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Introduction

Jean-Baptiste Hiriart-Urruty, Adam Korytowski, Helmut Maurer,
and Maciej Szymkat

This book constitutes a collection of developed versions of plenary papers presented
(with one exception) at the 16th French–German–Polish Conference on Optimiza-
tion, held in Kraków in 2013. They are authored by researchers of international
repute in the field of optimization and optimal control. The book includes a number
of new theoretical results and applications in biomechanics, medical technology,
image processing, robot control, etc.

The purpose of the book was to give the authors an opportunity to present their
new results to a wider audience than it was possible at the conference, and in an
extended, more comprehensive form. The motivation was that the topics of the
articles are related to areas of theory and applications that are of most vivid interest
to the scientific community, such as image processing, partial differential inclusions,
shape optimization, optimal control in medical and rehabilitation technology, or
sufficient conditions of optimality.

The first paper, by Martin Burger, provides an overview of recent developments
related to Bregman distances. Approaches in inverse problems and image processing
based on Bregman distances are discussed, which have evolved to a standard tool
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2 J.-B. Hiriart-Urruty et al.

in these fields in the last decade. Related issues in the analysis of nonlinear partial
differential equations with a variational structure are also considered.

The paper by Piotr Kalita studies the operator version of a first order in time
partial differential inclusion and its time discretization by implicit Euler scheme.
The semidiscrete trajectories are proved to converge to the solution of the original
problem. It is shown that, as times goes to infinity, all trajectories are attracted
towards the so-called global attractors. It is also proved that the semidiscrete
attractors converge upper-semicontinuously to the global attractor of the time
continuous problem.

In the paper by Günter Leugering, Jan Sokołowski, and Antoni Żochowski, non-
smooth shape optimization problems for variational inequalities are considered. The
variational inequalities model elliptic boundary value problems with the Signorini
type unilateral boundary conditions. The shape functionals are given by the first
order shape derivatives of the elastic energy. The topological optimization is used
for passive control of singularities of weak solutions. The Hadamard directional
differentiability is employed to sensitivity analysis. The topological derivatives of
nonsmooth integral shape functionals for variational inequalities are derived. The
obtained expressions for derivatives prove useful in numerical optimization for
contact problems.

The next paper, by Katja Mombaur, is devoted to applications of optimal control
and inverse optimal control in the field of medical and rehabilitation technology,
in particular in human movement analysis, therapy and improvement by means of
medical devices. Efficient methods for the solution of optimal control and inverse
optimal control problems are discussed. Example applications of these methods are
considered in the development of mobility aids for geriatric patients, the design
of exoskeletons, the analysis of running motions with prostheses, the optimal
functional electrical stimulation of hemiplegic patients, as well as stability analysis.

The last paper, by Nikolai Osmolovskii and Helmut Maurer, provides a survey
on no-gap second-order optimality conditions in the calculus of variations and
optimal control, and a discussion of their further development. Such conditions are
formulated for discontinuous controls in optimal control problems with endpoint
and mixed state-control constraints, and a free control time. For problems with the
control appearing linearly in the Pontryagin function, it is shown that the second-
order sufficient condition for the Induced Optimization Problem together with the
so-called strict bang-bang property ensure second-order sufficient conditions for the
original control problem. The theoretical results are illustrated by three applications:
to optimal control of chemotherapy of HIV, time-optimal control of robots, and
control of the Rayleigh equation.



Bregman Distances in Inverse Problems
and Partial Differential Equations

Martin Burger

Abstract The aim of this paper is to provide an overview of recent development
related to Bregman distances outside its native areas of optimization and statistics.
We discuss approaches in inverse problems and image processing based on Bregman
distances, which have evolved to a standard tool in these fields in the last decade.
Moreover, we discuss related issues in the analysis and numerical analysis of non-
linear partial differential equations with a variational structure. For such problems
Bregman distances appear to be of similar importance, but are currently used only in
a quite hidden fashion. We try to work out explicitly the aspects related to Bregman
distances, which also lead to novel mathematical questions and may also stimulate
further research in these areas.

1 Introduction

Bregman distances for (differentiable) convex functionals, originally introduced in
the study of proximal algorithms in [11] and named in [25], are a well-established
concept in continuous and discrete optimization in finite dimension. A classical
example is the celebrated Bregman projection algorithm for finding points in the
intersection of affine subspaces (cf., e.g., [26]). We refer to [26, 53] for introductory
and exhaustive views on Bregman distances in optimization.

Although convex functionals play a role in many other branches of mathematics,
e.g., in many variational problems and partial differential equations, the suitability
of Bregman distances in such fields was hardly investigated for several decades.
In mathematical imaging and inverse problems the situation changed with the
rediscovery and further development of Bregman iterations as an iterative image
restoration technique in the case of frequently used regularization techniques such
as total variation (cf. [50]), which led to significantly improved results compared to
standard variational models and could eliminate systematic errors to a certain extent
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4 M. Burger

(cf. [9, 16]). Another key observation increasing the interest in Bregman distances in
these fields was that they can be employed for error estimation, in particular for not
strictly convex and nonsmooth functionals (cf. [14]), which prevent norm estimates.

Although there are many obvious links to the main route of research in Bregman
distances and related optimization algorithms, there are several peculiar aspects
that deserve particular discussion. Besides missing smoothness of the considered
functionals and the fact that problems in imaging, inverse problems and partial dif-
ferential equations are naturally formulated in infinite-dimensional Banach spaces
such as the space of functions of bounded variation or Sobolev spaces, which have
only been considered in few instances before, a key point is that the motivation
for using Bregman distances in these fields often differs significantly from those
in optimization and statistics. In the following we want to provide an overview of
such questions and consequent developments, keeping an eye on potential directions
and questions for future research. We start with a section including definitions,
examples, and some general properties of Bregman distances, before we survey
aspects of Bregman distances in inverse problems and imaging developed in the last
decade. Then we proceed to a discussion of Bregman distances in partial differential
equations, which is less explicit and hence the main goal is to highlight hidden use of
Bregman distances and make the idea more directly accessible for future research.
Finally we conclude with a section on related recent developments.

