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Abstract The aim of this paper is to provide an overview of recent development
related to Bregman distances outside its native areas of optimization and statistics.
We discuss approaches in inverse problems and image processing based on Bregman
distances, which have evolved to a standard tool in these fields in the last decade.
Moreover, we discuss related issues in the analysis and numerical analysis of non-
linear partial differential equations with a variational structure. For such problems
Bregman distances appear to be of similar importance, but are currently used only in
a quite hidden fashion. We try to work out explicitly the aspects related to Bregman
distances, which also lead to novel mathematical questions and may also stimulate
further research in these areas.

1 Introduction

Bregman distances for (differentiable) convex functionals, originally introduced in
the study of proximal algorithms in [11] and named in [25], are a well-established
concept in continuous and discrete optimization in finite dimension. A classical
example is the celebrated Bregman projection algorithm for finding points in the
intersection of affine subspaces (cf., e.g., [26]). We refer to [26, 53] for introductory
and exhaustive views on Bregman distances in optimization.

Although convex functionals play a role in many other branches of mathematics,
e.g., in many variational problems and partial differential equations, the suitability
of Bregman distances in such fields was hardly investigated for several decades.
In mathematical imaging and inverse problems the situation changed with the
rediscovery and further development of Bregman iterations as an iterative image
restoration technique in the case of frequently used regularization techniques such
as total variation (cf. [50]), which led to significantly improved results compared to
standard variational models and could eliminate systematic errors to a certain extent
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(cf. [9, 16]). Another key observation increasing the interest in Bregman distances in
these fields was that they can be employed for error estimation, in particular for not
strictly convex and nonsmooth functionals (cf. [14]), which prevent norm estimates.

Although there are many obvious links to the main route of research in Bregman
distances and related optimization algorithms, there are several peculiar aspects
that deserve particular discussion. Besides missing smoothness of the considered
functionals and the fact that problems in imaging, inverse problems and partial dif-
ferential equations are naturally formulated in infinite-dimensional Banach spaces
such as the space of functions of bounded variation or Sobolev spaces, which have
only been considered in few instances before, a key point is that the motivation
for using Bregman distances in these fields often differs significantly from those
in optimization and statistics. In the following we want to provide an overview of
such questions and consequent developments, keeping an eye on potential directions
and questions for future research. We start with a section including definitions,
examples, and some general properties of Bregman distances, before we survey
aspects of Bregman distances in inverse problems and imaging developed in the last
decade. Then we proceed to a discussion of Bregman distances in partial differential
equations, which is less explicit and hence the main goal is to highlight hidden use of
Bregman distances and make the idea more directly accessible for future research.
Finally we conclude with a section on related recent developments.

2 Bregman Distances and Their Basic Properties

We start with a definition of a Bregman distance. In the remainder of this paper, let
X be a Banach space and J : X → R∪{+∞} be convex functionals. We first recall
the definition of subdifferential, respectively, subgradients.

Definition 1. The subdifferential of a convex functional J is defined by

∂J(u) = {p ∈ X∗ | J(u)+ 〈p,v−u〉 ≤ J(v) for all v ∈ X}. (1)

An element p ∈ ∂J(u) is called subgradient.

Having defined a subdifferential we can proceed to the definition of Bregman
distances, respectively, generalized Bregman distances according to [44].

Definition 2. The (generalized) Bregman distance related to a convex functional J
with subgradient p is defined by

Dp
J(v,u) = J(v)− J(u)−〈p,v−u〉, (2)

where p ∈ ∂J(u). The symmetric Bregman distance is defined by

Dp,q
J (u,v) = Dp

J(v,u)+Dq
J(u,v) = 〈p−q,u− v〉, (3)
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where p ∈ ∂J(u), q ∈ ∂J(v).

Note that in the differentiable case, i.e., ∂J(u) being a singleton, we can omit the

special subgradient and write DJ(v,u) or DJ′(u)
J (v,u).

By the definition of subgradients the nonnegativity is apparent:

Proposition 1. Let J be convex and p ∈ ∂J(u). Then

Dp
J(v,u)≥ 0 ∀ v ∈ X

and

Dp
J(u,u) = 0.

If J is strictly convex, then Dp
J(v,u)> 0 for v �= u.

We can further characterize vanishing Bregman distances as sharing a subgradi-
ent:

Proposition 2. Let J be convex and p ∈ ∂J(u). Then Dp
J(v,u) = 0 if and only if

p ∈ ∂J(v).

Since Bregman distances are convex with respect to the first argument, we can
also compute a subdifferential with respect to that variable, which is simply a shift
of the subdifferential of J:

Proposition 3. Let J be convex, p ∈ ∂J(u). Then

∂vDp
J(v,u) = ∂J(v)−p.

Concerning existence proofs for variational problems involving Bregman dis-
tance it is often useful to investigate lower semicontinuity properties. Since Breg-
man distances can be considered as affinely linear perturbations of the functional J
it is natural that these properties carry over:

Proposition 4. Let J be convex and q ∈ ∂J(v). Then the functional H defined by

H(u) = Dq
J(u,v)

is convex. Hence, if X is reflexive, then H is weakly lower semicontinuous. If X is
the dual of some Banach space Z and J is the convex conjugate of a functional on
Z, then q ∈ Z implies that H is lower semicontinuous in the weak star topology.
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2.1 Examples of Bregman Distances

In the following we provide several examples of Bregman distances as frequently
found in literature as well as some that received recent attention. This shall provide
further insights into the relation to other distance measures and the basic properties
of Bregman distances:

Example 1. Let X be a Hilbert space and J(u) = 1
2‖u‖2

X . Then ∂J(u) = {u} and
hence

Du
J(v,u) =

1
2
‖u− v‖2

X. (4)

Example 2. Let I be a countable index set and X = �1(I) with

J(u) = ‖u‖�1 = ∑
i∈I

|ui|.

Then the Bregman distance is given by

Dp
J(v,u) = ∑

i∈I

(qi −pi)vi = ∑
i,vi>0

(1−pi)|vi|+ ∑
i,vi<0

(1+pi)|vi|. (5)

Note that the above sums have nonzero entries only if the sign of ui does not match
the sign of vi, since pi = 1 if ui > 0 and pi =−1 if ui < 0.

