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Abstract A class of nonsmooth shape optimization problems for variational
inequalities is considered. The variational inequalities model elliptic boundary
value problems with the Signorini type unilateral boundary conditions. The shape
functionals are given by the first order shape derivatives of the elastic energy. In such
a way the singularities of weak solutions to elliptic boundary value problems can be
characterized. An example in solid mechanics is given by the Griffith’s functional,
which is defined in plane elasticity to measure SIF, the so-called stress intensity
factor, at the crack tips. Thus, topological optimization can be used for passive
control of singularities of weak solutions to variational inequalities.

The Hadamard directional differentiability of metric the projection onto the
positive cone in fractional Sobolev spaces is employed to the topological sensitivity
analysis of weak solutions of nonlinear elliptic boundary value problems. The
first order shape derivatives of energy functionals in the direction of specific
velocity fields depend on the solutions to variational inequalities in a subdomain. A
domain decomposition technique is used in order to separate the unilateral boundary
conditions and the energy asymptotic analysis.

The topological derivatives of nonsmooth integral shape functionals for vari-
ational inequalities are derived. Singular geometrical domain perturbations in an
elastic body Ω are approximated by regular perturbations of bilinear forms in
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variational inequality, without any loss of precision for the purposes of the second-
order shape-topological sensitivity analysis. The second-order shape-topological
directional derivatives are obtained for the Laplacian and for linear elasticity in
two and three spatial dimensions. In the proposed method of sensitivity analysis,
the singular geometrical perturbations ε→ ωε ⊂ Ω centred at x̂ ∈ Ω are replaced by
regular perturbations of bilinear forms supported on the manifold ΓR = {|x− x̂|=R}
in an elastic body, with R > ε > 0. The obtained expressions for topological
derivatives are easy to compute and therefore useful in numerical methods of
topological optimization for contact problems.

1 Introduction

Topological derivatives of shape functionals Ω → J(Ω) are introduced in [25] for
linear elliptic boundary value problems [6] defined in singularly perturbed domains
ε→ Ω(ε), where ε→ 0 is a small parameter which governs the size of small hole or
inclusion in the bounded domain Ω ⊂ R

d, d = 2,3. The topological derivatives are
given by expressions depending on pointwise values of solutions as well as of its
gradients [22]. Therefore, the obtained expressions for topological derivatives are
not well defined in the energy spaces associated with the boundary value problems
under considerations.

In this paper the topological sensitivity analysis of solutions to variational
inequalities is performed by a domain decomposition technique. The regular
perturbations defined on the energy space ε → εdb(ΓR; ·, ·) for bilinear forms
ε → a(Ω(ε); ·, ·) of boundary value problems, with respect to small parameter
ε → 0, are introduced. Such perturbations are given by line integrals in two
spatial dimensions, or by surface integrals in three spatial dimensions. As a result,
the topological derivatives of shape functionals can be derived for solutions of
variational inequalities posed in the intact domain Ω.

In order to derive the topological derivatives by an application of the domain
decomposition technique the artificial interface Σ ⊂ Ω is introduced and Ω := Ω1 ∪
Σ∪Ω2 is decomposed into two subdomains.

For the boundary value problem under considerations such a decomposition is
indeed useful. In some applied problems we are interested in the influence of singu-
lar perturbations in subdomain Ω1 on the behaviour of solutions in subdomain Ω2.
The functional under consideration is the elastic energy E(Ω) of whole domain Ω.
The mixed second-order derivatives of shape-topological or topological-shape types
for the elastic energy are evaluated. The shape sensitivity analysis is performed e.g.,
in Ω2, then the asymptotic analysis is performed in the second subdomain Ω1. In the
framework of shape-topological sensitivity analysis the velocity method is applied
in order to determine the shape functional J(Ω) := dE(Ω;V), where V is the specific
vector field in derivation of V → dE(Ω;V). Then the asymptotic expansion of
ε→ J(Ωε) is evaluated. In the framework of topological-shape sensitivity analysis,
first the asymptotic expansion of ε→ E(Ωε) is performed, and the first order term
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of such an expansion is called the topological derivative. It turns out [22, 25] that
the topological derivative of energy functional is not well defined for arbitrary
elements from the energy space of the elasticity boundary value problems under
considerations. Therefore, we introduce the equivalent representations of topolog-
ical derivatives which are well defined in the energy space. These representations
can be used as well to modify the state equations by replacing the singular domain
perturbations by the regular perturbations of bilinear forms in variational setting.

The asymptotic expansion of the energy functional performed in one subdomain,
e.g., Ω1, can be used in the second subdomain Ω2 to evaluate the asymptotic
expansion of the Steklov–Poincaré operator on the interface between subdomains.
The method is justified by the fact that the first order expansion of the energy
functional in the subdomain leads to the first order asymptotic expansion of
the Dirichlet-to-Neumann mapping on the interface between subdomains. Thus,
the first order expansion of the Steklov–Poincaré operator on the interface for the
second subdomain is obtained. In this way the first order expansion of the energy
functional in the truncated domain Ω2 is derived. The precision of the obtained
expansion is sufficient [27, 28] to replace the original energy functional by its first
order expansion, provided the obtained expression is well defined on the energy
space. Furthermore, the first order approximation of the energy functional in Ω
is established. We point out that another method of approximation of the state
equation by using the so-called self-adjoint extensions of the elliptic operators can
be considered [20, 21].

1.1 Asymptotic Approximation for Variational Inequalities

The proposed domain decomposition method is important for variational inequali-
ties. The asymptotic analysis of solutions to variational inequalities is more involved
[3] compared to the analysis of solutions to linear elliptic boundary value problems.

The variational inequality under consideration results from the minimization
problem of quadratic functional

v → I(v) =
1
2

a(v,v)−L(v) (1)

over a convex, closed subset K ⊂ H of the Hilbert space H called the energy space.
The function space H := H(Ω) is a Sobolev space which contains the functions
defined over a domain Ω ⊂ R

d, d = 2,3. The singular geometrical perturbation ωε

centred at x̂ ∈ Ω of the domain Ω is denoted by Ωε, the size of perturbation is
governed by a small parameter ε→ 0. The simple example of such a perturbation is
the hole or inclusion at the origin Bε := {|x|< ε}.
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The quadratic functional defined on H := H(Ωε) becomes

v → Iε(v) =
1
2

aε(v,v)−Lε(v) (2)

with the minimizers denoted by uε ∈ K := K(Ωε).
The expansion of associated energy functional

ε→E(Ωε) := Iε(uε) =
1
2

aε(uε,uε)−Lε(uε) (3)

is considered at ε= 0.
Namely, we are looking for its asymptotic expansion

E(Ωε) = E(Ω)+ εdT (x̂)+o(εd), (4)

where x̂→T (x̂) is the topological derivative [22, 25]. We show that there are regular
perturbations of the bilinear form defined on the energy space H(Ω),

v → b(v,v)

such that the perturbed quadratic functional defined on the unperturbed function
space H(Ω)

v → Iε(v) =
1
2

[
a(v,v)+ εdb(v,v)

]
−L(v) (5)

furnishes the first order expansion (4). In our applications to contact problems in
linear elasticity it turns out that the bilinear form v → b(v,v) is supported on ΓR :=
{|x− x̂|= R} ⊂ Ω with R > ε > 0.

Remark 1. The contact problems in elastic bodies are modeled by variational
inequalities

u ∈ K : a(u,v−u)≥ L(v−u) ∀v ∈ K. (6)

For the sensitivity analysis in singularly perturbed geometrical domains, the weak
solutions of contact problems ε→ uε are given by perturbed variational inequalities

u ∈ K : a(u,v−u)+ εdb(u,v−u)≥ L(v−u) ∀v ∈ K, (7)

where ε→ 0 measures the size of singular perturbation. This is the main contribution
of the paper. Therefore, we need the form of εdb(u,v− u) in order to apply our
method of sensitivity analysis to numerical methods of topological optimization.

Variational inequalities are used to model contact problems in elasticity. It
is known that the solutions to variational inequalities are Lipschitz continuous
with respect to the shape [29]. In general, the state governed by a variational
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inequality is not Fréchet differentiable with respect to the shape. For a class of
variational inequalities described by the unilateral constraints in Sobolev spaces of
Dirichlet type the metric projection onto the constraints turns out to be Hadamard
differentiable [7]. This property is used in order to obtain the first order directional
differentiability of the associated shape functionals.

In order to show the second-order shape differentiability for variational inequal-
ities, we have to restrict ourselves to energy-type shape functionals. The energy
functional is the so-called marginal function and it is Fréchet differentiable with
respect to the shape [7]. The first order shape derivative of the energy functional in
the direction of a specific velocity vector field is considered as the shape functional
for topological optimization. Thus, its topological derivative is evaluated.

The possible applications of shape-topological derivatives include the control of
singularities of solutions to variational inequalities by insertion of elastic inclusions
far from the singularities.

