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Introduction

Pension plans in the United States come in two varieties. Defined 
 contribution pension plans specify the contribution of the corporation. 
The employees have the right to invest the corporation’s contribution 
and their own contribution in a limited set of funds. The participants 
in a defined contribution pension plan are responsible for making all 
the investment decisions and bear all the risks associated with these 
decisions; thus, the benefit to the participants is uncertain. In contrast, 
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defined benefit pension plans specify the benefits due to plan partici-
pants. The plan sponsor, that is the corporation, makes all the invest-
ment decisions in a defined benefit pension plan and bears all the 
investment risk. Defined benefit plans have been in the news in the 
past few years because some firms face the prospect of bankruptcy over 
severely underfunded pension plans. Consequently, there is a need to 
develop models that account for uncertainty in future market condi-
tions and plan accordingly.

Pension fund management is an instance of the asset-liability man-
agement problem (see, for example, Consigli and Dempster, 1998; 
Klaassen, 1998; Drijver et al, 2000; Sodhi, 2005) in which the goal of 
the decision maker is to manage the capital invested into a set of assets 
in order to meet obligations at the minimum possible cost. The typical 
modeling paradigm adopted in the literature is to model the uncertainty 
in market conditions as random variables with a known  distribution, 
formulate the asset-liability management problem (and, hence, also the 
specific case of the pension fund management problem) as a stochastic 
program, and solve the problem by sampling the market conditions 
from the given distributions. All sampling-based methods suffer from 
the curse-of-dimensionality and become intractable as the number of 
decisions increases, that is either the number of assets in the portfolio 
or the number of decision epoch increases. In this article, we propose a 
robust optimization-based approach as an alternative to the stochastic 
programming based-methods.

Robust optimization is a methodology for explicitly incorporating the 
effect of parameter uncertainty in optimization problems (Ben-Tal et al, 
2000; Ben-Tal and Nemirovski, 2001). In this approach, the parameter 
values are assumed to belong to known and bounded uncertainty sets, 
and the solution is computed assuming the worst-case behavior of the 
parameters. Thus, robust solutions are conservative. This is particularly 
appropriate for pension fund management. Typically, the uncertainty 
sets correspond to confidence regions around point estimates of the 
parameters; consequently, one is able to provide probabilistic guaran-
tees on the performance of the robust solution. For a very large class of 
uncertainty sets, the computational effort required to solve the robust 
optimization problem is polynomial in the size of the problem (Ben-Tal 
and Nemirovski, 2001; Goldfarb and Iyengar, 2003) – in contrast, the 
computational complexity of the stochastic programming-based meth-
ods is exponential in the problem size. Consequently, robust methods 
are likely to become a computationally tractable alternative to stochas-
tic programming-based methods.
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A pension fund management problem involves optimizing a given 
objective, for example minimizing the discounted value of all contribu-
tions, while ensuring that the fund is always able to meet its liabilities. 
In addition, the fund’s holdings must also satisfy regulatory require-
ments. We assume that the parameters of the financial markets of 
relevance to pension fund management, for example the yield curve, 
the expected return and volatility on an equity index and so on, are 
described by factors that evolve according to a stochastic differential 
equation. In this setting, we show that the pension fund manage-
ment problem can be formulated as a chance-constrained optimization 
problem. However, the random variables in the chance constraints are 
nonlinear functions of the underlying factors. We use the Itô-Taylor 
expansion to linearize the nonlinear chance constraints and show that 
the linearized chance constraints can be approximated by second-order 
cone (SOC) constraints. Thus, the pension fund management problem 
can be approximated by a second-order cone program (SOCP). This 
implies that very large-scale problems can be solved efficiently both in 
theory (Alizadeh and Goldfarb, 2003) and in practice (Andersen and 
Andersen, 2006). Moreover, as a number of commercial solvers, such 
as MOSEK, CPLEX and Frontline System (supplier of EXCEL SOLVER), 
provide the capability for solving SOCPs in a numerically robust man-
ner, we expect the robust approach to become the method of choice for 
solving large-scale pension fund problems.

The rest of the article is organized as follows. In the section ‘Robust 
pension fund management’, we show how to use linearization and 
robust optimization techniques to formulate general pension fund 
management problems as a SOCPs. In the section ‘Numerical exam-
ple’, we report the results of our numerical experiments with a frozen 
fund and illustrate the robustness of the robust optimization solution. 
In the ‘Concluding remarks’ section, we include some concluding 
remarks.