Example 3. Let X = �1
+({1, . . . ,N}) with

J(u) =
N

∑
i=1

ui logui +1−ui,

which is called the logarithmic entropy (or Boltzmann entropy). Then the Bregman
distance is given by

Dp
J(v,u) =

N

∑
i=1

vi log
vi

ui
+ui − vi, (6)

which is known as Kullback–Leibler divergence. An analogous treatment applies to
X = L1

+(Ω), for a bounded domain Ω , and the continuous version

J(u) =
∫

Ω
(u(x) logu(x)+1−u(x)) dx,

resulting in the Bregman distance
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Dp
J(v,u) =

∫
Ω

(
v(x) log

v(x)
u(x)

+u(x)− v(x)

)
dx. (7)

2.2 Bregman Distances and Duality

Duality is a basic ingredient in convex optimization (cf. [32]) and hence it is also
interesting to understand some connections of duality and Bregman distances. For
this sake we employ the convex conjugate (also called Legendre–Fenchel transform)
of a functional J given by J∗ : X∗ → R∪{+∞} satisfying

J∗(p) = sup
u∈X

(〈p,u〉− J(u)) . (8)

Noticing that for p ∈ ∂J(u) we have J∗(p) = 〈p,u〉− J(u) one can immediately
rewrite the Bregman distance as

Dp
J(v,u) = J(v)+ J∗(p)−〈p,v〉, (9)

which can be interpreted as measuring the deviation of p from being a subgradient
in ∂J(v) or the deviation of v from being a subgradient in ∂J∗(p).

A key identity relates Bregman distances with respect to J to those with respect
to the convex conjugate J∗:

Proposition 5. Let p ∈ ∂J(u) and q ∈ ∂J(v). Then

Dp
J(v,u) = Dv

J∗(p,q). (10)

Proof. By simple reordering we find

Dp
J(v,u) = J(v)−〈p,v〉+ 〈p,u〉− J(u)

= J(v)−〈p,v〉+ J∗(p),

where we have used the maximality relation for the convex conjugate, which is
equivalent to p ∈ ∂J(u). With analogous reasoning we find J∗(q) = 〈q,v〉 − J(v)
and hence

Dp
J(v,u) = J(v)+ J∗(p)− J∗(q)−〈p−q,v〉= Dv

J∗(p,q),

noticing that q ∈ ∂J(v) implies v ∈ ∂J∗(q).

A second aspect of duality related to Bregman distance is the convex conjugate
of the latter, which shows that Bregman distances are dual to measuring differences
via a functional:
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Proposition 6. Let q ∈ ∂J(v) and H be defined by

H(u) = Dq
J(u,v). (11)

Then

H∗(p) = J∗(p+q)− J∗(q). (12)

Proof. We have

H∗(p) = sup
u
[〈p,u〉− J(u)+ J(v)−〈q,v−u〉]

= sup
u
[〈p+q,u〉− J(u)]− [〈q,v〉− J(v)] .

The first term equals J∗(p+q) by definition and the second equals J∗(q) since q ∈
∂J(v).

2.3 Bregman Distances and Fenchel Duality

In the following we further investigate some properties of Bregman distances for a
combination of two convex functionals F : X →R∪{+∞}, G : Y →R∪{+∞}. The
classical setting is related the Fenchel duality theorem (cf. [32]), where

J(u) := F(u)+G(Ku) (13)

with K : X → Y a bounded linear operator between Banach spaces. The Fenchel
duality theorem shows that under suitable conditions

inf
u

J(u) = sup
w

[F∗(−K∗w)+G∗(w)] , (14)

together with equations relating optimal solutions û and ŵ via subdifferentials of the
involved functionals

−K∗ŵ ∈ ∂F(û), Kû ∈ ∂G∗(w). (15)

The above duality opens the possibility to employ Bregman distances on the dual
problem as well as on the primal, which is nicely complemented by the duality
relations for Bregman distances of a functional and its convex conjugate.

In the following we derive a basic estimates for the variational problem (13),
which clarifies the relation of perturbations of one functional with duality and
Bregman distances. We shall assume that the regularity of F and G is such that
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∂J(u) = ∂F(u)+K∗∂G(Ku)

and the Fenchel duality theorem holds (cf. [32] for details).
Then we obtain the following estimate for perturbations of J:

Theorem 7. Let F, G and K be as above, and let G̃ be a perturbation of G satisfying
the same assumptions. Let u ∈ X be a minimizer of J with −K∗w ∈ ∂F(u) and ũ be
a minimizer of F(·)+ G̃(K·) with −K∗w̃ ∈ ∂F(ũ). Then

D−K∗w,−K∗w̃
F (u, ũ)≤ G∗(w̃)−G∗(w)+ G̃∗(w)− G̃∗(w̃). (16)

Proof. We have

D−K∗w,−K∗w̃
F (u, ũ) = 〈K∗w̃−K∗w,u− ũ〉

= 〈Ku, w̃−w〉+ 〈Kũ,w− w̃〉.

By the Fenchel duality theorem we have Ku ∈ ∂G∗(w) and Kũ ∈ ∂G∗(w̃), which
implies the assertion by inserting the subgradient inequality.

2.4 Bregman Distances for One-Homogeneous Functionals

The case of convex one-homogeneous functionals J, i.e.,

J(tu) = |t|J(u) ∀ t ∈ R, (17)

received strong attention recently, and also appears to be a particularly interesting
one with respect to Bregman distances. In the one-homogeneous case one has

J(u) = 〈p,u〉 (18)

for p ∈ ∂J(u). Thus, the Bregman distance simply reduces to

Dp
J(v,u) = J(v)−〈p,v〉. (19)

An interesting property in the one-homogeneous case is the fact that the convex
conjugate is the indicator function of a convex set C, i.e.,

J∗(p) =
{

0 if p ∈ C
+∞ else.

(20)

This sheds interesting light on (10), noticing that p ∈ ∂J(u) implies p ∈ C. Hence,
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Dp
J(v,u) = Dv

J∗(p,q) = 〈q−p,v〉.

An alternative way to see this property is (19) combined with 〈q,v〉= J(v).
In the one-homogeneous case we immediately find an example of Bregman

distances vanishing for v �= u. Let t > 0 and v = tu, then ∂J(v) = ∂J(u) implies
Dp

J(v,u) = 0. On the other hand, we observe that the Bregman distance distinguishes
different orientation. Choosing v = tu for t < 0 we have ∂J(v) = −∂J(u), hence
Dp

J(v,u) = 2J(v).

3 Applications in Inverse Problems and Imaging

In the last decade, Bregman distances have become an important tool in inverse
problems and image processing. Their main use is twofold: On the one hand,
they are of particular importance for all kinds of error estimates as already
sketched above and in particular they are quite useful for the analysis of variational
regularization techniques with non-differentiable regularization functionals. This
route has been initiated in [14] and subsequently expanded, e.g., in [8, 18, 34, 36–
38, 52, 54, 58]. On the other hand, Bregman distances can be used to construct
novel iterative techniques with superior properties compared to classical variational
regularization. This route goes back to [50] and was developed further, e.g., in
[12, 16, 22, 35, 47, 60, 61, 63], the methods also had a huge impact on various
applications (cf., e.g., [12, 28, 49]).

