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Introduction

More than 50 years have elapsed since Markowitz (1952) first intro-
duced his Nobel Prize-winning work on mean-variance portfolio 
optimisation. His work led to the creation of the field now known as 
Modern Portfolio Theory (MPT). Throughout this time, MPT has had 
many followers but has also been challenged by sceptics at academic 
and financial institutions alike. Today, even though MPT is still widely 
accepted as the primary theoretical framework for portfolio construc-
tion, its employment by investment professionals is not as ubiquitous 
as one might expect. There are several reasons for the lack of acceptance 
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of MPT among practitioners, but perhaps the most significant is the 
argument that ‘optimal’ portfolios obtained through the mean-variance 
approach are often ‘counterintuitive’, ‘inexplicable’ and ‘overly sensi-
tive to the input parameters’.

The fact that mean variance ‘optimal’ portfolios are sensitive to small 
changes in input data is well documented in the literature. Chopra 
(1993) shows that even slight changes to the estimates of expected 
returns or risk can produce vastly different mean-variance optimised 
portfolios. Best and Grauer (1991) analyse the sensitivity of optimal port - 
folios to changes in expected return estimates. Instead of focusing on 
the weights of the assets in optimal portfolios, others have focused on 
the financial impact of mean-variance efficient portfolios computed 
from estimates. Jobson and Korkie (1981) show that even an equal-
weighted portfolio can have a greater Sharpe ratio than an optimal 
mean-variance portfolio computed using estimated inputs. Broadie 
(1993) shows how the estimated efficient frontier overestimates the 
expected returns of portfolios for varying levels of estimation errors. 
Because of the ill-effects of estimation errors on optimal portfolios, port-
folio optimisation has been called ‘error maximisation’ (See Michaud, 
1989). Michaud argues that mean-variance optimisation overweights 
those assets with a large estimated return to estimated variance ratio 
(under weights those with a low ratio) and that these are precisely the 
assets likely to have large estimation errors.

It is widely believed that most of the estimation risk in optimal port-
folios is due to errors in estimates of expected returns, and not in the 
estimates of risk. Chopra and Ziemba (1993) argue that cash-equivalent 
losses due to errors in estimates of expected returns are an order of magni-
tude greater than those for errors in estimates of variances or covariances. 
Many portfolio managers concur, saying that their confidence in risk esti-
mates is much greater than their confidence in expected return estimates.

In order to cope with the effect of estimation errors in the estimates 
of expected returns, attempts have been made to create better and 
more stable mean-variance optimal portfolios by using expected return 
estimators that have a better behaviour when used in the context of 
the mean-variance framework. One of the more common techniques 
is the use of James–Stein estimators (see Jobson and Korkie, 1981). 
These estimators shrink the expected returns towards the average 
expected return based on the volatility of the asset and the distance 
of its expected return from the average. Jorion (1985) developed a 
similar technique that shrinks the expected return estimate towards the 
minimum variance portfolio. More recently, Black and Litterman (1990) 
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have developed a new Bayesian approach for producing stable expected 
return estimates that combines equilibrium expected returns and inves-
tors’ views on specific assets or weighted groups of assets. The area of 
robust statistics (see Cavadini et al., 2002) has recently been employed 
to create stable expected return estimates as well.

While strides have been made to improve estimates of expected 
returns, there will always be errors in these estimates because of the 
inherent stochastic nature of the asset return process. Even a portfolio 
manager employing Bayesian estimators such as James–Stein or Black–
Litterman will admit that estimation error remains a factor in the ‘cor-
rected’ estimates of expected returns, even if it is significantly less than 
that obtained without the use of these methods. In fact, the main prem-
ise of Bayesian statistics is that estimates do have distributions. This has 
led some authors to consider ways in which to account for estimation 
errors directly in the portfolio construction process.

One possible strategy for considering estimation error is to increase the 
risk-aversion parameter or modify the risk estimates by increasing the 
overall volatility. Since the estimated efficient frontier is an overestimate of 
the true efficient frontier because of the error-maximisation property, it 
can be argued that by increasing the risk-aversion parameter, the resulting 
portfolio on the actual frontier will be closer to the true frontier. Horst  
et al. (2001) show how to create an optimal pseudo risk-aversion param-
eter to use in a mean-variance optimisation problem rather than using 
the actual risk-aversion parameter. One problem with this approach is 
that it assumes that the covariance matrix of the estimation error is a 
constant multiple of the covariance matrix of returns, which is rarely the 
case in practice. Since expected return estimates are typically generated 
independent of the factor risk model, the distribution of the estimation 
error is likely to be quite different from that of the risk model.