We describe the shape-topological differentiability of the energy shape functional
for the Signorini problem in two spatial dimensions. The same idea can be used for
the frictionless contact problems in linear elasticity.

Let us consider the Signorini problem posed in Ω ⊂ R
2, with boundary ∂Ω =

Γ∪Γ0, and Γc ⊂ Γ. Denote H1
Γ0
(Ω) = {v ∈ H1(Ω) | v = 0 on Γ0 ⊂ ∂Ω}.

The solution u ∈ K minimizes the quadratic functional

I(v) =
1
2

a(Ω;v,v)− (f ,v)Ω

over the cone

K = {v ∈ H1
Γ0
(Ω) | v ≥ 0 on Γc ⊂ Γ ⊂ ∂Ω}.

The shape functional is the energy

E(Ω) =
1
2

a(Ω;u,u)− (f ,u)Ω,

where

a(Ω;u,u) =
∫

Ω

∇u ·∇udx,

(f ,u)Ω =
∫

Ω

fudx.

We assume that Γ∩Γ0 = /0. Let Γt
0 := Tt(V)(Γ0) be the boundary variations [29] of

the Dirichlet boundary Γ0.
Let us consider the decomposition of Ω = Ω1 ∪Σ∪Ω2, Ω1 ∩Ω2 = /0, such that

Γ0 ⊂ ∂Ω1 and Γc ⊂ ∂Ω2. It means that the boundary variations as well as the
topological asymptotic analysis are performed in Ω1, and the unilateral conditions
are prescribed in the second subdomain Ω2.
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The shape derivative of the energy functional with respect to the boundary
variations of Γ0 can be written in distributed form [29]

dE(Ω;V) =
∫

Ω1

〈A′(0) ·∇u,∇u〉dx

where A′(0) = divVI−DV −DV�, under the assumption that the velocity field V is
supported in a small neighbourhood of Γ0 and that supp V ∩ supp f = /0.

The second shape functional for the purposes of topological optimization is
simply defined by

J(Ω) :=
∫

Ω1

〈A′(0) ·∇u,∇u〉dx. (8)

We are going to determine the topological derivatives of Ω → J(Ω) for insertion
of small inclusions in Ω1 far from Γ0. In this way we could control the possible
singularities on Γ0 by topology optimization in Ω.

We consider the domain decomposition method for purposes of the shape-
topological differentiability of energy shape functionals. First, the domain Ω is
split into two subdomains Ω1,Ω2 and the interface Σ. The differentiability with
respect to small parameter of the Dirichlet-to-Neumann map which lives on the
boundary Σ ⊂ ∂Ω1 is established. This map is called the Steklov–Poincaré operator
for subdomain Ω2.

Once, the derivative of the energy functional is given, we can proceed with the
subsequent topological optimization problem. For topological optimization another
decomposition Ω := ΩR ∪ΓR ∪Ωc is introduced. The small inclusion ωε centred at
the origin x̂ :=O is located in subdomain ΩR ⊂ Ω with the interface ΓR ⊂ ∂ΩR.

2 Applications of Steklov–Poincaré Operators
in Asymptotic Analysis

We analyse the precision of the proposed method of approximation for variational
inequalities in singularly perturbed geometrical domains. We assume for simplicity
that the singular perturbation is a disc Bε = {|x|< ε}.

The Signorini variational inequality in Ωε := Ω\Bε,

uε ∈ K(Ωε) : a(Ωε;uε,v−uε)−L(Ωε;v−uε)≥ 0 ∀v ∈ uε ∈ K(Ωε), (9)

can be considered in the truncated domain Ωc := Ω \BR for R > ε > 0, R small
enough. It is assumed that the source or linear form v → L(Ω;v) := (f ,v)Ωc is
supported in Ωc. Hence the restriction uε ∈ K(Ωc) of uε ∈ K(Ωε) to the truncated
domain is given by the solution to variational inequality
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uε ∈ K(Ωc) : a(Ωc;uε,v−uε)+〈Aε(uε),v−uε〉−L(Ωc;v−uε)≥ 0 ∀v ∈ K(Ωε),
(10)

where Aε stands for the Steklov–Poincaré operator which replaces the portion of
bilinear form defined over the ring C(R, ε) := {R > |x|> ε}.

Proposition 1. Assume that the Steklov–Poincaré operator admits the one-term
expansion

〈Aε(v),v〉= 〈A(v),v〉+ ε2〈B(v),v〉+o(ε2;v,v) (11)

with the compact remainder o(ε2;v,v), then we can replace in (10) the Steklov–
Poincaré operator by its one term approximation

ũε ∈ K(Ωc) : a(Ωc; ũε,v− ũε)+ 〈A(ũε),v− ũε〉

+ ε2〈B(ũε),v− ũε〉−L(Ωc;v− ũε)≥ 0 ∀v ∈ K(Ωε), (12)

with the estimate

‖ũε−uε‖= o(ε2). (13)

Remark 2. From Proposition 1 it follows that for the shape-topological differentia-
bility of the energy functional we can consider the variational inequality

ûε ∈ K(Ω) : a(Ω; ûε,v− ûε)+ ε2〈B(ûε),v− ûε〉−L(Ω;v− ûε)≥ 0 ∀v ∈ K(Ω),
(14)

since ‖ûε−uε‖= o(ε2) in Ωc.
In this way, the approximation (5) of quadratic functional (2) is justified for the

first order topological derivatives of variational inequalities in truncated domains.

For the quadratic functional (1) and the associated boundary value problem, the
bilinear form

v → b(ΓR;v,v) := 〈B(v),v〉

is determined. The linear operator B is obtained from the one term expansion of
the Steklov–Poincaré operator Aε, the expansion results from the energy expansion
in the subdomain ΩR. Therefore, the perturbed quadratic functional (3) can be
replaced by its approximation given by (5). For the Signorini problem in two spatial
dimensions it means that the variational inequality is obtained for minimization of
the perturbed functional (3) over the energy space in unperturbed domain Ω, and the
associated energy functional

Eε(Ω) =
1
2

a(Ω;uε,uε)+
ε2

2
b(ΓR;uε,uε)− (f ,uε)Ω,

is evaluated for the solution of variational inequality

uε ∈ K(Ω) : a(Ω;uε,v−uε)+ ε2b(ΓR;uε,v−uε)− (f ,v−uε)Ω ≥ 0 ∀v ∈ K(Ω).
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3 Asymptotic Analysis by Domain Decomposition Method

In order to apply the domain decomposition technique to topological differen-
tiability ωε → Jε(Ω) in topologically perturbed domains Ω := Ωε for the shape
functionals Ω → J(Ω), we need the appropriate results on topological differentia-
bility ε→Bε of the Steklov–Poincaré pseudodifferential boundary operators defined
on the artificial interface Σ. In the particular case of holes ε → ωε the notation
is straightforward, with the singularly perturbed domain Ωε := Ω \ ωε and with
the shape functional to be analysed with respect to small parameter ε → Jε(Ω) :=
J(Ω \ωε). In the case of inclusions ε → ωε the shape functional depends on the
characteristic functions ε → χε of the domain perturbation ωε. For inclusions the
state solution ε→ uε ∈ H(Ω) is obtained by solving boundary value problems with
operator coefficients depending on the small parameter ε → 0. In both cases the
asymptotics of Steklov–Poincaré operators are obtained by asymptotic analysis of
the energy functional for linear elliptic boundary value problems in subdomains Ω2

which contains the perturbations ε→ ωε.
Let us consider the direct method of sensitivity analysis in subdomain Ω1

which contains the contact subset Γc ⊂ ∂Ω. This is possible due to the conical
differentiability of metric projection onto the convex set K which is valid under
some assumptions (e.g., the convex, closed cone K is polyhedric in the Dirichlet
space H(Ω) [7]).

In the case of the Signorini problem in two spatial dimensions the direct method
of asymptotic analysis for the shape functional (8)

Jε(Ωε) :=
∫

Ω1

〈A′(0) ·uε,uε〉dx

can be described as follows for the disc ωε := B(ε) = {|x| < ε} located at the
origin.

1. We solve the variational inequality in Ω1 : determine u ∈ K and its coincidence
set Ξ := {x ∈ Γc : u(x) = 0}. Thus, the convex cone

S = {v ∈ H1
Γ0
(Ω) : v ≥ 0 on Ξ, a(Ω;u,v) = (f ,v)Ω}

used in conical differentiability of the element u with respect to the shape can be
determined.

2. The asymptotic analysis of solutions to variational inequality in singularly
perturbed domain Ω(ε) : Ω \B(ε) with respect to small parameter ε → 0 which
governs the size of the hole B(ε) leads to the expansion

uε = u+ ε2q+o(ε2)



Topological Optimization for Variational Inequalities 73

obtained by the domain decomposition method with the Steklov–Poincaré
boundary operators, where

q ∈ S : a(Ω;q,v−q)+ ε2〈Bq,v−q〉R ≥ ∀v ∈ S.

