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1.1         Introduction 

 Astrocytomas are the most common subgroup of 
central nervous system (CNS) tumors in chil-
dren. The most frequent histological types are 
pilocytic and fi brillary astrocytomas, which are 
considered low-grade astrocytomas. A variety of 
other, less common glial tumors are also seen in 
children, including pleomorphic xanthoastrocy-
toma (PXA), subependymal giant cell astrocy-
toma, high-grade gliomas, ganglioglioma and 
desmoplastic infantile ganglioglioma, astroblas-
toma, ependymoma, and oligodendroglioma. 
This chapter focuses on low-grade astrocytomas 
with an emphasis on infi ltrating astrocytoma, 
cerebellar astrocytoma, optic pathway glioma, 
and oligodendroglioma.  
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1.2     Astrocytomas 

1.2.1     Epidemiology 

 Supratentorial tumors account for approxi-
mately 40–60 % of all pediatric brain tumors 
and are almost twice as common in infants as 
in older children (Farwell et al.  1977 ; 
Dohrmann et al.  1985 ; Dropcho et al.  1987 ; 
Ostrom et al.  2015 ). The majority of supraten-
torial tumors are gliomas (astrocytoma, oligo-
dendroglioma, and ependymoma) with the 
most common subtype, low-grade glioma, 
accounting for half of these. In contrast to the 
distribution of gliomas in adults, malignant 
gliomas account for only 20 % of all childhood 
supratentorial gliomas. 

 For the majority of gliomas, the etiology 
remains unknown. Children with familial can-
cer predisposition syndromes have an increased 
risk of developing both low- and high-grade 
gliomas. Environmental factors, such as paren-
tal smoking and residential proximity to elec-
tromagnetic fi eld sources, have not been 
associated with pediatric brain tumors, 
although parental occupation in the chemical/
electrical industry might be associated with an 
increased risk of astroglial tumors in the off-
spring (Gold et al.  1993 ; Rickert  1998 ). 
Conversely, prenatal vitamin supplementation 
in mothers may confer a slight protective effect 
(Preston-Martin et al.  1998 ; Vienneau et al. 
 2015 ). To date, the only environmental agent 
clearly implicated in developing glioma is 
exposure to ionizing radiation, which results in 
a 2.6- fold increased risk of developing this 
cancer (Ron et al.  1988 ). Gliomas are described 
as a second malignant neoplasm following cra-
nial radiation for medulloblastoma and acute 
lymphocytic leukemia (Steinbok and Mutat 
 1999 ; Tsui et al.  2015 ). Case reports have 
implied that radiation- induced mutagen sensi-
tivity of lymphocytes may be associated with 
an increased risk for glioma (Bondy et al. 
 2001 ). Inherited predispositions to glioma may 
also augment the risk of radiation- associated 
glioma (Kyritsis et al.  2010 ). 

1.2.1.1     Inherited Predispositions 
to Glioma 

   Neurofi bromatosis Type 1 
 Neurofi bromatosis type 1 (NF1) is associated 
with an increased risk of intracranial tumors, and 
approximately 15–20 % of patients with NF1 
present with low-grade intracranial tumors. Low- 
grade gliomas arise in a variety of locations in 
NF1 patients, but are most commonly located in 
the optic nerve, optic chiasm, hypothalamus, and/
or brainstem. They may also occur within the 
cerebral hemisphere and cerebellum (Listernick 
et al.  1999 ). 

 The  NF1  gene is located on chromosome 17q 
and encodes a GTPase-activating protein (GAP), 
termed neurofi bromin (NF1), involved in regu-
lating the ras-p21 signaling pathway. Mutations 
in the  NF1  gene produce heterogeneous signs 
and symptoms of the disease including dermato-
logic manifestations, neurofi bromas, ocular and 
bone abnormalities, and optic pathway gliomas. 
Loss of neurofi bromin function due to bi-allelic 
loss of  NF1  results in constitutive activation of 
the Ras/Map kinase signaling pathway and 
drives tumorigenesis in NF1-associated low-
grade glioma (Anderson and Gutmann  2015 ). 
This mechanism raises the possibility of thera-
peutic biologic targeting of components of this 
signaling pathway with pharmacologic agents. 
Neurofi bromatosis may arise from sporadic 
mutations in the  NF1  gene or through germline 
transmission of an established mutation 
(Gutmann et al.  2000 ). Proteomic analysis of 
 NF1 -defi cient human and mouse brain tumors 
has revealed elevated levels of mammalian tar-
get of rapamycin (mTOR) activity (discussed in 
Sect.  1.2.5.4 ) and its downstream targets associ-
ated with protein translation and growth 
(Dasgupta et al.  2005 ). Neurofi bromin is a 
GTPase that negatively regulates the G-coupled 
protein, Ras, whose downstream targets include 
Akt and mTOR (Dasgupta et al.  2005 ; Sabatini 
 2006 ). Therefore, mTOR may also be an attrac-
tive molecular target worth further examination. 
However, NF1-associated CNS tumors, such as 
pilocytic astrocytomas, rarely demonstrate 
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alterations in other known  oncogenic genes 
such as  p53 ,  EGFR ,  PDGFR , and  p21 , and these 
tumors are considered to be benign (Gutmann 
et al.  2000 ; Vinchon et al.  2000 ).  

    Tuberous Sclerosis 
 Tuberous sclerosis is an inherited disorder of 
the  TSC1  and  TSC2  genes that results in a clini-
cal phenotype of widespread hamartomas that 
can involve several organ systems. The TSC1 
and TSC2 genes encode a protein complex that 
negatively regulates mTOR, an important regu-
lator of cell proliferation and survival. Patients 
with tuberous sclerosis have abnormal regula-
tion of mTOR signaling, which can result in 
the development of subependymal giant cell 
astrocytoma (SEGA) in 10 % of patients with 
tuberous sclerosis (Curatolo et al.  2008 ). 
SEGA is a low-grade, mixed glioneuronal neo-
plasm that can result in obstruction of CSF 
fl ow and hydrocephalus. Treatment is typically 
surgical, but recent evidence demonstrates that 
SEGA in the setting of tuberous sclerosis is 
sensitive to medical treatment with pharmaco-
logic inhibitors of mTOR (Ouyang et al.  2014 ; 
Franz et al.  2006 ,  2014 ).   

1.2.1.2     World Health Organization 
Grading 

 The recent World Health Organization (WHO) 
classifi cation of CNS tumors organizes astrocy-
tomas into four grades (I – IV) in addition to a his-
tological classifi cation system, based on 
morphologic features. Low-grade histologies are 
defi ned as grade I or II. Grades I and II lesions 
can be of varying histologies, but the most com-
mon WHO grade 1 histology is pilocytic astrocy-
toma, while diffuse astrocytomas are the most 
commonly observed WHO grade II histology in 
pediatric patients. Cerebellar astrocytomas, 
grades I and II, comprise approximately 70–80 % 
and 15 % of childhood cases, respectively 
(Steinbok and Mutat  1999 ). Experimental evi-
dence suggests that grade I and II cerebellar 
astrocytomas develop from different precursor 
cells (Li et al.  2001 ; Sievert and Fisher  2009 ). 
Although the use of the WHO classifi cation sys-

tem remains in widespread use, the emerging 
importance of characteristic genetic changes has 
resulted in proposals to update the classifi cation 
system to include these fi ndings (Louis et al. 
 2014 ).   

1.2.2     Pathology 

1.2.2.1     Grades I and II Astrocytomas 
 Pilocytic astrocytoma (PA) is the most common 
low-grade histology in the fi rst two decades of 
life. PAs can be found throughout the neuraxis 
(optic pathway, hypothalamus, cerebral hemi-
sphere, brainstem, and spinal cord), although 
80 % are found in the cerebellum (Dirven et al. 
 1997 ). PA has variable radiographic appearance; 
tumors can be well-circumscribed without infi l-
tration of the surrounding brain, but when it 
occurs as an optic pathway glioma, it can have a 
more, diffusely infi ltrative appearance. These 
gliomas can infi ltrate widely, even extending into 
the posterior visual cortex. This subtype is dis-
cussed in greater detail in Sect.  1.4 . 

 Histologically, PAs exhibit a biphasic pattern 
of compact, bipolar, highly fi brillated astrocytes, 
accompanied by Rosenthal fi bers alternating with 
loose-textured microcystic regions of eosino-
philic granular astrocytes (Fig.  1.1 ). Unlike 
malignant astrocytomas, pleomorphism, mitotic 
fi gures, hypercellularity, endothelial prolifera-
tion, and necrosis may be present, but this does 
not indicate malignancy or poor prognosis 
(Steinbok and Mutat  1999 ). Local leptomenin-
geal invasion is apparent in half of all cases and 
has no prognostic signifi cance (Burger et al. 
 2000 ).

   Other grade I astrocytoma, glioma, and glio-
neuronal histologies that are seen in pediatric 
patients include subependymal giant cell astrocy-
toma, ganglioglioma, dysembryoplastic infantile 
ganglioglioma, and dysembryoplastic neuroepi-
thelial tumor (Sievert and Fisher  2009 ). 

 Grade II astrocytomas are distinct from pilo-
cytic tumors because of their location, degree of 
infi ltration, and presence of genetic aberrations 
(Kleihues et al.  1993 ; Louis et al.  2007 ). Grossly, 
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grade II astrocytomas are ill-defi ned lesions that 
tend to enlarge and distort involved structures. 
Destruction of brain tissue, however, is more 
characteristic of higher-grade tumors. 
Microscopic examination of resected grade II 
tumor specimens invariably shows diffuse infi l-
tration of the surrounding gray and white matter. 
Low-power microscopy may show a subtle 
increase in overall cellularity and disruption of 
the orderly pattern of glial cells along myelinated 
fi bers. Higher-power examination reveals neo-
plastic astrocytes with indistinct cytoplasmic fea-
tures. The diagnosis is often based on the 
appearance of the nuclei, which are characteristi-
cally elongated. Nuclear atypia is minimal in 
low-grade astrocytomas and mitotic activity is 
infrequent.  

1.2.2.2     Other Low-Grade Subtypes 
 Low-grade astrocytomas can be further subdi-
vided on the basis of their microscopic appear-
ance. The prognostic value of these subgroups is 
not entirely clear. Fibrillary astrocytoma is the 
most common grade II astrocytoma subtype and 
demonstrates a uniform, compact arrangement of 
fi brillary astrocytes with varying degrees of cel-
lular atypia on a background of loosely structured 
tumor matrix (Steinbok and Mutat  1999 ). 
Gemistocytic astrocytomas are composed of neo-
plastic astrocytes with abundant eosinophilic, 
glial fi brillary acidic protein (GFAP)-positive 
cytoplasm with nuclei displaced to the periphery 
(Kaye and Walker  2000 ). The WHO classifi ca-
tion identifi es the gemistocytic subtype as low- 
grade astrocytoma, as long as cellularity and 

a b

c d

  Fig. 1.1    Histopathological features of pilocytic astrocy-
toma. ( a ) Field of tumor cells demonstrating increased 
cellularity, mild nuclear atypia, and lack of mitoses. ( b ) 
Tumor edge with gliotic border ( left  of image) and 
 neovascularization. ( c ) Biphasic pattern of compact, 

 fi brillated astrocytes and loosely textured microcysts with 
a focus of endothelial proliferation. ( d ) Squash prepara-
tions demonstrating thin glial processes (“pili”) extending 
from bipolar tumor cells       
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nuclear atypia remain mild (Louis et al.  2007 ). 
The pleomorphic xanthoastrocytoma (PXA), is a 
rare, GFAP-positive, astrocytic tumor typically 
occurring in the cerebral hemispheres of children 
and young adults (Kepes et al.  1973 ). 

