Huber from
Fraunhofer SIT who provided us with the initial list of Cordova apps for our evalua-
tion. This research was partially supported by the Federal Ministry for Education and
Research (BMBF) in the context of the project ZertApps (http://www.zertapps.de/).

References

1. Anderson, P.: Measuring the value of static-analysis tool deployments. IEEE Secur.
Priv. 10(3), 40–47 (2012)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: PLDI 2014, pp. 259–269.
ACM (2014)

3. Bachmann, R., Brucker, A.D.: Developing secure software: A holistic approach to
security testing. Datenschutz und Datensicherheit (DuD) 38(4), 257–261 (2014)

4. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A.D., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted
and malicious activities within android applications. In: Malicious and Unwanted
Software (MALWARE), pp. 66–72. IEEE (2011)

5. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53, 66–75 (2010)

6. Brucker, A.D., Sodan, U.: Deploying static application security testing on a large
scale. In: Katzenbeisser, S., Lotz, V., Weippl, E. (eds.) GI Sicherheit 2014, Lecture
Notes in Informatics, vol. 228, pp. 91–101. GI (2014)

7. Feldthaus, A., Schafer, M., Sridharan, M., Dolby, J., Tip, F.: Efficient construction
of approximate call graphs for JavaScript IDE services. In: 2013 35th International
Conference on Software Engineering (ICSE), pp. 752–761. IEEE (2013)

http://www.zertapps.de/

88 A.D. Brucker and M. Herzberg

8. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: SCanDroid: automated security certifica-
tion of android applications. Technical report CS-TR-4991, Department of Com-
puter Science, University of Maryland, College Park (2009)

9. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: CSS, pp. 38–49. ACM (2012)

10. Georgiev, M., Jana, S., Shmatikov, V.: Breaking and fixing origin-based access
control in hybrid web/mobile application frameworks. In: NDSS 2014. The Internet
Society (2014)

11. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for AJAX intrusion
detection. In: World Wide Web, pp. 561–570. ACM (2009)

12. Jin, X., Wang, L., Luo, T., Du, W.: Fine-grained access control for HTML5-
basedmobile applications in Android. In: ISC (2013)

13. Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: Scandal: static analyzer for detecting
privacy leaks in android applications. MoST (2012)

14. Lee, S., Dolby, J., Ryu, S.: Hybridroid: Analysis framework for Android hybrid
applications (2015)

15. Li, S., Tan, G.: Finding bugs in exceptional situations of JNI programs. In: CCS,
pp. 442–452. ACM (2009)

16. Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of javascript appli-
cations in the presence of frameworks and libraries. In: Foundations of Software
Engineering, pp. 499–509. ACM (2013)

17. McGraw, G.: Software Security: Building Security In. Addison-Wesley, Boston
(2006)

18. Mohr, M., Graf, J., Hecker, M.: Jodroid: Adding android support to a static infor-
mation flow control tool. In: Conference on Programming Languages (2015)

19. Rubin, A.D., Geer Jr., D.E.: A survey of web security. Computer 31(9), 34–41
(1998)

20. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: CIS, pp. 329–333. IEEE (2010)

21. Shehab, M., AlJarrah, A.: Reducing attack surface on Cordova-based hybrid mobile
apps. In: Workshop on Mobile Development Lifecycle, pp. 1–8. ACM (2014)

22. Singh, K.: Practical context-aware permission control for hybrid mobile applica-
tions. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID 2013. LNCS, vol.
8145, pp. 307–327. Springer, Heidelberg (2013)

23. Stuttard, D., Pinto, M.: The Web Application Hacker’s Handbook: Discovering
and Exploiting Security Flaws. Wiley, New York (2011)

24. Taly, A., Erlingsson, Ú., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical JavaScript apis. In: SP, pp. 363–378. IEEE (2011)

25. Tan, G., Appel, A.W., Chakradhar, S., Raghunathan, A., Ravi, S., Wang, D.: Safe
Java native interface. In: Secure Software Engineering, pp. 97–106 (2006)

26. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. ACM Sigplan Not. 44(6), 87–97 (2009)

27. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of
software security errors. IEEE Secur. Priv. 3(6), 81–84 (2005)

Semantics-Based Repackaging Detection
for Mobile Apps

Quanlong Guan1(B), Heqing Huang2, Weiqi Luo1, and Sencun Zhu2

1 Jinan University, Guangzhou, China
{gql,luoweiqi}@jnu.edu.cn

2 Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802, USA

{hhuang,szhu}@cse.psu.edu

Abstract. While Android app stores keep growing in size and in num-
ber, app repackaging has become a major threat to the health of the
mobile ecosystem. Different from many syntax-based repackaging detec-
tion techniques, in this work we propose a semantic-based approach,
RepDetector, which is more robust against code obfuscation attacks. To
capture an app’s semantics, our approach extracts input-output states of
core functions in the app and then compare function and app similarity.
We implement a prototype of RepDetector, and evaluate it against var-
ious obfuscation technologies. The results show that our approach can
detect repackaged apps effectively. It is also at least a hundred times
faster than Androguard.

1 Introduction

In recent years, the mobile application world has been expanding dramatically.
As of Oct. 2015, Google Play has over 1.5 millions of apps available for down-
loading. Since high popularity leads to more downloads, many popular Android
apps have been copied or repackaged in recent years. Attackers can easily repack-
age an app under their own names or embed advertisements to earn pecuniary
profits. They can also modify a popular app by inserting malicious payloads into
the original app and leverage its popularity to accelerate malware propagation.
Moreover, because of the popularity of the Android platform, many unofficial
app markets exist. Most of them do not perform careful sanity check of uploaded
apps. Thus, app repackaging in the Android platform has become very serious,
which is increasingly hurting the app ecosystem. App developers are discouraged
for loss of revenue, and app users may be deceived from installing malware.

To detect app repackaging, recently various approaches have been explored.
Some of them detect repackaged or cloned apps based on code features, such
as DroidMOSS [30], Juxtapp [13], DNADroid [8], AnDarwin [12]. For example,
DroidMOSS [30] extracts app fingerprints through fuzzy hashing; Juxtapp [13]
uses feature hashing for code similarity analysis. While such approaches are
capable of recognizing code that is syntactically similar, they are not effective
under semantic-preserving obfuscation, where repackaged apps are functionally
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 89–105, 2016.
DOI: 10.1007/978-3-319-30806-7 6

90 Q. Guan et al.

the same but syntactically different. The syntactic differences include instruction
reordering, interleaved methods, opaque branch insertions or the substitution
of semantically equivalent control structures. Moreover, new evasion solutions
or obfuscation methods have also been explored recently [15,27]. Hence, false
negative rates of these approaches could be very high under such attacks.

In this work, we take a semantic-based approach to detecting repackaged
apps. In our approach, named RepDetector, the input-output relationship of a
function is captured to express its semantics. As long as a repackaged app pre-
serves the critical semantics of the original app, according to our approach, their
similarity would be high. In summary, this paper makes the following technical
contributions:

– We propose a semantic-based approach to detecting repackaged apps. It can
tolerate certain noise insertion or sophisticated obfuscation, and hence is
obfuscation-resilient.

– We capture the input-output states of functions with state flow graphs to
describe the semantic behaviors of an app. Then we introduce an effective
algorithm to compare the similarity of functions from different apps by an
SMT solver and detect semantic repackaging with Mahalanobis distance.

– We implement a prototype of RepDetector, and evaluate its detection accuracy
and efficiency with both known repackaged apps, obfuscated apps, and apps
from Google Play. The result shows that RepDetector is capable of scanning
real-world Android repackaging apps with obfuscation resiliency. It is also over
a hundred times faster than a well-known detection tool Androguard [4].

2 Overview

Problem Statement: Mobile app repackaging is an approach used by an adver-
sary to change an existing app while keeping its main functionality. After altering
an app’s code, data, ad library, or structure, the adversary re-publishes the new
app to the app store for profits or malware propagation. The cost of repackaging
an Android app is low. An app’s bytecode can be disassembled into an interme-
diary representation, which is easy for human to read. After that, the code may
be quickly understood and extra code may be inserted. After performing the
bytecode manipulation on the intermediary representation, the modified version
can be directly assembled back to a functional Android application with tools
like APKtool or Smali/Baksmali. Although obfuscation tools like Proguard [18]
and Dexguard [3] may be employed to confuse the adversary, obfuscation is
not sufficient to prevent repackaging. An experienced adversary may obtain the
data/control flow graphs and guess the meaning of functions in the app. More-
over, the adversary may modify the app’s code through various obfuscation tech-
niques while keeping its function equivalent. It will be harder to detect this type
of repackaging behavior.

Figure 1 shows a running example. We consider the Dalvik bytecode
of two methods(function add(II) and function Grid(III)) from a legitimate
app(minion-fun-1.2.apk) and a repackaged app(card-sharks.apk), respectively.

Semantics-Based Repackaging Detection for Mobile Apps 91

Fig. 1. Dalvik bytecode of an app and its obfuscated version

function add(II) (Segment I, for short) has been divided into several blocks,
labeled as {Ainit 1, Alf 1, Asta 1, Aret, Asta 2}. Likewise, the function Grid
(III) (Segment II, for short) is also split into several blocks, labeled as {Binit 1,
Blf 1, Bsta 1, Bret, Bsta 2, Blf 2, Bsta 3, Bsta 4}. The code between Segment
I in legitimate app and Segment II is quite different. Some noisy variables,
such as {buggy,temp}, and redundant instructions have been injected in Seg-
ment II. These instructions contain opaque branch and junk code, labeled as
{Blf 2, Bsta 3 and Bsta 4}. In fact, the functional behaviors of both methods in
Fig. 1 are extremely similar: both perform the similar calculation and return the
same result in the end, although Segment II has obfuscated the syntax structure
of Segment I.

The similarity between Android programs can be reflected in different
aspects, including syntax-level birthmark, GUI features, and resource features.
Syntax features [13,21], such as fingerprints or feature hashing of mobile code,
have been applied for repackaging detection. However, such schemes will not
work well under semantic-preserving transformation/obfuscation.

Architecture: To detect repackaging under code obfuscation, we propose
RepDetector in this work. The architecture of RepDetector is described in Fig. 2.
The inputs are the Android apps probably from different Android markets.
RepDetector consists of four major modules: core class and function extrac-
tion, function output states construction, function similarity measurement and
app similarity measurement. Core functions along with important classes will
be extracted according to bytecode and the manifest file of an app. We then
construct a state flow graph for these core functions and compute the output

92 Q. Guan et al.

Fig. 2. The architecture of RepDetector

states of each function. With a Satisfiability Modulo Theories (SMT) solver, we
then check the semantic equivalence of two core functions based on their output
states. Finally, we quantify the similarity between two apps (each consisting of
some core functions) using Mahalanobis distance. Our method uses symbolic
execution, but it is simplified to compute by merging the flow states. The details
of our approach are presented in the next section.

3 System Design of RepDetector

3.1 Core Classes and Functions Extraction

Each APK file contains files like classes.dex, AndroidManifest.xml, and sub-
directories like Res, META-INF. The classes.dex file is a Dalvik executable
generated from the compiled classes. Tools like Dadexer [1] and Dex2jar [2]
can be used to decompile it into classes directly from the APK or JAR file.
We note that not all classes are relevant to the core functionality of an app,
while repackaging keeps the app’s core functionality. Hence, for repackaging
detection, we will only consider the functionality-relevant classes. The mani-
fest file(AndroidManifest.xml) presents essential information about an app to
the Android system. The functionality-relevant classes include principal com-
ponents of an app: activities(< activity >), services (< service >), broadcast
receivers (< receiver >), and content providers (< provider >). We directly
retrieve a list of such classes by parsing the AndroidManifest.xml file. and then
construct the Class Invocation Graph (CIG) for the list of classes.

In a CIG, each node represents a class, and a directed edge between two
nodes represents the existence of a function (i.e., method) invocation relation-
ship between them. Our CIG takes into account class relationship and function
invocations by static analysis. Moreover, we calculate the weight for each class
in the CIG based on several attributes (e.g., fan-in and fan-out of a class node
in CIG). By setting a threshold on weight, we can filter out the classes whose
weights are below the threshold. The remaining classes are called core classes.
Following a similar procedure, we can identify the core functions in these core
classes. Another condition for core functions is that they must be created and
defined by the developer (or a potential re-packager), not defined by Android
libraries or third-party libraries.

Specifically, we create a whitelist, which includes Android SDK and third-
party libraries. When analyzing an individual core method, we will check whether
it invokes other methods. If an invoked method is from Android SDK or a
third-party library in the whitelist, we will summarize its features such as class

Semantics-Based Repackaging Detection for Mobile Apps 93

type and variable types. With such features, we can determine whether two
invoked methods are equivalent or not in a later stage. On the other hand,
when an invoked method is also defined by the developer (or a potential re-
packager), we will follow into the invoked method. This process is repeated until
an invoked method contains no user defined method. The output states of a
callee method are then jointed into the states of other instructions in the caller
method. Our work does not consider function invocations in native code though.
It was reported that only a small fraction (5 %) of apps in the Android market
contain native codes [30].

(a) The state construction for Segment I.

(b) The state construction for Segment II.

Fig. 3. The state flow chart and input-output state for Segment I and Segment II.

3.2 Output Semantics Construction

Our next step is to analyze the structure of these core functions through State
Flow Chart (SFC). An SFC is constructed from control flow graph (CFG) of
every core function, and the nodes in the SFC are either basic blocks in the
CFG or relevant conditional instructions (e.g., if-branching instruction). Thus,
the SFC is a directed graph that clearly displays how the program states flow
among instructions. Using the code segments in Fig. 1 as an example, the SFCs
of these two segments are extracted and shown in Fig. 3. In the left hand of
Fig. 3(a), Segment-I includes initial block, one constraint, two statements, and
one return. There are five nodes in total: {Ainit 1, Alf 1, Asta 1, Aret, Asta 2}.
Segment-II has two constraints and eight nodes, as showed in the left hand of
Fig. 3(b): {Binit 1, Blf 1, Bsta 1, Bret, Bsta 2, Blf 2, Bsta 3, Bsta 4}.

Definition 1 (Function’s Output State). Let set P = [p1, ..., pn] be input register
parameters (totally n) of a core function, and set Y = [y1, ..., ym] be all possible
output states (totally m) of the function. Y = f(P) is a set of symbolic formulas
on P generated from the state flow chart of this function.

94 Q. Guan et al.

From the SFC, we generate the output states by symbolic execution. For
example, as shown on the right side of Fig. 3, Segment I has two register para-
meters: spec: p1 and index: p2; thus, the input parameter set PI = [p1, p2]. After
several blocks are executed, the output state set YI contains two elements y1, y2:
y1 = (p1 + 5) ∗ p2 and y2 = (p1 ∗ 2 + p2). Since Segment II was injected one
junk parameter buggy: x3, compared to Segment I, its input parameter set is
PII = [x1, x2, x3]. Furthermore, some noisy code such as opaque branch was
inserted in Segment II. Nevertheless, its output state set YII contains similar
symbols as in Segment I.

3.3 Equivalence Measurement of Two Functions

To determine how similar two apps are, we will perform pairwise similarity
measurement between their core functions. Given two core functions from a
pair of apps, we measure how semantically similar they are by comparing their
input/output states. As it is unknown which input parameters of one function
correspond to which parameters of the other function, we hence try different
permutations of input parameters to check the equivalence. A form definition is
given below.

Definition 2 (Pairwise Equivalence of Input Register Variables). Given two
variable sets: PI = [p1I , ..., p

n
I] and PII = [p1II , ..., p

k
II], n ≤ k. let λ(PII) be a

permutation of the variables in PII . A pairwise equivalence for PI and PII is
defined as:

n∧

i=1

[pi
I = λi(PII)] −→ PI = λ(PII).

where pi
I and λi(PII) are the i-th variables in PI and λ(PII), respectively.

For each output state in one core function, we check whether there exists an
equivalent output state in the other core function with certain combination of
inputs.

Definition 3 (Output Equivalence of Two Functions). Let PI and PII be the
input sets, YI and YII be the sets of output states, respectively; if we have:
∀y1 ∈ YI ,∃y2 ∈ YII , PI = λ(PII), y1 = fI(PI), y2 = fII(PII)., then we check:
PI = λ(PII) −→ fI(PI) = fII(PII)
where fI(PI) and fII(PII) are the symbolic formulas of y1 and y2, respectively.

Example. From Fig. 3, we generate all state results representing the input-
output relationship from two function segments.

y1 = (p1 + 5) ∗ p2; z1 = (x1 + 5) ∗ x2

y2 = p1 ∗ 2 + p2; z2 = x1 ∗ 2 + x2;

We then check the input parameters’ equivalence by permutation through
Definition 2. Comparing in pairwise their equivalence by Definition 3, we find that

(p1 = x1) ∧ (p2 = x2) −→ (y1 = z1)
(p1 = x1) ∧ (p2 = x2) −→ (y2 = z2)

Semantics-Based Repackaging Detection for Mobile Apps 95

The detailed comparison procedure is presented in Algorithm 1. The inputs are
the core functions FI and FII from two different apps. The algorithm mainly
involves three steps. First, it analyzes the input variables PI of function FI and
PII of FII , and then constructs the output state sets YI and YII of two func-
tions by the method Outstate(FI) and Outstate(FII). After that, it compares
in pairwise each permutation of PII with PI . For each comparison, it uses Satis-
fiability Modulo Theories (SMT) to check their equivalence . SMT is a decision
procedure that can handle various types of arithmetics and other decidable theo-
ries, formulas (e.g.,(a+b < 5)∧(a−c > 3∨d < 2)) with propositional variables. It
can decide the satisfiability of formulas containing uninterpreted function sym-
bols with equality, linear real and integer arithmetic, bit-vectors, etc. Because
Dalvik bytecode is register-based, in this work, our tool extracts the input vari-
ables as abstract register variables instead of their actual types. Later when we
apply an SMT solver (CVC4 [17]) to check whether the input variables of two
functions are equivalent or not, we simplify the procedure by treating the input
parameter types as integer and boolean. Theoretically, this simplification could
introduce false positives, because different input types may be treated as equiv-
alent, In practice, however, two core functions (i.e., their symbolic formulas) are
matched only when their logic is identical, or very similar in the case of false
match due to our simplification. For functions with relatively complex logic, false
function matching could be unlikely. On the other hand, this simplification has
two benefits. First, the input to the SMT solver becomes simpler, making it more
efficient in computation. Second, it adds a type of obfuscation resilience when
an attacker attempts to evade detection by simply changing variable types (e.g.,
integer to double or to float). Lastly, we note that some function code contains
intents, a special type of objects in Android. CVC4 cannot directly recognize
and handle intents, so we get around the limitation by using array structure
instead. When an app’s code uses intents to pass data between activities, e.g.,
through “intent.putExtra()” operations, we simulate such operations of intents
by the put operations of arrays.

Second, while the input variables’ equivalence is satisfied, the two output
states yi and yj are checked similarly by Checksat() to see whether they are
semantically equivalent or not. Specifically, for all permutations λ(PII) and
(yi, yj) ∈ YI ×YII , it asks the SMT whether the following formula (the negation
of Definition 3) is unsatisfiable:

PI = λ(PII) ∧ yi
= yj .

If so, the comparison result of Checksat() Tij = 0. Otherwise, we say the two
output states yi and yj are equivalent, and the comparison result Tij = 1. Then
we normalize the accumulative results of comparison by cardinality m = |YI | and
n = |YII |, respectively. In our running example (Fig. 3), both output variables
of two functions are equivalent, so the accumulative comparison result is 2. The
size of both output state set is 2, so their normalized similarity score is 1. Now
assume YI has the same two output states, but YII has one more output state

96 Q. Guan et al.

Algorithm 1. Semantic Equivalence Measurement of Two Core Functions
Input: Two Core functions from different apps: FI , FII

Output: Similarity sf, sf �

1: sf = 0, sf � = 0
2: Temp Matrix T
3: Set PI : the input variables of FI ,
4: Set PII : the input variables of FII ,
5: Set YI ← Outstate(FI), YII ← Outstate(FII)
6: while {λ(PII)} do
7: if (Checksat(PI , λ(PII) = 0) then
8: λ(PII) ← next permutation of combination list for PII ;
9: Continue;

10: else
11: for each yi ∈ YI (i = 1 to m) do
12: for each yj ∈ YII (j = 1 to n) do
13: Assert pI = λ(PII)
14: Tij ← Checksat(yi, yj)
15: end for
16: end for
17: λ(PII) ← next permutation of combination list for PII ;

18: sf ← max(sf,
∑m

i=1 Tij

m
), sf � ← max(sf �,

∑n
j=1 Tij

n
);

19: Break;
20: end if
21: end while
22: return sf ; sf �

(i.e., n = 3). Their accumulative comparison result is still 2, but the normalized
similarity score is different, depending on the roles of comparison. If YI is com-
pared against YII , the denominator for normalization is |YI | = 2, so the final
score is sf = 1. If YII is compared against YI , the denominator is |YII | = 3, so
the final score is sf � = 2/3. If two functions are the same or very similar, both sf
and sf � should be close to 1. On the other hand, for two different functions, both
scores should be close to 0. Finally, the algorithm returns the two normalized
similarity scores sf and sf �.

3.4 Similarity Comparison Between Apps

Finally, RepDetector measures the similarity scores of all core functions between
two apps. Given app A and app B, which have k and l core functions, respec-
tively, we perform pairwise comparison of core functions and obtain two similar-
ity scores sf and sf � for each pair based on Algorithm 1. Let SFi (or SF �

i) be
the vector consisting of many sfs (or sf �s) when comparing the i-th core func-
tion of app A with each of l core functions of app B, we define two similarity
matrices MF and MF � as follows:

Semantics-Based Repackaging Detection for Mobile Apps 97

MF =

⎡

⎢
⎢
⎣

SF1

SF2

· · ·
SFk

⎤

⎥
⎥
⎦ , MF � =

⎡

⎢
⎢
⎣

SF �
1

SF �
2

· · ·
SF �

l

⎤

⎥
⎥
⎦

MF is the matrix for comparing app A against app B, and MF � is the matrix
for comparing B against A. If the two apps are similar, these two matrices would
contain similar values. To measure the difference between these two matrices, we
use the Mahalanobis distance [10], d(A,B), as our metric. It is a dissimilarity
measure between app A and app B of the same distribution with the covariance
matrix Σ. For the two apps, their Mahalanobis distance can be calculated as
follows:

d(A,B) =
√

(MF − MF �)T Σ−1(MF − MF �). (1)

Here, the inverse of matrix Σ−1 is the inverse covariance matrix of Σ.

Σ = E
[
MF · MF �

] − E [MF] E
[
MF �

]
) (2)

where E
[
MF · MF �

]
,E [MF] and E

[
MF �

]
are the expected value or mean of

the vectors MF ·MF �, MF and MF �, respectively. The smaller the Mahalanobis
distance, the higher similarity of two apps.

4 Performance Evaluation

In this section, we present the evaluation of our tool RepDetector. The imple-
mentation of RepDetector consists of 6380 lines of Java code. Our experiments
were conducted on a 20-machine cluster. Each machine is equipped with a
Core i7 3.2 GHz CPU and 16 GB memory and its operating system is Ubuntu
Linux 10.04.

4.1 Study I: Detection Accuracy with Known Samples

The first objective of our evaluation is to evaluate the detection accuracy of
RepDetector, in comparison with Androguard [4] and ViewDroid [27]. We will
compare it with a few more detection algorithms later on. We show the number
of false positives (FP), number of false negatives (FN), and accuracy ACC [11].
ACC is defined as follows.

ACC = 1 − FP + FN

Σ (Total Population)
(3)

We select 1,000 repackaged app samples from a previous dataset [5]). These
apps cover different ranges of file sizes and have been verified as repackaged apps.
Specifically, our samples contain 183 groups of apps from various categories,
such as game, social, and books. Each group consists of the original app and its
repackaged version(s). The maximum number of repackaged apps in one group

98 Q. Guan et al.

Table 1. Comparison of detection accuracy among Androguard,ViewDroid and
RepDetector

μ FP FN ACC

A V R A V R A V R

0.7 47 31 9 12 13 0 94.1 % 95.6 % 99.1 %

0.75 32 31 6 23 18 0 94.5 % 95.1 % 99.4 %

0.8 27 23 0 46 25 8 92.7 % 95.2 % 99.2 %

0.85 16 21 0 107 36 19 87.7 % 94.3 % 98.1 %

μ: Similarity Threshold. A: Androguard.
V: ViewDroid R: RepDetector

is 81. We compare detection accuracy by counting FP (when apps in different
groups are reported as repackaging), FN (when apps in the same group are not
reported as repackaging) and computing ACC.

Table 1 shows the evaluation result. In the first column, we set four different
similarity thresholds μ, from 0.7 to 0.85. When μ increases, the number of FP
instances decreases for all algorithms, but both Androguard and ViewDroid has
more FP instances than RepDector. Androguard treats all the bytecode of an
app equally, no matter where it comes from; hence, some common libraries could
introduce high similarities between different apps. In the case of ViewDroid,
some apps in the test dataset are very simple in GUI, so their view graphs
extracted by ViewDroid are small with few edges, leading to false positives.
RepDetector only examines the core functions and classes, but excludes the third-
party libs or the Android framework’s bytecode. Thus its FP instances are much
less than Androguard. The false negatives of Androguard clearly increases with
threshold μ, whereas ViewDroid and RepDector achieve better performance. The
FN instances of ViewDroid are mostly caused by some “add-on” functions, which
introduce differences in view graphs but with some common functionality code.
The last three columns show the detection accuracy (ACC) of these algorithms.
The accuracy of RepDetector exceeds 98 %. ViewDroid has stable accuracy at
around 95 %. Androguard’s accuracy is below 95 % and its lowest accuracy in our
experiment setting is 87.7 %, when it reports incorrect results with 123 instances.

4.2 Study II: Efficiency

Figure 4 shows the time for pairwise comparison of apps in our testing app set.
Specifically, Fig. 4(a) and (b) depict the average execution time for pairwise
comparison by Androguard and RepDetector, respectively. Over 95 % of com-
parisons in Androguard take 5 ∼ 15 s, whereas in RepDetector 98 % pairwise
comparisons require less than 0.12 s. From the table in Fig. 4(c), one can further
see that the min and max execution times of Androguard are 0.66 s and 17.7 s,
respectively. For RepDetector, the min execution time is 0.009 seconds and the
max time is 0.14 s. All these numbers indicate that RepDetector is at least one
hundred times faster than Androguard. Androguard has low efficiency because

Semantics-Based Repackaging Detection for Mobile Apps 99

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
S
e
c
o
n
d
s
)

Serial number of Apps

The running time of Androguard for pairwise apps comparison

(a) The average time by Androguard

P
r
o
c
e
s
s
i
n
g

T
i
m
e
(
S
e
c
o
n
d
s
)

Serial number of Apps

The running time of RepDetector for pairwise apps comparison

(b) The average time by RepDetector

(c) The min and max time for pairwise comparison of apps by
Androguard and RepDetector

Fig. 4. The average running time for pairwise comparison of apps by Androguard and
RepDetector

it spends too much time in compressing apps’ bytecode by the NCD algorithm
and generating features for the apps. Differently, RepDetector only needs to
handle core functions and classes, which are only a fraction (sometimes a small
fraction) of all functions and classes used by an app. Its handling cost is deter-
mined by the efficiency of SMT and the complexity of core functions, not the
app size or the total amount of code. We have also compared RepDector with
ViewDroid. The average execution time of ViewDroid for testing each pair is
about 11 s, much higher than RepDetector. This is because ViewDroid involves
relatively expensive subgraph isomorphism detection.

To further explain the high efficiency of RepDetector, we perform a statistical
study with our dataset. Figure 5(a) shows the sizes of these 1,000 tested apps.
99 % of them are smaller than 50MB and 80 % are below 20MB. Only two apps
are larger than 100MB. Figure 5(b) shows the numbers of lines of code (LOC)
in the bytecode of these apps. While 90 % apps have LOC between 104 and 105.5

(lg N =4 to 5.5), the LOC in all core methods (selected by setting a weight
threshold as 5) are only between 102.5 and 103.5. This shows a reduction on
LOC needed for analysis by around a hundred times, which is the main reason
for RepDetector’s higher efficiency than Androguard. Figure 5(c) further shows
the number of core classes in each app. About 80 % of apps, the number of their
core classes is below 30. And 50 % of apps have less than 10 core classes. Finally,
Fig. 5(d) shows that in 90 % tested apps, the ratio between number of core classes
and number of whitelisted libraries is below 0.2.

100 Q. Guan et al.

Fig. 5. The statistics of tested apps

4.3 Study III: Obfuscation Resilience

We now evaluate the robustness of RepDetector against code obfuscation. To
obfuscate the original apps for repackaging, we may leverage obfuscation tools
like ProGuard [18] and DexGuard [3]), which are able to shrink, optimize, and
obfuscate Java source code. However, they cannot perform complicated obfus-
cation such as data or control flow obfuscation; hence, we resort to another
tool [15], which is a dedicated framework for evaluating the obfuscation resilience
of Android repackaging detection algorithms. The tool includes 37 types of obfus-
cation from SandMark [7], including instruction reorder, layout obfuscation, con-
trol structure obfuscation and data flow obfuscation, etc. It provides both single
obfuscation (each type applies one type of obfuscation) and serialized multiple
obfuscation (multiple obfuscation are applied one after another). There are tex-
tual or syntactical differences when apps are repackaged by single or serialized
multiple obfuscation. For the evaluation, we compare RepDetector with Andro-
guard and three other techniques, including DroidMOSS [30], AST-Distance [21]
and AST-Coverage [21]. Except Androguard, the other three tools are not pub-
licly available, so we implemented a version for each of them based on their used
algorithms.

We randomly choose 200 apps from our crawled app set and evaluate the
true positives and false positives of these algorithms by setting different app
similarity detection thresholds. We then use the ROC curve to compare them.

Semantics-Based Repackaging Detection for Mobile Apps 101

Figure 6 shows the detection results under single or serialized multiple obfus-
cation. The x-axis is the false positive rate (FPR) and the y-axis is the true
positive rate(FPR),

Figure 6(a) shows the ROC curves under single obfuscation. RepDetector per-
forms the best among these algorithms. The detection accuracy of AST-Distance
and AST-Coverage drops significantly, while DroidMOSS and Androguard have
acceptable performance. As a concrete example, when the false positive rate is
0.32, the true positive rates are: 0.97 (RepDetector), 0.94(Androguard), 0.87
(DroidMoss), 0.72 (AST-Coverage) and 0.63 (AST-Distance), respectively. The
ROC curve of AST-Distance is near the diagonal section because AST-Distance
can hardly handle obfuscated code.

Fig. 6. ROC of algorithm detection accuracy under code obfuscation

We then compare RepDetector with other four detection algorithms under
serialized multiple obfuscation. For example, an app may be obfuscated by
noise code injection, register rename and followed by opaque branch injection.
However, not every app can go through multiple obfuscators successfully. For
comparison, we have eliminated the failure cases. Figure 6(b) shows the detec-
tion results when apps are obfuscated with duplicate registers, node spliter,
buggy code, method madness. We can see that all algorithms degrade their
accuracy, compared to the single obfuscation case. This is reasonable because
each additional obfuscation changes the code more from its original and makes
it harder to detect code similarity. On the other hand, RepDetector still out-
performs the other algorithms significantly. Moreover, RepDetector can handle
semantics-based obfuscation: computation obfuscation, program reconstruction,
data transformation and instruction reordering, because it relies on semantic
analysis of each app instead of syntax characteristics. Androguard may par-
tially detect semantic obfuscation such as instruction reordering, but it cannot
detect complicated obfuscation. DroidMOSS is less effective than Androguard

102 Q. Guan et al.

and RepDetector because it is mainly based on syntax fingerprints and has hence
little effect on code obfuscation. AST-Coverage and AST-Distance have almost
no resilience to complicated obfuscation.

5 Discussion

In this section, we discuss some limitations of our work.
Adversaries may split an app’s function into multiple smaller functions. In

addition, the adversaries may merge several unrelated functions into a big one
using redundant code. Crussell et al. [9] mentioned that those kinds of sub-
versions are difficult to detect for most similarity detection methods, including
PDG-based ones. That being said, since RepDetector is based on semantics of
core functions, the relevant semantics could be merged. Moreover, RepDetector
uses Mahalanobis distance to measure the similarity, so it may even tolerate
some semantics-changing transforms with an appropriate detection threshold.

Second, RepDetector is limited by the capability of loop analysis. As far as
we know, loop analysis is a fundamental challenge for symbolic execution, model
checking and other relevant methods. It is hard to determine the actual number
of iterations in a loop and even a single loop may generate many different sym-
bolic execution paths when unfolding the loop into a large number of equivalent
statements. We also need to specify pre-conditions and post-conditions alto-
gether. In this paper, we make some simplification in handling loops. When the
number of iterations cannot be determined, we set an upper bound threshold (in
our implementation we set the threshold to 5) and then terminate the iterations.
After that many iterations, a sequence of abstract register states will be gener-
ated. Although the loop problem could not be perfectly solved by our method,
the generated sequence can still catch in some degree the semantic meaning of
the loop body. Since our ultimate goal is to detect code similarity, not to under-
stand the exact meaning of a function, we believe our current treatment of this
loop problem will not cause big errors.

6 Related Work

Android Application Repackaging Detection. A number of tech-
niques for mobile app repackaging detection have been proposed previously.
DroidMOSS [30] computes a series of fuzzy hashes of each method in an app
and combines them together. It then compares the fuzzy hashes of two APKs
to detect app similarity This approach cannot capture the semantic information
of the Dalvik bytecode. PiggyApp [29] uses program dependency graph (PDG)
as the core feature to detect piggybacked apps and employ the nearest neigh-
bor searching algorithm to improve scalability. The PDG based approach has
also been proposed in DNADroid [8], where the PDG for every method in the
Dex file is computed, and a graph isomorphism algorithm is used to calculate
the similarity between the computed PDGs. AnDarwin [9] improves DNADroid’s
detection efficiency by extracting features using LSH and comparing similar apps

Semantics-Based Repackaging Detection for Mobile Apps 103

with Min-Hash algorithm. PDGs comparison usually suffers from the inefficiency
in subgraph isomorphism detection. Also, as shown by Huang et al. [15], it is
straightforward for plagiarists to insert redundant code (with data dependency)
to obfuscate the PDGs.

In Black-Hat 2011, Androguard [4] was proposed with several techniques
on Android app reverse engineering and repackaging detection, It generates the
Normalized Compression Distance (NCD [14]) of the signatures extracted from
the victim and suspicious apps to determine the similarity. Signatures are cre-
ated based on features extracted from a generalized representation of the Dalvik
bytecode – the opcode sequences. Although this approach is able to capture the
high-level semantic information of the code, including control flow graph (CFG),
a simple CFG flattening obfuscation can defeat its effectiveness on repackaging
detection. Huang et al. [15] proposed a framework for evaluating repackaging
detection algorithms of Android apps by generating several obfuscators. Our
techniques is robust against most of the obfuscators that preserve the semantics
of the app.

Recently, Shao et al. [23] showed that it is possible to detect repackaging
clones by app resource features. Zhang et al. [27] have proposed a detection
technique called ViewDroid, which constructs core features based on the app
UI. ViewDroid is robust against most of the code-level obfuscation. However,
for apps with a small set of UI components, it might easily produce some false
positives. SmartDroid [28] also uses user interfaces to find user interactions that
will trigger sensitive APIs dynamically. Chen et al. [6] proposes a code clone
detection technique, which performs the geometry-characteristic-based encod-
ing of control flow graph. While the technique is computationally efficient, it
cannot deal with app repackaging using code obfuscation techniques. We note
that these techniques (including ours) target at solving different challenges on
repackaging detection, they each have some unique strengths. Therefore, they
are complementary to each other in nature.

Software Plagiarism Detection. MOSS [22] applies local fingerprinting to
detect source code plagiarism. Lim et al. [19] leveraged stack pattern based
birthmark, which requires the source code and are vulnerable to some types
of code obfuscation. Myles et al. [20] analyzed executables statically and used
k-gram to perform similarity measurement. However, it is not robust to instruc-
tion reordering and junk instruction insertion. There are also dynamic software
birthmarks based software plagiarism detection methods, including core values
based birthmark [16,26] and system call based birthmark [24,25]. These dynamic
methods are not efficient enough for large-scale repackaging detection in Android
markets.

7 Conclusions

App repackaging is a way to change an original app into one with the same or
similar functionality. It has become a popular tool for malware propagation and
for piracy. It is very important for repackaging detection algorithms to be resilient

104 Q. Guan et al.

to code obfuscation. While many approaches have been proposed, scalability
and obfuscation resilience remains a challenge. In this paper, we propose a tool
called RepDetector, which is designed to find repackaging apps by semantic
similarity. Our evaluation has demonstrated its effectiveness and efficiency. In
our future work, we plan to conduct a much larger scale evaluation with apps
from different markets.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and Dr. Nick Nikiforakis for shepherding our paper. The work of Guan and Luo was
supported by the Science and Technology Planning Project of Guangdong Province,
China (2014A040401027, 2012A080102007, 2015A030401043). The work of Huang
and Zhu was partially supported by NSF CCF-1320605.

References

1. Dedexer. http://dedexer.sourceforge.net/
2. Dex2jar. https://code.google.com/p/dex2jar/
3. Dexguard. http://www.saikoa.com/dexguard
4. Desnos, A.Z.: Androidguard. https://code.google.com/p/androguard/
5. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously in

detecting application clones on android markets. In: Proc. of ICSE (2014)
6. Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu, P.:

Finding unknown malice in 10 s: mass vetting for new threats at the google-play
scale. In: Proceedings of the 24th USENIX Conference on Security Symposium,
pp. 659–674. USENIX Association (2015)

7. Collberg, C.S., Myles, G., Huntwork, A.: Sandmark-a tool for software protection
research. IEEE Secur. Priv. 1(4), 40–49 (2003)

8. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications
on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

9. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. Technical report (2012). ucdavis.edu

10. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance.
Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)

11. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8),
861–874 (2006)

12. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Characterizing
android application plagiarism and its impact on developers. In: Proceedings of
MobiSys (2013)

13. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A scalable
system for detecting code reuse among android applications. In: Proceedings of
DIMVA (2013)

14. Hemel, A., Kalleberg, K.T., Vermaas, R., Dolstra, E.: Finding software license
violations through binary code clone detection. In: Proceedings of MSR. ACM
(2011)

15. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app
repackaging detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais,
I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer,
Heidelberg (2013)

http://dedexer.sourceforge.net/
https://code.google.com/p/dex2jar/
http://www.saikoa.com/dexguard
https://code.google.com/p/androguard/
https://www.ucdavis.edu

Semantics-Based Repackaging Detection for Mobile Apps 105

16. Jhi, Y.C., Wang, X., Jia, X., Zhu, S., Liu, P., Wu, D.: Value-based program char-
acterization and its application to software plagiarism detection. In: Proceedings
of the 33rd International Conference on Software Engineering, pp. 756–765. ACM
(2011)

17. King, T., Barrett, C., Tinelli, C.: Leveraging linear and mixed integer program-
ming for SMT. In: Formal Methods in Computer-Aided Design, FMCAD 2014,
pp. 139–146. IEEE (2014)

18. Lafortune, E.: Proguard. http://proguard.sourceforge.net/
19. Lim, H., Park, H., Choi, S., Han, T.: Detecting theft of Java applications via

a static birthmark based on weighted stack patterns. IEICE - Trans. Inf. Syst.
E91–D(9), 2323–2332 (2008)

20. Myles, G., Collberg, C.S.: K-gram based software birthmarks. In: SAC (2005)
21. Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone

applications: attack strategies and defense techniques. In: Proceedings of ESoSS
(2012)

22. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for docu-
ment fingerprinting. In: Proceedings of ACM SIGMOD International Conference
on Management of Data (2003)

23. Shao, Y., Luo, X., Qian, C., Zhu, P., Zhang, L.: Towards a scalable resource-
driven approach for detecting repackaged android applications. In: Proceedings of
ACSAC. ACM (2014)

24. Wang, X., Jhi, Y., Zhu, S., Liu, P.: Behavior based software theft detection. In:
Proceedings of 16th ACM Conference on Computer and Communications Security
(CCS) (2009)

25. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Detecting software theft via system call
based birthmarks. In: Computer Security Applications Conference, ACSAC 2009.
Annual, pp. 149–158. IEEE (2009)

26. Zhang, F., Jhi, Y., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm plagia-
rism detection. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis. ACM (2012)

27. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: Towards obfuscation-
resilient mobile application repackaging detection. In: Proceedings of ACM WiSec,
pp. 25–36. ACM, New York, NY, USA (2014)

28. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: SmartDroid:
an automatic system for revealing UI-based trigger conditions in Android appli-
cations. In: Proceedings of the second ACM workshop on Security and privacy in
smartphones and mobile devices, pp. 93–104. ACM (2012)

29. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
piggybacked mobile applications. In: Proceedings of ACM CODASpPY (2013)

30. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proceedings of ACM CODASpPY
(2012)

http://proguard.sourceforge.net/

Accelerometer-Based Device Fingerprinting
for Multi-factor Mobile Authentication

Tom Van Goethem(B), Wout Scheepers, Davy Preuveneers, and Wouter Joosen

iMinds-DistriNet-KU Leuven, Leuven, Belgium
wout.scheepers@student.kuleuven.be,

{tom.vangoethem,davy.preuveneers,wouter.joosen}@cs.kuleuven.be

Abstract. Due to the numerous data breaches, often resulting in the
disclosure of a substantial amount of user passwords, the classic authen-
tication scheme where just a password is required to log in, has become
inadequate. As a result, many popular web services now employ risk-
based authentication systems where various bits of information are
requested in order to determine the authenticity of the authentication
request. In this risk assessment process, values consisting of geo-location,
IP address and browser-fingerprint information, are typically used to
detect anomalies in comparison with the user’s regular behavior.

In this paper, we focus on risk-based authentication mechanisms in
the setting of mobile devices, which are known to fall short of providing
reliable device-related information that can be used in the risk analysis
process. More specifically, we present a web-based and low-effort system
that leverages accelerometer data generated by a mobile device for the
purpose of device re-identification. Furthermore, we evaluate the perfor-
mance of these techniques and assess the viability of embedding such a
system as part of existing risk-based authentication processes.

1 Introduction

In September 2014, an attacker managed to access a privileged account on
Bugzilla, a bugtracker software used by Mozilla, by simply using the creden-
tials of the user that were leaked by a data breach on an unrelated website.
As a result, the adversary was able to access security-sensitive information on
flaws reported in the Firefox browser. By leveraging the obtained information,
the attacker eventually tried to exploit unwitting visitors of a news website.

This is just one of the many stories where an attacker managed to gain
access to a user’s account, and along with the tendency of users to either re-use
passwords between different websites or choose weak passwords [1], serves as
a good example that passwords are no longer fitting for strong authentication.
As a countermeasure to these threats, multi-factor authentication systems have
recently gained in popularity. These multi-factor authentication schemes require
a user to provide multiple elements that can be used to prove his identity. A pop-
ular choice is two-factor authentication, where a randomly generated passcode is
sent by SMS to the user’s mobile phone. By requiring such a token, it becomes
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 106–121, 2016.
DOI: 10.1007/978-3-319-30806-7 7

Accelerometer-Based Device Fingerprinting for Multi-factor MA 107

very challenging for an adversary to log in to a user’s account, as this would
require him to both know the password, as well as intercept the SMS message.

Although the additional factor substantially improves security, there exist
several drawbacks, mainly with regards to deployment and costs, that prevent
tokens over SMS from being widely adopted as a second factor in authentica-
tion mechanisms. Multi-factor authentication, which can be seen either as an
alternative solution, or as a complement to the two-factor authentication sys-
tem, attempts to tackle these drawbacks. In multi-factor authentication systems,
various pieces of information on the authenticating agent are gathered during
the authentication process. This information, which can consist of the user’s IP
address, behavioral and contextual information, or a fingerprint of the browser he
is using to authenticate, is then compared against the user’s typical behavior. In
case some elements from this information deviate from what is expected, the user
is either denied access, or is required to use a stronger authentication method
for verification, e.g. by using the aforementioned two-factor authentication.

The strength of this type of multi-factor authentication system is strongly
dependent on the trustworthiness of the acquired information. While it has been
shown that fingerprint information gathered by a modern browser on a desktop
computer typically yields high entropy [2], the fingerprints obtained from mobile
devices carry a lot of similarity [3,4], making them an unsuitable candidate in
a multi-factor authentication system. In this paper, we focus on improving the
reliability of multi-factor authentication in the web, and more specifically, on
mobile devices. We show how current authentication systems can be augmented
with a sensor-based fingerprint, in order to evaluate whether the authenticated
user is using a trusted device. By computing an adaptive similarity score, the
identity provider can determine the risk that the request is illicit, and take
the appropriate actions. We exemplify this type of authentication system by
developing a web-based system that leverages accelerometer data in combination
with controlling the mobile phone’s vibration motor. Finally, we evaluate a proof-
of-concept implementation on the usability and feasibility of deploying such a
system in real-world scenarios.
Our main contributions are:

– An accelerometer-based device fingerprinting mechanism with adaptive simi-
larity scores as a suitable candidate for multi-factor mobile authentication

– The integration of such a web-based multi-factor authentication solution in a
contemporary identity and access management (IAM) system

– A feasibility assessment of such a system in real-world scenarios

The rest of this paper is structured as follows: in Sect. 2, we sketch a brief
background on fingerprinting and authentication. In Sect. 3, we motivate our
approach and describe the implementation of a proof-of-concept application. In
Sect. 4, we evaluate the application. In Sect. 5, we briefly reflect on related work,
and finally, we conclude our work in Sect. 6.

108 T. Van Goethem et al.

2 Background

Fingerprinting browsers and devices has a variety of applications, both nefarious
as well as beneficial. The majority of use cases require the unique identification
of a specific user, whether it is used to prevent fraud, or to track a user over dif-
ferent sessions. This tracking is done by gathering information about the browser
and system that is being used. Examples include identification of the browser
version [2], canvas fingerprinting [5], and enumerating fonts and plugins that
are installed on the browser or system [6]. In most desktop environments, these
methods, or a combination thereof, provide a fingerprint that can uniquely iden-
tify a user. Consequently, it is not surprising that fingerprinting is a suitable
technique for multi-factor authentication systems.

However, for mobile devices, which often share the same hardware and do
not allow as many customizations of the system, device fingerprints of devices
that share the same brand often result in exactly the same identifier. More-
over, Spooren et al. found that the majority of fingerprinted properties are
predictable [3], preventing these techniques from being used as part of authen-
tication processes. In an attempt to overcome these shortcomings, researchers
have evaluated alternative approaches that can be leveraged to collect identifying
information.

Although mobile devices of the same type most likely share the same hard-
ware, certain sensors may suffer from microscopic imperfections caused during
the manufacturing process. Because the variations on the sensor data are most
likely unique for each device, they become an interesting target for fingerprint-
ing [7]. For example, Lukas et al. found that digital cameras expose a certain
pattern noise, which can then be used for identification [8]. Similarly, Das et al.
show that imperfections in device microphones and speakers induce anomalies
in the sound that is produced and recorded [9]. Again, the variations among
devices can be used for fingerprinting purposes.

Another interesting approach, is to analyze the data returned by a mobile
device’s accelerometer. In their research, Dey et al. describe how imperfections
induced to accelerometer chips can be leveraged to create a unique fingerprint [10].
For the purpose of authentication in the context of the web, accelerometer data
is particularly interesting because this data is exposed by the majority of mobile
browsers, and does not require the user’s consent.

3 Approach and Implementation

The sensor used for fingerprinting in this work is the accelerometer. An accelerom-
eter measures the acceleration force that is applied to the device along the three
physical axes. This acceleration is expressed in meter per second squared (m/s2).
The reasons for using this sensor is that (1) nowadays every smartphone has an
accelerometer, (2) accelerometer data is accessible through JavaScript in a mobile
browser and (3) there is recent work about using accelerometer data for sensor fin-
gerprinting [10].

Accelerometer-Based Device Fingerprinting for Multi-factor MA 109

Fig. 1. Fingerprint phishing misuse scenario, enabling spoofing of the user agent.

3.1 Enduring the User Agent and Fingerprint Spoofing Threat

In contrast to prior work, where native APIs were used to obtain accelerometer
data for tracking purposes, our research focuses on leveraging the accelerometer
data, as exposed through browser APIs, for the purpose of improving the reliabil-
ity of a multi-factor authentication system. Since the collection of fingerprinting
data is done purely on the side of the client, an additional concern to be taken
into consideration in our work is the mitigation against spoofing attacks where
an adversary poses as the legitimate user. Consider the misuse scenario in Fig. 1.
Imagine an adversary who knows the credentials of a victim. He reads the finger-
printing code and sets up a phishing site to steal a user’s device fingerprint. When
prompted to log in, the adversary provides the stolen credentials along with the
fingerprint and is authenticated to the system. It is clear that this scenario should
not be possible, and thus a more clever approach is needed.

3.2 Mitigation Against Spoofing Attacks

To counter the spoofing threat, our mitigation provides following mitigation.
Upon registration, several traces are collected, each consisting of multiple chunks.
A chunk contains a vibration part, i.e. a short period of time during which the
device’s vibration motor is enabled using the navigator.vibrate() API, and
a non-vibration part. The length (in ms) of the vibration parts will increase
for each chunk within a trace, as depicted in Fig. 2. Upon registration, a trace
is collected from the user’s device and for each chunk, features are extracted.
The assumption made here is that each chunk will have a different vibration

110 T. Van Goethem et al.

Fig. 2. A trace consisting of multiple chunks. Each chunk has a vibration part (increas-
ing length) and a non-vibration part (fixed length).

behavior due to the difference in vibration length, and is sufficiently robust and
distinguishable from other chunks.

When a user wants to log in, the user’s device is asked to provide sensor
data from chunks with random lengths. Upon receiving the sensor data for each
requested chunk, the IAM system extracts the same features and compares them
to the features from the corresponding chunk at registration. This approach
makes a spoofing attempt more difficult because either the attacker needs to
obtain sufficient information about a large amount of chunks, or trick the victim
in providing data for the requested chunks. We consider the former attack to be
unlikely, as this would require the attacker to collect accelerometer data during
a considerable amount of time, something that would easily alert the user of
the wrongdoing. Although the second attack, where the adversary just collects
information on the requested chunks, may be viable under certain circumstances,
it should be noted that the proposed mechanism is not a stand-alone authen-
tication system. This means that an adversary not only needs to “forge” the
accelerometer-based fingerprint, he also needs to know the user’s credentials as
well as uncover the expected values for the other aspects that are required by
the multi-factor authentication system.