2 Bregman Distances and Their Basic Properties

We start with a definition of a Bregman distance. In the remainder of this paper, let
X be a Banach space and J : X → R∪{+∞} be convex functionals. We first recall
the definition of subdifferential, respectively, subgradients.

Definition 1. The subdifferential of a convex functional J is defined by

∂J(u) = {p ∈ X∗ | J(u)+ 〈p,v−u〉 ≤ J(v) for all v ∈ X}. (1)

An element p ∈ ∂J(u) is called subgradient.

Having defined a subdifferential we can proceed to the definition of Bregman
distances, respectively, generalized Bregman distances according to [44].

Definition 2. The (generalized) Bregman distance related to a convex functional J
with subgradient p is defined by

Dp
J(v,u) = J(v)− J(u)−〈p,v−u〉, (2)

where p ∈ ∂J(u). The symmetric Bregman distance is defined by

Dp,q
J (u,v) = Dp

J(v,u)+Dq
J(u,v) = 〈p−q,u− v〉, (3)
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where p ∈ ∂J(u), q ∈ ∂J(v).

Note that in the differentiable case, i.e., ∂J(u) being a singleton, we can omit the

special subgradient and write DJ(v,u) or DJ′(u)
J (v,u).

By the definition of subgradients the nonnegativity is apparent:

Proposition 1. Let J be convex and p ∈ ∂J(u). Then

Dp
J(v,u)≥ 0 ∀ v ∈ X

and

Dp
J(u,u) = 0.

If J is strictly convex, then Dp
J(v,u)> 0 for v �= u.

We can further characterize vanishing Bregman distances as sharing a subgradi-
ent:

Proposition 2. Let J be convex and p ∈ ∂J(u). Then Dp
J(v,u) = 0 if and only if

p ∈ ∂J(v).

Since Bregman distances are convex with respect to the first argument, we can
also compute a subdifferential with respect to that variable, which is simply a shift
of the subdifferential of J:

Proposition 3. Let J be convex, p ∈ ∂J(u). Then

∂vDp
J(v,u) = ∂J(v)−p.

Concerning existence proofs for variational problems involving Bregman dis-
tance it is often useful to investigate lower semicontinuity properties. Since Breg-
man distances can be considered as affinely linear perturbations of the functional J
it is natural that these properties carry over:

Proposition 4. Let J be convex and q ∈ ∂J(v). Then the functional H defined by

H(u) = Dq
J(u,v)

is convex. Hence, if X is reflexive, then H is weakly lower semicontinuous. If X is
the dual of some Banach space Z and J is the convex conjugate of a functional on
Z, then q ∈ Z implies that H is lower semicontinuous in the weak star topology.
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2.1 Examples of Bregman Distances

In the following we provide several examples of Bregman distances as frequently
found in literature as well as some that received recent attention. This shall provide
further insights into the relation to other distance measures and the basic properties
of Bregman distances:

Example 1. Let X be a Hilbert space and J(u) = 1
2‖u‖2

X . Then ∂J(u) = {u} and
hence

Du
J(v,u) =

1
2
‖u− v‖2

X. (4)

Example 2. Let I be a countable index set and X = �1(I) with

J(u) = ‖u‖�1 =∑
i∈I

|ui|.

Then the Bregman distance is given by

Dp
J(v,u) =∑

i∈I

(qi −pi)vi = ∑
i,vi>0

(1−pi)|vi|+ ∑
i,vi<0

(1+pi)|vi|. (5)

Note that the above sums have nonzero entries only if the sign of ui does not match
the sign of vi, since pi = 1 if ui > 0 and pi =−1 if ui < 0.

Example 3. Let X = �1
+({1, . . . ,N}) with

J(u) =
N

∑
i=1

ui logui +1−ui,

which is called the logarithmic entropy (or Boltzmann entropy). Then the Bregman
distance is given by

Dp
J(v,u) =

N

∑
i=1

vi log
vi

ui
+ui − vi, (6)

which is known as Kullback–Leibler divergence. An analogous treatment applies to
X = L1

+(Ω), for a bounded domain Ω , and the continuous version

J(u) =
∫
Ω
(u(x) logu(x)+1−u(x)) dx,

resulting in the Bregman distance
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Dp
J(v,u) =

∫
Ω

(
v(x) log

v(x)
u(x)

+u(x)− v(x)

)
dx. (7)

2.2 Bregman Distances and Duality

Duality is a basic ingredient in convex optimization (cf. [32]) and hence it is also
interesting to understand some connections of duality and Bregman distances. For
this sake we employ the convex conjugate (also called Legendre–Fenchel transform)
of a functional J given by J∗ : X∗ → R∪{+∞} satisfying

J∗(p) = sup
u∈X

(〈p,u〉− J(u)) . (8)

Noticing that for p ∈ ∂J(u) we have J∗(p) = 〈p,u〉− J(u) one can immediately
rewrite the Bregman distance as

Dp
J(v,u) = J(v)+ J∗(p)−〈p,v〉, (9)

which can be interpreted as measuring the deviation of p from being a subgradient
in ∂J(v) or the deviation of v from being a subgradient in ∂J∗(p).

A key identity relates Bregman distances with respect to J to those with respect
to the convex conjugate J∗:

Proposition 5. Let p ∈ ∂J(u) and q ∈ ∂J(v). Then

Dp
J(v,u) = Dv

J∗(p,q). (10)

Proof. By simple reordering we find

Dp
J(v,u) = J(v)−〈p,v〉+ 〈p,u〉− J(u)

= J(v)−〈p,v〉+ J∗(p),

where we have used the maximality relation for the convex conjugate, which is
equivalent to p ∈ ∂J(u). With analogous reasoning we find J∗(q) = 〈q,v〉 − J(v)
and hence

Dp
J(v,u) = J(v)+ J∗(p)− J∗(q)−〈p−q,v〉= Dv

J∗(p,q),

noticing that q ∈ ∂J(v) implies v ∈ ∂J∗(q).