Another development that has recently received much attention is 
the portfolio resampling methodology of Michaud (1999). Michaud 
introduces a statistical resampling technique that indirectly consid-
ers estimation error by averaging the individual optimal portfolios 
that result from optimising with respect to many randomly generated 
expected-return and risk estimates. Portfolio resampling, however, is 
a somewhat ad hoc methodology that has many pitfalls (see Scherer, 
2002). Because portfolio resampling is a simulation procedure in which 
each iteration involves a resampling of a time-series, creating mean-
variance input estimators and determining the optimal portfolio, it is 
overly time-consuming to compute. Like the modified risk-aversion 
parameter approach, portfolio resampling does not actually consider 
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the portfolio manager’s estimation error. It only considers the error of 
estimating a mean and covariance matrix from a simulated time-series 
from a stationary return process using the expected returns and covari-
ance matrix to generate the time-series. Additionally, the resulting opti-
mal portfolio does not necessarily satisfy all constraints. If a non-convex 
constraint, eg a limit on the number of assets in the portfolio, is present, 
the average of portfolios that satisfy the constraints individually will 
not necessarily satisfy the constraints.

Others have proposed adding constraints to control the ill-effects of esti-
mation error on optimisation generated portfolios. While some constraints 
can reduce the sensitivity of optimal portfolios to changes in inputs, 
this paper shows that constraints can actually exacerbate the problem. 
Furthermore, it shows that that the overestimate of expected return of an 
optimal portfolio can also be exacerbated by the presence of constraints.

This paper discusses an optimisation methodology known as robust 
optimisation, which considers uncertainty in unknown parameters 
directly and explicitly in the optimisation problem. It is generally con-
cerned with ensuring that decisions are ‘adequate’ even if estimates of 
the input parameters are incorrect. Robust optimisation was introduced 
by Ben-Tal and Nemirovski (1997) for robust truss topology design. In 
a paper that describes several applications of robust optimisation, Lobo  
et al. (1998) introduced the concept of considering the distribution of 
estimation errors of expected returns explicitly in a portfolio optimiza-
tion problem. Since then, Goldfarb and Iyengar (2003) consider uncer-
tainties in the factor exposure matrix of a factor risk model directly in 
the portfolio optimisation problem.

Robust portfolio optimisation is a fundamentally different way of 
handling estimation error in the portfolio construction process. Unlike 
the previously mentioned approaches, robust optimisation considers 
the estimation error directly in the optimisation problem itself. Here, a 
financial motivation is given for using robust portfolio optimisation as 
a means of considering errors in the expected return estimates directly 
in the portfolio construction process. This motivation allows one to 
see that the ‘standard’ formulation is only applicable in certain cases. 
The fourth section introduces modified forms of robust mean-variance 
optimisation that are applicable in other commonly used portfolio 
management strategies. Many of the results in this paper were first 
presented at a practitioners conference in April of 2003 by Ceria (see 
Ceria and Stubbs, 2003). Since then, a number of other authors have 
independently proposed an approach similar to the present authors’. Of 
particular relevance is the paper of Garlappi et al. (2004).
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This paper introduces an optimisation methodology that signifi-
cantly reduces some of the ill-effects of portfolio optimisation that are 
caused by estimation error in expected return estimates. It is shows 
that errors in expected return estimates can lead to optimal portfolios 
whose weights are significantly different from those in the true optimal 
portfolio and whose expected return is significantly overestimated. It is 
shows that this can be particularly true in the presence of commonly 
found types of constraints. We discuss a ‘standard’ robust optimisation 
methodology that alleviates some of these ill-effects and introduces new 
variants that more effectively handle the difficulties caused by estima-
tion error in commonly used portfolio management strategies. Finally, 
some computational results are discussed that demonstrate the poten-
tially significant economic benefits of investing in portfolios computed 
using standard robust optimisation and the variants introduced here.

Estimation errors and classical mean-variance  
optimisation

It is a well-documented fact in the investment management literature 
that mean-variance optimisers are very sensitive to small variations in 
expected returns. Slightly different expected return vectors can lead to 
drastically different portfolios. The seemingly unexplainable changes 
in asset weights due to small perturbations in expected returns are not 
the only pitfall of classical mean-variance optimisation. Because of 
the error-maximisation effect, it is typically the case that the expected 
return is significantly overestimated.

In order to understand better the effect of estimation error in expected 
returns on optimal portfolios, consider the following example. Suppose 
there are two assets where the objective is to maximise expected return 
subject to a budget constraint that forces full investment between the 
two assets, and a constraint that limits the total active risk to be no more 
than 10 per cent with respect to the benchmark portfolio (shown as 
point ‘M’ in Figure 10.1). The estimates of expected returns and standard 
deviations of the two assets are given in Table 10.1. It is assumed that 
the correlation between the two assets is 0.7. The feasible region of this 
example is illustrated in Figure 10.1 as the intersection of the shaded 
ellipsoidal region and the budget constraint, ie the feasible region of this 
example is simply the line segment between points A and B.