3. The shape functional

Jε(Ωε) :=
∫

Ω1

〈A′(0) ·uε,uε〉dx

can be expanded in Ω1, the expansion is valid in the whole domain Ω,

Jε(Ωε) =
∫

Ω

〈A′(0) ·u,u〉dx+2ε2
∫

Ω

〈A′(0) ·q,u〉dx+o(ε2),

however the obtained expression for the topological derivative may not be
constructive in numerical methods. We want to obtain an equivalent expression,
when possible, which replaces the topological derivative

T (O) = 2
∫

Ω

〈A′(0) ·q,u〉dx

in the first order expansion of the energy functional for Signorini problem. In the
linear boundary value problems such an expression can always be obtained by
the introduction of an appropriate adjoint state. We point out that for variational
inequalities the existence of an adjoint state cannot be expected in general.

4 Asymptotic Analysis of Boundary Value Problems in Rings
or Spherical Shells

4.1 Elasticity Boundary Value Problems

In this section we shall consider asymptotic corrections to the energy function
corresponding to the elasticity system or Laplace equation in Rd, where d = 2,3.
The change of the energy is caused by creating a small ball-like void of variable
radius ε in the interior of the domain Ω, with homogeneous Neumann boundary
condition on its surface. We assume that this void has its centre at the origin
O. In order to eliminate the variability of the domain, we take as ΩR the open
ball B(O,R) = B(R) with fixed R. In this way the void B(ε) is surrounded by
B(R) ⊂ intΩ. We denote also the ring or spherical shell as C(R, ε) = B(R) \B(ε),
Ω(R) = Ω\B(R) and ΓR = ∂B(R).
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Using these notations we define our main tool, namely the Dirichlet-to-Neumann
mapping for linear elasticity or the Steklov–Poincaré operator

Aε : H1/2(ΓR) �−→ H−1/2(ΓR)

by means of the boundary value problem:

(1−2ν)Δw+graddivw = 0, in C(R, ε), (15)

w = v on ΓR,

σ(w).n = 0 on Γε

so that

Aεv = σ(w).n on ΓR. (16)

Domain Decomposition: Steklov–Poincaré Operator Let uR be the restriction of
u to Ω(R) and γRϕ the projection of ϕ on ΓR. We may then define the functional

IR
ε (ϕε) =

1
2

∫

Ω(R)
σ(ϕε) : ε(ϕε)dx−

∫

ΓN

h.ϕε ds+ (17)

+
1
2

∫

ΓR

(AεγRϕε).γ
Rϕε ds

and the solution uR
ε as a minimal argument for

IR
ε (u

R
ε ) = inf

ϕε∈K⊂Vε

IR
ε (ϕε), (18)

Here lies the essence of the domain decomposition concept: we have replaced
the variable domain by a fixed one, at the price of introducing variable boundary
operator Aε.

The above expressions have even simpler form in case of a single Laplace
equation. It is enough to replace the displacement by the scalar function u, elasticity
operator by −Δ, and

σ(u) := gradu, ε(u) := gradu, σ(u).n := ∂u/∂n.

The goal is to find the expansion

Aε =A+ εdB+Rε, (19)

where the remainder Rε is of order o(εd) in the operator norm in the space
L(H1/2(ΓR),H−1/2(ΓR)), and the operator B is regular enough, namely it is bounded
and linear:
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B ∈ L
(
L2(ΓR),L2(ΓR)

)
.

Under this assumption the following propositions hold.

Proposition 2. Assume that (19) holds in the operator norm. Then strong conver-
gence takes place

uR
ε → uR (20)

in the norm of H1(Ω(R)).

Proposition 3. The energy functional has the representation

IR
ε (u

R
ε ) = IR(uR)+ εd〈B(uR),uR〉R +o(ε3) , (21)

where o(εd)/εd → 0 with ε→ 0 in the same energy norm.

Here IR(uR) denotes the functional IR
ε on the intact domain, i.e. ε := 0 and Aε :=A,

applied to truncation of u.
Generally, the energy correction for both elasticity system and Laplace operator

has the form

〈B(uR),uR〉R = −cdeu(O),

where cd = vol(B(1)) with B(1) being the unit ball in Rd. The energy-like density
function eu(O) has the form:

• In case of the Laplace operator

eu(O) =
1
2
‖∇uR(O)‖2

for both d = 2 and d = 3, see [27].
• In case of the elasticity system

eu(O) =
1
2
Pσ(uR(O) : ε(uR(O),

where for d = 2 and plain stress

P =
1

1−ν
(4I− I⊗ I)

and for d = 3

P =
1−ν

7−5ν
(10I− 1−5ν

1−2ν
I⊗ I)
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see [22, 26]. Here I is the fourth order identity tensor, and I is the second-order
identity tensor.

This approach is important for variational inequalities since it allows us to
derive the formulas for topological derivatives which are similar to the expressions
obtained for the corresponding linear boundary value problems.

4.2 Explicit form of the Operator B for the Laplacian in Two
Spatial Dimensions

If the function u is harmonic in a ball B(R) ⊂ R2, of radius R > 0 and centre at
x0 = O, then the exact expressions for the first order derivatives of u take on the
following form [27]

u/1(O) =
1

πR3

∫

ΓR

u · x1 ds,

u/2(O) =
1

πR3

∫

ΓR

u · x2 ds.

Since the line integrals on ΓR are well defined for functions in L2(ΓR), it follows
that the operator B can be extended to the bounded operator on L2(ΓR),

B ∈ L(L2(ΓR)→ L2(ΓR)).

The symmetric bilinear form for this operator, given by

〈Bu,v〉R =

− 1
2πR6

[(∫

ΓR

ux1 ds

)(∫

ΓR

vx1 ds

)
+

(∫

ΓR

ux2 ds

)(∫

ΓR

vx2 ds

)]

is continuous for all u,v ∈ L2(ΓR). In fact, the bilinear form

L2(ΓR)×L2(ΓR) � (u,v) �→ b(ΓR;u,v) ∈ R

is continuous with respect to the weak convergence because of the simple structure

b(ΓR;u,v) = l1(u)l1(v)+ l2(u)l2(v) u,v ∈ L1(ΓR)

with two linear forms v → li(v), i = 1,2,

li(u) =
1√
2π

R−3
∫

ΓR

uxi ds
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defined as line integrals on ΓR. This gives an additional regularity for the regular
nonlocal perturbation B of the pseudo-differential Steklov–Poincaré boundary
operator Aε.

4.3 Explicit form of the Operator B for the Laplacian in Three
Spatial Dimensions

Similarly as in two spatial dimensions, for harmonic functions in R3, it may be
proved [27] that

u/1(O) =
3

4πR4

∫

S(R)
ux1 ds,

u/2(O) =
3

4πR4

∫

S(R)
ux2 ds,

u/3(O) =
3

4πR4

∫

S(R)
ux3 ds.

Using this one can easily write down the bilinear form

b(ΓR;u,v) = 〈Bu,v〉R = l1(u)l1(v)+ l2(u)l2(v)+ l3(u)l3(v),

where

li(u,v) =

√
3

8π
R−4

∫

S(R)
uxi ds.

From the computational point of view, the effort in comparison with the two-
dimensional case grows similarly as the difficulty of computing integrals over circle
versus integrals over sphere.

4.4 Explicit form of the Operator B for Elasticity
in Two Spatial Dimensions

Let us denote for the plain stress case

k =
λ +μ

λ +3μ
.

It has been proved in [27] that the following exact formulae hold
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ε11(O)+ ε22(O) =
1

πR3

∫

ΓR

(u1x1 +u2x2)ds,

ε11(O)− ε22(O) =
1

πR3

∫

ΓR

[
(1−9k)(u1x1 −u2x2)+

12k
R2 (u1x3

1 −u2x3
2)
]

ds,

2ε12(O) =
1

πR3

∫

ΓR

[
(1+9k)(u1x2 +u2x1)−

12k
R2 (u1x3

2 +u2x3
1)
]

ds.

These expressions are easy to compute numerically, but contain additional integrals
of third powers of xi. Therefore, strains εij(O) may be expressed as linear combina-
tions of integrals over circle which have the form

∫

ΓR

uixj ds,
∫

ΓR

uix
3
j ds.

The same is true, due to Hooke’s law, for stresses σij(O). They may then be
substituted into expression for the operator B, yielding

〈B(uR),vR〉R =−1
2

c2Pσ(u) : ε(v).

These formulas are quite similar to the ones obtained for Laplace operator and easy
to compute numerically.