3.3 Sensor Data Collection and Fingerprint Extraction

For the collection of accelerometer data, we developed an HTML web application
using the jQuery Mobile framework1, collecting chunks as illustrated in Fig. 2.
The chunks are numbered from 0 until N . The first chunk has a vibration part
of 400 ms. For each subsequent chunk, the vibration part increases with 100 ms.
The length of the non-vibration part remains fixed at 400 ms. This length was
defined experimentally; 400 ms without vibration is long enough for the device
to return to a motionless state. When this non-vibration length is less, it is hard
to distinguish between chunks because of noise the accelerometer still registers
due to the momentum of the device. This results in chunk 0 having a length
of 800 ms, chunk 1 having a length of 900 ms and so on. Chunk N has length
(400 + 100N) ms. In this paper, we only consider accelerometer data that was
collected when the device was placed on a hard surface, e.g. a table top, because
1 https://jquerymobile.com/.

https://jquerymobile.com/

Accelerometer-Based Device Fingerprinting for Multi-factor MA 111

we found it to result in more robust data, and is still viable in the context of
authentication. This also makes potential attack scenarios more difficult, since
this requires an adversary to either trick the user in placing his phone on a hard
surface until a sufficient amount of accelerometer data has been obtained, or
estimate the expected accelerometer values from the values that originate from
vibrating on an unknown surface. While not completely unfeasible, this approach
significantly constraints the viability and plausibility of attack scenarios.

The extraction of fingerprintable features is done in Matlab. After loading the
data, the timestamps are normalized. Next, for each datapoint, the Root Sum
Squared (RSS) is taken of the values on the three axes. According to the chunk-
stamps taken at collection, the trace is split into the corresponding chunks.
For each chunk, 8 time-domain features are extracted. These features are the
mean, standard deviation, average deviation, skewness, kurtosis, RMS amplitude,
minimum and maximum. These extracted features will be evaluated on their
robustness and distinguishability among devices.

Fig. 3. Integrating accelerometer-based device fingerprinting in contemporary identity
and access management systems.

3.4 Integration in Identity and Access Management Systems

We have integrated our solution in OpenAM 12, a contemporary identity and
access management system. OpenAM offers device fingerprinting and matching
capabilities using client-side and server-side JavaScript technology. As shown
in our previous work [3], the built-in fingerprinting code is not well suited for
mobile devices. In this work, we adapted the JavaScript code to call our ser-
vice to process accelerometer traces and chunks. The additional benefit of this
integration is that OpenAM and our solution can be independently scaled out.

112 T. Van Goethem et al.

4 Evaluation

4.1 Qualitative Evaluation

The prototype is evaluated thoroughly based on the framework proposed by
Stajano et al. [11]. This framework provides an evaluation methodology and
benchmark for web authentication proposals. For evaluation purposes it makes
use of a taxonomy of 19 security, privacy and usability benefits. Table 1 shows a
summary of all evaluated benefits. From the 19 benefits, the prototype offers 10
benefits completely. There are 6 benefits that are almost offered by the prototype.
One benefit (scalable-for-users) could not be evaluated, and is left as future work.

4.2 Quantitative Evaluation

Feature Analysis. For the design of the feature matching algorithm, the
extracted features from the chunks are evaluated. All features are evaluated
against three criteria: (1) the distinguishability among chunks, (2) the distin-
guishability among devices and (3) the robustness.

Table 1. Summarizing table with the security, privacy and usability benefits. (x: offers
the benefit; o: almost offers the benefit; ? further investigation is needed)

Category Benefit Prototype

Security Resilient-to-Physical Observation o

Resilient-to-Targeted-Impersonation o

Resilient-to-Throttled-Guessing x

Resilient-to-Unthrottled-Guessing o

Resilient-to-Internal-Observation x

Resilient-to-Leaks-from-Other-Verifiers x

Resilient-to-Phishing o

Resilient-to-Theft o

No-Trusted-Third-Party x

Requiring-Explicit-Consent x

Privacy Unlinkable x

Usability Memorywise-Effortless

Scalable-for-Users ?

Nothing-to-Carry o

Physically-Effortless

Easy-to-Learn x

Efficient-to-Use x

Infrequent-Errors x

Easy-Recovery-from-Loss x

Accelerometer-Based Device Fingerprinting for Multi-factor MA 113

As we investigate whether the device’s sensor fingerprint can be used for
authentication, the features trivially have to be distinguishable among devices.
If this would not be the case, a fingerprint from any random device could be used
to log in. The features also need to be robust, i.e. they cannot deviate too much
from each other when new data is collected from the same device. In case this
would not hold, the features would have little meaning, as their values deviate
too much for every feature extraction of raw data.

We analyzed the criteria above and depicted them in Fig. 4. This figure
depicts 8 accelerometer-based features (mean, standard deviation, average devi-
ation, skewness, Kurtosis, root mean square, minimum and maximum) on 3
different mobile devices. The length of each box plot represents the robustness
of a given feature on a particular device. This gives an idea of how consistently
the device produces the extracted features for different measurements. As the
robustness of the features is device dependent, this value can be used as a risk
measure for a device-specific adaptive scoring function. The distinguishability
corresponds to the extent to which the box plots overlap. The more they over-
lap, the more the values lie in the same range and are hereby harder to distinguish
from each other.

The most important conclusion of this analysis is that the short chunks con-
tain more entropy than the long chunks. This is mainly due to the exponential
behavior of the mean, skewness and RMS amplitude features. The minimum
feature is bad for distinguishing among chunks and devices and hereby useless.

Matching Algorithm. Now that the behavior of the features is known, it is
possible to design and implement a matching algorithm that checks whether a
login trace will be accepted or not.

Upon registration, a series of registration traces is collected. This number of
traces will be defined empirically in the next section. Using the data from the
multiple registration trace, we calculate an interval, which consists of a lower-
and upper-bound percentile of the observed values. During the login process,
a single trace, consisting of a randomized subset of chunks, is requested. For
each chunk in this login trace, all features are compared to those that were
extracted during the registration process. A certain feature, for a certain chunk
is marked as accepted when it falls within the boundaries of the registered values.
Subsequently, a score is computed for each chunk, which is based on the accepted
feature-values. Because the robustness of each feature is different, we attributed
each feature a certain weight, based on their distinguishability. The final score of
a specific chunk is determined as the sum of the weights of all accepted features.
When this sum exceeds a certain threshold, the chunk is marked as accepted.

For a successful authentication attempt, a ratio, which can be user-defined, of
all probed chunks should be classified as accepted. This ratio is directly related
to the difficulty of passing a login attempt: if this ratio is set to a high value, and
all chunks must match the values from the registration process, it becomes more
likely that an legitimate login trace will fail due to momentary measurement
inaccuracies. In our evaluation, we found that a ratio of 3

4 provides a balanced
end-result.

114 T. Van Goethem et al.

M
e
a
n

S
td

D
e
v
ia

ti
o
n

A
v
g

D
e
v
ia

ti
o
n

S
k
e
w
n
e
ss

K
u
rt

o
si
s

R
M

S
A
m

p
li
tu

d
e

Chunk

M
in

im
u
m

Chunk

M
a
x
im

u
m

Fig. 4. Distinguishability and robustness of 8 accelerometer-based features of different
mobiles devices (red: Motorola Moto G, green: Huawei P8 Lite, blue: Google Nexus 4).
The length of each box plot is a measure for the device-specific robustness of the feature
(Color figure online).

Accelerometer-Based Device Fingerprinting for Multi-factor MA 115

Fig. 5. Confusion matrices for all 15 devices. Left: chunks, right: traces.

4.3 Experiment Setup

For conducting experiments, 10 registration traces consisting of 10 chunks were
gathered together with 3 login traces. The dataset consists of data from 15
devices: 6 Google Nexus 5’s, 3 Google Nexus 4’s, 3 OnePlus One’s, a Samsung
Galaxy S4 mini, a Samsung Galaxy S5 and an LG G3.

Performance Metrics. For measuring classification performance, each login
trace of the users device is checked by the matching algorithm. From this, the
amount of true positives TPi and false negatives FNi is calculated for each
chunk i. A true positive occurs when a chunk collected by the registered device
is accepted, i.e. a chunk that needed to be classified as accepted is accepted.
A false negative occurs when a chunk collected by the registered device is
rejected, i.e. a chunk that needed to be classified as accepted is rejected.

To investigate how the algorithm behaves for login traces from different
devices, three login traces are selected randomly. These traces will be referred
to as alien traces. The results of the alien traces are used to calculate the false
positives FPi and true negatives TNi for each chunk i. A false positive occurs
when a chunk collected from an alien trace is classified as accepted, i.e. a chunk
that needed to be classified as rejected is accepted. A true negative occurs when
a chunk collected from an alien trace is classified as rejected, i.e. a chunk that
needed to be classified as rejected is rejected.

To measure the performance of the matching algorithm (which acts as a
binary classifier), the true positive rate (TPR) and false positive rate (FPR) are
defined as follows (for each chunk i):

TPRi =
(TPi)

(TPi + FNi)
, FPRi =

(FPi)
(FPi + TNi)

These metrics can be plotted as an ROC-curve, where the FPR is shown
on the X-axis and the TPR on the Y-axis. It is obvious that in an authentica-
tion system, the focus should be on minimizing the false positive rate. A trace

116 T. Van Goethem et al.

Fig. 6. ROC with the number of registration traces varying from 10 to 2. The threshold
factor t = 1

2
.

of an alien device should not be marked as accepted by the matching algorithm.
Otherwise logging in would be possible from any device, making accelerometer-
based fingerprinting useless for authentication.

Results. We investigate the performance of the matching algorithm on 10 reg-
istration traces and 10 probed chunks. The results are shown in a confusion
matrix in Fig. 5. As there are 15 devices that test 6 traces, the results show
the classification of 900 chunks and 90 traces. For the chunk classification, the
TPR and FPR are 0.7444 and 0.0978 respectively. Hereby, the classification is
considered good, as the false positive rate is low. When the trace classification’s
TPR and FPR are calculated, they yield 0.8000 and 0.0222 respectively. The
true positive rate is even higher and the false positive rate lower, indicating a
good trace classification.

The false positives of the chunks can be considered insignificant, as they almost
all are filtered by the trace acceptance (which depends on the ratio parameter).
Only one alien trace was classified as accepted. As the user still needs to fill in a
username and password, the classification algorithm is definitely sufficient.

For each device, the number of registration traces is varied from 10 to 2.
The lower bound is 2 because this is the minimum amount of registration traces
needed to calculate the intervals used for matching. The intuition behind lower-
ing the amount of registration traces is that the calculated intervals will be less
accurate. This inaccuracy will probably result in more chunk rejections. There
will be more FPs and FNs as the number of registration traces is reduced.

Accelerometer-Based Device Fingerprinting for Multi-factor MA 117

Fig. 7. ROC with number of probed chunks varying from 10 to 1.

The next experiment investigates what happens when the amount of registra-
tion traces is reduced. The amount of registration traces are varied from 10 to 2.
The results in Fig. 6 show the classification performance of the traces. As can be
seen, the true positive rate declines when we reduce the amount of registration
traces. This result confirms the intuition that the intervals used for matching
become less accurate when the number of registration traces decreases. Notably,
the false positive rate remains more or less constant. This means that a reduction
in registration traces only induces more false negatives, and no false positives.
In the results described above, the threshold factor t was set to 1

2 . It is clear
that there is a trade-off between usability and security. The more registration
traces are collected, the better matching and hereby the security. But taking
many registration traces impact the usability by imposing a longer registration
time.

Figure 7 shows what happens when the number of probed chunks decreases.
All classifications yield approximately the same results. The intervals stay as
accurate as before because they stay the same. Because every chunk has a good
classification performance, every possible subset of chunks could be used for
logging in. This behavior is desirable, as it should be possible to collect any
subset for enforcing the spoofing mitigation approach. When a small subset of
chunks is probed, the probability of fingerprint phishing is lower because an
attacker his a harder time collecting the data of every possible chunk-probe.

118 T. Van Goethem et al.

Discussion. We note that sensor fingerprinting through the browser is only pos-
sible because browser vendors implement APIs for collecting sensor data. The
purpose of this is to enrich the user’s experience, like automatically rotating the
display or using device motion in games. However, browser vendors could investi-
gate to which extent the induction of bias or noise is possible to mitigate privacy
concerns of tracking [12]. By doing this, they could distort device identification
through sensor fingerprinting. In that case, the authentication scheme presented
can not be used, and other authentication mechanism are needed. These meth-
ods could include the fingerprinting of user behavior, like for example capturing
a user’s search patterns or battery consumption.

Furthermore, since the security properties of the proposed mechanism are not
absolute, the proposed method should not be considered a standalone authenti-
cation mechanism, but rather part of a multi-factor authentication mechanism
where multiple features are used to determine the authenticity of an authenti-
cation request.

5 Related Work

To counter the imminent threat of account compromise, multi-factor authenti-
cation is one of the most popular solutions. Motivated by their ubiquitousness,
the mobile devices of users are often leveraged in a multi-factor authentica-
tion setup. For instance, mobile devices can be trusted to compute a One Time
Password [13], or in authentication schemes, where they are used to scan a
QR-code [14], communicate over Near Field Communication (NFC) technol-
ogy [15], or emit and receive inaudible soundwaves [16]. Unfortunately, the
majority of these solutions can only be used when the user attempts to authen-
ticate on his desktop computer or laptop. Contrastingly, in this paper, we focus
on improving the security of users who attempt to authenticate using just their
mobile device [17].

For this purpose, we leverage sensor data generated by the accelerometer
chip in the mobile device, which was found to be unique due to manufacturing
imprecisions [7,10]. Prior research has evaluated using the accelerometer in the
context of authentication. In contrast to fingerprinting the imprecisions of the
accelerometer chip, Wang et al. leveraged the accelerometer data to analyze
a user’s gestures, and perform authentication on the basis of the uniqueness
of the gestures [18]. Similarly, Mayrhofer and Gellersen proposed a device-to-
device authentication mechanism where two devices are shaken together, and
thus share very similar accelerometer data, in order to generate authenticated,
secret keys [19].

In the context of analyzing sensor data to uniquely identify devices, researchers
have evaluated various sensors for imperfections. Examples include pattern noise
exposed the camera [8,20,21], imperfections of a device’s acoustic components
[9,22], or using the gyroscope to recognize speech [23]. We can further general-
ize our solution by fusing behavioral information about how people interact with
the world, exploiting user specific traits about app usage, location, stylometry,
keystroke dynamics, phone calls, etc. [24–27].

Accelerometer-Based Device Fingerprinting for Multi-factor MA 119

6 Conclusion

In this work, our objective was to extend an authentication system where browser
fingerprinting is used as an additional authentication factor. The scope of the
system is limited to authentication with mobile devices, where security and pri-
vacy threats imposed by fingerprinting are taken into account. The contribu-
tions of this paper are (1) the extension of a state-of-practice authentication
system architecture for fingerprinting, (2) a prototype implementation of this
architecture using accelerometer sensor data and (3) a critical assessment of this
prototype.

The main conclusion is that sensor fingerprinting can be used for authenti-
cation. However, the quantitative evaluation has shown that there is a trade-off
between usability and security, depending on the amount of traces used for reg-
istration. The limitations of this work are the absence of a large scale sensor
fingerprint assessment, the focus on only one sensor for fingerprinting and the
use of a limited set of features for fingerprint extraction.

Future work could conduct a more extensive scalability assessment, with
regard to the uniqueness of sensor fingerprints and the performance of the sys-
tem on a large scale. As only the accelerometer sensor is used, it would also be
interesting to investigate to which extent other sensors such as speakers, micro-
phones and cameras can be fingerprinted for authentication purposes.

Acknowledgment. This research is partially funded by the Research Fund KU
Leuven, and by the MediaTrust and TRU-BLISS projects funded by iMinds.

References

1. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings Of The 16th International Conference on World Wide Web, pp. 657–666. ACM
(2007)

2. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010)

3. Spooren, J., Preuveneers, D., Joosen, W.: Mobile device fingerprinting considered
harmful for risk-based authentication. In: Proceedings of the Eighth European
Workshop on System Security, pp. 6. ACM (2015)

4. Hupperich, T., Maiorca, D., Kührer, M., Holz, T., Giacinto, G.: On the robust-
ness of mobile device fingerprinting: can mobile users escape modern web-tracking
mechanisms? In: Proceedings of the 31st Annual Computer Security Applications
Conference, pp. 191–200. ACM (2015)

5. Mowery, K., Shacham, H.: Pixel perfect: Fingerprinting canvas in html5. Proceed-
ings of W2SP (2012)

6. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.:
Fpdetective: Dusting the web for fingerprinters. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 1129–1140.
ACM (2013)

7. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile device identification
via sensor fingerprinting. arXiv preprint (2014). arxiv:1408.1416

http://arxiv.org/abs/1408.1416

120 T. Van Goethem et al.

8. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern
noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

9. Das, A., Borisov, N., Caesar, M.: Do you hear what i hear?: fingerprinting smart
devices through embedded acoustic components. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 441–452.
ACM (2014)

10. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: Accelprint: imperfec-
tions of accelerometers make smartphones trackable. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS) (2014)

11. Bonneau, J., Herley, C., van Oorschot, P., Stajano, F.: The quest to replace pass-
words: a framework for comparative evaluation of web authentication schemes. In:
2012 IEEE Symposium on Security and Privacy (SP), pp. 553–567, May 2012

12. Das, A., Borisov, N., Caesar, M.: Exploring ways to mitigate sensor-based smart-
phone fingerprinting. CoRR abs/1503.01874 (2015)

13. Aloul, F., Zahidi, S., El-Hajj, W.: Two factor authentication using mobile phones.
In: IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA 2009, pp. 641–644. IEEE (2009)

14. Dodson, B., Sengupta, D., Boneh, D., Lam, M.S.: Secure, consumer-friendly web
authentication and payments with a phone. In: Gris, M., Yang, G. (eds.) Mobi-
CASE 2010. LNICST, vol. 76, pp. 17–38. Springer, Heidelberg (2012)

15. Alpár, G., Batina, L., Verdult, R.: Using NFC phones for proving credentials.
In: Schmitt, J.B. (ed.) Measurement, Modelling, and Evaluation of Computing
Systems and Dependability and Fault Tolerance. LNCS, vol. 7201, pp. 317–330.
Springer, Heidelberg (2012)

16. Google: Slicklogin
17. Preuveneers, D., Joosen, W.: Smartauth: dynamic context fingerprinting for con-

tinuous user authentication. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC 2015, pp. 2185–2191. ACM, New York (2015)

18. Wang, H., Lymberopoulos, D., Liu, J.: Sensor-based user authentication. In:
Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp.
168–185. Springer, Heidelberg (2015)

19. Mayrhofer, R., Gellersen, H.-W.: Shake well before use: authentication based on
accelerometer data. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Per-
vasive 2007. LNCS, vol. 4480, pp. 144–161. Springer, Heidelberg (2007)

20. Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining image origin and
integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

21. Bertini, F., Sharma, R., Ianǹı, A., Montesi, D.: Profile resolution across multi-
layer networks through smartphone camera fingerprint. In: Proceedings of the 19th
International Database Engineering & Applications Symposium, pp. 23–32 (2015)

22. Chen, D., Mao, X., Qin, Z., Wang, W., Li, X.-Y., Qin, Z.: Wireless device authen-
tication using acoustic hardware fingerprints. In: Wang, Y., Xiong, H., Argamon,
S., Li, X.Y., Li, J.Z. (eds.) BigCom 2015. LNCS, vol. 9196, pp. 193–204. Springer,
Heidelberg (2015)

23. Michalevsky, Y., Boneh, D., Nakibly, G.: Gyrophone: recognizing speech from gyro-
scope signals. In: Proc. 23rd USENIX Security Symposium (SEC 2014). USENIX
Association (2014)

24. Fridman, L., Weber, S., Greenstadt, R., Kam, M.: Active authentication on mobile
devices via stylometry, application usage, web browsing, and GPS location. CoRR
abs/1503.08479 (2015)

Accelerometer-Based Device Fingerprinting for Multi-factor MA 121

25. Antal, M., Szabo, L.Z., Laszlo, I.: Keystroke dynamics on android platform. Proce-
dia Technol. 19, 820–826 (2015). 8th International Conference Interdisciplinarity
in Engineering, INTER-ENG 2014, Tirgu Mures, Romania, 9–10 October 2014

26. Li, F., Clarke, N.L., Papadaki, M., Dowland, P.: Active authentication for mobile
devices utilising behaviour profiling. Int. J. Inf. Sec. 13(3), 229–244 (2014)

27. Shi, E., Niu, Y., Jakobsson, M., Chow, R.: Implicit authentication through learning
user behavior. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 99–113. Springer, Heidelberg (2011)

POODLEs, More POODLEs, FREAK Attacks
Too: How Server Administrators Responded

to Three Serious Web Vulnerabilities

Benjamin Fogel(B), Shane Farmer, Hamza Alkofahi, Anthony Skjellum,
and Munawar Hafiz

Auburn University, Auburn, AL 36849, USA
bnf0001@auburn.edu, munawar.hafiz@gmail.com

Abstract. We present an empirical study on the patching character-
istics of the top 100,000 web sites in response to three recent vulner-
abilities: the POODLE vulnerability, the POODLE TLS vulnerability,
and the FREAK vulnerability. The goal was to identify how the web
responds to newly discovered vulnerabilities and the remotely observ-
able characteristics of websites that contribute to the response pattern
over time. Using open source tools, we found that there is a slow patch
adoption rate in general; for example, about one in four servers hosting
Alexa top 100,000 sites we sampled remained vulnerable to the POODLE
attack even after five months. It was assuring that servers handling sensi-
tive data were more aggressive in patching the vulnerabilities. However,
servers that had more open ports were more likely to be vulnerable. The
results are valuable for practitioners to understand the state of security
engineering practices and what can be done to improve.

1 Introduction

Security is a game involving two parties: attackers and secure system develop-
ers. An attacker discovers a new vulnerability in a software, attackers launch
fresh attacks that exploit that vulnerability, secure system developers fix the
vulnerability and generate patches, and attackers move on to find the next vul-
nerability. But, there is another major actor involved: the users of the software.
Users are supposed to accept patches and update their software. They introduce
the human element to the process, the Achilles Heel of the secure software engi-
neering process. Too often, users fail to update their software even when a patch
is available for a long time. This is where the battle for viable security is lost.

For web applications, it is chiefly the responsibility of the server administra-
tors to keep their servers secure, giving the web application developers a layer
of security. A web vulnerability that targets the server infrastructure targets all
servers that host any applications. This is why a server vulnerability (e.g., a
vulnerability in the SSL protocol implementation in the server) attracts more
attention and requires prompter response than an application vulnerability (e.g.,
an SQL injection vulnerability). But, do server administrators respond to these
vulnerabilities in a timely fashion?
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 122–137, 2016.
DOI: 10.1007/978-3-319-30806-7 8

POODLEs, More POODLEs, FREAK Attacks Too 123

A few studies have reported a common pattern: server administrators are
generally slow to respond to reported vulnerabilities [27,35]. Durumeric and
colleagues [9] studied how server administrators updated their systems to pre-
vent the Heartbleed vulnerability. They found that server administrators actually
promptly fixed the vulnerability in the first couple of weeks after the vulnerabil-
ity was reported, but the response rate flattened after that period. Other than
these studies, some sources periodically track servers in order to collect infor-
mation [31]. But all of these works provide an aggregate view of the response
rate of the server administrators against a specific vulnerability. They do not
attempt to explore the results considering other factors, e.g., the demographics
of the servers that are vulnerable, how the servers are configured, etc.

This paper describes how the server administrators of the top 100,000 Inter-
net sites responded to the infamous POODLE, POODLE TLS, and the more
recent FREAK vulnerabilities. We also analyzed the vulnerable servers consider-
ing the category of web applications hosted on the servers and the configuration
of the servers (how many TCP or UDP protocol ports are open in the servers).
The data collection and analysis process is entirely automated and is immedi-
ately usable.

We found that many servers remained vulnerable specifically to POODLE
even after five months past widespread notification of the vulnerability. Par-
ticularly, 23 % of the servers hosting the top 100,000 Alexa sites we sampled
still remained vulnerable to POODLE. Response to FREAK vulnerability was
also slow in general, but the administrators proactively fixed the vulnerability
even before it was disclosed. Sites that handle sensitive information responded
quickly to fix the reported vulnerabilities. Also, sites that have more open
ports—perhaps connoting weakness in server administration—were more likely
to remain vulnerable.

This paper makes the following contribution:

– It describes a study in which we scanned the top Internet sites and identified
their security status against three recently reported vulnerabilities of SSL
protocol (Sect. 3). The process is fully automated.

– It reports how promptly the server administrators responded to the vulnera-
bilities (Sect. 4). It analyzes the data to identify several factors that may be
indicative of the problems faced by the server administrators. We describe
the approaches in practice and suggest what works, what does not, and what
needs to change (Sect. 5) for better compliance.

The results and implications of this work are valuable for secure software
engineering practitioners who seek to fix the bottleneck in patch delivery, target
the server administrators who are more likely to be slow to update, and to resolve
the issues in the update process. Additional information and raw data are on
the project webpage: http://sites.google.com/site/WebSSLStudy.

http://sites.google.com/site/WebSSLStudy

124 B. Fogel et al.

2 Background

Because we focus on SSL security threats here, we begin with background on
SSL, then discuss the three vulnerabilities.

2.1 SSL Protocol

In 1994, the Secure Sockets Layer (SSL) was invented by Netscape Communica-
tions as a response to Internet security concerns [15]. In the years following its
introduction, SSL underwent several modifications in order to improve security.
There were two version released after SSL: SSL 2.0 and SSL 3.0. In 1999, SSL 3.0
underwent another improvement then was renamed by the Internet Engineering
Task Force (IETF) as the Transport Layer Security (TLS) Protocol [8].

Most HTTP connections are secured with either SSL or TLS. Either of these
cryptographic protocols used in conjunction with the HTTP protocol creates
the HTTPS protocol. Although each version improved on the prior versions,
the newer protocols never supplanted the older; fallback remained valid. Many
browsers and servers still use the weaker SSL 2.0 and SSL 3.0 versions; this
backward compatibility was the root cause of the reported vulnerabilities.

2.2 POODLE Vulnerability

POODLE (Padding Oracle On Downgraded Legacy Encryption) attack was
reported by Adam Langley of the Google security team on October 14, 2014 [17].
The key is to trick a server to downgrade to a weak version of SSL (SSL 3.0).
The SSL/TLS version is typically the highest version supported by both the
client and the server. However, in an attempt to maintain a continuous con-
nection, clients may downgrade to lower versions. By downgrading to SSL 3.0,
weak cipher suites can be used to expose encrypted data. Langley found a single
byte can be decrypted on average in 256 requests [17]. An attacker can launch
a man-in-the-middle attack and decrypt messages between the client and the
server after a downgrade.

The Google security team proposed a patch before the time of disclosure that
a flag (TLS FALLBACK SCSV) be added to SSL/TLS implementations on both
clients and servers [22]. The flag disallows downgrading from TLS versions to
SSL 3.0 and lower, thus preventing the attack. However, a client that connects
with SSL 3.0 continues to work. An alternate approach is to disable SSL 3.0
altogether, but this will block clients that exclusively encrypt with SSL 3.0 or
lower.

2.3 POODLE TLS Vulnerability

On December 8, 2014, another vulnerability similar to the original POODLE
attack was released. This vulnerability exploits similar padding flaws without
the need for downgrading. Since TLS is an upgrade of SSL 3.0, vulnerabilities
found in SSL 3.0 founds its way into some TLS implementations [18].

POODLEs, More POODLEs, FREAK Attacks Too 125

POODLE TLS arises from an implementation flaw; it can affect all versions
of the SSL/TLS protocol. In order to prevent it, vulnerable SSL/TLS imple-
mentations need to be reimplemented. Typically, a server administrator will not
perform this implementation. Most sites must wait for software vendor updates
to secure against this vulnerability.

2.4 FREAK Vulnerability

FREAK (Factoring RSA Export Keys) attack was reported by a research team
led by Karthikeyan Bhargavan on March 3, 2015 [4]. The attack exploits an
implementation error that allows a man-in-the-middle attack. An attacker can
downgrade a non-export cipher suite to an RSA export cipher suite. An export
cipher suite is a weak cipher suite (less than 512 bit key) that is used to retain
compatibility between US and non-US sites, since the US government restricted
keys only 512 bits or smaller to be exported. Although the restriction has been
lifted, the weak export cipher suites are still supported to ensure compatibility.
The attack is highly exploitable—a key can be extracted in only 8 hours using
$100 on an Amazon EC2 instance [4].

Server administrators need to remove all RSA export cipher suites from their
accepted cipher suite collection to stay protected. Clients can protect themselves
by upgrading to a browser that does not support any RSA export cipher suites.

3 Study Design: Server Scan

We created a client that probed a server and collected various parameters about
its SSL implementation. The parameters denote if the server is vulnerable to
POODLE, POODLE TLS, and FREAK attacks. We also collected information
about port configurations.
Scanning Methodology. In order to collect data about whether a server can
downgrade to SSL 3.0 (POODLE vulnerability), we created a client script using
a vulnerable version of OpenSSL toolkit. We used the OpenSSL client pro-
gram, s client, available in OpenSSL version 1.0.1j [30]. This version provides
the TLS FALLBACK SCSV flag option which is required to gather data about
the POODLE attack. The client script also collected information about SSL/TLS
versions supported by the sites.

To collect information about the weakness in TLS implementation (POO-
DLE TLS vulnerability), we used the TLS Prober tool [25] developed by Opera
Software ASA. It was one of the first open source tools to provide information
about whether a server was vulnerable to POODLE TLS.

In order to collect information about whether the servers used export ciphers
(FREAK vulnerability), we needed to collect information about the supported
cipher suites. We used the cipherscan tool [32] that utilizes a custom version of
OpenSSL (the one used for POODLE scan) to provide cipher suite information.
It produces various information including cipher suite name, cipher suite priority,
and cipher suite supported protocols.

126 B. Fogel et al.

Table 1. Study timeline and time taken for each scan

Scan date Time needed (Hours) Sites scanned

Nov 13, 2014 104 37,494

Nov 22, 2014 147 44,502

Dec 12, 2014 264 58,123

Dec 28, 2014 245 53,749

Jan 18, 2015 244 57,843

Feb 12, 2015 270 43,193

Mar 1, 2015 306 57,738

Mar 21, 2015 304 57,670

We used the Nmap tool [20] to collect data about ports in the servers. Nmap
is able to identify the state of the port, possible services running on a port,
and a possible reason of a port’s state. Recent work has explored faster network
scanners, e.g., ZMap [11], but we opted for Nmap since it is the most well known
and widely used tool.

Threats to the validity of the data collection process must be considered.
Since standard port connection requests were issued, any mechanism to provide
incorrect feedback to these requests would be reflected in our data. In general,
firewalls intercept connection requests; since firewalls discard unwanted incoming
requests, servers protected by firewalls show as not available in our data.

A more serious source of noise in the data is load-balancing or request redi-
rection. It is commonplace for requests incoming to a known address to be redi-
rected to one of a set of servers; this is not accounted for in our testing, and
the results from this set of servers would be reported as a single machine. This
is a potential source of error since we could sample different machines of such
groups over time while categorizing them as a single machine. It is our opinion
that this is not a serious methodological flaw as servers used in load-balancing
operations such as these tend to be relatively symmetric.

All the scans were split between two servers. The primary server ran Ubuntu
on an eight core, 3.5 GHz processor with 32 GB of RAM. The secondary server
ran Debian on an eight core, 3.5 GHz processor with 8 GB of RAM. Most
web scanning was performed on the primary server, with the secondary server
assisting the scanning workload.

Study Timeline. We started collecting information about the POODLE vulner-
ability on Nov 13, 2014—twenty nine days after the vulnerability was reported.
Table 1 shows the scan dates and the time required for each scan. The scans took
between 4 to 13 days to complete. During this process, we collected information
about 61,600 unique servers. It is noteworthy that we were unable to collect
information about all the servers in all the scans due to a result of servers being
offline, otherwise unavailable, or because of changes in connection policies. We
explain how we dealt with missing information in Sect. 4 in RQ1.

POODLEs, More POODLEs, FREAK Attacks Too 127

We started collecting information about POODLE TLS vulnerability on
Dec 8, 2014—four days after the vulnerability was reported. Because of the addi-
tional information, the scan time is longer than the first two scans (≈10 days).

We collected the cipher suite information from the first scan in November;
hence, the information about whether a server is vulnerable to the FREAK
attack was already available. No additional data was needed.

We scanned for 68 common ports using Nmap starting on March 1, 2015. An
additional scan on March 21, 2015 found that these ports remained unchanged,
and this study assumes port status to be static during the analysis. Table 1 shows
the extra overhead for these scans (≈13 days).

4 Results

We collected information by scanning the servers and by contacting with the
server administrators. Specifically, we wanted to explore four research questions.

RQ1. How promptly and effectively did the server administrators react and
respond to the vulnerabilities?
RQ2. Did server administrators favor one kind of patch over another when fixing
the reported vulnerabilities?
RQ3. Can we identify varying levels of security within certain server demo-
graphics?
RQ4. Is there a correlation between the way the servers are administered and
their security status?

The questions focus on how the server administrators responded to POO-
DLE, POODLE TLS, and FREAK vulnerabilities.

RQ1. How promptly and effectively did the server administrators
react and respond to the vulnerabilities?

Key Result: A lot of servers remain vulnerable to POODLE attack, with 23 %
of the servers hosting top 100,000 Alexa sites we sampled. Server administrators
reacted better after the Heartbleed vulnerability was reported.

Table 1 lists the dates we performed the eight scans and the varying num-
ber of sites contacted per scan. During the first scan, we faced some network
connectivity problems. However, the remaining scans also could not collect the
information from a fixed number of sites. Our data had to be adjusted to include
sites absent from certain scans.

For each vulnerability, we considered the eight scan results as a sequence
S, S = s1, s2, ..., s8, in which si = V , if the parameters indicate that a server
hosting a site is vulnerable, si = NV , if a server is not vulnerable, and si = ND,
if no scan data is available.

We made two corrections to handle missing data. First, if a server’s scan
data is unavailable for the initial scan, but is found to be vulnerable during

128 B. Fogel et al.

 0

 10

 20

 30

 40

 50

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

Overall
Top 100

Top 1000
Top 10000

Top 100000

Fig. 1. POODLE vuln. in top sites

 0

 10

 20

 30

 40

 50

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

FREAK reported

Overall
Top 100

Top 1000
Top 10000

Top 100000

Fig. 2. FREAK vuln. in top sites

a latter scan, the server is considered to be vulnerable in the previous scans.
So, for any sub sequence, Ssub = s0, s1..., si, in which si = V and sk = ND
where 0 ≤ k ≤ i − 1, we converted sk = V for all k. But, for the same case with
si = NV and sk = ND where 0 ≤ k ≤ i − 1, we did not consider the server’s
data further. Second, if scan data is missing in intermediate scans, we considered
the scan sequence only if the missing data is surrounded by unchanged status.
In this case, we converted the missing status to be the same as the surrounding
status. So, consider any sub sequence, Ssub = si, si+1, ..., sj−1, sj where i < j−1.
If sk = ND where i + 1 ≤ k ≤ j − 1 and si = sj , we converted, sk = si where
i + 1 ≤ k ≤ j − 1. Otherwise, we discarded the scan sequence for a server from
our analysis, since it would be impossible to predict which scan first identified
the status change.

We collected information about 61,600 unique servers during our scan. We
excluded 2,009 servers because we could not correct for missing data. The remain-
ing 59,591 servers were considered for results. Out of these, 67 were among the
servers hosting the top 100 Alexa sites, 575 were among the top 1,000 sites, 5,590
were among the top 10,000 sites, and 53,359 were among the top 100,000 sites.
The ranking categories were exclusive—a site in the top 100 sites is not counted
again in the top 1,000 sites category.

We expected that most of the sites will be either non-vulnerable or vul-
nerable in all the scans, or initially deemed as vulnerable but fixed in a latter
scan. However, there were a few exceptions. There were 54 sites that patched
against the POODLE attack, but reverted back to a vulnerable status later. For
example, one of these sites had patched against the POODLE attack by using
the TLS FALLBACK SCSV flag until our Dec 12, 2014 scan where they had
removed it. The patch could have been removed due to compatibility issues.

Figure 1 shows the servers vulnerable to POODLE at different scans. It shows
that a lot of servers remain vulnerable even after 5 months have passed, 23.85 %
on average. Unsurprisingly, highly ranked sites had a lower vulnerability per-
centage when compared to lower ranked sites. Only 6 % of the top 100 sites
remain vulnerable. As the top 100 sites are expected to have the best security,

POODLEs, More POODLEs, FREAK Attacks Too 129

Table 2. POODLE TLS vulnerability in all servers

Scan date Vulnerable servers % changed

Dec 12, 2014 541 —

Dec 28, 2014 541 0.00 %

Jan 18, 2015 503 7.02 % ⇓
Feb 12, 2015 418 16.90 % ⇓
Mar 1, 2015 360 13.88 % ⇓
Mar 21, 2015 360 0.00 %

this result is expected. Correspondingly, the top 1,000 had a higher vulnerability
percentage than the top 100 with 13 % remaining vulnerable.

Very few sites were vulnerable to POODLE TLS (< 1%). Table 2 shows the
actual number of servers vulnerable during a particular scan. Interestingly, SSL
Pulse [31] reported that about 10.1 % of the Alexa top one million sites were
vulnerable to POODLE TLS on December 7, a day before the vulnerability was
reported. It may happen that a lot of servers were fixed in the first four days,
although it is unlikely since the vulnerability is difficult to fix. Also, they reported
that 7.3 % of the top one million sites remained vulnerable a month later. This
suggests that the servers hosting less popular sites (after top 100,000) are more
vulnerable. We did not perform any other analysis on POODLE TLS because of
the small number of vulnerable servers in our dataset.

Figure 2 shows the sites that are vulnerable to the FREAK attack. Sites
have been removing RSA export cipher suites at a steady rate during the entire
study as shown by the declining slope even before the vulnerability was reported.
There could be two different reasons. Sites would patch early if there was a pre-
disclosure notification detailing the vulnerability. The miTLS team had notified
many sites of the FREAK vulnerability prior to their disclosure [4]. On the
other hand, export cipher suites have been known to be less secure. In order to
increase security, sites could have preemptively removed all export cipher suites
to avoid a future vulnerability. However, we did see a slightly sharp decline for all
rank categories except the top 100,000 immediately after disclosure. Predictably,
higher ranked websites were less vulnerable.

Since we did not collect information about POODLE vulnerability in the
first 29 days, we may have missed an exponential drop in vulnerable servers
after the disclosure. There are no data points regarding this from other sources.
Had there been a sharp decline, the patching response could be compared to the
previously-reported vulnerable response—an exponential decline in vulnerable
servers, followed by a steady, flat period [9,27,35]. The response to the FREAK
attack showed a similar vulnerability response pattern after the vulnerability
was reported; but the interesting aspect is the gradual decline long before the
vulnerability was reported.

Heartbleed, POODLE, and FREAK were the three most important vulner-
abilities reported on SSL/TLS protocol during the last one year. Servers were

130 B. Fogel et al.

Table 3. Type of patch used to fix POODLE

Scan date Total sites By disabling By adding

Patched SSL 3.0 Flag

Nov 22, 2014 1043 651 392

Dec 12, 2014 3740 2083 1657

Dec 28, 2014 1083 516 567

Jan 18, 2015 2449 1117 1332

Feb 12, 2015 198 91 107

Mar 1, 2015 1160 587 573

Mar 21, 2015 600 480 120

aggressively fixed in the wake of Heartbleed [9]: within a month, only 3.1 % of
the top 1 million sites were vulnerable. However, even after five months, 13.96 %
of the top 100,000 sites remain vulnerability to POODLE. One explanation may
be that administrators think that POODLE is harder to exploit [5]. Also, Heart-
bleed was easier to fix than POODLE, because administrators cannot just dis-
card SSL 3.0.

RQ2. Did server administrators favor one kind of patch over another
when fixing the reported vulnerabilities?

Key Result: For the POODLE attack, server administrators slightly favored
disabling SSL 3.0 over using the TLS FALLBACK SCSV flag.

.
There are two patching techniques for fixing POODLE vulnerability: by

disabling SSL 3.0 or by adding the proposed TLS FALLBACK SCSV flag.
Table 3 shows the total number of sites patched during a particular scan
and the patching technique followed by the server administrators. The results
show that server administrators who patched against the POODLE attack
slightly favored disabling SSL 3.0. There were 4748 sites choosing to add the
TLS FALLBACK SCSV flag compared to 5524 sites choosing to disable SSL
3.0. This could be because server administrators prefer the simplicity and effec-
tiveness of disabling SSL 3.0.

Server administrators ślow response to fix POODLE vulnerability compared
to the prompt response to fix Heartbleed suggested that they may be concerned
about compatibility (RQ1). However, the administrators who actually updated
against POODLE chose to take the simpler route and risk being incompatible to
older clients that only use SSL 3.0 protocol or lower. Administrators may favor
removing a vulnerable technology instead of patching due to perceived weakness.

The FREAK vulnerability is patched by removing RSA export cipher
suites. Server administrators have continually removed RSA export cipher suites
throughout the study (RQ1). There are many non-export cipher suites that

POODLEs, More POODLEs, FREAK Attacks Too 131

 0

 10

 20

 30

 40

 50

 60

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

Arts
Science

Computers
Reference
Business
Shopping

Fig. 3. POODLE in different sites

 0

 10

 20

 30

 40

 50

 60

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

FREAK reported

Arts
Science

Computers
Reference
Business
Shopping

Fig. 4. FREAK in different sites

are commonly in use today. Server administrators could remove export cipher
suites without encountering compatibility problems. Since the vulnerability was
fixed preemptively even before the disclosure, perhaps server administrators
would remove security weaknesses if compatibility can be maintained.

RQ3: Can we identify varying levels of security within certain server
demographics?

Key Result: Sites dealing with sensitive information showed a better response
to prevent the reported POODLE and FREAK vulnerabilities.

Figures 3 and 4 show the categories of the sites hosted on the servers and
the percentage of servers that remained vulnerable. The site categories were
collected from Alexa analytics. Sites categorized as shopping or business were
the least vulnerable to POODLE attack. Since shopping and business sites often
deal with financial information, security should be very important. Sites that
likely dealt with non-sensitive information, such as arts or society, were more
vulnerable to POODLE attack.

For FREAK vulnerability (Fig. 4), the percentage of vulnerable servers
remained consistent for all categories until the disclosure date. After the disclo-
sure, servers hosting some categories of sites showed a quicker response (higher
patching rate). These were shopping, business, and regional–again as expected.

RQ4: Is there a correlation between the way the servers
are administered and their security status?

Key Result: Servers with more open ports consistently had higher vulnera-
bility rates than servers with fewer open ports.

One reason behind the slow response of server administrators may come from
the fact that many servers are loosely administered. We collected information

132 B. Fogel et al.

 0

 10

 20

 30

 40

 50

 60

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

1 port
2 ports

3 ports
5 ports

6 ports
7 ports

Fig. 5. POODLE vuln. and port status

 0

 5

 10

 15

 20

 25

 30

 35

11
/01

/14

11
/15

/14

11
/29

/14

12
/13

/14

12
/27

/14

01
/10

/15

01
/24

/15

02
/07

/15

02
/21

/15

03
/07

/15

03
/21

/15

Pe
rc

en
t v

ul
ne

ra
bl

e

Date

FREAK reported

1 port
2 ports

3 ports
5 ports

6 ports
7 ports

Fig. 6. FREAK vuln. and port status

about open ports in the servers under study. We wanted to explore if a server
with many open ports is more likely to remain vulnerable to POODLE and
FREAK attacks. This is only a heuristic that may (or may not) represent a
loosely managed server. A server can keep many ports open if the applications
hosted on the server require them. However, we collected information about
ports that are typically blocked; therefore, leaving these open may denote loose
administration.

We found the median number of open ports on all servers to be 14 with
a standard deviation of 6.08. This shows that many of the top 100,000 sites
have multiple ports open. The top 100 sites contained no sites having more than
four ports open. More so, only 15 of the top 100 sites had more than two ports
open. This suggests that top servers—arguably better administered ones—do
have fewer ports open.

Figures 5 and 6 show the vulnerable servers categorized by the number of
ports open. The different scans show similar slow responses in each category. But
servers with fewer ports open were less vulnerable than servers with more ports
open. Particularly, sites that had less than 5 open ports were less vulnerable
to POODLE and FREAK than sites containing 5 or more open ports. This
is evident in Fig. 6 (FREAK attack), but the difference is not much in Fig. 5
(POODLE attack). Interestingly, the patching rates were the same; no disparity
was found there. Note that the percentage of vulnerable sites does not linearly
follow the number of open ports.

A server port can be open, or blocked, or filtered. We collected status infor-
mation about 68 different ports (Sect. 3). For this illustration, we considered
the states of five well known ports—ports 21 (FTP), 22 (SSH), 23 (telnet), 25
(SMTP), 8080 (HTTP alternate)—for 58,495 servers; we could not collect the
port information for the remaining 1,096 servers due to a default timeout in
our script of the Nmap program. The test in this case was whether a site was
vulnerable to POODLE. We applied a decision tree learning algorithm (C4.5)
with 10-folds cross validation. A pruned decision tree is shown in Fig. 7. The
precision for this tree is 0.526. From the tree, we can infer:

POODLEs, More POODLEs, FREAK Attacks Too 133

Port8080

Port22

V(1323/625) V(419/171) Port21

N(685/108) V(38/14) N(7399/571)

Port22

V(7585/3620) N(5884/2649) N(2620/863)

N(32542/14586)

O

O B F

O B F

B

O B F

F

O=open, B=blocked, F=filtered, V=vulnerable, N=not vulnerable

Fig. 7. Decision tree showing closed/filtered ports are more likely to be traits of a
not-vulnerable server

– In general, sites with blocked or filtered ports were less vulnerable to POO-
DLE.

– Port 23 (telnet) and Port 25 (SMTP) had no impact in this tree; these were
blocked by most of the servers anyway.

– Sites that had ports filtered had a lower vulnerability rate than sites with
blocked ports. This trend was the same when we considered the status of all
68 ports. Since a filtered port may suggest a site using a firewall, sites with
protection equivalent to a firewall showed less vulnerabilities than sites that
did not employ filtering.

5 Discussion

Servers remained highly vulnerable to POODLE months after disclosure (RQ1).
Server administrators were more reactive after the Heartbleed vulnerability, per-
haps because it was the first vulnerability in the line (in recent times), it was
easier to exploit, and it was easier to fix without disrupting server configuration.
However, when some feature is known to be bad—e.g., obsolete export ciphers—
server administrators preemptively take actions as shown in their response to
FREAK attack.

We identified that server administrators prefer disabling SSL 3.0 over patch-
ing SSL 3.0 with the TLS FALLBACK SCSV flag (RQ 2). Given that disabling
SSL 3.0 is the simpler solution, and protects against future SSL 3.0 vulnerabili-
ties, we find that server administrators prefer an effective yet simple solution to
security, even disabling a feature over patching one and continuing to support
(RQ2).

We found that servers that host applications handling sensitive data are more
responsive, perhaps because of the pressure from web developers (RQ3).

Lastly, we were able to classify servers as loosely or strictly managed and
identify trends within the two classifications. (RQ4). Using our heuristic, we
found servers that were loosely managed to be more at risk to any given vulner-
ability. Oppositely, servers that are strictly managed had a much lower risk to
vulnerabilities and observed better patching rates.

134 B. Fogel et al.

Recommendations: We suggest the following recommendations.

• Measuring response to vulnerabilities and Internet health should be a regu-
lar activity. Comparing the trends among the three vulnerabilities and with
vulnerabilities covered in previous research suggests that every vulnerability
is different and generates different kinds of responses (RQ1). An automated,
periodic study can even categorize vulnerabilities based on previously-studied
response patterns. Such a study should concentrate on analyzing the data
from multiple perspectives (RQ3 and RQ4).

• There should be a mechanism to actively ‘nudge’ server administrators into
adopting patches. Our work hinted at the lack of awareness of administrators
about vulnerabilities (RQ1). This is supported by works on actively notifying
administrators that have reported considerable success [9,26].

• Targeted campaigns should be launched to fix vulnerabilities. Our analysis sug-
gests that some groups are more likely to be vulnerable (RQ3). For example,
servers that host non-sensitive data could be a target of an Internet-wide
campaign because they are more likely to remain vulnerable. The more high
profile servers are more likely to update anyway.

• Patch providers should design patches that are less disruptive. The goal is to
explore for a zero-downtime patch or a hot update that also does not have
incompatibility issues (Follows from RQ1).

6 Threats to Validity

There are several threats to validity of our study; here we describe them following
the four classic tests and discuss how they have been mitigated.
External Validity. There may be a concern about generalizability of our results.
The top 100,000 sites may not be representative of the practices of the entire
web. However, the servers hosting the top sites receive a larger portion of traffic
and should be better administered. So, their patching rate can be considered as
an upper bound for the rate in the entire web.
Internal Validity. Internal validity is mainly a concern for explanatory studies.
Since ours is not an explanatory study, it does not have a threat to internal
validity from the interpretation aspect.
Construct Validity. We described several issues about scanning servers and inter-
preting missing data and how we handled them (Sects. 3 and 4).
Reliability. We describe an automated approach to periodically collect infor-
mation. Although our approach is not repeatable for the same vulnerabilities
(cannot go back in time), the periodic scan data validates each other. There is
also a chance of misinterpreting survey data. We used structural coding to avoid
confusion [28]. Coding was done by the two authors who reached consensus.

POODLEs, More POODLEs, FREAK Attacks Too 135

7 Related Work

Many studies have focused on security of Internet protocols, e.g., non-compliance
to HTTP [1], weakness of client authentication [12], weakness of OpenID imple-
mentations [29], weakness of adoption of new HTTPS features [16], etc.

The three web vulnerabilities in our study target weaknesses in the SSL
protocol and its implementation. Murray [24] did a survey of early SSL servers
and reported that—in 2000—about one-third SSL servers supported a weak
version of the algorithm. Later, Lee and colleagues [19] reported that a lot of
servers continued to use weak SSL 2.0, which would have made them vulnerable
to the POODLE and POODLE TLS attacks. They also reported that many
of these servers used old “export” cipher suites, which would have made them
vulnerable to FREAK attack. Other than these, several studies have reported the
weakness of SSL certificates [10,14], although this aspect is not directly linked
with any of the three vulnerabilities we studied.

There are a few longitudinal studies on how server administrators fixed a
newly reported vulnerability, e.g., a SSH CRC vulnerability that was reported
in 2001 [26], a vulnerability in BIND [7], and the Code Red worm [23]. But these
were either done in a limited scope, or did not concentrate on the response rate
of server administrators. Rescorla [27] studied the response after a buffer over-
flow vulnerability in OpenSSL. He observed that server administrators updated
their systems slowly in general, but the update rate was higher right after the
vulnerability was reported and after a worm exploiting the vulnerability (the
Slapper worm) was deployed. Similar pattern was reported by Yilek and col-
leagues [35] in their study of the aftermath of the Debian OpenSSL Bug. This
response pattern was common in all these studies, but our study showed that
the response rate can differ (RQ1).