Using column ‘Alpha 1’ from Table 10.1 as the estimates of expected 
returns, the optimal portfolio is at point A in Figure 10.1. Using the 
slightly different expected returns given in column ‘Alpha 2’, the 
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optimal portfolio is at point B. (The values of the portfolio weights are 
given in Table 10.2.) This example shows that with only a very small 
change in the estimates of expected returns of the assets, the weights of 
the assets in the optimal portfolios changed dramatically. The true opti-
mal solution is at point B with an expected return of 2.46986 per cent. 
The estimated expected return of points A and B using ‘Alpha 1’ and 
‘Alpha 2’, respectively, are both 2.4831 per cent. In this example, the 
expected returns of both optimal portfolios evaluated with respect to 
their expected return estimates overestimate the true expected return. 
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Figure 10.1 Feasible region for example 1

Table 10.1 Expected returns and standard deviations for example 1

Asset Benchmark 
weights

Alpha 1 
(%)

Alpha 2 
(%)

True 
Alpha (%)

Return Std. 
Dev. (%)

Alpha 
Std. Dev. 
(%)

Asset 1 0.5 2.4 2.5 2.48 0.42 0.5
Asset 2 0.5 2.5 2.4 2.42 0.33 0.5
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From this example, it is clear why portfolio managers find ‘optimised’ 
portfolios to be counter intuitive and impractical.

Some changes in optimal weights should be expected when using 
different estimates of expected returns. Most of the variations in asset 
weights, however, arise due to optimisers exacerbating the estimation 
error problem by significantly overweighting assets with an error to 
the upside and underweighting assets with an error to the downside. 
Though this behaviour has been described before, the authors are not 
aware of any studies that have given a precise and intuitive explana-
tion of the error exacerbating effect. The present authors claim that the 
cause of the ‘error maximisation’ property of mean-variance optimisers 
is not only the presence of estimation error, but also the interaction of 
the estimation error in expected returns with the constraints present in 
the portfolio optimisation problem.

If we reconsider our example, but drop the budget constraint, then 
the optimal portfolios with respect to ‘Alpha 1’ and ‘Alpha 2’ are points 
C and D, respectively. Figure 10.1 and Table 10.2 show that the change 
in optimal portfolio weights with respect to their expected return esti-
mates is much smaller when the budget constraint is dropped. The true 
optimal solution is at a point on the boundary of the ellipsoid between 
points C and D with an expected return of 3.191258 per cent. The esti-
mated expected return of points C and D using ‘Alpha 1’ and ‘Alpha 2’, 
respectively, are 3.20972 per cent and 3.18722 per cent. In this example, 
the expected return of portfolio C evaluated with respect to its expected 
return estimate overestimates the true expected return, but portfolio D 
evaluated with respect to its expected return estimate actually underes-
timates the true expected return. This situation is extremely rare when 
constraints are present, particularly in higher dimensions.

This simple example was created to illustrate geometrically how 
slightly different expected return estimates can lead to very differ-
ent portfolios and how this phenomenon can be exacerbated by the 

Table 10.2 Optimal portfolios for example 1

Attribute Folio A Folio B Folio C Folio D

Alpha 1 2 1 2
Budget ✓ ✓

Asset 1 weight 0.169 0.831 0.5253 0.5546
Asset 2 weight 0.831 0.169 0.7796 0.7503
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introduction of constraints. It also shows how the error in expected 
returns is optimised so that the estimated expected return of a portfolio 
typically overestimates the true expected return. In this small example, 
the change in expected returns of the portfolios was small, but this was 
only a two-asset example. To illustrate the error-maximisation effect 
better, efficient frontiers are considered in a more realistic investment 
scenario.

As defined by Broadie (1993), the terms ‘true frontier’, ‘estimated 
frontier’, and ‘actual frontier’ are used to refer to the efficient frontiers 
computed using the true expected returns (unobservable), estimated 
expected returns and true expected returns of the portfolios on the 
estimated frontier, respectively. Specifically, the frontier computed 
using the true, but unknown, expected returns is referred to as the 
true frontier. Similarly, the frontier computed using estimates of  
the expected returns and the true covariance matrix is referred to as the 
estimated frontier. Finally, the actual frontier is defined as follows. We 
take the portfolios on the estimated frontier and then calculate their 
expected returns using the true expected returns. Since we are using 
the true covariance matrix, the variance of a portfolio on the estimated 
frontier is the same as the variance on the actual frontier. By definition, 
the actual frontier will always lie below the true frontier. The estimated 
frontier can lie anywhere with respect to the other frontiers. If the errors 
in the expected return estimates have a mean of zero, however, the 
estimated frontier will lie above the true frontier with extremely high 
probability, particularly when the investment universe is large.