A second aspect of duality related to Bregman distance is the convex conjugate
of the latter, which shows that Bregman distances are dual to measuring differences
via a functional:
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Proposition 6. Let q ∈ ∂J(v) and H be defined by

H(u) = Dq
J(u,v). (11)

Then

H∗(p) = J∗(p+q)− J∗(q). (12)

Proof. We have

H∗(p) = sup
u
[〈p,u〉− J(u)+ J(v)−〈q,v−u〉]

= sup
u
[〈p+q,u〉− J(u)]− [〈q,v〉− J(v)] .

The first term equals J∗(p+q) by definition and the second equals J∗(q) since q ∈
∂J(v).

2.3 Bregman Distances and Fenchel Duality

In the following we further investigate some properties of Bregman distances for a
combination of two convex functionals F : X →R∪{+∞}, G : Y →R∪{+∞}. The
classical setting is related the Fenchel duality theorem (cf. [32]), where

J(u) := F(u)+G(Ku) (13)

with K : X → Y a bounded linear operator between Banach spaces. The Fenchel
duality theorem shows that under suitable conditions

inf
u

J(u) = sup
w

[F∗(−K∗w)+G∗(w)] , (14)

together with equations relating optimal solutions û and ŵ via subdifferentials of the
involved functionals

−K∗ŵ ∈ ∂F(û), Kû ∈ ∂G∗(w). (15)

The above duality opens the possibility to employ Bregman distances on the dual
problem as well as on the primal, which is nicely complemented by the duality
relations for Bregman distances of a functional and its convex conjugate.

In the following we derive a basic estimates for the variational problem (13),
which clarifies the relation of perturbations of one functional with duality and
Bregman distances. We shall assume that the regularity of F and G is such that
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∂J(u) = ∂F(u)+K∗∂G(Ku)

and the Fenchel duality theorem holds (cf. [32] for details).
Then we obtain the following estimate for perturbations of J:

Theorem 7. Let F, G and K be as above, and let G̃ be a perturbation of G satisfying
the same assumptions. Let u ∈ X be a minimizer of J with −K∗w ∈ ∂F(u) and ũ be
a minimizer of F(·)+ G̃(K·) with −K∗w̃ ∈ ∂F(ũ). Then

D−K∗w,−K∗w̃
F (u, ũ)≤ G∗(w̃)−G∗(w)+ G̃∗(w)− G̃∗(w̃). (16)

Proof. We have

D−K∗w,−K∗w̃
F (u, ũ) = 〈K∗w̃−K∗w,u− ũ〉

= 〈Ku, w̃−w〉+ 〈Kũ,w− w̃〉.

By the Fenchel duality theorem we have Ku ∈ ∂G∗(w) and Kũ ∈ ∂G∗(w̃), which
implies the assertion by inserting the subgradient inequality.

2.4 Bregman Distances for One-Homogeneous Functionals

The case of convex one-homogeneous functionals J, i.e.,

J(tu) = |t|J(u) ∀ t ∈ R, (17)

received strong attention recently, and also appears to be a particularly interesting
one with respect to Bregman distances. In the one-homogeneous case one has

J(u) = 〈p,u〉 (18)

for p ∈ ∂J(u). Thus, the Bregman distance simply reduces to

Dp
J(v,u) = J(v)−〈p,v〉. (19)

An interesting property in the one-homogeneous case is the fact that the convex
conjugate is the indicator function of a convex set C, i.e.,

J∗(p) =

{
0 if p ∈ C
+∞ else.

(20)

This sheds interesting light on (10), noticing that p ∈ ∂J(u) implies p ∈ C. Hence,
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Dp
J(v,u) = Dv

J∗(p,q) = 〈q−p,v〉.

An alternative way to see this property is (19) combined with 〈q,v〉= J(v).
In the one-homogeneous case we immediately find an example of Bregman

distances vanishing for v �= u. Let t > 0 and v = tu, then ∂J(v) = ∂J(u) implies
Dp

J(v,u) = 0. On the other hand, we observe that the Bregman distance distinguishes
different orientation. Choosing v = tu for t < 0 we have ∂J(v) = −∂J(u), hence
Dp

J(v,u) = 2J(v).

3 Applications in Inverse Problems and Imaging

In the last decade, Bregman distances have become an important tool in inverse
problems and image processing. Their main use is twofold: On the one hand,
they are of particular importance for all kinds of error estimates as already
sketched above and in particular they are quite useful for the analysis of variational
regularization techniques with non-differentiable regularization functionals. This
route has been initiated in [14] and subsequently expanded, e.g., in [8, 18, 34, 36–
38, 52, 54, 58]. On the other hand, Bregman distances can be used to construct
novel iterative techniques with superior properties compared to classical variational
regularization. This route goes back to [50] and was developed further, e.g., in
[12, 16, 22, 35, 47, 60, 61, 63], the methods also had a huge impact on various
applications (cf., e.g., [12, 28, 49]).

The basic setup we consider is the solution of a problem of the form Ku = f ,
where K : X → Y is a bounded linear operator between Banach spaces and f are
given data. Since in most cases K does not have a closed range (or is even a compact
operator) and data contain measurement errors, this problem can be ill-posed. To
cure this issue variational regularization methods employ a convex regularization
functional R : X → R ∪ {+∞}, which introduces the a-priori knowledge that
reasonable approximations of the solution u have small (minimal) values R(u).
Variational regularization methods make a compromise between approximating the
data f and minimizing R and solve a problem of the form

D(Ku, f )+αR(u)→ min
u∈X

, (21)

where D : Y × Y → R is an appropriate distance measure and α > 0 is a regular-
ization parameter to be chosen appropriately in dependence of the measurement
error (often referred to as data noise). Specific forms of the distance measure are
derived, e.g., via statistical modelling as the negative log-likelihood of the data
noise. Frequently D is simply a least-squares term, i.e., Y is a Hilbert space and

D(Ku, f ) =
1
2
‖Ku− f‖2

Y . (22)
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A classical example is the ROF-model for image denoising [55], where R is the
total variation seminorm, K is an embedding from BV(Ω)∩L2(Ω) into L2(Ω), and
D the squared L2-norm. For the whole section we shall assume that D is convex
with respect to the first variable, which is the case for almost all commonly used
examples.