4.5 Explicit form of the Operator B for Elasticity in Three
Spatial Dimensions

It turns out that similar situation holds in three spatial dimensions, but obtaining
the formulas is more difficult. Assuming given values of u on ΓR, the solution of
elasticity system in B(R) may be expressed, following partially the derivation from
[17] (pages 285 and later), as

u =
∞

∑
n=0

[Un +(R2 − r2)kn(ν)graddivUn], (22)

where kn(ν) = 1/2[(3−2ν)n−2(1−ν)] and r = ‖x‖. In addition

Un =
1

Rn [an0dn(x)+
n

∑
m=1

(anmcm
n (x)+bnmsm

n (x))]. (23)

The vectors

an0 = (a1
n0,a

2
n0,a

3
n0)

�,



Topological Optimization for Variational Inequalities 79

anm = (a1
nm,a

2
nm,a

3
nm)

�,

bnm = (b1
nm,b

2
nm,b

3
nm)

�

are constant and the set of functions

{d0; d1,c
1
1,s

1
1; d2,c

1
2,s

1
2,c

2
2,s

2
2; d3,c

1
3,s

1
3,c

2
3,s

2
3,c

3
3,s

3
3; . . .}

constitutes the complete system of orthonormal harmonic polynomials on ΓR,
related to Laplace spherical functions, see the next paragraph. Specifically,

cl
k(x) =

P̂l,c
k (x)

‖P̂l,c
k ‖R

, sl
k(x) =

P̂l,s
k (x)

‖P̂l,s
k ‖R

, dk =
Pk(x)

‖P̂k‖R
.

For example,

c2
3(x) =

1
R4

√
7

240π
(15x2

1x3 −15x2
2x3),

If the value of u on ΓR is assumed as given, then, denoting

〈φ ,ψ〉R =
∫

ΓR

φψ ds,

we have for n ≥ 0, m = 1, . . . ,n, i = 1,2,3:

ai
n0 = Rn〈ui,dn(x)〉R, (24)

ai
nm = Rn〈ui,c

m
n (x)〉R,

bi
nm = Rn〈ui,s

m
n (x)〉R.

Since we are looking for εij(O), only the part of u which is linear in x is relevant. It
contains two terms:

û = U1 +R2k3(ν)graddivU3. (25)

For any f (x), graddiv(af ) = H(f ) ·a, where a is a constant vector and H(f ) is the
Hessian matrix of f . Therefore

û =
1
R
[a10d1(x)+a11c1

1(x)+b11s1
1(x)] (26)

+R2k3(ν)
1

R3

[
H(d3)(x)a30

+
3

∑
m=1

(
H(cm

3 )(x)a3m +H(sm
3 )(x)b3m

)]
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From the above we may single out the coefficients standing at x1,x2,x3 in
u1,u2,u3. For example,

ε11(O) =
1

R3

√
3

4π
a1

11 +
1

R5 k3(ν)
[
−3

√
7

4π
a3

30 −9

√
7

24π
a1

31

−3

√
7

24π
b2

31 +30

√
7

240π
a3

32 +90

√
7

1440π
a1

33 +90

√
7

1440π
b2

33

]
,

ε12(O) =
1

R3

√
3

4π
(b1

11 +a2
11)+

1
R5 k3(ν)

[
−3

√
7

24π
a2

31 −
√

7
24π

b1
31

+15

√
7

60π
b3

32 −90

√
7

1440π
a2

33 +90

√
7

1440π
b1

33

]
.

Observe that

ε11(O)+ ε22(O)+ ε33(O) =
1

R3

√
3

4π
(
R〈u1,c

1
1〉R +R〈u2,s

1
1〉R +R〈u3,d1〉R

)

and c1
1 = 1

R2

√
3

4π x1, s1
1 = 1

R2

√
3

4π x2, d1 = 1
R2

√
3

4π x3, exactly the same as for the
case of Laplace equation. This should be expected, since trε is a harmonic function.

As a result, the operator B may be defined by the formula

〈Bu,u〉R =−c3Pσ(u(O)) : ε(u(O))

but the right-hand side consists of integrals of u multiplied by first and third order
polynomials in xi over ΓR resulting from (24). This is a very similar situation as in
two spatial dimensions. Thus, the new expressions for strains make it possible to
rewrite B in the form possessing the desired regularity.

4.6 Laplace Spherical Polynomials

For n = 1:

P̂1(x) = x3, P̂1,c
1 (x) = x1, P̂1,s

1 (x) = x2,

‖P̂1‖R = ‖P̂1,c
1 ‖R = ‖P̂1,s

1 ‖R = R2

√
4π
3
,
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and for n = 3:

P̂3(x) = x3
3 −

3
2

x2
2x3 −

3
2

x2
1x3, ‖P̂3‖R = R4

√
4π
7
,

P̂1,c
3 (x) = 6x1x2

3 −
3
2

x3
1 −

3
2

x1x2
2, ‖P̂1,c

3 ‖R = R4

√
24π

7
,

P̂1,s
3 (x) = 6x2x2

3 −
3
2

x3
2 −

3
2

x2
1x2, ‖P̂1,s

3 ‖R = R4

√
24π

7
,

P̂2,c
3 (x) = 15x2

1x3 −15x2
2x3, ‖P̂2,c

3 ‖R = R4

√
240π

7
,

P̂2,s
3 (x) = 15x1x2x3, ‖P̂2,s

3 ‖R = R4

√
60π

7
,

P̂3,c
3 (x) = 15x3

1 −45x1x2
2, ‖P̂3,c

3 ‖R = R4

√
1440π

7
,

P̂3,s
3 (x) = 45x2

1x2 −15x3
2, ‖P̂3,s

3 ‖R = R4

√
1440π

7
,

5 Asymptotic Analysis of Steklov–Poincaré Operators
in Reinforced Rings in Two Spatial Dimensions

In this section the similar asymptotic analysis of elliptic boundary value problems
in subdomain ΩR ∈R2 is performed, but we modify the situation, assuming that the
hole is filled only partially, different material constituting a fixed part of it. In this
way, we may consider double asymptotic transition, where both the size of the hole,
and the proportion of the different material contained in it can vary. Mechanically,
this situation corresponds e.g., to the hole with hardened walls.

The analysis is based again on exact representation of solutions and allows to
obtain the perturbation of solutions, using the fact that these solutions may be
considered as minimizers of energy functional. The method is also suitable for
double asymptotic expansions of solutions as well as energy form. The ultimate goal
is to use obtained formulas in the evaluation of topological derivatives for elliptic
boundary value problems.
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Ω
ΓR

ε

Γ0

Γc

Fig. 1 The domain with the hole and the surrounding circle

5.1 Model Problem

Let us consider the domain Ω containing the hole with boundary made of modified
material as depicted in Fig. 1. For simplicity the hole is located at the origin of the
coordinate system. In order to write down the model problem, we introduce some
notations.

Bs = {x ∈R2 |‖x‖< s}

Cs,t = {x ∈R2 |s < ‖x‖< t}

Γs = {x ∈R2 |‖x‖= s}
Ωs = Ω\Bs.

Then the problem in the intact domain Ω has the form

k1Δw0 = 0 in Ω

w0 = g0 on ∂Ω.
(27)

The model problem in the modified domain reads:

k1Δwρ = 0 in Ωρ

wρ = g0 on ∂Ω

wρ = vρ on Γρ

k2Δvρ = 0 in Cλρ ,ρ

(28)
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k2
∂vρ

∂n2
= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ

∂n2
= 0 on Γρ ,

where n1—exterior normal vector to Ωρ , n2—exterior normal vector to Cλρ ,ρ , and
0 < λ < 1.

We want to investigate the influence of the small ring-like inclusion made of
another material on the difference wρ −w0 in ΩR, where ΓR surrounds Cλρ ,ρ and R
is fixed. We assume that ρ → 0+ and λ is considered temporarily constant.

If we define

uρ =

{
wρ in Ωρ

vρ in Cλρ ,ρ

then the problem (28) reduces to finding the minimum of the energy functional

E1(uρ) =
1
2

∫

Ωρ
k1∇uρ ·∇uρ dx+

1
2

∫

Cλρ ,ρ
k2∇uρ ·∇uρ dx (29)

for uρ ∈ H1(Ωρ), uρ = g0 on ∂Ω.
This expression may be rewritten as

E1(uρ) =
1
2

∫

ΩR

k1∇wρ ·∇wρ dx+

+
1
2

∫

Cρ ,R
k1∇wρ ·∇wρ dx+

+
1
2

∫

Cλρ ,ρ
k2∇vρ ·∇vρ dx.

Using integration by parts we obtain

E1(uρ) =
1
2

∫

ΩR

k1∇wρ ·∇wρ dx+

+
1
2

∫

Γρ

(
wρ k1

∂wρ

∂n1
+ vρ k2

∂vρ

∂n2

)
ds+

+
1
2

∫

ΓR

k1wρ
∂wρ

∂n3
ds,
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where n3 is the exterior normal to ΩR. Hence, due to boundary and transmission
condition,

E1(uρ) =
1
2

∫

ΩR

k1∇wρ ·∇wρ dx+
1
2

∫

ΓR

k1wρ
∂wρ

∂n3
ds. (30)

5.2 Steklov–Poincaré Operator

Observe that E1(w0) corresponds to the problem (27). Therefore the main goal is to
find the Steklov–Poincaré operator

Aλ ,ρ : w ∈ H1/2(ΓR) �−→ ∂wρ

∂n3
∈ H−1/2(ΓR), (31)

where the normal derivative is computed from auxiliary problem

k1Δwρ = 0 in Cρ ,R

wρ = w on ΓR

wρ = vρ on Γρ

k2Δvρ = 0 in Cλρ ,ρ

k2
∂vρ

∂n2
= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ

∂n2
= 0 on Γρ .