Using the covariance matrix and expected return vector from Idzorek 
(2002), we randomly generated a time-series of normally distributed 
returns and computed the average to use as estimates of expected 
returns. Using this computed expected-return estimate and the true 
covariance matrix, we generated an estimated efficient frontier of 
active risk versus active return where the portfolios were subject to no-
shorting constraints and a budget constraint that forces the sum of the 
weights to be one. Similarly, the true efficient frontier was generated 
using the original covariance matrix and expected return vector. Finally, 
the actual ‘frontier’ was generated by computing the expected return 
and risk of the portfolios on the estimated frontier with the true covari-
ance and expected return values. The actual ‘frontier’ is not necessarily 
concave, as it is not computed as the result of any optimisation, but 
rather by applying the true expected returns and true covariance to the 
efficient portfolios in the estimated efficiency frontier. These three fron-
tiers are illustrated in Figure 10.2. Using the same estimate of expected 
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returns, we also generated active risk versus active return where we 
also constrained the active holdings of the assets to be ±3 per cent of 
the benchmark holding of each asset. These frontiers are illustrated in 
Figure 10.3. Note how the estimated frontiers significantly over estimate 
the expected return for most risk levels in both types of frontiers. More 
importantly, note that the actual frontier lies far below the true frontier 
in both cases.

This shows that the ‘optimal’ mean-variance portfolio is not necessar-
ily a good portfolio, ie it is not ‘mean-variance efficient’.

In general, it is not known how far the actual expected return may 
be from the expected return of the mean-variance optimal portfolio. 
Returning to the example, suppose that the true expected return esti-
mate is some convex combination1 of the expected return estimates,  
(α1, α2) = (2.5, 2.4) and (α1, α2) = (2.2, 2.7) and that one value is no 
more likely to occur than another. Depending on the point estimate of 
expected returns used in the mean-variance optimisation problem, the 
optimal portfolio will be either portfolio A or portfolio B. The actual 
expected returns of these portfolios for the two extreme expected 
return estimates are given in Table 10.3. Suppose that the estimate of 
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Figure 10.3 Markowitz benchmark-relative efficient frontiers

Table 10.3 Extreme expected return for optimal portfolios

Portfolio Expected return  
(2.5, 2.4) (%)

Expected return  
(2.2, 2.7) (%)

A 2.4169 2.6155
B 2.4831 2.2845

the expected returns leads to optimal portfolio B. In the best scenario, 
portfolio B will have an expected return that is 0.0662 percentage points 
greater than that of portfolio A. In the worst-case, however, portfolio 
B will have an expected return that is 0.331 percentage points less 
than that of portfolio A. So, by investing in a portfolio that may have 
an expected return that is 0.0662 percentages points greater than an 
alternative, there is the risk that the expected return may be as much as 
0.331 percentage points less. Since a uniform distribution of expected 
returns between the two extreme values is assumed, it could be argued 
that portfolio A is a better, more robust portfolio. That is, the portfolio 
performs better under more situations within the range of uncertainty 
of expected returns.
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Robust portfolio optimisation

The actual frontier resulting from classical mean-variance optimisation 
can be far away from both the true and estimated frontiers because of 
estimation error. The estimated frontier generally lies well above the 
actual frontier. This study will now analyse just how far apart the esti-
mated and actual frontiers can be over a specified confidence region of 
the true expected return. It is assumed that the n-dimensional vector 
of true expected returns α, is normally distributed. Given an estimate 
of expected return α– and a covariance matrix Σ of the estimates of 
expected returns,2 it is assumed the true expected returns lies inside the 
confidence region

  ( ) ( )α α α α κ− − ≤−T Σ 1 2  (1)

with probability 100η per cent where κ η2 2 1= −χn( ) and χn
2
 is the 

inverse cumulative distribution function of the chi-squared distribution 
with n degrees of freedom.3

If the covariance matrix of returns Q is full rank, then one can com-
pute points on the efficient frontier by solving the maximum expected 
return problem,

 

maximise     

subject to     

αT

T

w

w Qw v≤  (2)

for varying values of v, where α is the expected return estimate, Q is 
the covariance matrix of returns, and v is the target portfolio variance. 
It is easy to show that the optimal holdings to this maximum expected 
return problem are given by

w
v

Q
QT=

α α
α−

−
1

1

Let α* be the true, but unknown, expected return vector and α– be an 
expected return estimate. Recall that the actual frontier is constructed 
using the true expected return α*. That is, the true expected return of a 
portfolio on the estimated from tier is computed as

v
Q

QT
T

α α
α α−

−
1

1*
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Let �w  be the optimal portfolio on the estimated frontier for a given 
target risk level. Generally, the estimated expected return is greater than 
the actual expected return because of the ‘error maximisation’ effect of 
the optimiser. The question addressed is ‘How great can the difference 
be?’ To answer this, consider the maximum difference between the 
estimated expected return and the actual expected return of �w. This 
difference can be written as

α αT Tw w� �− *

For a 100η per cent-confidence region of α, the maximum difference 
between the expected returns on the estimated efficient frontier and the 
actual efficient frontier is computed by solving

 

maximise     

subject to    

α α
α α α α κ

T T

T

w w� �−

− − ≤−( ) ( ) .Σ 1 2
 (3)

Note that �w  is fixed in problem (3). We are optimising over the  
variable α. The optimal solution to (3) can be shown to be

   
α α

κ
= −

2

� �
�

w w
wTΣ

Σ
 

(4)

Therefore, the lowest possible value of the actual expected return of the 
portfolio over the given confidence region of true expected returns is 
computed as

  
α α κT Tw w w� � �= − Σ1 2/

 
(5)

and the maximum difference between the estimated frontier and the 
actual frontier is

  
α α κ κT Tw w w w� � � �− −( )/ /Σ Σ1 2 1 2=

 
(6)

(Throughout this paper, ||·|| refers to the 2-norm.)
Naturally, one would like this difference to be as small as possible. 