 Histologically, PXA is characterized by large, 
neoplastic astrocytes with substantial nuclear 
pleomorphism and very atypical nuclei. The bor-
ders are often infi ltrative, and tumor cells may 
display clustering in an epithelioid fashion 
(Lindboe et al.  1992 ; Powell et al.  1996 ). 
Desmoplastic infantile astrocytoma (DIA) is a 
rare tumor occurring in infants 18 months or 
younger. These tumors are usually large, cystic, 
supratentorial in location, and have a dural attach-
ment. Histologically, they are loose to dense col-
lagenous stroma with wavy fascicles of spindle 
cells (Taratuto et al.  1984 ). The rarest subtype is 
the protoplasmic astrocytoma, which has promi-
nent microcysts, mucoid degeneration, and a pau-
city of GFAP positivity (Kaye and Walker  2000 ). 
Some consider this a histological pattern of fi bril-
lary astrocytoma, rather than a true variant. 
Diffuse cerebellar astrocytomas resemble low- 
grade astrocytomas of the cerebral hemispheres 
with poorly circumscribed borders and invasion 
of the surrounding parenchyma. These tumors 
generally occur in older children, and young 
adults can undergo malignant transformation 
(Burger et al.  2000 ). Regardless of subtype, all 
low-grade astrocytomas have low cellularity, lim-
ited nuclear atypia, and rare mitotic activity. 
Low-grade astrocytomas with single mitotic fi g-
ures have prognoses similar to other low-grade 
tumors (Giannini et al.  1999 ). A single mitotic 
fi gure suggests that the presence of isolated mito-
ses may not be suffi cient to transform an other-
wise low-grade astrocytoma to a higher-grade 
lesion.  

1.2.2.3       Biology 
 Astrocytoma cytogenetic abnormalities occur 
less frequently and with different patterns in chil-
dren than in adults (Cheng et al.  1999 ). In adult 
low-grade astrocytomas, mutations in the  p53  
tumor suppressor gene are common and may her-
ald an early event in malignant progression 
(Watanabe et al.  1998 ; Kosel et al.  2001 ). In con-

trast,  p53  mutations are not frequently found in 
the pediatric population (Litofsky et al.  1994 ; 
Felix et al.  1995 ; Ishii et al.  1998 ). The majority 
of pediatric pilocytic astrocytomas demonstrate 
normal cytogenetic fi ndings (Griffi n et al.  1988 ; 
Karnes et al.  1992 ; Bigner et al.  1997 ). In a recent 
study of 58 pediatric patients, 70 % of grade I 
astrocytomas had a normal cytogenetic profi le 
(Roberts et al.  2001 ). In another study of 109 
pediatric brain tumors, which included 33 low- 
grade astrocytomas, low-grade astrocytomas 
mostly showed changes in chromosome copy 
number (Neumann et al.  1993 ). Reported cytoge-
netic abnormalities include gains on chromo-
somes 1, 7, and 8 and losses of 17p and 17q 
(White et al.  1995 ; Wernicke et al.  1997 ; Zattara- 
Cannoni et al.  1998 ). 

 High-density single-nucleotide polymorphism- 
based genotyping and comparative genome 
hybridization (CGH) have revealed duplication 
or gain in chromosomes 5 and 7, with particular 
amplifi cation of 7q34 in PA (Pfi ster et al.  2008 ; 
Sievert et al.  2008 ). Using CGH,  BRAF  was 
duplicated in 28 of 53 JPAs. In vitro inhibition of 
BRAF signaling, directly by lentivirus- mediated 
transduction of BRAF- specifi c shRNAs or indi-
rectly by pharmacological inhibition of MEK1/2, 
the immediate downstream target of BRAF, 
caused G 2 /M cell- cycle arrest in astrocytic cell 
lines (Pfi ster et al.  2008 ). The amplifi cation of 
7q34 represents a duplication of the  BRAF  gene 
and fusion with the  KIAA1549  gene. This  BRAF -
 KIAA1549  fusion results in constitutively acti-
vated  BRAF  signaling, with subsequent 
downstream effects on cell proliferation and sur-
vival via  MEK  and  ERK . The  BRAF - KIAA1549  
fusion transcript is detected in the majority of 
cerebellar pilocytic astrocytomas and less fre-
quently in pilocytic astrocytoma in other loca-
tions as well as other low-grade glioma variants. 
Alternative Ras/Map kinase activating genetic 
changes have also been described in both pilo-
cytic astrocytoma and other pediatric low- grade 
glioma histologies. The most common of these is 
the  BRAF   V600E   mutation, described in 10 % of 
pediatric gliomas, as well as less commonly 
observed alternate fusion genes involving RAF 
(Chen and Guttman  2014 ; Gajjar et al.  2015 ). 
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Thus, aberrant activation of the mitogen- activated 
protein kinase (MAPK) pathway, due to gene 
duplication or activating mutation of BRAF, is a 
common event in the tumorigenesis of pediatric 
low-grade astrocytomas and provides an opportu-
nity for biologically targeted therapies with 
 BRAF  and/or  MEK  inhibitors. 

 Constitutive activation of the mTOR pathway 
is observed in pediatric low-grade glioma, 
through different mechanisms, in patients who 
develop either spontaneous or NF1-defi cient PA 
(Dasgupta et al.  2005 ; Sharma et al.  2005 ). In 
tumors with Ras pathway-activating genetic 
lesions, mTOR, a downstream effector of the Ras 
pathway, is likely activated by upstream Ras acti-
vation (Chen and Guttman  2014 ). In patients 
with tuberous sclerosis-associated SEGA, mTOR 
is shown to be constitutively activated and 
responsive to treatment with mTOR inhibitors in 
the clinical setting (Ouyang et al.  2014 ; Franz 
et al.  2006 ,  2014 ). The identifi cation of these 
markers may not only direct us to novel molecu-
lar targets for drug therapy, but may also allow 
rapid pathologic characterization and classifi ca-
tion of these tumor types.   

1.2.3     Clinical Features 

 Symptoms and signs caused by low-grade glio-
mas depend on the anatomic location, biological 
nature of the tumor, and age of the patient. These 
signs and symptoms may be nonspecifi c, such as 
those associated with increased intracranial pres-
sure (ICP), or focal, related to tumor location. 
Nonspecifi c symptoms include headache, nau-
sea, and vomiting, subtle developmental delay, 
and behavioral changes. Some of the behavioral 
changes associated with slow-growing tumors in 
children include alterations in personality, irrita-
bility, altered psychomotor function, apathy, and 
declining school performance. It is not uncom-
mon for symptoms to have been present for 
months or years prior to diagnosis. In infants 
with open cranial sutures, a tumor may reach a 
massive size with a gradual increase in head cir-
cumference without signs of increased ICP or 

any other symptoms. Focal symptoms depend 
upon the location of the tumor and may include 
hemiparesis, monoparesis, hemisensory loss, 
dysphasia, aphasia, and impairment of recent 
memory. Tumors involving the optic pathways 
can present with quadrantanopia, homonymous 
hemianopsia, or, in cases with bilateral occipital 
lobe involvement, cortical blindness. Hemorrhage 
rarely occurs in low-grade tumors, although one 
report noted the presence of hemorrhage in 8 % 
of patients with pilocytic astrocytoma (White 
et al.  2008 ). 

 Epilepsy is a major presenting feature of pedi-
atric patients with brain tumors, and seizures 
occur in more than 50 % of children with hemi-
spheric tumors (Keles and Berger  2000 ). The 
majority of patients with tumor-associated epi-
lepsy harbor slow-growing, indolent neoplasms 
such as low-grade gliomas. Other relatively slow- 
growing tumors, for example, astrocytomas, gan-
gliogliomas, and oligodendrogliomas, may also 
present with a history of generalized seizures. 
Rapidly growing lesions are more likely to pro-
duce complex partial motor or sensory seizures, 
although generalized tonic-clonic seizures are 
also common.  

1.2.4     Diagnostic Imaging 

 Magnetic resonance imaging (MRI) and com-
puted tomography (CT) are essential tools in the 
diagnosis and treatment of brain tumors. 
Although CT is more commonly available, MRI 
provides higher sensitivity in differentiating 
tumor tissue from normal brain, allowing more 
detailed anatomic characterization of the lesion, 
and should be obtained in all children with a 
diagnosis of a brain tumor. A complete series 
should include the following sequences: 
T1-weighted axial and coronal (both before and 
after gadolinium), T2-weighted axial and coro-
nal, and fl uid-attenuated inversion recovery 
(FLAIR). In addition, sagittal plane sequences 
are helpful in defi ning anatomy of suprasellar 
and midline tumors. Other sequences such as fat 
suppression and MR angiography may also be 
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required in specifi c situations. Newer techniques, 
such as magnetic resonance spectroscopy (MRS), 
functional MRI, and perfusion measurements, 
offer the potential of obtaining biochemical and 
functional information noninvasively (see Chap. 
  13    ). It is possible that in the future a pathologic 
diagnosis may be reached with substantial confi -
dence without the need for open biopsy. 

 Although low-grade gliomas may produce 
considerable mass effect upon surrounding struc-
tures, neurologic defi cits may be minimal. With 
the exception of pilocytic astrocytoma, low-grade 
astrocytomas are usually nonenhancing, iso- or 
hypodense masses on CT scan. Calcifi cation may 
be detected in 15–20 % of cases, and mild to 
moderate inhomogeneous contrast enhancement 
can be seen in up to 40 % of all cases (Lote et al. 
 1998 ; Bauman et al.  1999 ; Roberts et al.  2000 ; 
Scott et al.  2002 ). Some tumors, characteristi-
cally PAs, may have cystic changes. On MRI, 
T1-weighted images show an iso- to hypointense 
nonenhancing mass that is hyperintense on 
T2-weighted images. Non-PA low-grade astrocy-
tomas have minimal to no contrast enhancement 
following gadolinium administration (Fig.  1.2b, 
d ). For this reason, the tumor boundary is diffi -
cult to determine with any T1-weighted sequence. 
FLAIR sequence is very sensitive for defi ning the 
extent of tumor infi ltration (Fig.  1.2a, c ).

   Because many low-grade gliomas have a risk 
of progression or relapse after initial therapy, sur-
veillance MR imaging over time is recommended 
typically at an interval of 3–6 months, depending 
on the degree of clinical concern for risk of 
relapse. In general, for grade II astrocytoma, the 
two most important features are an increase in the 
volume of T2-weighted FLAIR signal abnormal-
ity and/or new enhancement on post-gadolinium 
T1-weighted images. These features are also 
observed in patients who have received radiation 
treatment, and differentiating tumor recurrence 
from radiation necrosis continues to present a 
challenge. Additional information may be 
obtained from MR spectroscopy and positron 
emission tomography (PET) scans, but at times, 
the only method to confi rm tumor recurrence is to 
obtain a surgical biopsy.  

1.2.5     Treatment 

1.2.5.1     Surgical Indications 
 A surgical procedure is usually the initial step in 
the management of low-grade gliomas. The pri-
mary objective is to obtain tissue for pathologic 
diagnosis. A relative exception would be for 
tumors in locations not amenable to surgery, 
such as optic pathway/chiasmatic gliomas, 
although a stereotactic biopsy can safely obtain 
tissue for histopathologic analysis. The second-
ary objective is to perform as extensive a resec-
tion as possible with acceptable neurologic 
outcome for the patient. The two variables that 
must be considered are the extent and timing of 
resection. Extent of resection is the most impor-
tant prognostic factor for 5-year overall and 
progression-free survival (PFS). Patients who 
have partial resections or residual disease often 
recur or experience tumor progression (Shaw 
and Wisoff  2003 ; Kim et al.  2014 ). The feasibil-
ity of an open surgical approach depends upon 
several factors. The most important is the exact 
location of the tumor. Deep lesions within the 
basal ganglia, thalamus, motor cortex, or brain-
stem are usually not amenable to open surgical 
resection, while tumors in other locations can be 
accessed through various standard approaches. 
Other factors that modify the decision to attempt 
surgical resection are the patient’s clinical con-
dition, age, associated hydrocephalus, and the 
surgeon’s assessment of risk of neurologic 
sequelae. 

 Timing of resection is a controversial topic, and 
few conclusive studies have been published to date. 
There are reports questioning the value of immedi-
ate treatment when an imaging study suggests a 
low-grade glioma, as no defi nitive evidence exists 
which demonstrates improvement in long-term 
survival following early intervention (Cairncross 
and Laperriere  1989 ; Recht et al.  1992 ). 