(32)

The geometry of domains of definition for functions is shown in Fig. 2. Now let
us adopt the polar coordinate system around origin and assume the Fourier series
form for w on ΓR.

w = C0 +
∞

∑
k=1

(Ak coskϕ +Bk sinkϕ) (33)

The general form of the solution wρ is

wρ = Aw +Bw logr+
∞

∑
k=1

(wc
k(r)coskϕ +ws

k(r)sinkϕ) , (34)

where

wc
k(r) = Ac

krk +Bc
k

1
rk , ws

k(r) = As
krk +Bs

k
1
rk .
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Γρ ΓRΓλρ

wρ

vρ

Fig. 2 Domains of definition for wρ and vρ

Similarly for vρ

vρ = Av +Bv logr+
∞

∑
k=1

(vc
k(r)coskϕ + vs

k(r)sinkϕ) , (35)

where

vc
k(r) = ac

krk +bc
k

1
rk , vs

k(r) = as
krk +bs

k
1
rk .

Additionally, we denote the Fourier expansion of vρ on Γρ by

vρ = c0 +
∞

∑
k=1

(ak coskϕ +bk sinkϕ) (36)

From boundary conditions on Γλρ it follows easily Bv = 0, Av = c0, and then Bw = 0,
Aw = Av = c0 = C0. There remains to find ak, bk, ac

k, bc
k, as

k, bs
k, Ac

k, Bc
k, As

k, Bs
k

assuming Ak, Bk as given.

5.3 Asymptotic Expansion

In order to eliminate the above-mentioned coefficients we consider first the terms at
coskϕ . From boundary and transmission conditions we have for k = 1,2, . . .
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Ac
kRk +Bc

k
1

Rk = Ak

Ac
kρk +Bc

k
1

ρk −ak = 0

ac
kρk +bc

k
1

ρk −ak = 0

ac
k(λρ)k−1 −bc

k
1

(λρ)k+1 = 0

k1Ac
kρk−1 − k1Bc

k
1

ρk+1 − k2ac
kρk−1 + k2bc

k
1

ρk+1 = 0

(37)

This may be rewritten in the matrix form. By grouping unknown parameters into a
vector pk = [Ac

k,B
c
k,a

c
k,b

c
k,ak]

� we obtain

T(k1,k2,R,λ ,ρ)pk = RkAke1

where

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

R2k 1 0 0 0
ρ2k 1 0 0 −ρk

0 0 (λρ)2k 1 −ρk

0 0 (λρ)2k −1 0
k1ρ2k −k1 −k2ρ2k k2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(38)

where e1 = [1,0,0,0,0]�. It is easy to see that

pk = p0
kAk +ρ2kp1

kAk +o(ρ2k) (39)

where

p0
k = lim

ρ→0+
lim

λ→0+

pk(k1,k2,R,λ ,ρ)
Ak

and p0
k = [1/Rk,0,0,0,0]�, which corresponds to the ball BR filled completely with

material k1. Similar reasoning may be conducted for terms containing sinkϕ .
As a result,

Aλ ,ρ =A0,0 +ρ2A1
λ ,ρ(k1,k2,R,λ ,ρ ,A1,B1)+o(ρ2). (40)

The exact form of A1
λ ,ρ(k1,k2,R,λ ,ρ ,A1,B1) is obtained from inversion of matrix

T , but, what is crucial, it is linear in both A1 and B1. They, in turn, are computed as
line integrals
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A1(w) =
1

πR2

∫

ΓR

wx1 ds, B1(w) =
1

πR2

∫

ΓR

wx2 ds.

As a result, for computing uρ we may use the following energy form

E(uρ) =
1
2

∫

Ω
k1∇uρ ·∇uρ dx+

+ρ2Q(k1,k2,R,λ ,ρ ,A1,B1)+o(ρ2),

(41)

where A1 = A1(uρ), B1 = B1(uρ) and Q is a quadratic function of A1, B1. This
constitutes a regular perturbation of the energy functional which allows computing
perturbations of any functional depending on this solution and caused by small
inclusion of the described above form.

5.4 Extension to Linear Elasticity

Let us consider the plane elasticity problem in the ring CR,ρ . We use polar
coordinates (r,θ) with er pointing outwards and eθ perpendicularly in the coun-
terclockwise direction. Then there exists an exact representation of both solutions,
using the complex variable series. It has the form [12, 17, 19]

σrr − iσrθ = 2ℜφ ′ − e2iθ (z̄φ ′′+ψ ′)

σrr + iσθθ = 4ℜφ ′

2μ(ur + iuθ ) = e−iθ (κφ − zφ̄ ′ − ψ̄).

(42)

The functions φ , ψ are given by complex series

φ = A log(z)+
k=+∞

∑
k=−∞

akzk

ψ =−κĀ log(z)+
k=+∞

∑
k=−∞

bkzk.

(43)

Here μ—the Lame constant, ν—the Poisson ratio, κ = 3− 4ν in the plain strain
case, and κ = (3−ν)/(1+ν) for plane stress.

Similarly as in the simple case described in former sections, the displacement
data may be given in the form of Fourier series,

2μ(ur + iuθ ) =
k=+∞

∑
k=−∞

Akeikθ (44)
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The traction-free condition on some circle means σrr = σrθ = 0. From (42), (43) we
get the formula for displacements

2μ(ur + iuθ ) = 2κAr log(r)
1
z
− Ā

1
r

z+

+
p=+∞

∑
p=−∞

[κrap+1 − (1−p)ā1−pr−2p+1

− b̄−(p+1)r
−2p−1]zp.

(45)

Similarly, we obtain representation of tractions on some circle

σrr − iσrθ = 2A
1
z
+(κ +1)

1
r2 Āz+

+
p=+∞

∑
p=−∞

(1−p)[(1+p)ap+1 + ā1−pr−2p

+
1
r2 bp−1]z

p.

(46)

As we see, in principle it is possible to repeat the same procedure again, glueing
solutions in two rings together and eliminating the intermediary Dirichlet data on the
interface. The only difference lies in considerably more complicated calculations,
see, e.g., [9]. This could be applied for making double asymptotic expansion, in term
of both ρ and λ . However, in our case λ does not need to be small in comparison
with ρ .

6 Asymptotic Expansions of the Steklov–Poincaré Operators
and Perturbations of Bilinear Forms in Particular Cases

The explicit form of solutions in BR allows us to conclude that for

‖wρ‖H1/2(ΓR)
≤ Λ0

the correction to the energy functional contains the part proportional to ρd and
the remainder of order o(ρd). This in turn [27, 28] implies the possibility of
representation

wρ = w0 +ρ2q+o(ρ2) in H1(ΩR)

for both standard and contact problems, justifying computations of topological
derivatives.
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It is well known that the singularities of solutions to Partial Differential Equations
due to the singularities of geometrical domains can be characterized by specific
shape derivatives of the associated energy shape functionals [7]. Therefore, the
influence of topological changes in domains on the singularities can be measured
by the appropriate second-order topological derivatives of the energy functionals. It
means that we evaluate the shape derivatives of the energy functional by using the
velocity field method, and subsequently the second-order topological derivatives of
the functionals by an application of the domain decomposition method

• the portion Γ0 of the boundary with the homogeneous Dirichlet boundary
conditions is deformed to obtain t → Tt(V)(Γ0) as well as t → E(Ωt) for the
energy shape functional; as a result the first order shape derivative J(Ω) :=
dE(Ω;V) is obtained in the distributed form as a volume integral,

• the second-order derivative of the energy functional is evaluated with respect to
small parameter ε → 0, the parameter governs the size of small inclusion with
the material defined by a contrast parameter γ ∈ [0,∞).

We consider the energy shape functional Ω → E(Ω) for Signorini problems for
the Laplacian as well for the frictionless contact. The shape derivative J(Ω) :=
dE(Ω;V) of this functional is evaluated with respect to the boundary variations of
the portion Γ0 ⊂ ∂Ω. In another words the velocity vector field V is supported in a
small neighbourhood of Γ0. The topological derivatives of J(Ω) are evaluated with
respect to nucleation of small inclusions far from Γ0. The domain decomposition
method is applied in order to obtain the robust expressions for topological deriva-
tives.