This would reduce the error-maximisation effect, bring the estimated 
and actual frontiers closer together, and thus create portfolios that are 
closer to the true efficient frontier. Simply minimising the distance 
between the two frontiers, however, will drive the optimal portfolio 
towards a portfolio that minimises the estimation risk. Clearly, this is 
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not what we want to do. There is no point in considering estimation 
error if one does not consider the estimates. Instead, we simultaneously 
want to continue to maximise the expected return of the portfolio so 
that we are minimising the estimation risk for a given level of estimated 
expected return. In order to do this, we solve an optimisation problem 
where we maximise an objective of the form of (5). With this optimisa-
tion problem, we will bring the actual and estimated frontiers closer 
together. We will not be able to guarantee, however, that these frontiers 
are actually closer to the true frontier.

In this problem, w, the vector of optimal holdings, is not fixed. We 
optimise over w to find the optimal asset weights. Additionally, any set 
of portfolio constraints can be added. For instance, a long-only robust 
portfolio satisfying a budget constraint and a variance constraint can 
be written as

  

maximise   

subject to   

                  

α κT

T

w w

e w

w

− Σ1 2

1

/

=
TTQw v

w
≤

≥                  0  (7)

where v is a variance target. Note that this problem is exactly the 
same as a classical mean-variance optimisation problem except for the 
κ Σ1 2/ w  term in the objective. This term is related to the estimation 
error and its inclusion in the objective function reduces the effect of 
estimation error on the optimal portfolio.

There is an important distinction between Q and Σ. Q is the covari-
ance matrix of returns, while Σ is the covariance matrix of estimated 
expected returns, which is related to the estimation error arising from 
the process of estimating α, the vector of expected returns. This distinc-
tion is even more relevant in practice, where typically Q is obtained 
from a risk model provider, and is completely independent from Σ 
which is the result of a proprietary estimation process for α of which 
the risk model provider is not even aware.

Let us consider just how this additional objective term affects an 
optimal solution. If one considers equation (4), it can be seen that the 
expected returns of those assets with positive weights will be effectively4 
adjusted downwards.5 Similarly, the expected returns of those assets 
with negative weights, ie short holdings, will be adjusted upwards. The 
size of the adjustment is controlled by the size of κ, ie the size of the 
confidence region. Note that the alpha correction term in Equation (4) 
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is constant κ multiplied by the marginal contribution to estimation risk 
of the assets. Therefore, for a portfolio with a lot of estimation risk in a 
single asset, the expected return for that asset is effectively adjusted so as 
to reduce the marginal contribution to the estimation risk of that asset. 
The purpose of adjusting the expected returns estimates in this way is to 
counter the error-maximisation effects of portfolio optimisation.

We have just described what we refer to as a robust objective problem. 
The other forms of classical mean-variance optimisation can also be 
modelled using robust optimisation. For instance, the maximum utility 
form of the problem can be written as

  

maximise     

                   

α κT

T

w w

p w Qw

−

−

Σ1 2

2

/

/  (8)

Similarly, the minimum volatility form of the problem can be written as

  

maximise     

subject to    

w Qw

w w r

T

Tα κ− ≥Σ1 2/

 
(9)

Problem (7) and its variants cannot be solved by a standard mean-var-
iance optimiser or even a general-purpose quadratic optimiser because 
the estimation-error term is a 2-norm which contains a square root 
and cannot be reformulated as a pure quadratic problem. This robust 
optimisation problem must be solved by either an optimiser capable of 
handling general convex expressions or a symmetric second-order cone 
optimiser. Second-order cone optimisation is a relatively new branch of 
optimisation and special purpose optimisers have been created to solve 
problems of this type. These specialised solvers can optimize robust 
optimisation problems in roughly the same amount of time that a 
mean-variance optimiser can solve the classical problem.

Alternative forms of robust portfolio optimisation

The robust optimisation problem introduced in the previous section 
three will only adjust the estimates of expected returns downwards if 
long-only constraints are present. Assuming that each expected return 
estimate overestimates the true expected return and adjusting all esti-
mates downwards is too pessimistic. Even though there are errors in 
an expected return estimate, it is not likely that the expected return 
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estimate of each asset is an overestimate of the actual expected return. 
Similarly, in management of an active fund, the expected returns will 
be adjusted downwards for any asset with a positive weight. This really 
does not make sense because this study is interested in active returns. 
One would not expect our alpha to be adjusted downwards for an asset 
that already has a negative active weight.