Robust pension fund management

In this section, we present a robust optimization-based framework for 
pension fund management. As pension funds evaluate and re-balance 
their portfolio holdings at best on a quarterly basis, we work with a 
discrete time model. In this section, we discuss a general framework for 
approximating the typical constraints and objectives by second-order 
constraints; we consider a concrete example in the ‘Numerical example’ 
section.
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Constraints

At each decision epoch t ∈ {0,1, …, T  }, the pension manager has to 
make two decisions: select a new portfolio of traded assets and decide 
the amount of fresh capital to be injected into the fund. Let xt denote 
the number of shares of the traded assets held by the pension fund from 
time t to time t + 1, that is over period t, let wt denote the fresh capital 
injected into the fund at time t, and let �lt denote the random liability 
of the pension fund at time t. Then, assuming that the trading costs are 
negligible, we must have:

 � �p x xt
T

t t t tw l( ) ,− − + −1 0≥  (1)

where p̃t denotes the random prices for the traded assets at time t. As the 
price p̃t is random, and typically has support on the entire positive ort-
hant, one has to ascribe a proper meaning to the uncertain constraint 
(1). In this article, we approximate the uncertain liability constraint (1) 
at time t by the chance constraint

 P( ( ) ) ,� �p x xt
T

t t t tw l− − + − −1 0 1≥ ≥ ε  (2)

where P denotes the probability measure conditioned on all available 
information and ε > 0 is the constraint violation probability. Note that 
we are implicitly assuming that when the event � �p x xt

T
t t t tw l( )− − + <1  

occurs, the fund sponsor is able to meet the shortfall using earnings 
or raising debt. We discuss this in greater detail in the next section on 
pension fund objectives.

In addition to the budget constraint (1), pension fund holding must 
also satisfy some regulatory requirements. These requirements typically 
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Thus, the generic chance constraint encountered in the pension fund 
management problem is of the form

 P( ) ,�a yt
T

t td≥ ≥ 1−ε  (3)

where ãt denotes stochastic parameters such as the prices of assets, 
liabilities, discount factors and so on, and yt and dt are affine functions 
of the decision variables {( , )}xt t t

Tw =1 .
We assume that the stochastic parameters are described by a factor 

model:

 ãt = ƒ(Zt), (4)

where f is a sufficiently smooth function mapping the m stochastic 
factors Zt ∈ ℜ m into the random coefficients ãt , and the m-dimensional 
vector of factors Zt ∈ ℜ m evolves according to the stochastic differential 
equation

 dZt = μ(t, Zt)dt + Σ(t, Zt)dWt, (5)

where μ(t, Zt) ∈ ℜm × n, and Σ(t, Zt) ∈ ℜm × n, and n denotes the length 
of the vector of standard Brownian motions Wt. Most popular financial 
models in the literature satisfy (4)–(5). For example, it is easy to show 
that when the universe of assets is a set of treasury bonds and the equity 
index, the short rates are given by the Hull–White model (Hull and White, 
1990), and the equity index evolves according to a geometric Brownian 
motion, then the price process p̃t for the asset satisfies (4)–(5).

Objective

The most obvious objective for managing a pension fund is to minimize 
the net present value of all the future contributions:

 min ,,w Bt t
t

0∑  (6)

where B0,t denotes the price at time 0 of a zero-coupon bond with face 
value F = 1 maturing at time t. Defined benefit pension funds most 
often use this objective.

The objective (6) does not account for the impact of the pen-
sion   contributions on the fund’s sponsor. There is evidence that 
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pension contributions wt have a serious impact on the stock price of 
the sponsor (Jin et al, 2006). We next discuss an objective that explic-
itly accounts for the impact of the pension fund on the sponsor. The 
Myers and Majluf pecking order hypothesis (Myers and Majluf, 1984) 
suggests that the sponsor would first use earnings, and then use debt 
to finance the pension contributions {wt}. We assume that the firm 
will not be able to issue equity for the purpose of meeting its pension 
obligations. Suppose wt

e denotes the portion of the pension fund con-
tribution wt that is financed directly from the firm’s earnings Ct before 
interest and tax (EBIT). We assume that the earnings C0 at time t = 0 
are known and the portion of the earnings invested in the firm grows 
at a rate re. Thus,

 C C w rt t t
e

e+ = − +1 1( )( ).  (7)

We also impose the additional constraint that wt
e ≤ uCt , where u ∈ [0, 1]  

indicates the maximum fraction of the earnings that can be used for 
funding pension obligations.