3.1 Error Estimates

Error estimates for solutions of (21) are of interest with respect to two quantities:
First of all, the distance of the data f to the ideal data Ku∗, where u∗ is the
unknown ideal solution. This part is referred to as data error or noise. Second, the
regularization parameter α , which should equal zero in the case of ideal data and
introduces a systematic error in the case of perturbed data (when it needs to be
positive). In the setting of (13) we thus need to choose

F(u) = αR(u), G(Ku) = D(Ku, f ). (23)

The optimality conditions for a minimizer uα are then of the form

pα = K∗wα , pα ∈ ∂R(uα) −αK∗wα ∈ ∂D(Kuα , f ), (24)

where the subgradient of D is meant to be computed with respect to the first
argument for fixed f .

In order to obtain error estimates for some different data f̃ we choose G̃(Ku) =
D(Ku, f̃ ) and denote by ũα its corresponding regularized solution with

p̃α = K∗w̃α , p̃α ∈ ∂R(ũα).

Then (16) yields

αDK∗wα ,K∗w̃α
R (u, ũ)≤ G∗(w̃α)−G∗(wα)+ G̃∗(wα)− G̃∗(w̃α). (25)

To further illustrate the behaviour consider the case of a quadratic data fidelity

G(Ku) = D(Ku, f ) =
1
2
‖Ku− f‖2, (26)

for some squared Hilbert space norm, which yields G∗(w) = 1
2‖w‖2+〈w, f 〉. Hence,

αDK∗wα ,K∗w̃α
R (u, ũ)≤ 〈f − f̃ , w̃α −wα〉. (27)

In the case (26) one can see quite immediately why the (symmetric) Bregman
distance is an appropriate error measure for the estimates. Starting with the
optimality conditions
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Kuα − f +αwα = 0, pα = K∗wα ∈ R(uα),

Kũα − f +αw̃α = 0, p̃α = K∗w̃α ∈ R(ũα),

we find

K(uα − ũα)+α(wα − w̃α) = f − f ∗. (28)

The right-hand side is exactly the perturbation of the data, whose norm we want to
use to estimate errors in the solution uα . Hence we simply take the squared norm on
both sides and obtain by expanding on the left-hand side

‖K(uα − ũα)‖2 +2α〈wα − w̃α ,K(uα − ũα)〉+α2‖wα − w̃α‖2 = ‖f − f̃‖2.

Finally using K∗wα = pα we arrive at

‖K(uα − ũα)‖2 +2αDpα ,p̃α
R (uα , ũα)+α2‖wα − w̃α‖2 = ‖f − f̃‖2, (29)

which implies (by the nonnegativity of all involved terms) the immediate estimate

Dpα ,p̃α
R (uα , ũα)≤

1
2α

‖f − f̃‖2 (30)

for the Bregman distance. Note that (29) is not just an estimate, but indeed an
equality for three error terms—the error in the image of the operator K (somehow
the residual), the error in the dual variables w, and the Bregman distance of
solutions. Here Ku and w are elements of a Hilbert space and it is of course natural
to measure their deviations in the corresponding norm, so (29) yields the Bregman
distance as the naturally induced error measure in the Banach space X.

Having obtained (29) it is interesting to note that one can alternatively obtain
estimates for two parts of the right-hand side by taking scalar products of (28)
with appropriate elements and subsequent application of the Cauchy–Schwarz,
respectively, Young’s inequality. The first is obtained by a scalar product with
Kuα −Ku∗, which yields

‖K(uα−ũα )‖2+αDpα ,p̃α
R (uα , ũα )=〈f−f̃ ,K(uα−ũα )〉 ≤

1
2
‖f−f̃‖2+

1
2
‖K(uα−ũα )‖2,

hence

‖K(uα − ũα)‖2 +2αDpα ,p̃α
R (uα , ũα)≤ ‖f − f̃‖2. (31)

Using analogous reasoning, a scalar product of (28) with wα − w̃α leads to

2αDpα ,p̃α
R (uα , ũα)+α2‖wα − w̃α‖2 ≤ ‖f − f̃‖2. (32)
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3.2 Asymptotics

A key question in inverse problems is the behaviour of the regularized solution uα
as α → 0, which only makes sense if the noise in the data vanishes, i.e., f = Ku∗

for some desired solution u∗ ∈ X. It is well-known that for ill-posed problems the
convergence can be arbitrarily slow as α → 0 without further conditions on the
desired solution u∗. For a further characterization it is important to note that under
appropriate choice of α a limiting solution u∗ of the variational model (21) satisfies

R(u)→ min
u∈X

subject to Ku = Ku∗. (33)

This can be seen from the estimate

D(Kuα , f )+αR(uα)≤ D(Ku∗, f )+αR(u∗).

Using α → 0 and D(Ku∗, f ) → 0 we see that D(Kuα , f ) → 0, hence the limit is a
solution of Ku∗ = f . Dividing by α and using nonnegativity of D, we find

R(uα)≤ R(u∗)+
D(Ku∗, f )

α
,

and under the standard condition on the parameter choice

D(Ku∗, f )
α

→ 0,

we observe that the limit of uα cannot have a larger value of R than any other
solution of Ku = f , i.e., it solves (33).