The basic setup we consider is the solution of a problem of the form Ku = f ,
where K : X → Y is a bounded linear operator between Banach spaces and f are
given data. Since in most cases K does not have a closed range (or is even a compact
operator) and data contain measurement errors, this problem can be ill-posed. To
cure this issue variational regularization methods employ a convex regularization
functional R : X → R ∪ {+∞}, which introduces the a-priori knowledge that
reasonable approximations of the solution u have small (minimal) values R(u).
Variational regularization methods make a compromise between approximating the
data f and minimizing R and solve a problem of the form

D(Ku, f )+αR(u)→ min
u∈X

, (21)

where D : Y × Y → R is an appropriate distance measure and α > 0 is a regular-
ization parameter to be chosen appropriately in dependence of the measurement
error (often referred to as data noise). Specific forms of the distance measure are
derived, e.g., via statistical modelling as the negative log-likelihood of the data
noise. Frequently D is simply a least-squares term, i.e., Y is a Hilbert space and

D(Ku, f ) =
1
2
‖Ku− f‖2

Y . (22)
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A classical example is the ROF-model for image denoising [55], where R is the
total variation seminorm, K is an embedding from BV(Ω)∩L2(Ω) into L2(Ω), and
D the squared L2-norm. For the whole section we shall assume that D is convex
with respect to the first variable, which is the case for almost all commonly used
examples.

3.1 Error Estimates

Error estimates for solutions of (21) are of interest with respect to two quantities:
First of all, the distance of the data f to the ideal data Ku∗, where u∗ is the
unknown ideal solution. This part is referred to as data error or noise. Second, the
regularization parameter α , which should equal zero in the case of ideal data and
introduces a systematic error in the case of perturbed data (when it needs to be
positive). In the setting of (13) we thus need to choose

F(u) = αR(u), G(Ku) = D(Ku, f ). (23)

The optimality conditions for a minimizer uα are then of the form

pα = K∗wα , pα ∈ ∂R(uα) −αK∗wα ∈ ∂D(Kuα , f ), (24)

where the subgradient of D is meant to be computed with respect to the first
argument for fixed f .

In order to obtain error estimates for some different data f̃ we choose G̃(Ku) =
D(Ku, f̃ ) and denote by ũα its corresponding regularized solution with

p̃α = K∗w̃α , p̃α ∈ ∂R(ũα).

Then (16) yields

αDK∗wα ,K∗w̃α
R (u, ũ)≤ G∗(w̃α)−G∗(wα)+ G̃∗(wα)− G̃∗(w̃α). (25)

To further illustrate the behaviour consider the case of a quadratic data fidelity

G(Ku) = D(Ku, f ) =
1
2
‖Ku− f‖2, (26)

for some squared Hilbert space norm, which yields G∗(w) = 1
2‖w‖2+〈w, f 〉. Hence,

αDK∗wα ,K∗w̃α
R (u, ũ)≤ 〈f − f̃ , w̃α −wα〉. (27)

In the case (26) one can see quite immediately why the (symmetric) Bregman
distance is an appropriate error measure for the estimates. Starting with the
optimality conditions
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Kuα − f +αwα = 0, pα = K∗wα ∈ R(uα),

Kũα − f +αw̃α = 0, p̃α = K∗w̃α ∈ R(ũα),

we find

K(uα − ũα)+α(wα − w̃α) = f − f ∗. (28)

The right-hand side is exactly the perturbation of the data, whose norm we want to
use to estimate errors in the solution uα . Hence we simply take the squared norm on
both sides and obtain by expanding on the left-hand side

‖K(uα − ũα)‖2 +2α〈wα − w̃α ,K(uα − ũα)〉+α2‖wα − w̃α‖2 = ‖f − f̃‖2.

Finally using K∗wα = pα we arrive at

‖K(uα − ũα)‖2 +2αDpα ,p̃α
R (uα , ũα)+α2‖wα − w̃α‖2 = ‖f − f̃‖2, (29)

which implies (by the nonnegativity of all involved terms) the immediate estimate

Dpα ,p̃α
R (uα , ũα)≤ 1

2α
‖f − f̃‖2 (30)

for the Bregman distance. Note that (29) is not just an estimate, but indeed an
equality for three error terms—the error in the image of the operator K (somehow
the residual), the error in the dual variables w, and the Bregman distance of
solutions. Here Ku and w are elements of a Hilbert space and it is of course natural
to measure their deviations in the corresponding norm, so (29) yields the Bregman
distance as the naturally induced error measure in the Banach space X.

Having obtained (29) it is interesting to note that one can alternatively obtain
estimates for two parts of the right-hand side by taking scalar products of (28)
with appropriate elements and subsequent application of the Cauchy–Schwarz,
respectively, Young’s inequality. The first is obtained by a scalar product with
Kuα −Ku∗, which yields

‖K(uα−ũα )‖2+αDpα ,p̃α
R (uα , ũα )=〈f−f̃ ,K(uα−ũα )〉 ≤ 1

2
‖f−f̃‖2+

1
2
‖K(uα−ũα )‖2,

hence

‖K(uα − ũα)‖2 +2αDpα ,p̃α
R (uα , ũα)≤ ‖f − f̃‖2. (31)

Using analogous reasoning, a scalar product of (28) with wα − w̃α leads to

2αDpα ,p̃α
R (uα , ũα)+α2‖wα − w̃α‖2 ≤ ‖f − f̃‖2. (32)
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3.2 Asymptotics

A key question in inverse problems is the behaviour of the regularized solution uα
as α → 0, which only makes sense if the noise in the data vanishes, i.e., f = Ku∗
for some desired solution u∗ ∈ X. It is well-known that for ill-posed problems the
convergence can be arbitrarily slow as α → 0 without further conditions on the
desired solution u∗. For a further characterization it is important to note that under
appropriate choice of α a limiting solution u∗ of the variational model (21) satisfies

R(u)→ min
u∈X

subject to Ku = Ku∗. (33)

This can be seen from the estimate

D(Kuα , f )+αR(uα)≤ D(Ku∗, f )+αR(u∗).

Using α → 0 and D(Ku∗, f ) → 0 we see that D(Kuα , f ) → 0, hence the limit is a
solution of Ku∗ = f . Dividing by α and using nonnegativity of D, we find

R(uα)≤ R(u∗)+
D(Ku∗, f )

α
,

and under the standard condition on the parameter choice

D(Ku∗, f )
α

→ 0,

we observe that the limit of uα cannot have a larger value of R than any other
solution of Ku = f , i.e., it solves (33).