Let wt
d denote the amount raised in the debt market at time t. We 

assume that this debt has maturity D = 1. Thus, at time t + 1, the firm 
has to repay (1 + (st, 1 + P))wd, where st, 1 denotes the spot risk-free inter-
est rate at time t for maturity D = 1 and P denotes the spread over the 
risk-free rate that the sponsoring firm needs to pay to raise capital. As 
interest payments are tax deductible, the effective cost incurred by the 
firm at time t + 1 is (1 + (1 − αT)(st, 1 + P))wd, where αT denotes the mar-
ginal tax rate of the firm. Thus, the discounted cost ct

d (P) of raising an 
amount wt

d in the debt market is given by
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where we have used the identify B0, t + 1(1 + st, 1) = B0, t.
The spread P is not a constant – it is a function of the credit rating of 

the sponsoring firm. Therefore, in order to use ct
d (P)  to model the cost 

of debt, we have to ensure that the credit rating of the firm remains 
above a certain level. We assume that the credit rating of the firm is 
a function of the interest coverage (IC), and a firm has a credit rating 
Q provided IC ∈ [α(Q), β(Q)] and in this case the spread is given by P(Q ) 
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(Damodaran, 2004). We also assume that the function mapping inter-
est coverage IC to the credit rating Q is fixed over time. As we assume 
that each debt offering has a duration D = 1, it follows that the interest 
coverage ICt is given by

IC
C

s P wt
t

t t
d=

+( )
.

,1

Suppose the firm maintains a debt rating Q ≥ Q , then the spread  
P ≤ P(Q), and we can use ct

d (P(Q)) to estimate the cost of debt. The 
chance constraint

 P(α(Q)(st,1(Zt + (P(Q))wt
d ≤ Ct) ≥ 1 − ε, (9)

where we write st, 1(Zt) to emphasize that st, 1 is a function of the factors 
Zt, ensures that Q ≥ Q with high probability and we can use ct

d (P(Q)) 
to approximate the cost of debt. The constraint (9) also belongs to the 
general class of chance constraints described in (3).

We adopt ct
d (P(Q)) defined in (8) as the objective. Thus, the pen-

sion fund management optimization problem is given by the chance- 
constrained problem

min ( ( ))c Pt
d

t

Q∑
s.t.

 P(ãt
T yt ≥ dt, t = 1,..., T ) ≥ 1 − ε, (10)

In general, chance-constrained optimization problems are difficult 
to solve. In most cases, the problem is non-convex. Except for a few 
special cases, one has to resort to sampling to solve chance-constrained 
problems. Consequently, the complexity of solving chance-constrained 
problems is exponential in the problem dimension. In the next section, 
we construct a tractable approximation to (10).

Linearization and robust constraints

Let f = ( f1,…,fl ): ℜm → ℜl denote the function that defines the stochas-
tic parameters at in terms of the factors Zt at time t. By Itô’s lemma (see 
Chang (2004) for example),

 dft(Z) = μf (t, Z)dt + Σ f (t, Z)dWt, (11)



346 Garud Iyengar and Alfred Ka Chun Ma

where
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Jf (Z) denotes the Jacobian matrix of f, Hi(Z) denotes the Hessian 
matrix of fi with respect to the factors, and tr(∙) denotes the trace of a 
matrix. We approximate

 f f Wt
f f

tt≈ + +0 0 0μ Σ ,  (12)
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that is, we evaluate the coefficients at time t = 0 and then let ft 
evolve according to a Gaussian process. Thus, f ft

f fN t t~ ( , ).0 0 0+ μ Σ  We 
discuss the impact of this approximation in the section ‘Numerical 
example’.

We can now approximate the generic chance constraint (3) by

 P(( )f W y0 0 0 1+ + −μ Σf f T
t tt t d≥ ≥) .ε  (13)

Let Φ(∙) denote the cumulative density function of the standard 
normal random variable. Then P(|| Wt || ≤ t Φ−1(1 − ε)) = 1 − ε, and it 
follows that (13) holds if

 ( ) || ( ).f w y w0 0 0
1 1+ + ≤ −−μ f f T

t tt d tΣ ≥ Φfor all || ε  (14)

A constraint of the form (14) is called a robust constraint (Ben-Tal and 
Nemirovski, 2002). Note that the robust constraint (14) is a conservative 
approximation for the chance constraint. Using the Cauchy–Schwarz 
inequality, (14) can be written as

( ) ( ) || || ,f y y0 0
1

0 21+ − − ×−μ f T
t t

f
tt d t≥ Φ ε Σ  (15)
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where ||x||2 = x xT  denote the L2-norm. The constraint (15) is of the 
form

||Bx − a||2 ≤ dTx + c,

where B, a, d, and c are constants and x is the decision variable. 
Constraints of this form are called SOC constraints.