7 Directional Differentiability of the Metric Projection
onto Positive Cone in Fractional Sobolev Spaces

Let us consider the subdomain Ωc := Ω\ΩR with the contact zone Γc in the scalar
case as well as in an elastic body, see Fig. 1.

We recall that the convex cone for the contact problem in elasticity with
linearized non-penetration conditions takes the form

K := {v ∈ H1(Ωc) : �v� ∈ K(Γc)⊂ H1/2(Γc)},

where K(Γc) is the positive cone in the fractional Sobolev space H1/2(Γc). The

particular case is the space H1/2
00 (Γc) for Γc ⊂ Σ and the homogeneous Dirichlet

conditions on the complement Σ \ Γc, for the cracks. Therefore, we establish the
Hadamard differentiability [11, 18] of the metric projection in the Dirichlet space
H1/2(Γc) onto its positive cone [7].

Let us consider the directional differentiability of the metric projection onto the
positive cone in the fractional Sobolev spaces H1/2(Γc). In order to present the
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results, we are going to consider a simple geometry of the contact zone Γc. In the
general setting the results can be obtained in the similar way. Therefore, we consider
the subset B= {|x|<R}, x= (x1, · · · ,xd)⊂Ω, of an elastic body Ω, with the contact
set Γc := {x = (x′,xd) ∈ R

d : xd = 0, |x′|< R/2} and Σ defined by an extension
of the subset Σ̃ := {x = (x′,xd) ∈ B : xd = 0}. In such a case, the unit normal vector
to the contact set n := (0, . . . ,0,1) is constant on Γc, and the unit tangent vector
orthogonal to n on the boundary ∂Γc is n := (n1, . . . ,nd−1,0). For the displacement
field u = (u1, · · · ,ud) it follows that un = ud, hence, the unilateral constraints for

the normal component over the contact set H1/2
00 (Γc) � �u�n = ud ≥ 0. Thus, the

convex cone of admissible displacements for the contact problem takes the form

Uad = {v = (v1, · · · ,vd) ∈ H1(Ωc) : vd ≥ 0 on Γc}

and our analysis of the metric projection is reduced to the positive cone in H1/2
00 (Γc),

hence, in H1/2(Σ).

Remark 3. We recall that in general for a domain Ω with the boundary Γ, the
Sobolev spaces H1(Ω) and H1/2(Γ) are [2, 10] the so-called Dirichlet spaces. It
means that for the scalar product a(·, ·), with v+ := sup{v,0} and v− := sup{−v,0},
the property a(v+,v−)≤ 0 holds for all elements of the Sobolev spaces.

Remark 4. The metric projection in the Dirichlet space onto the cone of nonneg-
ative elements is considered for the purpose of sensitivity analysis of solutions to
frictionless contact problems in [29]. This result is extended to the crack problem. In
order to avoid unnecessary technicalities, we restrict ourselves to a model problem.
Now, we consider the Hadamard differentiability of metric projection in Dirichlet
space onto the cone of positive elements, and recall the result on its conical
differentiability.

Consider the convex, closed cone

K = {v ∈ H1/2(Σ) : v ≥ 0 on Σ}

and the metric projection H1/2(Σ) � f → u = PK(f ) ∈ K onto K which is defined by
the variational inequality

u ∈ K : (u− f ,v−u)1/2,Σ ≥ 0 ∀v ∈ K.

We denote v+ = v∧0 := sup{v,0} and v− =−v∧0 := sup{−v,0} in H1/2(Σ).
With the element u = PK(f ) we associate the convex cone

CK(u) = {v ∈ H1/2(Σ) : u+ tv ∈ K for some t > 0}

and denote by TK(u) the closure of CK(u) in H1/2(Σ). On the other hand, [7] there is
a nonnegative Radon measure m such that for all v ∈ H1/2(Σ) we have the equality∫

vdm = (u− f ,v)1/2,Σ, hence, we denote



Topological Optimization for Variational Inequalities 91

m[v] := (u− f ,v)1/2,Σ.

Definition 1. The convex cone K is polyhedric [11, 18] at u ∈ K if

TK(u)∩m⊥ = CK(u)∩m⊥ .

We recall the result on polyhedricity of the positive cone in a Dirichlet space [7].

Lemma 1. The convex cone

CK(u)∩m⊥ := {v ∈ H1/2(Σ) : v ∈ CK(u) such that (u− f ,v)1/2,Σ = 0}

is dense in the closed, convex cone

TK(u)∩m⊥ := {v ∈ H1/2(Σ) : v ∈ TK(u) such that (u− f ,v)1/2,Σ = 0}.

Proof. Using the property of the Dirichlet space

(v+,v−)1/2,Σ ≤ 0 for all v ∈ H1/2(Σ)

then

TK(u)∩m⊥ = CK(u)∩m⊥

follows easily.
Indeed, let

w ∈ TK(u)∩m⊥ .

Then w = 0 m-a.e. Let CK(u) � vn → w. Then v−n → w−, v+n → w+ and v+n ∧w+−
v−n → w, here v ∧ w = inf{v,w}. Now, if v ∈ CK(u), then u + tv ≥ 0. We claim
v+n ∧w+− v−n ∈ CK(u)∩m⊥. Indeed, u+ t[v+n ∧w+− v−n ] ≥ 0 so v+n ∧w+− v−n ∈
CK(u) and m[v+n ∧w+− v−n ] = m[v+n ∧w+] = 0, because of m[w+] = 0.

Remark 5. In [7] the tangent cone TK(u) is derived for u ∈ K, in the case of the
positive cone K = {v ∈ H : v ≥ 0} in the Dirichlet space H equipped with the
scalar product (u,v)H. We have

TK(u) = {v ∈H : v ≥ 0 on {u = 0}}.

The convex cone S := TK(u)∩m⊥ is important for our applications. It is obtained
in [7]

TK(u)∩m⊥ = {v ∈H : v ≥ 0 on {u = 0} and v = 0 m− a.e.}.
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The following result on the directional differentiability of metric projection holds
for polyhedric convex sets [11, 18].

Lemma 2. Let K be a polyhedric cone. For t > 0, t small enough,

PK(u+ th) = PK(u)+ tPS(h)+o(t;h) in H1/2(Σ)

where

S := TK(u)∩m⊥

and the remainder o(t;h) is uniform on compact subsets of H1/2(Σ). Hence,
the directional derivative of the metric projection is uniquely determined by the
variational inequality

q := PS(h) ∈ S : (q−h,v−q)1/2,Σ ≥ 0 ∀v ∈ S.

For a contact set Γc ⊂ Σ we introduce the following convex cones

K(Σ) := {v ∈ H1/2(Σ) : v = 0 on Σ\Γc, v ≥ 0 on Γc},

and

K(Γc) := {v ∈ H1/2
00 (Γc) : v ≥ 0 on Γc}.

For the variational problems with unilateral conditions for the normal component
of the displacement vector field over the contact set, the convex cones K(Γc) and
K(Σ) are employed in order to show the polyhedricity of the cone of admissible
displacements.

Remark 6. The proof of Lemma 1 applies as well to the convex cone K(Γc) ⊂
H1/2

00 (Γc) since the space C∞
0 (Γc) is dense in H1/2

00 (Γc), hence, a nonnegative
distribution is a Radon measure. In addition, contraction operates [4] for the scalar

product (55) in H1/2
00 (Γc). Let us note that the scalar products in H1/2(Σ) and in

H1/2
00 (Γc) are not the same, the latter is a weighted space.

We recall an abstract result on shape sensitivity analysis of variational inequali-
ties.

Sensitivity Analysis of Variational Inequalities The conical differentiability of
solutions to variational inequalities for the contact problem follows from the abstract
result given by Theorem 1. The general result [29] is adapted here to our setting
within the domain decomposition framework. Thus, the bilinear form a(·, ·)+bt(·, ·)
defined in the subdomain Ωc is introduced, where bt(·, ·) is the contribution from the
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Steklov–Poincaré operator on ΓR = ∂ΩR. The real parameter t > 0 governs the shape
perturbations of the inclusion t → ωt in ΩR, where t → 0 governs the topological
changes of ΩR in the framework of asymptotic analysis.

Two boundary value problems in two subdomains are coupled by the trans-
mission conditions on the interface ΓR. The linear boundary value problem in
ΩR furnishes the expansions of the Steklov–Poincaré operators resulting from
perturbations of the inclusion in the interior of the subdomain. The sensitivity
analysis of solutions to variational inequality in Ωc is performed for compact
perturbations of nonlocal boundary conditions on the interface. As a result, the weak
solution to the unilateral elasticity boundary value problem under considerations is
directionally differentiable with respect to the parameter t → 0 which governs the
perturbations of the inclusion far from the contact set.

Now, we provide the precise result on the conical differentiability of solutions to
variational inequalities [11, 18, 29] (see also [7]) which is given here without the
proof.