The key observation in [14, 27] is that appropriate conditions in the case of
variational regularization is related to the existence of a Lagrange multiplier for
(33). The Lagrange functional is given by L(u,w) = R(u)−〈w,Ku−Ku∗〉, hence
the existence of a Lagrange multiplier is the so-called source condition

p∗ = K∗w∗ ∈ ∂R(u∗). (34)

Let us again detail the arguments in the case (26), where we can indeed use the
above error estimates like (26) with ũα = u∗ and w̃α = w∗. In order to obtain uα
as the solution of a variational problem we can indeed choose f̃ = Ku∗+αw∗ (note
that (34) is equivalent to the existence of some f̃ such that u∗ solves the variational
problem with data f̃ , cf. [14]). Hence, (29) becomes

‖K(uα −u∗)‖2 +2αDpα ,p∗
R (uα ,u

∗)+α2‖wα −w∗‖2 = ‖f −Ku∗ −αw∗‖2. (35)

Again with Young’s inequality we end up at
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Dpα ,p∗
R (uα ,u

∗)≤ ‖f −Ku∗‖2

α
+α‖w∗‖2, (36)

which gives the usual optimal choice α ∼ ‖f −Ku∗‖ of regularization parameter in
terms of the noise level, exactly as in the linear Hilbert space case (cf. [33]).

3.3 Bregman Iterations and Inverse Scale Space Methods

A frequent observation made for variational methods as discussed above is a
systematic bias, in particular the methods yield solutions uα with R(uα) too small,
which, e.g., results into a local loss of contrast in the case of total variation
regularization (the contrast loss is larger for smaller structures cf. [17]). In order
to cure such systematic errors in particular in the case of one-homogeneous
regularization it turned out that the well-known Bregman iteration is a perfect tool.
Instead of solving the variational problem only once one usually starts at u0 being a
minimizer of the regularization functional R, i.e., at the coarsest scale (if one agrees
that scale is defined by R). Then of course p0 = 0∈ ∂R(u0) and one can subsequently
iterate

uk+1 ∈ argmin
u∈X

(
D(Ku, f )+αDpk

R (u,uk)
)
, (37)

where the subgradient pk is updated via the optimality condition

pk+1 −pk ∈ − 1
α

K∗∂D(Kuk, f ). (38)

Noticing that we can again write pk = K∗wk one can also construct an iteration

wk+1 −wk ∈ − 1
α

∂D(Kuk, f ), (39)

from which one can derive the well-known equivalence to augmented Lagrangian
methods for minimizing R subject to Ku = f .

The convergence analysis in the case f = Ku∗ follows the well-known route for
the Bregman iteration, but due to the ill-posedness of Ku = f there is a particularly
interesting aspect in the case of noisy data f differing from the ideal Ku∗. If the range
of K is not closed, one has to take care of the situation where neither a solution
Ku = f nor some kind of least-squares solution (a minimizer of D(Ku, f )) exists in
X. Hence, the Bregman iteration has the role of an iterative regularization method
and needs to be stopped appropriately before the noise effects start to deteriorate the
quality of the solution. Indeed one can show that the Bregman distance Dpk(u∗,uk)
is decreasing during the first iterations up to a certain point when the residual
D(Kuk, f ) becomes too small (i.e. one approximates the noisy data stronger than
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Ku∗). Successful stopping criteria as the discrepancy principle are indeed based
on comparing the residual with an estimate of the noise D(Ku∗, f ) and stop when
D(uk, f ) drops below this estimate.

In imaging a particularly interesting and quite related aspect of Bregman
iterations is the scale behaviour. As mentioned above, with scale defined as above
by properties of the regularization functional R, the Bregman iteration inserts finer
and finer scales during its progress. In order not to miss certain scales it is obviously
interesting to make small enough steps, which amounts to choosing α sufficiently
large. For the limit of α → ∞ one can interpret the iteration as a backward Euler
discretization (with timestep 1

α ) of a flow, which has been called inverse scale space
method by a reminiscence to so-called scale space methods in image processing,
which exhibit the opposite scale behaviour (cf. [57, 59]). The inverse scale space
flow is a solution of the differential inclusion

∂tp(t) ∈ −K∗∂D(Ku(t), f ), p(t) ∈ ∂J(u(t)), (40)

with initial value u(0) = u0 such that p(0) = 0 ∈ ∂R(u0). It can be interpreted by a
gradient flow for the subgradient p on a dual functional (cf. [17]) or as a doubly
nonlinear evolution equation. For the latter we will give an explanation on the
analysis in terms of Bregman distances related to the involved functionals in the
next section, which is also the appropriate way to analyse the inverse scale space
method.

An unexpected result is the behaviour of the inverse scale space flow for
polyhedral functions such as the �1-norm. Roughly speaking the polyhedral case
means that for any u ∈ X a subdifferential ∂R(u) can be obtained via convex
combinations of a finite number of elements (independent of u). It has been shown
(cf. [20, 48]) that in such cases and D(Ku, f ) = 1

2‖Ku− f‖2 the dynamics of the
solution u(t) is piecewise constant in time, i.e., quite far from a continuous flow,
while the dynamics of the subgradients p(t) is piecewise linear in time. Interestingly,
the time steps tk at which the solution changes can be computed explicitly, and the
value of u(tk) is obtained by minimizing

‖Ku− f‖2 subject to p(tk) ∈ ∂R(u).

This is particularly attractive in the case of sparse optimization with R being the
�1-norm, since the condition p(tk) ∈ ∂R(u) defines the sign of u and in particular
the set of zeros. This means that the least-squares problems have to be solved on a
rather small support, which is highly attractive for computational purposes (cf. [20]).
Let us briefly explain the behaviour for R : RN → R

+ being the �1-norm and some
arbitrary differentiable functional G on the right-hand side, i.e.,

∂tpi(t) =−∂uiG(u(t)). (41)

In this case the subdifferential is the multivalued sign of ui(t)) and for u0 = p0 = 0
we obviously find ui(t) = 0 for sufficiently small time since |pi(t)|< 1, which holds
for all i. Hence for t < t1 with t1 to be determined we find
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∂tpi(t) =−∂uiG(0), (42)

which can be integrated easily to

pi(t1) =−t1∂uiG(0). (43)

The key observation is that ui �= 0 for some i is only possible if |pi(t1)| = 1. This
implies that the first time with possibly nonzero u is

t1 =
1

‖∂G(0)‖∞
. (44)

At time t1 the sign of all ui is determined by pi(t1) and one can check that a solution
is obtained by minimizing

u(t1) ∈ arg min
u∈RN

G(u) subject to pi(t1) ∈ ∂ |ui(t1)|, (45)

or in other words

u(t1) ∈ arg min
u∈RN

G(u) subject to pi(t1)ui(t1)≥ |ui(t1)| ∀i.

The optimality condition for the latter problem can be written as

∂uiG(u(t1))+λi(qi −pi(t1)) = 0, qi ∈ ∂ |ui(t1)|. (46)

for some λ ∈ R
N satisfying the complementarity conditions

λi ≥ 0, λi(pi(t1)ui(t1)−|ui(t1)|) = 0.