This section introduces new variants of robust optimisation that deal 
with these issues. It should be noted that the two variants introduced 
here do not necessarily cover all real-world situations. These variants, 
along with the standard formulation, do provide ways of handling most 
commonly found portfolio management strategies. At the end of this 
section, a more general framework is described under which to view 
these alternative forms of robust optimisation. This framework can be 
used to develop other extensions for applicable circumstances.

Zero net alpha-adjustment frontiers

The standard robust optimisation problem discussed in the previous 
section considered the maximum possible difference between the esti-
mated frontier and the actual frontier. This maximum difference was 
then minimised. Depending on the goals of the portfolio manager, this 
approach can potentially be too conservative as the net adjustment to 
the estimated expected return of a portfolio will always be downwards. 
If the manager’s expected returns are symmetrically distributed around 
the point estimate, however, one would expect that there are approxi-
mately as many expected returns above their estimated values as there 
are below the true values. It may be more natural and less conservative 
to build this expectation into the model.

In order to incorporate a zero net alpha-adjustment into the robust 
problem, (6) is modified by the addition of the linear constraint

   e DT ( )α α− = 0  (10)

for some symmetric invertible matrix D to obtain the following

  

maximise     

subject to    

     

α α
α α α α κ

T T

T

w w� �−

− − ≤−( ) ( )Σ 1 2

               e DT ( )α α− = 0  (11)

For now, assume that D = I, in which case (10) forces the total net 
adjustment to the expected returns to be zero. That is, for every basis 
point decrease in an expected return of an asset, there must be a 
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corresponding gross basis point increase in the expected return of other 
assets.
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It can be shown that the optimal solution to problem (11) is, (see 
Equation 12 above).

Therefore,
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Instead of having a zero net adjustment of the alphas, one could restrict 
the alpha region to have a zero net adjustment in standard deviations of 
the alphas. To do this, one sets D = L−1, where Σ = LLT is the Cholesky 
decomposition of Σ. This forces every standard deviation of upward 
adjustment in the alphas to be offset by an equal downward adjustment 
of one standard deviation. Similarly, we could restrict the alpha region 
to have a zero net adjustment in the variance of alphas in which case 
one sets D = Σ−1.

Now, let us consider how this objective is effectively adjusting 
alphas when D = Σ−1. In this case, the adjustment term becomes,  
(see Equation 14 below).

For a problem with a dollar-neutral constraint, ie e wT � = 0, the zero-
net alpha adjustment form of robust optimisation is equivalent to the 
standard form. In a fully invested problem, however, there
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will be a budget constraint of the form e wT � = 1. In this case, the term
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is exactly the portfolio that minimises estimation error subject to being 
fully invested. In this case, if a portfolio weight is above that which 
minimises estimation error, the effective alpha is adjusted downwards. 
Similarly, if the weight of an asset is below that which minimises esti-
mation error, the effective alpha is adjusted upwards.

Robust active return/active risk frontiers

Thus far, this paper has discussed the classical efficient frontier that 
demonstrates the trade off between the expected values of total return 
and total risk. Active managers are more interested in an efficient fron-
tier comparing the expected values of active return and active risk. For 
a 100η per cent-confidence region of α, the most that the difference 
between the expected active returns on the estimated efficient frontier 
and the actual frontier can be is computed by

  

maximise     

subject to    

α α
α α α α
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where b is the benchmark holdings. The optimal solution to this  
problem is
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which implies that
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This gives the following robust optimisation problem for long-only 
active funds
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Now, let us see how this variant of robust objective function effectively 
adjusts expected return estimates. If the holding in an asset is below the 
benchmark weight, the α is adjusted upwards. Similarly, if the holding 
in an asset is above the benchmark weight, the α for that particular 
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asset is adjusted downwards. This behaviour is much more intuitive and 
performs much better in practice for active strategies.

General robust optimisation framework

All three forms of robust portfolio optimisation discussed thus far can 
all be cast in a single generalised form. Note that the only difference 
between Equations (4), (12) and (16) is the model portfolio that is 
compared with the vector of portfolio holdings �w, in constructing the 
expected return adjustments. Let z be the generic ‘model’ portfolio. 
Then the generic expected return adjustment can be written as
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In Equations (4), (12) and (16), z is

0,
e D w

e D D e
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Σ

�
 and b, respectively.

Note that z can be dependent on �w  as it is for the zero-net alpha case.
This generic framework allows for the construction of other alterna-

tive forms of robust portfolio optimisation. Both of the alternatives 
introduced were created to prevent robust optimisation from adjusting 
alphas based on anything other than estimation error. For example, in 
the case of the active manager that measures performance relative to a 
benchmark, the portfolio weights are compared with the benchmark to 
expected returns from being adjusted because of the active manager’s 
constraints. Similarly, in the case of a fully invested fund, the zero-net 
alpha adjustment that compares the portfolio weights with the fully 
invested minimum estimation error portfolio was introduced. The 
adjustment prevents the expected returns from always being adjusted 
downwards because of the fully invested constraint.