A recent study followed the response of server administrators in response to
the Heartbleed vulnerability. Durumeric and colleagues [9] studied top 1 mil-
lion Alexa sites two days after the Heartbleed vulnerability was reported and
continued the study for about two months (another one shot study monitored
the servers for this vulnerability one day after the report [2]). Our study moni-
tored the servers for a longer period, covered three different vulnerabilities, and
reported different response trends. Durumeric and colleagues’ study reported
that only about 3 % servers remained vulnerable after two months. However,
our study found that a higher percentage of the more important servers (hosting
top 100,000 pages) remained vulnerable to POODLE even after several months.

In 2012, SSL Labs created a project named SSL Pulse [31] which monitors
Alexa’s top 1 million sites on a monthly basis and reports general statistics about
SSL/TLS implementations. They do not focus on vulnerabilities (e.g., no data
for POODLE), but on overall SSL health. In contrast, we analyzed specifically for
vulnerabilities and analyzed the vulnerable servers from different perspectives,
e.g., type of the web pages hosted on servers, port configurations of servers, etc.

There has been a few studies focusing on the needs of server administrators;
these focus mostly on the tools that server administrators use [3,6], the practices
they follow [13,34], and how the tools should be designed to fit their unique

136 B. Fogel et al.

requirements [21,33]. Our study explores on server administrators’ awareness of
the security patches, but its main purpose is to get an idea of the main reasons
why it is difficult for server administrators to update their systems regularly.

8 Conclusion

In this paper, we presented our approach to Internet measurement. Our study
and methodology revealed that even in major attack scenarios, response to well
documented threats at major Internet sites is neither instantaneous nor quick in
many cases.

Our approach to Internet measurement provides a proactive way to study
on-going vulnerability of sites and offers a means to explore which kinds of vul-
nerabilities receive immediate remediation vs. those that are allowed to remain
active. We found that 23 % of the servers we sampled remain vulnerable to POO-
DLE vulnerability even after five months have passed after disclosure, which
shows that server administrators reacted better after the Heartbleed vulnera-
bility was reported. Understanding these activities and intervening would give
secure software engineering practitioners a chance to win the game of security.

Acknowledgements. This was funded by the Auburn Cyber Research Center. We
thank Paul Adamczyk, Farhana Ashraf, Jeff Overbey, Awais Rashid, and the anony-
mous reviewers for their comments.

References

1. Adamczyk, P., Hafiz, M., Johnson, R.: Non-compliant and proud: a case study of
HTTP compliance. Technical report, UIUC (2008)

2. Al-Bassam, M.: Top Alexa 10,000 Heartbleed scan (2014). https://github.com/
musalbas/heartbleed-masstest

3. Barrett, R., Kandogan, E., Maglio, P.P., Haber, E.M., Takayama, L.A., Prabaker,
M.: Field studies of computer system administrators: analysis of system manage-
ment tools and practices. In: CSCW 2004. ACM (2004)

4. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: SMACK: state machine attacks
(2015). https://www.smacktls.com/

5. Blevins, B.: POODLE SSL vulnerability doesn’t equal Heartbleed, but still bad
(2014)

6. Botta, D., Werlinger, R., Gagné, A., Beznosov, K., Iverson, L., Fels, S., Fisher, B.:
Towards understanding it security professionals and their tools. In: SOUPS 2007.
ACM (2007)

7. Cheswick, W., Bellovin, S., Rubin, A.: Firewalls and Internet Security: Repelling
the Wily Hacker, 2nd edn. Addison-Wesley Professional, Reading (2003)

8. Dierks, T., Allen, C.: The TLS protocol
9. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,

N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of heartbleed. In:
IMC 2014. ACM (2014)

https://github.com/musalbas/heartbleed-masstest
https://github.com/musalbas/heartbleed-masstest
https://www.smacktls.com/

POODLEs, More POODLEs, FREAK Attacks Too 137

10. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the https
certificate ecosystem. In: IMC 2013. ACM (2013)

11. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: SEC 2013. USENIX Association (2013)

12. Fu, K., Sit, E., Smith, K., Feamster, N.: Dos and don’ts of client authentication
on the web. In: SSYM 2001. USENIX Association (2001)

13. Haber, E.M., Kandogan, E., Maglio, P.: Collaboration in system administration.
Queue 8(12), 10:10–10:20 (2010)

14. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thorough
analysis of the x.509 PKI using active and passive measurements. In: IMC 2011.
ACM (2011)

15. IBM developerWorks. The Secure Sockets Layer and Transport Layer Security.
http://www.ibm.com/developerworks/library/ws-ssl-security/

16. Kranch, M., Bonneau, J.: Upgrading HTTPS in mid-air: an empirical study of
strict transport security and key pinning. In: NDSS 2015. IEEE (2015)

17. Langley, A.: POODLE attacks on sslv3, October 2014
18. Langley, A.: The POODLE bites again, December 2014
19. Lee, H., Malkin, T., Nahum, E.: Cryptographic strength of SSL/TLS servers: cur-

rent and recent practices. In: IMC 2007. ACM (2007)
20. Lyon, G.: Download the free nmap security scanner for linux/mac/unix or windows

(2015). https://nmap.org/download.html
21. Mahendiran, J., Hawkey, K.A., Zincir-Heywood, N.: Exploring the need for visu-

alizations in system administration tools. In: CHI EA 2014. ACM (2014)
22. Moeller, B.: TLS Signaling Cipher Suite Value (SCSV) for preventing protocol

downgrade attacks
23. Moore, D., Shannon, C., Claffy, K.: Code-Red: a case study on the spread and

victims of an internet worm. In: IMW 2002. ACM (2002)
24. Murray, E.: SSL server security survey (2000)
25. Opera Software ASA. operasoftware/tlsprober (2014). https://github.com/

operasoftware/tlsprober
26. Provos, N., Honeyman, P.: ScanSSH - scanning the internet for SSH servers. In:

LISA 2001. USENIX Association (2001)
27. Rescorla, E.: Security holes... who cares? In: SSYM 2003. USENIX Association

(2003)
28. Saldana, J.: The Coding Manual for Qualitative Researchers. Sage Publications

Limited, Singapore (2009)
29. Sun, S.-T., Beznosov, K.: The devil is in the (implementation) details: an empirical

analysis of oauth sso systems. In: CCS 2012. ACM (2012)
30. The OpenSSL Project. OpenSSL 1.0.1j (2014). https://www.openssl.org/source/
31. TIM Trustworthy Internet Movement. SSL Pulse: Survey of the SSL implementa-

tion of the most popular web sites (2012)
32. Vehent, J.: jvehent/cipherscan (2014). https://github.com/jvehent/cipherscan
33. Velasquez, N.F., Weisband, S., Durcikova, A.: Designing tools for system adminis-

trators: an empirical test of the integrated user satisfaction model. In: LISA 2008.
USENIX Association (2008)

34. Werlinger, R., Hawkey, K., Botta, D., Beznosov, K.: Security practitioners in con-
text: their activities and interactions with other stakeholders within organizations.
Int. J. Hum. Comput. Stud. 67(7), 584–606 (2009)

35. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are
public: results from the 2008 debian OpenSSL vulnerability. In: IMC 2009. ACM
(2009)

http://www.ibm.com/developerworks/library/ws-ssl-security/
https://nmap.org/download.html
https://github.com/operasoftware/tlsprober
https://github.com/operasoftware/tlsprober
https://www.openssl.org/source/
https://github.com/jvehent/cipherscan

HexPADS: A Platform to
Detect “Stealth” Attacks

Mathias Payer(B)

Purdue University, West Lafayette, USA
mathias.payer@nebelwelt.net

Abstract. Current systems are under constant attack from many differ-
ent sources. Both local and remote attackers try to escalate their privileges
to exfiltrate data or to gain arbitrary code execution. While inline defense
mechanisms like DEP, ASLR, or stack canaries are important, they have
a local, program centric view and miss some attacks. Intrusion Detection
Systems (IDS) use runtime monitors to measure current state and behav-
ior of the system to detect an attack orthogonal to active defenses.

Attacks change the execution behavior of a system. Our attack detec-
tion system HexPADS detects attacks through divergences from normal
behavior using attack signatures. HexPADS collects information from
the operating system on runtime performance metrics with measure-
ments fromhardwareperformance counters for individual processes.Cache
behavior is a strong indicator of ongoingattacks like rowhammer, side chan-
nels, covert channels, or CAIN attacks. Collecting performance metrics
across all running processes allows the correlation and detection of these
attacks. In addition, HexPADS can mitigate the attacks or significantly
reduce their effectiveness with negligible overhead to benign processes.

1 Introduction

Software is constantly under attack using a wide set of attack vectors. The attack
surface increases as more devices go online. Connected devices expose running
services but also request services from untrusted parties through potentially
vulnerable client-side software like web browsers.

Current systems leverage a wide range of different attack detection and pro-
tection mechanisms, many of them in combination. Protection mechanisms like
Address Space Layout Randomization (ASLR) [21], Data Execution Prevention
(DEP) [27], stack canaries [12] protect against some memory corruption attacks.
Host-based protection mechanisms mitigate exploitation attempts of unknown
or unpatched vulnerabilities in software but terminate the application when-
ever an attack is detected. Patching removes the vulnerability and mitigates
attacks. Unfortunately, patches are not readily available when a vulnerability is
disclosed. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS artifact evaluation committee chaired by Alessandra Gorla and Jacques Klein.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 138–154, 2016.
DOI: 10.1007/978-3-319-30806-7 9

HexPADS: A Platform to Detect “Stealth” Attacks 139

(IPS) on the other hand detect an attack before, during, or after it happened.
Commonly, intrusion detection systems measure a set of parameters and check
if the fingerprint matches any of the known signatures (note that signatures
can be Turing complete verifiers). Network-based IDS like Bro [22] match net-
work packets against known signatures and alert if an attack is detected. Host-
based IDS collect information about a system and match this information against
a set of rules or attack signatures. An IDS is either misuse-based, matching
observed behavior with a set of attack signatures or anomaly-based, detecting
divergences.

Existing host based defense mechanisms focus on memory corruption and
code reuse attacks but offer limited to no protection against information leaks,
side channel, and covert channel attacks. Existing host-based IDS detect a set
of individual attacks by matching fingerprints of individual attacks against the
runtime collected statistics but are limited to the collected software metrics. Due
to the limited software metrics provided by the operating system itself, memory-
based attacks like side channels and covert channels cannot be observed directly
and are therefore stealthy (to available metrics). Software under attack it behaves
differently compared to a regular execution. Lightweight, low performance over-
head program analysis tools like performance counters (both hardware-based
and software-based) allow a detailed fingerprinting of the execution behavior of
software. We leverage the information collected from a set of specific probes to
detect attacks through their anomalies, matching execution behavior of processes
against attack classes. Using additional runtime metrics from the performance
counters allows us to uncover these otherwise undetected attacks.

We propose HexPADS, a host-based, Performance-counter-based Attack
Detection System that measures performance characteristics of all processes and
detects attacks by matching a set of signatures. HexPADS is especially apt at
detecting long running Covert and Side Channel (CSC) attacks. Compared to
per-attack signatures, HexPADS uses broader per attack-vector signatures, gen-
eralizing signatures to all attacks in an attack class whenever possible, e.g.,
protecting against all CSCs by detecting cache performance anomalies instead
of detecting specific cache attacks. HexPADS collects statistics about running
processes and measures common performance parameters using existing low-
overhead, hardware-based performance counters. To our knowledge, HexPADS
is the first IDS that leverages per-process performance counters to detect attacks.
In our evaluation we show that our prototype implementation achieves negligible
(non-measurable) overhead and in a set of case studies we show how HexPADS
detects (and mitigates) rowhammer [25], CSCs [11,18,24,37,39], and CAIN [2]
attacks. Side-channel based information leaks are used to extract data from run-
ning systems and processes or to corrupt memory in the case of rowhammer.
Such memory CSC attacks can, e.g., be used to break AES cryptographic key
generation, or to break ASLR in the cloud [2]. The main contributions are:

1. Design of HexPADS, a host-based attack detection system that detects stealth
attacks through fine-grained process monitoring using performance counters
and performance metrics exported by the kernel.

140 M. Payer

2. Evaluation of a prototype implementation of our attack detection system
that detects cache attacks, DRAM attacks like rowhammer, and memory
deduplication attacks like CAIN at negligible overhead.

3. A discussion of mitigation mechanisms that protect against cache, DRAM,
and memory deduplication attacks.

2 Threat Model and Attacker Goals

We assume a powerful threat model where the attacker can execute user-level
code on the system. An attacker can achieve these capabilities either through
a legitimate service on the system that offers the computational capabilities or
through the exploitation of a service. HexPADS configures performance counters
for all processes. To ensure integrity of our monitor, we assume that HexPADS
is running as a separate process at higher privileges than the attacker and that
the attacker cannot access the monitor or disable performance monitoring.

The trusted computing base contains the underlying hardware, hypervisor,
and operating system. An alternative, hypervisor-based implementation would
remove the operating system from the trusted computing base. We assume that
the attacker does not have raw memory access and that we can rely on the
performance counter results. We trust the integrity of memory, assuming that
we detect attacks like rowhammer before memory is corrupted.

The attacker’s goals are to escalate privileges, to communicate with other
processes, to leak information, or to execute code while remaining undetected.
HexPADS continuously monitors the system and detects an ongoing attack.
Attack detection is inherently restricted to the precision of the measured run-
time characteristics and limited by the effectiveness of the monitor to distinguish
between benign behavior and attacks.

3 Background

HexPADS leverages existing process metrics and performance counters to collect
information about all running processes. Both process metrics and performance
counters are available and supported on all major operating systems. Here we
give, without loss of generality, an overview of process metrics and performance
counters on Linux systems.

3.1 Process Metrics

Operating systems continuously collect basic information about all running
processes. This information is exposed to user-space to administer processes
and to diagnose problems with user-space utilities. Linux provides the /proc
pseudo-filesystem as an interface to kernel data structures which are accessible
from user-space. The files in the exported directory are mostly read-only and
used for informative purposes but kernel settings can be changed by writing to
these files as well. Most Linux distributions make the /proc directory accessible
to user-space processes, exposing information about all running processes.

HexPADS: A Platform to Detect “Stealth” Attacks 141

Each running process has its own directory under the root /proc directory
named after the process’ PID. The file stat contains a wide range of process
metrics, including name of the executable, process state, the PID of the parent,
the process group, the associated terminal, the amount of page faults, total
execution time in both user and kernel space, priority, number of threads for
this process, when the process was started, memory limits for regions like heap
or stack, which processor the task runs on, and the scheduling policy1. HexPADS
collects all stat information.

The recommended way of using this information is to scrape all numerical
directories in the /proc directory, thereby iterating over all running threads
and processes. Tools like ps, top, or killall all leverage the files in the /proc
directory to fulfill their tasks.

3.2 Performance Counters

Hardware performance counters are available in all major CPU architectures.
These performance counters are special-purpose registers that collect informa-
tion about the executed instructions. The names of the counted events differ
between platforms and the number of available registers (and thereby the amount
of performance events that can be sampled at the same time) is platform spe-
cific with low-end architectures generally featuring less performance counting
infrastructure. An advantage of using hardware performance counters is that
the overhead to count specific events is negligible (as the hardware is responsi-
ble for all the heavy lifting). The individual counters and their configuration are
managed by the Performance Monitoring Unit (PMU).

The Intel x86 platform offers detailed configurable performance counters since
the Intel Pentium. The Intel Core i7 family supports base level and enhanced
architectural performance monitoring with four general-purpose, configurable
performance counters (i.e., four types of events can be counted on any core at
any point in time) [4, chapter 18.2]. In addition to counting, the Intel architecture
also supports precise event-based sampling. Instead of counting the occurrences
of an event, the PMU also takes a snapshot of the processors state at the time
of the event. On x86, such a snapshot consists of the instruction pointer, stack
pointer, and all general purpose registers. AMD processors have similar counters
and hardware capabilities.

On Linux, the PMU can be configured using the perf event open system
call (which does not have a libc-based wrapper but needs to be called using
inline assembly). Some user-space programs, e.g., perf provide a command-line
interface to the PMU and allow the collection of detailed performance events for
executing software. The Linux perf event interface tries to unify performance
counter access across architectures and processor families. Performance counters
can be assigned system-wide or per-process with a wide range of conditions
(e.g., the processor the task runs on). After setting up the PMU, the event
can be configured using the ioctl system call. Samples can be read explicitly
by polling through a read system call or implicitly by setting up a signal that

1 Additional information and details are available on the proc manpage.

142 M. Payer

is delivered whenever the counter reaches a pre-defined value (or the buffer used
to store the samples when sampling overflows).

The only additional overhead when using hardware-based performance coun-
ters comes from (i) configuring the PMU whenever a process is scheduled and
(ii) updating the aggregates whenever the process is interrupted. Collecting coun-
ters might incur some overhead during execution but these effects are hidden by
the microarchitecture. In addition, if an event is sampled (and not just counted)
then there is also additional cache pressure when samples are written into the
sample buffer. The overhead of running performance counters alongside the exe-
cuted software is in the noise (less than 1 %).

4 HexPADS Design

The core principle of HexPADS is to search for general attack behavior and
attack artifacts in all running processes. The underlying hypothesis is that soft-
ware attacks significantly change the environment or the behavior of a process
or processes. Both the attacking process (if run on the same machine) and the
attacked process (usually a service) will exhibit behavior that can be mapped
to an attack. If an attacker uses, e.g., a cache-based CSC to communicate or to
leak information from a benign process then the cache miss rate will increase
significantly. Such changes can be observed by regularly checking key parame-
ters of all running processes. A challenge for a detection mechanism is to detect
attacks with few false positives. If applications run in phases then phase transi-
tions can lead to a significant change in the observed behavior as well. A detec-
tion mechanism must be able to distinguish between phase changes and attacks.
Figure 1 gives an overview of the HexPADS system. HexPADS leverages infor-
mation from the operating system to collect core process characteristics of all
running processes and uses the CPU’s PMU to collect detailed low-level perfor-
mance events from the underlying hardware.

We design HexPADS as a generic process behavior collection mechanism with
a plugin-based detection subsystem for different attacks. The core of HexPADS
continuously measures a set of parameters for all running processes at negligible

Fig. 1. Overview of the HexPADS system.

HexPADS: A Platform to Detect “Stealth” Attacks 143

overhead. A flexible plugin interface extends the collection mechanism and allows
detectors to analyze the behavior of processes. Each plugin detects a certain type
of attack using past and current performance data of a process. HexPADS detects
attacks by collecting and analyzing system information in five stages that are
periodically repeated when the system is running:

1. To gather the necessary runtime information, HexPADS polls detailed process
statistics of all running processes. This data is stored in a buffer across iter-
ations to allow aggregate checks, e.g., page faults per iteration. This step
takes care of registering new processes (including the setup of performance
counters) and cleaning up dead processes.

2. Poll necessary performance counters for each running process. All perfor-
mance counter results are stored in a buffer to allow aggregate checks and
the counters are reset to 0.

3. Calculate performance statistics for each process to, e.g., allow checking if
any measured parameter has changed rapidly.

4. Evaluate a set of attack signatures on the measured performance statistics for
each process. If an attack signature matches the behavior of a process then a
potential attack is detected.

5. If any potential attacks were reported, this step takes evasive or counter
measures and reports the attack.

In its default configuration, HexPADS will collect the following performance
counters: number of executed instructions, number of last level cache accesses,
and number of last level cache misses. In addition to the performance counters,
detectors can use the status information of each process as exported from the
kernel, e.g., number of minor page faults, number of major page faults, and
execution time are used in our signatures. In addition to this baseline, all other
information available in the exported process’ status can be used and additional
counters can be configured. If the amount of desired performance events exceeds
the available hardware registers, a time-based sampling scheme can multiplex
the available registers (with some loss of precision). HexPADS uses a buffer to
store the samples, all elements are initialized with the first measurement.

Attack detectors are functions that evaluate, based on the history of perfor-
mance samples, if a process is either under attack or attacking another process.
If an attack detector matches then it reports the potential attack and the PID
to the attack reporting and mitigation module.

Distinguishing between attacking and attacked process is not always straight
forward (e.g., a cache-based CSC attack will increase the cache misses in both
the attacking and the attacked process). Countermeasures therefore cannot just
kill the reported process and other mitigation strategies must be used. Any
attack will be reported to the administrator who can decide on specific counter
measures. In addition, HexPADS supports a set of automatic counter measures
that can mitigate or slow down the attack. HexPADS, e.g., slows down the
attacking process (reducing the bandwidth of CSC attacks), stops the attacking
process until an administrator can evaluate the situation, or enforces specific

144 M. Payer

scheduling decisions (e.g., pinning processes to disjoint processors2). Other mit-
igation strategies are possible as well, depending on the attack vector.

5 Implementation

Following a least privileges principle, HexPADS runs as a user-space daemon and
collects information of all running processes. If multiple virtual machines share
a single CPU then a HexPADS daemon must run on each VM. Results can then
be collected by a central daemon and are evaluated across all running processes
on all VMs. Our prototype implementation currently supports monitoring on a
single system without distributing the results.

Our prototype follows the design outlined in Sect. 4 and implements the
described analysis loop: it (i) crawls all running processes, updates status infor-
mation, and initializes performance counters for new processes, (ii) polls the
performance counters of all processes, (iii) calculates performance statistics,
(iv) evaluates if an attack is in progress, and (v) deploys potential counter-
measures against the affected processes. The ringbuffer for the measurements
stores the last 60 samples and the scan interval is set to once each second.

The prototype is open-source3 and the implementation uses less than 2,000
lines of C code. The prototype implementation includes the base framework,
detectors for rowhammer, cache CSC attacks, and CAIN attacks and the slow-
down and stop the process counter measures. The slow-down counter measure
reduces the priority of the identified process and optionally pauses the process to
some extend. The stop counter measure stops the process through the SIG STOP
signal. We discuss individual detectors in Sect. 6 as a set of three case studies.

6 Evaluation

Evaluating the performance overhead of HexPADS on a modern system shows
that the increased protection results in negligible (non-measurable) performance
overhead. Using a set of case studies, we show how HexPADS can detect dif-
ferent attacks: rowhammer attacks, cache CSCs, and CAIN attacks. We have
run HexPADS with these detectors on both desktops and servers with regular
workload for several days without false positives.

6.1 Performance Overhead

The perceived overhead for HexPADS is negligible and makes up for less than
1 % of CPU time on a single core on a modern system. To measure impact
on other running processes we measured the performance overhead using the
SPEC CPU2006 and PARSEC 3.0 benchmarks. We ran our experiment on an
Ubuntu 14.04 system with an Intel Core i7-3770 CPU at 3.40 GHz with 4 cores
2 Scheduling processes on disjoint cores is not enough as the last level cache is shared.
3 The source code of HexPADS is available at http://github.com/HexHive/HexPADS.

http://github.com/HexHive/HexPADS

HexPADS: A Platform to Detect “Stealth” Attacks 145

Table 1. Performance results for HexPADS on SPEC CPU2006 and PARSEC. Native
and HexPADS numbers are in seconds, overhead is in percent.

SPEC CPU2006 Idle PADS Overhead PARSEC Native PADS Overhead

400.perlbench 306 302 -1.32% blackscholes 36.98 36.93 -0.12%

401.bzip2 396 389 -1.80% bodytrack 29.88 30.44 1.88%

403.gcc 242 238 -1.68% canneal 57.06 58.26 2.10%

429.mcf 234 211 -10.90% dedup 13.73 14.02 2.11%

445.gobmk 374 371 -0.81% facesim 94.45 96.28 1.94%

456.hmmer 327 325 -0.62% ferret 63.64 64.77 1.77%

458.sjeng 405 403 -0.50% fluidanimate 72.21 72.40 0.26%

462.libquantum 287 289 0.69% freqmine 81.83 80.88 -1.17%

464.h264ref 419 417 -0.48% netdedup 13.04 13.81 5.92%

471.omnetpp 292 292 0.00% netferret 407.20 410.16 0.73%

473.astar 304 298 -2.01% netstr.clust. 132.60 133.32 0.54%

483.xalancbmk 198 197 -0.51% raytace 64.25 65.07 1.27%

433.milc 349 334 -4.49% streamcluster 121.35 121.93 0.48%

444.namd 289 288 -0.35% swaptions 45.33 44.95 -0.83%

447.dealII 214 213 -0.47% vips 21.29 21.60 1.47%

450.soplex 195 194 -0.52% x264 17.84 19.48 9.17%

453.povray 126 126 0.00%

470.lbm 200 198 -1.01%

482.sphinx3 400 396 -1.01%

Average 292.47 288.47 -1.39% Average 1272.69 1284.30 0.91%

Geo.Mean 279.59 275.64 -1.43% Geo.mean 52.05 52.93 1.69%

(8 threads), 16 GB of memory. We compiled all SPEC CPU2006 C/C++ bench-
marks with clang 3.4 and O3. To reduce noise we averaged over 3 runs using the
ref dataset (the default configuration for a reportable run in SPEC CPU2006).
We compiled PARSEC 3.0 in its default configuration and evaluate it using the
native dataset and 16 threads.

Table 1 shows the performance results. In general, the overhead for HexPADS
is negligible and in our experiment we observed a slight performance improve-
ment for SPEC CPU2006 (likely due to cache variations and fluctuations of
the scheduler placing benchmarks on different cores) and a slight performance
degradation for PARSEC. The average and geometric mean is less than 2 % and
therefore likely noise for both benchmarks. The only infrequent false positives
we measured were for CAIN on dedup/netdedup (see Sect. 6.4).

Weconductedour experiments onan idle systemwithmultiple cores.TheSPEC
CPU2006benchmarks are single threadedbut thePARSECbenchmarks are highly
parallel. Most of the information is collected by low overhead performance coun-
ters and the HexPADS process sleeps most of the time. When observing HexPADS
with the htop command it uses less than 1 % of the CPU to continuously scan,
measure, and analyze performance data. In comparison, ninja [7] detects illegal
suid processes by scanning the process list at 1.5–2 % overhead.

146 M. Payer

6.2 Case Study: Rowhammer

Rowhammer [25] is a DRAM vulnerability that causes bit flips in DRAM cells,
triggered by frequent accesses to neighbouring cells. The DRAM accesses to the
adjacent cells cause an interaction with the cell in between, resulting in random
bit flips. The rowhammer attack executes cache flush instructions and accesses
memory locations in a tight loop. In the attack scenario described by Google’s
P0 security group, they managed to cause bit flips in a Page Table Entry (PTE)
that causes the PTE to point to a physical page under the control of the attacker.
This hardware bug allows the attacker to escalate her privileges from user-space
to the highest software level, side-stepping all hardware security layers, execution
layers, and defense mechanisms.

While incredible powerful, the rowhammer attack is extremely noisy (on the
memory bus) and long running. The attack only succeeds if a very large amount
of adjacent DRAM accesses are executed in short order, i.e., between refresh
intervals that negate all intermediate effects. The attack relies on a high band-
width to the DRAM cells and therefore has limited interaction with the operating
system, e.g., through the page fault handler that adds overhead, reducing the
bandwidth for the attack. The overall amount of page faults (or page fault ratio)
is therefore low.

Our rowhammer detector (see Fig. 2) measures cache accesses and cache
misses of all running processes and checks if the cache miss rate is higher than
70 % (i.e., more than 70 % of all cache accesses are cache misses), the total
amount of cache misses is significant, and the number of page faults is low. As
rowhammer is a long running attack, our detector averages the cache misses
over the sliding window of collected samples. In addition, the average page table
miss rate must be low, otherwise the memory accesses would not happen fast
enough. If the cache miss rate is too low then no bits are flipped. Using the

i ranges from 0 to NR_SAMPLES , not inclusive

cur = current iteration

prev = previous iteration

cache_access = sum(cache_access[i])/NR_SAMPLES

cache_miss = sum(cache_miss[i])/NR_SAMPLES

miss_rate = cache_miss / cache_access

fault_rate = page_faults[cur] / page_faults[prev]

if (

miss_rate > 0.70 and

cache_miss > 500 ,000 and

fault_rate < 0.01

) cache_attack_detected ();

Fig. 2. Pseudo code for rowhammer detector based on cache misses and page faults.

HexPADS: A Platform to Detect “Stealth” Attacks 147

rowhammer prototype implementation4 we always measured a cache miss rate
of > 90% (more than 4,000,000 cache misses per iteration, the highest number
of cache misses of a benign process was 101,000 cache misses per iteration) and
the attack is detected immediately after the process starts up. Any successful
rowhammer attack will always be noisy and the cache miss rate per instruction
must be high for the attack to be successful. The default counter measure slows
down an offending process for a configurable amount of time.

6.3 Case Study: Cache-Based CSCs

Cache CSCs are very similar in their cache access patterns to the rowhammer
attack. Generally, a cache CSC uses one of three ways to communicate [8]: (i)
evict and time (the attacker measures execution of the victim’s code, evicts the
cache, and measures the same code again), (ii) prime and probe (the attacker
fills its own memory and measures through access times what data was evicted
by the victim), or (iii) flush and reload (the attacker flushes shared memory and
measures what memory was reloaded by the victim). All these attacks have in
common that they result in a huge amount of cache misses in a short amount of
time as large memory areas have to be flushed and read/written.

We have tested two cache covert channels: (i) cache template attacks [11]
which is based on flush and reload and (ii) an enhanced version of C5 [18] which
is based on prime and probe. The observed memory access pattern is very similar
to rowhammer attacks with the difference that a cache CSC is only concerned
about the cache itself and not if the memory is written back to DRAM. In our
experiment, cache template attacks results in about 1,500,000 cache misses per
iteration and C5 attacks in about 2,300,000 cache misses per iteration.

We therefore use the same detector as for rowhammer to detect cache CSCs.
The covert channels described above rely on a combination of repeated flushing
or filling of the cache and measuring timing. The cache flushing and filling is
measurable through cache misses, indicating that a cache CSC is being used.

Our current detector does not distinguish between rowhammer and cache
CSCs and successfully detects both attacks. Cache CSCs will always incur a high
amount of cache misses, just like rowhammer attacks. If the attacker lowers the
speed of the cache attack, the bandwidth will decrease alongside which results in
additional noise on the channel. After a certain noise level is reached the attack
becomes unrealistic.

6.4 Case Study: CAIN

CAIN (Cross VM ASL INtrospection) [2] leverages memory deduplication as a
side channel to recover ASLR base addresses of loaded libraries in co-located
virtual machines. For a successful attack, an attacker needs to execute user-
space code on a virtual machine that is co-located with the target machine (i.e.,

4 Google’s prototype implementation is available at https://github.com/google/
rowhammer-test.

https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test

148 M. Payer

runs on the same physical hardware). Memory deduplication searches for shared
memory pages across virtual machines and coalesces any common pages. A write
to a merged page results in a page fault caught by the VMM and triggers a copy-
on-write operation, resulting in a timing side channel that allows the detection of
specific memory pages in concurrently running virtual machines. Memory dedu-
plication saves physical memory but causes performance degradation when pages
are unmerged (e.g., when one virtual machine writes to the page). CAIN gener-
ates a large amount of page candidates for specific libraries, picking a page that
is static except for a set of pointers relative to the library’s base address. Each
generated page candidate then has the probability of 1

ASL entropy of being present
in the target virtual machine. CAIN uses all available memory to generate tar-
get pages and then waits for the memory deduplication mechanism to merge a
candidate page and the target page. The correct target page is then detected by
measuring timing when writing to the page (due to the copy-on-write it takes a
longer time to write compared to an unmerged page).

CAIN behavior is naturally bursty and generates a large amount of page
faults and cache misses in a short time whenever new candidate pages are gen-
erated. This behavior is easily detected by measuring the gradient of page faults
and the amount of cache misses (for writing).

cur = current iteration

prev = previous iteration

page_faults = array of page fault measurements

cache_miss = array of cache miss measurements

page_miss_rate = page_faults[cur]/ executed_instr

if (

page_faults[prev] > 2.0 * page_faults[cur] and

page_faults[cur] > 100000 and

cache_miss[cur] > 10000 and

page_miss_rate > 0.001

) CAIN_attack_detected ();

if (

page_faults[prev] + page_faults[cur] > 256000

) CAIN_attack2_detected ();

Fig. 3. Pseudo code for CAIN detector based on cache misses and page faults.

Our detector (see Fig. 3) checks if (i) the amount of page faults in the current
iteration is more than double the amount of page faults in the previous itera-
tion (i.e., the amount of page faults doubled), there were more than 100,000
page faults, more than 10,000 cache misses in this iteration, and the page
miss rate per executed instruction in the last interval was higher than 0.001
or (ii) the amount of page faults in the last two iteration is higher than 256,000
(which corresponds to 1024 MB of memory being initialized in a short interval).

HexPADS: A Platform to Detect “Stealth” Attacks 149

The first part of the detector checks the increasing flank while the second part
checks for a high amount of new memory that is allocated in a short burst. Our
detector currently does not check for the ratio between read and write cache
misses, for CAIN the amount of write cache misses would be much higher than
the amount of read cache misses. Only the PARSEC dedup/netdeup bench-
marks experienced false positives as this benchmark allocates a huge amount
of memory during startup. For the complete evaluation, the first check results
in 1 false positive and the second check in 24 false positives. CAIN attacks are
not time critical, so for a future detector we will ensure that benign cases that
continuously use the allocated memory do not trigger a detection.

The current detector measures the memory allocation pattern of a CAIN
attack through page faults, cache misses, and the amount of allocated memory.
CAIN attacks could mitigate the detection by allocating less memory, which
would reduce the effectiveness of the attack. An extension of the detector could
measure the absence of accesses after detection to detect the phase where CAIN
is waiting for the VMM to merge individual pages.

6.5 Discussion, Limitations, and Future Work

The efficiency and success of HexPADS depends on the ability of the detectors
to distinguish benign behavior from malicious behavior. The attacks evaluated
in the case studies are fundamentally different from benign applications due
to the underlying constraints of the attacks. With knowledge of the signatures
(which will likely be widely distributed and analyzed), an attacker could launch
some form of targeted Mimicry [30] attacks. Mimicry attacks hide the malicious
behavior in benign behavior, thereby circumventing detection. HexPADS is not
immune to Mimicry attacks and an attacker could, e.g., slow down the num-
ber of cache accesses to evade the rowhammer detection. But by slowing down
the attack it becomes less efficient and more likely to fail, e.g., for rowhammer,
if the attack does not achieve a sufficiently high number of memory accesses
between memory refresh operations then the attack will fail. The design of effec-
tive detectors depends on a threshold where the attack is no longer successful,
yet the amount of false positives remains low. We acknowledge the difficulty of
finding such efficient thresholds, especially for programs with different program
characteristics where the threshold must be conservative.

In the current version, the baseline behavior and the signatures are hard-
coded. The current signatures are based on manual analysis of program execu-
tions. As future work we will look into ways of coming up with tighter and more
precise signatures automatically, e.g., by collecting benign traces of a wide vari-
ety of applications and workloads and using machine learning to automatically
extract a baseline pattern and classify the different samples into general sig-
natures. In addition, we will look into aggregating performance measurements
of child processes to mitigate an attacker that constantly spawns children to
prevent detection. The current motivating examples and case-studies focus on
memory attacks. In future work, HexPADS can either be extended to include

150 M. Payer

other attack vectors (e.g., by sampling other performance events), or its concept
can be integrated into other attack detection frameworks.

The current prototype implementation is limited to single host detection
and does not coordinate information across different virtual machines (i.e., the
detection mechanism must run on the same virtual machine as the attacker).
This is merely an engineering limitation and the prototype can be extended
through additional programming effort. A CAIN attack can only be observed
on the same system, so the detector must either run on the attacker machine
(e.g., in the case where the attacker controls only a user-space application) or at
the level of the hypervisor. An advantage of the current implementation is that
the daemon has negligible overhead and runs without any elevated privileges.
Disadvantages of such an implementation are that (i) only effects on the system
can be observed, attacks from non-monitored systems (virtual machines) are
missed and (ii) the operating system is a part of the trusted computing base,
any attacker with elevated privileges (administrator privileges) can disable the
monitoring and detection mechanism.

7 Related Work

Related work for HexPADS exists in different areas. On one hand, prior work on
CSC attacks is used as a motivation to develop our attack detection mechanism
and we use different CSC mechanisms to evaluate our work. On the other hand,
we compare our work against different existing CSC attack detection and mit-
igation mechanisms, showing key differences between our performance counter
based approach and other approaches that focus on mitigation instead of detec-
tion. Last but not least, we compare against other existing intrusion detection
mechanisms and explain why they detect attacks on a different abstraction level.

7.1 Covert and Side Channel Attacks

Last level caches are a prime target to extract information using CSC informa-
tion leaks across processes or even across virtual machines. Sensitive information
(e.g., cryptographic keys) can be extracted from unwilling sensitive processes
[11,24,37,39] or two malicious processes can use the covert channel to communi-
cate stealthily [18]. A challenge for these CSC attacks is the underlying hardware
configuration as each CPU family can be different. Unfortunately, an automated
exploration of the cache configuration is possible [11,19].

Other CSCs include, e.g., the last branch target buffer [1], the memory
bus [36], memory deduplication mechanisms [2,14,26], and attacks against the
underlying memory architecture [25].

7.2 Covert and Side Channel Attack Detection and Mitigation

A CSC attack detection mechanism may be implemented at the level of the
hardware, the virtual machine monitor, the operating-system, or the application.

HexPADS: A Platform to Detect “Stealth” Attacks 151

Hardware-based detection and mitigation mechanisms can be separated into
approaches that partition resources [6,31,32] with the downside of potentially
under-utilizing resources, randomizing accesses [32,33], or limiting the granular-
ity of the timer [17].

On the hypervisor level, HomeAlone [38] detects cross-VM side channel
attacks by monitoring cache misses and cache behavior. Other defense mech-
anisms in the hypervisor either partition resources to be used exclusively for a
given virtual machine [15] (with the drawback that same-machine attacks are
possible) or limit the timer granularity for virtual machines [28]. HexPADS in
comparison measures fine-grained performance events on the process level and
allows the identification of individual processes that cause the outlier.

Düppel [40] employs periodic cache flushing to introduce noise and to reduce
the attacker’s bandwidth. This is a pure mitigation mechanism that does not
distinguish between benign behavior and attack behavior. HexPADS may use
a mechanism to mitigate an ongoing attack as soon as it is detected with the
advantage that cache flushing (and the associated overhead) only occurs during
active attacks and not whenever a sensitive operation is executed.

7.3 Intrusion Detection and Mitigation

Network-based IDS like Bro [22] detect an intrusion by inspecting network pack-
ets. Host-based IDS observe system characteristics like system call patterns and
parameters [13,20,34], log analysis [3], or file integrity checking (e.g., AFICK,
Tripwire, or AIDE [3,10]) to detect malicious activity. Intrusion detection sys-
tems are either misuse-based or anomaly-based. A misuse-based IDS matches a
set of patterns against the observed pattern [22,23,29]. An anomaly-based IDS
detects deviations from a well known, good baseline [5,7,9,16,20,35].

HexPADS targets microarchitectural features and uses performance counters
to collect fine-grained system information to detect attacks that are not directly
observable by regular introspection methods but need support from hardware
performance monitors (e.g., by measuring the amount of cache misses).

8 Conclusion

Intrusion detection and attack detection systems enable the detection of other-
wise uncaught attacks (i.e., if all other defense mechanisms fail). We have pre-
sented the design and open-source implementation of HexPADS, a novel attack
detection mechanism that leverages both core systems parameters and perfor-
mance counter-based statistics on program execution to detect ongoing attacks.
The core system measures a set of system parameters and performance charac-
teristics like, e.g., cache misses, executed instructions, or page faults. Through a
flexible plugin mechanism we can add dynamic detectors for individual attacks.
In three case studies we have evaluated HexPADS and shown its effective-
ness against rowhammer, cache-based covert and side channels, and CAIN
attacks by implementing simple detectors that use cache accesses, cache misses,

152 M. Payer

page faults, and number of executed instructions to detect attacks. The per-
formance overhead of HexPADS is negligible (non-measurable) and the flexible
design and plugin structure simplifies adding new detectors for other and future
attacks.

Acknowledgments. We would like to thank Clémentine Maurice, Daniel Grauss,
Antonio Barresi, Scott A. Carr, and Terry Ching-Hsiang Hsu for generous feedback
on the paper. We also thank Clémentine and Daniel for providing access to the CSC
implementation and Antonio for providing access to the CAIN implementation. This
work was sponsored, in part, by NSF CNS-1513783.

References

1. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006)

2. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: WOOT 2015: 9th Usenix Workshop on Offensive Technologies (2015)

3. Cid, D.B.: Ossec: open source host-based intrusion detection system (2015). http://
ossec-docs.readthedocs.org/en/latest/

4. Corp, I.: Intel 64 and IA-32 Intel Architecture Software Developer’s Manual Com-
bined vols. 3A and 3B: System Programming Guide, Parts 1 and 2 (2015)

5. Denning, D.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–
232 (1987)

6. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D.: Non-
monopolizable caches: low-complexity mitigation of cache side channel attacks.
ACM Trans. Archit. Code Optim. (2012)

7. Flo, T.R.: ninja process monitor (2010). http://forkbomb.org/ninja/
8. Fogh, A.: Cache side channel attacks (2015). http://dreamsofastone.blogspot.com/

2015/09/cache-side-channel-attacks.html
9. Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions

against programs. In: Annual Computer Security Applications Conference (1998)
10. Grim, L., Vandenbrink, R.: Ids: File integrity checking. Technical report, SANS

Institute (2014)
11. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks

on inclusive last-level caches. In: USENIX Security Symposium (2015)
12. Hiroaki, E., Kunikazu, Y.: ProPolice: improved stack-smashing attack detection.

IPSJ SIG Notes 75, 181–188 (2001)
13. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of

system calls. J. Comput. Secur. 6(3), 151–180 (1998)
14. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM

attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

15. Kim, T., Peinado, M., Mainar-Ruiz, G.: Stealthmem: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security Sym-
posium (2012)

16. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distributed systems: a specification-based approach. In: IEEE Symposium
on Security and Privacy (1997)

http://ossec-docs.readthedocs.org/en/latest/
http://ossec-docs.readthedocs.org/en/latest/
http://forkbomb.org/ninja/
http://dreamsofastone.blogspot.com/2015/09/cache-side-channel-attacks.html
http://dreamsofastone.blogspot.com/2015/09/cache-side-channel-attacks.html

HexPADS: A Platform to Detect “Stealth” Attacks 153

17. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: rethinking timekeeping and
performance monitoring mechanisms to mitigate side-channel attacks. In: Interna-
tional Symposium on Computer, Architecture (2012)

18. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol.
9148, pp. 46–64. Springer, Heidelberg (2015)

19. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel last-level cache complex addressing using performance counters.
In: Bos, H., et al. (eds.) Raid 2015. LNCS, vol. 9404, pp. 48–65. Springer, Heidel-
berg (2015). doi:10.1007/978-3-319-26362-5 3

20. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM Trans. Inf. Syst. Secur. 9(1) (2006)

21. PaX-Team. PaX ASLR (Address Space Layout Randomization) (2003). http://
pax.grsecurity.net/docs/aslr.txt

22. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

23. Porras, P.A., Neumann, P.G.: Emerald: event monitoring enabling responses to
anomalous live disturbances. In: Proceedings of the 20th National Information
Systems Security Conference(1997)

24. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: ACM Conference
on Computer and Communication Security (2009)

25. Seaborn, M., Dullien, T.: Exploiting the dram rowhammer bug to gain
kernel privileges (2015). http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html

26. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to
the guest OS. In: European Workshop on System Security (2011)

27. van de Ven, A., Molnar, I.: Exec shield (2004). https://www.redhat.com/f/pdf/
rhel/WHP0006US Execshield.pdf

28. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine-grained timers in xen.
In: ACM Cloud Computing Security Workshop (2011)

29. Vigna, G., Valeur, F., Kemmerer, R.A.: Designing and implementing a family of
intrusion detection systems. In: European Software Engineering Conference (2003)

30. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: ACM Conference on Computer and Communication Security (2002)

31. Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture. In:
Annual Computer Security Applications Conference (2006)

32. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: International Symposium on Computer, Architecture (2007)

33. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and
security. In: International Symposium on Microarchitecture (2008)

34. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusion using system calls:
alternative data models. In: IEEE Symposium on Security and Privacy (1999)

35. Wu, J., Ding, L., Wu, Y., Min-Allah, N., Khan, S.U., Wang, Y.: c2 detector: a
covert channel detection framework in cloud computing. Secur. Commun. Netw.
7(3), 544–557 (2014)

36. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-speed covert channel
attacks in the cloud. In: USENIX Security Symposium (2012)

37. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, l3 cache side-
channel attack. In: USENIX Security Symposium (2014)

http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

154 M. Payer

38. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: co-residency detection in
the cloud via side-channel analysis. In: IEEE Symposium on Security and Privacy
(2012)

39. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: ACM Conference on Computer and Commu-
nication Security (2012)

40. Zhang, Y., Reiter, M.K.: Düppel: retrofitting commodity operating systems to
mitigate cache side-channels in the cloud. In: ACM Conference on Computer and
Communication Security (2013)

Analyzing the Gadgets

Towards a Metric to Measure
Gadget Quality

Andreas Follner1(B), Alexandre Bartel1, and Eric Bodden2,3

1 Technische Universität Darmstadt, Darmstadt, Germany
{andreas.follner,alexandre.bartel}@cased.de

2 Paderborn University, Paderborn, Germany
3 Fraunhofer IEM, Paderborn, Germany

bodden@acm.org

Abstract. Current low-level exploits often rely on code-reuse, whereby
short sections of code (gadgets) are chained together into a coherent
exploit that can be executed without the need to inject any code.
Several protection mechanisms attempt to eliminate this attack vector by
applying code transformations to reduce the number of available gadgets.
Nevertheless, it has emerged that the residual gadgets can still be sufficient
to conduct a successful attack. Crucially, the lack of a common metric for
“gadget quality” hinders the effective comparison of current mitigations.

This work proposes four metrics that assign scores to a set of gadgets,
measuring quality, usefulness, and practicality. We apply these metrics
to binaries produced when compiling programs for architectures imple-
menting Intel’s recent MPX CPU extensions. Our results demonstrate a
17 % increase in useful gadgets in MPX binaries, and a decrease in side-
effects and preconditions, making them better suited for ROP attacks.

Keywords: ROP · Gadgets · Exploit · CFI · MPX · Metrics

1 Introduction

Several mitigation techniques guarding against control-flow attacks have been
developed over the past 15 years. In contrast to modern-day attacks [6,7,10,11,
14,17,25,26,30,31], the attacks of the 90s [19] were simple. The latter typically
exploited a stack-based buffer overflow vulnerability to overwrite a stack frame’s
return address with another that points to a location at which the attacker had
previously injected malicious code. On returning from the compromised function,
execution would consequently be redirected to the injected code block.

Since the early 2000s, the prevalent processor architectures have adopted
the No-eXecute (NX bit) extensions. These allow an operating system to mark

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS artifact evaluation committee chaired by Alessandra Gorla and Jacques Klein.
At the time this research was conducted Eric Bodden was at Fraunhofer SIT and
TU Darmstadt.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 155–172, 2016.
DOI: 10.1007/978-3-319-30806-7 10

156 A. Follner et al.

memory pages that only contain data (namely the heap and stack) as being
non-executable [18], thus stopping code-injection attacks. However, programs
may need to be able to allocate executable memory, for example for just-in-
time compilation [3]. For such cases, the operating system provides several
API calls that can change the memory protection level of a memory area (e.g.,
VirtualProtect1 on Windows). These API calls were quickly abused by attack-
ers, who would leverage them to change the access privileges of a region of mem-
ory where they had previously injected their payload. To circumvent the NX bit
protection and to execute the API calls which change the memory protection
of the payload code to executable, current exploits reuse executable code snip-
pets, or gadgets, comprising code from the running program and loaded libraries.
Such attacks are known as code-reuse attacks, the most popular and widespread
technique being Return-Oriented Programming (ROP) [24,29].

The difficulty of staging a ROP attack in practice is subject to an attacker’s
concrete aims, the underlying environment, and the available gadgets. The latter,
in particular, varies enormously between binaries. However, there is currently no
established metric for quantifying the utility of gadgets within a given binary.
Having such a metric would enable the comparison of gadgets in various kinds of
transformed binaries, e.g., different optimization levels of compilers, or binaries
that have been rewritten to add instructions for exploit mitigation. Currently,
many tools that produce such binaries, even those meant to enhance a binary’s
security, do not take into account how their transformation affects ROP gadgets.
Especially for exploit-mitigation techniques this is counterproductive: if a mit-
igation technique transforms code, how does one know that it does not in the
end increase a binary’s attack surface by adding useful gadgets?

This work presents four metrics based on practical exploit development, that
are designed to aid researchers in the evaluation of mitigations. More generally,
these metrics allow one to determine whether a binary transformation introduces
gadgets that are better suited for ROP attacks than the original binary.

Since it is somewhat difficult to make statements about the usefulness of
a set of gadgets without knowing the goal of the attacker and the underlying
environment, the metrics cover two targeted, real-world exploitation scenarios,
and two more general computations which reflect gadget variety and gadget
usability. This work further applies the metrics to binaries protected by MPX
(Memory Protection eXtensions) [23], a new buffer-overflow mitigation technique
from Intel that adds instrumentation code to binaries through the compiler. As
our evaluation shows, MPX-enabled binaries actually do contain more useful
gadgets, and thereby increase the attack surface. This is particularly worrysome
when running MPX-enabled binaries on legacy hardware that cannot benefit
from the increased security that MPX is designed to offer. To summarize, our
key contributions are:

– a definition of four metrics to measure gadget quality,
– GaLity, an open-source implementation to compute metrics on sets of gadgets,

and
1 https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898%28v=vs.

85%29.aspx.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898%28v=vs.85%29.aspx

Analyzing the Gadgets 157

– a case study using the metrics to determine how MPX affects gadgets on eight
representative Windows x64 binaries.

The remainder of this paper is organized as follows. Section 2 motivates the
necessity to evaluate gadget quality. Section 3 describes the proposed metrics.
Section 4 explains the conducted case study on MPX. Section 5 covers related
work. Finally, Sect. 6 concludes the paper.