Let K ⊂ H be a convex and closed subset of a Hilbert space H, and let 〈·, ·〉
denote the duality pairing between H′ and H, where H′ denotes the dual of H. Let us
assume that there are given symmetric bilinear forms a(·, ·)+bt(·, ·) : H×H→ R

parametrized by t ≥ 0, and the linear form f ∈H′, such that

Condition 1. 1. There are 0 < α ≤ M such that

|a(u,v)+bt(u,v)| ≤ M‖u‖‖v‖, α‖u‖2 ≤ a(v,v)+bt(v,v) ∀u,v ∈H
(47)

uniformly with respect to t ∈ [0, t0). Furthermore, there exists Q′ ∈ L(H;H′)
such that

Qt =Q+ tQ′+o(t) in L(H;H′) , (48)

where Qt ∈ L(H;H′)

a(φ ,ϕ)+bt(φ ,ϕ) = 〈Qt(φ),ϕ〉 ∀φ ,ϕ ∈H.

2. The set K⊂H is convex and closed, and the solution operator H′ � f →P(f ) ∈
H for (52)

P(f ) ∈ K : a(P(f ),ϕ −P(f ))≥ 〈f ,ϕ −P(f )〉 ∀ϕ ∈ K (49)

is differentiable in the sense that

∀h ∈H′ : P(f + sh) = P(f )+ sP′(h)+o(s) in H (50)
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for s > 0, s small enough, where the mapping P′ : H′ → H is continuous and
positively homogeneous, in addition, the remainder o(s) is uniform with respect
to the direction h ∈H′ on compact subsets of H′.

Let us consider the unique solutions ut = Pt(f ) to variational inequalities
depending on a parameter t ∈ [0, t0), t0 > 0,

ut ∈ K : a(ut,ϕ −ut)+bt(ut,ϕ −ut)≥ 〈f ,ϕ −ut〉 ∀ϕ ∈ K . (51)

In particular, for t = 0

u ∈ K : a(u,ϕ −u)+b(u,ϕ −u)≥ 〈f ,ϕ −u〉 ∀ϕ ∈ K , (52)

with u = P(f ) a unique solution to (52). The mapping t → ut is strongly differen-
tiable in the sense of Hadamard at 0+, and its derivative is given by a unique solution
of the auxiliary variational inequality [29].

Theorem 1. Assume that Condition 1 is satisfied. Then the solutions to the
variational inequality (51) are right-differentiable with respect to t at t = 0, i.e.
for t > 0, t small enough,

ut = u+ tu′+o(t) in H , (53)

where

u′ = P′(−Q′u) . (54)

7.1 Metric Projection onto Positive Cone in H1/2
00 (Γc)

For boundary value problems in domains with contact conditions, unilateral condi-
tions are prescribed on the contact set for the normal component of the displacement
field. Hence, the normal component of the displacement field belongs to the
positive cone in the fractional Sobolev space H1/2(Γc). The sensitivity analysis of
variational inequalities for Signorini problems was reduced in [29] to the directional
differentiability of the metric projection onto the positive cone in a fractional space
which is the Dirichlet space. This result is further extended in [7] to some crack
problem. The method is also used in the present paper, however for the purposes of
sensitivity analysis of contact problems.

Sensitivity Analysis of the Crack Problem We are going to explain how the
results obtained in [29] for the Signorini problem in linear elasticity can be extended
to the crack problems with unilateral constraints. To this end, the abstract analysis
performed in [7] for the differentiability of the metric projection onto the cone of
nonnegative elements in the Dirichlet space is employed.
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The framework for analysis is established in function spaces over Ω := Ω+∪Σ∪
Ω−, where Σ is a C1,1 regular curve without intersections. The regularity assumption
can be weakened, if necessary.

Let Γc ⊂ Σ be the segment {(x1,0) : 0 < x1 < 1} included in the curve Σ. We
denote by n the unit normal vector field on Σ which points out of Ω+, and by τ the
unit normal vector field on ∂Γc orthogonal to n . We consider deformations of the
crack in the direction of the vector field V collinear with τ in the neighbourhood of
the crack tip A = (1,0) ∈ Ωc ⊂ R

2.
In the Sobolev space defined on the cracked domain Ωc, the elements enjoy

jumps over the crack which are denoted by �v� := v+ − v−, and we have the

regularity property of traces �v� ∈ H1/2
00 (Γc). In our geometry of Ωc, the Sobolev

space H1/2
00 (Γc) coincides with the linear subspace of H1/2(Σ)

H1/2
00 (Γc) = {ϕ ∈ H1/2(Σ) : ϕ = 0 q.e. on Σ\Γc},

where q.e. means quasi-everywhere with respect to the capacity, see, e.g., [1, 24] for
the definition and elementary properties of the capacity useful for the existence of
optimal shapes in shape optimization problems with nonlinear PDE’s constraints.

In order to investigate the properties of the metric projection in the space of
admissible displacement fields onto the convex cone

K := {v ∈ H1(Ωc) : �v�n ≥ 0},

where H1(Ωc) := H1(Ωc;R2), we need to show that the positive convex cone

K = {ϕ ∈ H1/2
00 (Γc) : ϕ ≥ 0 on Γc}.

is polyhedric in the sense of [7, 11, 18].
We consider here the rectilinear crack Γc in two spatial dimensions. The scalar

product in H1/2
00 (Γc) := H1/2

00 (0,1) is defined

〈ϕ,ψ〉c =
∫

Γc

∫

Γc

(ϕ(x)−ϕ(y))(ψ(x)−ψ(y))
|x− y|2 dxdy (55)

+
∫

Γc

[
ϕ(x)ψ(x)+

ϕ(x)ψ(x)
dist(x,∂Γc)

]
dx

Polyhedricity of the Positive Cone in H1/2
00 (Γc) In order to show the polyhedricity

of the nonnegative cone K in H := H1/2
00 (0,1), it is enough to check the property

〈ϕ+,ϕ−〉c ≤ 0 ∀v ∈ H1/2
00 (0,1)
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which is straightforward, here ϕ+(x) = max{v(x),0}. The full proof of polyhedric-
ity in such a case is provided in [7]. It is easy to check that the polyhedricity with
respect to the scalar product implies the polyhedricity with respect to a bilinear form
which is equivalent to the scalar product.

Theorem 2. Let us consider the variational inequality for the metric projection of
f + th ∈H onto K

ut ∈ K : 〈ut − f − th,v−ut〉 ≥ 0 ∀v ∈ K,

where f ,h ∈H are given, denote by Ξ{u}= {x ∈ Γc : u(x) = 0}. Then

ut = u+ tq(h)+o(t;h) in H,

where the remainder o(t;h) is uniform on compact subsets of H, and the conical
differential of the metric projection q := q(h) is given by the unique solution to the
variational inequality

q ∈ S(u) : 〈q−h,v−q〉 ≥ 0 ∀v ∈ S(u)

and the closed convex cone

S(u) = {ϕ ∈H : ϕ ≥ 0 q.e. on Ξ{u}, 〈u− f ,ϕ〉= 0}.

8 Rectilinear Crack in Two Spatial Dimensions

In this section the general method of shape-topological sensitivity analysis is
presented in the domain Ω := Ωc ∪ΓR ∪ΩR, where the first subdomain Ωc contains
the rectilinear cracks Γc and the second subdomain ΩR contains the inclusion ω .

We denote by Ωin := Ωc ∪Γc, the first subdomain in the elastic body without the
crack. We assume that there is a regular C1,1-curve Σ ⊂ Ωin, without intersections,
which contains the rectilinear crack Γc := {(x1,0) : 0 ≤ x1 ≤ 1}. To simplify the
presentation, let us consider a torus Ω := T := T

2 with 2π-periodic coordinates
x = (x1,x2).

The deformations of the subdomain Ωc are defined by the vector field (x, t) →
V(x, t) = (v(x, t),0), where the C∞

0 (Ω
+) function (x, t) → v(x, t) is supported in

[1− δ ,1+ δ ]2 × [−t0, t0] ⊂ Ω+ ⊂ R
2 ×R and v(x, t) ≡ 1 on [1− δ/2,1+ δ/2]2 ×

[−t0/2, t0/2]. In our notation, the real variable t ∈R is a parameter. It means that the
vector field V deforms the reference domain Ω+

c to t → Tt(V)(Ω+
c ) just by moving

the tip of the crack X = (1,0)→ x(t) = (x1(t),0) in the direction of the x1-axis. The
mapping Tt : X → x(t) is given by the system of equations
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dx
dt
(t) = V(x(t), t), x(0) = X.

The boundary value problem of linear isotropic elasticity in Ωc is defined by the
variational inequality

u ∈ K : a(u,v−u)≥ (f ,v−u) ∀u ∈ K , (56)

where

K = {v ∈ H1(Ωc) : �v� · n := (v+− v−) · n ≥ 0 on Γc}, (57)

here �v� = v+ − v− is the jump of the displacement field over the crack Γc. The
bilinear form

a(u,v) =
∫

Ωc

[
μ
2

2

∑
j,k=1

(∂juk +∂kuj)(∂jvk +∂kvj)+λdivudivv

]

dx

is associated with the operator

Lu :=−μΔu− (λ +μ)graddivu. (58)

The deformation tensor 2ε(u) = ∂juk + ∂kuj and the stress tensor σ(u) associated
with the displacement field u are useful in the description of the boundary value
problems in linear elasticity.