SOC programming approximation for pension  
fund management

In a pension fund management problem, we have at least one con-
straint of the form (3) at each decision epoch t. Suppose we have K 
chance constraints in total. We want to guarantee that all the chance 
constraints hold with probability at least η. We set ε = η / K for each 
chance constraint of the form P(Ci) ≥ 1 − ε, i = 1, ..., K. The Bonferroni 
inequality (see for example Boros and Prékopa, 1989) implies that
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that is, by setting a more conservative target for each chance constraint, 
the Bonferroni inequality guarantees that all the chance constraints 
hold simultaneously. We use ε = η / K in constraints of the form (15) to 
approximate each chance constraint by an SOC constraint. Thus, the 
resulting optimization problem is of the form 

min ( ( ))c Pt
d

t

Q∑
s. t.

|| Biy − ai ||2 ≤ dT
ix + ci, i = 1, ..., K, (17)

that is, it has one linear objective and several SOC constraints. Such an 
optimization problem is called an SOCP.

Very large-scale SOCPs can be solved efficiently both in theory (Alizadeh 
and Goldfarb, 2003) and in practice (Andersen and Andersen, 2006). 
Moreover, a number of commercial solvers, such as MOSEK, CPLEX and 
Frontline System (supplier of EXCEL SOLVER), provide the capability for 
solving SOCPs in a numerically robust manner. As the approximation 
(12) implies that the pension fund management problem can be approxi-
mated by an SOCP, the approach proposed in this article can be used to 
solve very large-scale pension fund management problems.
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Numerical example

In this section, we consider a specific example and formulate the opti-
mization problem that computes the optimal contribution schedule and 
portfolio holdings for a frozen pension fund using the general frame-
work described in the section ‘Robust pension fund management’. A fro-
zen fund is a fund in which all the liabilities lt are fixed; therefore, there 
is no actuarial risk and the only risk in the problem is financial risk.

Assets, liabilities and dynamics

We assume that a pension fund invests in an equity index and zero-
coupon bonds with face value 1 and maturities up to M years. Thus, the 
holdings of the fund at time t can be described by the vector

xt =
−

−

Number of sharesof1 year bond

Number of sharesof M  year bond

�

NNumber of sharesof equity

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥

∈ +�M 1.

Note that, if the equity investment is specified as a broad market 
index, we can use the index to denote price even if it is not possible to 
invest in the market index directly. As long as the index is used consist-
ently over time, the investment returns can still be correctly calculated in 
the model. At time t + 1, all the bonds in the portfolio have a maturity 
that is 1 year shorter (the bond with 1-year maturity is now available as 
cash). Thus, the holding xt + 1 before any trading at time t + 1 is given by

x̂t + 1 = Dxt ,

and dTxt is available as cash, where
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The value of the portfolio xt at time t + 1 is given by pT
t + 1Dxt + dTxt.
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The liability of the pension fund at time t is denoted by lt and time 
t  = 0,1, ..., T, that is, the time horizon for the pension fund prob-
lem is T. We assume that at time t = 0, all the future payments lt,  
t = 0,1, …, T, are deterministic as in the case of frozen pension funds, 
that is, the uncertainty in the model is only from the changing finan-
cial conditions.

Bond prices and the yield curve

We follow Nelson and Siegel (1987) and assume that the short rates
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where the factors Z1
t , Z

2
t  and Z3

t  refer, respectively, to level, slope and cur-
vature of the yield curve and τ is a constant. We use the Nelson–Siegel 
model because this model ensures non-negative spot rates st, j for large 
t � 1. This is necessary in our setting as we need to discount liabilities 
with very long durations.

In the Nelson–Siegel model, the price Bt, j at time t of a zero-coupon 
bond with face value F = 1 and maturing at time t + j is given by

B
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Thus, Bt, j is a highly nonlinear function of the factors Z. We chose 
the Nelson–Siegel model to illustrate our framework because a highly 
nonlinear yield curve is a good test for the linearization technique 
introduced in the section ‘Robust pension fund management’.