2 Motivation

To the best of our knowledge, there exists no metric to assess the quality of a
gadget or a set of gadgets. Such a metric, however, has a large variety of use cases.
For example, it could be used to compare different control-flow integrity (CFI) [2]
approaches. Today’s CFI implementations [9,20,21,32–34] often use a metric
which measures the reduction of gadgets (such as AIR, the average indirect target
reduction [34], or DAIR, the dynamic average indirect target reduction [21]) to
compare their results. For many approaches, this metric shows a reduction of over
99 %, yet this does not take into consideration the total number of gadgets, nor
the quality of the remaining gadgets, limiting the metric’s practical use. A DAIR
of 90 % that leaves 50 gadgets with many side effects and preconditions intact
is likely more secure than a DAIR of 99.5 %, that leaves intact exactly those 7
gadgets that an attacker requires to craft an exploit. Researchers using those
metrics frequently acknowledge their limitations and the difficulty of developing
a metric that measures gadget quality [6,21,32].

In general, attackers favour simple gadgets which have a minimum of side
effects and preconditions. For example, consider a gadget that loads the value
that rsp points to into rax. A clean and effective gadget for achieving this
would be: pop rax; ret. In contrast, the gadget: pop rax; push rsp; pop
rbp; mov [rdi+0x34fa], rsp; ret 0x2dbf1 will also achieve this aim, but
will also have the side-effect of overwriting rbp. In addition, this gadget has the
precondition that rdi+0x34fa has to point to writeable memory. Finally, ret
0x2dbf1 not only adds a large offset to rsp (which can be an issue if attacker-
controlled memory is scarce, because it might set rsp to point outside of the
allocated memory), it also disaligns the stack pointer, which is something normal
programs do not do, hinting at a possible exploit execution. The next Section
presents the four metrics we propose to compute gadget quality.

3 Metrics for Measuring Gadget Quality

In general, evaluating the quality of a set of gadgets is non-trivial. This stems
primarily from the fact that an attacker’s goal is potentially unknown, and that
given sufficient gadgets, one can construct practically any program. In addition,
the gadgets required for an attacker to achieve a goal vary by operating system
and architecture. For example, on Windows x86, parameters to functions are
usually passed on the stack, while on Windows x64, the first four parameters

158 A. Follner et al.

are passed through registers and all remaining ones are passed on the stack2,
leading to differences in gadget requirements. As a running example, we consider
exploits targeting VirtualProtect, which is an API call that commonly serves
as an avenue to bypassing NX protection on Windows 7 x64 [12,16,22]. We
stress that our four metrics are not bound to evaluating this specific API call, as
they consider the more general attack setup and execution procedures associated
with ROP exploits. In addition, we perform an in-depth analysis of the various
properties of gadgets with respect to their side effects, preconditions, usability,
and usefulness.

3.1 Metric 1: Gadget Distribution

The gadget distribution metric is calculated by partitioning a given set of gad-
gets into twelve broad categories, with each category representing a class of
operations, such as arithmetic and data move, as shown in Table 1. Gadgets are
assigned to a category based on the first instruction of a gadget. For example,
the gadget add rax, 0x40; pop rcx; ret would be assigned to the arithmetic
category. We categorize on the basis of the first instruction as every suffix of a
gadget is itself a gadget, and will be categorized separately. Note that gadgets
containing privileged or sensitive instructions [1] are discarded and not consid-
ered in further steps because they trap in user mode, thereby making a gadget
unusable.

Analyzing the distribution of frequencies of gadgets amongst categories is
helpful as it allows comparing whether the distribution of gadgets in a trans-
formed binary is similar to the one in the original binary, or if the number
of gadgets in a category useful for an attacker has grown. Gadget quality and
usefulness, however, are not measured and addressed by the remaining metrics.

While Table 1 does not contain all instructions of the x86–64 instruction set,
it covers 99 % of the instructions found in gadgets of the binaries we used in
the evaluation, i.e., a total of 20 MiB containing over one million instructions.
Due to the large size of the x86–64 instruction set (over 700 instructions [1]),
it would be a time-consuming, manual process to cover all existing instructions.
However, the fact that we do not achieve 100 % coverage does not pose a threat
to the metric, because all important and common instructions are categorized.
The few we did not include do not have a big impact on the overall distribution.
A manual inspection of uncategorized instructions in other binaries (we used
several Windows 7 system libraries) revealed that there were many different
instructions but in small numbers in any of the inspected binaries, which is
what we expected.

Metric 1 allows to assess whether a transformed binary contains more
gadgets in categories useful to an attacker.

2 https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499%28v=vs.
85%29.aspx.

https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499%28v=vs.85%29.aspx

Analyzing the Gadgets 159

Table 1. Gadget categories

Category Included instructions

Data move pop, push, mov, xchg, lea, cmov, movabs

Arithmetic add, sub, inc, dec, sbb, adc, mul, div, imul, idiv, xor,

neg, nota

Logic cmp, and, or, test

Control flow call, sysenter, enter, int, jmp, je, jne, jo, jp, js,

lcall, ljmp, jg, jge, ja, jae, jb, jbe, jl, jle, jno, jnp,

jns, loop, jrcxz

Shift&Rotate shl, shr, sar, sal, ror, rol, rcr, rcl

Setting flags xlatb, std, stc, lahf, cwde, cmc, cld, clc, cdq

String stosd, stosb, scas, salc, sahf, lods, movs

Floating point divps, mulps, movups, movaps, addps, rcpss, sqrtss, maxps,

minps, andps, orps, xorps, cmpps, vsubpd, vpsubsb, vmulss,

vminsd, ucomiss, subss, subps, subsd, divss, addss,

addsd, cvtpi2ps, cvtps2pd, cvtsd2ss, cvtsi2sd, cvtsi2ss,

cvtss2sd, mulsd, mulss, fmul, fdiv, fcomp, fadd

Misc wait, set, leave

MMX pxor, movd, movq

NOP nop

RET ret
a It might appear peculiar that xor, neg, not are in the arithmetic category -
however, this is how exploit developers often use these instructions. Since using
nullbytes is sometimes prohibited by the environment, writing the negated or xor-ed
value in memory, loading it to a register and then using the same operation on it
again is used to bypass this restriction.

3.2 Metric 2: Gadget Environment Setup Capabilities

When constructing a ROP exploit, an attacker must be able to prepare the envi-
ronment and operands for subsequent gadgets in a chain. For example, when
attempting to perform a Windows API call via ROP, an attacker will generally
require the ability to specify the call’s arguments. The degree of ease with which
an attacker may manipulate memory will affect the choice of gadgets that she
uses. In this metric, we consider the most general case, whereby an attacker is
able to inject arbitrary arguments into a target program’s memory space at a
known location. This could be possible due to, e.g., a browser with Javascript
turned on, allowing heap sprays and Heap Feng Shui [31], and other vulnerabil-
ities like information leaks [28]. We further assume the vulnerable program is
running on a Windows 7x64 machine, which is a very common platform.

Consider the case whereby an attacker wants to invoke VirtualProtect,
which takes four arguments. On the aforementioned target platform, the first

160 A. Follner et al.

four parameters are passed through registers (rcx, rdx, r8, r9). In such a
scenario, an attacker needs to make sure that those registers contain the correct
values before VirtualProtect can be invoked. To achieve that, three different
kinds of gadgets are required, namely: (i) a stack pivot gadget which points
rsp to the injected data, i.e., function arguments and addresses of gadgets, (ii)
gadgets to load the arguments from memory to the appropriate registers, and
(iii) a gadget that calls VirtualProtect.

This metric looks for gadgets that achieve these goals and distinguishes
between gadgets that achieve only the required task or include other instruc-
tions. Of course, our tool reports gadgets only if the register that receives the
argument is preserved, i.e., not overwritten by another instruction in the same
gadget. In case the attacker wants to invoke an API that requires fewer argu-
ments, like VirtualAlloc3, fewer gadgets that load arguments are required.

A gadget is only useful in preparing a destination register rd for use within
a ROP chain if it does not destroy its value prior to returning. More concretely,
consider a gadget consisting of a sequence of n instructions i0; i1; . . . in−1; ret.
If i0 assigns the value to rd, any subsequent instruction ik with k > 0 that has rd
as a target operand and falls within the data move, arithmetic, or shift and rotate
categories is tagged as being potentially destructive. A second refinement step is
subsequently carried out, whereby the quirks of the target architecture are taken
into account. For instance, instructions that output to a 32 bit subregister are
handled differently than those that output to 16 or 8 bit subregisters. This is due
to the behaviour that writing to a 32 bit subregister automatically zero-extends
the value to fill the entire 64 bit register [1].

In the case of exploits making use of VirtualProtect, one finds that three
of the four arguments that this API call takes (namely lpAddress, the start
address of the memory region whose protection level is to be changed, dsSize,
the size address of the memory region whose protection level is to be changed, and
lpflOldProtect, an address where the old protection level will be stored) do not
need to be precise. If lpAddress is a few bytes off an attacker can take this into
account, just like a slightly smaller or larger size argument. lpflOldProtect is
not used by an attacker and can therefore be written to any location. Therefore,
the metric only deems two instructions destructive, namely pop and mov in 64
bit or 32 bit subregisters, as they overwrite the whole register. Metric 2 allows
one to assess whether a transformed binary contains gadgets typically required
for an attack where the environment gives the attacker a lot of leeway.

3.3 Metric 3: Gadget Environment Setup Capabilities - Restricted

In contrast to the previous metric, this metric considers the case where an
attacker is restricted in the ways in which she can inject values into memory. In
particular, we consider the scenario where an attacker may only inject data and

3 https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887%28v=vs.
85%29.aspx.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887%28v=vs.85%29.aspx

Analyzing the Gadgets 161

hijack the control-flow via strcpy. This complicates the direct injection of val-
ues into memory because many parameters to API calls often contain null-bytes,
which terminate strings, thus requiring that the arguments to be used for cor-
rectly invoking a function such as VirtualProtect be calculated dynamically at
runtime. Imagine an attacker wants to indeed invoke VirtualProtect. By tak-
ing a look at the required parameters it becomes clear that many will contain
null-bytes: lpAddress should point to the payload. Depending on the memory
layout, this address may contain null-bytes (e.g., in a classic stack buffer overflow
vulnerability on Windows, stacks are located at very low addresses making it
very likely for the address to have its leftmost bytes set to null). dwSize must
not be too large, i.e., lpAddress + dwSize must include only mapped pages.
The value must also not be too small, as it has to cover the memory area where
the payload is injected. Typically, the value is a couple of thousand bytes or
smaller, which is a value that cannot be injected directly. flNewProtect is usu-
ally set to 0x40, which cannot be injected directly because the leftmost bytes
are null,and requires to be computed at runtime. lpflOldProtect will receive
the old protection value, hence must point to writable memory, which may con-
tain null-bytes. This example shows that in a scenario where the attacker is
restricted, she will require various arithmetic and data-move gadgets in order to
dynamically calculate parameters for API calls using gadgets.

The metric gauges the presence of gadgets that may be used to assist in
evaluating values dynamically at runtime, specifically gadgets that move data
between memory and registers and compute values: pop, push, add, sub, adc,
dec, inc, neg, not, mov, sbb, xchg, xor. As in the case of Metric 2, a gadget
is only considered if rd is preserved. Metric 3 allows one to assess whether a
transformed binary contains gadgets typically required for an attack where the
attacker has to make many calculations at runtime and cannot inject arbitrary
data into a program.

3.4 Metric 4: Gadget Quality

The aforementioned metrics do not measure the quality of a gadget per se,
rather they provide an indication whether a specific attack can succeed given
a set of gadgets. This metric focuses on assessing the quality of an individual
gadget, whereby a high-quality gadget is defined as one having no preconditions
or side-effects on other registers or memory. An example of a precondition is
that a specific register has to point to writeable memory, e.g., in the gadget pop
rax; mov [rdi+0x34fa], rsp; ret. To be usable, rdi+0x34fa must point to
writeable memory. A side-effect is, for example, that data in another register is
overwritten or the stack pointer is manipulated in a way that is difficult to undo,
e.g., in the gadget pop rax; mov rcx, 0xb0adffff; leave; ret. This gadget
overwrites the values in rcx, rsp, and rbp. To express gadget quality, a score is
calculated for every gadget considered useful (see Metric 3). The score starts at
0 and is increased for side-effects and preconditions. Therefore, a higher score
equals worse gadget quality. In the following we give a high-level overview of the
two criteria we use to calculate the score for gadget quality.

162 A. Follner et al.

Grading Instructions. To measure side-effects and preconditions, the metric
inspects every instruction in a gadget. It reuses the categories introduced in
Sect. 3.1 and assigns a score to each category, which reflects how destructive
the instructions in the respective category are. Table 2 summarizes the scoring
system. Depending on the destination of the instruction, we apply a modifier
to the originally assigned score. The metric recognizes three possible kinds of
destinations: rsp, which should ideally not be modified, because it is responsible
for the control flow and always needs to point to the next gadget. Therefore,
modifications of rsp usually have the largest influence on the overall score of
a gadget. The second possible destination is rd, the destination register in the
first instruction of a gadget, for which we assume that this is also the register
an exploit developer is interested in not being modified later on in the same
gadget (in case a memory address is the target there is no active register; in
case of an xchg instruction, both registers are active registers). Modifications
of rd are generally not desirable, but, depending on the modification, can be
reversible, e.g., simple arithmetic. The third possible destination is any other
general purpose register, except rsp and rd, the metric considers all undesirable
side effects and preconditions. Even if they do not affect rsp or rd directly, they
still negatively impact the final score.

Table 2. Rules for grading instructions. Category describes the category of the instruc-
tion (see Table 1). “RSP”, “rd” and “Other” are possible targets for instructions, the
stack pointer, the destination register of the first instruction of a gadget, or any of the
other general purpose registers respectively. Categories not in the table generally do
not affect the score, with some exceptions discussed in Sect. 3.4

C
a
t.

R
S
P

rd

O
th

e
r

Notes

D
a
ta

m
ov

e

2 1 0.5 As opposed to all other instructions in this category, push does not
affect the score of a gadget, since the only side effect it has is on rsp,
and changes to rsp are covered by our rsp monitoring.

A
ri

th
m

et
ic

2 1 0.5 Arithmetic instructions that modify a register other than rsp can be
taken into account by the exploit developer. E.g., if r8 should contain
0x40, and a gadget like pop r9 ; add r8, 0x10 ; ret has to be exe-
cuted as the last gadget, the developer can simply make sure r8 contains
the value 0x30 before invoking the last gadget. Arithmetic instructions
modifying rsp are covered by our rsp monitoring.

S
h
if
t

&
R

o
ta

te 3 2 0.5 These instructions are handled similarly to arithmetic instructions,
however, they are more difficult to take into account, which is why
they increase the score more than arithmetic instructions.

In a few cases grading all instructions in one category the same does not make
sense and would result in false scoring, which is the reason for the following excep-
tions. Exception #1: Certain instructions that modify rsp need to be treated dif-
ferently. This covers all instructions where we can statically determine the offset

Analyzing the Gadgets 163

applied to rsp. Depending on how much rsp is changed, we adjust the overall score
of the gadget. The details on this are covered in the next subsection. In case it is
not possible to statically determine the offset (e.g., leave or pop rsp), the overall
score of the gadget is increased depending on the category of the instruction, as
presented in Table 2. Exception #2: leave is the only instruction in the miscella-
neous category that needs to be taken into account, as it affects rsp. This is taken
care of through our rsp monitoring. Exception #3: Remember from Sect. 3.1 that
we do not cover all of the x86-64 instructions. This means that in very rare cases
(less than 0.1 %) we cannot grade a gadget because it contains an instruction which
we did not categorize. We discard these gadgets from the analysis. Exception #4:
If an instruction uses a dereferenced register as destination its score is increased
according to the rules in Table 2, because this poses a precondition - e.g., the gad-
get pop r8; mov [rdx], 0xfffa; ret has the precondition that rdx has to point
to writable memory before the gadget can be used.

Monitoring rsp Offset. Modifications to rsp need to be tracked for each gad-
get, as explained in the previous paragraph. A short example will make clear why
this is necessary. Assume the following gadget: pop rax; add rbx, 0x10ff;
push rcx; ret. In this case, rsp will point to the value contained in rcx and
jump to this address, which is not the injected address of the next gadget. For
keeping track of the rsp offset the metric uses an SP-Score, SPS, which starts at
0, is increased for pop and decreased for push and ret n instructions. Of course,
also arithmetic instructions on rsp are monitored and the respective value is
added to or subtracted from SPS. When all instructions in a gadget have been
analyzed and SPS is not 0 this means that rsp does not point to the next gad-
get, which might be problematic. Therefore, if SPS is negative, the overall score
of the gadget will be increased by 2. Also, if SPS is large (more than 4 KiB)
or not aligned, the score of the gadget will be increased by 1, because the for-
mer requires an attacker to be able to control more memory and the latter can
be detected easily by exploit mitigation tools. If the instruction that operates
on rsp takes a register and not an immediate (e.g., a add rsp, rcx), SPS is
not changed but the gadget score will be increased by rules in Table 2. Met-
ric 4 allows one to assess the overall “quality” of a set of gadgets in respect to
side-effects, preconditions, and usability.

3.5 Discussion of the Metrics

We believe that metrics that measure the quality of a set of gadgets should focus
on practical relevance rather than a theoretical concept such as Turing complete-
ness [29]. Furthermore, they should also reflect whether real-world exploits can
be constructed. Since at least Microsoft has seen a shift from classic, stack-based
vulnerabilities to heap-related vulnerabilities [4], we believe that metrics should
still consider both of these classes of attacks. Last but not least, the metrics
should not be limited to well-defined and realistic attack scenarios, but also
express overall gadget quality, i.e., side-effects and preconditions. To summarize,
metrics as described above should:

164 A. Follner et al.

– Be practical
– Measure if popular current attacks are possible with a given set of gadgets
– Measure if popular past attacks are possible with a given set of gadgets
– Measure gadget “quality”

The proposed metrics achieve all these goals. We would like to stress that our
aim is assessing whether a binary contains gadgets suitable for today’s ROP
attacks. Recently, attacks that use longer and more complex gadgets have been
proposed by researchers [7,11,13,14,26]. Such attacks are designed to bypass
specific mitigation techniques, which are not used in the real world. Thus, in
current environments, these complex attacks are cumbersome as they offer no
advantage over using regular and simpler ROP gadgets, and we are not aware
of any of these complex attacks being used in the wild.

Because of the lack of practical relevance, we decided not to treat gadgets
potentially useful in such complex attacks differently than the other gadgets.
Nevertheless, if new mitigations limiting the gadgets an attacker may use become
widespread and attackers are forced to use more complex and longer gadgets and
start using tools that assist in finding gadgets semantically rather than through
simple pattern matching, our metrics will have to be updated to reflect this new
environment. This is why we also plan to use a more abstract interpretation of
gadgets and look into leveraging synergies created by combining gadgets in the
future. Furthermore, we also leave an extension to jump-oriented programming
(JOP) [5,8] for future work.

4 Evaluation

We have implemented the described metrics in a tool named GaLity, which takes
a textfile containing gadgets as input and outputs the metrics we described in
Sect. 3. We demonstrate that it is both practical and useful by applying it to
binaries that are compiled to use MPX [23], Intel’s latest mitigation technique
against runtime exploits. MPX introduces new registers that contain the lower
and upper bound of a pointer, and instructions that operate on those registers.
This enables compilers to emit additional instructions (MPX and non-MPX)
that tracks the sizes of buffers and accesses to those buffers at runtime, which
can prevent buffer overflows. On processors which do not support MPX, MPX
instructions execute as nop, making MPX compatible with older CPUs, but
leaving those binaries unprotected by MPX. Given this observation one thus
must wonder if the increased code size and thus increased availability of gadgets
might actually decrease a binary’s security on such systems. We then compare
the results obtained by applying GaLity to binaries compiled with MPX support
with the results obtained by applying GaLity to the same binaries compiled with-
out MPX support, and determine which binaries contain more helpful gadgets
for an attacker according to our metrics.

Analyzing the Gadgets 165

4.1 Implementation

We wrote GaLity in C#. GaLity takes a simple text file that contains gadgets as
input and parses it in four passes, which correlate to the four metrics described
in the previous section. While doing everything in one pass is certainly possible,
we decided to use several passes, as this increases code readability, andperformance
was no issue (even large sets of gadgets containing hundreds of thousands of gadgets
can be analyzed in less than 10 s on an Intel Core 2 Duo with 4 GiB RAM). Since
current ROP attacks use rather simple gadgets we only reconstruct the semantic
we require for our metrics. For example, GaLity recognizes the differences between
instructions outputting to 64 bit, 32 bit, 16 bit, or 8 bit (sub)registers and treats
them accordingly, but does not recognize that many instructions manipulate CPU
flags. Knowledge about this would be required when utilizing more complex gad-
gets that use conditional branches. However, for current real-world attacks, the
simpler but less error-prone approach is sufficient.

We looked into using an intermediate representation (IR) which makes side
effects explicit, as this would allow more precise grading. However, we discovered
that, as today’s attacks use simple gadgets, there are few side effects that are
relevant in our scenarios. Therefore, we leave designing an IR tailored to the
very specific requirements of measuring gadget quality, that (1) can be reused
and (2) recognizes more side effects, for future work.

4.2 Setup

To discover gadgets and write them to a file we used ROPgadget 5.44, with a
maximum gadget length of 15. This might sound like a very high number, how-
ever, we did not want to risk potentially missing some useful gadgets. Also, our
metrics ensure that gadgets that do not preserve rd are discarded, i.e., not con-
sidered in the results, and gadgets that have many side effects have a bad score.
Also, for this specific case study we decided to consider duplicate gadgets and
not just unique gadgets, because if an important gadget exists several times in a
binary, this binary is more attractive to an attacker than a binary which contains
only one copy of that gadget. This matters, for example, in a scenario where a
patch (security-related or not) or any other program modification removes said
gadget. Furthermore, taking duplicate gadgets into account helps us measure, if
the additional gadgets introduced by MPX are copies of useless or useful gadgets.

We compiled programs taken from SPEC2006, using Intel’s latest GCC
release with MPX support at the time of writing (5.0.0).5 We decided to use
the SPEC suite because it covers a wide range of application types, and present
parts of real programs. MPX is still new and not integrated too well in build
chains, which made compiling any program a challenge. However, we got the
following eight programs to work properly: 401.bzip2, 403.gcc, 435.gromacs,
456.hmmer, 458.sjeng, 464.h264ref, 473.astar, 482.sphinx3. We compiled all bina-
ries four times, with and without MPX and with and without optimizations
4 https://github.com/JonathanSalwan/ROPgadget.
5 https://software.intel.com/en-us/articles/intel-software-development-emulator.

https://github.com/JonathanSalwan/ROPgadget
https://software.intel.com/en-us/articles/intel-software-development-emulator

166 A. Follner et al.

(−O2). However, for our evaluation we only considered optimized binaries as
this reflects real-world binaries.

4.3 Results

First of all, we noticed that MPX has a big influence on file size. With no opti-
mizations, an MPX binary is, on average, almost 3 times as large as a non-MPX
binary. With optimization level 2, which we used throughout our experiments,
an MPX binary is still, on average, 86 % larger compared to a non-MPX binary.
We noticed that, while the file size increases by a factor of almost two, the
number of gadgets does not increase in the same way, MPX binaries contain,
on average, only 23 % more gadgets than non-MPX binaries. This is because
the number of gadgets is directly related to the number of ret instructions
in a binary. MPX does not add many new functions but rather makes existing
functions longer, therefore only few intended new ret instructions appear. Unin-
tended ret instructions [24] might appear in some cases, however, since the new
opcodes introduced by MPX do not contain a ret opcode, the possibility for
this is rather low.

Table 3. Results for Metrics 2, 3, and 4. Columns rcx, rdx, r8 and r9 denote the number
of gadgets which load a value in the respective register, column pivot denotes the
number of stack pivot gadgets. The first number denotes the number of gadgets without
side-effects, the second number the number of gadgets with side-effects. Column call
denotes the number of gadgets usable for indirect calls. These numbers are required for
computing Metric 2. Column useful denotes the number of useful gadgets, calculated
by Metric 3. Column Q denotes the number of gadgets with a score of 1 or lower,
calculated by Metric 4.

Metric 2 Metric 3 Metric 4

Program rcx rdx r8 r9 pivot call useful Q

h264ref no MPX 4 / 29 1 / 8 1 / 9 0 / 0 0 / 453 62 6,056 3,749

h264ref MPX 7 / 29 0 / 23 1 / 3 0 / 1 0 / 666 91 7,546 4,906

gromacs no MPX 228 / 320 39 / 135 0 / 2 0 / 0 0 / 1071 84 10,823 6,563

gromacs MPX 228 / 418 36 / 141 0 / 7 0 / 1 0 / 1214 155 13,002 8,170

hmmer no MPX 6 / 24 3 / 27 0 / 3 0 / 0 0 / 509 33 5,539 3,303

hmmer MPX 8 / 21 4 / 19 0 / 2 0 / 0 0 / 469 39 6,188 3,952

gcc no MPX 4 / 71 2 / 219 0 / 14 0 / 8 6 / 5295 588 50,766 32,949

gcc MPX 2 / 52 4 / 71 0 / 9 0 / 4 0 / 4337 763 59,522 39,342

sphinx3 no MPX 2 / 14 0 / 11 0 / 0 0 / 0 0 / 230 29 3,189 1,964

sphinx3 MPX 1 / 11 0 / 7 0 / 0 0 / 0 1 / 251 52 3,484 2,323

sjeng no MPX 1 / 3 0 / 3 0 / 0 0 / 1 0 / 122 72 1,444 983

sjeng MPX 1 / 4 0 / 5 0 / 0 0 / 0 0 / 137 76 1,982 1,414

astar no MPX 1 / 4 0 / 4 0 / 0 0 / 0 0 / 122 11 1,009 584

astar MPX 0 / 5 0 / 2 0 / 0 0 / 0 0 / 140 12 1,203 698

bzip2 no MPX 0 / 1 0 / 1 0 / 0 0 / 0 0 / 99 13 790 466

bzip2 MPX 0 / 1 0 / 1 0 / 0 0 / 0 0 / 112 16 987 605

Analyzing the Gadgets 167

Analyzing the increase or decrease of gadgets for each category due to MPX,
illustrated in Fig. 1, shows that most categories gain gadgets. Arithmetic gadgets,
which are helpful to an attacker, increase in both number and diversity. Data-
move gadgets grow in numbers, but do not change a lot in respect to diversity.
An interesting observation is that NOP-gadgets increase drastically, which is
presumably due to the fact that the new MPX instructions are interpreted as
multi-byte NOPs on hardware that does not support MPX. The categories flag,
string and floating-point have a high standard deviation, indicating that changes
in these categories are very application-specific. Gadgets in the miscellaneous
category decrease both in diversity and number. Despite the large increase of
nop gadgets, the overall distribution of gadgets remains roughly the same, as
Fig. 2 shows. Overall we conclude that MPX binaries contain more gadgets in
categories helpful to an attacker.

Next, we are interested in the two attack scenarios, i.e., Metrics 2 and 3.
Regarding Metric 2, there is no big difference in the availability of gadgets. Gad-
gets that load arguments in r8 or r9 are rare in both MPX and non-MPX bina-
ries, and sometimes the MPX binary and sometimes the non-MPX binary contains
some. Regarding Metric 3, the number of useful gadgets increases in every binary
and on average by 17 %, making MPX binaries a much more attractive target to
attackers. We summarize the results in Table 3. Lastly, we determine overall gad-
get quality using Metric 4. In all eight binaries, the MPX versions contain more
gadgets of high quality, i.e., with fewer side-effects and preconditions, as the last
column of Table 3 shows.

By taking all four results into consideration we come to the conclusion, that
binaries compiled with MPX support are favourable for an attacker. Metric 1
shows an overall increase of gadgets in useful categories, further confirmed by
Metric 3, which also shows that the additional gadgets in those categories are
useful in practice. Metric 2 gives no indication that MPX or non-MPX binaries
contain more of the required gadgets. Metric 4 gives the indication that MPX
binaries tend to have more gadgets of higher quality, making them easier to use
for an attacker.

5 Related Work

To the best of our knowledge, no previous work has been done on the topic of
designing a metric to measure the quality of a set of gadgets, even though the
metrics currently used to measure CFI strength are insufficient, exactly because
gadget quality is not expressed by those metrics. Due to this lack of related work,
we introduce the metrics that are currently used to evaluate CFI implementa-
tions, and discuss gadgets required for carrying out attacks against CFI.

Zhang et al. [34] propose using AIR which denotes how many gadgets
are removed, because they are not acceptable targets of indirect branches.
However, AIR does not take into account the quality of the remaining gadgets.

168 A. Follner et al.

A
rit

hm
et
ic

D
at
a-
M
ov

e

C
on

tr
ol
-F

lo
w

Lo
gi
c

R
ET

s

Sh
ift

/R
ot

Fl
ag

St
rin

g
N
O
P FP

M
isc

−100

0

100

200

In
cr

ea
se

 /
 d

ec
re

a
se

 f
o
r

ea
ch

 c
a
te

g
o
ry

 i
n
 %

Fig. 1. This figure shows the average growth of gadgets for each category due to MPX
across all eight applications. The blue bar represents the increase considering only
unique gadgets, while the red bar represents the total increase of gadgets, i.e., also
duplicate gadgets. We use the information about how the number of unique gadgets
changes to infer if and how gadget variety is affected by a program transformation
(Color figure online).

A
rit

hm
et
ic

D
at
a-
M
ov

e

C
on

tr
ol
-F

lo
w

Lo
gi
c

R
ET

s

Sh
ift

/R
ot

Fl
ag

St
rin

g
N
O
P FP

M
isc

0

10

20

30

40

R
el

a
ti
v
e

g
a
d
g
et

 d
is

tr
ib

u
ti
o
n
 i
n
 %

Fig. 2. This figure shows the average distribution of gadgets across all eight applica-
tions. The blue bar represents the non-MPX binaries, while the red bar represents the
MPX binaries (Color figure online).

Analyzing the Gadgets 169

Payer et al. [21] propose DAIR, which works similarly to AIR but is dynamic,
hence varies during program execution. Tice et al. [32] propose forward-edge
AIR (fAIR), which is computed like AIR, but takes into account only forward-
edge indirect control transfers, i.e., calls and jumps. All of the above metrics are
limited to CFI though, and do not consider the quality of the remaining gadgets.

Carlini et al. [6] discuss the effectiveness of CFI implementations against ROP
attacks and propose what they call a basic exploitation test (BET). BET consists
of three generalized attack scenarios, namely arbitrary code execution, confined
code execution and information leakage. They use a minimal program that allows
exploitation, apply several CFI implementations, and evaluate, which of the
described attack scenarios could be achieved. However, this process was done
by a human, hence dependant on skill and knowledge of the exploit developer.
Therefore, it can also not be used for mass-analyzing binaries.

In 2014 and 2015 many attacks targeting various CFI implementations, e.g.,
kBouncer [20], ROPecker [9], or CFI for COTS [34] have been published. As CFI
places tight restrictions on indirect control-flow transfers, hence also gadgets,
those attacks often incorporate gadgets that would rarely be used in real attacks.
E.g., Carlini and Wagner [7], Davi et al. [11], and Göktaş et al. [13] discovered
that long gadgets with few side effects are suitable for breaking heuristics-based
mitigations. Such gadgets should consist of at least 20 instructions, preserve
as many registers as possible, have few side-effects, and easily fulfillable pre-
conditions. Gadgets of this length are generally not useful in today’s attacks,
and therefore GaLity does not treat them any different than other gadgets.
Another kind of gadget commonly used in these attacks is an LBR-flushing gad-
get [7,26]. Recent CPUs have special registers which can be configured to store
the addresses of up to the 16 most recent taken indirect branches [1], which
is a feature kBouncer [20] and ROPecker [9] use. When certain, critical APIs
are invoked, the LBR is inspected and, depending on whether the control-flow
appears legitimate or not, an exception is raised. LBR-flushing gadgets are gad-
gets that naturally contain many indirect branches, present in the regular control
flow, e.g., functions that call lots of sub-functions. By using such a gadget, the
LBR is filled with legitimate addresses and there is no trace of irregular control
flow, i.e., ROP, in the LBR.

Q [27] allows exploit developers to write a target program in the high-level
language QooL and automatically builds a ROP chain that uses only gadgets
from a provided binary. However, Q handles gadgets with side effects, which we
call preconditions in this paper, very conservatively and discards such gadgets,
potentially removing a large number of useful gadgets. Homescu et al. [15] present
a Turing-complete set of gadgets, using only gadgets that are 3 byte or shorter.
They find that all required gadgets appear very frequently in regular Linux
binaries.

Lastly, there are many tools that assist exploit developers by finding and
sorting gadgets, but none of them take into account the quality of gadgets.
Some of these tools also attempt to automatically build a ROP exploit for one

170 A. Follner et al.

predefined scenario e.g., ROPgadget6, Mona.py7, or ropper8, however, from our
experience they are not very sophisticated and often fail, even if the necessary
gadgets are available.

6 Conclusion

Return-Oriented Programming forms the cornerstone of many contemporary
exploitation techniques, yet its viability hinges on the availability of useful gad-
gets. Program transformations, including exploit mitigation techniques, often do
not take into consideration their impact on the quality and number of gadgets
that they introduce into the binary to which they are applied. Evaluations usu-
ally concentrate on the security gained, but not the security that might be lost
due to a set of gadgets that is now favourable for an attacker than in the original,
unmodified binary.

This work addresses this issue and allows researchers to consider this impor-
tant aspect, by developing a set of metrics that, by combining concrete attack
scenarios and measuring overall gadget quality, cover a wide range of possible
exploit scenarios. We implemented the described metrics in a tool called GaLity,
and applied it to binaries compiled with MPX, a new buffer overflow prevention
technique introduced by Intel. Our results show that MPX provides gadgets of
higher quality, and also a favourable set of gadgets in a concrete attack scenario.

Acknowledgements. We want to express our thanks to the anonymous reviewers for
their valuable comments. In particular, we want to thank our shepherd, Mathias Payer,
who helped us give this paper its final form. This work was supported by the BMBF
within EC SPRIDE, by the Hessian LOEWE excellence initiative within CASED, by
the DFG Collaborative Research Center CROSSING, by the DFG Priority Program
1496 Reliably Secure Software Systems, and the project INTERFLOW.

References

1. Intel 64, ia-32 architectures software developer’s manual combined volumes,: 1, 2a,
2b, 2c, 3a, 3b, and 3c, June 2015

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: ACM
Conference on Computer and Communication Security (CCS), Alexandria, VA,
pp. 340–353, November 2005

3. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. (CSUR) 35(2),
97–113 (2003)

4. Batchelder, D., Blackbird, J., Felstead, D., Henry, P., Jones, J., Kulkarni, A.,
Lambert, J., Lauricella, M., Malcolmson, K., Miller, M., Ng, N., Pecelj, D., Rains,
T., Sekhar, V., Stewart, H., Thompson, T., Weston, D., Zink, T.: Microsoft Secu-
rity Intelligence Report, vol. 16 (2013)

6 http://shell-storm.org/project/ROPgadget/.
7 https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/.
8 https://scoding.de/ropper/.

http://shell-storm.org/project/ROPgadget/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://scoding.de/ropper/

Analyzing the Gadgets 171

5. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, pp. 30–40.
ACM, New York (2011)

6. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R.: Control-flow bending:
On the effectiveness of control-flow integrity. In: 24th USENIX Security Sympo-
sium (USENIX Security 15), pp. 161–176. USENIX Association, Washington, D.C.,
August 2015

7. Carlini, N., Wagner, D.: ROP is still dangerous: Breaking modern defenses. In:
23rd USENIX Security Symposium (USENIX Security 14), pp. 385–399. USENIX
Association, San Diego, August 2014

8. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: CCS 2010, pp. 559–572.
ACM (2010)

9. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H., ROPecker: A generic and
practical approach for defending against ROP attacks (2014)

10. Conti, M., Crane, S., Davi, L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.-R.: Losing control: On the effectiveness of control-flow
integrity under stack attacks. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2015, pp. 952–963. ACM,
New York (2015)

11. Davi, L., Sadeghi, A.-R., Lehmann, D., Monrose, F.: Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In: Proceedings
of the 23rd USENIX Conference on Security, SEC 2014, pp. 401–416. USENIX
Association, Berkeley (2014)

12. Ducklin, P.: Anatomy of an exploit - inside the CVE-2013-3893 internet explorer
zero-day-part 2, October 2013

13. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard.
In: Proceedings of the 23rd USENIX Conference on Security Symposium, SEC
2014, pp. 417–432. USENIX Association, Berkeley (2014)

14. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: Overcom-
ing control-flow integrity. In: Proceedings of the IEEE Symposium on Security and
Privacy, SP 2014, pp. 575–589. IEEE Computer Society, Washington, DC (2014)

15. Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., Franz, M.: Microgadgets:
Size does matter in turing-complete return-oriented programming. In: Presented as
part of the 6th USENIX Workshop on Offensive Technologies. USENIX, Berkeley
(2012)

16. Jurczyk, M.: One font vulnerability to rule them all #2: Adobe reader RCE
exploitation, August 2015

17. Li, X., Szor, P.: Emerging stack pivoting exploits bypass common security, May
2013

18. Microsoft. Data execution prevention
19. One, A.: Smashing the stack for fun and profit. Phrack 7(49), 14–16 (1996)
20. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent rop exploit mitiga-

tion using indirect branch tracing. In: Proceedings of the 22Nd USENIX Conference
on Security, SEC 2013, pp. 447–462. USENIX, Berkeley (2013)

21. Payer, M., Barresi, A., Gross, T.R.: Fine-grained control-flow integrity through
binary hardening. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015.
LNCS, vol. 9148, pp. 144–164. Springer, Heidelberg (2015)

172 A. Follner et al.

22. Pi, P.: Unpatched flash player flaw, more POCs found in hacking team leak, July
2015

23. Ramakesavan, R., Zimmerman, D., Singaravelu, P.: Intel memory protection exten-
sions (intel mpx) enabling guide, April 2015

24. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1), 2:1–2:34
(2012)

25. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.-R., Holz, T.: Coun-
terfeit object-oriented programming: On the difficulty of preventing code reuse
attacks in C++ applications. In: 36th IEEE Symposium on Security and Privacy
(Oakland), May 2015

26. Schuster, F., Tendyck, T., Pewny, J., Maaß, A., Steegmanns, M., Contag, M., Holz,
T.: Evaluating the effectiveness of current anti-ROP defenses. In: Stavrou, A., Bos,
H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 88–108. Springer,
Heidelberg (2014)

27. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: Exploit hardening made easy. In:
Proceedings of the 20th USENIX Conference on Security, SEC 2011, pp. 25–25.
USENIX Association, Berkeley (2011)

28. Serna, F.J.: The info leak era of software exploitation (2012)
29. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-

out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS 2007, pp. 552–561. ACM, New York
(2007)

30. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In: Proceedings of the IEEE Symposium on Security and Privacy,
SP 2013, pp. 574–588 (2013)

31. Sotirov, A.: Heap feng shui in javascript (2007)
32. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, Ú., Lozano,

L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
23rd USENIX Security Symposium (USENIX Security 14), pp. 941–955. USENIX
Association, San Diego, August 2014

33. van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L., Slowinska, A.,
Bos, H., Giuffrida, C.: Practical context-sensitive CFI. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS 2015,
pp. 927–940. ACM, New York (2015)

34. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: Proceedings
of the 22Nd USENIX Conference on Security, SEC 2013, pp. 337–352. USENIX
Association, Berkeley (2013)

Empirical Analysis
and Modeling of Black-Box

Mutational Fuzzing

Mingyi Zhao(B) and Peng Liu

College of Information Sciences and Technology,
Pennsylvania State University, State College, USA

{muz127,pliu}@ist.psu.edu

Abstract. Black-box mutational fuzzing is a simple yet effective method
for finding software vulnerabilities. In this work, we collect and analyze
fuzzing campaign data of 60,000 fuzzing runs, 4,000 crashes and 363
unique bugs, from multiple Linux programs using CERT Basic Fuzzing
Framework. Motivated by the results of empirical analysis, we propose a
stochastic model that captures the long-tail distribution of bug discovery
probability and exploitability. This model sheds light on practical ques-
tions such as what is the expected number of bugs discovered in a fuzzing
campaign within a given time, why improving software security is hard,
and why different parties (e.g., software vendors, white hats, and black
hats) are likely to find different vulnerabilities. We also discuss potential
generalization of this model to other vulnerability discovery approaches,
such as recently emerged bug bounty programs.

Keywords: Mutational fuzzing · Software vulnerability · Empirical
analysis · Stochastic modeling

1 Introduction

Software vulnerability is the root cause of many security breaches. However, it
has also been observed that discovering software vulnerability is hard. While soft-
ware companies invest heavily to eliminate vulnerabilities, other parties including
white hats [32] and black hats [27] are frequently able to find new vulnerabilities,
evenwhen endowedwith less resources (e.g. computingpower,manpower, informa-
tion). In addition, investment in software security exhibits diminishing returns [15],
which has also been discussed in the field of software reliability growth [6].

Understanding these phenomena has important theoretical and practical
implications. Existing work on the economy of security usually involves models
of software vulnerability discovery [16,18,29]. Such models can be improved by
empirical analysis of real vulnerability discovery data. The effort of studying vul-
nerability discovery also help practitioners. For example, software companies can

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS artifact evaluation committee chaired by Alessandra Gorla and Jacques Klein.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 173–189, 2016.
DOI: 10.1007/978-3-319-30806-7 11

174 M. Zhao and P. Liu

make better decisions on the level of security investment and the extent of collab-
oration with outside security researchers (e.g., white hats) [32]. Cyber-insurance
organizations might also be able to assess the security of customers more accu-
rately [5].

In this work, we conduct an empirical analysis and propose models for black
box mutational fuzzing. Introduced in early 1990s [21], black box mutational
fuzzing remains an effective method for discovering real world vulnerabilities
[9,17]. Its basic idea is very simple. Given a program and a set of diverse seed
files, the fuzzing tool randomly mutates the files and use the program to process
them. Once the program crashes, a triaging tool identifies the underlying bug and
determines its properties such as exploitability. This simplicity makes black-box
mutational fuzzing not only easy to use, but also easy to analyze and model.

We first apply black-box mutational fuzzing to multiple Linux programs and
collect data from each fuzzing campaign, based on the CERT Basic Fuzzing
Framework (BFF) [14] (Sect. 3). Our dataset contains 60,000 fuzzing runs, 4,000
crashes and 363 unique bugs. Then, we empirically analyze the data and discuss
the long-tail distribution of discovery probability (Sect. 4), as well as the distri-
bution of exploitability of bugs (Sect. 6.3). Motivated by the empirical analysis,
we propose a stochastic model of black-box mutational fuzzing (Sect. 5.1). The
model is derived from software reliability growth models [4,6,10,23]. However,
one unique contribution of our model is that we assume the arrival rates of indi-
vidual bugs follow a power law distribution, which is consistent with our data.
Together with a simulation model (Sect. 5.2), we attempt to explain phenomena
discussed at the beginning of this section. First, we provide a method to estimate
the expected discovery outcome, which sheds light on the diminishing return of
security investment (Sect. 6.1). Next, we explain why it is hard for software com-
panies to eliminate the vulnerability stockpile of black hats (Sect. 6.2). Finally,
we discuss several potential directions for future work, including the general-
ization of this model to other vulnerability discovery mechanisms (Sect. 7). All
scripts and data are published online1 for reproducible research.

2 Related Work

Black-box mutational fuzzing has been widely used in software vulnerability dis-
covery since early 1990s, when Miller et al. surprisingly found out that random
inputs crash 25 % – 33 % of Unix utilities [21]. Since then, black-box mutational
fuzzing has been used to find numerous real world bugs and security vulner-
abilities in various programs [11,14,22]. Compared with other forms of more
sophisticated fuzzing approaches, such as generational fuzzing [20], whitebox
fuzzing [12], taint-based fuzzing [30], etc., black-box mutational fuzzing is sim-
pler and easier to use, but is usually inferior in terms of code coverage.

More recently, various methods were proposed to improve the effectiveness
of black-box mutational fuzzing. Householder and Foote studied the problem
of selecting seeds and fuzzing ratio using BFF [14]. The basic idea is to have
more selection weight on parameter values that yield higher crash density in
1 http://github.com/movingname/fuzzingModel.

http://github.com/movingname/fuzzingModel

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 175

the past. Woo et al. considered a similar scheduling problem in which the target
program of each fuzzing run is also selected on the fly [31]. They designed several
online scheduling algorithms and showed an average of 1.5× improvement over
the one used in BFF. Rebert et al. designed and evaluated 6 seed selection
algorithms [28]. The motivation of our work is different from but complementary
to these work. Instead of optimizing the fuzzing process, we want to understand
the fuzzing process better, based on empirical analysis and theoretical modeling.

The stochastic model built in this paper is derived from software reliabil-
ity models [4,6,10,23], since fuzzing or vulnerability discovery in general is one
particular approach to improve the software reliability. However, different from
existing work, we assume that the arrival rates of the individual bugs follow
power law distribution. This enables us to obtain similar observations on the dif-
ficulty of software reliability growth [4,6], or in other words, diminishing returns
of software vulnerability discovery. In addition, we also uniquely use the power
law-based stochastic model to explain why other parties (e.g. black hats) seem
always being able to discovery unique vulnerabilities in Sect. 6.2. We further
analyze the exploitability of bugs in Sect. 6.3, which is missing from software
reliability growth models.

This paper assumes that the discovery probability of bugs follows power
law distribution. Such long-tail distributions have been observed and discussed
in various cyber security domains recently. Allodi showed that vulnerability
exploitation in several common programs may follow power law distribution [2],
which can be used for vulnerability prioritization. Maillart and Sornette showed
that the sizes of personal identify theft follow power law distribution [19]. Finally,
Edwards et al. found that data breach size is log-normally distributed while the
daily frequency of breaches can be described by a negative binomial distribu-
tion [8]. These results can be used to predict data breaches and their associ-
ated cost.

3 BFF and Data Collection

Figure 1 shows the workflow of black-box mutational fuzzing. We have created
several Python scripts for seed collection, code coverage, seed selection and data
analysis. The fuzzing tool and triaging tool is from the CERT Basic Fuzzing
Framework (BFF) [14]. BFF is shown to be effective in finding real vulnerabilities
in various programs, and has been used in previous work on improving black-box
mutational fuzzing [28,31] as well. Next, we outline the details of our experiment.

Step 1. Target Selection. By combining the lists of target programs used in
the literature [7,14,28,31], we have collected 18 programs that handle various
types of video, audio, graphical, and document inputs. Table 1 list all 9 programs
in which BFF has successfully found bugs. We have also tried to apply fuzzing
to the following programs: a2mp3, eog, gifsicle, mplayer, mp3blaster, mpg123,
moc, Outside In Viewer 8.5.2, and pdf2svg. However, for any of these programs,
BFF triggers less than 3 or even 0 crashes. We therefore exclude them from the
following analysis.

176 M. Zhao and P. Liu

Fig. 1. The fuzzing experiment workflow.

Step 2. Seed Collection and Selection. We have collected thousands of
candidate seeds files, including pdf documents, mp3 files, videos and images,
from search engines like Bing and Google. The # cand columns of Table 1 shows
the number of candidate seed files for each program. We then write a script to
collect the basic blocks (bbls) covered by each seed using the Intel Pin framework.
In general, the higher coverage of seeds, the more vulnerabilities will be found
in fuzzing [28]. Next, we select 50 seed files to form the final seed set for each
program, using a simple greedy algorithm that maximizes the coverage in each
iteration. Table 1 shows that the final seed sets still achieve similar levels of
coverage (% bbls column).

Step 3. Fuzzing. We use BFF as the fuzzing tool and use its default fuzzing con-
figuration. The main configuration parameter is the seed used in each fuzzing run,
and the fuzzing ratio, which indicates how many bits in the seed will be flipped.
We use the default probability-based parameter selection method implemented
in BFF [14]. The outcome of a fuzzing run is either a crash or nothing, while the
result of a fuzzing campaign is a sequence of crashes caused by software bugs in
the program. Since multiple crashes could correspond to the same bug, we need
a triaging step to map a crash to the corresponding bug.

Step 4. Triaging. Once a crash is encountered, BFF will run the triaging
step, which calculates the hash for the underlying bug based on the stack trace2,
minimizes the input that triggers the crash, and determines whether the bug
is exploitable or not. Similar to other triaging tools such as the !exploitable
for Windows OS and CrashWrangler for Mac OS X, the CERT Triage Tools in
BFF assigns one of the following exploitability levels to each crash: unknown,
not exploitable, probably not exploitable, probably exploitable and exploitable.
2 The method used to generate the hash is an extension of the fuzzy stack hash method

proposed in the literature [24].

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 177

Step 5. Data Analysis. At the end, we know the, seed file, configuration,
and outcome of each fuzzing run, as well as the hash and exploitability of each
bug discovered. We then analyze the data and show statistics of the results in
Table 1. We present our main analysis results in the next section.

Table 1. Seed selection and fuzzing statistics of selected programs. # cands is the
number of candidate seed files we collected from the Internet. # bbls is the number
of unique basic blocks recored when parsing the candidate seed files. % bbls is the
percentage of basic blocks covered by the final seed set.

Seed Selection Fuzzing

Program # cand # bbls % bbls # runs # crashes # bugs max freq

xpdf 3.02-2 2,161 188,023 93.1 % 4,303 185 37 73

mupdfa - - - 9,900 201 25 61

convert 5.2.0b - - - 79,636 32,161 134 3,197

ffmpeg 0.8 787 121,875 86.7 % 16,055 3,872 96 863

autotrace 0.31.1 149c - 100 % 29,729 2,548 23 593

jpegtran 1.2.0 320 6,837 99.4 % 303,898 116 33 31

gif2png 2.5.4-2 1,084 12,772 99.8 % 136,768 2,305 7 34

feh 2.2 1,332 56,266 94.8 % 5,209 159 5 51

mp3gain 1.5.2 214 7,224 99.9 % 1,369 1,451d 7 861
a mupdf and xpdf share same seeds.
b We use the seeds provided in the default BFF vm image for convert.
c Since the size is small, we use all of the seeds in fuzzing.
d Here, # crashes is actually larger than # runs. This is caused by a stack corrup-
tion bug that confuses triaging process to correlate the same crash into different
bugs [28].

4 The Long-Tail Distribution of Bugs

The major goal of fuzzing and any bug discovery effort is to find as many bugs as
possible. Moreover, it has been observed that the easiness of discovering different
bugs is different. In black-box mutational fuzzing, we can quantify easiness of
discovering bug i as its discovery probability (λi):

λi =
ci

t
(1)

where ci is the number of crashes caused by bug i, and t is the number of fuzzing
runs in the fuzzing campaign. Then the question is, what is the distribution for
bug discovery probability?