 In addition to reducing tumor burden and pro-
viding tissue diagnosis, resection permits man-
agement of increased ICP, prevention of 
irreversible neurologic defi cits, decompression 
of adjacent brain structures, and control of sei-
zures (Berger et al.  1991 ,  1993 ; Haglund et al. 
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 1992 ; Keles and Berger  2000 ). For patients with 
discrete JPAs (WHO grade I), gross total resec-
tion (GTR), when possible, is curative. 
Contemporary neurosurgical methods, including 

ultrasonography, functional mapping, frameless 
navigational resection devices, and intraoperative 
imaging techniques enable more extensive resec-
tions with less morbidity.  

a b

c d

  Fig. 1.2    MR images from a teenage girl with a low-grade 
astrocytoma of the insula who presented with a single 
 seizure. Her neurologic exam was normal. ( a ,  c ) Axial and 
coronal FLAIR images showing the extent of  involvement. 

Note the tumor infi ltration medially under the lentiform 
nucleus toward the hypothalamus. ( b ,  d ) Corresponding 
T1-weighted post-gadolinium images showing no appre-
ciable enhancement       
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1.2.5.2     Chemotherapy 
 Although indolent and slow growing, overall 
5-year survival rates for patients with  diencephalic 
and hemispheric tumors who have received 
radiation therapy vary, ranging from 40 % to 
70 %. Additionally, the morbidity associated with 
radiation treatment can be substantial, prompting 
numerous investigators to explore chemotherapy 
as an alternative adjuvant treatment to control 
tumor progression. Chemotherapy effectively 
provides disease control in many optic pathway 
tumors (see below) and may improve prognosis 
for vision maintenance. Studies of early combi-
nation chemotherapy regimens with vincristine 
and actinomycin D, used in children less than 
6 years of age, reported 62 % PFS without further 
therapy; those who did progress did so at a 
median of 3 years from the start of therapy. The 
median IQ in this group was 103 (Packer et al. 
 1988 ). It is important to recognize that prolonged 
periods of stable tumor size and clinical symp-
toms are considered a treatment “response” by 
many investigators. Alternative combination che-
motherapy regimens have also resulted in tumor 
response in pilot studies. Other drug combina-
tions that have been reported include lomustine 
and vincristine; 6-thioguanine, procarbazine, 
lomustine, and vincristine (TPCV); and combi-
nations using cisplatin (Edwards et al.  1980 ; 
Gajjar et al.  1993 ). The combination regimen of 
carboplatin and vincristine (CV) has been associ-
ated with objective response rates (stable disease 
as well as tumor shrinkage) in the range of 
60–70 % (Packer et al.  1997 ). The combination of 
TPCV has also been associated with a substantial 
response rate in a small cohort of patients (Prados 
et al.  1997 ). 

 A large-scale, randomized, phase III, multi- 
institutional clinical trial conducted by the 
Children’s Oncology Group (COG) examined 
the relative effectiveness of CV versus 
TPCV. Four hundred and one children less than 
10 years old were enrolled in COG A9952. Of 
these 401 eligible children, 137 were random-
ized to receive CV, 137 were randomized to 
receive TPCV, and 127 patients with NF1 and 
radiographically verifi ed progressive optic path-
way glioma were nonrandomly assigned to the 
CV arm because of the heightened leukemogenic 

potential of TPCV in this patient population. 
Tumor response rates, defi ned as a decrease in 
both enhancement and T2 signal on MRI at the 
end of protocol therapy, were 57 % for CV, non-
NF1; 61 % for CV, NF1; and 58 % for TPCV. The 
5-year overall survival rates in CV-treated, non-
NF1 versus NF1 patients were 86 % and 98 %, 
respectively. Similarly, 5-year event-free sur-
vival (EFS) was improved in NF1 versus non-
NF1 patients (69 % vs. 42 %, respectively) and 
no difference in EFS was found when comparing 
CV versus TPCV. The median time to progres-
sion for CV versus TPCV was 3.2 versus 
4.9 years (Ater et al.   2012 ). A regimen of single-
agent vinblastine demonstrated a 3- and 5-year 
EFS and OS of 43.2 % and 93.2 % (Bouffet et al. 
 2012 ). A phase 2 study of bevacizumab and iri-
notecan in patients with low-grade glioma dem-
onstrated a 2-year PFS of 47.8 % (Gururangan 
et al.  2014 ). These fi ndings demonstrate that 
both therapies can be used successfully to treat 
low- grade glioma with good overall EFS, thus 
allowing a delay in radiotherapy. 

 Although chemotherapy is documented to 
be active in low-grade glioma, conventional 
regimens are toxic and provide only transient 
tumor control. Investigators are exploring the 
role of mono- and combinatorial therapy to 
extend treatment response. The HIT-LGG 96 
study examined the role of second-line chemo-
therapy in patients who had disease progres-
sion in the chemotherapy arm (94 patients). Of 
those 94 patients, 27 went on to receive a sec-
ond round of chemotherapy consisting of vin-
cristine/carboplatin and/or cyclophosphamide 
regimen, vinblastine alone, temozolomide 
alone, or other regimen. The median age in this 
group was 11.8 months. Best achievable 
response was tumor reduction in 8 patients and 
stable disease in 13 patients. Thirteen patients 
recurred 15.7 months after starting second- line 
chemotherapy. The overall 3-year PFS in the 
second chemotherapy group was 34 % (Kordes 
et al.  2008 ). 

 A phase II study assessed the effi cacy of temo-
zolomide in children with progressive optic path-
way glioma and pilocytic astrocytoma. Thirty 
patients were treated with oral temozolomide for 
5 days every 4 weeks. The 2-year PFS and overall 
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survival rates were 49 % and 96 %, respectively, 
with manageable toxicity (Gururangan et al.  2007 ). 
These fi ndings illustrate the potential to further 
delay radiotherapy in this pediatric population by 
using chemotherapy.  

1.2.5.3     Radiation Therapy 
 As discussed above, low-grade astrocytoma may 
be curable with GTR. For those patients with unre-
sectable or incompletely resected disease, the use 
of radiation therapy is controversial. There is some 
evidence to suggest that while radiation therapy 
may prolong PFS, it has little impact on overall 
survival (Pollack et al.  1995 ). Its use is largely lim-
ited to patients with progressive or recurrent dis-
ease or in the setting of a highly symptomatic 
patient who requires tumor stabilization to avert 
the progression of symptoms. A large-scale multi-
institutional trial, SIOP-LGG 2004, sought to 
address the role of observation, adjuvant chemo-
therapy, and radiotherapy in order to assess their 
optimal therapeutic effect and toxicity on pediatric 
low-grade glioma after total or subtotal surgical 
resection. A total of 1,031 patients were enrolled 
and were nonrandomly assigned to one of three 
arms in an age-dependent manner. Six hundred 
sixty-eight patients were assigned to observation 
only, 216 to vincristine with carboplatin chemo-
therapy, and 147 to radiation/brachytherapy. Ten-
year OS and PFS were 94 % and 47 %; three 
quarters of the chemotherapy-treated patients 
remain unirradiated with 9.3 years of median fol-
low-up (Gnekow et al.  2012 ). In an 89 patient 
cohort of pediatric patients treated with conformal 
radiation for low- grade glioma at St. Jude’s 
Children’s Research Hospital, PFS and OS at 
10 years were 75.3 % and 95.9 % (Merchant et al. 
 2009a ,  b ). Eight-year PFS and OS in a cohort of 
LGG patients treated with intensity-modulated 
radiation therapy were 78.2 % and 93.7 %, with 
failures largely occurring in the tumor bed (Paulino 
et al.  2013 ). For the most part, these studies dem-
onstrate the effi cacy of radiation therapy in the 
treatment of pediatric low-grade gliomas. 
However, due to concerns about radiation-related 
side effects, an effort is generally made to delay or 
forgo radiation in young children. 

 Because of neurocognitive toxicity associ-
ated with radiotherapy, minimizing the dose and 
radiation fi elds using stereotactic radiosurgery 
or proton therapy may provide an effective 
alternative to standard conformal radiotherapy 
(Hadjipanayis et al.  2003 ; Marcus et al.  2005 ). 
One prospective trial using stereotactic radio-
surgery demonstrated effective control of small, 
pediatric LGGs that had progressed either after 
surgery or chemotherapy. The 8-year PFS and 
overall survival rates using stereotactic radio-
surgery in these patients were 65 % and 82 %, 
respectively (Marcus et al.  2005 ). Clinical out-
comes using proton therapy in 32 pediatric 
patients treated for primary low-grade gliomas 
were comparable to standard radiotherapy. 
Neurocognitive exams posttreatment appeared 
stable, with minimal negative changes in work-
ing memory and processing speed, except in a 
subgroup of patients <7 years, who experienced 
signifi cant declines in full scale IQ, as well as in 
patients who had signifi cant dose to the left tem-
poral lobe/hippocampus (Greenberger et al. 
 2014 ). Proton therapy appears to be safe and 
equally effective as IMRT or conformal therapy. 
Alternatively, the use of microsurgery combined 
with interstitial radiosurgical I-125 seed implan-
tation (IRS) has demonstrated promising results. 
Nineteen children with low-grade glioma 
received IRS and/or microsurgery to the tumor 
site. With a median follow-up of 26 months, 5 
tumors had a complete response, 11 tumors had 
reduction in size, two children developed radio-
necrosis requiring resection, and one child had 
progression and died (Peraud et al.  2008 ). In a 
cohort of pediatric patients treated with stereo-
tactic brachytherapy, 10-year PFS and OS were 
82 % and 93 %, respectively, again similar to 
other radiation strategies (Ruge et al.  2011 ). 
While this therapy appears feasible, long-term 
neurocognitive toxicity needs to be assessed.  

1.2.5.4        Targeted Molecular Therapy 
 Overall prognosis and clinical outcome for 
patients with glioma are associated with tumor 
grade. Genes associated with glial cell grade 
and tumorigenesis continue to be identifi ed. 
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Understanding the pattern of genes activated in 
glioma will likely provide insight into the natu-
ral history and potential clinical course of these 
tumors and whether they will respond to stan-
dard chemotherapeutic regimens or novel 
molecular targeted therapies. For this reason, 
the PI3K/Akt/mTOR pathway has been studied 
in great detail as it plays a large role in the 
tumorigenesis of many cancers including 
glial tumors (Sabatini  2006 ; Guertin and 
Sabatini  2007 ). 

 Two complexes of mTOR exist: mTOR com-
plex 1 (mTORC1) and mTOR complex 2 
(mTORC2). The tumor suppressor genes TSC1/
hamartin and TSC2/tuberin are important for the 
regulation of mTOR activity. Germline mutations 
of TSC lead to tuberous sclerosis and predisposi-
tion to a variety of benign tumors including ham-
artomas and lymphangioleiomyomas. Many 
upstream growth factor receptors and PI3K sig-
nal through the downstream mediator, mTOR. 
These observations make mTOR an attractive tar-
get for therapeutic intervention (Houghton and 
Huang  2004 ). 

 Further characterization of mTOR’s signal-
ing pathway may lead to better application of 
mTOR inhibitor therapy. Franz et al. used 
rapamycin, an mTOR inhibitor, to treat 5 TSC 
patients who had either subependymal giant cell 
astrocytoma ( n  = 4) or pilocytic astrocytoma 
( n  = 1). In all fi ve cases, tumor regression was 
observed, and in one case, tumor necrosis 
occurred (Franz et al.  2006 ). As reviewed in 
Sect.  1.2.1.1.2 , follow-up studies demonstrated 
very high response rates of TS-associated SEGA 
to the mTOR inhibitor everolimus. Based on 
these observations, as well as the role of mTOR 
signaling in sporadic and NF1-associated PA as 
reviewed in Sect.  1.2.2.3 , inhibition of mTOR 
signaling is emerging as a provocative target for 
treatment of LGGs. In a cohort of 19 recurrent 
LGG patients treated with a combination of the 
EGFR inhibitor erlotinib and rapamycin, 1 
patient had a partial response to treatment, and 6 
patients had stabilization of disease for 
12 months or greater (Yalon et al.  2013 ). A phase 
2 study of treatment with everolimus alone in a 

cohort of 23 patients with recurrent or progres-
sive low-grade glioma observed that 4 subjects 
had a partial response and 13 subjects had pro-
longed stable disease (Keiran et al.  2014 ). 