This implies ∂uiG(u(t1)) = 0 of ui(t1) �= 0, ∂uiG(u(t1))≥ 0 if ui(t1) = 0 and pi(t1) =
1, and ∂uiG(u(t1))≤ 0 if ui(t1) = 0 and pi(t1) =−1. This implies that we can find a
time interval (t1, t2) such that

u(t) = u(t1), p(t) = p(t1)− (t− t1)∂G(u(t1))

is a solution, and t2 is again defined as the minimal time where there exists i such
that |pi(t2)|= 1 and |pi(t)|< 1. Again, the solution at time t2 is defined by a solution
of the variational problem

u(t2) ∈ arg min
u∈RN

G(u) subject to pi(t2)ui(t2)≥ |ui(t2)| ∀i.

By an inductive procedure one obtains that the same kind of dynamics goes on for
all t until it stops after finite time steps tn at a minimizer of G.
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As mentioned above the scale behaviour of the inverse scale space flow is highly
attractive in image processing. In the polyhedral case there is a somehow exact
decomposition into different scales by the steps made at times tk. Indeed ∂tu is a sum
of concentrated measures in time, and one may eliminate certain scales by leaving
out the corresponding jump u(tk + τ)−u(tk − τ). This observation leads the way to
a much more general definition of filters from the inverse scale space method, which
was discussed in [21]

∂tp(t) = f −u(t), p(t) ∈ ∂R(u(t)). (47)

A certain scale filter is defined by

F(f ) = u0 +
∫ ∞

0
w(t)d∂tu(t), (48)

with measurable weights w(t) ∈ [0,1]. In the case w ≡ 1 one simply obtains f , while
certain scales can be damped out choosing w(t) = 0 for t in an appropriate interval.
The design of filters for certain purpose is an ongoing subject of research.

4 Applications in Partial Differential Equations

In the following, we provide an overview of different aspects of partial differential
equations, where Bregman distances are a useful tool. Unlike the case of inverse
problems and image processing discussed above the notion of Bregman distance is
not used widely in this field, and indeed most applications do not refer to this term or
use it in a very hidden way. Our goal in the following section is to work out the basic
ideas related to Bregman distances in a structured way, which sheds new light on
many established techniques and hopefully also opens routes towards novel results.
For this sake we employ a formal approach and avoid technicalities such as detailed
function spaces, which of course can be worked out from existing literature.

4.1 Entropy Dissipation Methods for Gradient Systems

Entropy dissipation methods are a frequently used tool in partial differential
equations (cf. [4, 41]), which is often based on using the logarithmic entropy

E(u) =
∫

Ω
u(x) logu(x) dx (49)

as a Lyapunov functional, e.g., in diffusion equations (cf., e.g., [2–5, 24]), kinetic
equations (cf., e.g., [4]), or fluid mechanics (cf., e.g., [56]). In particular in gradient
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systems also different convex functionals are used regularly and in a structured way.
The abstract form of a gradient system is

∂tu(t) =−L(u(t))E′(u(t)), (50)

where L(u) is a linear symmetric positive semi-definite operator on appropriate
spaces and E a convex energy functional, which we assume differentiable for
simplicity (similar treatment for non-differentiable convex functionals is possible
by using subgradients, but beyond our scope). The entropy dissipation property can
be verified by the straightforward computation

d
dt

E(u(t)) = E′(u(t))∂tu(t) =−〈E′(u(t)),L(u(t))E′(u(t))〉 ≤ 0. (51)

The negative of the right-hand side is frequently called entropy dissipation func-
tional D(u(t)) and can be used to derive further quantitative information about the
decay to equilibrium. A standard example (cf. [4, 24]) are nonlinear Fokker–Planck
equations of the form

∂tu = ∇ · (m(u)∇(e′(u)+V)) (52)

on a domain Ω ⊂ R
d with no-flux boundary conditions. Here, e : R+ → R is a

convex function, m : R+ → R
+ a (potentially nonlinear) mobility function, and V :

Ω → R an external potential. Recently also systems of Fokker–Planck equations as
well as certain reaction–diffusion systems of the form

∂tui = DiΔui +Fi(u1, . . . ,uM), i = 1, . . . ,M (53)

have been investigated with entropy dissipation techniques (cf. [29, 42, 45]).
The major purpose of entropy dissipation techniques is to obtain qualitative or

ideally quantitative results about the decay to equilibrium for transient solutions.
An equilibrium solution u∞ is a minimizer of E on a convex set K, to which also the
transient solution u(t) belongs for all t. An example is the Fokker–Planck equation
with linear mobility m(u) = u, where K is the set of nonnegative integrable functions
with prescribed mean value. Hence, u∞ satisfies

E′(u∞)(u−u∞)≥ 0 ∀ u ∈ K. (54)

If further the operator L(u) is such that

L(u)E′(u∞) = 0 ∀ u ∈ K, (55)

which is indeed the case for the typical examples, then one can rewrite the gradient
system as
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∂tu(t) =−L(u(t))(E′(u(t))−E′(u∞)). (56)

Hence, the right-hand side is expressed in a difference of energy gradients for the
transient and equilibrium solution. In a similar way, the entropy dissipation can be
rewritten in terms of a distance between those and the Bregman distance (usually
called relative entropy) plays a key role for this purpose. One observes that

d
dt

DE′(u∞)
E (u(t),u∞) = E′(u(t))∂tu(t)−E′(u∞)∂tu(t)

= −〈E′(u(t))−E′(u∞),L(u(t))(E
′(u(t))−E′(u∞))〉

=: −F(u(t),u∞).

Of course, the above computation holds for smooth solutions only, for weak
solutions one can usually derive the time-integrated version

DE′(u∞)
E (u(t),u∞)+

∫ t

s
F(u(τ) dτ ≤ DE′(u∞)

E (u(s),u∞). (57)

The above computation shows that entropy dissipation can be rephrased as the
decrease of the Bregman distance between stationary and transient solution. We
notice that the use of the Bregman distance is not essential in this computation, but
the understanding of this structure can be quite beneficial, in particular if one wants
to use dual variables, the so-called entropy variables

ϕ(t) = E′(u(t)), ϕ∞ = E′(u∞). (58)

The entropy variable ϕ solves the system

∂t(E
′(ϕ(t)) =−L((E∗)′(ϕ(t)))ϕ(t), (59)

where E∗ is the convex conjugate of E. When analysing the dual flow (59) a
dissipation property can now be derived immediately using relation (10). Thus, we
obtain a dual entropy dissipation of the form

d
dt

Du(t)
E∗ (ϕ∞,ϕ(t)) =−−〈ϕ(t)−ϕ∞,L((E

∗)′(ϕ(t)))(ϕ(t)−ϕ∞)〉. (60)