We denote the value of the equity index by qt. We assume that the 
equity index qt and the factors { : ,..., }Z it

i = 1 3  driving the yield curve 
(18) evolve according to the stochastic differential equation
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where Wt t t t t
T

t
i

tW W W W W= ( , , , ) , { } ,1 2 3 4
0≥  i = 1, 2, 3, 4, are independ-

ent standard Brownian motions, and the lower triangular matrix  
A ∈ ℜ4 × 4 denotes the Cholesky decomposition of the covariance 
matrix V ∈ ℜ4 × 4 of the vector ( , , , ).Z Z qt t t

1 3…  The dynamics in (20) 
imply that each of the factors Zt

i is an Ornstein–Uhlenbeck process 
and the equity index qt is a geometric Brownian motion. The yield 
curve dynamics given by (20) is similar to the one considered in 
Fabozzi et al (2005). With the above definitions, the price vector is 
given by

pt = (Bt,1 ,…, Bt, M, qt)T.

Note that the price vector and the stochastic differential equations 
(20) conform to the general framework described in the section ‘Robust 
pension fund management’.

Optimization problem

We assume that at time t = 0, we determine the contribution wt and 
the portfolio xt for t = 0, …, T T≤ . We expect that the pension fund 
problem will be solved on a rolling-horizon basis, that is, at time t = 1, 
we will recompute the optimal portfolio for the horizon t = 1, …, T  + 1.  
The horizon T is chosen to be long enough so that the impact of the 
liabilities lt, t > T , is minimal.

Let ψ denote the initial holdings of the fund, that is the holdings 
before rebalancing at time 0. We require that the portfolio x0 must 
satisfy

p p x0 0 0 0 0
T Tw lψ + − = ,  (21)

that is, the total value of the portfolio x0 must equal the difference 
between the available capital (pT

0ψ  + w0) and the liability l0. Note that 
(21) implicitly assumes that rebalancing does not incur any transaction 
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costs. Therefore, we can assume, without loss of generality, that the 
portfolio ψ is held in cash.

The constraint for time t ≥1 is

P( )p Dx d x p xt
T

t
T

t t t t
T

tw l

t T
− −+ + − −

= −
1 1 1

1 1

≥ ≥ ε,

, , ,…  (22)

where P denotes the probability measure conditioned on the informa-
tion available at time t = 0. We also require the following target funding 
level constraint

 P( )p Dx d xT
T

T
T

T T T Tw l L− −+ + + −1 1 1≥ ≥β ε,  (23)

to set the target funding level at time T to be a fraction β of the future 
liabilities, where Lt denote the net present value at time t of the entire 
set of future liability at a fixed discount rate d, that is

L
l
dt t

t

T

=
+ −

= +
∑ τ

τ
τ ( )

,
11

and the discount rate d is chosen by the plan sponsor subject to some regu-
latory constraints. The funding level of a pension fund at time t is defined 
to be the ratio of the total spot value p xt

T
t of the assets of fund to Lt.

In addition, one may have to impose other constraints that meet 
regulatory requirements. For example, in the US, pension funds need to 
maintain a funding level of γ = 90 per cent and the sponsor is required 
to contribute if the funding level drops below γ. Such a regularity 
requirement can be met by imposing constraints of the form:

 p x0 0 0
T L≥ γ ,  (24)

and

 P( ) 1p xt
T

t tL t T≥ ≥γ ε− = −, , ,1 1…  (25)

See Fabozzi et al (2004) for a summary of regulations on pension 
funds in different countries.

Collecting together all the constraints and using the objective 
incorporating the corporate structure of the plan sponsor given as an 
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example in the section ‘Linearization and robust constraints’, we solve 
the following optimization problem

min (( ) (( ) ( ) ) ), ,1 10
0

0 1− + − +
=

+∑ α α αT t
t

T

T T t t
dB P Q B w

subject to (211), (22),(23),(24),(25),(7) and(9).  (26)

In the Appendix section, we discuss how to use the general results 
in section ‘Robust pension fund management’ to reformulate (26) into 
an SOCP.

Discussion

Typically, the pension fund manager only chooses capital allocation to 
asset classes. The tactical decisions of the particular assets to purchase 
within each asset class are left to asset managers who are specialists in 
a particular asset classes. We consider two asset classes – equity and 
treasury bonds. The solution of the pension fund problem (26) guides 
the fraction of capital that should be allocated to an asset manager spe-
cializing in equity market for tactical asset allocation, and the fraction 
that should be given to an asset manager specializing in fixed income 
market. Therefore, the bond portfolio is only a proxy for total fixed 
income holdings.