 Further exploration of gene expression pro-
fi les of grade I and II gliomas have already led 
to the introduction of novel therapies for pediat-
ric low-grade gliomas. As reviewed in 
Sect.  1.2.2.3 ,  BRAF  is strongly implicated in 
the molecular pathogenesis of pediatric low-
grade astrocytoma, and open a new avenue for 
molecularly targeted agents. In these studies, 
aberrant MAPK signaling could be inhibited in 
low-grade astrocytoma cell lines when treated 
with an inhibitor of the MAPK signaling com-
ponent MEK. Initial efforts to treat low-grade 
glioma with the BRAF inhibitor sorafenib were 
disappointing, with 82 % of patients demon-
strating uncharacteristically rapid progressive 
disease on treatment (Karajannis et al.  2014 ). 
Sorafenib was demonstrated to be associated 
with paradoxical activation of ERK in the set-
ting of a  BRAF - KIAA1549  fusion; hence, the 
drug may have driven tumor progression in this 
subset of patients (Sievert et al.  2013 ). In con-
trast, pediatric low-grade gliomas with 
 BRAF   V600E   mutations have a high response rate 
to BRAF V600E -specifi c inhibitors such as dab-
rafenib, with 8 out of 15 patients having an 
objective radiographic response (Kieran et al. 
 2015 ). A preliminary report of a phase 1 study 
of the MEK inhibitor selumetinib (AZD6244) 
in pediatric low-grade glioma patients was 
notable for sustained responses in 8 of 38 
patients treated, suggesting that MEK inhibi-
tion may be a promising therapeutic strategy for 
these patients (Banerjee et al.  2014 ), although a 
larger phase II study is currently underway that 
will hope to identify by genotype the patients 
most likely to respond to MEK inhibition. In 
summary, targeted therapies directed at the Ras/
Map kinase pathway have shown signifi cant 
early promise to treat pediatric low-grade glio-
mas, but it is still too early to determine which 
specifi c inhibitors (BRAF vs MEK) should be 
used to treat tumors with which particular muta-
tion ( NF1 ,  BRAF  fusion,  BRAF   V600E  ,  RAS ).   
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1.2.6     Outcome 

 Age and histological type are signifi cant prog-
nostic predictors. Although patients appear to 
benefi t from more extensive resections, this issue 
remains controversial. In a majority of patients 
with tumor-associated epilepsy, including those 
patients with malignant astrocytomas, the sei-
zures are infrequent and easily controlled with a 
single antiepileptic drug. In this setting, removal 
of the tumor alone usually controls seizure activ-
ity without the need for additional anticonvul-
sants. Children with indolent tumors, however, 
may have seizure activity that is refractory to 
medical therapy. Optimal seizure control without 
postoperative anticonvulsants in this situation is 
achieved when perioperative electrocortico-
graphic mapping of separate seizure foci accom-
panies tumor resection. When mapping is not 
utilized, and a radical tumor resection includes 
adjacent brain, the occurrence of seizures will be 
lessened, but most patients will have to remain 
on antiepileptic drugs (Berger et al.  1991 ). 

 Dedifferentiation or malignant transforma-
tion is a well-described phenomenon in low-
grade gliomas (Fig.  1.3 ). The incidence of 
recurrence as a higher histological grade ranges 
from 13 % to 86 % of tumors initially diagnosed 
as low grade (Keles et al.  2001 ). Similar to its 
broad range of incidence, the time to malignant 
differentiation is also variable, ranging from 28 
to 60 months. However, factors resulting in 
change to a malignant phenotype remain unclear. 
In a recent study investigating the relationship 
between anaplastic transformation and patient’s 
age, a strong inverse relationship was found 
between age at initial diagnosis and time to pro-
gression to a higher-grade glioma (Shafqat et al. 
 1999 ).

   In both low- and high-grade astrocytomas, 
the extent of surgical resection appears to cor-
relate with outcome and quality of life (Pollack 
et al.  1995 ; Campbell and Pollack  1996 ; Keles 
et al.  2001 ; Wolff et al.  2002 ). Patients with 
GTRs live longer than those with partial resec-
tions, who in turn live longer than those who 
have biopsies only. A further consideration is 
that partial resection is often accompanied by 

signifi cant postoperative edema surrounding 
residual tumor tissue, along with increased neu-
rologic morbidity. However, the literature 
regarding the prognostic impact of surgery is 
controversial due to a lack of randomized stud-
ies addressing the issue. An additional compli-
cating factor is the inconsistent and less 
subjective methodology used in determining the 
extent of resection. Historically, PFS at 3 years 
ranges from 61 % to 75 % for patients with low-
grade gliomas (Packer et al.  1997 ; Gururangan 
et al.  2002 ). These patients have a 10-year sur-
vival rate of 70–90 %. More recently, however, 
data from the Surveillance, Epidemiology, and 
End Results (SEER) database reported on the 
long-term outcome of 4,040 children with low-
grade glioma. Twenty-year overall survival was 
87 %, and the 20-year cumulative incidence of 
death due to glioma was 12 %. Prognostic fea-
tures included year of diagnosis, age at diagno-
sis, histology, WHO grade, primary site, 
radiation, and degree of initial resection in uni-
variate analysis. In multivariate analysis, the 
greatest risk of death was associated with the 
use of radiation (Bandopadhayay et al.  2014 ).   

1.3     Cerebellar Astrocytoma 

 Although astrocytomas as a group represent the 
most common tumor of the CNS in childhood, 
cerebellar astrocytomas comprise 10–20 % of all 
pediatric brain tumors (Lapras et al.  1986 ; Rutka 
et al.  1996 ; Smoots et al.  1998 ; Reddy and 
Timothy  2000 ) and 20–40 % of all posterior fossa 
tumors in children (Lapras et al.  1986 ; Rutka 
et al.  1996 ; Morreale et al.  1997 ; Steinbok and 
Mutat  1999 ; Reddy and Timothy  2000 ; Viano 
et al.  2001 ). Infratentorial tumors comprise 
approximately 50 % of all intracranial tumors in 
childhood and include medulloblastoma/PNET 
(20 % of the total), cerebellar astrocytomas 
(15 %), ependymoma (5 %), brainstem glioma 
(3 %), and other miscellaneous types (5 %) 
(Pollack  1999 ). Long-term survival after surgical 
resection is very high, but is dependent on histo-
logical type, extent of invasion, and complete-
ness of tumor removal. 
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 Recent laboratory investigations are attempt-
ing to defi ne the molecular features of different 
grades of cerebellar astrocytomas. Clinical 
studies have focused on approaches to the treat-
ment of residual/recurrent tumor, the role of 

adjuvant therapy, functional outcomes after 
treatment, and the management of complica-
tions, such as  pseudomeningocele, cerebrospi-
nal fl uid (CSF) shunting, and cerebellar 
mutism. 

a

b

  Fig. 1.3    Low-grade astrocytoma can recur at a higher 
grade. ( a ) Initial MRI demonstrates a nonenhancing mass 
in the left parietal lobe. Pathology was consistent with 
grade II astrocytoma. ( b ) Five years later, follow-up 

 imaging demonstrates a new area of enhancement poste-
rior to the original tumor. Pathology of the enhancing 
component was consistent with glioblastoma multiforme       
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1.3.1     Epidemiology 

 The incidence of cerebellar astrocytoma is diffi -
cult to determine accurately, but is estimated to be 
0.2–0.33 cases per 100,000 children per year 
(Berger  1996 ; Gjerris et al.  1998 ; Rosenfeld 
 2000 ). The incidence peaks between ages 4 and 
10 years, with a median age at diagnosis of 6 years 
(Steinbok and Mutat  1999 ). Twenty percent of 
these tumors occur in children less than 3 years of 
age (Rickert  1998 ). Gender does not play a role in 
disease predominance, prognosis, or survival 
(Rickert and Paulus  2001 ; Viano et al.  2001 ). 
International studies do not demonstrate a geo-
graphic or ethnic propensity for the occurrence of 
cerebellar astrocytomas, unlike craniopharyngio-
mas and germ-cell tumors (Gjerris et al.  1998 ; 
Rickert  1998 ; Rickert and Paulus  2001 ). 

 The term “cerebellar astrocytoma” has become 
synonymous with a benign tumor, although a small 
subset are high grade and malignant. The majority 
(80 %) of cerebellar astrocytomas in children are 
PAs (WHO grade I) and demonstrate a benign his-
tology (Morreale et al.  1997 ). Fibrillary astrocyto-
mas (WHO grade II) comprise 15 % of the total, 
while anaplastic astrocytomas (WHO grade III) and 
glioblastoma (GBM, WHO grade IV) each repre-
sent less than 5 % of the total (Steinbok and Mutat 
 1999 ). In patients who present with NF1, about 5 % 
will develop cerebellar JPAs (Li et al.  2001 ).  

1.3.2     Pathology 

1.3.2.1     Gross Appearance 
 Grossly, cerebellar astrocytomas can be cystic and 
solid or have mixed features. JPAs (WHO grade I) 
are typically cystic tumors containing yellow-
brown fl uid and neoplastic mural nodules. The cyst 
wall may contain either neoplastic cells or a pseu-
docapsule of glial tissue (Steinbok and Mutat  1999 ; 
Bonfi eld and Steinbok  2015 ). This classic appear-
ance occurs in less than 50 % of cases. Diffuse sub-
types are almost always solid tumors composed of 
circumscribed neoplastic cells without evidence of 
cysts. Very commonly, however, cerebellar astro-
cytomas demonstrate mixed appearance and con-
sist of both cystic and solid portions of tumor. 

Cystic lesions tend to occur in the cerebellar hemi-
spheres, while solid tumors often arise in the mid-
line near the vermis and potentially extend to the 
brainstem (Abdollahzadeh et al.  1994 ).   

1.3.3     Clinical Features 

 The mean age at diagnosis for cerebellar astrocy-
tomas in children is 6.8 years, and the average 
duration of symptoms is 3–5 months (Steinbok 
and Mutat  1999 ; Reddy and Timothy  2000 ; 
Bonfi eld and Steinbok  2015 ). The slow-growing, 
indolent characteristics of these tumors allow 
functional compensation of adjacent brain tissue, 
and most cerebellar astrocytomas tend to be large 
at time of diagnosis. With greater availability of 
high-resolution neuroimaging, detection of these 
lesions is occurring earlier than in the past. 
Attempts to correlate age at diagnosis and prog-
nosis have been inconclusive, and though patients 
diagnosed at younger ages tend to have better 
outcomes, more of these tumors tend to have a 
benign pathology (Morreale et al.  1997 ). 

 Initial signs and symptoms are usually mild 
and nonspecifi c and are caused by increased intra-
cranial pressure. Headache is the most common 
presenting complaint (75–97 %) (Abdollahzadeh 
et al.  1994 ; Berger  1996 ; Steinbok and Mutat 
 1999 ; Viano et al.  2001 ; Bonfi eld and Steinbok 
 2015 ) and frequently occurs with recumbency. 
Decreased venous return and hypoventilation dur-
ing sleep and recumbency exacerbate raised ICP 
(Steinbok and Mutat  1999 ). Headaches begin 
frontally and may migrate to the occiput. Constant 
occipital headache and neck pain with hyperex-
tension are ominous signs of tonsillar herniation 
into the foramen magnum. Respiratory depres-
sion, preceded by cluster or ataxic breathing, may 
follow shortly (Rosenfeld  2000 ). Vomiting, found 
in 64–84 % of patients, is the second most fre-
quent presenting symptom and is also caused by 
hydrocephalus and raised ICP (Steinbok and 
Mutat  1999 ; Viano et al.  2001 ). Papilledema 
occurs in 40–80 % of patients along with cerebel-
lar dysfunction (Rashidi et al.  2003 ). In the 
absence of tumor infi ltration of the area postrema, 
vomiting is usually not accompanied by nausea, 
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unlike ependymomas and other lesions arising 
from the fourth ventricle itself. 