The duality relation is particularly interesting for constructing approximations in
terms of the entropy variables, as, e.g., carried out for degenerate cross-diffusion
systems in (cf. [19, 40, 62]).
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4.2 Lyapunov Functionals for Gradient Systems
Out of Equilibrium

The appropriate use of Bregman distances seems to be less explored, but maybe
even more crucial for the derivation of Lyapunov functionals if gradient systems
are perturbed out of equilibrium. The simplest example is the linear Fokker–Planck
equation with non-potential force as investigated in [5]

∂tu = ∇ · (∇u+uF) in Ω ×R
+, (61)

supplemented by no-flux boundary conditions

(∇u+uF) ·n = 0 on ∂Ω ×R
+. (62)

If the vector field F is not the gradient of some potential function, then a stationary
solution cannot be constructed as the minimizer of an entropy functional. However,
the existence and uniqueness of a stationary solution can be shown under quite
general assumptions on F (cf. [31]). In a form similar to gradient flows (cf. [1, 53])
we write (61) as

∂tu = ∇ · (u(∇e′(u)+F)), e(u) = u logu+1−u, (63)

which suggests to further investigate distances based on the entropy functional

E(u) =
∫

Ω
e(u) dx =

∫
Ω
(u logu−u+1) dx. (64)

The dissipation of the relative entropy can be computed via

d
dt

DE′(u∞)
E (u(t),u∞) =

∫
Ω
(e′(u(t))− e′(u∞))∂tu(t) dx

=
∫

Ω
(e′(u(t))− e′(u∞))∇ ·u(∇(e′(u(t))

− e′(u∞))+∇e′(u∞)+F) dx

=−
∫

Ω
u|∇(e′(u(t))− e′(u∞))|2 dx

+
∫

Ω
(e′(u(t))− e′(u∞))∇ ·u(t)(∇e′(u∞)+F) dx,

where we have used the no-flux boundary conditions

(∇e(u(t))+F) ·n = (∇e(u∞)+F) ·n = 0 on ∂Ω ×R
+
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in order to apply integration by parts in the first term on the right-hand side. The
second term is simplified via

∇ · (u(∇e′(u∞)+F))

= ∇ · (u(t)
u∞

u∞(∇e′(u∞)+F))

= u∞∇(
u(t)
u∞

) · (∇e′(u∞)+F))

= u∞∇exp(e′(u(t))− e′(u∞)) · (∇e′(u∞)+F))

= u∞ exp(e′(u(t))− e′(u∞))∇(e′(u(t))− e′(u∞)) · (∇e′(u∞)+F)).

With Ψ satisfying Ψ ′(z) = zexp(z) we can further write

∫
Ω
(e′(u(t))− e′(u∞))∇ ·u(t)(∇e′(u∞)+F) dx =

∫
Ω

∇Ψ(e′(u(t))− e′(u∞)) ·u∞(∇e′(u∞)+F) dx = 0,

which can be seen again through integration by parts. Hence, we finally obtain the
decrease of the Bregman distance via

d
dt

DE′(u∞)
E (u(t),u∞) =−

∫
Ω

u|∇(e′(u(t))− e′(u∞))|2 dx, (65)

and the logarithmic Sobolev inequality (cf. [3]) implies exponential convergence to
equilibrium.

Another example are boundary-driven nonlinear Fokker–Planck equations

∂tu = ∇ · (∇m(u)+m(u)F) in Ω ×R
+, (66)

considered in [10] with Dirichlet boundary conditions

u = g on ∂Ω ×R
+. (67)

We mention that an analogous analysis holds in the case of no-flux boundary
conditions (in which case we have a direct generalization of the nonsymmetric
Fokker–Planck equation above) or mixed Dirichlet and no-flux boundary conditions.
Bodineau et al. [10] construct Lyapunov functionals of the form

H(u,u∞) =
∫

Ω

∫ u(x,t)

u∞(x)
Φ ′

(
m(s)

m(u∞(x))

)
ds dx, (68)
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where Φ is a nonnegative function with unique minimum at zero. Such a construc-
tion seems far from being intuitive, but it becomes much more clear for Φ being the
logarithmic entropy, i.e., Φ ′(t)= log t. In this case the Lyapunov functional becomes

H(u,u∞) =
∫

Ω

∫ u(x,t)

u∞(x)
logm(s)− logm(u∞(x)) ds dx, (69)

and with a function e such that e′(s) = logm(s), we further obtain

H(u,u∞) =
∫

Ω
(e(u(x, t))− e(u∞(x))− e′(u∞(x))(u(x, t)−u∞(x))) ds dx, (70)

which is nothing but the Bregman distance for the entropy functional

E(u) =
∫

Ω
e(u) dx, with e′(u) = logm(u). (71)

Since Eq. (66) can be written as

∂tu = ∇ · (m(u)(∇ logm(u)+F)), in Ω ×R
+, (72)

the above form of E is also a natural choice. The detailed computations for the
entropy dissipation are indeed completely analogous to the case of the linear
Fokker–Planck equation, the crucial point appears to be the logarithmic relation
between entropy derivatives e′(u) and mobilities m(u).

4.3 Doubly Nonlinear Evolution Equations

A generalization of gradient systems are doubly nonlinear evolution equations with
a gradient structure either of the form

∂tp(t) ∈ −∂G(u(t)), p(t) ∈ ∂F(u(t)) (73)

or as

∂F(∂tu)+∂G(u(t)) � 0. (74)

The best studied case, which is also the one where both coincide, corresponds to
F(u) = 1

2‖u‖2 for a norm in a Hilbert space, which yields the classical gradient flow

∂tu(t) ∈ −∂G(u(t)). (75)
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We have seen a system in the form (73) already above in the inverse scale space
method, while the form (74) appears frequently in mechanical problems (cf., e.g.,
[46] and the references therein). There is indeed a duality relation for (73) and (74).
Starting from (73) we obtain u(t)∈ ∂G∗(−∂tp(t))∩∂F∗(p(t)), respectively −u(t)∈
∂G∗(∂tp(t)) if G satisfies a symmetry condition around zero. This yields

∂G∗(∂tp(t))+∂F∗(p(t)) �= 0,

the analogue of (74).
Doubly nonlinear evolution equations have recently been investigated exten-

sively, and in particular tools from convex analysis have been employed (cf. [46]).
Here we add our Bregman distance point of view to derive estimates for such
equations. Let us start with a straightforward computation on the change of the time
derivative of the Bregman distance:

Lemma 1. Let F be differentiable and u a solution of (73). Then

d
dt

Dp(t)
F (v,u(t)) =−〈∂tp(t),v−u(t)〉 ≤ G(v)−G(u(t)).