We want our robust optimization-based approach to produce con-
servative portfolios. In constructing (26), we linearize the nonlinear 
factor dynamics, but then we use Bonferroni’s inequality (see (16)), to 
impose a very conservative chance constraint. It is not immediately 
clear that the net outcome is a conservative portfolio. We show in the 
section ‘Stationary portfolio selection’ that the robust solution is indeed 
conservative when the risk is measured by the Value-at-Risk (VaR) and 
the Conditional Value-at-Risk (cVaR).

Problem parameters

Following Fabozzi et al (2005) (see also Barrett et al, 1995), we set τ = 3. 
The other parameters used in the example are:

Z Z

Z q
m

0
1

0
2

0
3

0

1

4 5794 0 3443

0 2767 1248 29
0 0783

= = −

= − =
=

. , . ,

. , , . ,
. ,μ ==

= − =
6 1694

2 4183 0 42442 3

. ,
. , . ,m m
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the covariance matrix

v =

− −
− −

2 1775 4 5778 19 3399 0 1201

4 5778 15 6181 43 6039 0 2679

1

. . . .

. . . .

99 3399 43 6039 179 7153 1 0094

0 1201 0 2679 1 0094 0 0078

. . . .

. . . .

− −
− −

⎡

⎣

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

,

and the correlation matrix

ρ =

− −
− −

1 0000 0 2178 0 5685 0 4008

0 2178 1 0000 0 4452 0 0945

0 56

. . . .

. . . .

. 885 0 4452 1 0000 0 1149

0 4008 0 0945 0 1149 1 0000

− −
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

. . .

. . . .

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

.

Thus, the Cholesky decomposition A of V is given by

A =
−

−
−

1 4756 0 0 0

3 1023 2 4482 0 0

13 1063 1 2027 2 5485 0

0 0814 0 00

.

. .

. . .

. . 663 0 0255 0 0212. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

These parameter estimates result in the current yield curve displayed 
in Figure 14.1. The number of maturities M is set to M = 10 in our 
numerical experiments.

The liability stream used in our numerical experiments is shown in 
Figure 14.2. The liability stream ends in year T = 85. We obtained these 
data for a frozen pension fund from Goldman Sachs. We set the value 
of initial holding

p0 0 00 8T lψ = +. ( ),L

Other parameters for this numerical example are set as follows:

 (i) We consider the optimal plan for the first 4 years, that is T
–
 = 4.

 (ii) The regulation mandated minimum funding level γ is set to  
γ = 0.9. Thus, the fund is underfunded at time t = 0.

 (iii) The target funding level β that controls the influence of liabilities 
beyond T

–
 is set to β = 0.9.

 (iv) The liabilities are discounted at a nominal discount rate d = 6 per cent.
 (v) The violation probability η = 1 per cent (see (16)), that is, all chance 

constraints in (26) are satisfied with 1–η = 99 per cent probability.
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 (vi) The earnings C0 = 500 and u = 0.2, that is, we impose a limit that 
at most 20 per cent of the earnings can be used to fund the pension 
plan. We set re = 0.05.

 (vii) The marginal tax rate αT = 0.35 and we assume that the company 
wants to maintain a credit rating Q = ‘A+’, that is, α(Q) = 5.5 and 
P(Q) = 0.008 (Damodaran, 2004).

We summarize the values for the parameters as follows.

Parameter Value

T
–

4

γ 0.9

β 0.9
d 6%
η 1%
C0 500
u 0.2
αT 0.35
α(Q) 5.5
ρ(Q) 0.008

Stationary portfolio selection

We consider optimal portfolio selection over T = 4 for a liability stream 
with time horizon T = 85. We consider this setting for simpler presen-
tation and evaluation of the solution. As T T� , we require that port-
folio xt, t = 1, ..., T be stationary, that is, x0 = x1 = x2 = x3. In order to 
investigate the impact of the equity ratio, that is the fraction of the total 
capital of the fund that is invested in equity, we impose the constraint

( , , )( ( ), , ( )) ( ), ,B B x x M q x MM
T

1 1 1 0 0 01 1… … = ′ +ρ

that sets the equity ratio of the initial portfolio x0 to 1/(1 + ρ). We 
 compute x0 and { }wk k

T
=0  by solving

 

min (( ) (( ) ( ) ) ), ,1 10
0

0 1

0

− + − +

=
=
∑ α α αT t
t

T

T T t t
dB P Q B w+

subject to x x11 2 3

1 1 1 0 0 01 1
7

= =

= ′ +

x x ,

( ,..., )( ( ),..., ( )) ( ),
( ),
, ,B B x x M q x MM

T ρ
(( ),( ),( ),( ),( ),21 24 34 35 36 and(37).