In Fig. 2, we plot the empirical probability distribution of bugs for all 6 pro-
grams with more than 20 bugs discovered. We see that these distributions all
have the long-tail shape; that is, a few bugs trigger a large number of crashes,

178 M. Zhao and P. Liu

Fig. 2. Probability distributions of bugs triggered in fuzzing campaigns. The color of
a bar represents the exploitability of the bug. The meaning of colors are: exploitable
(red), probably exploitable (blue), probably not exploitable (yellow), not exploitable
(green), unknown (grey) (Color figure online).

while most bugs have only triggered crashes a few times. Many such distribu-
tions [26], including vulnerability exploitation [2], have been proposed to follow
the power law distribution. We thus propose the following hypothesis:

Hypothesis 1. The discovery probability of bugs in a program follows a power
law distribution.

More specifically, we assume the following discrete power law distribu-
tion [26]:

P (discover bug i in a fuzzing run) = λi =
i−α

ζ(α)
(2)

where α is the scaling factor of the power law distribution, ζ(α) is the Riemann
ζ-function as the normalizer. As we will show in Sect. 6, a smaller α leads to more
bugs discovered in the same number of fuzzing runs. i is the rank id of the bug
among all bugs sorted by their discovery probability inside the program. A bug
with a larger rank id (lower rank) has lower probability to be discovered, as Eq. 2
tells. To complete the probability distribution, we also use λ1 to represent the
probability of no crash. We can think about no crash as a special bug, and it
has the highest probability in these 6 fuzzing campaigns.

We next need to estimate the scaling factor α of a power law distribution
from the empirical distribution. The most common approach is to use Maximum
Likelihood Estimators (MLEs) [3,26]. However, we could not apply these esti-
mators because we do not know the true rank id of a bug discovered in fuzzing.

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 179

We only know a bug’s rank among all discovered bugs. For example, the 20th
bug in the empirical data could have the true rank id of 100.

We propose a simulation method to estimate α. We could think a fuzzing
campaign with t runs as generating t values form the corresponding power law
distribution. We then choose the α that minimizes the difference between the
number of unique bugs discovered in the experiment and the number of unique
values generated from the distribution. Table 2 shows the estimates of α.

Table 2. Estimates of α.

Program α

xpdf 2.39

mupdf 2.88

convert 2.38

ffmpeg 2.21

autotrace 3.25

jpegtran 3.53

Because we do not know the true rank id of bugs discovered, it is also difficult
to apply goodness-of-fit tests, either through bootstrapping or by comparing with
alternative distributions [2,3]. In this work, we will test the estimates of α by
comparing the predicted number of bugs discovered with the actual number of
bugs discovered in Sect. 6.1. More rigorous methods of estimating α and testing
the goodness-of-fit are left as future work. In the following sections, we will show
that this power law hypothesis enables us to answer some interesting questions
related to vulnerability discovery and software security.

5 Modeling a Fuzzing Campaign

We then build models for a fuzzing campaign. First, we propose a stochastic
model based on existing software reliability literature [4,6,10,23], in Sect. 5.1.
Although expressive, this stochastic model has two assumptions that might not
be realistic. We remove one assumption by proposing a simulation model in
Sect. 5.2 (Table 3).

5.1 A Stochastic Model

Since each fuzzing run is independent from other runs, and the outcome of a
fuzzing run is either 1 (crashed) or 0 (not crashed), it is natural to consider the
fuzzing process as a Poisson Process {N(t), t ≥ 0}, where N(t) is the number of

180 M. Zhao and P. Liu

Table 3. Notations.

Variable Explanation

N(t) The Poisson process for number of crashes in a fuzzing campaign

Ni(t) The Poisson process corresponding to bug i

λi The rate for Ni(t) and the discovery probability of bug i

n Total number of bugs in the program

N ′(t) The non-homogeneous Poisson process for number of unique bugs

D(t) The set of discovered bugs by time t.

D(t) Number of discovered bugs by time t. D(t) = |D(t)|.
L(t) The set of remaining bugs by time t

crashes seen till time t. Furthermore, since crashes are caused by different bugs,
we can expressed N(t) as:

N(t) =
∞∑

i=2

Ni(t) (3)

Here, i is the rank id of a bug and t is the number of fuzzing runs.
{Ni(t), t ≥ 0} is the corresponding Poisson process for the i-th bug, and Ni(t)
is the number of crashes for the i-th bug we have seen till time t. We can see
that the discovery probability of the i-th bug we have discussed in the previous
subsection is actually the rate λi of the Poisson process Ni(t). A larger λi means
that bug i causes crashes more frequently.

In a fuzzing campaign, we are mostly interested in the first crash of a bug.
This is equivalent to the assumption in the software reliability models that a
bug is found and instantly fixed, while the fix does not influence the discovery
of other remaining bugs [4]. We define D(t) as the set of bugs that have already
been found by time t, and L(t) as the set of remaining bugs. So we have:

λ′(t) =
∞∑

i∈L(t)

λi =
∞∑

i=2

λi −
∞∑

i∈D(t)

λi (4)

Therefore, we obtain a new non-homogeneous Poission process, N ′(t), for the
discovery of unique bugs. λ′(t) is the arrival rate of new bugs, and the expected
time to discover the next bug is 1/λ′(t).

We currently do not know how to solve Eq. 4 analytically. Thus when doing
calculation, we replace ∞ with n, in order to obtain an approximate result.
Intuitively, we assume there are n bugs in total inside the program. By choosing a
larger n, we can further approximate the true result. In our following analysis, we
set n = 1000. The probability that i > 1000 is only 1.3e-4 for ffmpeg (α = 2.21),
and 9.03e-9 for jpegtran (α = 3.53).

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 181

In addition, this stochastic model relies on the following two assumptions:

Assumption 1. In one fuzzing run, multiple bugs can be triggered.

However, in BFF, each fuzzing run stops at the first crash, which is then
triaged to one bug. Thus, with Assumption 1, the model will slightly overestimate
the number of bugs discovered, as we will see in Sect. 6.1. But we expected that
this effect is small because most bugs have low discovery probability (Fig. 2),
and the chance that multiple bugs are triggered in the same fuzzing run is even
lower.

Assumption 2. The discovery probability distribution is the same for all fuzzing
runs in a fuzzing campaign.

This assumption also oversimplifies the reality. Since the fuzzing seeds and
fuzzing ratio are different among fuzzing runs, each fuzzing run will explore a
unique input space and be able to trigger a different subset of all latent bugs.
We will discuss this more in Sect. 7.

Improving this stochastic model by relaxing these two assumptions is chal-
lenging, which is left as a future work. In the next sub section, we propose a
simulation model that removes Assumption 1.

5.2 A Simulation Model

Similar to the discussion in Sect. 4, we could think a fuzzing campaign with
t runs as generating t values form the corresponding power law distribution.
Algorithm 1 returns a simulated bug discovery sequence as well as unique bugs
discovered, given α and t as the inputs. Step 1 and 2 can be implemented using
existing software package [3]. In step 5, we add the condition id > n because we
will compare the simulation model with the stochastic model.

Algorithm 1. Simulate a fuzzing campaign.
input : α of the bug distribution, and t, the number of fuzzing runs
output: Simulated bug discovery sequence and unique bugs discovered

1 dist = powerlaw(α, xmin=1, discrete=True) ;
2 seq = dist.gen random(t);
3 bugs = {};
4 foreach id ∈ bugs do
5 if id == 1 or id > n then
6 continue;
7 if id /∈ bugs then
8 bugs.add(id);

9 return seq, bugs;

In this simulation model, we remove Assumption 1 since each fuzzing run
only yields at most one bug discovery. In Sect. 6.1, we will compare the predicted
numbers of bugs discovered by these two models, and the actual number of bugs
discovered.

182 M. Zhao and P. Liu

6 Analysis Results

We present 3 analysis results in this section. We first use the models presented in
the last section to calculate the expected number of bugs discovered, and discuss
the diminishing returns in software security. We then examine the order of bug
discovery to explain why different parties are likely to find different bugs. Finally,
we empirically study the exploitability of bugs and discuss its implications.

6.1 Expected Number of Bugs Discovered

The first question is, what is the expected number of unique bugs find by time
t? Under the stochastic model proposed in Sect. 5.1, we know that the time
of the first occurrence of each bug follows the exponential distribution with
parameter λi. Therefore, the probability of bug i undiscovered by time t is e−λit,
and the expected number of undiscovered bug at time t is

∑n
i=2 e−λit. We then

know that the number of expected bugs discovered by time t is:

E[D(t)] = n −
n∑

i=2

e−λit = n −
n∑

i=2

e− i−α

ζ(α) t (5)

We also use the simulation model proposed in Sect. 5.2 to obtain E[D(t)]. We
repeat the simulation 10 times and take the average number of bugs discovered
by time t as E[D(t)]. As we have discussed in Sect. 5.1, we set n = 1000 for both
models.

In Fig. 3, we show the plots of expected bugs discovered based on the Poisson
process and the simulation, and the real trajectory, of 6 fuzzing campaigns. We
see that the predicted curves from both models are close to the real curve,
except for autotrace. We suspect that the large prediction error for autotrace is
due to a poor fit of power law to its empirical distribution. We plan to further
investigate this in the future. In addition, the curve of the stochastic model is
generally above the other two. This can be partly explained by Assumption 1,
as we have discussed in Sect. 5.1. In general, the simulation model gives more
accurate prediction for the 6 fuzzing campaigns than the stochastic model.

The concave shape of all curves show the diminishing returns: as the fuzzing
campaign enters the long tail, the rate of discovery (λ′(t)) decreases, and the
number of bugs discovered in the same amount of time reduces. This diminish-
ing of return is consistent with our experience of fuzzing and software reliability
growth [10,23]. A software company can use the two models to decide how long
the fuzzing campaign shall run. First, the company need to run a fuzzing cam-
paign for a limited amount of time, in order to estimate α. Then, the company
needs to define the reliability and security utility gain of finding a bug, and
the fuzzing cost, which might include computing resource consumption, delayed
product release, etc. Next, the company can generate the accumulated utility
curve and the accumulated cost curve based on the curve of expected bug dis-
covery (E[D(t)]) proposed in this section. At the point when the utility of fuzzing
is below the cost, the fuzzing campaign should be terminated.

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 183

Fig. 3. Plots of expected number of bugs discovered (E[D(t)]) and actual number of
bugs discovered (D) overtime. We have doubled the number of fuzzing runs in order
to observe how two models predict.

6.2 The Order of Bug Discovery

The diminishing of return discussed in Sect. 6.1 might appear to be a good thing
for security. If there is a strong order of bug discovery, then bugs with larger
discovery probability will almost always be eliminated first. Thus, as long as
the software company invests more resources than other parties, including black
hats [27] and white hats [32], in vulnerability discovery, these other parties will
not likely to find new vulnerabilities.

However, in reality, we see that many vulnerabilities of famous software have
been discovered by outside parties,many ofwhomare just individuals [1,13,25,32].
There aremultiple reasons to explain this. In thiswork,we propose one explanation
based on the power law hypothesis. The basic idea is that the order of bug discovery
is weak in the long-tail part of the distribution.

To further explain this, we first define the order of bug discovery. At the end
of a fuzzing campaign, the expected sequence of rank id (S) of discovered k bugs
is 2, 3 . . . k, because a higher ranked bug has higher discovery probability, and
thus is expected to be discovered earlier. However, due to the randomness, the
actual id sequence (Ŝ) would be different from the expected sequence S. We can
calculate the edit distance D(S, Ŝ) between these two sequences, and define the
order of bug discovery as:

order(Ŝ) = k − D(S, Ŝ) (6)

Intuitively, the bug discovery is strongly/weakly ordered if the distance
between S and Ŝ is small/large. However, since we do not know the true rank id
of bugs discovered, we cannot calculate the order of empirical sequences directly.

184 M. Zhao and P. Liu

Table 4. Simulated bug discovery sequence based on the ffmpeg case (α = 2.21). Bug
ids in the bold font are unique to that sequence.

Seq 1: 19 3 2 9 4 5 12 14 6 84 10 7 85 95 24

Seq 2: 2 3 7 4 5 17 10 13 40 8 6 49 12 11 9

Seq 3: 2 4 5 28 3 6 7 18 9 12 13 20 11 10 21

Seq 4: 2 5 6 3 4 9 15 12 99 10 8 46 7 225 20

Seq 5: 3 2 4 7 8 5 27 10 11 6 9 23 82 14 12

Instead, we run simulation to generated 5 sequences in Table 4. We see bugs dis-
covered in the beginning are more ordered, and tend to be rediscovered in other
sequences.

We can use the stochastic model to explain this. The probability that the
next new discovery is bug i (assuming i ∈ L(t)) is:

P (bug i is the next one after time t) =
λi

(
∑

j∈L(t) λj)
∝ λi ∝ i−α (7)

For bug i and bug i + 1 (assuming i + 1 ∈ L(t)), we have:

Pi − Pi+1 ∝ i−α − (i + 1)−α (8)

which decreases to 0 as i → ∞. This means that when i is small (the fuzzing
process is in the “head part” of the distribution), a bug with higher discovery
probability is much more likely to be discovered first, and the fuzzing process
has a stronger order. However, as i increases and the fuzzing process enters the
long-tail, which vulnerability will come next is harder to predict. In addition, a
smaller α will make the fuzzing outcome less ordered, while a larger α makes
the process more ordered.

To understand its implication, we consider a “fuzzing competition” between a
software company and a black hat. Both sides run fuzzing and try to find as many
bugs as possible. We assume that the software company has a resource advantage
A over the black hat. That is, while the black hat can conduct a fuzzing campaign
with t runs, the company can do At runs, by having a larger fuzzing server farm.
We want to know how many unique bugs can the black hat find.

We simulate 10,000 fuzzing runs for the black hat, and simulate 10, 000 × A
runs for the software company. The two curves in Fig. 4 show the number of
unique bugs found by the black hat for two programs. We observe that although
in the beginning, the software company can quickly reduce the bug pool of the
black hat by investing more resources, the return of investment quickly dimin-
ishes as A further grows. When the software company has 30 times more fuzzing
resources, the black hat is still able to find 2 unique bugs for ffmpeg and 1 unique
bug for xpdf on average. Intuitively, it means that when the fuzzing enters the
long-tail, the outcome is more random, so the company is less capable of inter-
fering the black hat’s outcome. This partly explains why in the reality, outside

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 185

Fig. 4. Simulated number of unique bugs discovered in two programs by the black hat
under different resource advantage A of the software company.

parties such as black hats and white hats are able to find security holes, despite
software companies have already spent significant effort in software security.
From Fig. 4, we can also see that when α is smaller, more unique bugs can be
found by the black hat.

In summary, the power law hypothesis favors attackers, since they are able
to find vulnerabilities even if the defender has much more resources. In addition,
there is an asymmetry between attackers and defenders: the attackers only need
to find a few exploitable bugs to succeed, while the defenders have to patch
all holes. On the other hand, this result also encourages software companies to
collaborate with outside benign white hats, through vulnerability disclosure and
bug bounty programs [32]. We will discuss this more in Sect. 7.2. But before
that, we need to ask one more question: are these unique bugs discovered by the
black hat exploitable?

6.3 Exploitability

Table 5 shows the distribution of bug exploitability in the data. We see that a
significant portion of the bugs are either exploitable or probably exploitable.

Then, we further ask the question: is there any correlation between discovery
probability and exportability? If there is a positive correlation, then it means that
harder to be discovered bugs are harder to be exploited, which favors the software
company side. To answer this question, we calculate the Pearson correlation
between the logarithm of discovery probability, and the exploitability which is
mapped to a 1–4 scale, with 1 meaning not exploitable and 4 means exploitable.
We exclude bugs of unknown exploitability. The result is shown in Table 5. We
see that although 5 out of 6 programs have a weak negative correlation (i.e.,
harder to be discovered bugs are easier to be exploited), there is only one that
is statistically significant (xpdf). We thus propose the following hypothesis:

Hypothesis 2. Bug discovery probability and exploitability do not have a strong
correlation.

186 M. Zhao and P. Liu

Table 5. Percentages of exploitability, and correlation between bug discovery proba-
bility (log) and exploitability. A correlation is significant if the p-value is less than 0.1.

Program Exp. Prob. Exp. Prob. Not Exp. Not Exp. Unknown Corr. p-value

xpdf 27 % 32 % 22 % 0 19 % −0.35 0.06

mupdf 24 % 0 64 % 0 12 % −0.21 0.35

convert 33 % 3 % 7 % 0 57 % −0.05 0.68

ffmpeg 8 % 17 % 29 % 0 46 % −0.16 0.25

autotrace 39 % 4 % 4 % 0 52 % 0.02 0.95

jpegtran 79 % 6 % 0 0 15 % −0.03 0.87

Hypothesis 2 has several implications. First, it indicates that the next bug to
be found could be exploitable, no matter how many runs have been conducted
before. This gives an additional advantage for black hats, who not only are likely
to find unique bugs, but are also able to find exploitable ones. Second, by assum-
ing the independence between discovery probability and exploitability, one can
predict the exploitability of the next bug based on the empirical exploitability
distribution in Table 5. For example, in the case of xpdf and A = 30 in Fig. 4,
we can predict that the 1 unique bug discovered by the black hat has roughly
25 % probability of being exploitable. By combining the vulnerability discovery
models and the exploitability distribution, the software company can thus better
forecast potential attacks and allocate defense resources accordingly.

7 Discussion and Future Work

7.1 Apply Our Analysis to Larger Datasets

Although our dataset includes most of the programs studied in previous
work [7,14,28,31], it is still not enough to fully test the hypotheses we pro-
posed. Therefore, an important future work is to increase the scope of analysis
to other programs, other platforms (e.g., Microsoft Windows and Mac OS), and
other fuzzing frameworks [20]. It would also be helpful to run the fuzzing cam-
paign for much longer time.

Another important direction is to apply our analysis to different fuzzing con-
figurations, which include the selection of fuzzing ratio, seeds, etc. It is possible
that the same bug’s discovery probability might be significantly different in dif-
ferent configurations. This diversity gives an additional explanation to why other
parties are likely to find unique bugs, in addition to our discussion in Sect. 6.2.
That is, different parties tend to have different configurations, and thus the dis-
covery probability distribution is distinct to each of them. However, although
the discovery probability of a bug might be different under different fuzzing con-
figurations, we hypothesize that the discovery probability distribution will still
be a power law distribution:

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 187

Hypothesis 3. The bug discovery probability under different fuzzing configura-
tions follow power law distributions.

7.2 Generalization to Other Vulnerability Discovery Approaches

We choose to study black-box mutational fuzzing first because it is probably
the simplest vulnerability discovery method. However, black-box mutational
fuzzing is just one method in the vulnerability discovery toolbox. Other methods
include code review, static analysis, symbolic execution, dynamic analysis, etc.
We hypothesize that these approaches might resemble fuzzing, and thus the bug
discovery “easiness”, a generalization of the discovery probability, could also fol-
low the power law distribution. Collecting empirical data from these approaches
and applying similar analysis would be an interesting future work.

Some other vulnerability discovery paradigms also share similarities with
black box mutational fuzzing. For example, many companies today collaborate
with a large number of outside security researchers (or white hats) through
vulnerability disclosure and bug bounty programs [32]. Actually, our discussion
in Sect. 6.2 provides one explanation of why such collaboration is necessary. In
addition, these white hats, with diverse background and skill levels, will often
test different parts of the system, or using various testing payload. This is similar
to the seed mutation in a black-box mutational fuzzing, although the distribution
of inputs might be more complex than random bit flipping. Therefore, we could
possibly generalize the proposed models to understand and analyze data from
these bug bounty programs.

8 Conclusion

Understanding the process of vulnerability discovery and why software secu-
rity is hard has important practical implications. In this work, we have collected
empirical data of black-box mutational fuzzing. We show that the fuzzing process
can be modeled as a non-homogeneous Poisson process with the rates of indi-
vidual bugs following a power law distribution. We then show how to calculate
the expected outcome of a fuzzing campaign. We further show that once the
vulnerability discovery enters the long-tail, there will be significant diminishing
returns, and less order in the bug arrival. These effects pose challenge for the
software companies that try to eliminate vulnerabilities before the black hats,
and call for collaboration with white hats. Finally, we show that the model can
potentially be extended to other vulnerability discovery mechanisms, such as
bug bounty programs, that have diversity and randomness.

Acknowledgment. We sincerely thank our shepherd and the anonymous review-
ers for their valuable comments and suggestions on early versions of this paper.
This work was supported by ARO W911NF-13-1-0421 (MURI), NSF CCF-1320605,
NSF CNS-1422594, NSF CNS-1505664, ARO W911NF-15-1-0576, and NIETP CAE
Cybersecurity Grant.

188 M. Zhao and P. Liu

References

1. Algarni, A., Malaiya, Y.: Software vulnerability markets: discoverers and buyers.
Int. J. Comput. Appl. Technol. Inf. Sci. Eng. 8(3), 71–81 (2014)

2. Allodi, L.: The heavy tails of vulnerability exploitation. In: Piessens, F., Caballero,
J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 133–148. Springer, Heidel-
berg (2015)

3. Alstott, J., Bullmore, E., Plenz, D.: Powerlaw: a python package for analysis of
heavy-tailed distributions. PLoS ONE 9, e85777 (2014)

4. Bishop, P., Bloomfield, R.: A conservative theory for long-term reliability-growth
prediction [of software]. IEEE Trans. Reliab. 45(4), 550–560 (1996)

5. Böhme, R., Schwartz, G.: Modeling cyber-insurance: towards a unifying framework.
In: The Workshop on the Economics of Information Security (WEIS) (2010)

6. Brady, R.M., Anderson, R., Ball, R.C.: Murphy’s law, the fitness of evolving
species, and the limits of software reliability. Number 471. University of Cam-
bridge, Computer Laboratory (1999)

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 36th
IEEE Symposium on Security and Privacy (2015)

8. Edwards, B., Hofmeyr, S., Forrest, S.: Hype, heavy tails: a closer look at data
breaches. In: The Workshop on the Economics of Information Security (WEIS)
(2015)

9. Evans, C., Moore, M., Ormandy, T.: Fuzzing at scale. Google Online Security Blog
10. Fenton, N., Bieman, J.: Software metrics: a rigorous and practical approach. CRC

Press, Boca Raton (2014)
11. Forrester, J.E., Miller, B.P.: An empirical study of the robustness of windows nt

applications using random testing. In: Proceedings of the 4th USENIX Windows
System Symposium, Seattle, pp. 59–68 (2000)

12. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: The Network and Distributed System Security Symposium, vol. 8, pp. 151–166
(2008)

13. Hafiz, M., Fang, M.: Game of detections: how are security vulnerabilities discovered
in the wild? Empirical Software Engineering, pp. 1–40 (2015)

14. Householder, A.D., Foote, J.M.: Probability-based parameter selection for black-
box fuzz testing. In: CERT (2012)

15. W. Jackson. Has secure software development reached its limits? GCN
16. Johnson, B., Laszka, A., Grossklags, J.: Games of timing for security in dynamic

environments. In: Khouzani, M.H.R., et al. (eds.) GameSec 2015. LNCS, vol. 9406,
pp. 57–73. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25594-1 4

17. Jurczyk, M., Coldwind, G.: Ffmpeg and a thousand fixes. Google Online Security
Blog

18. Laszka, A., Grossklags, J.: Should cyber-insurance providers invest in software
security? In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I.
LNCS, vol. 9326, pp. 483–502. Springer, Heidelberg (2015)

19. Maillart, T., Sornette, D.: Heavy-tailed distribution of cyber-risks. Eur. Phys. J.
B 75(3), 357–364 (2010)

20. McNally, R., Yiu, K., Grove, D., Gerhardy, D.: Fuzzing: the state of the art. Tech-
nical report, DTIC Document (2012)

21. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix
utilities. Commun. ACM 33(12), 32–44 (1990)

22. Miller, C.: Babysitting an army of monkeys. In: CanSecWest (2010)

http://dx.doi.org/10.1007/978-3-319-25594-1_4

Empirical Analysis and Modeling of Black-Box Mutational Fuzzing 189

23. Miller, D.R.: Exponential order statistic models of software reliability growth.
IEEE Trans. Softw. Eng. 1, 12–24 (1986)

24. Molnar, D., Li, X.C., Wagner, D.: Dynamic test generation to find integer bugs in
x86 binary linux programs. In: USENIX Security Symposium, vol. 9 (2009)

25. Naraine, R.: Teenager hacks google chrome with three 0day vulnerabilities. ZDNet
26. Newman, M.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys.

46(5), 323–351 (2005)
27. Radianti, J.: Eliciting information on the vulnerability black market from inter-

views. In: Proceedings of the SECURWARE, pp. 154–159 (2010)
28. Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley,

D.: Optimizing seed selection for fuzzing. In: Proceedings of the USENIX Security
Symposium, pp. 861–875 (2014)

29. Rue, R., Pfleeger, S.L.: Making the best use of cybersecurity economic models.
IEEE Secur. Priv. 4, 52–60 (2009)

30. Wang, T., Wei, T., Gu, G., Zou, W.: Taintscope: a checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In: IEEE Symposium on Secu-
rity and Privacy (2010)

31. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational
fuzzing. In: ACM Conference on Computer and Communications Security (2013)

32. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discov-
ery ecosystems. In: ACM Conference on Computer and Communications Security
(2015)

On the Security Cost of Using a Free and Open
Source Component in a Proprietary Product

Stanislav Dashevskyi1,3, Achim D. Brucker2,3(B), and Fabio Massacci1

1 University of Trento, Trento, Italy
{stanislav.dashevskyi,fabio.massacci}@unitn.it

2 Department of Computer Science, The University of Sheffield, Sheffield, UK
3 SAP SE, Walldorf, Germany
a.brucker@sheffield.ac.uk

Abstract. The work presented in this paper is motivated by the need
to estimate the security effort of consuming Free and Open Source Soft-
ware (FOSS) components within a proprietary software supply chain
of a large European software vendor. To this extent we have identified
three different cost models: centralized (the company checks each com-
ponent and propagates changes to the different product groups), distrib-
uted (each product group is in charge of evaluating and fixing its con-
sumed FOSS components), and hybrid (only the least used components
are checked individually by each development team). We investigated
publicly available factors (e. g., development activity such as commits,
code size, or fraction of code size in different programming languages) to
identify which one has the major impact on the security effort of using
a FOSS component in a larger software product.

Keywords: Free and open source software usage · Free and open source
software vulnerabilities · Security maintenance costs

1 Introduction

Whether Free and Open Source Software (FOSS) is more or less secure than
proprietary software is a heavily debated question [8,9,22].

We argue that, at least from the view of a software vendor who is consuming
FOSS, this question is not the right question to ask. First, there may be just no
alternative to use FOSS components in a software supply chain, because FOSS
components are the de-facto standard (e. g., Hadoop for big data). Second, FOSS
may offer functionalities that are very expensive to re-implement and, thus, using
FOSS is the most economical choice.

A more interesting question to ask is which factors are likely to impact the
“security effort” of a selected FOSS component.

A.D. Brucker—Parts of this research were done while the author was a Security
Testing Strategist and Research Expert at SAP SE in Germany.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 190–206, 2016.
DOI: 10.1007/978-3-319-30806-7 12

On the Security Cost of Using a Free and Open Source Component 191

As the security of a software offering depends on all components, FOSS
should, security-wise, be treated as one’s own code. Therefore, software compa-
nies that wish to integrate FOSS into their products must tackle two challenges:
the selection of a FOSS product and its maintenance. In order to meet the FOSS
selection challenge, large business software vendors perform a thorough security
assessment of FOSS components that are about to be integrated in their prod-
ucts by running static code analysis tools to verify the combined code base of a
proprietary application and a FOSS component in question, and by performing
a thorough audit of the results. The security maintenance problem is not easier:
when a new security issue in a FOSS component becomes publicly known, a
business software vendor has to verify whether that issue affects customers who
consume software solutions where that particular FOSS component was shipped
by the vendor. In ERP systems and industrial control systems this event may
occur years after deployment of the selected FOSS product.

Addressing either problem requires expertise about both the FOSS compo-
nent and software security. This combination is usually hard to find and resources
must be allocated to fix the problem in a potentially unsupported product. It is
therefore important to understand which characteristics of a FOSS component
(number of contributors, popularity, lines of code or choice of programming lan-
guage, etc.) are likely to be a source of “troubles”. The number of vulnerabilities
of a FOSS product is only a part of a trouble: a component may be used by
hundreds of products.

Motivated by the need to estimate the efforts and risks of consuming FOSS
components for proprietary software products of a large European software ven-
dor – SAP SE, we investigate the factors impacting three different cost models:

1. The centralized model, where vulnerabilities of a FOSS component are fixed
centrally and then pushed to all consuming products (and therefore costs
scale sub-linearly in the number of products)

2. The distributed model, where each development team fixes its own component
and effort scales linearly with usage

3. The hybrid model, where only the least used FOSS components are selected
and maintained by individual development team

In the rest of the paper we describe the FOSS consumption in SAP (Sect. 2),
introduce our research question and the three security effort models (Sect. 3),
and discuss related works (Sect. 4). Then we present the data sources used for
analyzing the impact factors (Sect. 5), describe each variable in detail and discuss
the expected relationships between them (Sect. 6). Next we (Sect. 7) discuss the
statistical analysis of the data. Finally we conclude and outline future work
(Sect. 8).

2 FOSS Consumption at SAP

SAP’s product portfolio ranges from small (mobile) applications to large scale
ERP solutions that are offered to customers on-premise as well as cloud solutions.

192 S. Dashevskyi et al.

Table 1. Our sample of FOSS projects and their historical vulnerability data

This wide range of options requires both flexibility and empowerment of the
(worldwide distributed) development teams to choose the software development
model that fits their needs best while still providing secure software.

While, overall, SAP is using a large number of FOSS components, the actual
number of such components depends heavily on the actual product. For example,
the traditional SAP systems in ABAP usually do not contain a lot of FOSS
components; the situation is quite the opposite for recent cloud offerings based
on OpenStack (http://www.openstack.com) or Cloud Foundry (https://www.
cloudfoundry.org/).

For each vulnerability that is published for a consumed FOSS component, an
assessment is done to understand whether the vulnerability makes the consuming
SAP product insecure. In this case, a fix needs to be developed and shipped to
SAP customers. For example, in 2015 a significant number of SAP Security Notes
(i. e., patches) fixed vulnerabilities in consumed FOSS components.

Overall, this results in additional effort both for the development teams as
well as the teams that work on the incident handling (reports from customers).
Thus, there is a need for approaches that support SAP’s development teams in
estimating the effort related to maintain the consumed FOSS components.

To minimize the effort associated with integrating FOSS components as well
as to maximize the usability of the developed product, product teams consider
different factors. Not all of them are related to security: e. g., the compatibility
of the license as well as requests from customers play an important role as well.
From a effort and security perspective, developer teams currently consider:

– How widely a component is used within SAP? Already used components
require lower effort as licensing checks are already done and internal expertise
can be tapped. Thus, effort for fixing issues or integrating new versions can
be shared across multiple development teams.

– Which programming languages and build systems are used? If a development
team has already expertise in them, a lower integration and support effort
can be expected.

– What maintenance lifecycle is used by the FOSS components? If the secu-
rity maintenance provided by the FOSS community “outlives” the planned
maintenance lifecycle of the consuming SAP product, only the integration of
minor releases in SAP releases would be necessary.

http://www.openstack.com
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/

On the Security Cost of Using a Free and Open Source Component 193

– How active is the FOSS community? Consuming FOSS from active and well-
known FOSS communities (e. g., Apache) should allow a developer team to
leverage external expertise as well as externally provided security fixes.

Table 1 illustrates the characteristics of a selection of FOSS components used
within SAP. We have chosen the most popular 166 components used by at least
5 products.

3 Research Question and Cost Models

Considering the above discussion we can summarize our research question:

RQ. Which factors have significant impact on the security effort to manage a
FOSS component in centralized, distributed, and hybrid cost models?

A key question is to understand how to capture effort in broad terms. In
this respect, there are three critical activities that are generated by using FOSS
components in a commercial software company [26,29] and specifically at SAP:
the analysis of the licenses, security analysis, and maintenance. Licensing is out
of scope for this work, and we focus on the other two stages.

In the previous section we have already sketched some of the activities that
the security team must perform in both stages. A development team can be
assigned to a maintenance which includes several tasks, security maintenance
being only one of them. Therefore, it is close to impossible to get analytical
accounting for security maintenance to the level of individual vulnerabilities.
Further, when a FOSS component is shared across different consuming applica-
tions, each development team can differ significantly in the choice of the solution
and hence in the effort to implement it.

Therefore, we need to find a proxy for the analysis of our three organizational
models. Preliminary discussion with developers and company’s researchers sug-
gested the combination of vulnerabilities of the FOSS component itself and the
number of company’s products using it. A large number of vulnerabilities may
be the sign of either a sloppy process or a significant attention by hackers and
may warrant a deeper analysis during the selection phase or a significant response
during the maintenance phase. This effort is amplified when several development
teams are asking to use the FOSS component as a vulnerability which eschewed
detection may impact several hundred products and may lead to several security
patches for different products.

We assume that the effort structure has the following form

e = efixed +
m∑

i=1

ei (1)

where ei is a variable effort that depends on the i-th FOSS component, and
efixed is a fixed effort that depends on the security maintenance model (e. g.,
the initial set up costs). For example, with a distributed security maintenance

194 S. Dashevskyi et al.

approach an organization will have less communication overhead and more free-
dom for developers in distinct product teams, but only if a small number of
teams are using a component.

Let |vulnsi| be the number of vulnerabilities that have been cumulatively
fixed for the i-th FOSS component and let |productsi| be the number of propri-
etary products that use the component:

1. In the centralized model a security fix for all instances of a FOSS compo-
nent is issued once by the security team of the company and then distrib-
uted between all products that are using it. This may happen when, as a
part of FOSS selection process, development teams must choose only com-
ponents that have been already used by other teams and are supported by
the company. To reflect this case the effort for security maintenance scales
logarithmically with the number of products using a FOSS component.

ei ∝ log(|vulnsi| ∗ |productsi|) (2)

2. The distributed model covers the case when security fixes are not central-
ized within a company, so each development team has to take care of security
issues in FOSS components that they use. In this scenario the effort for secu-
rity maintenance increases linearly with the number of products using a FOSS
component.

ei ∝ |vulnsi| ∗ |productsi| (3)

3. The hybrid model combines the two previous models: security issues in the
least consumed FOSS components (e. g., used only by lowest quartile of prod-
ucts consuming FOSS) are not fixed centrally. After this threshold is reached
and some effort linearly proportional to the threshold of products to be con-
sidered has been invested, the company fixes them centrally, pushing the
changes to the remaining products.

ei ∝
{ |vulnsi| ∗ |productsi| if |productsi| ≤ p0

p0 ∗ |vulnsi| + log(|vulnsi| ∗ (|productsi| − p0)) otherwise
(4)

As shown in Fig. 1, the hybrid model is a combination of the distributed
model and centralized model, when centralization has a steeper initial cost. The
point V0 is the switching point where the company is indifferent between the cen-
tralized and distributed cost models. The hybrid model captures the possibility
of a company to switch models after (or before) the indifference point. The fixed
effort of the centralized model is obviously higher than the one of a distributed
model (e. g., setting up a centralized vulnerability fixing team, establishing and
communicating a fixing process, etc.).

Hence, we extend the initial function after the threshold number of products
p0 is reached so that only a logarithmic effort is paid on the remaining products.
This has the advantage of making the effort ei continuous in |productsi|. An

On the Security Cost of Using a Free and Open Source Component 195

Number of products

Effort

hybrid
model

distributed
model

centralized
model

V0

initial
effort
(β0)

Fig. 1. Illustration of the three cost models

alternative would be to make the cost logarithmic in the overall number of
products after |productsi| > p0. This would create a sharp drop in the effort
for the security analysis of FOSS components used by several products after p0
is reached. This phenomenon is neither justified on the field, nor by economic
theory. In the sequel, we have used for p0 the lowest quartile of the distribution
of the selected products.

We are not aiming to select a particular model – we consider them as equally
possible scenarios. Our goal is to see which of the FOSS characteristics can have
impact on the effort when such models are in place, keeping in mind that this
impact could differ from one model to another.

We now define the impact that the characteristics of the i-th FOSS compo-
nent have on the expected effort ei as a (not necessarily linear) function fi of
several variables and a stochastic error term εi:

ei = f(xi1, . . . , xil, yil+1, . . . , yim, dim+1, . . . , dn) + εi (5)

The variables xij , j ∈ [1, l] impact the effort as scaling factors, so that a
percentage change in them also implies a percentage change in the expected
effort. The variables yij , l ∈ [l + 1,m] directly impact the value of the effort.
Finally, the dummy variables dij , j ∈ [m + 1, n] denote qualitative properties of
the code captured by a binary classification in {0, 1}.

For example, in our list the 36-th component is “Apache CXF” and the
first scaling factor for effort is the number of lines of code written in popular
programming languages so that xi,1

.= locsPopulari, and x36,1 = 627, 639.
Given the above classification we can further specify the impact equation for

the i-th component as follows

log(ei) = β0 + log(
l∏

j=1

(xij + 1)βj) +
m∑

j=l+1

βi ∗ ey
ij +

n∑

j=m+1

βi ∗ dij + εi (6)

where β0 is the initial fixed effort for a specific security maintenance model.

196 S. Dashevskyi et al.

Table 2. Vulnerability prediction approaches

These models focus on technical aspects of security maintenance of consumed
FOSS components putting aside all organizational aspects (e. g., communication
overhead). For organizational aspects please see ben Othmane et al. [4].

4 Related Work

An extensive body of research explores the applicability of various metrics for
estimating the number of vulnerabilities of a FOSS component.

The simplest metric is time (since release), and the corresponding model
is a Vulnerability Discovery Model. Massacci and Nguyen [14] provide a com-
prehensive survey and independent empirical validation of several vulnerabil-
ity discovery models. Several other metrics have been used: code complexity
metrics [16,24,25], developer activity metrics [24], static analysis defect densi-
ties [27], frequencies of occurrence of programming constructs [21,28], etc. We
illustrate some representative cases in Table 2.

Shin and Williams [25] evaluated software complexity metrics for identifying
vulnerable functions. The authors collected information about vulnerabilities in
Mozilla JavaScript Engine (JSE) from MFSA1, and showed that nesting com-
plexity could be an important factor to consider. The authors stress that their
approach has few false positives, but several false negatives. In a follow-up work,
Shin et al. [24] also analyzed several developer activity metrics showing that
poor developer collaboration can potentially lead to vulnerabilities, and that
code complexity metrics alone are not a good vulnerability predictor.

Nguyen and Tran [16] built a vulnerability prediction model that represents
software with dependency graphs and uses machine learning techniques to train

1 https://www.mozilla.org/en-US/security/advisories/.

https://www.mozilla.org/en-US/security/advisories/

On the Security Cost of Using a Free and Open Source Component 197

the predictor. They used static code analysis tools to compute several source
code metrics and tools for extracting dependency information from the source
code, adding this information to the graphs that represent an application. To
validate the approach, the authors analyzed Mozilla JSE. In comparison to [25],
the model had a slightly bigger number of false positives, but less false negatives.

Walden and Doyle [27] used static analysis for predicting web application
security risks. They measured the static-analysis vulnerability density
(SAVD) metric across version histories of five PHP web applications, which is
calculated as the number of warnings issued by the Fortify SCA2 tool per one
thousand lines of code. The authors performed multiple regression analyses using
SAVD values for different severity levels as explanatory variables, and the post-
release vulnerability density as the response variable showing that SAVD metric
could be a potential predictor for the number of new vulnerabilities.

Scandriato et al. [21] proposed to use a machine learning approach that mines
source code of Android components and tracks the occurrences of specific patterns.
The authors used the Fortify SCA tool: if the tool issues a warning about a file,
this file is considered to be vulnerable. However, it may not be the case as For-
tify can have many false positives, and authors verified manually only the alerts
for 2 applications out of 20. The results show that the approach had good precision
and recall when used for prediction within a single project. Walden et al. [28] con-
firmed that the vulnerability prediction technique based on text mining (described
in [21]) could be more accurate than models based on software metrics. They have
collected a dataset of PHP vulnerabilities for three open source web applications
by mining the NVD and security announcements of those applications. They have
built two prediction models: (1) a model that predicts potentially vulnerable files
based on source code metrics; and (2) a model that uses the occurrence of terms
in a PHP file and machine learning. The analysis shows that the machine learn-
ing model had better precision and recall than the code metrics model, however,
this model is applicable only for scripting languages (and must be additionally
adjusted for languages other than PHP).

Choosing the right source of vulnerability information is crucial, as any vul-
nerability prediction approach highly depends on the accuracy and completeness
of the information in these sources. Massacci and Nguyen [13] addressed the
question of selecting the right source of ground truth for vulnerability analy-
sis. The authors show that different vulnerability features are often scattered
across vulnerability databases and discuss problems that are present in these
sources. Additionally, the authors provide a study on Mozilla Firefox vulner-
abilities. Their example shows that if a vulnerability prediction approach is
using only one source of vulnerability data - MFSA, it would actually miss an
important number of vulnerabilities that are present in other sources such as
MFSA and NVD. Of course, the same should be true also for the cases when
only the NVD is used as the ground truth for predicting vulnerabilities.

To the best of our knowledge, there is no work that predicts the effort required
to resolve security issues in consumed third-party products.

2 http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/.

http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/

198 S. Dashevskyi et al.

5 Data Sources

We considered the following public data sources to obtain the metrics of FOSS
projects that could impact the security effort in maintaining them:

1. National Vulnerability Database (NVD) – the US government public
vulnerability database, we use it as the main source of public vulnerabilities
(https://nvd.nist.gov/).

2. Open Sourced Vulnerability Database (OSVDB) – an independent
public vulnerability database. We use it as the secondary source of public
vulnerabilities to complement the data we obtain from the NVD (http://
osvdb.org).

3. Black Duck Code Center – a commercial platform for the open source
governance can be used within an organization for the approval of the usage
of FOSS components by identifying legal, operational and security risks that
can be caused by these components. We use SAP installation to identify the
most popular FOSS components within SAP.

4. Open Hub (formerly Ohloh) – a free offering from the Black Duck that is
supported by the online community. The Open Hub retrieves data from source
code repositories of FOSS projects and maintains statistics that represent
various properties of the code base of a project (https://www.openhub.net/).

5. Coverity Scan Service website – in 2006 Coverity started the initiative of
providing free static code scans for FOSS projects, and many of the projects
have registered since that time. We use this website as one of the sources that
can help to infer whether a FOSS project is using SAST tools (https://scan.
coverity.com/projects)

6. Exploit Database website – the public exploit database that is maintained
by the Offensive Security3 company. We use this website as the source for the
exploit numbers (https://www.exploit-db.com/).

7. Core Infrastructure Initiative (CII) Census – the experimental method-
ology for parsing through data of open source projects to help identify projects
that need some external funding in order to improve their security. We use a
part of their data to obtain information about Debian installations (https://
www.coreinfrastructure.org/programs/census-project).

6 FOSS Project Metrics Selection

Initially we considered SAP installation of the Black Duck Code Center reposi-
tory as the source of metrics that could impact the security maintenance effort
when using FOSS components. We also performed a literature review and a sur-
vey of other repositories to identify potentially interesting variables not currently
used in the industrial setting, clustering them by the following four categories:

3 https://www.offensive-security.com/.

https://nvd.nist.gov/
http://osvdb.org
http://osvdb.org
https://www.openhub.net/
https://scan.coverity.com/projects
https://scan.coverity.com/projects
https://www.exploit-db.com/
https://www.coreinfrastructure.org/programs/census-project
https://www.coreinfrastructure.org/programs/census-project
https://www.offensive-security.com/

On the Security Cost of Using a Free and Open Source Component 199

Security Development Lifecycle (SDL) – metrics that characterize how the
SDL is implemented within a FOSS project. It includes indicators whether
a project encourages to report security issues privately, is using one or more
static analysis tools during development, etc.

Implementation – various implementation characteristics such as the main
programming language and the type of a project.

Popularity – metrics that are relevant to the overall popularity of a FOSS
project (e. g., user count and age in years).

Effort – we use these variables as the proxy for the desired response variable -
the effort required by companies to update and maintain their applications
that are using FOSS components.

Table 3 shows the initial set of metrics that we considered, describing the
rationale for including them and references to the literature in which the same
or similar metrics were used.

The age of a project, its size and the number of developers (years,
locsTotal, and contribs) are traditionally used in various studies that inves-
tigate defects and vulnerabilities in software [7,31], the software evolution [3,5]
and maintenance [32]. We consider security vulnerabilities to be a specific class
of software defects, which are likely to be impacted by these factors.

Several studies considered the popularity of FOSS projects as being relevant
to their quality and maintenance [19,20,32] - we used userCount from Open Hub
and debianInst from CII Census as measures of popularity for a project. Many
studies investigated whether frequent changes to the source code can introduce
new defects [11,15,24,32,34] - we intended to capture this with locsAdded,
locsRemoved, and commits metrics from Open Hub.

The presence of security coding standards as a taxonomy of common pro-
gramming errors [10,23] that caused vulnerabilities in projects should reduce the
amount of vulnerabilities and the effort as well. We could not find references to
how the presence of security tests could impact the effort.

Wheeler [29] suggested that successful FOSS projects should use SAST tools,
which should at least reduce the amount of “unforgivable” security issues dis-
cussed by Christey [6].

Numbers of vulnerabilities and exploits have a strong correlation (in our
dataset: rho = 0.71, p < 0.01) because security researchers can create exploits
to test published vulnerabilities and, alternatively, they can create exploits to
prove that a vulnerability indeed exists (so that it will be published as a CVE
entry after an exploit was disclosed). We tested both values without finding
significant differences and for simplicity we report here the vulns variable as
the proxy for effort.

After obtaining the values of these metrics for a sample of 50 projects we
understood that only variables that could be extracted automatically and semi-
automatically are interesting for the maintenance phase. Gathering the data
manually introduces bias and limits the size of a dataset that we can ana-
lyze, and, therefore, the validity of the analysis at all. Thus, we removed the

200 S. Dashevskyi et al.

Table 3. FOSS project metrics

On the Security Cost of Using a Free and Open Source Component 201

manual variables and expanded the initial dataset up to 166 projects (at least 5
consuming products in SAP Black Duck repository).

We also tried to find commonalities between FOSS projects and to cluster
them. However, this process would introduce significant human bias. For exam-
ple, the “Apache Struts 2” FOSS component is used by SAP as a library in
one project, and as a development framework in another one (indeed, it can
be considered to be both a framework and a set of libraries). If we “split” the
“Apache Struts 2” data point into another two instances marked as “library”
and “framework”, this would introduce dependency relations between these data
points. Assigning arbitrarily only one category to such data points would also
be inappropriate.

A comprehensive classification of FOSS projects would require to perform a
large number of interviews with developers to understand the exact nature of the
usage of a component and the security risk. However, it is unclear what would
be the added value to developers of this classification.

Below we describe relations between explanatory and response variable:

1. locsPopular and locsBucket (xij) – the more there are lines of code, the
more there are potential vulnerabilities (that are eventually disclosed pub-
licly). We use these two variables instead of just having locsTotal because
almost every project in our dataset is written in multiple programming lan-
guages, including widely-used languages (locsPopular), and rarely-used ones
(locsBucket). Therefore, different ratios between these two variables could
impact the effort differently.

2. locsEvolution (yij) shows how the code base of a project was changed for
the whole period of its life. We compute this metric by obtaining the sum of
the total number of added and removed lines of code divided by locsTotal.
Figure 2 shows that we could not use added and deleted lines of code as
the measure of global changes as they correlate with each other and with
locsTotal, however locsEvolution has no correlations with locsTotal and
can be used as an independent predictor.

3. userCount and debianInst (yij) – the more there are users, the more poten-
tial security vulnerabilities will be reported. debianInst provides an alter-
native measure for userCount, however, the two measures are not exactly
correlated as some software is usually downloaded from the Web (e. g., Word-
press) so it is very unlikely that someone would install it from the Debian
repository, even if a corresponding package exists. On the other hand, some
software may be distributed only as a Debian package.

4. years (yij) – more vulnerabilities could be discovered over time.
5. commits (yij) – many commits introduce many atomic changes that can

lead to more security issues.
6. contribs (yij) – many contributors might induce vulnerabilities as they might

not have exhaustive knowledge on the project and can incidentally break some
features they are unaware of.

202 S. Dashevskyi et al.

7. noManagedLang (dij) – parts written in programming languages without
built-in memory management could have more security vulnerabilities (e. g.,
DoS, Sensitive information disclosure, etc.).

8. scriptingLang (dij) – software including fragments in scripting languages
could be prone to code injection vulnerabilities.

In spite of their intuitive appeal we excluded dummy variables related to the
programming language from our final analysis because we realized that essen-
tially all projects have components of both, therefore, all regression equations
would violate the independence assumption.

Table 4 shows the descriptive statistics of response and explanatory variables
selected for the analysis.

4 5 6 7

4
5

6
7

8

LOCS_TOTAL vs LOCS_ADDED

Total current LOCs (log10 scale)

To
ta

l a
dd

ed
 L

O
C

s
(lo

g1
0

sc
al

e)

4 5 6 7 8

3
4

5
6

7

LOCS_ADDED vs. LOCS_REMOVED

Total added LOCs (log10 scale)

To
ta

l r
em

ov
ed

 L
O

C
s(

lo
g1

0
sc

al
e)

4 5 6 7

3
4

5
6

7

LOCS_TOTAL vs LOCS_REMOVED

Total current LOCs (log10 scale)

To
ta

l r
em

ov
ed

 L
O

C
s

(lo
g1

0
sc

al
e)

4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

LOCS_TOTAL vs LOCS_EVOLUTION

Total current LOCs (log10 scale)

Ev
ol

ut
io

n
of

 p
ro

je
ct

s
(lo

g1
0

sc
al

e)

Fig. 2. The locsEvolution metric

On the Security Cost of Using a Free and Open Source Component 203

Table 4. Descriptive statistics

0.69 3.64 4.43 4.81 5.75 10.13
2.00 38.24 84.50 706.60 316.50 25020.00
2.00 2540.00 44.00 210.10 139.10 4554.00

1.00 7.00 10.00 10.27 13.75 28.00
0.00 9.00 52.00 258.00 178.00 9390.00
0.00 42.75 1407.00 21970.00 12390.00 175900.00
1.00 15.00 32.00 115.20 101.20 1433.00

18.00 1160.00 4365.00 9785.00 8806.00 174803.00
0.00 32350.00 110700.00 345700.00 310700.00 13830000.00

58.00 5216.00 32770.00 195600.00 128000.00 9372000.00
1.70 4.85 7.10 15.18 12.60 638.10

7 Analysis

To analyze the statistical significance of the models and identify the variables
that impact security effort, we employ a least-square regression (OLS). Our
reported R2 values (0.21, 0.34, 0.39) and F-statistic values (5.30, 10.13, 12.41)
are acceptable considering that we have deliberately run the OLS regression with
all variables of interest, as our purpose is to see which variables have no impact.
The results of estimates for each security effort model are given in Table 5.