 Signs of cerebellar dysfunction include ataxia 
(88 %), gait disturbance (56 %), appendicular dys-
metria (59 %), and wide-based gait (27 %) 
(Abdollahzadeh et al.  1994 ; Pencalet et al.  1999 ; 
Steinbok and Mutat  1999 ; Viano et al.  2001 ). 
Lesions of the cerebellar hemisphere produce ataxia 
and dysmetria in the ipsilateral limbs, while midline 
lesions produce truncal and gait ataxia (Berger 
 1996 ). Other clinical features include behavioral 
changes (32 %), neck pain (20 %), and papilledema 
(55–75 %) (Abdollahzadeh et al.  1994 ; Steinbok 
and Mutat  1999 ; Bonfi eld and Steinbok  2015 ). 
Some degree of hydrocephalus occurs in 92 % of 
cases, while seizures are extremely rare (2–5 %) 
(Abdollahzadeh et al.  1994 ). Cranial nerves and 
descending motor tracts are usually not affected, 
unless there is signifi cant tumor extension, and 
involvement indicates probable brainstem infi ltra-
tion. The only clinical feature related to poor prog-
nosis is the presence of brainstem dysfunction (level 
of consciousness, motor-tract signs) regardless of 
histology (Sgouros et al.  1995 ).  

1.3.4     Natural History 

 Cerebellar astrocytomas were once considered con-
genital posterior fossa brain tumors, requiring treat-
ment only when symptomatic. Patients would 
typically report long-standing headaches and eme-
sis, with occasional periods of relief. Patients with 
cerebellar symptoms often developed symptoms of 
syringomyelia, indicating unrelieved hydrocepha-
lus. It was commonly believed that the cyst wall and 
cyst fl uid were the cause of the patients’ symptoms. 
Thus, early treatment consisted of cyst-fl uid decom-
pression and cyst-wall removal. Symptoms were 
relieved temporarily, but patients often returned 
within months to years with cyst recurrence and 
sometimes tumors with malignant progression. Not 
until Cushing reported his surgical experience with 
76 cerebellar astrocytomas in 1931 did it become 
clear that the true pathology lay in the mural nodule. 
If left untreated, patients would experience increas-
ing bouts of cerebellar fi ts, become blind, and ulti-
mately succumb to coma and death.  

1.3.5     Diagnosis and Neuroimaging 

1.3.5.1     Computed Tomography 
and Magnetic Resonance 
Imaging 

 The classic radiographic appearance of a PA, 
observed in 30–60 % of cases, is a large cyst with 
a solid mural nodule (Fig.  1.4 ) localized to one of 
the cerebellar hemispheres (Steinbok et al.  1996 ; 
Reddy and Timothy  2000 ; Bonfi eld and Steinbok 
 2015 ). On CT, the cyst is hypodense to brain and 
hyperdense to CSF due to its high protein content, 
while on MRI, the cyst appears hypointense to 
brain on T1-weighted images and hyperintense on 
T2-weighted images. The mural nodule is hypo- 
to isodense to brain on CT and hyperintense to 
brain on T1-weighted images. The mural nodule 
enhances uniformly following contrast adminis-
tration on both CT and MRI, while the cyst is not 
affected by contrast. The cyst wall, however, may 
demonstrate contrast enhancement if neoplastic 
cells are present (Fig.  1.4 ). In certain cases, the 
compressed glial reactive tissue surrounding a 
cyst may also show limited enhancement 
(Fig.  1.5 ). Other variations include multiple mural 
nodules; a single, large nodule fi lling in a portion 
of the cyst; and/or an irregular cyst contour.

    Cerebellar astrocytomas can also appear as 
solid lesions in 17–56 % of cases, with 90 % aris-
ing from or involving the vermis (Pencalet et al. 
 1999 ; Reddy and Timothy  2000 ). The CT shows 
a lesion hypo- to isodense to brain, and MRI 
demonstrates a solid mass hyperintense to brain. 
The solid tumor enhances uniformly following 
contrast administration in the majority of cases, 
but variations include regions of nonenhance-
ment and small intratumoral cysts in up to 30 % 
of solid tumors (Campbell and Pollack  1996 ). 
Quite often, cerebellar astrocytomas will appear 
with both cystic and solid features and may have 
a rind-like enhancement pattern with varying 
degrees of cyst formation. Brainstem involve-
ment is seen in 8–30 % (Steinbok and Mutat 
 1999 ; Reddy and Timothy  2000 ; Viano et al. 
 2001 ; Bonfi eld and Steinbok  2015 ) of cases, 
while the cerebellar peduncles are affected in 
34 % (Hayostek et al.  1993 ; Pencalet et al.  1999 ). 
Calcifi cations are present in 10–17 % of tumors 

1 Low-Grade Gliomas



16

and hemorrhage in only 4.5 % (Berger  1996 ). 
Edema may be evident in some cases, but does 
not indicate malignancy or poor prognosis.  

1.3.5.2     Magnetic Resonance 
Spectroscopy 

 Unfortunately, neither classic tumor appearance 
nor location on neuroimaging can confi dently 
distinguish cerebellar astrocytoma from PNET 
or ependymoma. Biopsy with histological exam-
ination is necessary to establish a defi nitive diag-
nosis. Recently, MRS has been used to 
distinguish various pediatric cerebellar tumors 

based on differential levels of tumor metabolites 
and macromolecules. Pilocytic astrocytomas 
demonstrate increased choline: N -acetyl-aspar-
tate (CHO:NAA) ratios and elevated lactate lev-
els when compared to normal brain, similar to 
many other tumor types (Wang et al.  1995 ; 
Hwang et al.  1998 ; Warren et al.  2000 ). In one 
study, low-grade astrocytomas had higher 
NAA:CHO ratios than PNETs, but lower ratios 
than ependymomas, while creatine:CHO ratios 
were highest for ependymoma and lowest for 
PNET (Wang et al.  1995 ; Hwang et al.  1998 ). 
MRS may be useful to identify posterior fossa 
tumors in children after initial CT or MRI scan-
ning. Other metabolites differentially detected in 
PNET and astrocytoma in vitro include gluta-
mate, glycine, taurine, and myoinositol. One 
study examined subtotally resected low-grade 
astrocytomas and reported that higher normal-
ized CHO levels signifi cantly related to tumor 
progression 2 years following resection (Lazareff 
et al.  1998 ). Alternatively, high levels of lactate 
in pilocytic astrocytoma carry no indication of 
malignancy and may refl ect aberrant glucose uti-
lization in these tumors (Wang et al.  1995 ).   

1.3.6     Treatment 

1.3.6.1     Preoperative Management 
 Preoperative management depends on the clini-
cal presentation of the patient. An asymptomatic, 
incidentally discovered lesion can be treated with 

a b c

  Fig. 1.4    Magnetic resonance (MR) images of a typical 
pilocytic cerebellar astrocytoma. ( a ) Axial, ( b ) sagittal, 
and ( c ) coronal T1-weighted MR images with gadolinium 

contrast demonstrating a cystic hemispheric lesion with 
mural nodule. In this case, the cyst wall enhances brightly 
following gadolinium and does represent tumor       

  Fig. 1.5    Sagittal magnetic resonance image of a cerebel-
lar astrocytoma showing an irregular enhancing nodule 
located posterior to a large cyst. The cyst wall appears to 
enhance slightly, but this represents gliotic brain tissue       
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an elective surgical intervention. More com-
monly, patients present with signs of increased 
ICP and cerebellar dysfunction and warrant 
urgent intervention. High-dose dexamethasone 
can relieve headache, nausea, and vomiting 
within 12–24 h and allow for several days of 
relief prior to a surgical procedure. An initial 
loading dose of 0.5–1.0 mg/kg given intrave-
nously followed by a dose of 0.25–0.5 mg/kg/day 
divided every 6 h is the typical regimen 
(Rosenfeld  2000 ). In a patient who is stuporous 
and lethargic, with cardiorespiratory instability, 
relief of elevated ICP is of utmost importance and 
should be performed immediately. This is done 
by placing an external ventricular drain. In less 
urgent situations, an endoscopic third ventriculo-
cisternostomy (ETV) can also be considered 
(Sainte-Rose et al.  2001 ). This procedure con-
sists of placing a fenestration in the fl oor of the 
third ventricle to allow CSF to bypass an obstruc-
tive lesion in the posterior fossa. The ETV, 
although not always successful, can avoid perma-
nent shunt placement. Currently, most surgeons 
will promptly proceed with tumor resection in 
the hope that relief of the obstructing mass will 
also treat associated hydrocephalus. 

 Ventriculoperitoneal (VP) shunting has been 
shown to improve survival after surgical resection 
of posterior fossa tumors. This procedure carries 
the risk of upward herniation and subdural hema-
toma from overshunting, while also rendering the 
patient shunt dependent for life with all of its asso-
ciated complications. The risk of upward hernia-
tion is estimated at 3 % and presents with lethargy 
and obtundation around 12–24 h after shunt place-
ment, with the potential for compression of the 
PCA at the tentorial hiatus, causing occipital lobe 
ischemia (Steinbok and Mutat  1999 ). Postoperative 
CSF diversion (with VP shunting) following com-
plete tumor removal and unblockage of the aque-
duct and fourth ventricle are required in 10–40 % 
of cases (Imielinski et al.  1998 ).  

1.3.6.2     Surgical Treatment 
 GTR is the treatment goal and is achieved in 
60–80 % of operative cases (Campbell and 
Pollack  1996 ; Gajjar et al.  1997 ). GTR is defi ned 
as the removal of all identifi able tumor tissue dur-

ing surgery and is accomplished only when both 
the surgeon’s report and postoperative neuroim-
aging are concordant. An MRI with gadolinium 
enhancement is recommended within 24–48 h 
after resection. Postoperative changes, including 
swelling, edema, and gliosis appear by 3–5 days 
following surgery and may interfere with identi-
fi cation of residual tumor (Berger  1996 ). Residual 
tumor after GTR as noted by imaging is detected 
in 15 % of cases, while postoperative imaging 
fails to demonstrate known residual tumor as 
reported by the surgeon in 10 % of cases (Dirven 
et al.  1997 ). The clear presence of residual tumor 
is managed by reoperation to achieve complete 
resection. 

 Cystic tumors with a mural nodule may only 
require removal of the nodule to achieve com-
plete resection, but removal of the cyst wall is 
dependent upon whether tumor is present. In 
some cases, contrast enhancement of the cyst 
wall on postcontrast MRI scans is clearly visual-
ized (Fig.  1.4 ) and complete removal of all 
enhancing portions is considered essential to pre-
vent recurrence. Nonenhancing areas do not 
require resection, and recent studies have shown 
that enhancement of the cyst wall does not always 
indicate tumor and may only represent vascular-
ized reactive gliosis (Fig.  1.5 ) (Steinbok and 
Mutat  1999 ; Burger et al.  2000 ). There is also 
some evidence to suggest that patients who 
undergo complete cyst wall removal may have a 
poorer prognosis at 5 years than those with cyst 
walls left intact (Sgouros et al.  1995 ). Some sup-
port biopsy of the cyst wall during resection for 
frozen section; however, pathologic assessment 
is usually indeterminate and the sampling error is 
high, making biopsy of little value. Surgeons 
may choose conservative management of an 
enhancing cyst wall, especially if wall enhance-
ment is thin (suggesting gliosis rather than 
tumor), biopsy samples do not demonstrate clear 
pathology, and gross appearance is benign 
(Steinbok and Mutat  1999 ). 

 Resection of cerebellar tumors can be associ-
ated with neurological defi cits, although they are 
typically improved postoperatively (Steinbok 
et al.  2013 ). Subtotal resection (STR) is recom-
mended when GTR would result in unacceptable 
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morbidity and neurologic dysfunction, usually in 
the setting of brainstem invasion, involvement of 
the fl oor of the fourth ventricle, leptomeningeal 
spread, or metastasis. Involvement of the cerebel-
lar peduncles was once thought to preclude GTR, 
but several authorities contend that GTR can be 
achieved in this circumstance (Berger  1996 ; 
Steinbok and Mutat  1999 ; Bonfi eld and Steinbok 
 2015 ), as postoperative defi cits from resection 
involving the cerebellar peduncles tend to be 
transient. Management of incompletely resected 
tumors remains controversial and depends upon 
clinical circumstances.  