The key observation in [14, 27] is that appropriate conditions in the case of
variational regularization is related to the existence of a Lagrange multiplier for
(33). The Lagrange functional is given by L(u,w) = R(u)−〈w,Ku−Ku∗〉, hence
the existence of a Lagrange multiplier is the so-called source condition

p∗ = K∗w∗ ∈ ∂R(u∗). (34)

Let us again detail the arguments in the case (26), where we can indeed use the
above error estimates like (26) with ũα = u∗ and w̃α = w∗. In order to obtain uα
as the solution of a variational problem we can indeed choose f̃ = Ku∗+αw∗ (note
that (34) is equivalent to the existence of some f̃ such that u∗ solves the variational
problem with data f̃ , cf. [14]). Hence, (29) becomes

‖K(uα −u∗)‖2 +2αDpα ,p∗
R (uα ,u

∗)+α2‖wα −w∗‖2 = ‖f −Ku∗ −αw∗‖2. (35)

Again with Young’s inequality we end up at
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Dpα ,p∗
R (uα ,u

∗)≤ ‖f −Ku∗‖2

α
+α‖w∗‖2, (36)

which gives the usual optimal choice α ∼ ‖f −Ku∗‖ of regularization parameter in
terms of the noise level, exactly as in the linear Hilbert space case (cf. [33]).

3.3 Bregman Iterations and Inverse Scale Space Methods

A frequent observation made for variational methods as discussed above is a
systematic bias, in particular the methods yield solutions uα with R(uα) too small,
which, e.g., results into a local loss of contrast in the case of total variation
regularization (the contrast loss is larger for smaller structures cf. [17]). In order
to cure such systematic errors in particular in the case of one-homogeneous
regularization it turned out that the well-known Bregman iteration is a perfect tool.
Instead of solving the variational problem only once one usually starts at u0 being a
minimizer of the regularization functional R, i.e., at the coarsest scale (if one agrees
that scale is defined by R). Then of course p0 = 0∈ ∂R(u0) and one can subsequently
iterate

uk+1 ∈ argmin
u∈X

(
D(Ku, f )+αDpk

R (u,uk)
)
, (37)

where the subgradient pk is updated via the optimality condition

pk+1 −pk ∈ − 1
α

K∗∂D(Kuk, f ). (38)

Noticing that we can again write pk = K∗wk one can also construct an iteration

wk+1 −wk ∈ − 1
α
∂D(Kuk, f ), (39)

from which one can derive the well-known equivalence to augmented Lagrangian
methods for minimizing R subject to Ku = f .

The convergence analysis in the case f = Ku∗ follows the well-known route for
the Bregman iteration, but due to the ill-posedness of Ku = f there is a particularly
interesting aspect in the case of noisy data f differing from the ideal Ku∗. If the range
of K is not closed, one has to take care of the situation where neither a solution
Ku = f nor some kind of least-squares solution (a minimizer of D(Ku, f )) exists in
X. Hence, the Bregman iteration has the role of an iterative regularization method
and needs to be stopped appropriately before the noise effects start to deteriorate the
quality of the solution. Indeed one can show that the Bregman distance Dpk(u∗,uk)
is decreasing during the first iterations up to a certain point when the residual
D(Kuk, f ) becomes too small (i.e. one approximates the noisy data stronger than
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Ku∗). Successful stopping criteria as the discrepancy principle are indeed based
on comparing the residual with an estimate of the noise D(Ku∗, f ) and stop when
D(uk, f ) drops below this estimate.

In imaging a particularly interesting and quite related aspect of Bregman
iterations is the scale behaviour. As mentioned above, with scale defined as above
by properties of the regularization functional R, the Bregman iteration inserts finer
and finer scales during its progress. In order not to miss certain scales it is obviously
interesting to make small enough steps, which amounts to choosing α sufficiently
large. For the limit of α → ∞ one can interpret the iteration as a backward Euler
discretization (with timestep 1

α ) of a flow, which has been called inverse scale space
method by a reminiscence to so-called scale space methods in image processing,
which exhibit the opposite scale behaviour (cf. [57, 59]). The inverse scale space
flow is a solution of the differential inclusion

∂tp(t) ∈ −K∗∂D(Ku(t), f ), p(t) ∈ ∂J(u(t)), (40)

with initial value u(0) = u0 such that p(0) = 0 ∈ ∂R(u0). It can be interpreted by a
gradient flow for the subgradient p on a dual functional (cf. [17]) or as a doubly
nonlinear evolution equation. For the latter we will give an explanation on the
analysis in terms of Bregman distances related to the involved functionals in the
next section, which is also the appropriate way to analyse the inverse scale space
method.

An unexpected result is the behaviour of the inverse scale space flow for
polyhedral functions such as the �1-norm. Roughly speaking the polyhedral case
means that for any u ∈ X a subdifferential ∂R(u) can be obtained via convex
combinations of a finite number of elements (independent of u). It has been shown
(cf. [20, 48]) that in such cases and D(Ku, f ) = 1

2‖Ku− f‖2 the dynamics of the
solution u(t) is piecewise constant in time, i.e., quite far from a continuous flow,
while the dynamics of the subgradients p(t) is piecewise linear in time. Interestingly,
the time steps tk at which the solution changes can be computed explicitly, and the
value of u(tk) is obtained by minimizing

‖Ku− f‖2 subject to p(tk) ∈ ∂R(u).

This is particularly attractive in the case of sparse optimization with R being the
�1-norm, since the condition p(tk) ∈ ∂R(u) defines the sign of u and in particular
the set of zeros. This means that the least-squares problems have to be solved on a
rather small support, which is highly attractive for computational purposes (cf. [20]).
Let us briefly explain the behaviour for R : RN → R

+ being the �1-norm and some
arbitrary differentiable functional G on the right-hand side, i.e.,

∂tpi(t) =−∂uiG(u(t)). (41)

In this case the subdifferential is the multivalued sign of ui(t)) and for u0 = p0 = 0
we obviously find ui(t) = 0 for sufficiently small time since |pi(t)|< 1, which holds
for all i. Hence for t < t1 with t1 to be determined we find
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∂tpi(t) =−∂uiG(0), (42)

which can be integrated easily to

pi(t1) =−t1∂uiG(0). (43)

The key observation is that ui �= 0 for some i is only possible if |pi(t1)| = 1. This
implies that the first time with possibly nonzero u is

t1 =
1

‖∂G(0)‖∞
. (44)

At time t1 the sign of all ui is determined by pi(t1) and one can check that a solution
is obtained by minimizing

u(t1) ∈ arg min
u∈RN

G(u) subject to pi(t1) ∈ ∂ |ui(t1)|, (45)

or in other words

u(t1) ∈ arg min
u∈RN

G(u) subject to pi(t1)ui(t1)≥ |ui(t1)| ∀i.