Zhang et al. [31] demonstrated a positive relationship between the size of a
code base (LOC) and defect-proneness. Zhang [33] evaluated the LOC metrics for
defect prediction and concluded that larger modules tend to have more defects.
Security vulnerabilities are a subclass of software defects, and our results show
that this effect only holds for particular programming languages: the locsPop-
ular variable has a positive impact on the effort (it is statistically significant for
the distributed and hybrid models), the locsBucket is essentially negligible
as a contribution (10−5).

Table 5. Ordinary least-square regression results

204 S. Dashevskyi et al.

The locsEvolution, commits and contribs variables do not seem to have
an impact. We expected the opposite result, as many works (e. g., [7,15,24]) sug-
gest a positive relation between number (or frequency) of changes and defects.
However, these works assessed changes with respect to distinct releases or com-
ponents or methods, while we are using the cumulative number of changes for
all versions in a project; we may not capture the impact because of this.

The study by Li et al. [12] showed that the number of security bugs can grow
significantly over time. Also, according to the vulnerability discovery process
model described by Alhazmi et al. [2], the longer is the active phase of a software
the more attention it will attract, and more hackers will get familiar with it to
break it. Massacci and Nguyen [13] illustrated this model by showing that the
vulnerability discovery rate was the highest during the active phase of Mozilla
Firefox 2.0. We find that the age of a project – years has a significant impact
in all our effort models, thus supporting those models.

It is a folk knowledge that “Given enough eyeballs, all bugs are shallow” [19],
meaning that FOSS projects have the unique opportunity to be tested and scru-
tinized not only by their developers, but by their user community as well. We
found that in our models the number of external users (userCount and debian-
Inst) of a FOSS component has small but statistically significant impact. This
could be explained by the intuition that only a major increase of the popularity
of a FOSS project could result in finding and publishing new vulnerabilities:
not every user would have enough knowledge in software security for finding
vulnerabilities (or motivation for reporting them).

8 Conclusions

In this paper we have investigated the publicly available factors that can impact
the effort required for performing security maintenance process within large soft-
ware vendors that have extensive consumption of FOSS components. We have
defined three security effort models – centralized, distributed, and hybrid,
and selected variables that may impact these models. We automatically collected
data on these variables from 166 FOSS components currently consumed by SAP
products and analyzed the statistical significance of these models.

As a proxy for security maintenance effort of consumed FOSS components we
used the combination of the number of products using a these components, and
the number of known vulnerabilities in them. As the summary of our findings,
the main factors that influence the security maintenance effort are the amount
of lines of code of a FOSS component and the age of the component. We have
also observed that the external popularity of a FOSS component has statistically
significant but small impact on the effort, meaning that only large changes in
popularity will have a visible effect.

As a future work we plan collecting a wider sample of FOSS projects, assess-
ing other explanatory variables and investigating our models further. Using the
data for prediction of the effort is also a promising direction for the future work.

On the Security Cost of Using a Free and Open Source Component 205

Acknowledgments. This work has been partly supported by the European Union
under agreement no. 285223 SECONOMICS, no. 317387 SECENTIS (FP7-PEOPLE-
2012-ITN), the Italian Project MIUR-PRIN-TENACE, and PON - Distretto Cyber
Security attività RI.4.

References

1. Aberdour, M.: Achieving quality in open-source software. IEEE Softw. 24(1), 58–
64 (2007)

2. Alhazmi, O., Malaiya, Y., Ray, I.: Security vulnerabilities in software systems: a
quantitative perspective. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applica-
tions Security 2005. LNCS, vol. 3654, pp. 281–294. Springer, Heidelberg (2005)

3. Beecher, K., Capiluppi, A., Boldyreff, C.: Identifying exogenous drivers and evo-
lutionary stages in floss projects. J. Syst. Softw. 82(5), 739–750 (2009)

4. ben Othmane, L., Chehrazi, G., Bodden, E., Tsalovski, P., Brucker, A.D., Misel-
dine, P.: Factors impacting the effort required to fix security vulnerabilities: An
industrial case study. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290,
pp. 102–119. Springer, Heidelberg (2015)

5. Capiluppi, A.: Models for the evolution of os projects. In: Proceedings of Interna-
tional Conference on Software Maintenance (2003)

6. Christey, S.: Unforgivable vulnerabilities. Black Hat Briefings (2007)
7. Gegick, M., Williams, L., Osborne, J., Vouk, M.: Prioritizing software security

fortification throughcode-level metrics. In: Proceedings of the 4th ACM Workshop
on Quality of Protection (2008)

8. Hansen, M., Köhntopp, K., Pfitzmann, A.: The open source approach opportunities
and limitations with respect to security and privacy. Comput. Secur. J. 21(5), 461–
471 (2002)

9. Hoepman, J.-H., Jacobs, B.: Increased security through open source. Commun.
ACM 50(1), 79–83 (2007)

10. Jones, R.L., Rastogi, A.: Secure coding: Building security into the software devel-
opment life cycle. Inf. Syst. Secur. 13(5), 29–39 (2004)

11. Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., Ubayashi,
N.: A large-scale empirical study of just-in-time quality assurance. IEEE Trans.
Softw. Eng. 39(6), 757–773 (2013)

12. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?:
An empirical study of bug characteristics in modern open source software. In: Pro-
ceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability (2006)

13. Massacci, F., Nguyen, V.H.: Which is the right source for vulnerability studies?:
an empirical analysis on mozilla firefox. In: Proceedings of the 6th International
Workshop on Security Measurements and Metrics (2010)

14. Massacci, F., Nguyen, V.H.: An empirical methodology to evaluate vulnerability
discovery models. IEEE Trans. Softw. Eng. 40(12), 1147–1162 (2014)

15. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of 27th International Conference on Software Engi-
neering (2005)

16. Nguyen, V.H., Tran, L.M.S.: Predicting vulnerable software components with
dependency graphs. In: Proceedings of the 6th International Workshop on Security
Measurements and Metrics (2010)

206 S. Dashevskyi et al.

17. Ozment, A., Schechter, S.E.: Milk or wine: Does software security improve with
age? In: Proceedings of Usenix Security Symposium (2006)

18. Polančič, G., Horvat, R.V., Rozman, T.: Comparative assessment of open source
software using easy accessible data. In: Proceedings of 26th International Confer-
ence on Information Technology Interfaces (2004)

19. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49
(1999)

20. Sajnani, H., Saini, V., Ossher, J., Lopes, C.V.: Is popularity a measure of quality?
an analysis of maven components. In: Proceedings of IEEE International Confer-
ence on Software Maintenance and Evolution (2014)

21. Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.: Predicting vulnerable
software components via text mining. IEEE Trans. Softw. Eng. 40(10), 993–1006
(2014)

22. Schryen, G.: Is open source security a myth? Commun. ACM 54(5), 130–140 (2011)
23. Seacord, R.C.: Secure coding standards. In: Proceedings of the Static Analysis

Summit, NIST Special Publication (2006)
24. Shin, Y., Meneely, A., Williams, L., Osborne, J., et al.: Evaluating complexity, code

churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Trans. Softw. Eng. 37(6), 772–787 (2011)

25. Shin, Y., Williams, L.: An empirical model to predict security vulnerabilities using
code complexity metrics. In: Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (2008)

26. Stol, K.-J., Ali Babar, M.: Challenges in using open source software in product
development: A review of the literature. In: Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development (2010)

27. Walden, J., Doyle, M.: Savi: Static-analysis vulnerability indicator. IEEE Secur.
Priv. J. 10(3), 32–39 (2012)

28. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components: Soft-
ware metrics vs text mining. In: Proceedings of IEEE 25th International Sympo-
sium on Software Reliability Engineering (2014)

29. Wheeler, D.A.: How to evaluate open source software/free software (oss/fs) pro-
grams (2005). http://www.dwheeler.com/oss fs eval.html

30. Wheeler, D.A., Khakimov, S.: Open source software projects needing security
investments (2015)

31. Zhang, D., El Emam, K., Liu, H., et al.: An investigation into the functional form of
the size-defect relationship for software modules. IEEE Trans. Softw. Eng. 35(2),
293–304 (2009)

32. Zhang, F., Mockus, A., Zou, Y., Khomh, F., Hassan, A.E.: How does context affect
the distribution of software maintainability metrics? In: Proceedings of 29th IEEE
International Conference on Software Maintenance (2013)

33. Zhang, H.: An investigation of the relationships between lines of code and defects.
In: Proceedings of IEEE International Conference on Software Maintenance (2009)

34. Zimmermann, T., Nagappan, N., Williams, L.: Searching for a needle in a haystack:
Predicting security vulnerabilities for windows vista. In: Proceedings of Third
International Conference on Software Testing, Verification and Validation (2010)

http://www.dwheeler.com/oss_fs_eval.html

Idea: Usable Platforms for Secure
Programming – Mining Unix
for Insight and Guidelines

Sven Türpe(B)

Fraunhofer Institute for Secure Information Technology SIT,
Darmstadt, Germany

sven.tuerpe@sit.fraunhofer.de

Abstract. Just as security mechanisms for end users need to be usable,
programming platforms and APIs need to be usable for programmers.
To date the security community has assembled large catalogs of dos
and don’ts for programmers, but rather little guidance for the design
of APIs that make secure programming easy and natural. Unix with its
setuid mechanism lets us study usable security issues of programming
platforms. Setuid allows certain programs to run with higher privileges
than the user or process controlling them. Operating across a privilege
boundary entails security obligations for the program. Obligations are
known and documented, yet developers often fail to fulfill them. Using
concepts and vocabulary from usable security and usability of notations
theory, we can explain how the Unix platform provokes vulnerabilities in
such programs. This analysis is a first step towards developing platform
design guidelines to address human factors issues in secure programming.

1 Introduction

When humans, while interacting with technology, run into the same kind of
problem often enough for us to see a pattern, the technology is often at fault: its
design does not sufficiently take into account human factors and human capa-
bilities. Programming is no exception, “programmers are people, too” [2]. We
know numerous vulnerability patterns and collect them in databases like CWE
(http://cwe.mitre.org), but the security community is only starting to pay atten-
tion to the human factors involved in secure programming and the usability of
programming platforms [4,6,12,15,16].

A classical example of vulnerability-inducing platform design is the set-user-
id/set-group-id (setuid/setgid) mechanism of Unix. Setuid lets Unix processes
under certain conditions change their identity (persona) and thus their privileges,
allowing users to run particular programs with elevated privileges.

While useful and even necessary sometimes, setuid is also an inexhaustible
source of vulnerabilities. Hundreds of vulnerability reports related to setuid can
be found in the U.S. National Vulnerability Database (NVD, http://nvd.nist.
gov); new instances continue to appear [8]. While usability issues in the imme-
diate setuid API have been addressed in the literature [5,7,14], setuid causes a
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 207–215, 2016.
DOI: 10.1007/978-3-319-30806-7 13

http://cwe.mitre.org
http://nvd.nist.gov
http://nvd.nist.gov

208 S. Türpe

cariety of challenges elsewhere, which are thus far only covered by secure pro-
gramming guides [1,3,10].

This paper proposes to analyze the guidelines for writing secure setuid pro-
grams and the underlying API design from a usability perspective. While the
secure coding guides are technically sound, programmers apparently have diffi-
culties following them consistently. Are there features in the design of Unix APIs
that make it hard to put secure coding advice into practice? If so, how could
these APIs be improved to make it easier for programmers to write secure code?

The ultimate aim is a collection of applicable design principles for APIs and
programming platforms that facilitate secure programming. Setuid and the Unix
API constitute an ideal starting point for such an investigation: they have been
widely deployed and used, so that a large body of accessible code exists. Setuid
also facilitates comparison, as a flip of a bit changes the security context of a
program without any change in its code.

After briefly describing the setuid mechanism, this paper applies parts of
existing usability and usable security theory to a toy program, demonstrating
how such an analysis can yield insight.

2 Setuid in a Nutshell

Unix processes access kernel functions and system resources through the ker-
nel’s syscall API. The kernel enforces two kinds of policies there. First, files
and file-like resources (device files, named pipes, sockets, etc.) are subject to
discretionary access control. Second, some functions in the syscall API require
superuser privileges to be called at all or with unrestricted parameter values.

The kernel makes its access control decisions based on the persona associated
with a process. A process persona comprises an effective user id (EUID) and
one or more group IDs. File access control uses these IDs together with a file’s
ownership (user and group) to select the set of permission bits to evaluate before
granting or denying access. The superuser (root, user ID 0) can override these
permission checks and access any file. A process with effective user ID 0 is also
the only way to get unrestricted access to the syscall API.

2.1 Setuid Mechanism

A regular process inherits its persona from its parent. This behavior corresponds
with the intuition of a user session: upon login, a user obtains a shell process
with the appropriate persona, and whatever is being run from there has the same
persona and privileges [9,13]. The setuid mechanism allows some programs to
run with a different persona; it has two parts:

1. The setuid/setgid permission bits, when set on program files, override identity
inheritance. When a program with one of these bits is executed, the child
process runs with the effective user or group ID determined by the file owner,
rather than those inherited from the parent. Inherited IDs are also preserved,
so that the process can switch privileges.

Idea: Usable Platforms for Secure Programming 209

2. The setuid()/setgid(family of system calls allows processes to manipu-
late their own persona, subject to a number of constraints. A process with
EUID = 0 can take on any persona; this is also used to configure the persona
of a login shell after user authentication. Processes with other effective user
IDs cannot normally change their persona. However, in conjunction with the
setuid permission bits, a process can drop and regain privileges.

For detail on setuid, its pitfalls, and proposed design improvements see the lit-
erature on setuid [5,7,14] and Unix programming [10,13].

2.2 Uses

Setuid is a versatile and useful mechanism and allows programs to handle cases
not covered by the semantics and granularity of file access control. Setuid is
used, for example, in these cases:

– The login program, running with root privileges, uses the setuid()/setgid()
API to personalize the shell process for an authenticated user.

– File access control cannot enforce finer-grained policies. Unix password files,
for example, need line-by-line access control so that non-root users can change
only their own passwords. A setuid program can enforce arbitrary policies on
resources accessible for the program but not for its users.

– Some programs need to make privileged system calls but should nevertheless
be started and controlled by a regular user. The standard ports for HTTP
(80) and HTTPS (443), for example, are privileged. Otherwise, however, a
web server is a regular program that needs no special privileges.

In principle, setuid may be used with any user identity. However, setuid root is
the most common and also the most critical use.

3 Security Obligations and Programming Rules

3.1 Security Obligations

Setuid places a process at a privilege boundary. Program code is being executed
with elevated privileges while input is controlled and output is received by a user
holding at most a subset of these privileges. Input includes a program’s standard
input stream, files read by the program, environment variables, signals, and
possibly interactive commands. Output includes the standard output stream,
error or log messages, and files written or manipulated.

On the one hand, setuid allows designated programs to refine and extend the
access control policy enforced by a system. The passwd program, for example,
which allows users to change their own password but not those of other users,
enforces a policy on lines of the password file, whereas file access control can only
enforce permissions on entire files. On the other hand, a program at a privilege
boundary becomes a guardian of the higher privilege. A program meant to attain
privileges by the setuid mechanism needs to make sure that

210 S. Türpe

1. It enforces the required policy completely and correctly. Any failure to do so
defeats its purpose.

2. No matter what the caller does to inputs and outputs, the program does not
support any operation not part of its intended purpose.

The latter is the harder problem. Consider just some of the things that should
not happen across a privilege boundary:

– Write user-controlled data to a user-selected file
– Execute user-specified commands or code with elevated privileges
– Read files and forward information about their content to the user.

Data and control flows must be carefully constrained across the entire input and
output space of the program. Due to the purpose of the program – extending
and refining access control – this burden rests with the program alone.

3.2 Programming Rules

The abstract obligations of a setuid program translate into a larger set of rules
for the programmer. Bishop [3] developed an early set of rules, including items
like:

– “Close all but necessary file descriptors before calling exec.” (The exec call
loads and runs a new program within the process, replacing the one currently
running. Open files remain open.)

– “Check the environment in which the process will run.” (The process envi-
ronment is inherited from the parent. It contains a number of user-controlled
variables and parameters, which influence the behavior of library functions
and programs.)

– “Make only safe assumptions about recovery of errors.” (Attempts at error
recovery that might be helpful in a regular program can become dangerous in
conjunction with setuid.)

Such rules have their roots in design subtleties that can be exploited in a setuid
setting. The process environment, for example, is passed on silently in the back-
ground and controls critical behaviors of programs and libraries – how program
files are searched, how new files are created, and so on.

Garfinkel et al. [10] later offered advanced design guidelines, advising pro-
grammers, for example, to bracket code sections that actually need elevated
privileges between code that restores privileges before and drops them after a
the respective calls. Chen et al. [5] propose a revision of the setuid API that
makes this idiom easier to use and more robust.

4 Example: A Good Program Turning Vulnerable

4.1 Hello, World!

Listing 1 outlines a “Hello, world!” program, which instead of just printing its
message, sends an email to the address specified as the first command line argu-
ment. After some declarations, the program creates a command string of the

Idea: Usable Platforms for Secure Programming 211

form mail <email addr> in the string buffer cmd (line 8), executes this com-
mand through a popen() call (line 9), and writes the message to the pipe thus
opened (line 10). All error handling has been omitted for brevity, but should be
straightforward: verify that argv[1] is present (let the mail program care about
syntax) and check return values after each call.

Listing 1. This program has multiple vulnerabilities when executed setuid root.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main(int argc , char *argv []) {
5 char cmd [256] ="";
6 FILE *mail = NULL;
7 /* ... */
8 snprintf(cmd , 256, "mail %s", argv [1]);
9 mail = popen(cmd , "w");

10 fputs ("Hello , world!\n", mail);
11 pclose(mail);
12 return 0;
13 }

Apart from the intentional omission of error handling, the program in
Listing 1 exhibits two reasonable design decisions. First, the program reuses the
existing mail command, which in turn takes care of the complexities of email
sending. Second, our “Hello, world!” program uses popen() to call this subpro-
gram. This, too, hides complexity from the programmer and takes care of many
details. Using lower-level calls, such as fork() and exec(), to implement the
same functionality would require a lot more code; popen() together with the file
API of the C standard library offers a convenient abstraction. As popen() uses
the Unix shell to execute commands and child processes inherit environments,
programs executed this way also follow platform conventions, such as searching
for programs as specified by the PATH variable or honoring the LANG and LC *
environment variables controlling internationalization.

4.2 Some Vulnerabilities

As soon as the setuid mechanism is applied to run the program in Listing 1 with
root privileges while keeping an unprivileged user in control of its inputs, the
program becomes a ragbag of vulnerabilities:

– Line 8 embeds user input in a command string to be executed by a command
interpreter. The caller can use a variety of separators and other mechanisms
to sneak in arbitrary commands to be executed with elevated privileges.

– Line 8 does not specify an absolute path for the mail command. The shell
invoked by the popen() call in line 9 will hence search for an executable file
named mail in the directories specified in the PATH environment variable; the

212 S. Türpe

caller can manipulate the search path so that an arbitrary program named
mail is found first.

– Line 9 executes the prepared command as a child process, passing on all
environment variables. These variables may influence the operation of the
mail command or the hidden shell used to execute this command.

As an immediate mitigation, the programmer might (1) specify an absolute
path to the mail command [10] and (2) use lower-level calls to spawn the
mail subprocess without executing a shell command or searching files along
an environment-specified path [1]. It is also recommended to (3) sanitize envi-
ronment variables [3,10] and to (4) assure open file descriptors do not leak across
privilege boundaries [3].

To reduce the risk from buffer overflow and similar defects, which can occur
anywhere in a program, and as a general matter of hygiene, it is further rec-
ommended to employ either of two patterns dependent on how often elevated
privileges are required: (a) carry out all privileged work early, then drop priv-
ileges permanently, or (b) drop privileges temporarily whenever they are not
needed. This reduces the amount of code actually running with elevated privi-
leges. Getting privilege changes right can be a challenge of its own [5,14].

5 The API Usability Perspective

For every possible functional specification we can think of two different pro-
gramming tasks TR and TS , where TR is the task of writing a program that
approximates the specified behavior closely enough, and TS is the same task
with the additional requirement that the result also be secure. Translated into
Unix with its setuid mechanism, TR is the task of writing a regular program that
runs with the privileges of the user controlling its inputs, and TS is the task of
writing a functionally equivalent program suitable for setuid root use.

Ideally, task TS of writing a secure program should not be harder to accom-
plish than task TR of writing an equivalent regular program. If we can iden-
tify factors in platform and API design that systematically make TS harder to
accomplish than the corresponding TR, then the platform leaves room for usabil-
ity improvement. The ideal “don’t care” situation may not be attainable, but
perhaps security mechanisms and APIs can be redesigned to make it easier for
programmers to fulfill their remaining security duties.

To identify factors that complicate secure programming we can apply usable
security principles [17] and general API usability guidelines [11]. The following
two subsections will illustrate this for subsets of the respective criteria.

5.1 Usable Security Principles

Yee [17] proposes ten principles of user interaction design for secure systems.
Although programming tasks differ in important respects from interactive use
of a program or security mechanism, some of these principles can be applied to
programming environments. Two examples:

Idea: Usable Platforms for Secure Programming 213

Path of Least Resistance. “The most natural way to do any task should also
be the most secure way” [17]. This is a different way of putting the ideal outlined
above, where the programmer just does not have to care about security. Many
secure programming rules imply that programmers should replace short and
straightforward pieces of code with longer and more complicated ones. Apple’s
secure programming guide [1], for example describes a supposedly secure alter-
native to the popen() call. This recommended alternative would vastly increase
the length of the example in Listing 1, introduce some potential for new defects,
and require the programmer to deal with lower-level APIs. Requiring such pro-
gramming games [11] clearly violates the path of least resistance principle.

Explicit Authorization. Originally referring to transfers of a user’s authority
to others, explicit authorization can be required for any critical aspect. The
setuid mechanism violates this principle by placing programs in a security-critical
context without asking for the programmer’s consent. Rather than letting the
programmer acquire privileges when needed, the platform forces programmers
to drop privileges when they do not need them. From the programmer’s point
of view, running with elevated privileges is the default rather than an explicitly
authorized exception.

5.2 Cognitive Dimensions

The cognitive dimensions framework [11] provides a vocabulary to discuss usabil-
ity properties of programming languages, APIs, and other information artefacts.
A discussion by the cognitive dimensions merely describes properties of a nota-
tion; how these properties affect usability depends on the kind of task to be
accomplished. Programming as an interactive design task imposes high demands
on the notation. The cognitive dimensions include aspects like the following:

Hard Mental Operations. Some operations, such as Boolean logic, are inher-
ently hard to carry out for the human mind. A notation requiring such operations
to be understood therefore becomes hard to use. Secure programming in a setuid
scenario requires the programmer to keep track of data flows between the two
privilege levels, regular and elevated, and make sure the program cannot be
abused to read or write data with elevated privileges beyond its intended pur-
pose and policy. However, this is nearly impossible even for small programs. The
example in Listing 1 is only a toy program without subroutines, yet it contains
already two indirections: to understand the fputs() call in line 10, one has to
track the file handle mail to the popen() call before, which in turn depends on a
command assembled in line 8 using user input (argv[1]). This becomes hopeless
rather quickly as programs grow.

Visibility. To write secure setuid programs, the programmer has to follow
numerous rules, but the API does not give any hints as to which rules to apply

214 S. Türpe

when and where. There are no defined markers for safe or unsafe functions or
for data that could or should not be used in certain ways. Secure programming
rules rely entirely on information in the programmer’s head. The programmer
needs to know the inner workings of functions like popen() to understand the
risks, contrary to the idea that functions should hide implementation detail and
rather adhere to an explicit contract.

Hidden Dependencies. Hidden dependencies occur if actions in one place
have a non-obvious effect elsewhere. In the case of popen(), a hidden depen-
dency exists between the process environment and the behavior of popen().
Environment variables are being passed on down the process tree. The program-
mer can intervene, but as a default, environment variables are hidden from the
programmer rather than passed explicitly.

6 Outlook

Although incomplete, the preceding analysis already suggests some directions
for API redesign. An improved version of the Unix API could for example:

– Let programmers acquire privileges and corresponding responsibilities through
an explicit call,

– Offer safe alternatives to unsafe functions, so that secure alternatives do not
require writing more code, and

– Detect inappropriate security contexts inside critical functions and return an
error when a functions is being called where it shouldn’t.

The second step of research after analysis of the existing API is therefore improve-
ment. Tradeoffs will likely appear between the different design goals, so even if
we know what to aim for, devising an improved API remains a challenge. Finally,
any proposed improvement needs to be tested with real programmers. This may
be the hardest part. Research prefers small, controlled lab experiments, whereas
real programming takes place in large projects and code bases and is done by
programmers that acquire skills and habits over time as they use and reuse plat-
forms. As an alternative, once a set of usability principles has been established,
other platforms and their program vulnerbility patterns can be analyzed to see
whether the principles explain the patterns.

For the first two steps, a vast amount of data is freely available for research.
Vulnerability databases are full of reports of defect instances. Many of those con-
cern open source software and can be reviewed. Open source platform implemen-
tations – Linux and *BSD – facilitate experimentation, the more so as extensions
like Linux capabilities, SELinux, and Capsicum exist, which address the same
set of issues from a technical rather than from a human factors perspective.

Idea: Usable Platforms for Secure Programming 215

References

1. Apple Inc.: Secure Coding Guide, 2014-02-11 edn. (2006–2014). https://
developer.apple.com/library/mac/documentation/Security/Conceptual/
SecureCodingGuide/

2. Arnold, K.: Programmers are people, too. ACM Queue 3(5), 54–59 (2005)
3. Bishop, M.: How to write a setuid program. Login 12(1), 5–11 (1987)
4. Cappos, J., Zhuang, Y., Oliveira, D., Rosenthal, M., Yeh, K.C.: Vulnerabilities

as blind spots in developer’s heuristic-based decision-making processes. In: Pro-
ceedings of New Security Paradigms Workshop, NSPW 2014, pp. 53–62. ACM,
New York, NY, USA (2014)

5. Chen, H., Wagner, D., Dean, D.: Setuid demystified. In: USENIX Security Sym-
posium, pp. 171–190 (2002)

6. Crandall, J.R., Oliveira, D.: Holographic vulnerability studies: vulnerabilities as
fractures in interpretation as information flows across abstraction boundaries. In:
Proceedings of New Security Paradigms Workshop, NSPW 2012, pp. 141–152.
ACM, New York, NY, USA (2012)

7. Dittmer, M.S., Tripunitara, M.V.: The unix process identity crisis: a standards-
driven approach to setuid. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2014, pp. 1391–1402. ACM,
New York, NY, USA (2014)

8. Esser, S.: OS X 10.10 DYLD PRINT TO FILE local privilege escala-
tion vulnerability. https://www.sektioneins.de/blog/15-07-07-dyld print to file
lpe.html (2015)

9. Free Software Foundation Inc: The GNU C Library Reference Manual, glibc 2.22
edn, August 2015. https://www.gnu.org/software/libc/manual/

10. Garfinkel, S., Spafford, G., Schwartz, A.: Practical UNIX and Internet Security,
3rd edn. O’Reilly Media, Sebastopol (2003)

11. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996)

12. Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.C., Cappos, J., Zhuang, Y.: It’s the
psychology stupid: how heuristics explain software vulnerabilities and how priming
can illuminate developer’s blind spots. In: Proceedings of 30th Annual Computer
Security Applications Conference, ACSAC 2014, pp. 296–305. ACM, New York,
NY, USA (2014)

13. Stevens, W.R.: Advanced Programming in the UNIX Environment. Addison-
Wesley Publishing Company, Reading (1992)

14. Tsafrir, D., Da Silva, D., Wagner, D.: The murky issue of changing process identity:
revising “setuid demystified”. Login 33(3), 55–66 (2008)

15. Türpe, S.: Point-and-shoot security design: can we build better tools for devel-
opers? In: Proceedings of New Security Paradigms Workshop, NSPW 2012, pp.
27–42. ACM, New York, NY, USA (2012)

16. Wurster, G., van Oorschot, P.C.: The developer is the enemy. In: Proceedings of
New Security Paradigms Workshop, NSPW 2008, pp. 89–97. ACM, New York, NY,
USA (2008)

17. Yee, K.-P.: User interaction design for secure systems. In: Deng, R.H., Qing, S.,
Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 278–290. Springer,
Heidelberg (2002). doi:10.1007/3-540-36159-6 24

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.sektioneins.de/blog/15-07-07-dyld_print_to_file_lpe.html
https://www.gnu.org/software/libc/manual/
http://dx.doi.org/10.1007/3-540-36159-6_24

AppPAL for Android

Capturing and Checking Mobile App Policies

Joseph Hallett(B) and David Aspinall

School of Informatics, University of Edinburgh, Edinburgh, UK
s1361467@sms.ed.ac.uk

Abstract. It can be difficult to find mobile apps that respect one’s
security and privacy. Businesses rely on employees enforcing company
mobile device policies correctly. Users must judge apps by the informa-
tion shown to them by the store. Studies have found that most users
do not pay attention to an apps permissions during installation [19] and
most users do not understand how permissions relate to the capabilities
of an app [30]. To address these problems and more, we present AppPAL:
a machine-readable policy language for Android that describes precisely
when apps are acceptable. AppPAL goes beyond existing policy enforce-
ment tools, like Kirin [16], adding delegation relationships to allow a
variety of authorities to contribute to a decision. AppPAL also acts as
a “glue”, allowing connection to a variety of local constraint checkers
(e.g., static analysis tools, packager manager checks) to combine their
results. As well as introducing AppPAL and some examples, we apply
it to explore whether users follow certain intended policies in practice,
finding privacy preferences and actual behaviour are not always aligned
in the absence of a rigorous enforcement mechanism.

1 Introduction

Finding the right apps can be tricky. Users need to discover which are not going
to abuse their data. This can be difficult as it isn’t obvious how apps use the
data each has access to. Consider a user attempting to buy a flashlight app. By
searching the Play store the user is presented with a long list of apps. Clicking
through each one they can find the permissions each requests but not the reasons
why each was needed. They can see review scores from users but not from tools
to check apps for problems and issues like SSL misconfigurations [17]. If they
want to use the app at work will it break their employers rules for mobile usage?

App stores give some information about their apps; descriptions, screenshots
and review scores. Android apps show a list of permissions when they’re first
installed. In Android Marshmallow apps will display permissions requests when
the app first tries to access sensitive data (such as contacts or location informa-
tion). Users do not understand how permissions relate to their device [19,46].
Ultimately the decision of which apps to use and which permissions to grant
must be made by the device user.

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 216–232, 2016.
DOI: 10.1007/978-3-319-30806-7 14

AppPAL for Android 217

Some apps are highly undesirable. Many potentially unwanted programs (PUP)
are being propagated for Android devices [45,47]. Employees are increasingly using
their own phones for work. An employer may restrict which apps their employ-
ees can use. The IT department may set a mobile device policy—a series of rules
describing what kinds of apps may be used and how—to prevent information leaks.
Some users worry that apps will misuse their personal data—sending their address
book or location to an advertiser without their permission. Such a user avoids apps
which can access their location, or address book; they may apply their own per-
sonal security policies when downloading and running apps.

These policies can only be enforced by the users continuously making the
correct decision when prompted about apps. An alternative is to write the policy
down and make the computer enforce it. To implement this we propose using a
logic of authorization—a language designed to express rules about permissible
actions.

We present AppPAL, an instantiation of Becker et al.’s SecPAL [6] with
constraints (statements checkable using information external to the language
such as the time of day or static analysis tools) and predicates that allow us to
decide which apps to run or install. The language allows us to reason about apps
using statements from third parties. AppPAL allows us to enforce the policies
on a device. We can express trust relationships amongst these parties and use
constraints to do additional checks, such as using security checks. This lets us
enforce more complex policies than existing tools such as Kirin [16] which are
limited to permissions checks. Policies can be enforced by the stores selling the
apps, on the devices installing apps or by third-parties providing app vetting
services.

Consider the following example: a user, Alice, may have rules she has to
follow when using apps for work and her own policies when using apps at home
in her private life. Using AppPAL we can write policies for work and home, and
decide which policy to enforce using a user’s location, or the time of day:

’ alice ’ says App isRunnable

if’home−policy’ isMetBy(App)

where at(’work’) = false.

’ alice ’ says App isRunnable

if’work−policy’ isMetBy(App)

where beforeHourOfDay(’17’) = true.

We can delegate policy specification to third parties or roles, and assign princi-
pals to roles:

’ alice ’ says’ it−department’ can-say’work−policy’ isMetBy(App).

’ alice ’ says’ alice ’ can-act-as’it−department’.

We can write policies specifying which permissions an app must or must not
have by its app store categorization. For example, it would be okay allowing a
photography app access to the camera, but not to allow access to location data
if the user doesn’t want their photos geotagged.

’ alice ’ says App isRunnable

if’ permissions−policy’ isMetBy(App).

’ alice ’ says’permissions−policy’ isMetBy(App)

if App isAnApp

218 J. Hallett and D. Aspinall

where

category(App,’Photography’),
hasPermission(App,’LOCATION’) = false,

hasPermission(App,’CAMERA’) = true.

There has been much work developing app analysis tools for Android. Tools
such as Stowaway [18] detect over-privileged apps. TaintDroid [15] and Flow-
Droid [1,33] can do taint and control flow analysis; sometimes even between app
components. Other tools like QUIRE [11] can find privilege escalation attacks
between apps. ScanDAL [31] and SCanDroid [21] help detect privacy leaks.
Appscopy [20] searches for specific kinds of malware. Tools like DroidRanger [49]
scan app markets for malicious apps. Various tools such as AppGuard [3],
Dr. Android and Mr. Hide [29] or AppFence [27] can control the permissions
or data an app can get. MalloDroid [17] looks for apps configured to use SSL
incorrectly (for instance by not verifying hostnames or certificates).

AppPAL can act as a “glue” between static analysis tools and the app instal-
lation policies device owners are trying to enforce. This avoids creating tools with
hard-coded fixed policies. For example a store might not want to sell apps with
SSL errors or apps flagged by an anti-virus tool. Using AppPAL we can combine
tools for checking apps to implement the store’s policies.

’ play−store’ says App isSellable

if App isAnApp

where mallodroidCheck(App) = true,

mcafeeAVCheck(App) = true.

No additional attempt is made to ensure these static analysis tools are sound.
The policy designer must be aware of the tool’s limitations. Black or whitelisting
may have to be used to avoid some false positives or negatives.

2 Enforcing a Policy at Work

An employee Alice works for Emma. Emma allows Alice to use her personal
phone as a work phone but has some specific concerns.

– Alice shouldn’t run any apps that can track her movements. Alice’s workplace
is at a secret location and it mustn’t be leaked.

– Apps should come from a reputable source, such as the Google Play Store.
– Emma uses an anti-virus (AV) program by McAfee. It should check all apps

before they’re installed.

To ensure this policy is met Alice promises to follow it. She might even sign
a document promising never to break the rules within the policy. This is error-
prone—what if she makes a mistake or misses an app that breaks her policy?
Alternatively Emma’s policy could be partially enforced using existing tools.
Google’s Device Policy for Android [23] could configure Alice’s device to disallow
apps from outside the Google Play Store and let Emma set the permissions
granted to each app [40].

AppPAL for Android 219

We could implement Emma’s policy using existing tools (such as an AV
checker, and a taint analysis tool like Flowdroid [1,33]) but it is a clumsy
solution—they are not flexible. Each has to be configured separately to imple-
ment only part of the policy. If Emma changes her policy or Alice changes jobs
she must recheck her apps and then alter or remove the software on her phone
to ensure compliance. It isn’t clear what an app must do to be run, or what
checks have been done if it is already running on the phone. The relationship
between Alice (the user), Emma (the policy setter) and the tools Emma trusts
to implement her policy isn’t immediately apparent.

What happens when Alice goes home? Emma shouldn’t be able to overly
control what Alice does in her private life. Alice might not be allowed to use
location tracking apps at work but at home she might want to (to meet friends,
track jogging routes or find restaurants for example). Some mobile OSs, such
as iOS and the latest version of Android, allow app permissions to be enabled
and disabled at run time. Can we enforce different policies at different times or
locations?

Fig. 1. Ecosystem of devices and stores with AppPAL.

We propose using the mobile ecosystem shown in Fig. 1. People have policies
which are enforced by AppPAL on their devices. They can be composed with
policies from employers or others to create enhanced devices that ensure apps
meet the policies of their owners. The device can make use of vetting services
which run tools to infer complex properties about apps. Users can buy from
enhanced stores which ensure the only apps they sell are the apps which meet
the store’s explicit policies, or ones requested by users. Developers could decide
which stores to sell their apps in on the basis of policies about stores.

3 Expressing Policies in AppPAL

In Sect. 2, Alice and Emma had policies they wanted to enforce but no means
to do so. Instead of using several tools to enforce Emma’s policy disjointedly, we
could use an authorization logic. In Fig. 2 we give an AppPAL policy
implementing Emma’s app concerns on Alice’s phone.

220 J. Hallett and D. Aspinall

SecPAL is a logic of authorization for access control decisions in distributed
systems. It has a clear and readable syntax, as well as rich mechanisms for
delegation and constraints. SecPAL has already been used as a basis for other
policy languages in areas such as privacy preferences [7] and data-sharing [2].
We present AppPAL as a modified form of SecPAL, aimed at mobile apps.

Other access control languages, such as XACML 3.0 [37], could also have
been used as the basis for AppPAL. SecPAL however can capture distribution
and delegation relationships between principles and serves as a simplified model
of a more complex system like XACML, and has a well defined semantics, and
decidability.

Fig. 2. AppPAL policy implementing Emma’s security requirements.

In line 2 Alice lets Emma specify whether an App (a variable) isRunnable; she
allows her to delegate the decision (can-say inf). Emma specifies her concerns
as policies to be met in line 4: if Emma is convinced that these are met then she
will say the App isRunnable. In line 10 and line 14 Emma specifies that an app
meets the reputable-policy if the App isBuyable; with ’google−play’ deciding of
what is buyable or not. Google is not allowed to delegate the decision further,
i.e. Google is not allowed to specify Amazon as a supplier of apps as well. Emma
specifies the ’ anti−virus−policy’ in line 15 using a constraint. When checking
the policy the mcAfeeVirusCheck should be run on the App. Only if this returns
false will the policy be met. To specify the ’no−tracking−policy’ Emma says that
the ’no−location−permissions’ rules implement the ’no−tracking−policy’ (line 21).
Emma specifies this in line 24 by checking the app is missing two permissions.

Alice wants to install a new app (com.facebook.katana) on her phone. She
collects statements to show the app meets the isRunnable predicate.

– ’google−play’ says’com.facebook.katana’ isReputable. Required to convince
Emma that the app came from a reputable source.

– ’emma’says’anti−virus−policy’ isMetBy(’com.facebook.katana’). She can obtain
this by running the AV program on her app.

– ’emma’says’no−locations−permissions’ isMetBy(’com.facebook.katana’). Needed
to show the App meets Emma’s no-tracking-policy. Emma will say this if
the app has no location permissions.

AppPAL for Android 221

These last two statements require the checker to do some extra checks to satisfy
the constraints. To get the second statement AppPAL must run the AV program
on her app and check the result. The results from the AV program may change
with time as its signatures are updated; so the checker must re-run this check
every time it wants to obtain the statement connected to the constraint. For the
third statement the AppPAL checker needs to examine the permissions of the
app. It could do this by looking in the MANIFEST.xml inside the app itself, or
through the Android package manager if it is running on a device.

We could also imagine Emma wanting a personalised app store where all
apps sold meet her policy. With AppPAL this can be implemented by taking an
existing store and selectively offering only the apps which will meet the user’s
policy. This gives us a filtered store which, from an existing set of apps, we get
a personalised store that only sells apps that meet a policy.

4 AppPAL

AppPAL is implemented as a library for Android and Java. The parser is imple-
mented using ANTLR4. AppPAL’s syntax is inherited from SecPAL [6] (shown
in Fig. 3).

Fig. 3. Structure and simplified grammar of an AppPAL assertion.

In SecPAL the precise nature of predicates and constraints is left open. In
instantiating SecPAL, AppPAL makes the predicates and constraints explicit.
AppPAL policies can make use of the predicates and constraints in Table 1.
Additional predicates can be created in the policy files, however constraints
must be implemented individually. For example, on Android the hasPermission
constraint uses the Android package manager to check what permissions an app
requests, but the Java version uses the Android platform tools to check.

Splitting the decision about whether an app is runnable into a series of poli-
cies that must be met gives us flexibility in how the decision is made. It allows
us to describe multiple means of making the same decision, and provide backup
routes when one fails. Some static analysis tools are not quick to run. Even
taking minutes to run a battery draining analysis can be undesirable: if a user
wants to download an app quickly they may not be willing to wait to check
that a policy is met. In that case, it may be preferable to delegate to an online
database.

222 J. Hallett and D. Aspinall

Table 1. AppPAL predicates and constraints.

Name Description

App isRunnable Says an app can be run

App isInstallable Says an app can be installed

App isAnApp Tells AppPAL that an app exists

Policy isMetBy(App) Used to split policies into smaller components

hasPermission(App, Permission) Constraint to check if an app has a permission

beforeHourOfDay(time) Constraint used to check the time

ToolCheck(App, Property) Constraint to run an analysis tool on an app

In Sects. 2 and 3 we described a no-tracking-policy to prevent a user’s location
being leaked. In Emma’s policy we checked this using the app’s permissions; if
the app couldn’t get access to the GPS sensors (using the permissions) then it
meets this policy. Some apps may want to access this data, but may not leak
it. We could use a taint analysis tool to detect this (e.g. FlowDroid [1,33]). Our
policy becomes:

’emma’ says’no−locations−permissions’
can-act-as’no−tracking−policy’.

’emma’ says’no−locations−permissions’ isMetBy(App)

if App isAnApp

where

hasPermission(App,’ACCESS FINE LOCATION’) = false,

hasPermission(App,’ACCESS COARSE LOCATION’) = false.

’emma’ says’location−taint−analysis’
can-act-as’no−tracking−policy’.

’emma’ says’location−taint−analysis’ isMetBy(App)

if App isAnApp

where

flowDroidCheck(App,’Location’,’Internet’) = false.

Sometimes we might want to use location data. For instance Emma might
want to check that Alice is at her office. Emma might track Alice using a location
tracking app. Provided the app only talks to Emma, and it uses SSL correctly
(using MalloDroid [17]) she is happy to relax the policy.

’emma’ says’relaxed−no−tracking−policy’ canActAs’no−tracking−policy’.
’emma’ says’relaxed−no−tracking−policy’ isMetBy(App)

if App hasCategory(’tracking’)
where

mallodroidSSLCheck(App) = false,

connectionsCheck(App,’[https://emma.com]’) = true.

AppPAL for Android 223

This gives us four different ways of satisfying the no-tracking-policy : with
permissions, with taint analysis, with a relaxed version of the policy, or by Emma
directly saying the app meets it. When we come to check the policy if any of
these ways give us a positive result we can stop our search.

4.1 Policy Checking

AppPAL has the same policy checking rules as SecPAL [6]. AppPAL uses an
assertion context of known facts and rules, as well as facts deduced while check-
ing. While Becker et al. used a DatalogC based checking algorithm, we have
implemented the rules directly in Java as no DatalogC library is currently avail-
able for Android. Pseudo-code is shown in Fig. 4.

On a mobile device memory is at a premium. We want to keep the assertion
context as small as possible. For some assertions (like isAnApp) we derive them by
checking the arguments at evaluation time. This gives us greater control of the
evaluation and how the assertion context is created. For example, when checking
the isAnApp predicate; we can fetch the assertion that the subject is an app based
on the app in question. When delegating we will also be able to request facts
from the delegated party dynamically (although this is not yet implemented).

Fig. 4. Partial-pseudocode for AppPAL evaluation.

4.2 Benchmarks

When AppPAL runs on a mobile phone, apps should be checked as they are
installed. Since policy checks may involve inspecting many rules and constraints
one may ask whether the checking will be acceptably fast. Downloading and
installing an app takes about 30 seconds on a typical Android phone over wifi.
If checking a policy delays this even further a user may become annoyed and
disable AppPAL.

224 J. Hallett and D. Aspinall

The policy checking procedure is at its slowest when having to delegate
repeatedly; the depth of the delegation tree is the biggest factor for slowing the
search. Synthetic benchmarks were created to check that the checking procedure
performed acceptably. Each benchmark consisted of a chain of delegations. The
1 to 1 benchmark consists of a repeated delegation between all the principals.
In the 1 to 2 benchmark each principal delegated to 2 others and in the 1 to 3
benchmark each principal delegated to 3 others. These benchmarks are reason-
able as they model the slowest kinds of policies to evaluate—though worse ones
could be designed by delegating even more or triggering an expensive constraint
check.

For each benchmark we controlled the number of principals in the policy file:
as the number of principals increased so did the size of the policy. The results
are shown in Fig. 5. We have only used a few delegations per decision when
describing hypothetical user policies. We believe the policy checking performance
of AppPAL is acceptable as unless a policy consists of hundreds of delegating
principals the overhead of checking an AppPAL policy is negligable.

Fig. 5. Benchmarking results on a Nexus 4 Android phone.

5 Measuring Policy Compliance

Throughout we have asserted that users often have informal policies and that
there is a need for policy enforcement tools. Corporate mobile security bring
your own device (BYOD) policies have started appearing and NIST have issued
recommendations for writing them [41,44]. In a study of 725 Android users,
Lin et al. found four patterns that characterise user privacy preferences for
apps [35] demonstrating a refinement of Westin’s privacy segmentation index [32].
Using app installation data from Carat [12,38] we used AppPAL to find the apps
satisfying each policy Lin et al. identify and measure the extent that each user
was following a policy.

Lin et al. identified four types of user. The Conservative (C) users were
uncomfortable allowing an app access to any personal data for any reason.

AppPAL for Android 225

The Unconcerned (U) users felt okay allowing access to most data for almost
any reason. The Advanced (A) users were comfortable allowing apps access to
location data but not if it was for advertising. Opinions in the largest cluster,
Fencesitters (F), varied but were broadly against collection of personal data for
advertising. We wrote AppPAL policies to describe each of these behaviours as
increasing sets of permissions. These simplify the privacy policies identified by
Lin et al. as we do not take into account the reason each app might have been
collecting each permission (we could write more precise rules if we could deter-
mine why each permission was requested). Lin et al. used Androguard [13] as
well as manual analysis to determine the precise reasons for each permission [35].

It is also interesting to discover when people install apps classified as malware.
McAfee classify malware into several categories, and provided us with a dataset
of apps classified as malware and PUPs. The malicious and trojan categories
describe traditional malware. Other categories classify PUP such as aggressive
adware. Using AppPAL we can write policies to differentiate characterising users
who allow dangerous apps and those who install poor quality ones.

’ user ’ says’mcafee’ can-say

’malware’ isKindOf(App).

’mcafee’ says’ trojan ’ can-act-as’malware’.
’mcafee’ says’pup’ can-act-as’malware’.

If a user is enforcing a privacy policy we might also expect them to install less
malware. We can check this by using AppPAL policies to measure the number
of malwares each user had installed.

We now want to test how closely user behavior follows policies. Installation
data was taken from a partially anonymized1 database of installed apps cap-
tured by Carat [38]. By calculating the hashes of known package names we see
who installed what. The initial database has over 90,000 apps and 55,000 users.
On average each Carat user installed around 90 apps each; 4,300 apps have
known names. Disregarding system apps (such as com.android.vending) and
very common apps (Facebook, Dropbox, Whatsapp, and Twitter) we reduced
the set to an average of 20 known apps per user. To see some variation in app
type, we considered only the 44,000 users who had more than 20 known apps.
1 Users are replaced with incrementing numbers, app names are replaced with hashes

to protect sensitive names.

226 J. Hallett and D. Aspinall

Fig. 6. Policy compliance graphs. Each histogram shows the number of users who
followed a policy to a certain extent. Users who installed no malware have been omitted
from Fig. 6(b).

Using this data, and the apps themselves taken from the Google Play Store and
Android Observatory [4], we checked which apps satisfied which policies.

Figure 6(a) shows that very few users follow Lin et al.’s policies most of the
time. Whilst the AppPAL policy we used was a simplified version of Lin et al.’s
policy, it suggests that there is a disconnect between user’s privacy preferences
and their behaviour (reminiscent of the privacy paradox); assuming the user
population studied by Lin et al. behave similarly to data from the Carat study.
A few users, however, did seem to be installing apps meeting these policies
most of the time. This suggests that while users may have privacy preferences
the majority are not attempting to enforce them. Policy enforcement tools, like
AppPAL, can help users enforce their own policies which they cannot do easily
using the current ad hoc, manual means available to them.

We found that 1 % of the users had a PUP or malicious app installed.
Figure 6(b) shows that infection rates for PUPs and malware is low; though
a user is 3 times more likely to have a PUP installed than malware. Users who
were complying more than half the time with the conservative or advanced poli-
cies complied with the malware or PUP policies fully (Fig. 7(a)). This suggests
that policy enforcement is worthwhile: users who can enforce policies about their
apps experience less malware.

The MalloDroid tool [17] can scan apps for SSL misconfigurations. SSL mis-
configurations are dangerous as they can undermine any privacy guarantees that
SSL/TLS gives. MalloDroid distinguishes cases where the app is definitely mis-
configured from those where there is some doubt. We set up AppPAL to use Mal-
loDroid results as a constraint and measured the percentage of apps each Carat
user had installed that did not have issues or suspected issues when scanned
with MalloDroid. Users who were complied with the advanced policy were no
better at avoiding apps with SSL errors than any other users, see Fig. 7(b).
This emphasizes that AppPAL can help enforce complex policies that cannot be
checked without additional tools.

AppPAL for Android 227

Fig. 7. Compliance with the advanced policy and the non-PUP and SSL policies. Each
data-point represents a user. In (a) we see that users who followed the Advanced policy
more than 50 % of the time did not install any malware. In (b) we see that even users
who followed the Advanced policy were no better at avoiding apps with SSL problems
than any other users.

There are limitations in this study: first, we do not have the full user pur-
chase history, and we can only find out about apps whose names match those
in available databases. So a user may have apps installed that break the pol-
icy without us knowing. Second, recently downloaded apps used for experiment
may not be the same version that users had, in particular, their permissions
may differ. Permissions tend to increase in apps over time [48]; so a user may
be more conservative than our analysis suggests. Finally, as mentioned, we have
compared a different set of users to the ones Lin et al. looked at. We plan to do
a more comprehensive user study in the future that investigates AppPAL in use
with different communities.

6 Related Work

Authorization logics have been used to enforce policies in several other domains.
The earliest such logic, PolicyMaker [10], was general and undecidable. Log-
ics that followed like KeyNote [9] and SPKI/SDSI [14] looked at public key
infrastructure. The RT-languages [34] were designed for credential management.
Cassandra [8] was used to model trust relationships in the British national health
service.