1.3.6.3     Follow-Up Neuroimaging 
 Postoperative surveillance imaging in children 
with benign cerebellar astrocytomas depends on 
the extent of initial resection and the histology of 
tumor. While no standard schedule for surveil-
lance imaging exists, large centers tend to obtain 
MRI scans at 3 and 6 months, then annually for 
3–4 years. Routine imaging after confi rmed GTR 
for a typical PA can be stopped 3–5 years follow-
ing resection if there is no evidence of recurrence. 
However, due to the well-documented late recur-
rence behavior of a small percentage of benign 
cerebellar astrocytomas, sometimes decades after 
GTR, clinical changes should warrant reimaging. 
STR requires closer serial neuroimaging due to 
higher rates of tumor recurrence. Diffuse/fi bril-
lary histology (grade II) is associated with STRs; 
however, GTRs of this histological subtype seem 
to demonstrate prognosis and recurrence rates 
rivaling those of juvenile pilocytic cerebellar 
tumors (grade I). Regardless of the extent of 
resection, most practitioners tend to follow grade 
II lesions more closely with serial exams and 
neuroimaging.  

1.3.6.4     Management of Recurrence 
 Recurrence following GTR is rare and can occur 
after several years to decades from the initial 
operation. Reoperation with the goal of GTR is 
the recommended treatment for recurrence fol-
lowing STR, although this is usually not possi-
ble because the primary reason for incomplete 
resection is usually due to involvement of vital 
structures such as the brainstem (Akyol et al. 

 1992 ; Bonfi eld and Steinbok  2015 ). At reopera-
tion, only 30 % of recurrences result in GTR, 
while 70 % continue to have residual tumor 
(Dirven et al.  1997 ). An interesting biologic fea-
ture of low-grade astrocytomas is the spontane-
ous regression or involution of residual tumors. 
For this reason, many authors advocate a period 
of observation for residual disease prior to reop-
eration. This approach is favored at our institu-
tion, particularly because a second procedure is 
associated with increased morbidity (Dirven 
et al.  1997 ). 

 Following STR, 30–40 % of patients have 
recurrence within 3 years (mean 54 months), 
while >60 % have recurrence by 5–6 years 
(Schneider et al.  1992 ). Tumors with diffuse/
fi brillary histology are more prone to recurrence, 
but this association is not reported consistently in 
all series. Of all recurrent tumors, 65 % are pilo-
cytic; 31 % are diffuse/fi brillary; 48 % are cystic; 
and 52 % are solid (Sgouros et al.  1995 ; Gjerris 
et al.  1998 ). Recurrences are found more often in 
the midline or vermis. Smoots et al., using multi-
variate analysis, noted that the only factor that 
predicted disease progression was the volume of 
residual disease (Smoots et al.  1998 ). This study 
also showed that only fi brillary histology, and not 
brainstem invasion or postoperative radiation 
therapy, signifi cantly affects postoperative tumor 
volume. Unfortunately, the relationship between 
STR, brainstem invasion, residual tumor volume, 
and histology confound each other in almost all 
other series.  

1.3.6.5     Adjuvant Therapy 
for Recurrence 

 Radiation therapy after resection plays an impor-
tant role in the control of PNET and ependy-
moma, but its utility in cerebellar astrocytoma is 
incompletely understood. Postoperative radiation 
in subtotally resected tumors of any grade 
improves local control and recurrence rates, but 
survival rates seem to be unaffected (Garcia et al. 
 1990 ; Herfarth et al.  2001 ). One retrospective, 
nonrandomized study comparing patients with 
recurrence of grade I and II cerebellar astrocy-
toma found no signifi cant difference in survival 
at both 5 and 9 years follow-up (Akyol et al. 
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 1992 ). Radiation doses range from 30 to 54 Gy 
over 3–6 weeks, and some evidence suggests that 
doses greater than 53 Gy are necessary to see 
benefi cial effects (Tamura et al.  1998 ; Herfarth 
et al.  2001 ). However, detrimental effects on the 
developing nervous system preclude its use in 
patients less than 3 years of age, and current 
trends favor delaying radiation therapy as long as 
possible to allow for maximal cognitive develop-
ment prior to radiation therapy. The risks of radi-
ation therapy include decreased cognitive 
function (Chadderton et al.  1995 ) and an 
increased risk of malignant transformation 
(Herfarth et al.  2001 ). 

 Currently, there is no consensus for the use of 
radiation therapy for the treatment of benign 
recurrent cerebellar astrocytoma, though some 
authors suggest its use if the recurrent tumor 
displays more aggressive growth features 
(Garcia et al.  1990 ; Akyol et al.  1992 ). 
Experience with Gamma Knife radiosurgery for 
the treatment of small-volume residual or recur-
rent tumors is still too limited at this time, 
although it may have a role for the treatment of 
very limited disease (Campbell and Pollack 
 1996 ; Somaza et al.  1996 ). 

 Chemotherapy has a limited role in the treat-
ment of benign cerebellar astrocytoma, but is 
used in the setting of inoperable recurrent dis-
ease, multifocal disease, leptomeningeal spread, 
and malignant transformation (Castello et al. 
 1998 ; Tamura et al.  1998 ; Ater 2012). 
Combination chemotherapy has been used in 
adjuvant management of inoperable low-grade 
astrocytomas. The most widely used regimens 
are CV (Packer et al.  1993 ) and TPCV (Prados 
et al.  1997 ). Both regimens have been associated 
with complete and partial responses in a sub-
group of tumors. Chronic etoposide treatment 
showed stable tumor lesions at 7 months in 
patients with recurrent, nonresectable cerebellar 
astrocytomas in one study (Chamberlain  1997 ). 
Cyclophosphamide has been applied in the treat-
ment of cerebellar astrocytoma with leptomenin-
geal spread (McCowage et al.  1996 ). The frequent 
occurrence of the  BRAF - KIAA1549  fusion in cer-
ebellar astrocytoma may provide new treatment 
avenues (reviewed in Sect.  1.2.5.4 ).   

1.3.7     Outcome 

1.3.7.1     Prognostic Factors 
 Few clinical characteristics at time of presenta-
tion contribute to overall outcome. Gender and 
age at diagnosis do not correlate with survival 
(Gilles et al.  1995 ; Campbell and Pollack  1996 ; 
Smoots et al.  1998 ), though younger age at pre-
sentation might indicate earlier progression of 
disease in those with recurrences (Gajjar et al. 
 1997 ). A short duration of symptoms at time of 
presentation is generally associated with a more 
rapidly growing tumor and, therefore, more likely 
to be a higher grade. Longer preoperative symp-
tomatology may indicate progressed disease and 
larger tumor volume (Pencalet et al.  1999 ). 
Patients with NF sometimes present with malig-
nant histology; the majority of cerebellar astrocy-
tomas in NF patients appear to have a quiescent 
course (Freeman et al.  1998 ; Smoots et al.  1998 ), 
though absolute numbers are small. 

 The only clinical feature related to poor prog-
nosis and survival is the evidence of brainstem 
dysfunction. Long-tract signs, nystagmus, apnea, 
and decreased consciousness indicate brainstem 
invasion by tumor, but also can result from raised 
ICP and mass effect. Brainstem invasion carries 
a poor prognosis with only 40 % of patients alive 
at 5 years after diagnosis (Sgouros et al.  1995 ). 
Conversely, 84 % of patients with no evidence of 
brainstem involvement are alive at 5 years 
(Sgouros et al.  1995 ). Brainstem invasion sig-
nifi cantly impacts survival regardless of histol-
ogy, as noted in several large series (Campbell 
and Pollack  1996 ). However, after multivariate 
analysis, Smoots et al. contend that residual 
tumor volume within the brainstem is the only 
prognostic factor for disease progression 
(Smoots et al.  1998 ). 

 The impact of histology on outcome and PFS 
has been controversial (Pencalet et al.  1999 ). 
Hayostek et al. showed that pilocytic cerebellar 
astrocytoma has 5-, 10-, and 20-year survival 
rates of 85 %, 81 %, and 79 %, respectively, while 
diffuse subtypes have a dramatically reduced sur-
vival rate of 7 % at 5, 10, and 20 years each 
(Hayostek et al.  1993 ). Unfortunately, the mean 
age of patients in both groups differed greatly 
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(14 years for pilocytic, 51 years for diffuse), 
making any meaningful comparison diffi cult. 
Also, diffuse tumors in this study had more 
malignant histology (mitosis, necrosis, etc.), 
which suggests that higher-grade lesions might 
have been included inappropriately. More recent 
series have reported 78 % overall survival and 
89 % PFS for pilocytic histology and 44 % overall 
survival and 52 % PFS for diffuse subtypes at 
5 years (Sgouros et al.  1995 ). Diffuse/fi brillary 
histology is reported as the single most important 
determinant for residual tumor volume, which in 
turn is the only predictor of tumor recurrence at 
any site after multivariate analysis in one study 
(Smoots et al.  1998 ). Comparing GTR and STR 
between grade I and grade II tumors has been dif-
fi cult because grade II tumors are more likely to 
be subtotally resected due to tumor location and 
invasion. Two authors, after multivariate analy-
ses, suggest that only the extent of resection con-
tributes to outcome in children with grades I and 
II cerebellar astrocytomas (Sgouros et al.  1995 ; 
Smoots et al.  1998 ).  

1.3.7.2     Gross Total and Subtotal 
Resection 

 The prognosis for patients with grade I tumors 
and GTR is excellent with 5- and 10-year PFS of 
80–100 % in nearly all studies. Thirty-year PFS 
is not uncommon with long-term follow-up in 
these patients. Patients with grade II tumors after 
total resection have 5-year survival rates of 
50–80 % (Morreale et al.  1997 ). As expected, 
grades III and IV lesions continue to have poor 
survival despite GTR. In one study, a small 
group of EGFR-negative cerebellar GBMs dem-
onstrated improved overall survival compared to 
supratentorial GBMs. Saito et al. hypothesized 
that the lack of EGFR was the reason for increased 
chemo-radiosensitivity and the resultant 
improved overall survival (Saito et al.  2006 ). 
GTR is more commonly reported in tumors of 
pilocytic histology with cystic morphology and 
peripheral/hemispheric location. Recurrence 
after confi rmed GTR is rare and occurs in less 
than 5 % of grade I cases, though recurrences 
have been reported as far as 45 years after initial 
resection (Boch et al.  2000 ). GTR is reported in 

53 % of patients operated on with pilocytic cere-
bellar astrocytomas, but only in 19 % of those 
with nonpilocytic cerebellar tumors (Campbell 
and Pollack  1996 ). 

 In general, STR is associated with future 
tumor recurrence and poorer outcome (Pencalet 
et al.  1999 ). Approximately 75 % of patients 
will have recurrence during follow-up. The 
5-year survival rate varies from 29 to 80 %, and 
10-year survival ranges from 0 to 70 % (Sgouros 
et al.  1995 ; Campbell and Pollack  1996 ). These 
variations in survival are explained by inconsis-
tent study designs. STR is more commonly 
reported with solid, midline tumors that are usu-
ally grade II or higher. A number of reports 
demonstrate that patients with STRs remain 
stable, both clinically and on serial imaging, 
without any evidence of progression for several 
years (Krieger et al.  1997 ). In one prospective 
study, only 50 % of patients with STRs and no 
brainstem involvement demonstrated progres-
sion of disease at 8 years follow-up (Sutton 
et al.  1996 ). 

 An interesting biologic feature of low-grade 
astrocytomas is the spontaneous regression or 
involution of residual tumors (Steinbok et al. 
 2006 ). In one study of cerebellar pilocytic astro-
cytomas, nearly 50 % of patients with STRs were 
noted to have spontaneous regression (Gunny 
et al.  2005 ). Specifi c factors that would predict 
regression or stability are not known (Palma et al. 
 2004 ). The biologic reasons behind tumor quies-
cence or regression are unknown. For this reason, 
many authors advocate a period of observation 
for residual disease prior to reoperation (Benesch 
et al.  2006 ). This approach is favored at our insti-
tution, particularly because a second procedure is 
associated with increased morbidity (Dirven 
et al.  1997 ).  

1.3.7.3     Metastasis 
 Leptomeningeal dissemination (LMD) of low- 
grade astrocytomas occurs and is associated 
mainly with hypothalamic and brainstem tumor 
location (Pollack et al.  1994 ; Morikawa et al. 
 1997 ; Tamura et al.  1998 ; Von Hornstein et al. 
 2011 ; Chamdine et al.  2016 ). Metastatic disease is 
associated with a worse 10- and 15-year survival 
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prognosis. Therapies for dissemination include 
chemotherapy, isolated resection of metastasis, 
and radiation treatment (von Hornstein et al. 
 2011 ; Chamdine et al.  2016 ). CSF sampling 
appears insensitive in detecting early LMD 
(Pollack et al.  1994 ; Chamdine et al.  2016 ).  