This can be used to quantify the distance of u(t) to a minimizer of G:

Corollary 1. Let F be differentiable, u∞ a minimizer of G, and u a solution of (73).
Then

d
dt

Dp(t)
F (u∞,u(t))+D0

G(u(t),u∞)≤ 0. (76)

Since it is straightforward to see

d
dt

D0
G(u(t),u∞) =

d
dt

G(u(t))≤ 0 (77)

we see after integrating (76) in time

Dp(t)
F (u∞,u(t))+ tD0

G(u(t),u∞)≤ Dp(t)
F (u∞,u(t))

+
∫ t

0
D0

G(u(s),u∞) ds ≤ Dp(0)
F (u∞,u(0)),

leading to linear decay of the Bregman distance:

Theorem 2. Let F be differentiable, u∞ a minimizer of G, and u a solution of (73).
Then

D0
G(u(t),u∞)≤ 1

t
Dp(0)

F (u∞,u(0)). (78)
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4.4 Error Estimates for Nonlinear Elliptic Problems

We finally turn our attention to the analysis of discretization methods for nonlinear
elliptic problems such as the p-Laplace equation. Such elliptic problems are
optimality conditions of some energy functional of the form

E(u) = J(u)−〈f ,u〉, (79)

where J is a convex functional on a Banach space X, typically a Sobolev space of
first order derivatives. The elliptic differential equation (or more general differential
inclusion) is the optimality condition

p = f , p ∈ ∂J(u) (80)

A canonical example is the p-Laplace equation

−∇ · (|∇u|p−2∇u
)
= f , (81)

which is related to the functional

J(u) =
1
p

∫
Ω
|∇u(x)|p dx. (82)

For variational discretizations of such problems the Bregman distance appears
to be a quite useful tool, which is still not fully exploited. In many approaches the
Bregman distance is used in a hidden way and strict convexity is used to obtain an
estimate in terms of the underlying norms (with potentially suboptimal constants,
however). For the p-Laplace equation such an approach is carried out in [30]. Again
in the limiting case p = 1 related to total variation minimization the Bregman
distance is even more crucial and appears, e.g., in [6]. Here we briefly sketch the
obvious role of Bregman distances in Galerkin discretizations of the form

E(u)→ min
u∈Xh

, (83)

where Xh is a finite-dimensional subspace of X, e.g., constructed by finite elements.
Let us start by pointing out the basic structure of error estimates for Galerkin

methods in the linear case related to the minimization of a positive definite quadratic
form

J(u) = B(u,u), (84)

where B : X × X → R is a bounded and coercive bilinear form. The optimality
condition in weak form is given by
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B(u,v) = 〈f ,v〉 ∀ v ∈ X, (85)

and the Galerkin discretization yields a solution uh ∈ Xh of

B(uh,v) = 〈f ,v〉 ∀ v ∈ Xh. (86)

Error estimates for such discretizations are obtained in two steps: first the error
between u and uh is estimated by the projection error to the subspace Xh and then the
projection error is estimated, e.g., via the interpolation error. The crucial property
for the first step is the so-called Galerkin orthogonality

B(u−uh,v) = 0 ∀ v ∈ Xh, (87)

which implies

B(u−uh,u−uh) = B(u−uh,u− v) ∀ v ∈ Xh, (88)

and by the Cauchy–Schwarz inequality for the positive definite bilinear form B

B(u−uh,u−uh)≤ B(u− v,u− v) ∀ v ∈ Xh. (89)

In other words uh is the projection of u on the subspace Xh, when the (squared) norm
induced by B is used as a distance measure.

Since the term B(u − v,u − v) above is just the Bregman distance related to
quadratic functional J one might think of an analogous property in the case of
nonquadratic J, when the Bregman projection is used. Indeed, we can derive such a
relation in the case of arbitrary convex J. For this sake let again u be a minimizer of
E and uh a minimizer of E constrained to the subspace Xh. Then we have f ∈ ∂J(u)
and thus, since uh minimizes E on Xh, we have for all v ∈ Xh

Df
J(uh,u) = J(uh)− J(u)−〈f ,uh −u〉

= E(uh)− J(u)+ 〈f ,u〉
≤ E(v)− J(u)+ 〈f ,u〉.

Rewriting the last term we hence obtain the Bregman projection property

Df
J(uh,u)≤ Df

J(v,u), ∀ v ∈ Xh. (90)

This observation opens a way to analyse Galerkin methods for such nonlinear
problems in the same way as in the linear case, the key step to be developed for
specific problems and specific discretizations (Xh) is the estimation of the Bregman
projection error.
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Note again the role of the Bregman distance for error estimation: The one-sided
distance Df

J(uh,u) is particularly suitable for the estimation of a-priori errors as
above, while a-posteriori error estimation should rather be based on the distance
Dph

J (u,uh) with ph ∈ ∂J(uh). We have by the minimizing property of u

Dph
J (u,uh) = J(u)− J(uh)−〈ph,u−uh〉

= E(u)−E(uh)+ 〈ph − f ,uh −u〉
≤ 〈ph − f ,uh −u〉.

Using the duality relation u ∈ ∂J∗(f ), this could be further estimated to the full
a-posteriori estimate

Dph
J (u,uh)≤ 〈ph − f ,uh〉+ J∗(2f −ph)− J∗(f ). (91)

For practical purposes the above abstract estimate is not useful in most cases, since
computing the adjoint J∗ means to solve a nonlinear partial differential equation
as well, which might be as difficult as the original one. However, the general
strategy can be exploited together with specific properties of the functional J and
the subspace Xh. In particular for gradient energies of the form

J(u) =
∫

Ω
j(∇u) dx (92)

one can derive alternative versions using only the convex conjugate j∗, which is
significantly easier to compute.

5 Further Developments

In this final section we discuss some aspects of Bregman distances that came up
recently and will potentially have strong further impact, in particular we will explore
some developments related to probability.

5.1 Uncertainty Quantification in Inverse Problems

Since Bregman distances appear to be a suitable tool for estimates in certain
nonlinear deterministic problems, it seems natural to exploit them also in the
stochastic counterparts of such problems. The obvious measure for error estimates
is then the expected value of the Bregman distance with respect to the stochastic
quantity. Such approaches have been used successfully in particular in statistical
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inverse problems (cf., e.g., [58]), which we also want to discuss in the following.
In order to avoid technicalities we restrict ourselves to a purely finite-dimensional
setup.

Consider the inverse problem Ku = f , where K : RN → R
M and the data are

generated from a true solution u∗ with additive Gaussian noise, i.e.,

f = Ku∗+σn, (93)

with n a Gaussian random variable with zero mean and covariance matrix IM . Let
again R be a convex regularization functional and uα a solution of the variational
problem

J(u) =
1

2σ2 ‖(Ku− f )‖2 +αJ(u)→ min
u∈RN

. (94)

Then uα satisfies the optimality condition

1
σ2 K∗K(uα −u∗)+αpα =

1
σ2 K∗n, pα ∈ ∂R(uα), (95)

which implies pα = K∗wα . Now assume u∗ satisfies the source condition (34), then
we have

K(uα −u∗)+ασ2(wα −w∗) = n−ασ2w∗.