SELinux is used to describe policies for Linux processes, and for access control
(on top of the Linux discretionary controls). It was ported to Android [43] and
is used in the implementation of the permissions system. SELinux describes
the capabilities (in terms of system calls and file access) of processes, it cannot
describe app installation policies or delegation relationships. Google also offer
the Device Policy for Android app. This lets businesses configure company-
owned devices to be trackable, remote lockable, set passwords and sync with
their servers. It cannot be used to describe policies about apps, or describe trust
relationships.

228 J. Hallett and D. Aspinall

The SecPAL language is designed for access control in distributed systems.
We picked SecPAL as the basis for AppPAL because it is readable, extensible,
and is a good fit for the mobile ecosystem setting [26]. It has also been used to
describe data usage policies [2] and inside Grid data systems [28]. Other work has
added various features such as existential quantification [5] and extended to the
DKAL family of languages [24,25]. DKAL contains more modalities than says,
which lets policies describe actions principals carry out rather than just their
opinions. For example in AppPAL a user might say an app is installable if they
would install it ("user" says App isInstallable). In DKAL they can describe
the conditions that would force them to install it ("user" installs App). With
DKAL we can guarantee that the action was completed, whereas in AppPAL
we do not know if the user actually installed a particular app. We chose to use
SecPAL as the basis for AppPAL as we did not need the extra features DKAL
added to express app installation policies for our initial applications.

Kirin [16] is a policy language and tool for enforcing app installation policies
to prevent malware. Policy authors can specify combinations of permissions and
broadcast events that should not appear together. For example, to stop mal-
ware sending premium rate text messages, we prevent an app having both the
SEND SMS and WRITE SMS permissions one could write: restrict permission
[SEND SMS] and permission [WRITE SMS].

By analyzing apps which broke their policies Enck et al. found vulnerabilities
in Android, but were ultimately limited by being restricted to permissions and
broadcast events.

The Kirin approach has been shown to help identify malware, but it is less
suitable for detecting PUPS. The behaviours and permissions PUP displays
aren’t necessarily malicious. One user may not want apps which need in-app-
purchases to play, but another may enjoy them. With Kirin we are restricted
to permitting or allowing apps. AppPAL can describe more scenarios than just
allow or forbid, and use more app information than just permissions, such as
constraints and static analysis results. By allowing delegation relationships we
can understand the provenance and trust relationships in these rules.

7 Conclusions and Further Work

We have presented AppPAL: a language for describing app installation policies
to help achieve security and privacy objectives but which can also lock down
devices in other ways, e.g. restricting the use of certain apps while at work.
We showed how static analysis tools can be connected to AppPAL to compose
complex properties.

Further work is needed to tightly integrate AppPAL into Android. One way
to integrate AppPAL on Android would be as a required checker : a program that
checks all apps before installation. Google uses the required checker API to check
for known malware and jailbreak apps. We would use AppPAL to check apps
meet policies before installation. The API is protected, however, and it would
require the phone to have a custom firmware. This is undesirable as it would

AppPAL for Android 229

make AppPAL difficult to install for most users, and negate the other security
enhancements (such as timely updates and patches) provided by the standard
Android system. AppPAL could be integrated as a service to reconfigure app
permissions. Android Marshmallow has an iOS like permissions model where
permissions can be granted and revoked at any time. These will be manually
configurable by the user through the settings app. We can imagine AppPAL
working to reconfigure these settings (and set the device’s initial grant or deny
states) based on a user’s policy, as well as the time of day or the user’s location.
A policy could deny notifications while a user is driving, for example, by checking
if they are using Android Auto [22] (an app to interact with a car’s center console)
or moving along a road at high speed.

Future work includes developing and testing, policies for users. Here we
described a policy being specified by a user’s employer. For most end-users writ-
ing a policy in a formal language unrealistic. With Ad-blocking software users
subscribe to filter policies written by experts, such as EasyList [39]. We can
imagine a similar scheme working well for app installation policies. Users sub-
scribe to different policies by experts (examples could include no tracking apps,
nothing with adult content, no in-app-purchase apps). Optionally the users could
customize the policies further.

Policy composition raises further questions: what should happen when user’s
personal and work policies overlap or contradict? Future work will look at detect-
ing these problems as well as integrating strategies to resolve them.

Another question might be whether we can use evidence to speed re-checking
apps against a policy. Some static analysis tools, such as Evicheck [42], can create
evidence that lets you check an app doesn’t have certain behavior faster than
it would be to infer the same property in the app without it, similar to proof-
carrying code [36]. We can also imagine apps being distributed with evidence
that proves the app meets an AppPAL policy but avoids the need to check the
against the policy explicitly.

We might attempt to learn policies from existing user’s behavior. Given app
usage data, from a project like Carat [38], we could identify security conscious
users. If we can infer these users policies we may be able to describe new policies
that the less technical users may want. Given a set of apps one user has already
installed, we could learn policies about what their personal security relevant
installation policy is. This may help stores show users apps they’re more likely
to buy, and users apps that already behave as they want.

AppPAL gives us a framework for describing and evaluating policies for
Android apps. The work provides new, rigorous, ways for machines to enforce
user’s and device-owner’s rules about how apps should behave. These policies can
be enforced more reliably, and with less interaction from the person operating
the device.

Acknowledgements. Thanks to Igor Muttik at McAfee, and N Asokan at Aalto Uni-
versity and the University of Helsinki for discussions and providing us with data used
in Sect. 5. Thanks also to the App Guarden project and colleagues at the University of
Edinburgh for their comments, and the referees for their feedback.

230 J. Hallett and D. Aspinall

References

1. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. Program. Lang. Des. Implementation 49(6),
259–269 (2014)

2. Aziz, B., Arenas, A., Wilson, M.: SecPAL4DSA. In: Cloud Computing and Intel-
ligence Systems (2011)

3. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard – enforcing user requirements on android apps. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 543–548. Springer,
Heidelberg (2013)

4. Barrera, D., Clark, J., McCarney, D., van Oorschot, P.C.: Understanding and
improving app installation security mechanisms through empirical analysis of
android. In: Security and Privacy in Smartphones and Mobile Devices, pp. 81–
92, October 2012

5. Becker, M.Y.: Secpal formalization and extensions. Technical report, Microsoft
Research (2009)

6. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: design and semantics of a decen-
tralized authorization language. Comput. Secur. Found. (2006)

7. Becker, M.Y., Malkis, A., Bussard, L.: A framework for privacy preferences and
data-handling policies. Technical report, Microsoft Research (2009)

8. Becker, M.Y., Sewell, P.: Cassandra: flexible trust management, applied to elec-
tronic health records. In: Computer Security Foundations, pp. 139–154 (2004)

9. Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: trust management for
public-key infrastructures. In: Christianson, B., Crispo, B., Harbison, W.S., Roe,
M. (eds.) Security Protocols 1998. LNCS, vol. 1550, pp. 59–63. Springer, Heidelberg
(1999)

10. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Security
and Privacy, pp. 164–173 (1996)

11. Bugiel, S., Davi, L., Dmitrienko, A.: Towards taming privilege-escalation attacks
on Android. In: Network and Distributed System Security Symposium (2012)

12. Chia, P.H., Yamamoto, Y., Asokan, N.: Is this App Safe? World Wide Web, April
2012

13. Desnos, A.: Androguard. https://github.com/androguard/androguard
14. Ellison, C., Frantz, B., Lainpson, B., Rivest, R., Thomas, B.: RFC 2693: SPKI

certificate theory. In: The Internet Society (1999)
15. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: TaintDroid: an information-

flow tracking system for realtime privacy monitoring on smartphones. In: Operating
Systems Design and Implementation (2010)

16. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Computer and Communications Security, pp. 235–245, November
2009

17. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love Android. In: ASIA Computer and Communications
Security, pp. 50–61, October 2012

18. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Computer and Communications Security, pp. 627–638, October 2011

19. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android per-
missions: user attention, comprehension, and behavior. In: Symposium On Usable
Privacy and Security, p. 3, July 2012

https://github.com/androguard/androguard

AppPAL for Android 231

20. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection of
Android malware through static analysis. In: Foundations of Software Engineering,
pp. 576–587. ACM Request Permissions, New York, New York, USA, November
2014

21. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: SCanDroid: automated security certifica-
tion of Android applications. In: USENIX Security Symposium (2009)

22. Google: Android Auto. com.google.android.projection.gearhead
23. Google: Google Apps Device Policy. com.google.android.apps.enterprise.dmagent
24. Gurevich, Y., Neeman, I.: DKAL: distributed-knowledge authorization language.

In: Computer Security Foundations, pp. 149–162 (2008)
25. Gurevich, Y., Neeman, I.: DKAL 2. Technical report, MSR-TR-2009-11, Microsoft

Research, February 2009
26. Hallett, J., Aspinall, D.: Towards an authorization framework for app security

checking. In: ESSoS Doctoral Symposium. University of Edinburgh, February 2014
27. Hornyack, P., Han, S., Jung, J., Schechter, S.: These aren’t the droids you’re looking

for: retrofitting android to protect data from imperious applications. In: Computer
and Communications Security (2011)

28. Humphrey, M., Park, S.M., Feng, J., Beekwilder, N., Wasson, G., Hogg, J., LaMac-
chia, B., Dillaway, B.: Fine-grained access control for GridFTP using SecPAL. In:
Grid Computing (2007)

29. Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: fine-grained permissions in android appli-
cations. In: Security and Privacy in Smartphones and Mobile Devices, pp. 3–14,
October 2012

30. Kelley, P.G., Consolvo, S., Cranor, L.F., Jung, J., Sadeh, N., Wetherall, D.: A
conundrum of permissions. In: Useable Security, February 2012

31. Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: ScanDal: static analyzer for detecting
privacy leaks in android applications. In: Mobile Security Technologies (2012)

32. Krane, D., Light, L., Gravitch, D.: Privacy on and off the internet. Harris Interact.
18(5), 345–359 (2002)

33. Li, L., et al.: IccTA: detecting inter-component privacy leaks in Android apps. In:
IEEE/ACM 37th IEEE International Conference on Software Engineering (2015)

34. Li, N., Mitchell, J.C.: Design of a role-based trust-management framework. In:
Security and Privacy, pp. 114–130 (2002)

35. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy prefer-
ences. In: Symposium On Usable Privacy and Security (2014)

36. Necula, G.C., Lee, P.: Proof-carrying Code. Technical report, CMU-CS-96-165,
Carniegie Mellon University (1996)

37. Oasis: eXtensible Access Control Markup Language (XACML) Version 3.0, Janu-
ary 2013

38. Oliner, A.J., Iyer, A.P., Stoica, I., Lagerspetz, E.: Carat: collaborative energy diag-
nosis for mobile devices. In: Embedded Network Sensor Systems (2013)

39. Petnel, R.: The Official EasyList Website. https://easylist.adblockplus.org/en/
(2016)

40. Poiesz, B.: Android M permissions. In: Google I/O (2015)
41. Scarfone, K., Hoffman, P., Souppaya, M.: NIST Special Publication 800–46: Guide

to Enterprise Telework and Remote Access Security, June 2009
42. Seghir, M.N., Aspinall, D.: EviCheck: digital evidence for android. In: Finkbeiner,

B., et al. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 221–227. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-24953-7 17

https://play.google.com/store/apps/details?id=com.google.android.projection.gearheadhl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.enterprise.dmagenthl=en
https://easylist.adblockplus.org/en/
http://dx.doi.org/10.1007/978-3-319-24953-7_17

232 J. Hallett and D. Aspinall

43. Smalley, S., Craig, R.: Security enhanced (SE) android: bringing flexible MAC to
Android. In: Network and Distributed System Security (2013)

44. Souppaya, M., Scarfone, K.: NIST Special Publication 800–124: Guidelines for
Managing the Security of Mobile Devices in the Enterprise, June 2013

45. Svajcer, V., McDonald, S.: Classifying PUAs in the Mobile Environment, October
2013. sophos.com

46. Thompson, C., Johnson, M., Egelman, S., Wagner, D., King, J.: When it’s better
to ask forgiveness than get permission. In: The Ninth Symposium, p. 1, New York,
USA. ACM, New York (2013)

47. Truong, H.T.T., Lagerspetz, E., Nurmi, P., Oliner, A.J., Tarkoma, S., Asokan, N.,
Bhattacharya, S.: The Company You Keep. In: World Wide Web, pp. 39–50, April
2014

48. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the Android
ecosystem. In: Anual Computer Security Applications Conference, pp. 31–40. ACM
Request Permissions, New York, New York, USA, December 2012

49. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detect-
ing malicious apps in official and alternative android markets. In: Network and
Distributed System Security (2012)

https://www.sophos.com/

Inferring Semantic Mapping Between Policies
and Code: The Clue is in the Language

Pauline Anthonysamy1,2(B), Matthew Edwards2, Chris Weichel2,
and Awais Rashid2

1 Google Switzerland, Zürich, Switzerland
anthonysp@google.com

2 Security Lancaster, Lancaster University, Lancaster, UK
{p.anthonysamy,m.edwards7,c.weichel,a.rashid}@lancaster.ac.uk

Abstract. A common misstep in the development of security and pri-
vacy solutions is the failure to keep the demands resulting from high-level
policies in line with the actual implementation that is supposed to oper-
ationalize those policies. This is especially problematic in the domain
of social networks, where software typically predates policies and then
evolves alongside its user base and any changes in policies that arise
from their interactions with (and the demands that they place on) the
system. Our contribution targets this specific problem, drawing together
the assurances actually presented to users in the form of policies and
the large codebases with which developers work. We demonstrate that a
mapping between policies and code can be inferred from the semantics
of the natural language. These semantics manifest not only in the policy
statements but also coding conventions. Our technique, implemented in
a tool (CASTOR), can infer semantic mappings with F1 accuracy of 70%
and 78% for two social networks, Diaspora and Friendica respectively –
as compared with a ground truth mapping established through manual
examination of the policies and code.

1 Introduction

This paper addresses the problem of identifying areas of code that operationalize
(or implement) one or more policy statement(s) from security or privacy policies.
This problem is particularly challenging because information systems have grown
not only in size and technical complexity but also in the volume of information
they manage and process. The effort required to identify areas of code that
implement relevant policies remains largely manual, at best aided by simple
search techniques. Ideally, policies and code should be linked to ease processes
such as compliance checks, verification, maintenance etc.; however this is not
always the case for two main reasons:

(i) Asynchronous Evolution of Policies and Code. Policies describe organ-
isations’ actions on user data or personally identifiable information – and are
often driven by regulatory and legal requirements. Program code, on the
other hand, implements the various features and services provided by the

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 233–250, 2016.
DOI: 10.1007/978-3-319-30806-7 15

234 P. Anthonysamy et al.

information system and must be compliant with the aforementioned poli-
cies. Modern information systems evolve rapidly as organisations continu-
ally update the system’s functionality to provide a better quality of service
and user experience. This is generally driven by factors such as changes in
requirements, optimisation of code, fixes for bugs and security vulnerabili-
ties, etc. Policies also change but such changes are less frequent and often
driven by legislative requirements and regulatory frameworks or changes in
business processes. This asynchronous evolution can often (unintentionally)
lead to changes resulting in the code being non-compliant with the policy.
A recent example is that of Facebook introducing a photo sync feature that
allows users to sync their mobile photos with their Facebook account [5].
This feature introduced a vulnerability that allowed photos that had not
been published on Facebook and should not have been visible to anyone be
accessed by third-party applications; yet Facebook’s terms of service con-
tinued to stipulate that private photos will stay private when connecting to
external applications.

(ii) Implementation Precedes Policies and Regulation. In an ideal world,
policies would be derived first, requirements established, and then passed on
to software engineers for design and implementation. However, much modern
software development does not follow this cycle. They also, almost always,
out-pace the regulatory environment. Often, legal and regulatory require-
ments are not given full consideration during product development (requiring
post-implementation compliance checks) or regulations come into existence
after a system is in public use. For example, the European Commission only
recently introduced regulation as part of its Data Protection Directive [4]
requiring that users should have full export/download access to all of the
data stored about them.

In this paper we present a technique and tool to infer and identify areas of
code (aka functions) that implement particular policy statements described in
natural language. Our inference technique is driven by the semantics of natural
language and coding conventions, wherein verbs and nouns used in policy state-
ments and source code (e.g., in function and parameter names) provide useful
clues that enable a semantic mapping to be established between the two arte-
facts. Our use of naming conventions means that such mapping can be added
to systems post-hoc – as we highlighted above, it is often impossible to attach
security demands arising from high-level policies to methods at the time the
code is written (e.g., because of codebases predating policies).

Contributions
We make the following novel contributions in this paper:

1. We describe a semantic-mapping approach to infer function specifications
from natural language policies. The resulting technique aids developers in
inferring and identifying relevant functions that implement one or more
policy statement(s) to assist in compliance verification. Our technique demon-
strates that the burden of identifying areas of code that operationalize relevant

Inferring Semantic Mapping Between Policies and Code 235

policies can be reduced through inference using the semantic constructs of the
natural language itself and coding conventions driven by such constructs.

2. An implementation of our technique in a tool called CASTOR is presented.
It accepts as inputs policy statements and source code; and outputs a set
of semantic mappings between policy statements and function specifications
(methods). These mappings aid one to assess the completeness of an imple-
mentation with respect to stated policies. More importantly, the semantic
mapping which is established directly between policy statements (as presented
to users) and source code deem useful for organisations in quality assessment
and compliance preservation.

3. We present an evaluation of our technique and tool on inferring mapping
between privacy policies and the code implementing these policies for two
open-source social networking sites, namely Diaspora and Friendica. Our eval-
uation shows that we can achieve a F1 accuracy of 70 % for Diaspora and
78 % for Friendica (for the balanced class experiment) in finding the semantic
mappings required as compared with a ground truth mapping established by
thorough manual examination of the policies and code.

2 Related Work

In this section we first contrast our work with techniques that automate map-
pings between textual documents and source code, followed by an approach to
privacy leak detection using flow analysis. We then discuss techniques that auto-
mate mappings between policies and software requirements specifications.

Text Documents and Source Code: Pandita et al. [24] attempt to transform
natural language descriptions of methods, as found in API documentation, into
formal specifications for function behaviour, as described by code contracts. Their
method involves parsing the API documentation through Part-Of-Speech (POS)
tagging aided by domain-specific noun boosting and jargon handling, followed
by the application of a shallow parser which attempts to classify the sentences
of lexical tokens based on predefined semantic templates. The result of this
process is a first-order logic expression which is then parsed for equivalences and
redundancies and finally used to generate code contracts [3]. These contracts can
then be inserted into the functions to which the corresponding API documents
refer. While their work demonstrates the possibility of mapping between natural
language and representations of source code, it differs from our work in two ways:
firstly, we are interested in identifying implementations of policy statements in
the source code, rather than in generating assertions for error–checking; and
secondly, the mapping is done in a far more narrow domain than attempted in
this paper, as API documentation is naturally more precisely connected to the
source code it describes than user-facing texts such as policies.

Antoniol et al. [9,10] describe an approach to establish and maintain links
between source code and free text documents such as requirements, design doc-
uments and user manuals, etc. Their work is based on the assumption that
programmers use meaningful names for program concepts, such as functions,

236 P. Anthonysamy et al.

variables, types, classes, and methods; therefore, the analysis of these concepts
(identifiers) can aid in associating high level concepts with program concepts, and
vice-versa. The approach is based on a stochastic language model that assigns
a probability value to every string of words taken from a prescribed vocabulary.
The relevant documents are used to estimate the language models, one for each
document or identifiable section. Then, a classifier – Bayesian classification –
is used to compute the score of the sequence of mnemonics extracted from a
selected area of code against the language models. A high score indicates a high
probability that a particular sequence of mnemonics is extracted from the docu-
ment, or a section, that generated the language model. This implies the existence
of a semantic link between the document and the area of code from which the
particular sequence of mnemonics is extracted. However, the approach is pri-
marily applied to text that is likely to clearly express source code functionality
(requirements specification documents). In contrast, our approach addresses the
scenario where code and policies have either evolved independently or policies
have come into existence post-development and deployment.

Privacy in Source Code: Jang et al. [18] approach the breach of privacy by
user-facing websites through flow analysis of the Javascript code from several
major websites. Their method involves the design and implementation of a lan-
guage for specification of privacy-breaching information flows, and was trialled
on a large sample of well-visited websites. Where their approach tests uniformly
for four specific information breaching flows to identify violations, we aim to tie
source code to the publicly expressed policies of social networking sites. Our app-
roach also performs analysis of source code, but whereas their method analyses
client-side code, we perform analysis of the server-side handling of information,
which is arguably more critical for tracing potentially hidden violations.

Policies and Requirements: Massey et al. [21] evaluated the security and pri-
vacy requirements of an existing software system – the iTrust, open source elec-
tronic health record system – for legal compliance with a regulatory document
(HIPAA). Their work mainly focuses on establishing trace links between software
requirements and legal texts which, while an important initial step in legal com-
pliance, does not fully complete the mapping between legal texts such as poli-
cies and the software code itself. Cleland-Huang et al. [14] proposed two machine
learning methods to automatically generate links between regulatory codes (a sub-
set of HIPAA) and product requirements. May et al. [22] present a framework
that formalises regulatory rules, HIPAA, and exploit this formalisation to analyse
the rules’ conformance to a health-care system automatically. Fisler et al. [16]
also attempt a model-checking based verification system, Margrave, for analysing
role-based access control policies. However, these works focus on deriving soft-
ware requirements from privacy policies and legal documents (primarily in the
healthcare domains). In contrast, we aim to establish a semantic mapping between
areas of code (functions) that implement particular policy statements described in

Inferring Semantic Mapping Between Policies and Code 237

natural language – and in situations where policies need to be mapped to code
post-hoc implementation.

3 Semantic Inference

CASTOR’s semantic inference mechanism (cf. Appendix A for CASTOR’s architec-
ture) presents a technique that enables software developers to infer and iden-
tify areas of code (aka functions) that implement particular policy statements
described in natural language. This inference technique is driven by the seman-
tics of natural language and coding conventions, wherein verbs and nouns used
in policy statements and source code (e.g., in function and parameter names)
provide useful clues that enable a semantic mapping to be established between
the two artefacts.

Fig. 1. An overview of our semantic mapping approach.

A premise of this work is that programmers use meaningful names for source
code primitives, such as functions, parameters and classes. Much of the appli-
cation domain knowledge that developers employ when writing code is often
captured by these mnemonics for code primitives; thus these mnemonics aid in
associating source code primitives with high-level concepts (e.g., policy state-
ments) [10]. In this section, we provide basic definitions and concepts relating to
policies, source code and the relationship between policy and source code prim-
itives, wherein, we measure how close the code primitives, namely functions
and parameters, are to the policy primitives of actions and data.

3.1 Definitions

The semantic mapping between policy and source code is drawn using a semantic
relatedness measure between the primitives of these artefacts, namely, similarity

238 P. Anthonysamy et al.

between the words e.g., data-parameter, action-function, etc. As summarised
below, we define a model for privacy policies, source code functions and followed
by the semantic relatedness between the two. Herein,

– A policy, PP, is considered to be a set of statements. Each statement s ∈ PP
is modelled as the tuple s = 〈a,D〉, where D = {d1, d2, . . . , dn} ⊆ D is the data
items referred to by the statement and a ∈ A is the action verb (e.g., share,
track, collect, etc.).

– F is the set of functions implemented in source code. A function f =
〈c, n, P 〉, f ∈ F is modelled as a triple, where c is the class to which it belongs,
n is the function’s name and P is the set of its parameter names.

– Semantic relatedness, R : W × W → [0, 1] is the measure of semantic similarity
between two words w0, w1 ∈ W.

– MF : S → W ⊆ F is a relationship between policy statements, s ∈ S, and
source code functions, f ∈ W, where W is the subset of functions that map to
one or more statements in S. This relationship is computed using the semantic
relatedness measure defined above, applied to the words used in policy state-
ments and function/parameter names.

In the following subsections each of the above modelling and mapping techniques
are elaborated.

3.2 Policy Model Construction

The construction of the policy model, PP, is based on two common linguistic
analysis techniques, namely part-of-speech tagging and shallow parsing. Part-
of-Speech (POS) tagging is the process of assigning parts of speech, such as
noun, verb, adjective, etc., to each word in a text (statements). A shallow parser
accepts the lexical tokens generated by the POS tagger and divides those tokens
into segments which correspond to certain syntactic units, such as noun phrases,
verbs, verb phrases, etc. Figure 2 illustrates a simplified example of a parsed
policy statement.

The annotated statements are mapped based on their grammatical functions
to policy primitives of ‘action’, the activity that the actor performs and ‘data’,
the data item to which an actor’s action relates. In doing this, the fact that
each grammatical function has a designated semantic role in natural language
is exploited. Actions, for example, are expressed by any of the verbs or verb
phrases (VP) in natural language, while data tends to be identified by nouns
and noun phrases. For example, the tokens labelled [VB: post] and [NN: post]
in Fig. 2 will be tagged as action and data respectively.

This grammatical mapping process is aided by a data dictionary to assist
when mapping composite data primitives such as ‘personally identifiable infor-
mation’. The data dictionary is used to associate and identify relevant noun
phrases with pre-defined data classes. Without this, ‘personally identifiable infor-
mation’ would be annotated as an adjective phrase by the POS tagger instead of
as a noun phrase as required for this analysis. This association is essential to the

Inferring Semantic Mapping Between Policies and Code 239

Fig. 2. An example of tagged policy statement.

semantic mapping step in which such composite data primitives are expanded
to obtain the individual data items that are grouped within that class such as
‘gender’, ‘sexuality’, ‘relationship status’, etc. Note, the POS Tagger used here
was adapted from the Stanford Parser [19].

To aid in retaining the core elements of the policy statements, i.e., verbs and
nouns, selected terms and grammatical constructs are removed. These include
stop words (e.g., the, is, at, when, etc.), personal and possessive pronouns. The
decision to retain only the core elements of the policy statement is to construct
an intermediate policy model that is easy to comprehend and allows for cohe-
sion with the original statement. Although, formalised policies like P3P [15]
and EPAL [11] have been proposed to make policies more readable and enforce-
able, they have several limitations, e.g., the P3P language does not have a clear
semantics and can therefore be interpreted and presented differently by different
user agents; and, an EPAL policy must be enforced at the time data is accessed
which causes significant performance overhead – every data access has to rely
on an external policy evaluation. Furthermore, the policy model proposed in
this work avoids the additional complexity that comes with formalisation and
utilises the semantics of natural language constructs which can be interpreted
and translated appropriately.

3.3 Source Code Model Construction

The source code model is constructed automatically using a (naive) static pro-
gram analysis technique [26]. The analyser parses the code base of an online
social network and constructs a model based on class, functions and parame-
ter names. This model is inspired by code contracts [23] which are a way of
abstractly expressing what a function accomplishes. Functions, F , are modelled
as triples, f = 〈c, n, P 〉, where c is the class to which the function belongs, n is
the function’s name and P the set of its parameter names. Note: in this paper
the terms ‘parameter’ and ‘variable’ are used interchangeably. These code prin-
ciples are extracted to ease the semantic mapping (described next) of policy and
source code primitives.

240 P. Anthonysamy et al.

3.4 Semantic Mapping

The semantic mapping, MF , between S and F is based on the premise that
policy statements are operationalized as functions at the source code level. The
strategy for establishing this semantic mapping is based on a hybrid approach
of Natural Language Processing (NLP) and machine learning applied to policy
statements and source code. We use a lexical resource, namely WordNet1 to
discover the semantic relatedness, R, (a measure of “similarity”) between policy
and source primitives. WordNet is a broad coverage lexical network of English
words that contains around 100,000 terms, organised into taxonomic hierarchies.
Nouns, adjectives, verbs and adverbs are organised into networks of synonym
sets (synsets) that each represent one underlying concept and are interlinked
with a variety of relations. For instance, a word that has multiple meanings
(polysemous) will appear in one sysnset for each of its definitions. The measure
of relatedness between two words, w0, w1 ∈ W, in WordNet is computed using
path length in the network graph: R : W × W → [0, 1]. The shorter the path
from one word to another, the more similar they are.

We then use a machine learning technique to map statements to functions
using the computed similarity measures (input to the machine learning algo-
rithm). The trained classifier can then distinguish between a correct and incor-
rect mapping when it is confronted with new similarity values by using the
learned mapping model.

Examination of Naming Conventions: As previously mentioned, the seman-
tic mapping approach is drawn from the concept of relating policy and source
primitives. We measure how close the source primitives (variables/parameters or
functions) are to the policy primitives of actions and data. Common program-
ming practices tend to dictate that functions are named as verbs and variables
are named as nouns [25]. These naming conventions are crucial to this approach,
so we verified whether this practice held in the real world. A unigram POS tag-
ger from the Python Natural Language Toolkit2 was run across the source code
from two social networks, Diaspora3 and Friendica4. These two code bases are
the datasets used for evaluation in this paper.

The tagger was trained on Brown corpus5 (a general text collection that
contains 500 samples of English-language text, totalling roughly to one million
words), with a regular expression based backoff parser implementing a tech-
nical dictionary. We ran the tagger over a collection of function and variable
names drawn from the source code of Diaspora and Friendica. As the com-
mon camelCase and snake case coding conventions are likely to confuse a
natural language tagger, such examples were split into their individual words
(e.g., camelCase to camel case).
1 http://wordnet.princeton.edu/.
2 http://nltk.googlecode.com/svn/trunk/doc/howto/wordnet.html.
3 https://github.com/diaspora.
4 https://github.com/friendica/friendica.
5 http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus ling/content/
corpora/list/private/brown/brown.html.

http://wordnet.princeton.edu/
http://nltk.googlecode.com/svn/trunk/doc/howto/wordnet.html
https://github.com/diaspora
https://github.com/friendica/friendica
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html
http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpora/list/private/brown/brown.html

Inferring Semantic Mapping Between Policies and Code 241

Table 1. Verb and Noun percentages of function names and variables.

% Nouns % Verbs # Tagged

Parameters 77.50 6.82 21034

Parameters (split) 75.35 8.23 27967

Function name 68.04 25.68 5366

Function name (split) 56.48 27.89 11842

Function name (first token) 43.20 44.20 5366

As shown in Table 1, while function parameters mapped as expected to nouns
(77.50 %), results vary for the function name mapping. Unsplit function names
were mostly categorised as nouns by default, but splitting these names into con-
stituent tokens revealed a modest increase in the proportion of tokens identified
as verbs. Further examination showed that the first token after such splitting
was in most cases a verb, as in get name or similar constructs. 44.2 % of function
names contained at least one verb token. The relatively high parameter-to-noun
and function-to-verb semantic relatedness illustrates that the approach for data-
to-parameter and action-to-function mappings is a viable measures in terms of
drawing a similarity between policy and source primitives.

Mapping Inference: The problem of mapping policy statements to source
code functions that operationalize those statements is formulated as a binary
classification problem, because the mappings are either correct or incorrect. Our
semantic inference is an application of the Random Forests [12] classifier, which
is an effective approach to the problem of learning and classification [17,20].
We found that this classifier best fitted our mapping model and outperformed
other standard classifiers such as nâıve bayes [1] and support vector machine [2].
The classifier needs to be trained once per social network (domain-dependent),
as random forests are a supervised learning technique. This is performed using
manually created mappings. By confirming the manually mapped s−f pairs, one
can then provide more training data to the classifier and improve its prediction.

To infer the mapping, for each policy statement s ∈ S the classifier predicts
if a source code function f ∈ F maps to that statement, that is 〈s, f〉 ∈ MF .
And, to do this, labelled examples, i.e., a training dataset of correct and incor-
rect mappings, are required to estimate a ‘target learning model’ in the machine
learning technique. This estimated learning model is then used to classify an
input vector of features into classes. In CASTOR, the labelled examples are gen-
erated using manually created mappings. These manually created mappings are
established based on a method that was derived in prior work [8]. The method
provides a systematic means of studying the traceability (mapping) between
privacy policies and controls in social networks, hence establishing the degree of
traceability between the two. In [8], we define the degree of traceability as the
level of certainty that we can have about the existence of an externally observable
relationship measured using a qualitative 3-point scale.

242 P. Anthonysamy et al.

By confirming the manually mapped statement/function pairs, one can then
provide more training data to the classifier and improve its prediction (target
learning model). We label such manual mapped 〈s, f〉 pairs as G (indicating
correct mappings), while non-mapping pairs are labelled N (indicating incorrect
mappings). For each statement, function pair 〈s, f〉 we extract a feature vector
v = 〈dc, af, dp, pc〉 for classification:

1. data-class-similarity, dc = Rmaxd∈Ds
(d, cf), where Ds is the set of data

items of the statement s, and cf is the class name of the function f ;
2. action-function-similarity, af = Rmaxa∈As

(a, nf), where As is the set of
actions of the statement s, and nf is the name of the function f ;

3. data-parameter-similarity, dp = Rmaxd∈Ds,p∈Pf
(d, p), where Ds is the set

of data items of the statement s, and Pf are the parameter names of the
function f ;

4. parameter count, pc = |Pf | is the number of parameters of function f .

The WordNet path similarity is used as a measure for semantic relatedness of
the feature variables dc, af, and dp. When actions, data items, parameter names
or function names consist of multiple words W , the maximum similarity of these
words were used as semantic relatedness: R(W,x) = maxw∈W (w, x).

The measure of semantic relatedness as outlined above generates a set of
vector of features for the learning method, which classifies each vector of features
into the set of mapping classes, V = {G,N}. For example (for the training
dataset), the feature vector for the statement–function pair 〈s1, f6〉 shown below
(see Statement s1 & Listing. 1.1) is v = 〈0.67, 0.00, 0.74, 5〉. Thus, in order to
calculate the most probable class (G or N) for this vector, the features are run
down all of the trees in the forest and the final class of the vector is decided by
aggregating the votes (i.e., predicted class) of each tree – which is G in this case.

Statement, s1: The default privacy setting for some of the information you
post on Diaspora is set to “everyone”.

Listing 1.1. Snippet of function,f6, setDefault from the Diaspora code base.

Inferring Semantic Mapping Between Policies and Code 243

4 Evaluation

The data used in our experiments consists of privacy policies and source code of
two social networks: Diaspora and Friendica. Both of these sites are decentralised
social networks implemented using Ruby on Rails and PHP respectively. We
selected these sites in accordance with the following constraints: availability of
source code (open-source), at least 1000 function specifications, and the fact that
they are implemented using different programming languages and frameworks.
The motivation behind this selection is to test the coverage of our semantic map-
ping technique across different conventions used in real–world implementations.

Since the two social networks are decentralised open source networks, there
were no publicly available privacy policies. This is a constraint that we faced since
most popular social networks with a published privacy policy are closed source
systems. We, therefore, synthesised policies drawing upon our earlier detailed
investigation of privacy policies of 16 social networks [7], in which we showed
that there exist a significant disconnect between policy statements and user-
facing privacy controls. The synthesised privacy policies were representative of
those that would be shown to users of these sites6.

This section describes the different (independent) experiments conducted
using machine learning techniques for the semantic inference. Recall that for
each experiment the input to the classifier is the set of pairs 〈s, f〉 where each
pair consists of the features v = 〈dc, af, dp, pc〉. The results of these experiments
and the conclusions drawn are then presented.

4.1 Experiment 1: Unbalanced Classes

There was a drastic imbalance of classes in our experimental datasets. Non-
mapping statement–function pairs (class N) are far more common than mapping
ones (class G) – see Table 2. This is due to the inherent nature of our input,
there are significantly more contracts that are not relevant to policy statements
compared to those that are relevant. In this unbalanced experiment we train the
classifier on this unbalanced data, but adjust the weights of the class importance
during learning, so that the equal error rate EER = |FPR−FNR| is minimised
(FPR is the false positive rate, FNR is the false negative rate).

Table 2. Class imbalance ‖N‖ · ‖G‖−1 for all 2 datasets, with and without heuristics.

Dataset No Heuristics Heuristics % Reduction

Diaspora 1347.01 601.98 44.69

Friendica 2195.99 700.81 31.91

6 See example policies at http://www.paulineanthonysamy.com/myData.html.

http://www.paulineanthonysamy.com/myData.html

244 P. Anthonysamy et al.

For each dataset we manually created a ground truth mapping (based on the
method in [8]). We trained network-dependent classifiers using an 80/20 train-
ing/test data split which we evaluated using a randomised cross validation. We
report scores based on true positive rates (recall), TPR, false positive rates, FPR,
precision, PPV and F1 score. The recall score for each class, namely G and N ,
provides information on the number of semantic mappings that were successfully
identified, while the precision score takes into account all identified mappings for
each class and evaluates how many of them were actually relevant. Finally, the
F1 score is the harmonic mean of precision and recall (see Appendix B).

4.2 Experiment 2: Balanced Classes

A common practice for dealing with imbalanced data sets is to rebalance them
artificially. This is essential to evaluate the fundamental soundness of our seman-
tic mapping approach. Over and under-sampling methodologies have received
significant attention as a technique to rebalance classes [13]. Therefore, in the sec-
ond experiment we trained and tested CASTOR’s classifier on balanced datasets.
For each dataset (one for each of the two social networks) we balance both
classes (G, N), by randomly sampling an equal number of statement/function
pairs. This random resampling method for balancing classes has been shown to
be an effective technique when faced with an imbalance problem [13] as in our
case.

rand
s∈PP,f∈F

〈s, f〉 s.t. |〈s, f〉 ∈ M| = |〈s, f〉 �∈ M|.

4.3 Experiment 3: Introducing Heuristics

To alleviate the class imbalance, we introduce heuristics that exclude source
code functions that are unlikely to map to policy statements. An expert would
expect operationalizing functions to be located in specific places (i.e. packages
and folders), depending on the programming language and framework that was
used to implement the social network. We encode that knowledge and reject
functions based on where in the source code they are defined. Below are some of
the heuristics introduced:

– Global: Sources within the ‘db/’, ‘spec/’, ‘config/’,
‘lib/’, ‘script/’, ‘markdown/’ folders across our dataset were removed.
These folders were selected as they contain database table descriptions, appli-
cation wide configuration files, third-party library files, scripts and markdown
files.

– Framework Specific: These were mainly to deal with the different terminologies
and spellings among the folders.
• PHP: Sources within the ‘view/’, ‘util/’, ‘test/’, ‘mods/’, ‘library/’

folders were removed.
• Ruby: Sources within the ‘presenters/’, ‘assets/’, ‘views/’,
‘mailers/’, ‘error message’, ‘layout’ folders were removed.

Inferring Semantic Mapping Between Policies and Code 245

Fig. 3. Mean similarity scores of ground truth, G, and non-ground truth mappings, N .

Our heuristics do not reject functions that were manually labelled as ground
truth. This way we reduce the class imbalance by 44.69 % for Diaspora and
31.91 % for Friendica respectively across the two social networks (see Table 2).

4.4 Results

Figure 3 depicts a box plot of mean similarity scores obtained from WordNet
for ground truth (mapped), G, and non-mapping, N , statements respectively –
indicated by the center horizontal line within each box. The outliers are repre-
sented by •. The scores are computed for each statement, function pair 〈s, f〉
with dc, af , dp, pc. As illustrated by Fig. 3 the mean scores for the two sites are
higher for the ground truth (mapped) statements, namely 0.343 (s.d. 0.220) for
Diaspora and 0.346 (s.d. 0.208) for Friendica. In comparison the non-mapping
statements’ means were 0.146 (s.d. 0.117) for Friendica and 0.166 (s.d. 0.127)
for Diaspora. These values show that, although the overall similarity scores are
small, WordNet consistently returned a higher similarity score for statements in
G than statements in N , which warrants that our semantic mapping approach
achieves its aim as to infer the mapping between policy statements and code.

The semantic mapping results are reported in Table 3 for all three exper-
iments: unbalanced, balanced, and with heuristics. In all instances, the recall
(TPR) rates were consistently high for Diaspora (between 0.69 and 0.78) and
Friendica (between 0.79 and 0.80) indicating a high level of success in the iden-
tification of semantic mappings for each of our classes – G and N . These rates
are crucial as it illustrates that our approach works in the non-optimal case, i.e.,
unbalanced classes, which is the norm in the real world. The consistent TPR
and FPR rates shows that our approach generalises, and performs well, over dif-
ferent social networks. The EER (representing the number of false positive and
false negative are equal) were also consistently low across all the experiments –
at an average of 5 % and 6 % for Diaspora and Friendica.

We observe a very low precision in the unbalanced experiment (0.002). This
is to be expected as it has been observed previously [13] that class imbalance
(i.e., significant differences in class sizes) may produce a deterioration of the

246 P. Anthonysamy et al.

performance achieved by learning and classification systems. This precision score
(PPV) significantly improved when the class sizes were balanced (Diaspora: 70 %
and Friendica: 76 %).

Introducing simple heuristics to the unbalanced class improved precision (by
a mean factor of 2.19, s.d. 0.24). Albeit a small increase, the observed improve-
ment was proportional to reduction of the class imbalance shown in Table 2. This
indicates that using heuristics improves the classification performance.

5 Discussion and Future Work

The scale and complexity of current systems make the task of identifying rele-
vant sections of code (functions) that implement or realise a policy extremely
challenging. Our technique demonstrates that this burden of identifying areas of
code that operationalizes relevant policies can be reduced through inference (F1
accuracy of 70% and 78% for Diaspora and Friendica – balanced class exper-
iment) using the semantic constructs of the natural language itself and coding
conventions driven by such constructs. Though the functionality of a method is
most critical in ensuring that requirements are upheld, this mandates that secu-
rity demands arising from high-level policies are explicitly attached to methods
at the time the code is written. This is infeasible nigh impossible in typical sce-
narios where code bases predate policies. Our approach allows this connection to
be made based on well-established naming conventions. While this would never
be as precise as a detailed semantic analysis of each method’s code, the latter
would be extremely expensive. Our usage of naming conventions means that
such mapping can be easily added (post-hoc) to systems to highlight methods,
which may need to be checked against security demands arising from policies. By
identifying and short-listing the relevant methods, our approach not only ben-
efits developers but potentially policy or compliance auditors for data sensitive
systems such as Facebook and Google that are prone to accidental breaches.

Table 3. Table showing results from Random Forest classifier. The table labels are as
follows:- Recall: TPR, False Positive Rate: FPR, Precision: PPV , F1 score: F1, Equal
Error Rate: EER.

Dataset TPR FPR PPV F1 EER

Diaspora

Balanced 0.693 0.296 0.700 0.696 0.011

Unbalanced 0.759 0.265 0.002 0.004 0.024

Heuristic 0.777 0.301 0.004 0.008 0.078

Friendica

Balanced 0.788 0.245 0.762 0.775 0.033

Unbalanced 0.806 0.242 0.001 0.003 0.048

Heuristic 0.790 0.315 0.003 0.007 0.105

Inferring Semantic Mapping Between Policies and Code 247

Table 4. Table showing results from Random Forest classifier with the verb synonym
database. The table labels are as follows:- Recall: TPR, False Positive Rate: FPR,
Precision: PPV , F1 score: F1, Equal Error Rate: EER.

Dataset TPR FPR PPV F1 EER

With verb synonym database

Diaspora

Balanced 0.785 0.251 0.757 0.771 0.031

Unbalanced 0.735 0.250 0.002 0.004 0.013

Heuristic 0.762 0.245 0.006 0.011 0.017

Friendica

Balanced 0.797 0.209 0.792 0.795 0.006

Unbalanced 0.836 0.230 0.002 0.003 0.066

Heuristic 0.806 0.281 0.004 0.008 0.087

Limitations: Our semantic mapping approach relies on WordNet’s similarity
measures to compare policy and source code primitives. The overall WordNet
similarity scores are low as it is designed as a dictionary based on psycho-
linguistic principles rather than a knowledge base. WordNet lacks contextual
policy information. For example, in a social-networking policy, WordNet does not
interpret ‘track’ as ‘recording information’ therefore we were compelled to take
the most-related pair of synsets among the matched options. We hypothesized
that these measures can be significantly increased if a verb-synonym database
was available and later confirmed it [6]. The verb synonym database was built
by extracting all the verbs from the privacy policies analysed in [8] and manually
classifying them based on their semantic meanings. The semantic meanings of
these verbs were determined using a lexical dictionary.

The results of the three experiments improved when conducted with a verb
synonym database (cf. Table 4). In particular, the recall rates (TPR) increased
for both datasets – Balanced: Diaspora: 78.5 % and Friendica: 79.7 %; Unbal-
anced: Diaspora 73.5 % and Friendica 83.6 %; and, Heuristic: Diaspora 76.2 %
and Friendica 80.6 %. The precision also increased for both the datasets in the
balanced class experiment, i.e., 77.1 % and 79.5 % accordingly. Although, the pre-
cision score was still relatively low in the unbalanced and heuristic experiments
(due to the fact that the classes were still vastly disproportionate), there was a
small hike in Friendica’s PPV rates – 0.1 % rise – but there was no change in
Diaspora. Whereas, the heuristic experiment improved the PPV rates for both
datasets, i.e., about 0.2 % in Diaspora and 0.1 % in Friendica.

Acknowledgements. This research was funded by Lancaster University 40th
Anniversary Research Studentship and has no ties to the first author’s current
employment at Google.

248 P. Anthonysamy et al.

A Implementation: CASTOR

We have implemented our technique in a tool called CASTOR. Figure 4 illustrates
the architecture of CASTOR. CASTOR accepts as inputs policy statements and
source code; and outputs a set of semantic mappings between policy statements
and functions. Briefly, CASTOR works on the input as follows:

Policy Engine: CASTOR’s policy engine is composed of a parser and a state-
ment analyser which transforms the natural language policy into an intermediate
representation (as described in Sect. 3.2). This intermediate representation main-
tains the relevant policy primitives of a statement, namely action (verbs) and
data (nouns).

Code Engine: CASTOR’s code engine is composed of a minimal recursive-
descent parser that extracts a function’s name, associated class and parame-
ters, along with information identifying the source file and line number where
the function can be found. This is inline with our source model construction in
Sect. 3.3.

Fig. 4. CASTOR’s architecture.

Mapping Engine: CASTOR’s mapping engine infers the mapping between the
privacy policy PP and source code functions F using its inbuilt WordNet corpora
and classifier. The output of this engine is a set of semantic mappings between
policy statement(s) and functions.

B Formulae

Recall (TPR) = tp
tp+fn ; False-Positive Rate (FPR) = fp

fp+tn ; Precision (PPV)
= tp

tp+fp ; and F1 = 2 · Precision·Recall
Precision+Recall .

Inferring Semantic Mapping Between Policies and Code 249

References

1. Naive bayes. http://www.nltk.org/ modules/nltk/classify/naivebayes.html
2. SVM. http://www.nltk.org/ modules/nltk/classify/svm.html
3. Code contracts (2010). http://research.microsoft.com/en-us/projects/contracts/
4. EU data directive 95/46/ec, February 2014. http://eur-lex.europa.eu/
5. Facebook photo leak flaw raises security concerns, March 2015. http://www.

computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-
concerns

6. Anthonysamy, P.: A framework to detect information asymmetries between privacy
policies and controls of OSNs. Ph.D. thesis, Lancaster University (2014)

7. Anthonysamy, P., Greenwood, P., Rashid, A.: Social networking privacy: under-
standing the disconnect from policy to controls. IEEE Computer, June 2013

8. Anthonysamy, P., Greenwood, P., Rashid, A.: A method for analysing traceability
between privacy policies and privacy controls of online social networks. In: Pre-
neel, B., Ikonomou, D. (eds.) APF 2012. LNCS, vol. 8319, pp. 187–202. Springer,
Heidelberg (2014)

9. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Tracing object-
oriented code into functional requirements. In: 8th International Workshop on Pro-
gram Comprehension, 2000, Proceedings IWPC 2000, pp. 79–86 (2000)

10. Antoniol, G., Canfora, G., de Lucia, A., Casazza, G.: Information retrieval models
for recovering traceability links between code and documentation. In: Proceed-
ings of the International Conference on Software Maintenance (ICSM 2000). IEEE
Computer Society, Washington, DC (2000)

11. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy
Authorization Language (EPAL). Technical report, Rschlikon (2003)

12. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). http://dx.doi.org/10.
1023/A%3A1010933404324

13. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

14. Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A ML approach for
tracing regulatory codes to product specific requirements. In: ICSE (2010)

15. Cranor, L., Langheinrich, M., Marchiori, M.: A P3P preference exchange lan-
guage 1.0 (appel 1.0). World Wide Web Consortium, Working Draft WD-P3P-
preferences-20020415, April 2002

16. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th Inter-
national Conference on Software Engineering, ICSE 2005, pp. 196–205. ACM, New
York (2005)

17. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Marcus, A.: Automatic query
performance assessment during the retrieval of software artifacts. In: Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2012, pp. 90–99. ACM, New York (2012)

18. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in javascript web applications. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
270–283. ACM, New York (2010)

19. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics (ACL 2003) -
vol. 1. pp. 423–430, Stroudsburg, PA, USA (2003)

http://www.nltk.org/_modules/nltk/classify/naivebayes.html
http://www.nltk.org/_modules/nltk/classify/svm.html
http://research.microsoft.com/en-us/projects/contracts/
http://eur-lex.europa.eu/
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324

250 P. Anthonysamy et al.

20. Ma, L., Torney, R., Watters, P., Brown, S.: Automatically generating classifier for
phishing email prediction. In: 2009 10th International Symposium on Pervasive
Systems, Algorithms, and Networks (ISPAN), pp. 779–783, December 2009

21. Massey, A., Otto, P., Hayward, L., Antn, A.: Evaluating existing security and
privacy requirements for legal compliance. Requirements Engineering (2010)

22. May, M.J., Gunter, C.A., Lee, I.: Privacy APIs: access control techniques to analyze
and verify legal privacy policies. In: Proceedings of the 19th IEEE Workshop on
Computer Security Foundations, CSFW 2006, pp. 85–97. IEEE Computer Society,
Washington, DC (2006)

23. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc,
Upper Saddle River (1988)

24. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.: Inferring method
specifications from natural language api descriptions. In: Proceedings of the 34th
International Conference on Software Engineering, ICSE 2012 (2012)

25. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.E., et al.: Object-
Oriented Modeling and Design, vol. 199. Prentice Hall, Upper Saddle River (1991)

26. Wagner, D.: Static analysis and computer security: new techniques for software
assurance. Ph.D. thesis, University of California at Berkeley, December 2000

Idea: Supporting Policy-Based Access Control
on Database Systems

Jasper Bogaerts(B), Bert Lagaisse, and Wouter Joosen

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{Jasper.Bogaerts,Bert.Lagaisse,Wouter.Joosen}@cs.kuleuven.be

Abstract. Applications are increasingly operating on large data sets.
This trend creates problems for access control, which in principle restricts
the actions that subjects can perform on any item in that data set. Per-
formance issues therefore emerge, typically for operations on entire data
sets. Emerging access control models such as attribute-based access con-
trol do meet their limitations in this context. Worse, few solutions exist
that addresses performance problems while supporting separation of con-
cerns. In this paper, we present a first approach towards addressing this
challenge. We propose a middleware architecture that performs policy
transformations and query rewriting for externalized policies to optimize
the access control process on the data set. We argue that this offers
a promising approach for reducing the policy evaluation overhead for
access control on large data sets.