For different investment strategies, other constraints may force the 
expected returns to be adjusted in a particular way, even if it is not sug-
gested by estimation error. In these cases, the general form can be used 
to create an effective robust portfolio construction strategy.

Numerical experiments

In order to measure the effect of the proposed methodology on the 
efficient frontiers, the experiments used to produce Figure 10.2 were 



288 Sebastián Ceria and Robert A. Stubbs

re-run using robust optimisation. With D = I, efficient frontiers were 
generated using both the standard mean-variance problem and the 
equivalent robust optimisation problem and compared them with the 
true frontier as in Figure 10.2. These frontiers are illustrated in Figure 
10.4. Similarly, the efficient frontier of active risk versus active return 
was generated using both classical mean-variance optimisation and 
the equivalent robust counterpart. These frontiers are illustrated in  
Figure 10.5. Incorporating the estimation error into the portfolio con-
struction process significantly reduced its effect on the optimal port-
folio. In both cases, the predicted return for any given risk level was 
not exaggerated nearly as much. More importantly, the actual robust 
frontiers are much closer to the true frontiers than are the actual mean-
variance frontiers.

As expected, the computational experiments show that when using 
robust optimisation, the actual and estimated frontiers lie closer to each 
other. This is due to the objective function in the robust optimisation 
problem being based on reducing the distance between the predicted 
and actual frontiers. The real goal, however, is to get these frontiers not 
only closer together, but also closer to the true efficient frontier. It is 
believed that this result will be very difficult to establish theoretically, 
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and for this reason we demonstrated it empirically by running a very 
large number of computational experiments, which are outlined below.

While frontiers help illustrate the effect of robust optimisation, they 
only represent one rebalancing period. One cannot say that portfolios 
constructed using robust optimisation will outperform those con-
structed using classical mean-variance optimisation each month with 
certainty. It is argued, however, that portfolios constructed using robust 
optimisation do outperform those constructed using classical mean-
variance optimisation the majority of the time. To demonstrate this, 
simulated backtests were run using the various forms of robust optimi-
sation described in this paper.

For each simulated backtest, a time-series of monthly returns was 
generated using the excess expected returns and covariance matrix from 
Idzorek (2002) for 30 US equities. For each month, a mean vector of 
returns μ is computed using the previous number of historical periods, 
T, specified in the backtest. The sample covariance matrix of returns, S, 
is computed over the same time horizon. For each month, an expected 
return estimate α = (1 − λ)μ + λr is computed, where r is that month’s 
realised returns, and 0 ≤ λ ≤ 1 is a parameter specified in the backtest. 
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Table 10.4 Backtest results for long-short dollar-neutral strategy

Lambda Kappa Markowitz  
Ann. Ret. (%)

Robust  
Ann. Ret. (%)

Robust  
Win (%)

0.025 1 2.06 2.90 82
0.025 2 2.06 3.62 80
0.025 3 2.06 4.22 83
0.025 4 2.06 4.71 83
0.050 1 10.53 11.3 79
0.050 2 10.53 11.92 78
0.050 3 10.53 12.38 76
0.050 4 10.53 12.66 76

The value of α used in the backtests intentionally contains some look-
ahead bias that is designed to simulate portfolio managers’ information.

The estimation error matrix Σ = (1 − λ) S, is used in the robust objec-
tive term for each backtest. The value of κ used in each backtest is speci-
fied in the results tables. All results are based on 100 different runs of 
the backtests using different seeds for the random number generation. 
All backtests cover 120 periods, or 10 years of monthly rebalancings.

The first set of backtests simulate a long-short dollar-neutral strat-
egy with a limit on the total risk of 10 per cent. Asset weights were 
constrained to be within ±25 per cent of the amount invested. The 
portfolio is also restricted so that the maximum total value of the long 
positions is equal to the amount invested in order to restrict leverage. 
The value of T in each of the backtests was 120. The results are shown 
in Table 10.4. The columns labeled ‘Ann. Ret.’ give the average annu-
alised return over all 100 simulations. The column ‘Robust win (%)’ 
gives the percentage of the simulations in which the total return using 
robust optimisation was greater than the total return using classical 
mean-variance optimisation. In these tests, the total excess returns for 
the robust backtests were greater than the total excess returns for the 
classical tests between 76 and 83 per cent of the time. Also note that 
the average annualised return of the robust portfolios is between 84 
and 265 basis points greater than the average annualised return of the 
classical portfolios.