1.3.7.4     Survival 
 PFS and overall outcome depend on several fac-
tors including extent of resection, brainstem 
involvement, and histological subtype. Patients 
with complete tumor removal enjoy 10-year PFS 
in greater than 90 % of cases (Gajjar et al.  1997 ; 
Steinbok and Mutat  1999 ). Incomplete tumor 
resection results in only about 50 % 5-year sur-
vival in most series, but with reoperation to 
remove residual tumor, outcome may improve to 
80 % PFS at 5 years, 74 % at 10 years, and 40 % 
at 20 years (Gajjar et al.  1997 ). Twenty-fi ve per-
cent of patients with subtotally resected tumors 
are progression-free at 5 years from the time of 
recurrence, and reoperation tends to lower subse-
quent recurrence rates, but does not affect overall 
survival (Sgouros et al.  1995 ). Radiation therapy 
in the setting of STR or recurrence has not been 
shown to confer any benefi t on overall survival in 
nearly all studies, but some do report lower rates 
of local progression following radiation. 

 Although the functional outcome for most 
children is considered to be good, some data 
suggest that permanent defi cits can occur in lan-
guage function, visual-spatial ability, and behav-
ior in up to 25 % of patients (Aarsen et al.  2004 ; 
Zuzak et al.  2008 ). In another large group of 
children ( n  = 103) with cerebellar tumors 
removed surgically, but not treated with radia-
tion, there was an elevated risk of decline in cog-
nitive and adaptive function (Beebe et al.  2005 ; 
Lassaletta et al.  2015 ).   

1.3.8     Conclusion 

 Among pediatric brain tumors, cerebellar astro-
cytomas have the most favorable prognosis. The 
great majority of cerebellar astrocytomas are 
low-grade neoplasms (pilocytic/grade I tumors) 
with excellent cure rates and long-term survival 

following surgery. High-grade tumors, although 
rare, have dismal outcomes. Tumor recurrence, 
when it does occur, is a challenging management 
problem and most often seen with grade II 
tumors, STR, and brainstem invasion. There is no 
consensus among authorities regarding the opti-
mal method in treating recurrence, though many 
advocate reoperation for fi rst recurrence, fol-
lowed by chemotherapy or radiation therapy for 
subsequent recurrence. Other management con-
siderations encountered with cerebellar astrocy-
tomas include pre- or postoperative CSF diversion 
to control hydrocephalus and perioperative ste-
roid administration. Surgical removal of cerebel-
lar astrocytomas may be complicated by 
cerebellar dysfunction, cranial nerve palsies, and 
mutism. These risks need to be discussed preop-
eratively with the patient and parents. Fortunately, 
the majority of adverse events resolve 
completely.   

1.4      Optic Pathway Gliomas 

 Optic pathway gliomas, a large subset of pediat-
ric low-grade glioma, occur in some or all ana-
tomical compartments of the optic pathway (optic 
nerve, chiasm, tract, or radiations). They grow as 
infi ltrative lesions, although large expansile 
masses are also seen. Their borders are often 
poorly defi ned radiolographically, and a surgical 
plane is rarely observed. Because of their infi ltra-
tive nature, these tumors are often not confi ned to 
a single anatomic area and can extend into adja-
cent structures, most commonly into the hypo-
thalamus. For this reason, naming these lesions 
according to their exact anatomical location may 
be misleading especially for tumors with radio-
logically ill-defi ned borders. As only 10 % of 
optic nerve gliomas are confi ned to one optic 
nerve, and approximately 30 % are bilateral, the 
majority of optic nerve gliomas involve the chi-
asm or the hypothalamus (Hoffman and Rutka 
 1999 ). Optic chiasmatic and hypothalamic glio-
mas are often considered as a single entity 
because of their potential to infi ltrate both ana-
tomical sites regardless of the original location of 
the tumor. 
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1.4.1     Epidemiology 

 Optic pathway gliomas account for 4–6 % of all 
CNS tumors in the pediatric age group, 2 % in 
adults, and 20–30 % of all pediatric gliomas 
(Farwell et al.  1977 ; Borit and Richardson  1982 ; 
Alvord and Lofton  1988 ; Packer et al.  1999 ). The 
peak incidence is during the fi rst decade of life 
with no sex predilection. Overall, NF1 is present 
in 25–60 % of patients with optic pathway tumors 
(Lewis et al.  1984 ; Riccardi  1992 ; Ater et al. 
 2012 ). Fifteen to 20 % of patients with NF1 will 
have an optic glioma on MR scan, but only 1–5 % 
become symptomatic (Ruggieri  1999 ). There is a 
higher likelihood of NF1 in patients who have 
multicentric optic gliomas and a relatively lower 
incidence of NF1 in patients with chiasmatic 
tumors (Housepian  1977 ). The natural history of 
optic pathway gliomas is related to the presence of 
neurofi bromatosis and to the location of the tumor. 
Patients with optic pathway gliomas who have 
NF1 appear to have a better overall prognosis than 
those without NF1 (Rush et al.  1982 ; Deliganis 
et al.  1996 ). However, this view is opposed by 
other studies showing that patients with neurofi -
bromatosis had a similar prognosis as patients 
without neurofi bromatosis following irradiation 
for chiasmatic gliomas (Alvord and Lofton  1988 ). 
Approximately two thirds of optic gliomas associ-
ated with NF1 are indolent lesions with minimal 
progression. Although any location within the 
optic pathway from the retrobulbar area to the 
optic radiation may be affected, chiasmatic glio-
mas tend to have a more aggressive course both by 
invading the hypothalamus and by occluding the 
foramen of Munro causing obstructive hydroceph-
alus. It is also reported that optic and hypothalamic 
gliomas that are large at the time of presentation 
and present in children age less than 5 years are 
poor prognostic features (Oxenhandler and Sayers 
 1978 ; Dirks et al.  1994 ; Ater et al  2012 ).  

1.4.2     Pathology 

 Most tumors of the diencephalon and the optic 
pathways are histopathologically low-grade glio-
mas, typically pilocytic or fi brillary astrocytomas, 

although other histological subtypes such as gan-
glioglioma and pilomyxoid astrocytoma have been 
described (Daumas-Duport et al.  1988 ; Ito et al. 
 1992 ; Ater et al.  2012 ). Locally, hypothalamic and 
optic gliomas may extend laterally invading the 
perivascular space along the arteries of the circle 
of Willis, as well as posterior expansion toward the 
brainstem with rostral invagination into the third 
ventricle. Patients with chiasmatic/hypothalamic 
gliomas have an increased risk for disease dissem-
ination along the neuraxis (Gajjar et al.  1995 ). It 
has been reported that the risk of multicentric dis-
semination is approximately 20-fold higher in this 
group of patients than in those with low-grade 
gliomas located elsewhere, and dissemination is 
associated with a poor long-term prognosis 
(Mamelak et al.  1994 ; von Hornstein et al.  2011 ; 
Chamdine et al.  2016 ).  

1.4.3     Clinical Features 

 Most optic pathway gliomas present with visual 
loss. Identifying the exact type of visual loss may 
be diffi cult early in the course of the disease, espe-
cially in very young children. The typical defi cits 
are incongruent fi eld defi cits, at times restricted to 
one eye. Optic atrophy is commonly seen with 
large tumors. Children less than 3 years of age are 
usually fi rst brought to medical attention because 
of strabismus, proptosis, nystagmus, or loss of 
developmental milestones. Tumors that involve 
the hypothalamus will often result in endocrine 
disturbances, including precocious puberty. 
Hypothalamic tumors may reach a large size 
before diagnosis and may result in diencephalic 
syndrome characterized by failure to thrive despite 
apparent normal appetite in an otherwise healthy 
child. Tumors that extend upward into the third 
ventricle can cause hydrocephalus. Tumors with 
thalamic involvement may cause unilateral motor 
defi cits on the side contralateral to the lesion.  

1.4.4     Diagnostic Imaging 

 Optic pathway gliomas are usually well visual-
ized on MRI. In children with NF1, there is often 
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extensive streaking along the optic pathway and/
or optic nerve involvement at the time of diagno-
sis, in addition to nonspecifi c white matter abnor-
malities on T2-weighted sequences (Fig.  1.6 ). 
The use of diffusion-weighted MRI in NF1 
patients may be useful to differentiate between 
optic gliomas, hamartomas, and myelin vacuol-
ization (Sener  2002 ). Optic pathway gliomas in 
children without NF1 tend to be more globular 
and somewhat more restricted to one anatomic 
location. The mass itself enhances homoge-
neously following gadolinium administration, 
although cysts are frequently seen (Fig.  1.6 ). On 
FLAIR sequences, the infi ltrative component of 
the tumor can be seen extending along the optic 
tracts. Detailed fi ne cuts through the sella should 
be obtained. In these sequences, the optic nerve 
becomes continuous with the mass, a fi nding that 
helps to establish the radiologic diagnosis.

1.4.5        Treatment 

1.4.5.1     Surgical Indications 
 Regardless of whether a patient has NF1, the 
diagnosis of optic pathway glioma can be made 
based on the presence of intrinsic chiasmatic/
hypothalamic mass if the appearance is charac-
teristic on MRI. Diagnostic radiographic charac-
teristics include an expanded sella and/or 
involvement of the chiasm, optic nerve(s), and/or 
optic tracts. For patients without NF1 who pres-
ent with an atypical chiasmatic hypothalamic 
mass, surgical biopsy may be needed to defi ne 
the pathologic diagnosis. If mass effect is present 
with neurologic symptoms, debulking of a large 
tumor may provide clinical benefi t (Magli et al. 
 2013 ; Goodden et al.  2014 ). Some neurosurgeons 
limit surgical indications to a subset of exophytic 
or cystic tumors with signifi cant mass effect and 
hydrocephalus. However, a progressive visual 
defi cit or progression depicted on follow-up MR 
scans necessitates surgical intervention if there is 
an exophytic or cystic component. These exo-
phytic tumors can remain stable for extended 
periods after resection (Tenny et al.  1982 ; Magli 
et al.  2013 ). Ten to twenty percentage of children 
younger than 10 years with NF1 may have a low-

grade glioma of the optic pathways that can be 
diagnosed radiographically (Lewis et al.  1984 ; 
Ruggieri  1999 ). Asymptomatic patients may be 
followed with serial clinical and visual examina-
tions and MRI scans; endocrine replacement and 
CSF shunting should be instituted if necessary. 

 Resection of  a unilateral optic nerve tumor is 
indicated when vision is absent or nonfunctional in 
the affected eye. A relative indication is extreme 
proptosis with exposure keratitis caused by a large 
intraorbital optic nerve tumor. In addition, it is gen-
erally agreed that the exophytic portion of the 
lesion should be removed if vision is reasonable 
and that nonresectable unilateral optic nerve lesions 
should be decompressed. Any surgery that may 
result in permanent neurologic morbidity should be 
compared with alternative treatment modalities, in 
terms of potential benefi ts and risks. For instance, 
although a limited resection on an optic nerve gli-
oma extending to the optic chiasm may be indi-
cated, a major chiasmatic resection resulting in 
visual compromise is virtually never indicated. 

 The role of biopsy for histological confi rma-
tion in optic pathway glioma is controversial. In 
all likelihood, as biologically targeted therapies 
expand the options for these patients, it will 
become increasingly important to obtain tissue for 
histopathologic and molecular characterization.  

1.4.5.2     Surgical Technique 
 For tumors involving one optic nerve, a frontal or 
frontotemporal approach may be used. With 
either technique, intraorbital and intracranial por-
tions of the affected nerve as well as the chiasm 
are exposed. The optic chiasm and the intracra-
nial portion of the affected optic nerve are 
inspected to determine a site for division that 
should be more than 6 mm from the chiasm so as 
to avoid a contralateral superior temporal fi eld 
defect. The orbital canal is drilled open allowing 
decompression of the optic nerve. After closure 
of the annulus and periorbita, the orbital roof and 
supraorbital rim are reconstructed if needed. If 
the orbital roof is not repaired, one associated 
complication is pulsatile exophthalmos. 