 

(27)
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Table 14.1 and Figure 14.3 shows the worst-case payments as a func-
tion of the equity ratio 1/(1 + ρ) with the probability of constraint 
satisfaction fixed at 1 − η = 0.99. The contribution w0 increases with 
increasing equity ratio while the contributions (w1, w2, w3) all decrease 
with the increase in the equity ratio. The total discounted payment, 
however, increases with the increase in the equity ratio.

In Table 14.2 we display the worst-case payments as a function of 
the probability of constraint satisfaction with the equity ratio 1/(1 + p) 
fixed at 0.4. As expected, the worst-case contribution decreases with a 
decrease in constraint satisfaction.

Table 14.1 Worst-case contribution as a function of equity ratio

Equity ratio w0 w1 w2 w3 B wt tt

T
0,0=∑

0.2 239.90 125.00 155.60 180.41 683.69
0.4 283.96 120.04 143.91 163.44 697.36
0.6 348.05 114.88 131.76 145.81 729.92

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100
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Figure 14.3 Worst-case contribution as a function of equity ratio
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Conditional VaR

In this section, we test the effect of linearizing the dynamics by stress–
testing the pension fund portfolio using the VaR and CVaR measures.

We simulate the asset prices using the dynamics described by (18)–(20)  
(that is, we do not linearize the dynamics) and compute the real (as 
opposed to the worst-case) payments w–t required to finance the port-
folio strategy. From the constraints (21), (22), (23), (24) and (25), it 
follows that

 

w

l

L
t

t

t t
T

t t t
T

t
T

t t t
T

t

=

+ −

+ −
− −

−

max( (

), , )

p x p Dx

d x p x
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γ

1 1

1 0
if 1 ,≤ ≤ Τ

mmax( (
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l Lt t t t
T

t
T

t

+ −

+
=

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩
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β α 1 1

1 0

p Dx
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(28)

where

 
α

γ
t

t

t
T

t

L
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟max , .

p x
1  (29)

The variable αt keeps track of whether the payment w–t is needed to 
maintain the regulation requirement γLt t

T
t/ ,p x ≤ 1  and the value of the 

portfolio in the next period will increase or remain unchanged accord-
ingly. Note that, in our numerical experiments, xt is fixed over time.

We generated K = 100 000 independent sample paths and set the 
shortfall probability

η =
<

=
∑max ( )

,

( )
0 3

1
≤ ≤t t t

k

k

K

w w

K

1

Table 14.2 Worst-case contribution as a function of time

Probability w0 w1 w2 w3 B wt tt

T
0,0=∑

0.99 283.96 120.04 143.91 163.44 697.36
0.95 244.27 111.20 130.97 147.34 622.91
0.90 230.03 107.11 125.01 139.95 592.79
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where { }( )wt
k  denotes the real payments on the k-th simulation run and 

1(·) is the indicator function that takes the value 1 when the argument 
is true and 0 otherwise. Thus, η  is the empirical probability that the real 
payment wt is larger than the worst case payment wt. The expected net 
shortfall W  was defined as follows.
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(30)

that is W is the expected shortfall conditioned on their being a shortfall. 
We define the Value-at-Risk (VaRp) at probability p of the discounted 
total real payment as

VaRp t t
k

t

T

kx
B w x p K=
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and Conditional Value-at-Risk (CVaRp) of the discounted total real pay-
ment B wt tt
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Table 14.3 plots the shortfall probability p, the expected shortfall W , 
the VaR and CVaR as a function of the probability p. From the numerical 
results, we can conclude that the linearized robust problem (27) does pro-
duce a conservative solution for the true nonlinear problem (note that, 
this is not guaranteed). In all cases, the empirical shortfall probability is 
at least an order of magnitude lower than that guaranteed by the robust 
problem. This result confirms our initial hypothesis that linearizing the 
dynamics should not result in a significant deterioration in performance.