The second set of backtests simulate a long-only maximum return 
strategy. Here, expected returns in a fully invested long-only portfolio 
are maximised with a limit of 20 per cent expected total risk. In these 
backtests, the monthly round-trip turnover as also limited to be at most 
15 per cent by imposing a linear constraint in the portfolio construction 
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Table 10.5 Backtest results for long-only maximum total return strategy

Lambda Kappa Markowitz  
Ann. Ret. (%)

Robust  
Ann. Ret. (%)

Robust  
Win (%)

0.075 1 11.93 12.30 87
0.075 3 11.93 12.59 81
0.075 5 11.93 12.78 75
0.075 7 11.93 12.77 68
0.100 1 14.04 14.46 84
0.100 3 14.04 14.82 81
0.100 5 14.04 14.97 74
0.100 7 14.04 14.97 68

Table 10.6 Backtest results for long-only active strategy

Lambda Kappa Markowitz  
Ann. Ret. (%)

Robust  
Ann. Ret. (%)

Robust  
Win (%)

0.025 1 1.59 1.69 69
0.025 3 1.59 1.85 68
0.025 5 1.59 1.98 70
0.025 7 1.59 2.02 65
0.050 1 3.35 3.48 76
0.050 3 3.35 3.68 78
0.050 5 3.35 3.80 75
0.050 7 3.35 3.80 65

problem. The zero-net alpha adjustment version of robust optimisa-
tion introduced earlier was used to construct the robust portfolios. The 
value of T in each of the backtests was 120. The results are shown in  
Table 10.5. In these tests, the total excess returns for the robust back-
tests were greater than the total excess returns for the classical tests 
between 68 and 87 per cent of the time. Also note that the average 
annualised excess return of the robust portfolios is between 37 and 93 
basis points greater than the average annualised excess return of the 
classical portfolios.

The last set of backtests simulate a long-only active strategy. The 
portfolios are constrained to be fully invested, have at most a 3 per cent 
active risk, and the asset weights must be within ±10 per cent of the 
investment size of the benchmark weights. In these backtests, we also 
limited the monthly roundtrip turn over to be atmost 15 per cent. The 
active return/active risk version of robust optimisation introduced in 
Section 4.2 was used to construct the robust portfolios. Again, the value 
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of T in each of the backtests was 120. The results of these backtests are 
given in Table 10.6. The results are based on active returns rather than 
excess returns, but otherwise show the same type of information as did 
the previous tables. Again, the total returns for the robust backtests were 
greater than the total returns for the classical tests. This time, the robust 
portfolios were superior between 65 and 78 per cent of the time. The 
average annualised active return of the robust portfolios is between 10 
and 45 basis points greater than the average annualised active return of 
the classical portfolios.

Conclusions

The authors believe that one of the main reasons why modern portfolio 
theory is not being fully used in practical portfolio management is the 
fact that the result from a classical mean-variance framework are unsta-
ble and too sensitive to expected return estimates. It is argued that these 
ill-effects of classical portfolio optimisation are caused by the error-
maximisation property. The robust optimisation technology described 
in this paper directly addresses these issues.

The frontier illustrations show that portfolios generated using robust 
optimisation may be closer to the true efficient frontier. The backtesting 
results indicate that portfolios constructed using robust optimisation out-
performed those created using traditional mean-variance optimisation in 
the majority of cases. The realised returns were greater when using robust 
optimisation. The authors believe that the reason for this is that more 
information is transfered to the portfolios when constructing them using 
robust optimisation. Classical optimisation will tend to overweight assets 
with positive estimation error in the expected returns. Because of this, 
portfolios constructed using mean-variance optimisation typically repre-
sent less information from the true expected returns. That is, the portfolios 
constructed using robust optimisation usually have a higher correlation 
between the true expected returns and the alphas implied from the port-
folio than do those portfolios constructed using robust optimisation.

Robust optimisation is a fairly new optimisation methodology that 
has not yet found widespread use in the financial community. Robust 
portfolio optimisation problem is indeed a more complex optimisation 
problem, but one that can be efficiently handled by a class of interior-
point optimisers that are capable of handling second-order cone con-
straints. Therefore, based on the computational results in this paper, 
the authors believe that robust portfolio optimisation is a practical and 
effective portfolio construction methodology.
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Notes

1. A convex combination of two vectors a and b is defined to be λa + (1 − λ)b 
where 0 ≤ l ≤ 1.

2. ∑ is a symmetric positive definite matrix.
3. We do not need to assume normality. It is only required that the distribu-

tion is elliptical. An elliptic distribution is a symmetric distribution such that 
any minimum volume confidence region of the distribution is defined by an 
n-dimensional ellipsoid of the form of Equation (1).

4. The effective alpha, or effectively adjusted expected return, is defined as the 
value of a determined by Equation (4) or the related equation for a variant of 
(6) for the optimal solution to the robust optimisation problem.

5. When considering adjustments of expected returns, we assume that Σ is a diag-
onal matrix so that we can easily conceptualise the effective expected-return 
adjustments without worrying about any interactions between the adjust-
ments. That is, assuming a diagonal matrix, Σ, means that the  adjustment to 
the expected return for asset i is dependent upon the weight of asset i, but no 
others. This is not to say that the adjustments are truly independent, though. 
Constraints may force one weight to go up if another goes down, which 
implicitly creates an interrelationship between the alpha adjustments. Because 
Σ is positive definite, a diagonal Σ will have all positive elements.
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