The optimality condition for the latter problem can be written as

∂uiG(u(t1))+λi(qi −pi(t1)) = 0, qi ∈ ∂ |ui(t1)|. (46)

for some λ ∈ R
N satisfying the complementarity conditions

λi ≥ 0, λi(pi(t1)ui(t1)−|ui(t1)|) = 0.

This implies ∂uiG(u(t1)) = 0 of ui(t1) �= 0, ∂uiG(u(t1))≥ 0 if ui(t1) = 0 and pi(t1) =
1, and ∂uiG(u(t1))≤ 0 if ui(t1) = 0 and pi(t1) =−1. This implies that we can find a
time interval (t1, t2) such that

u(t) = u(t1), p(t) = p(t1)− (t− t1)∂G(u(t1))

is a solution, and t2 is again defined as the minimal time where there exists i such
that |pi(t2)|= 1 and |pi(t)|< 1. Again, the solution at time t2 is defined by a solution
of the variational problem

u(t2) ∈ arg min
u∈RN

G(u) subject to pi(t2)ui(t2)≥ |ui(t2)| ∀i.

By an inductive procedure one obtains that the same kind of dynamics goes on for
all t until it stops after finite time steps tn at a minimizer of G.
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As mentioned above the scale behaviour of the inverse scale space flow is highly
attractive in image processing. In the polyhedral case there is a somehow exact
decomposition into different scales by the steps made at times tk. Indeed ∂tu is a sum
of concentrated measures in time, and one may eliminate certain scales by leaving
out the corresponding jump u(tk + τ)−u(tk − τ). This observation leads the way to
a much more general definition of filters from the inverse scale space method, which
was discussed in [21]

∂tp(t) = f −u(t), p(t) ∈ ∂R(u(t)). (47)

A certain scale filter is defined by

F(f ) = u0 +
∫ ∞

0
w(t)d∂tu(t), (48)

with measurable weights w(t) ∈ [0,1]. In the case w ≡ 1 one simply obtains f , while
certain scales can be damped out choosing w(t) = 0 for t in an appropriate interval.
The design of filters for certain purpose is an ongoing subject of research.

4 Applications in Partial Differential Equations

In the following, we provide an overview of different aspects of partial differential
equations, where Bregman distances are a useful tool. Unlike the case of inverse
problems and image processing discussed above the notion of Bregman distance is
not used widely in this field, and indeed most applications do not refer to this term or
use it in a very hidden way. Our goal in the following section is to work out the basic
ideas related to Bregman distances in a structured way, which sheds new light on
many established techniques and hopefully also opens routes towards novel results.
For this sake we employ a formal approach and avoid technicalities such as detailed
function spaces, which of course can be worked out from existing literature.

4.1 Entropy Dissipation Methods for Gradient Systems

Entropy dissipation methods are a frequently used tool in partial differential
equations (cf. [4, 41]), which is often based on using the logarithmic entropy

E(u) =
∫
Ω

u(x) logu(x) dx (49)

as a Lyapunov functional, e.g., in diffusion equations (cf., e.g., [2–5, 24]), kinetic
equations (cf., e.g., [4]), or fluid mechanics (cf., e.g., [56]). In particular in gradient
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systems also different convex functionals are used regularly and in a structured way.
The abstract form of a gradient system is

∂tu(t) =−L(u(t))E′(u(t)), (50)

where L(u) is a linear symmetric positive semi-definite operator on appropriate
spaces and E a convex energy functional, which we assume differentiable for
simplicity (similar treatment for non-differentiable convex functionals is possible
by using subgradients, but beyond our scope). The entropy dissipation property can
be verified by the straightforward computation

d
dt

E(u(t)) = E′(u(t))∂tu(t) =−〈E′(u(t)),L(u(t))E′(u(t))〉 ≤ 0. (51)

The negative of the right-hand side is frequently called entropy dissipation func-
tional D(u(t)) and can be used to derive further quantitative information about the
decay to equilibrium. A standard example (cf. [4, 24]) are nonlinear Fokker–Planck
equations of the form

∂tu = ∇ · (m(u)∇(e′(u)+V)) (52)

on a domain Ω ⊂ R
d with no-flux boundary conditions. Here, e : R+ → R is a

convex function, m : R+ → R
+ a (potentially nonlinear) mobility function, and V :

Ω → R an external potential. Recently also systems of Fokker–Planck equations as
well as certain reaction–diffusion systems of the form

∂tui = DiΔui +Fi(u1, . . . ,uM), i = 1, . . . ,M (53)

have been investigated with entropy dissipation techniques (cf. [29, 42, 45]).
The major purpose of entropy dissipation techniques is to obtain qualitative or

ideally quantitative results about the decay to equilibrium for transient solutions.
An equilibrium solution u∞ is a minimizer of E on a convex set K, to which also the
transient solution u(t) belongs for all t. An example is the Fokker–Planck equation
with linear mobility m(u) = u, where K is the set of nonnegative integrable functions
with prescribed mean value. Hence, u∞ satisfies

E′(u∞)(u−u∞)≥ 0 ∀ u ∈ K. (54)

If further the operator L(u) is such that

L(u)E′(u∞) = 0 ∀ u ∈ K, (55)

which is indeed the case for the typical examples, then one can rewrite the gradient
system as
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∂tu(t) =−L(u(t))(E′(u(t))−E′(u∞)). (56)

Hence, the right-hand side is expressed in a difference of energy gradients for the
transient and equilibrium solution. In a similar way, the entropy dissipation can be
rewritten in terms of a distance between those and the Bregman distance (usually
called relative entropy) plays a key role for this purpose. One observes that

d
dt

DE′(u∞)
E (u(t),u∞) = E′(u(t))∂tu(t)−E′(u∞)∂tu(t)

= −〈E′(u(t))−E′(u∞),L(u(t))(E
′(u(t))−E′(u∞))〉

=: −F(u(t),u∞).