The energy functional E(Ωc) = 1/2a(u,u)− (f ,u)Ωc is twice differentiable [7]
in the direction of a vector field V , for the specific choice of the field V = (v,0). The
first order shape derivative

V → dE(Ωc;V) =
1
t

lim
t→0

(E(Tt(Ωc))−E(Ωc)

can be interpreted as the derivative of the elastic energy with respect to the crack
length, we refer the reader to [15] for the proof, the same result for the Laplacian is
given in [5, 13, 14].

Theorem 3. We have

dE(Ωc;V) =
1
2

∫

Ωc

{
divV · εij(u)−2Eij(V;u)

}
σij(u)−

∫

Ωc

div(Vfi)ui . (59)

Now we restrict our consideration to the perturbation of the crack tip only in
the direction which coincides with the crack direction. The derivative is evaluated
in the framework of the velocity method [29] for a specific velocity vector field V
selected in such a way that the result dE(Ωc;V) is independent of the field V and
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it depends only on the perturbation of the crack tip. That is why, this derivative is
called the Griffith’s functional J(Ωc) := dE(Ωc;V) defined for the elastic energy in a
domain with crack. We are interested in the dependence of this functional on domain
perturbations far from the crack. As a result, shape and topological derivatives of
the nonsmooth Griffith’s shape functional are obtained with respect to the boundary
variations of an inclusion.

8.1 Green Formulae and Steklov–Poincaré Operators

The Steklov–Poincaré operator on the interface for the domain Ωc ∪ ΓR ∪ ΩR is
defined by the Green formula, first as the Dirichlet-to-Neumann map in ΩR, then it
is used on the interface as nonlocal boundary operator. Therefore, we recall here the
Green formula for linear elasticity operators in two and three spatial dimensions.

We start with analysis in two spatial dimensions. To simplify the presentation
let us consider the reference domain without a crack in the form of the torus T :=
T

2 with 2π-periodic coordinates x = (x1,x2). For the purpose of shape-topological
sensitivity analysis we assume that the elastic body without the crack is decomposed
into two subdomains, Ωin and ΩR, separated from each other by the interface ΓR.
Thus, the elastic body with the crack Γc is written as

Ω := Ωc ∪ΓR ∪ΩR .

The rectilinear crack Γc ⊂ Σ ⊂ Ωin is an open set, where the fictitious interface
Σ ⊂ Ωin is a closed C1,1-curve without intersections. In our notation Ωc = Ωin \Γc.

The bilinear form of the linear isotropic elasticity is associated with the operator

Lu :=−μΔu− (λ +μ)graddivu

for given Lame coefficients μ > 0,λ ≥ 0.
The displacement field u in the elastic body Ω is given by the unique solution of

the variational inequality

u ∈ K : a(u,v−u)≥ (f ,v−u) ∀u ∈ K , (60)

where

K = {v ∈ H1(Ωc) : �v� · n := (v+− v−) · n ≥ 0 on Γc}, (61)

here �v� = v+− v− is the jump of the displacement field over the crack Γc.
Given the unique solution u ∈ K of the variational inequality and the admissible

vector field V compactly supported in Ωc, we consider the associated shape
functional (59) evaluated in Ωc, which is called the Griffith’s functional

J(Ωc) := dE(Ωc;V) . (62)
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Let ω ⊂ ΩR be an elastic inclusion. Introduce the family of inclusions t → ωt ⊂ ΩR

governed by the velocity field W compactly supported in ΩR. The elastic energy in
ΩR with the inclusion ωt is denoted by

ωt →Et(ΩR) :=
1
2

at(ΩR ; u,u)− (f ,u)ΩR .

Its shape derivative dE(ΩR;W) in the direction W is obtained by differentiation of
the function at t = 0

t →Et(ΩR) :=
1
2

at(ΩR ; u,u)− (f ,u)ΩR .

Proposition 4. Assume that the energy shape functional in the subdomain ΩR,

ω →E(ΩR) :=
1
2

a(ΩR ; u,u)− (f ,u)ΩR

is differentiable in the direction of the velocity field W compactly supported in
a neighbourhood of the inclusion ω ⊂ ΩR, then the Griffith’s functional (62) is
directionally differentiable in the direction of the velocity field W. Therefore, the
second-order directional shape derivative dE(Ω;V,W) of the energy functional in
Ω in the direction of fields V,W is obtained.

This result can be proved by the domain decomposition technique:

• the shape differentiability of the energy functional in the subdomain ΩR implies
the differentiability of the associated Steklov–Poincaré operator defined on
the Lipschitz curve given by the interface ΩR ∩ Ωc with respect to the scalar
parameter t → 0 which governs the boundary variations of the inclusion ω;

• the expansion of the Steklov–Poincaré nonlocal boundary pseudodifferential
operator obtained in the subdomain ΩR is used in the boundary conditions for
the variational inequality defined in the cracked subdomain Ωc and leads to the
conical differential of the solution to the unilateral problem in the subdomain;

• the one term expansion of the solution to the unilateral problem is used in the
Griffith’s functional in order to obtain the directional derivative with respect to
the boundary variations of the inclusion.

Remark 7. For the circular inclusion ω := {x ∈ ΩR : |x− y| < r0}, r0 > 0, the
scalar parameter t → 0 which governs the shape perturbations of ∂ω in the direction
of a field W [29] can be replaced by the parameter r → r0. Thus, the moving domain
t → ωt is replaced by the moving domain r → {x ∈ ΩR : |x− y| < r}. In this way
the shape sensitivity analysis [29] for r0 > 0 and the topological sensitivity analysis
[22] for r0 = 0+ are performed in the same framework for the simple case of circular
inclusion.
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9 Shape and Topological Derivatives of Elastic Energy
in Two Spatial Dimensions for an Inclusion

In the subdomain Ωc the unique weak solutions

ε → u := uε

of the elasticity boundary value subproblem are given by the variational inequality

u ∈ K : a(Ωc;u,v−u)+bε(ΓR;u,v−u)≥ (f ,v−u)Ωc ∀v ∈ K.

In order to differentiate the solution mapping for this variational inequality, it is
required to differentiate the bilinear form ε → bε(ΓR;u,v), which is performed in
this section.

9.1 Shape and Topological Derivatives of the Energy
Functional in ΩR with Respect to the Inclusion ω

In order to evaluate the topological derivative of energy functional in isotropic
elasticity, the shape sensitivity analysis is combined with the asymptotic analysis
[22], see also [8, 16, 23] for related results. In this section the small parameter is
denoted by ε → 0, and the circular inclusion ε → ωε := Bε is considered.

The general shape of inclusion ε → ωε can be considered in the same way for
shape sensitivity analysis [29] and the asymptotic analysis [22].

For the sake of simplicity, the subscript R is omitted, thus, we denote Ω :=
ΩR, since the inclusion is located in the subdomain ΩR. We also allow for the
Neumann ΓN and Dirichlet ΓD pieces of the boundary ∂Ω := ∂ΩR, thus, ∂ΩR :=
ΓN ∪ ΓD ∪ Γ. Thus, we evaluate the shape and topological derivative [22] of the
total potential energy associated with the plane stress linear elasticity problem,
considering the nucleation of a small inclusion, represented by Bε ⊂ Ω, as the
topological perturbation. In this way the expansion of the Steklov–Poincaré operator
on the interface Γ := ΓR is obtained.

Steklov–Poincaré Operator Let us consider the nonhomogeneous Dirichlet linear
elasticity boundary value problem in the domain Ω with the boundary ∂Ω := ΓN ∪
ΓD ∪Γ.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find u, such that
divσ(u) = 0 in Ω ,

σ(u) = C∇us ,

u = 0 on ΓD ,

u = u on Γ ,

σ(u)n = 0 on ΓN ,

(63)
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where the only nonhomogeneous term is the Dirichlet condition u = u on the
interface Γ. Let

a(u,u) :=
∫

Ω
σ(u) ·∇us

stands for the associated bilinear form, thus the elastic energy of the solution u is
given by

E(Ω;u) =
1
2

a(u,u).

Then by Green’s formula

E(Ω;u) = 〈T (u),u〉Γ. (64)

In the case of an inclusion ωε ⊂ Ω, the formula becomes

Eε(Ω;u) = 〈Tε(u),u〉Γ. (65)

Hence, the expansion of the energy functional in Ω, on the left-hand side of (65)
with respect to the parameter ε → 0 can be used in order to determine the associated
expansion of the Steklov–Poincaré operator u→T (u) on the right-hand side of (65).
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