Taking the squared norm and subsequently expectation with respect to w in this
identity we obtain

2ασ2E[Dpα ,p∗
R (uα ,u

∗)] ≤ E[‖K(uα −u∗)‖2 +2ασ2Dpα ,p∗
R (uα ,u

∗)+α2σ4‖wα −w∗‖]2

= E[‖n−ασ2w∗‖2]

= E[‖n‖2]+α2σ4‖w∗‖2 = σ2M+α2σ4‖w∗‖2.

Thus, the expected error in the Bregman distance is estimated by

E[Dpα ,p∗
R (uα ,u

∗)]≤ M
2α

+
ασ2

2
‖w∗‖2. (96)

We notice that the above approach not only yields an estimate of the Bregman
distance, but also indeed an exact value for the sum of three error measures, in
addition to the Bregman distance also the residual error as well as the error in the
source space (related to wα −w∗). Usually the latter is the largest of the three, so one
needs to expect a blow up of this term as M → ∞ if α is not increasing as M. If one
is interested in the first two terms only, one can simply use a duality product with
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uα −u∗ in (95) and subsequently estimate the expected value of the right-hand side
in a different way, which may lead to robust estimates in terms of M, respectively,
estimates that can be carried out for infinite-dimensional white noise.

An application of Bregman distances in Bayesian modelling was recently
investigated in [13], considering frequently used posterior densities of the form

π(u|f )∼ e
−‖Ku−f‖2

2σ2 −αR(u)
, (97)

where again R is a convex and Lipschitz continuous functional on R
N (generaliza-

tions to posterior distributions in infinite-dimensional spaces where further studied
in [39]). It has been shown that the posterior can be centred around the so-called
maximum a-posteriori probability (MAP) estimate û, which maximizes p(u|f ), in
the form

π(u|f )∼ e
−‖Ku−Kû‖2

2σ2 −αDp̂
R(u,û). (98)

Based on the observation

〈s,u− û〉= ‖Ku−Kû‖2

σ2 +α〈p− p̂,u− û〉. (99)

for p ∈ ∂R(u) and

s =
1

σ2 K∗(Ku− f )+αp ∈ ∂ (− logπ(u|f )),

a Bayes cost of the form

Γ (v) = Ep(u|f )

[‖Ku−Kv‖2

σ2 +α〈q− p̂,v− û〉
]

(100)

has been introduced for q ∈ ∂R(v) (note that selection of p ∈ R(u) is only needed on
a set of zero measure due to Rademacher’s theorem). A simple integration by parts
argument then shows that the MAP-estimate û is a minimizer of the Bayes cost,
which is a quite natural choice compared to the highly degenerate cost usually used
to characterize MAP estimates (cf. [43]). A direct consequence is the fact that the
MAP estimate has smaller Bregman distance in expectation than the frequently used
conditional mean estimate, hence one obtains a theoretical argument explaining the
success of MAP estimates in practice.
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5.2 Bregman Distances and Optimal Transport

Bregman distances can be used also as a cost in optimal transport, which has been
investigated in [23] for a convex and differentiable functional J on R

N . Given two
probability measures μ and ν , an optimal transport plan is a probability measure γ
on R

N ×R
N with marginals μ and ν minimizing the functional

F(γ) =
∫
RN×RN

DJ′(u)
J (v,u) dγ(v,u). (101)

The resulting optimal value of F can be interpreted as a transport distance between
the measures μ and ν .

Besides the important question of well-posedness solved in (cf. [23]) there
are several interesting problems such as the existence of transport maps under
certain condition (i.e. concentration of γ on a set described by the graph of a map
T : RN → R

N) as well as relations to uncertainty quantification. A first example
is the Bayes cost approach described in the previous section, which can indeed be
interpreted as the transport distance between the posterior distribution and a measure
concentrated at the MAP estimate. This motivates further research in the future,
an obvious next step might be to estimate distances between different posterior
distributions in transport distances related to Bregman distances.

A different use of Bregman distances in optimal transport was recently made in
[7] for the solution of Monge–Kantorovich formulations in optimal transport. They
consider entropic regularizations of the problem, i.e., for ε > 0 they minimize a
discrete version of

Fε(γ) =
∫
RN×RN

C(v,u) dγ(v,u)+ εE(γ), (102)

where E is the entropy

E(γ) =
∫
RN×RN

log

(
dγ
dL

)
dγ(v,u), (103)

where dγ
dL is the Radon–Nikodym derivative with respect to the Lebesgue measure.

The key observation is that the minimization of Fε can be rewritten equivalently
as the minimization of the Kullback–Leibler divergence, i.e., the Bregman distance
related to E, between γ and the Gibbs measure ϕε with density e−C/ε

DE(γ ,ϕε)→ min
γ
, (104)

which transforms the problem into a Bregman projection problem of the Gibbs
density onto the set of plans with given marginals, which can be computed much
more efficiently than the original transport control problem. Note that the general
procedure can be carried out as well with an arbitrary convex functional whose
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domain are positive densities, the corresponding Gibbs density is then to be defined
as ϕε = (E∗)′(−C/ε). A particular computational advantage of the logarithmic
entropy is the fact that iterative Bregman projections can be computed explicitly and
realized with low complexity, in the discrete sets it only needs multiplications and
scalar products of diagonal matrices with the matrix discretizing the Gibbs measure
(cf. [7] for further details).

5.3 Infimal Convolution of Bregman Distances

Infimal convolution of convex functionals become popular recently in image
processing in order to combine favourable properties of certain regularization func-
tionals, e.g., total variation and higher-order versions thereof. A quite unexplored
topic is the infimal convolution of Bregman distances, however. Since they are
convex functionals of the first variable one may consider the infimal convolution

[Dp1
R (·,u1)�Dp2

R (·,u2)](u) = inf
v∈X

[Dp1
R (u− v,u1)+Dp2

R (v,u2)], (105)

with an obvious extension to more than two values.
Of particular interest in imaging applications appears to be the case of p2 =−p1

and u2 = −u1 for a one-homogeneous functional such as total variation. The latter
was used to obtain a regularization functional enforcing partly equal edge sets
(REF colorbregman). While minimizing the Bregman distance for total variation
strongly favours edge sets with jumps of equal sign (see also the discussion related
to orientation for one-homogeneous functionals in Sect. 2.4), the infimal convolution
of Bregman distances eliminates this part and hence measures differences in
edge sets rather than jumps of the same sign. A further study of theoretical
properties as well as applications of such kind of infimal convolution of Bregman
distances remains an interesting property for future research. Obvious candidates are
problems in compressed sensing where one first of all aims at obtaining the correct
support of the solution rather than the sign.
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