Of course, the above computation holds for smooth solutions only, for weak
solutions one can usually derive the time-integrated version

DE′(u∞)
E (u(t),u∞)+

∫ t

s
F(u(τ) dτ ≤ DE′(u∞)

E (u(s),u∞). (57)

The above computation shows that entropy dissipation can be rephrased as the
decrease of the Bregman distance between stationary and transient solution. We
notice that the use of the Bregman distance is not essential in this computation, but
the understanding of this structure can be quite beneficial, in particular if one wants
to use dual variables, the so-called entropy variables

ϕ(t) = E′(u(t)), ϕ∞ = E′(u∞). (58)

The entropy variable ϕ solves the system

∂t(E
′(ϕ(t)) =−L((E∗)′(ϕ(t)))ϕ(t), (59)

where E∗ is the convex conjugate of E. When analysing the dual flow (59) a
dissipation property can now be derived immediately using relation (10). Thus, we
obtain a dual entropy dissipation of the form

d
dt

Du(t)
E∗ (ϕ∞,ϕ(t)) =−−〈ϕ(t)−ϕ∞,L((E∗)′(ϕ(t)))(ϕ(t)−ϕ∞)〉. (60)

The duality relation is particularly interesting for constructing approximations in
terms of the entropy variables, as, e.g., carried out for degenerate cross-diffusion
systems in (cf. [19, 40, 62]).
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4.2 Lyapunov Functionals for Gradient Systems
Out of Equilibrium

The appropriate use of Bregman distances seems to be less explored, but maybe
even more crucial for the derivation of Lyapunov functionals if gradient systems
are perturbed out of equilibrium. The simplest example is the linear Fokker–Planck
equation with non-potential force as investigated in [5]

∂tu = ∇ · (∇u+uF) in Ω ×R
+, (61)

supplemented by no-flux boundary conditions

(∇u+uF) ·n = 0 on ∂Ω ×R
+. (62)

If the vector field F is not the gradient of some potential function, then a stationary
solution cannot be constructed as the minimizer of an entropy functional. However,
the existence and uniqueness of a stationary solution can be shown under quite
general assumptions on F (cf. [31]). In a form similar to gradient flows (cf. [1, 53])
we write (61) as

∂tu = ∇ · (u(∇e′(u)+F)), e(u) = u logu+1−u, (63)

which suggests to further investigate distances based on the entropy functional

E(u) =
∫
Ω

e(u) dx =
∫
Ω
(u logu−u+1) dx. (64)

The dissipation of the relative entropy can be computed via

d
dt

DE′(u∞)
E (u(t),u∞) =

∫
Ω
(e′(u(t))− e′(u∞))∂tu(t) dx

=
∫
Ω
(e′(u(t))− e′(u∞))∇ ·u(∇(e′(u(t))

− e′(u∞))+∇e′(u∞)+F) dx

=−
∫
Ω

u|∇(e′(u(t))− e′(u∞))|2 dx

+
∫
Ω
(e′(u(t))− e′(u∞))∇ ·u(t)(∇e′(u∞)+F) dx,

where we have used the no-flux boundary conditions

(∇e(u(t))+F) ·n = (∇e(u∞)+F) ·n = 0 on ∂Ω ×R
+
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in order to apply integration by parts in the first term on the right-hand side. The
second term is simplified via

∇ · (u(∇e′(u∞)+F))

= ∇ · (u(t)
u∞

u∞(∇e′(u∞)+F))

= u∞∇(
u(t)
u∞

) · (∇e′(u∞)+F))

= u∞∇exp(e′(u(t))− e′(u∞)) · (∇e′(u∞)+F))

= u∞ exp(e′(u(t))− e′(u∞))∇(e′(u(t))− e′(u∞)) · (∇e′(u∞)+F)).

WithΨ satisfyingΨ ′(z) = zexp(z) we can further write

∫
Ω
(e′(u(t))− e′(u∞))∇ ·u(t)(∇e′(u∞)+F) dx =

∫
Ω
∇Ψ(e′(u(t))− e′(u∞)) ·u∞(∇e′(u∞)+F) dx = 0,

which can be seen again through integration by parts. Hence, we finally obtain the
decrease of the Bregman distance via

d
dt

DE′(u∞)
E (u(t),u∞) =−

∫
Ω

u|∇(e′(u(t))− e′(u∞))|2 dx, (65)

and the logarithmic Sobolev inequality (cf. [3]) implies exponential convergence to
equilibrium.

Another example are boundary-driven nonlinear Fokker–Planck equations

∂tu = ∇ · (∇m(u)+m(u)F) in Ω ×R
+, (66)

considered in [10] with Dirichlet boundary conditions

u = g on ∂Ω ×R
+. (67)

We mention that an analogous analysis holds in the case of no-flux boundary
conditions (in which case we have a direct generalization of the nonsymmetric
Fokker–Planck equation above) or mixed Dirichlet and no-flux boundary conditions.
Bodineau et al. [10] construct Lyapunov functionals of the form

H(u,u∞) =
∫
Ω

∫ u(x,t)

u∞(x)
Φ ′
(

m(s)
m(u∞(x))

)
ds dx, (68)
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where Φ is a nonnegative function with unique minimum at zero. Such a construc-
tion seems far from being intuitive, but it becomes much more clear for Φ being the
logarithmic entropy, i.e., Φ ′(t)= log t. In this case the Lyapunov functional becomes

H(u,u∞) =
∫
Ω

∫ u(x,t)

u∞(x)
logm(s)− logm(u∞(x)) ds dx, (69)

and with a function e such that e′(s) = logm(s), we further obtain

H(u,u∞) =
∫
Ω
(e(u(x, t))− e(u∞(x))− e′(u∞(x))(u(x, t)−u∞(x))) ds dx, (70)

which is nothing but the Bregman distance for the entropy functional

E(u) =
∫
Ω

e(u) dx, with e′(u) = logm(u). (71)

Since Eq. (66) can be written as

∂tu = ∇ · (m(u)(∇ logm(u)+F)), in Ω ×R
+, (72)

the above form of E is also a natural choice. The detailed computations for the
entropy dissipation are indeed completely analogous to the case of the linear
Fokker–Planck equation, the crucial point appears to be the logarithmic relation
between entropy derivatives e′(u) and mobilities m(u).