 For chiasmatic/hypothalamic tumors, surgical 
goals should be balanced against risks of increased 
visual loss and hypothalamic dysfunction. Improved 
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  Fig. 1.6    A chiasmatic/hypothalamic pilocytic astrocy-
toma in a 10-year-old girl who presented with headaches. 
( a ) The axial T1-weighted image shows the right optic 
nerve entering the enhancing portion of the tumor. A dis-
tinct boundary does not exist between the nerve and 
tumor. ( b ) The sagittal plane image clearly shows that the 
enhancing portion of the tumor is continuous with the 

hypothalamus. ( c ) FLAIR image shows indistinct 
increased signal intensity along the optic tracts extending 
posteriorly from the chiasm. ( d ) FLAIR image slightly 
superior to ( c ) shows additional abnormalities along the 
optic tract with a localized area of signal abnormality 
likely within the lateral geniculate nucleus on the left side       
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visual and neurologic outcome following surgery 
has been reported for chiasmatic/hypothalamic gli-
omas (Bynke et al.  1977 ; Baram et al.  1986 ; Wisoff 
et al.  1990 ). Meticulous tumor debulking from the 
exophytic portion of a chiasmatic tumor may 
improve vision by relieving external pressure on 
adjacent optic nerves (Oakes  1990 ). There are sev-
eral surgical approaches to the chiasmatic hypotha-
lamic region, each with certain advantages (Apuzzo 
and Litofsky  1993 ; Litofsky et al.  1994 ; Hoffman 
and Rutka  1999 ). Regardless of the approach, the 
aim is tumor debulking without causing additional 
defi cit.  

1.4.5.3     Radiation Therapy 
 The use of radiotherapy for the treatment and 
control of optic pathway gliomas provides long- 
term tumor control in the majority of patients and 
may result in improvement in visual outcomes 
(Taveras et al.  1956 ; Merchant et al.  2009a ; 
Awdeh et al.  2012 ). However, current practice 
aims to delay radiotherapy either by implement-
ing watchful waiting, surgery, or chemotherapy, 
especially in young patients. Alternative treat-
ment options include follow-up without interven-
tion until clinical deterioration, irradiation of all 
lesions with or without biopsy, biopsy for all 
lesions followed by radiation only of those 
located in the hypothalamus or posterior chiasm, 
and chemotherapy. Each of these options can be 
considered for certain subgroups of patients. For 
example, standard initial treatment for patients 
with chiasmatic gliomas who have progressive 
visual symptoms is regional radiotherapy. These 
tumors are typically sensitive to chemotherapy, 
and this modality is therefore used often in infants 
and children prior to or instead of radiation ther-
apy. An option for NF1 patients harboring optic 
pathway gliomas is follow-up with no treatment 
as long as the tumor remains quiescent on serial 
imaging studies, and visual function is stable. 

 If radiation therapy is to be used, the most 
favorable outcome has been observed with doses 
of 45–56 Gy (Pierce et al.  1990 ; Bataini et al. 
 1991 ; Tao et al.  1997 ). Flickenger demonstrated 
that patients receiving doses >43.2 Gy delivered 

over 1.8 Gy fractions had statistically superior 
overall survival and PFS (Flickinger et al.  1988 ). 
These fi ndings are corroborated by another study 
in which doses <40 Gy were associated with 
poorer PFS (Kovalic et al.  1990 ). Because of the 
concern for dose constraint to surrounding nor-
mal tissues, radiotherapeutic modalities under 
investigation include intensity-modulated radia-
tion therapy, Gamma Knife radiosurgery, stereo-
tactic radiosurgery (Combs et al.  2005 ; Marcus 
et al.  2005 ), conformal radiation therapy 
(Merchant et al.  2009a ), and proton therapy 
(Greenberger et al.  2014 ). Because of concerns of 
radiation-related, long- term toxicity in very 
young children, the current recommended fi rst-
line treatment in patients younger than 7–10 years 
old is chemotherapy. Patients over 10 years of 
age can be treated with 50–54 Gy in 1.8 Gy daily 
fractions with tolerable neurocognitive outcomes 
(Horwich and Bloom  1985 ; Halperin et al.  1999 ; 
Di Pinto et al.  2012 ).  

1.4.5.4     Chemotherapy 
 As the risk for late sequelae of partial brain radia-
tion is greatest for young children, chemotherapy 
prior to radiotherapy as a means of delaying the 
use of radiation in young children has come into 
widespread use. In order to spare young pediatric 
patients’ early radiotherapy, alternative chemo-
therapeutic trials have been explored. One study 
examined vincristine and carboplatin in 113 chil-
dren (median age of 3.7 months). Overall 
response to treatment was observed in 92 % of 
patients, and the median time to progression was 
22.5 months observed in 42 % of patients 
(Gnekow et al.  2012 ). Similarly, at the Hospital 
for Sick Children in Toronto, a retrospective 
analysis of 26 adolescents diagnosed with optic 
pathway gliomas and treated with radiotherapy 
or carboplatin-based chemotherapy as fi rst-line 
adjuvant therapy demonstrated successful dis-
ease control using chemotherapy (Chong et al. 
 2008 ). Based on the COG A9952 results 
described in the previous section, the use of either 
TPCV or CV provides adequate tumor control 
that allows delay of radiotherapy (Ater et al. 
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 2012 ). Alternative regimen that seems to provide 
at least short-term disease control in the phase 2 
setting includes bevacizumab with irinotecan and 
vinblastine (Bouffet et al.  2012 ; Gururangan 
et al.  2014 ).  

1.4.5.5     Molecular Targeted Therapies 
 As reviewed in Sect.  1.2.5.4 , biologic therapeutic 
targets such as mTOR, NF1, and BRAF are of 
increasing interest in pediatric low-grade glioma. 
A comprehensive understanding of the spectrum 
of biologic aberrations in optic pathway glioma is 
limited by the large number of tumors that are 
diagnosed radiographically. As described earlier 
in this chapter, mTOR inhibitors and inhibitors of 
Ras/Map Kinase signaling, such as BRAF and 
MEK inhibitors, show early promise in pediatric 
low-grade gliomas.   

1.4.6     Outcome 

 GTR is often impossible due to the critical loca-
tion of diencephalic and optic gliomas. Patients 
with unilateral optic nerve tumors who undergo 
complete surgical resection have a good postop-
erative prognosis, with 92 % surviving 15 years 
irrespective of NF status (Jenkin et al.  1993 ). 
However, regardless of their histologically benign 
features, chiasmatic-diencephalic gliomas carry a 
worse prognosis. 

 The operative procedures for chiasmatic/
hypothalamic gliomas carry signifi cant morbid-
ity. Surgical morbidity may be in the form of 
immediate endocrinologic or neurologic defi cits. 
Resulting sequelae may include hypothalamic/
hypophyseal dysfunction, increased visual 
impairment, memory loss, altered consciousness, 
and coma (Wisoff et al.  1990 ). Following an 
intraorbital approach, CSF leak may occur if the 
frontal sinus or any opened ethmoid sinus is not 
adequately reconstructed. Inadequate reconstruc-
tion of the orbital roof may result in pulsatile pro-
ptosis. Failure to repair a sectioned levator origin 
will result in ptosis. Surgical injury to the supe-
rior ophthalmic vein and to the nerves supplying 
the extraocular muscles will result in functional 
defi cits (Housepian  1993 ). These complications 

are avoidable with appropriate surgical tech-
nique. In a large series of patients treated with 
intraorbital procedures, no signifi cant CSF leaks, 
proptosis, infection, or extraocular problems 
were reported (Maroon and Kennerdel  1976 ). 

 Endocrine dysfunction is common in this 
patient population. The most common manifesta-
tions of hypopituitarism following radiotherapy 
are growth hormone defi ciency or growth retar-
dation (Wong et al.  1987 ; Bataini et al.  1991 ; Tao 
et al.  1997 ; Merchant et al.  2009b ). Diabetes 
insipidus, precocious puberty, and testosterone 
defi ciency are also reported. Furthermore, 
patients are reported to have signifi cant cognitive 
defi cits, the severity of which may be propor-
tional to age at diagnosis (Ellenberg et al.  1987 ; 
Merchant et al. 2009). 

 The infl uence of NF1 on prognosis in patients 
with optic pathway gliomas is unclear. Although 
Rush et al. reported a better outcome for optic 
glioma patients with NF1, several other studies 
failed to show differences in survival (Imes and 
Hoyt  1986 ; Alvord and Lofton  1988 ; Kovalic 
et al.  1990 ). The 5- and 10-year survival rates 
for patients with optic gliomas and NF1 were 
93 % and 81 %, respectively, compared with 
83 % and 76 %, respectively, for patients with-
out NF1 (Deliganis et al.  1996 ). However, a sig-
nifi cant difference in time to tumor progression 
(fi rst relapse) was observed in favor of patients 
with NF1. In a study including mostly dience-
phalic low-grade gliomas, Packer et al. did not 
fi nd any prognostic differences related to the 
presence of NF1 (Packer et al.  1997 ). In this 
study, the only statistically signifi cant prognos-
tic factor was age, and children 5 years old and 
younger had a 3-year PFS rate of 74 % com-
pared with a rate of 39 % in older children. In a 
large retrospective study of optic pathway/hypo-
thalamic gliomas from the Hospital for Sick 
Children in Toronto, a large proportion of 
patients with NF1 were managed with observa-
tion only and did not require treatment (Nicolin 
et al.  2009 ). 

 Multiple studies examining clinical charac-
teristics and consequences of chemotherapy of 
children with hypothalamic/chiasmatic gliomas 
showed frequent tumor progression despite a 
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high survival rate. Although the 5-year survival 
rate was 93 %, more than 80 % of the children 
required surgery, chemotherapy, or radiotherapy 
within 2 years of diagnosis, and all but 9 % 
eventually required radiation or chemotherapy 
within a median follow-up period of 6 years 
(Janss et al.  1995 ). In the cohort from the hospi-
tal for sick children, however, only 16 of a total 
of 133 patients were treated with radiation; 
more importantly, however, 58 % of these 
patients had NF1. A retrospective review of 36 
patients with optic pathway/hypothalamic glio-
mas described 6-year progression-free survival 
of 69 % for patients who were treated with irra-
diation, 11 % in patients treated with chemo-
therapy, and 37 % of patient managed with 
observation alone (Fouladi et al.  2003 ). In a 
report of 33 children with hypothalamic/chias-
matic low-grade gliomas who underwent pri-
mary chemotherapy, long-term results were 
favorable: 5-year overall survival was 90.9 % 
and 15-year overall survival was 71.2 %, indi-
cating that salvage therapy consisting of radia-
tion, surgery, and/or chemotherapy is successful 
in many patients (Fig.  1.7 ). Five-year PFS was 
30.3 % and 15-year PFS was 23.4 %, with most 

patients (24 of 25 patients who progressed) 
experiencing their fi rst progression event within 
6 years of diagnosis (Fig.  1.7 ). Finally, younger 
patients had much poorer prognoses, and many 
could not be successfully treated with salvage 
therapy. Younger age was signifi cantly associ-
ated with poorer overall survival and PFS 
( p  = 0.037, 0.004, respectively). Of the 18 chil-
dren who were 3 years or younger at diagnosis, 
17 progressed and of these, 10 died. 
Comparatively, 15 of the children who were 
older than 3 years at diagnosis, 8 progressed and 
none died (Mishra et al.  2010 ).  

   Conclusion 

 In low-grade tumors, GTR is associated with 
better long-term survival. However, many 
infi ltrative astrocytomas cannot be resected 
completely. For these tumors, the use of che-
motherapy to help control disease as a means 
to delay radiotherapy is actively being investi-
gated and is the subject of ongoing clinical tri-
als. Newer chemotherapy regimens, the use of 
stereotactic radiosurgery, and targeted biolog-
ical agents offer new, promising treatment 
avenues for glioma therapy.       
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  Fig. 1.7    Kaplan-Meier plots of progression-free survival 
and overall survival of a phase II protocol evaluating an 
outpatient TPDCV chemotherapy regimen as primary 
treatment for pediatric low-grade gliomas. The plots 

 demonstrate favorable long-term survival and highlight 
the fi nding that most events occurred in the fi rst 6 years 
with only one event occurring later than 6 years       
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