For a fixed p, let �p denote the probability such that the correspond-
ing shortfall probability �p p≈ −1 . For example, for p = 0.98, �p = 0.85 
as the corresponding shortfall probability �p = 0.0182 ≈ 1 – p = 0.02. 
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Another such pair is (p, �p) = (0.99, 0.90). Then total discounted worst-
case payment corresponding to p is approximately equal to the CVaRp –  
note that, this is in spite of the fact that the robust problem does not 
minimize the total discounted payment.

Computational efficiency

All numerical computations reported in this work were conducted using 
Matlab 6.5 and MOSEK 4.0 (Andersen and Andersen, 2006). We used a 
Windows/32-X86 platform with Intel-PM. A typical portfolio problem 
had less than 100 constraints and 100 variables and it took no longer 
than a second for MOSEK to solve the portfolio problem.

Concluding remarks

In this article, we introduce a robust optimization framework for pension 
fund management that minimizes the worst-case pension contributions 
of the sponsoring firm. The illustrated model is able to account for some 
aspects of the corporate structure of the firm, for example cost of debt. 
The optimal pension plan from the proposed framework is computed by 
solving an SOCP and is, therefore, very efficient both in theory and in 
practice. In addition, we show that the framework is very versatile in that 
it allows us to compute both the optimal plan and also stress test any 
existing pension plans. The solution to the pension fund management 
problem is shown to be robust and conservative in the stress testing result.

There are fundamental differences between the robust approach and 
the stochastic programming approach. In the stochastic programming 
approach, the evolution of the stochastic parameters is approximated 
by a tree and one computes an optimal portfolio for each node in the 

Table 14.3 Simulation results

p p w B wt tt

T
0,0=∑ VaR CVaR

0.99 0.0014 5.98 697.36 537.40 546.96
0.98 0.0027 5.07 667.48 511.58 521.73
0.97 0.0039 5.41 644.63 496.18 506.83
0.96 0.0050 5.34 632.27 487.12 498.22
0.95 0.0063 5.43 622.91 479.91 491.22
0.90 0.0126 5.64 592.79 456.23 496.00
0.85 0.0182 5.99 574.24 441.90 455.63
0.80 0.0235 6.08 560.48 430.38 445.12
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tree taking the evolving information into account. As the tree can be 
constructed for any stochastic model, the stochastic programming 
approach is extremely versatile. However, a tree has zero probability and 
the stochastic programming approach is not able to provide any worst-
case guarantees. Moreover, the complexity of the associated optimiza-
tion problem is exponential in the time horizon and number of assets. 
In the robust optimization approach, one is able to provide a worst-case 
probabilistic guarantee; however, the portfolio selection cannot take 
advantage of evolving information (adjustable robust optimization 
somewhat mitigates this objection (Ben-Tal et al, 2004)). The compu-
tational complexity of the robust approach is polynomial in the time 
horizon and the number of assets. Both of these approaches cannot be 
implemented in an open-loop manner, and a new optimization problem 
has to be solved at each decision epoch. In summary, neither of these 
two approaches are clear winners; however, robust methods are very 
well suited for solving large-scale pension fund management problems.
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Appendix

Derivation

The Itô-Taylor expansion applied to (19) at time 0 using (18) and (20) 
implies that
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where ρil ik klk
v v=

=∑ 1

4
 and A = [vij] is the covariance matrix of the factor 

vector ( , ..., ).W Wt t
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It then follows that for all t = 1, ...,T– 1,
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Since – (Dxt–1 − xt)T Σ0
p

tW  ~ N × (0, || (Dxt–1 − xt)T Σ0 2
2p t|| ), if ε < 0.5, 

we have
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where Φ(·) denotes cumulative density function of the standard normal 
random variable.

Using an analysis similar to the one employed above, the constraint 
(23) can be reformulated as the SOC constraint
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and the regulation constraint (25) can be reformulated as the SOC 
constraint

 (p x0 0
1

0 21+ − −−μ γ εp T
t t t

T pt L t x) ( ) || ||≥ Φ Σ  (A.6)

As the short rates st, 1 are described by a Ornstein–Uhlenbeck process 
whose marginal distribution is normal, it follows that the interest-
coverage constraint (9) is equivalent to the linear constraint
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where var[st, 1] denotes the variance of st, 1.
Finally, we can solve the following SOCP
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subject to (221), , (35), (24), and (36), (7) and (37).(34)  (A.8)