Keywords: Access control · Policy-based access control · Databases ·
Attribute-based access control

1 Introduction

Applications are increasingly operating on large data sets. This is especially
true for multi-tenant software-as-a-service (SaaS) applications, in which ten-
ant organizations access a shared, typically web-based application hosted by a
provider [12].

Such data must be protected. One important security measure to protect
data is access control, which restricts actions performed by a subject (e.g., user)
on an object (e.g., resource). A typical approach to realize this is to externalize
an access control policy from the application and evaluate it each time a subject
performs a request to the application [20,22], a technique commonly referred to
as Policy-Based Access Control (PBAC). This supports separation of concerns [7]
and enables tenants in multi-tenant SaaS applications to specify their own policy
without service interruption [8].

One challenge for policy-based access control is to enforce it for operations
on a large data set. An operation comprises of the same action that is performed
on each element of the data set. For example, when subjects perform a search
on a database, only the elements (or objects) to which they are entitled should
be returned. This involves a policy evaluation for the view action on the objects.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 251–259, 2016.
DOI: 10.1007/978-3-319-30806-7 16

252 J. Bogaerts et al.

A naive approach to such issue is to serially evaluate the access control policy
for each data item returned by the search query and filter the results. However,
this can involve considerable evaluation overhead [21], especially for policies
specified according to emerging access control models such as attribute-based
access control [11]. On the other hand, while most database management systems
support some form of efficient access control enforcement, they do not provide
a solution to this problem that both scales in terms of the number of users and
organizations, and meanwhile provides separation of concerns.

In this paper, we approach this issue by merging policy transformation and
query rewriting techniques to optimize operations on large data sets. These tech-
niques should be employable in a manner that is transparent to the application
developer, thereby accomplishing a separation of concerns. This paper provides
a first analysis of the approach that combines these techniques for this purpose,
and discusses challenges that need to be addressed to realize such an approach.

Organization. Section 2 provides a scenario and motivates the requirements.
This section also elaborates on related work. Section 3 describes the middleware
that we propose to mitigate the problem. Section 4 discusses the proposed solu-
tion further, and elaborates on the challenges. Section 5 concludes the paper.

2 Motivation

This paper describes how policy transformation and query rewriting techniques
can be combined to enforce access control policies for operations on large data
sets. Although several such operations can be performed, such as batch insertions
or updates, our main focus will be to enforce this for search operations.

Fig. 1. The document management application enables tenants to specify policies.

To illustrate this issue, consider a document management SaaS application,
that manages millions of business documents for multiple tenants, as shown
in Fig. 1. These tenants can each specify their own policies to restrict their
respective affiliates. For example, they could permit read access to the creator of
a document, and to all members of his/her department (e.g., accounting). The
affiliates should also be restricted access based on policies that were specified
by the application developers. In general, for example, such an affiliate cannot
access documents of another tenant. A tenant can not be restricted access to its
own documents through policies of another tenant [8].

Idea: Supporting Policy-Based Access Control on Database Systems 253

When affiliates of a tenant search for documents in the document manage-
ment application, they must only be returned the documents they are entitled to.
This involves enforcement of application policies (e.g., subjects can only access
documents of their tenant) and tenant policies (e.g., subjects of the accounting
department can view paychecks).

2.1 Requirements

Besides functional requirements previously indicated in the scenario, the solution
must support several additional characteristics:

– Transparency. The middleware must integrate seamlessly with the existing
application, and respect the principle of separation of concerns. More partic-
ularly, the application developer should not take into account access control
when writing queries.

– Support for application-level policies. The middleware must take into
account policies that reason about application concepts. An access control
policy is safe if it only refers to concepts that exist in the application or,
alternatively, refers to the subject that performs actions on the application.
Similarly, a query is safe if it corresponds to the underlying database schema.

– Support for tenant policies. The middleware must take into account poli-
cies specified by tenants. Since tenants provide untrusted input in the policies,
we must ensure that they are secure, i.e., that they do not escalate privileges
over provider policies, nor are they vulnerable to injection attacks.

– Support for expressive policies. The middleware should support expres-
sive policies. This enables tenants to specify fine-grained access constraints.

– Performance. The middleware should reduce the access control evaluation
overhead for operations on large data sets. The overhead that is introduced
by the middleware itself must be minimized.

2.2 Related Work

A lot of related work has been performed in the domain of database access
control. Many traditional database management systems employ views, stored
procedures and access control lists to restrict access for individual subjects [3].
However, many such techniques assume a two-tier architecture, which has no
use when the application performs a query on behalf of a subject, as is the case
in multi-tier architectures that are common today [19]. As a result, such access
control techniques cannot be effectively enforced at the database at a granularity
level that exceeds the application. This is also the case for many techniques that
employ query rewriting to optimize access control [5,10,15,18].

One technique that mitigates this issue is Virtual Private Data-
base (VPD, [1]). VPD supports application identification, as a complement to
subject identification, to enforce access control policies that are specified in the
DBMS. While this supports the specification of views and queries that are aware
of individual subjects, VPD requires policies to be specified at the database

254 J. Bogaerts et al.

management system. This does not adhere to the principle of separation of con-
cerns. Moreover, it requires the policies to restrict in terms of database oper-
ations (e.g., insertion and selection), whereas application actions may involve
multiple such operations.

Opyrchal et al. [16] have addressed a similar issue to our goal by enforcing
CPOL policies for databases. Their system first checks whether a query is per-
mitted and evaluates the policy for each returned element if it is. However, their
method involves only limited query rewriting and no policy transformations.
Consequently, the system does not scale when large data sets are involved, espe-
cially if many elements are returned. By performing query rewriting and policy
transformation, our approach is able to reduce data sets on which access control
is performed, and optimizes access control evaluation for the remaining sets.

Axiomatics data access filter [2] also provides a solution that enforces policy-
based access control on databases for attribute-based policies. However, it does
not provide sufficient constraints to ensure safe and secure queries in the light
of, among others, multi-tenant applications.

Cook et al. [6] focus on the safety of composing queries. They propose a
method that effectively restricts developers from specifying queries that do not
correspond to the application domain. This is complementary to our work, but
it does not focus on the middleware that performs safe query rewriting.

This work relates to that of access control and usage control enforcement
techniques. Notably, in [17], Pretschner et al. present an architecture that is
capable of enforcing usage control policies in a distributed fashion. A similar
approach is taken in [9] to ensure access control enforcement is decentralized.
While this relates to our objective to speed up enforcement for access control,
our approach does not perform distributed evaluation to achieve this.

3 Approach

In order to meet the requirements that were introduced in Sect. 2, we propose
a middleware that transparently performs access control for operations on large
data sets. This section outlines the middleware architecture. The next section
discusses the challenges and motivates its feasibility.

The middleware is embedded in a database abstraction layer, and intercepts
every query that is performed on the database. The database abstraction layer
provides an abstraction over data access and integrates technologies such as
JDBC1 or object-relational mappers (ORM) such as JPA2 to hide database-
specific complexity. The middleware intercepts the query and determines the
objects on which the operation can be performed before executing it on them.

In order to support expressive policies, the middleware supports a XACML-
like policy language. XACML [14] provides a tree-structured, attribute-based
1 Java Database Connectivity, see also http://www.oracle.com/technetwork/java/

overview-141217.html.
2 Java Persistence API, see also http://www.oracle.com/technetwork/java/javaee/

tech/persistence-jsp-140049.html.

http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

Idea: Supporting Policy-Based Access Control on Database Systems 255

policy language in which policies can themselves contain other policies, thus
forming a policy tree. Applicability of both policies and rules are determined
during the evaluation, in which a target expression indicates applicability for a
policy, and a condition expression indicates applicability for a rule. If a rule is
applicable, its corresponding decision (i.e., permit or deny) is taken into account.
Expressions compare attributes assigned to subjects, objects, actions and envi-
ronment with each other and concrete values in order to determine the applica-
bility. Combining algorithms (e.g., first applicable, permit overrides) provide
conflict resolution when multiple policies or rules are applicable.

3.1 Design

The middleware combines policy transformation and query rewriting techniques
to optimize access control evaluation for large data sets. Figure 2 outlines the
architecture. The access control middleware introduces two components: the
policy transformer and the query translator.

Fig. 2. The middleware employs policy transformations and query rewriting to reduce
evaluation overhead for access control.

The policy transformer is responsible for retrieving, validating and trans-
forming the policy. This results in a transformation of the original policy to a
reduced form with the same semantics. The component achieves three goals.
First, it substitutes all attributes that are not assigned to the object, and as a
consequence, remain fixed for every element of the query that must be evaluated
against the policy. Second, it prunes the policy by omitting the rules that are
never applicable, thereby reducing evaluation time. Third, it reduces the policy
and its tree structure in such a way that it simplifies the translation to a query.

The query translator takes as input the transformed policy, and translates it
to a query that can be executed on the database. In order to support a wide range
of underlying database systems, we do not require the policy to be incorporated
in the resulting query entirely. Rather, the translator may select and translate a
partial policy that can significantly reduce the data set on which the transformed

256 J. Bogaerts et al.

policy must be evaluated. This enables the middleware to be used for database
systems that have a constrained query language, which is common especially
among NoSQL systems. Moreover, it supports translation to only queries that
can be performed without significant overhead.

Figure 2 illustrates how the middleware handles the access control process.
The access control process for search operations consists of six steps:

1. Policy Retrieval and Validation. The policy transformer retrieves and
combines all policies that are relevant for the acting subject. Next, it vali-
dates that the concepts that are referred to in the policy apply to the applica-
tion. This is especially a problem when attribute-based policies are involved,
because attribute-based policies require an understanding of the properties
associated with the subjects, objects, and actions of the application domain.
Validation ensures that no errors can occur in the evaluation in this regard.
Moreover, it can ensure that queries that are rewritten are safe (i.e., they refer
only to application concepts) and secure (i.e., they do not lead to privilege
escalation) because they are translated from a sanitized set of expressions.

2. Policy Rewriting. The policy transformer retrieves all relevant attributes
of the acting subject, action and environment. This information is leveraged
to prune the policy to contain only relevant rules. This stems from the obser-
vation that for each object, the subject and action will remain the same and
may lead to rules that are always (in)applicable for the search operation.
Such rules enable pruning of the policy. To do this, the middleware substi-
tutes the attributes with concrete values and determines which rules and
policies can be pruned. This can reduce policy evaluation time and reduce
the query that is generated based on the access control policy later in the
process. For instance, consider that an accountant searches all documents
in the document management platform that match a certain search term. If
the policy also includes rules that target other roles or actions, they can be
pruned for the transformation.

3. Policy to Query Translation. In this step, the transformed policy is trans-
lated to a query. Note that the query should evaluate only concepts of the
objects on which the search operation is performed, due to the substitution
of attributes in the previous step. The query translator could select only a
partial policy to translate to due to functional or performance constraints of
the underlying database. Such a query must significantly reduce the size of
the data set to optimize the access control evaluation process. For instance,
consider again the example scenario of the previous step. Consider also that
the policy states that accountants can only read financial documents that
were created in the last year. The query translation could select only a part
of this rule, e.g., that only financial documents may be read, to cope with con-
straints of the query language of the underlying database. This could already
significantly reduce the resulting data set on which serial policy evaluation
must be performed, because other types of documents for which the policy
would evaluate to a deny decision are already filtered out.

Idea: Supporting Policy-Based Access Control on Database Systems 257

4. Query. The query translator composes a query that takes into account both
the original request parameters (e.g., search parameters) and the access con-
trol policy (translated in the previous step). Next, it retrieves all objects that
satisfy the composed query from the underlying database.

5. Policy Evaluation. The policy transformer evaluates the previously trans-
formed policy for each object that resulted from the query. This determines
on which objects the subject is entitled to perform the search operation. For
instance, consider the translation of a partial policy in the example of the
third step. The previously transformed policy can be evaluated against the
result set to enforce that the documents were created in the last year. Note
that this step is redundant when the policy is fully translated to the query,
and can be skipped in such a case.

6. Result. Finally, the resulting data set is returned to the subject.

4 Discussion

With the architecture presented in Sect. 3, we intend to significantly reduce the
policy evaluation overhead for operations on large data sets. However, in order
to do this, several challenges need to be addressed.

The middleware optimizes access control for large data sets through policy
transformation and query rewriting. Both can introduce an overhead. On the
one hand, policy transformation may introduce a processing overhead, and still
requires considerable overhead when the transformed policy is evaluated against
a large data set. On the other hand, performing a query that was rewritten
according to a policy may also introduce an overhead when applied to a large
data set. Consequently, a balance must be found in determining to what extent
the query is rewritten. This is complicated by the variability of the underly-
ing database schema and the query languages that are supported by the data-
base system. This is a considerable challenge for future work, especially when
NoSQL systems must be supported. In general, these systems are identified by
constraints in their query language and a potentially large cost for performing
certain types of queries. Whenever a policy is only translated partially into a
query, this requires an evaluation of the transformed policy over the objects in
the data set that results from this query. This is performed in the fifth step of the
process. Because some of the expressions of the policy are already included as
part of the query, the policy could be further transformed to omit these expres-
sions and hence avoid redundant evaluation. When the policy can be translated
fully into a query, this post-evaluation step can be omitted altogether.

While we focused on constraining search operations, a similar approach could
be performed for write operations (e.g., batch updates). This would involve a
step that filters out objects for which the operation is not permitted prior to
performing the query, if the policy can not be translated fully to a query.

The strategy introduced in this paper requires that both database and mid-
dleware preside in the same security domain. Else, the solution would be subject
to data leaking for objects that were not filtered by the query, but are withheld
by the policy evaluation.

258 J. Bogaerts et al.

In order to determine the feasibility of the approach presented in this paper,
we have induced a prototype that is capable of handling policy transformations
for the STAPL [13] policy language (which closely resembles XACML [14]) and
performs query rewriting for SQL-compliant database systems. To ensure the
safety and security of the queries that are generated in our approach, validation
techniques can be employed. Safety validation can be performed through match-
ing the referred attributes to the application domain concepts [4]. This is done
through a separate artifact that describes the properties of the subjects, objects
and actions associated with the application domain and how they map on the
database schema. This artifact can be extracted automatically from the appli-
cation code. Security validation intends to prevent privilege escalation through
queries generated from custom policies, and can also employ this artifact in
combination with whitelisting techniques for the expressions of the policy to
determine whether they can be translated to a query securely. The initial proto-
type indicates the feasibility of the approach, and a thorough evaluation of the
performance will be presented in future work.

5 Conclusion

This paper has presented an initial step towards a middleware than can transpar-
ently enforce access control for search operations on large data sets. Evidently,
many challenges remain. These include the way that the middleware handles
variability of the underlying database schema and analyzing the performance
issues that large policies may introduce on the translated query. However, we
believe that such problems can be mitigated.

We are convinced that the middleware presented in this paper can signif-
icantly reduce the overhead introduced by performing access control for large
data sets, and should be further researched in future work. This would enable
policy-based access control to be enforced on both the application and the data-
base, effectively supporting a separation of concerns.

Acknowledgments. This research is partially funded by the Research Fund KU Leu-
ven, and by the EU FP7 project NESSoS. With the financial support from the Preven-
tion of and Fight against Crime Programme of the European Union (B-CCENTRE).

References

1. Oracle Virtual Private Database (VPD). http://docs.oracle.com/cd/B28359 01/
network.111/b28531/vpd.htm. (Accessed 02 September 2015)

2. Axiomatics. Data Access Filter (ADAF). http://www.axiomatics.com/solutions/
products/authorization-for-databases/197-axiomatics-data-access-filter-adaf.
html. (Accessed 2 October 2015)

3. Bertino, E., Sandhu, R.: Database security-concepts, approaches, and challenges.
IEEE Trans. Dependable Secure Comput. 2(1), 2–19 (2005)

http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://www.axiomatics.com/solutions/products/authorization-for-databases/197-axiomatics-data-access-filter-adaf.html
http://www.axiomatics.com/solutions/products/authorization-for-databases/197-axiomatics-data-access-filter-adaf.html
http://www.axiomatics.com/solutions/products/authorization-for-databases/197-axiomatics-data-access-filter-adaf.html

Idea: Supporting Policy-Based Access Control on Database Systems 259

4. Bogaerts, J., Decat, M., Lagaisse, B., Joosen, W.: Control, entity-based access:
supporting more expressive access control policies. In: Proceedings of the 31st
Annual Computer Security Applications Conference (2015)

5. Carminati, B., Ferrari, E., Cao, J., Tan, K.L.: A framework to enforce access control
over data streams. In: ACM TISSEC (2010)

6. Cook, W.R., Rai, S., Safe query objects: statically typed objects as remotely exe-
cutable queries. In: 27th International Conference on Software Engineering, ICSE,
Proceedings, pp. 97–106. IEEE (2005)

7. De Win, B., Piessens, F., Joosen, W., Verhanneman, T.: On the importance of the
separation-of-concerns principle in secure software engineering. In: Workshop on
the Application of Engineering Principles to System Security Design (2002)

8. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: Amusa: middleware for efficient
access control management of multi-tenant SaaS applications. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing. ACM (2015)

9. Gay, R., Hu, J., Mantel, H.: CliSeAu: securing distributed java programs by cooper-
ative dynamic enforcement. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014.
LNCS, vol. 8880, pp. 378–398. Springer, Heidelberg (2014)

10. Grummt, E., Müller, M.: Fine-grained access control for EPC information services.
In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.)
IOT 2008. LNCS, vol. 4952, pp. 35–49. Springer, Heidelberg (2008)

11. Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.:
Guide to Attribute Based Access Control (ABAC) Definition and Considerations.
NIST Special Publication (2014)

12. Mell, P., Grance, T.: The NIST definition of cloud computing. In: NIST (2009)
13. Moeys, J., Decat, M.: Simple Tree-structured Attribute-based Policy Language

(STAPL). https://github.com/stapl-dsl. (Accessed 2 October 2015)
14. OASIS. eXtensible Access Control Markup Language (XACML) Standard v3.0

(2013). http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
15. Olson, L.E., Gunter, C.A., Cook, W.R., Winslett, M.: Implementing reflective

access control in SQL. In: Gudes, E., Vaidya, J. (eds.) Data and Applications
Security XXIII. LNCS, vol. 5645, pp. 17–32. Springer, Heidelberg (2009)

16. Opyrchal, L., Cooper, J., Poyar, R., Lenahan, B., Zeinner, D.: Bouncer: policy-
based fine grained access control in large databases. Int. J. Secur. Appl. 5(2), 1–16
(2011)

17. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Commun. ACM
49(9), 39–44 (2006)

18. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: SIGMOD Conference on Management of
data. ACM (2004)

19. Roichman, A., Gudes, E.: Fine-grained access control to web databases. In: Sym-
posium on Access Control Models and Technologies. ACM (2007)

20. Samarati, P., Vimercati, S., Control, A.: Policies, models, and mechanisms. In:
Foundations of Security Analysis and Design, pp. 137–196 (2001)

21. Turkmen, F., Crispo, B.: Performance evaluation of XACML PDP implementa-
tions. In: Workshop on Secure Web Services. ACM (2008)

22. Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross, G., de Bruijn, B.,
de Laat, C., Holdrege, M., Spence, D.: RFC 2904: AAA Authorization Framework,
August 2000

https://github.com/stapl-dsl
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

Idea: Enforcing Security Properties by Solving
Behavioural Equations

Eric Rothstein Morris(B) and Joachim Posegga

University of Passau, Passau, Germany
er@sec.uni-passau.de

Abstract. We present a novel theory of security property enforcement
based on universal coalgebra and coinductive calculus. As an example, we
show that it is possible to define sound and transparent runtime enforcers
for noninterference using behavioural equations, and we preliminarily
validate our approach by means of a Haskell implementation.

1 Introduction

Coalgebras [12,17] have arisen as a powerful category-theoretical framework for
the specification and reasoning of models of computation. In general, coalgebras
enable the uniform study of different systems, allowing the generalisation of
well-known theorems in Computer Science; e.g., Kleene’s theorem [21]. In the
context of systems security, Boreale et al. [3] lay a foundation for reasoning about
information leakage for a variety of systems that builds on language-theoretic and
coalgebraic concepts. In this work, we present a novel idea for the enforcement
of security properties based on coalgebras.

We associate coalgebras with Haskell’s typleclasses, which we use to imple-
ment them. For example, let I be an input alphabet and let Bool =
{False, True}; consider a typleclass DA that defines the functions accept : X →
Bool and transition : X → (I → X). If the type Y implements the typleclass DA,
then we have a coalgebra 〈Y, 〈accept, transition〉〉 of the functor (explained
below) DA(X) = Bool× (I → X), which defines coalgebras that model determin-
istic automata that recognise languages with alphabet I.

We work only with the category Set of sets and functions. Formally, a functor
F : Set → Set is a mapping from sets to sets and functions to functions that
preserves identities and function composition. Given a functor F : Set → Set,
an F -coalgebra is a pair 〈X, α〉 where X is a set and α : X → F (X) is a function.

Final coalgebras (see [17]) are associated with denotational semantics and
notions of behaviour. An F -coalgebra 〈Z, ω〉 is final if and only if, for every
F -coalgebra 〈X, α〉, there is one and only one function �·� : X → Z, called the
semantic mapping, such that F (�·�) ◦ α = ω ◦ �·� (see also [12]). Every final
F -coalgebra 〈Z, ω〉 satisfies two properties that are fundamental to our idea: first,
the function ω is an isomorphism between Z and F (Z), and second, the set Z sat-
isfies the principle of coinduction. In a nutshell, coinduction describes the obser-
vation and dynamics of the elements of Z; i.e., how they may be observed and
transformed.
c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): ESSoS 2016, LNCS 9639, pp. 260–268, 2016.
DOI: 10.1007/978-3-319-30806-7 17

Enforcing Security Properties by Solving Behavioural Equations 261

Idea: Given a final F -coalgebra 〈Z, ω : Z → F (Z)〉 where ω = 〈f1, . . . , fn〉, we use
a system of behavioural equations (see [19]) to define a property P : Z → Bool;
i.e., for z ∈ Z, we say that P(z) holds only if z satisfies a system of behavioural
equations f1(z) = s1, . . . , fn(z) = sn, where 〈s1, . . . , sn〉 ∈ F (Z). Using the
system of behavioural equations, we then define a unary operator enf

P
: Z → Z,

for z ∈ Z, by

enf
P
(z) = ω−1(s1, . . . , sn). (1)

Given that ω(enf
P
(z)) = 〈s1, . . . , sn〉, we know that enf

P
(z) satisfies the property

P, and we see that the operator enf
P

models an enforcer for P. Finally, we extend
enforcement of P to all F -coalgebras by means of the semantic mapping.

The rest of the paper is organised as follows: Sect. 2 sets the notation for
the rest of the paper and provides some preliminaries about systems modelled
as coalgebras, and property enforcement. In Sect. 3, we take a popular security
property, noninterference, and we show how to create an enforcer for it using
behavioural equations. Section 4 discusses a preliminary Haskell implementation
of the enforcement scheme. Section 5 explores related work, and we conclude in
Sect. 6.

2 Preliminaries

We provide the following definitions related to enforcement mechanisms based
on [1,7,13]. Let Sys be a set of systems. We say that Sys → Bool is the set of
system properties. Intuitively, a system σ satisfies a system property P if and
only if P(σ) = True. Given a system property P, a sound enforcer of P is a
mechanism enf

P
: Sys → Sys such that enf

P
(σ) satisfies P, for all σ ∈ Sys. An

enforcer enf
P

is transparent if and only if whenever σ satisfies P, then enf
P
(σ)

is behaviourally equivalent to σ.
Given a set X, the set of sequences of elements of X (either finite or infinite)

is [X]. The empty sequence is denoted by []. We denote the prepending of an
element x ∈ X to a sequence w ∈ [X] by x : w.

3 Enforcing Noninterference via Behavioural Equations

In this section, we show how to enforce noninterference [9] using our behavioural
equations method. Informally, noninterference is the notion of information flow
security where the actions of a group of users does not affect what another group
of users sees. A common formulation of noninterference uses a two-element lattice
{L,H} with L ≤ H; i.e., the actions of H-users must not affect what L-users
see, but actions of L-users may affect what H-users see.

For the rest of the paper, let I be a set of inputs and let O be a set of
outputs. We model reactive systems with only one output channel (of L-type)
as coalgebras of the functor F (X) = (I → O)× (I → X). We associate the functor
F with a Haskell typeclass that requires the type X to implement two functions:

262 E. Rothstein Morris and J. Posegga

an observation function obs : X → (I → O) and a dynamics/transition function
trn : X → (I → X). For x ∈ X and i ∈ I, obs(x)(i) is the output written in the
channel when i arrives at state x, and trn(x)(i) is the i-successor state of x;
i.e., the state that x makes a transition to when the input i arrives. Henceforth,
we write xi as a shorthand for trn(x)(i). We show how to model systems with
two output channels in Sect. 3.3.

Let �1F � = [I] → (I → O). Based on [11, Lemma 6], we say that the set
�1F � has a final F -coalgebra structure if the functions obs : �1F � → (I → O) and
trn : �1F � → (I → �1F �) are defined, for σ ∈ �1F �, i ∈ I and w ∈ [I], by

obs(σ) = σ([]), (2)
trn(σ)(i)(w) = σ(i : w). (3)

For every F -coalgebra 〈X, obs, trn〉, the semantic mapping �·� : X → �1F � is
defined, for x ∈ X, i ∈ I and w ∈ [I], by

�x�([]) = obs(x), (4)

�x�(i : w) = �xi�(w). (5)

Given the existence of the semantic mapping, we refer to �1F � as the set of
behaviours of F -coalgebras.

Now that we have a final F -coalgebra 〈�1F �, 〈obs, trn〉〉, we want to define
a set of conditions obs(σ) = s1 and trn(σ) = s2 with 〈s1, s2〉 ∈ F (�1F �) that
characterises those elements σ ∈ �1F � that satisfy noninterference.

3.1 Defining Behavioural Equations for Noninterference

Before we define noninterference, we need to introduce a couple of concepts. Let
lvl : I → {L,H} be a function that classifies inputs into security levels, and let
trace : �1F � → [I] → [O] be the function defined by

trace(σ, []) = [], (6)

trace(σ, i : w) = obs(σ)(i) : trace(σi, w). (7)

Now, let filter : [I] → [I] be the function defined, for w ∈ [I] and i ∈ I, by

filter([]) = [], (8)

filter(i : w) =
{
i : filter(w), if lvl(i) = L;
filter(w), if lvl(i) = H.

(9)

Traditionally, noninterference [9] is the property NI : �1F � → bool defined, for
σ ∈ �1F �, by

NI(σ) = ∀w ∈ [I]. trace(σ, w) = trace(σ, filter(w)). (10)

The property NI is defined in terms of traces and not in terms of “local con-
ditions”; i.e., conditions over obs and trn. To fit the method described in this

Enforcing Security Properties by Solving Behavioural Equations 263

work, we need to look for conditions over obs and trn that would imply NI,
instead. Based on the unwinding theorem [10], we present the following two con-
ditions: for all i ∈ I, in order for σ ∈ �1F � to satisfy NI, it is necessary that the
following conditions hold: the condition

obs(σ)(i) =
{
obs(σ)(i), if lvl(i) = L;
[], if lvl(i) = H,

(11)

which requires H-level inputs to produce no visible L-output, the condition

σi =
{

σi, if lvl(i) = L;
σ, if lvl(i) = H,

(12)

which requires H-level inputs to cause no behavioural changes, and the condition

NI(σi), (13)

which requires the conditions (11) and (12) to hold invariantly.
We associate (11) with the notion of local consistency and (12) with the

notion of step consistency from Ochoa et al.’s [16]. In [16], the authors show
that those conditions are enough to build an unwinding relation for the testing of
noninterference in UML state charts. Consequently, we assume that behaviours
that satisfy Eqs. (11), (12) and (13) satisfy NI.

We now use the right hand side of Eqs. (11), (12) and (13) to define the
behavioural equations that define our enforcer for noninterference.

3.2 Defining the Enforcer for Noninterference

Equations (11), (12) and (13) define the “local conditions” necessary for the satis-
faction of NI, and we use them to determine the system of behavioural equations
that defines the enforcer for NI. Let enf

NI
: �1F � → �1F � be the operator defined,

for σ ∈ �1F � and i ∈ I, by the system of behavioural equations

obs(enf
NI

(σ))(i) =
{
obs(σ)(i), if lvl(i) = L;
[], if lvl(i) = H; (14)

enf
NI

(σ)i =
{

enf
NI

(σi), if lvl(i) = L;
enf

NI
(σ), if lvl(i) = H.

(15)

Implicitly, Eqs. (14) and (15) first map the behaviour σ ∈ �1F � to the pair
〈obs(enf

NI
(σ)), trn(enf

NI
(σ))〉 ∈ F (�1F �). Then, Eqs. (14) and (15) use the

inverse of the isomorphism 〈obs, trn〉 : �1F � → F (�1F �) to map the pair
〈obs(enf

NI
(σ)), trn(enf

NI
(σ))〉 to the behaviour enf

NI
(σ) ∈ �1F �, building a

bridge between σ and its noninterferent version enf
NI

(σ).
We prove that if σ satisfies Eqs. (11), (12) and (13), then σ = enf

NI
(σ). We

conduct the proof by bisimulation; i.e., we define a relation R ⊆ �1F � × �1F �
that contains the pair 〈σ, enf

NI
(σ)〉 and we show that R is a bisimulation

relation. More precisely, we show that obs(σ) = obs(enf
NI

(σ)) and that
〈σi, enf

NI
(σ)i〉 ∈ R, for all i ∈ I. For a comprehensive explanation on proofs

by bisimulation, please refer to [12,17–19].

264 E. Rothstein Morris and J. Posegga

Theorem 1. The relation R = { 〈σ, enf
NI

(σ)〉 | σ satisfies (11), (12) and (13) }
is a bisimulation.

Proof. The equality obs(σ) = obs(enf
NI

(σ)) holds because the right hand side
of Eqs. (11) and (14) is the same.

To prove that 〈σi, enf
NI

(σ)i〉 ∈ R, we split into two cases: one where
lvl(i) = L and one where lvl(i) = H. On the first case, since σ satisfies
(13), we know that (11) and (12) also hold for σi. Consequently, we know that
the pair 〈σi, enf

NI
(σi)〉 ∈ R. Additionally, we know that enf

NI
(σ)i = enf

NI
(σi)

by Eq. (15), so 〈σi, enf
NI

(σ)i〉 ∈ R in this first case. On the second case, we have
that enf

NI
(σ)i = enf

NI
(σ) by Eq. (15), and that σi = σ by Eq. (12), so the pair

〈σi, enf
NI

(σ)i〉 is equal to 〈σ, enf
NI

(σ)〉, which we know belongs to R. Thus, we
conclude that R is a bisimulation relation.
�
We derive the following

Corollary 1. For all pairs 〈σ, enf
NI

(σ)〉 that are members of the bisimulation
relation R, we have that σ = enf

NI
(σ). This is because, in final coalgebras, all

bisimulation relations are subsets of the equality relation (see [17, Theorem9.2]).

The operator enf
NI

has the two properties that we look for in enforcement mech-
anisms: soundness and transparency. The function enf

NI
is sound because, for

all σ ∈ �1F �, enf
NI

(σ) satisfies Eqs. (11), (12) and (13) by design; implying that
enf

NI
(σ) satisfies NI. Additionally, the function enf

NI
is transparent, because if

σ satisfies NI, then enf
NI

(σ) = σ.
To extend the enforcement of NI via the operator enf

NI
to an arbitrary ele-

ment x ∈ X of an F -coalgebra 〈X, obs, trn〉, we first apply the semantic mapping,
and then we apply enf

NI
; i.e., enf

NI
(�x�). This extension allows us to soundly

and transparently enforce NI on any F -coalgebra.

3.3 Noninterference with Multiple Channels

Arguably, the enforcement of NI in a system that has only one channel (of
L-type) can be carried out by filtering all H-inputs so that they never reach the
system. ‘However, if a system has an H-channel that allows H-inputs to affect it,
filtering H-inputs damages the transparency of the enforcer mechanism. In this
section, we show how to adapt the behavioural equations for NI to fit a new model
of computation with two output channels: one of H-level and one of L-level.

To model reactive systems with one H-channel and with one L-channel, we
use coalgebras of the functor G(X) = (I → O) × (I → O) × (I → X). G-coalgebras
have two observation operations instead of one: obsH : X → (I → O) for the
H-channel and obsL : X → (I → O) for the L-channel. The dynamics function
trn : X → (I → X) remains the same.
Consider the set �1G� defined by

�1G� = �1F � × �1F � = ([I] → (I → O)) × ([I] → (I → O)) , (16)

Enforcing Security Properties by Solving Behavioural Equations 265

The set �1F � × �1F � has a final coalgebra structure for the functor G (see [11,
Lemma 6]) if obsH , obsL and trn are defined, for 〈σH , σL〉 ∈ �1F � × �1F � and
i ∈ I, by

obsH(σH , σL) = σH([]) (17)
obsL(σH , σL) = σL([]) (18)

trn(σH , σL)(i) = 〈σi
H , σi

L〉, (19)

We want to allow L-inputs to affect the H-channel, but prevent H-inputs from
affecting the L-channel. Thus, we propose the following system of equations: let
〈σH , σL〉 ∈ �1F � × �1F � and i ∈ I in

obsH(enf
NI

(σH , σL))(i) = obsH(σH , σL)(i) (20)

obsL(enf
NI

(σH , σL))(i) =
{
obsL(σH , σL)(i), if lvl(i) = L;
[], if lvl(i) = H; (21)

trn(enf
NI

(σH , σL))(i) =
{

enf
NI

(σi
H , σi

L), if lvl(i) = L;
enf

NI
(σi

H , σL), if lvl(i) = H.
(22)

Equation (20) allows inputs of any level to affect the H-channel. Equation (21)
matches Eq. (14), and prevents H-inputs from affecting the L-channel. Finally,
Eq. (22) allows L-inputs to change the behaviour of the H-part of the system,
but prevents H-inputs from changing the behaviour of the L-part of the system.
These equations remind us of Devriese and Piessen’s secure multi-execution [6],
because we split systems into two “subsystems”: one that provides outputs to
the H-channel and one that provides outputs to the L-channel. However, our
approach is different because secure multi-execution uses several instances of the
same system, but using different inputs for each security levels We do not change
the inputs of systems; we change the way systems respond to inputs, instead.

4 Implementation and Validation

Due to the functional nature of our definitions, Haskell offers a convenient way
to implement the elements required for enforcement via behavioural equations.
We test our enforcer with a very simple test case. We define Input = Int,
Output = String, and we make Int our set of states. We define the functions
obs : Int → Input → Output and trn : Int → Input → Int by obs(x, i) = “x”
and trn(x, i) = x+ i. We use a simple policy lvl : Input → {L,H}, defined for
i ∈ Input by

lvl(i) =
{

H, if i mod2 = 0;
L, otherwise .

(23)

Our experiment consists in evaluating the expressions given in Table 1. The
results suggest that noninterference is in fact being enforced, but that solving
the behavioural equations at runtime heavily impacts performance.

266 E. Rothstein Morris and J. Posegga

Table 1. Expressions evaluated to test enforcement via behavioural equations.

Expression Time Result

run 0 [1..1000] 0.05 s [“0”, “1”, “3”, “6”, “10”, “15”, ...]

run (enfNI (semanticMap 0)) [1..1000] 0.72 s [“0”, “1”, “4”, “9”, “16”, “25”, ...]

5 Related Work

The only work we could find that combines behavioural equations and security is
Boreale et al.’s [3]. They use behavioural equations to define the compositional
semantics of their process calculus, and they also use Haskell to implement their
calculus. However, their work focuses on quantification of information leakage,
not on enforcement of security properties.

The concepts of final coalgebra, coinduction and bisimulation are tightly
related, as shown in [17]. Sabelfeld’s [20] explores notions of bisimulation to
reason about noninterference, and Bohannon et al. [2] define variations of non-
interference by coinduction. Unlike us, Bohannon et al. focus in coinduction for
streams, and not in coinduction for final coalgebras in general. Consequently,
we consider their definitions of behavioural properties to be traced-based, while
ours are behaviour-based.

Clarkson and Schneider’s hyperproperties [4] are a very general theory for
the definition of systems and their properties. The recent extensions to LTL and
CTL*; namely HyperLTL and HyperCTL*, allow us to express a wide range of
hyperproperties as temporal formulas [5], and new algorithms enable the auto-
matic verification of those formulas in finite state systems [8]. The main dif-
ference between hyperproperties and our approach is that hyperproperties is a
trace-based approach to model systems, while ours is coalgebraic. Results are
still too preliminary to conclude whether coalgebras and behavioural equations
are more convenient than hyperproperties when it comes to enforcing complex
security properties.

Finally, the work by Milushev and Clarke [14] uses coalgebras in order to
provide an incremental approach to the verification of hyperproperties. However,
they only study the verification of those hyperproperties, not their enforcement.

6 Conclusion and Future Work

Although our results are very preliminary, we believe that defining enforcers via
behavioural equations is a promising method to enforce behavioural properties
during runtime. We showed that it is possible to define sound and transparent
enforcers for noninterference using behavioural equations, and we provided a
preliminary validation of our results by means of a Haskell implementation.

Enforcing Security Properties by Solving Behavioural Equations 267

Besides noninterference, it is also possible to capture and enforce notions of
integrity using behavioural equations. For example, for σ ∈ �1F �, we can define
the operator enf

Int
: �1F � → �1F � using the system behavioural equations

obs(enf
Int

(σ))(i) = obs(σ)(i) and trn(enf
Int

(σ))(i) = enf
Int

(σ) (24)

The behaviour enf
Int

(σ) takes the first observation of σ and protects it from
changes by inputs. In other words, enf

Int
is an enforcer for the property that

states: “the behaviour of the system must not change when inputs (of any kind)
are received”.

Concerning the functors that determine the coalgebras that model the sys-
tems we are interested in, we only imposed the restriction that a final coalgebra
must exist. Given that polynomial functors (see [11]) always imply the existence
of a final coalgebra, we believe that our method should work without problems
for that class of functors.

Though the enforcement method is theoretically sound, the performance
overhead caused by solving the behavioural equations during runtime needs to
be mitigated; otherwise, the method becomes impractical.

There are several directions for future work. First, we need to study which
security properties can be captured by means of behavioural equations. Defin-
ing well-known security properties as behavioural equations in order to test the
expressivity of the method is an interesting line of work. Second, in order to
improve performance, we are interested in finding optimisation methods for the
solution of behavioural equations. Finally, we would like to study more com-
plex systems, including non-deterministic and probabilistic systems, and describe
behavioural equations for them. Finally, Ngo et al. [15] propose a generic con-
struction of an enforcement mechanism for non-interference (among other prop-
erties) on black box reactive programs. We believe that the black box approach
is definitely related to the use of Haskell typeclasses and coalgebraic modelling,
so we see some similarities between our coalgebraic approach and theirs. Verify-
ing how their framework compares to ours is an interesting direction for future
work.

Acknowledgements. This work was partially supported by the European Commis-
sion funded project BIOMICS, Grant no. 318202.

References

1. Bielova, N.: A theory of constructive and predictable runtime enforcement mech-
anisms. Ph.D. thesis, University of Trento (2011)

2. Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive non-
interference. In: Proceedings of the 2009 ACM Conference on Computer and Com-
munications Security, CCS 2009, Chicago, Illinois, USA, 9–13 November 2009,
pp. 79–90 (2009)

3. Boreale, M., Clark, D., Gorla, D.: A semiring-based trace semantics for processes
with applications to information leakage analysis. Math. Struct. Comput. Sci.
25(2), 259–291 (2015)

268 E. Rothstein Morris and J. Posegga

4. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6),
1157–1210 (2010)

5. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014)

6. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In:
31st IEEE Symposium on Security and Privacy, S&P 2010, Berleley/Oakland,
California, USA, 16–19 May 2010, pp. 109–124 (2010)

7. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at run-
time? STTT 14(3), 349–382 (2012)

8. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 30–48. Springer, Heidelberg (2015)

9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982,
pp. 11–20 (1982)

10. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: 1984 IEEE Sym-
posium on Security and Privacy, p. 75, April 1984

11. Jacobs, B.: Objects and classes, coalgebraically. In: Object-Orientation with Par-
allelism and Persistence, pp. 83–103. Kluwer Academic Publishers (1995)

12. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and obser-
vations (2012). http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

13. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

14. Milushev, D., Clarke, D.: Towards incrementalization of holistic hyperproperties.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 329–348.
Springer, Heidelberg (2012)

15. Ngo, M., Massacci, F., Milushev, D., Piessens, F.: Runtime enforcement of secu-
rity policies on black box reactive programs. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 43–54. ACM (2015)

16. Ochoa, M., Cuéllar, J., Pretschner, A., Hallgren, P.: Idea: unwinding based model-
checking and testing for non-interference on EFSMs. In: Piessens, F., Caballero, J.,
Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 34–42. Springer, Heidelberg
(2015)

17. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1),
3–80 (2000)

18. Rutten, J.: Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theor. Comput. Sci. 308(13), 1–53 (2003)

19. Rutten, J.: A coinductive calculus of streams. Math. Struct. Comput. Sci. 15(1),
93–147 (2005)

20. Sabelfeld, A.: Confidentiality for multithreaded programs via bisimulation. In:
Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer,
Heidelberg (2004)

21. Silva, A.: Kleene coalgebras. Ph.D. thesis, Radboud University Nijmegen (2010)

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

Author Index

Alkofahi, Hamza 122
Anthonysamy, Pauline 233
Aspinall, David 216

Bartel, Alexandre 155
Basin, David 1
Berger, Bernhard J. 56
Bodden, Eric 155
Bogaerts, Jasper 251
Brucker, Achim D. 72, 190

Dashevskyi, Stanislav 190
Dashti, Mohammad Torabi 1

Edwards, Matthew 233

Farmer, Shane 122
Fogel, Benjamin 122
Follner, Andreas 155

Garg, Deepak 20
Guan, Quanlong 89

Hafiz, Munawar 122
Hallett, Joseph 216
Herzberg, Michael 72
Huang, Heqing 89

Joosen, Wouter 106, 251

Koschke, Rainer 56

Lagaisse, Bert 251
Liu, Peng 173
Lovat, Enrico 38
Luo, Weiqi 89

Massacci, Fabio 190

Ochoa, Martín 38

Payer, Mathias 138
Posegga, Joachim 260
Pretschner, Alexander 38
Preuveneers, Davy 106

Rafnsson, Willard 20
Rashid, Awais 233
Rothstein Morris, Eric 260

Sabelfeld, Andrei 20
Scheepers, Wout 106
Skjellum, Anthony 122
Sohr, Karsten 56

Türpe, Sven 207

Van Goethem, Tom 106

Weichel, Chris 233

Zhao, Mingyi 173
Zhu, Sencun 89

	Preface
	Organization
	Contents
	Security Testing Beyond Functional Tests
	1 Introduction
	2 Specifications and Requirements
	3 Security Rationales
	4 Security Cases
	5 Security Testing
	5.1 S-Tests and E-Tests
	5.2 S-Tests and E-Tests in Practice
	5.3 Vulnerability Remediation

	6 Concluding Remarks
	References

	Progress-Sensitive Security for SPARK
	1 Introduction
	2 Attacks
	3 Programs and Policies
	4 Security Property
	5 Enforcement
	6 Source-to-Source Transform
	7 Case Study
	8 Related Work
	9 Conclusion
	References

	Sound and Precise Cross-Layer Data Flow Tracking
	1 Introduction
	2 Background and Roadmap
	3 Security Guarantees at Single Layers
	3.1 Step 1: Security Property at the Layer
	3.2 Step 2: Soundness at a Single Layer

	4 Guarantees for Multiple Layers
	4.1 Step 3: Layer Composition
	4.2 Step 4: Sound Monitor Based on the State Relation

	5 Cross-Layer Models
	5.1 Step 5: Increasing Precision --- Example
	5.2 Step 6: Definition of Oracles
	5.3 Step 7: Algorithm for Sound Composition

	6 Related Work
	7 Conclusions
	A Serialized Events
	References

	Automatically Extracting Threats from Extended Data Flow Diagrams
	1 Introduction
	2 Background
	3 Analysis Approach
	3.1 Dataflow Diagrams
	3.2 Introducing EDFDs
	3.3 Pattern Catalog
	3.4 Knowledge Base Rules
	3.5 Rule Checker
	3.6 Threat Model

	4 Knowledge Base
	5 Evaluation
	6 Discussion
	7 Related Work
	8 Conclusion and Outlook
	A CWE and CAPEC Rules
	References

	On the Static Analysis of Hybrid Mobile Apps
	1 Introduction
	2 Apache Cordova and Its Security Model
	2.1 Apache Cordova Architecture and Programming Model
	2.2 Security Considerations for Cordova Apps

	3 Static Analysis for Finding Cross-Language Flows
	3.1 Modelling Cordova
	3.2 Implementation

	4 The State of Cordova App Security (and Quality)
	4.1 Popularity of Cordova and Benchmark Selection
	4.2 Scalability
	4.3 Quality
	4.4 Noticeable Findings About the Apps

	5 Related Work
	6 Conclusion and Future Work
	References

	Semantics-Based Repackaging Detection for Mobile Apps
	1 Introduction
	2 Overview
	3 System Design of RepDetector
	3.1 Core Classes and Functions Extraction
	3.2 Output Semantics Construction
	3.3 Equivalence Measurement of Two Functions
	3.4 Similarity Comparison Between Apps

	4 Performance Evaluation
	4.1 Study I: Detection Accuracy with Known Samples
	4.2 Study II: Efficiency
	4.3 Study III: Obfuscation Resilience

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Accelerometer-Based Device Fingerprinting for Multi-factor Mobile Authentication
	1 Introduction
	2 Background
	3 Approach and Implementation
	3.1 Enduring the User Agent and Fingerprint Spoofing Threat
	3.2 Mitigation Against Spoofing Attacks
	3.3 Sensor Data Collection and Fingerprint Extraction
	3.4 Integration in Identity and Access Management Systems

	4 Evaluation
	4.1 Qualitative Evaluation
	4.2 Quantitative Evaluation
	4.3 Experiment Setup

	5 Related Work
	6 Conclusion
	References

	POODLEs, More POODLEs, FREAK Attacks Too: How Server Administrators Responded to Three Serious Web Vulnerabilities
	1 Introduction
	2 Background
	2.1 SSL Protocol
	2.2 POODLE Vulnerability
	2.3 POODLE TLS Vulnerability
	2.4 FREAK Vulnerability

	3 Study Design: Server Scan
	4 Results
	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

	HexPADS: A Platform to Detect ``Stealth'' Attacks
	1 Introduction
	2 Threat Model and Attacker Goals
	3 Background
	3.1 Process Metrics
	3.2 Performance Counters

	4 HexPADS Design
	5 Implementation
	6 Evaluation
	6.1 Performance Overhead
	6.2 Case Study: Rowhammer
	6.3 Case Study: Cache-Based CSCs
	6.4 Case Study: CAIN
	6.5 Discussion, Limitations, and Future Work

	7 Related Work
	7.1 Covert and Side Channel Attacks
	7.2 Covert and Side Channel Attack Detection and Mitigation
	7.3 Intrusion Detection and Mitigation

	8 Conclusion
	References

	Analyzing the Gadgets
	1 Introduction
	2 Motivation
	3 Metrics for Measuring Gadget Quality
	3.1 Metric 1: Gadget Distribution
	3.2 Metric 2: Gadget Environment Setup Capabilities
	3.3 Metric 3: Gadget Environment Setup Capabilities - Restricted
	3.4 Metric 4: Gadget Quality
	3.5 Discussion of the Metrics

	4 Evaluation
	4.1 Implementation
	4.2 Setup
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	Empirical Analysis and Modeling of Black-Box Mutational Fuzzing
	1 Introduction
	2 Related Work
	3 BFF and Data Collection
	4 The Long-Tail Distribution of Bugs
	5 Modeling a Fuzzing Campaign
	5.1 A Stochastic Model
	5.2 A Simulation Model

	6 Analysis Results
	6.1 Expected Number of Bugs Discovered
	6.2 The Order of Bug Discovery
	6.3 Exploitability

	7 Discussion and Future Work
	7.1 Apply Our Analysis to Larger Datasets
	7.2 Generalization to Other Vulnerability Discovery Approaches

	8 Conclusion
	References

	On the Security Cost of Using a Free and Open Source Component in a Proprietary Product
	1 Introduction
	2 FOSS Consumption at SAP
	3 Research Question and Cost Models
	4 Related Work
	5 Data Sources
	6 FOSS Project Metrics Selection
	7 Analysis
	8 Conclusions
	References

	Idea: Usable Platforms for Secure Programming -- Mining Unix for Insight and Guidelines
	1 Introduction
	2 Setuid in a Nutshell
	2.1 Setuid Mechanism
	2.2 Uses

	3 Security Obligations and Programming Rules
	3.1 Security Obligations
	3.2 Programming Rules

	4 Example: A Good Program Turning Vulnerable
	4.1 Hello, World!
	4.2 Some Vulnerabilities

	5 The API Usability Perspective
	5.1 Usable Security Principles
	5.2 Cognitive Dimensions

	6 Outlook
	References

	AppPAL for Android
	1 Introduction
	2 Enforcing a Policy at Work
	3 Expressing Policies in AppPAL
	4 AppPAL
	4.1 Policy Checking
	4.2 Benchmarks

	5 Measuring Policy Compliance
	6 Related Work
	7 Conclusions and Further Work
	References

	Inferring Semantic Mapping Between Policies and Code: The Clue is in the Language
	1 Introduction
	2 Related Work
	3 Semantic Inference
	3.1 Definitions
	3.2 Policy Model Construction
	3.3 Source Code Model Construction
	3.4 Semantic Mapping

	4 Evaluation
	4.1 Experiment 1: Unbalanced Classes
	4.2 Experiment 2: Balanced Classes
	4.3 Experiment 3: Introducing Heuristics
	4.4 Results

	5 Discussion and Future Work
	A Implementation: CASTOR
	B Formulae
	References

	Idea: Supporting Policy-Based Access Control on Database Systems
	1 Introduction
	2 Motivation
	2.1 Requirements
	2.2 Related Work

	3 Approach
	3.1 Design

	4 Discussion
	5 Conclusion
	References

	Idea: Enforcing Security Properties by Solving Behavioural Equations
	1 Introduction
	2 Preliminaries
	3 Enforcing Noninterference via Behavioural Equations
	3.1 Defining Behavioural Equations for Noninterference
	3.2 Defining the Enforcer for Noninterference
	3.3 Noninterference with Multiple Channels

	4 Implementation and Validation
	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