4.3 Doubly Nonlinear Evolution Equations

A generalization of gradient systems are doubly nonlinear evolution equations with
a gradient structure either of the form

∂tp(t) ∈ −∂G(u(t)), p(t) ∈ ∂F(u(t)) (73)

or as

∂F(∂tu)+∂G(u(t)) � 0. (74)

The best studied case, which is also the one where both coincide, corresponds to
F(u) = 1

2‖u‖2 for a norm in a Hilbert space, which yields the classical gradient flow

∂tu(t) ∈ −∂G(u(t)). (75)
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We have seen a system in the form (73) already above in the inverse scale space
method, while the form (74) appears frequently in mechanical problems (cf., e.g.,
[46] and the references therein). There is indeed a duality relation for (73) and (74).
Starting from (73) we obtain u(t)∈ ∂G∗(−∂tp(t))∩∂F∗(p(t)), respectively −u(t)∈
∂G∗(∂tp(t)) if G satisfies a symmetry condition around zero. This yields

∂G∗(∂tp(t))+∂F∗(p(t)) �= 0,

the analogue of (74).
Doubly nonlinear evolution equations have recently been investigated exten-

sively, and in particular tools from convex analysis have been employed (cf. [46]).
Here we add our Bregman distance point of view to derive estimates for such
equations. Let us start with a straightforward computation on the change of the time
derivative of the Bregman distance:

Lemma 1. Let F be differentiable and u a solution of (73). Then

d
dt

Dp(t)
F (v,u(t)) =−〈∂tp(t),v−u(t)〉 ≤ G(v)−G(u(t)).

This can be used to quantify the distance of u(t) to a minimizer of G:

Corollary 1. Let F be differentiable, u∞ a minimizer of G, and u a solution of (73).
Then

d
dt

Dp(t)
F (u∞,u(t))+D0

G(u(t),u∞)≤ 0. (76)

Since it is straightforward to see

d
dt

D0
G(u(t),u∞) =

d
dt

G(u(t))≤ 0 (77)

we see after integrating (76) in time

Dp(t)
F (u∞,u(t))+ tD0

G(u(t),u∞)≤ Dp(t)
F (u∞,u(t))

+
∫ t

0
D0

G(u(s),u∞) ds ≤ Dp(0)
F (u∞,u(0)),

leading to linear decay of the Bregman distance:

Theorem 2. Let F be differentiable, u∞ a minimizer of G, and u a solution of (73).
Then

D0
G(u(t),u∞)≤

1
t

Dp(0)
F (u∞,u(0)). (78)
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4.4 Error Estimates for Nonlinear Elliptic Problems

We finally turn our attention to the analysis of discretization methods for nonlinear
elliptic problems such as the p-Laplace equation. Such elliptic problems are
optimality conditions of some energy functional of the form

E(u) = J(u)−〈f ,u〉, (79)

where J is a convex functional on a Banach space X, typically a Sobolev space of
first order derivatives. The elliptic differential equation (or more general differential
inclusion) is the optimality condition

p = f , p ∈ ∂J(u) (80)

A canonical example is the p-Laplace equation

−∇ ·
(
|∇u|p−2∇u

)
= f , (81)

which is related to the functional

J(u) =
1
p

∫
Ω
|∇u(x)|p dx. (82)

For variational discretizations of such problems the Bregman distance appears
to be a quite useful tool, which is still not fully exploited. In many approaches the
Bregman distance is used in a hidden way and strict convexity is used to obtain an
estimate in terms of the underlying norms (with potentially suboptimal constants,
however). For the p-Laplace equation such an approach is carried out in [30]. Again
in the limiting case p = 1 related to total variation minimization the Bregman
distance is even more crucial and appears, e.g., in [6]. Here we briefly sketch the
obvious role of Bregman distances in Galerkin discretizations of the form

E(u)→ min
u∈Xh

, (83)

where Xh is a finite-dimensional subspace of X, e.g., constructed by finite elements.
Let us start by pointing out the basic structure of error estimates for Galerkin

methods in the linear case related to the minimization of a positive definite quadratic
form

J(u) = B(u,u), (84)

where B : X × X → R is a bounded and coercive bilinear form. The optimality
condition in weak form is given by
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B(u,v) = 〈f ,v〉 ∀ v ∈ X, (85)

and the Galerkin discretization yields a solution uh ∈ Xh of

B(uh,v) = 〈f ,v〉 ∀ v ∈ Xh. (86)

Error estimates for such discretizations are obtained in two steps: first the error
between u and uh is estimated by the projection error to the subspace Xh and then the
projection error is estimated, e.g., via the interpolation error. The crucial property
for the first step is the so-called Galerkin orthogonality

B(u−uh,v) = 0 ∀ v ∈ Xh, (87)

which implies

B(u−uh,u−uh) = B(u−uh,u− v) ∀ v ∈ Xh, (88)

and by the Cauchy–Schwarz inequality for the positive definite bilinear form B

B(u−uh,u−uh)≤ B(u− v,u− v) ∀ v ∈ Xh. (89)

In other words uh is the projection of u on the subspace Xh, when the (squared) norm
induced by B is used as a distance measure.

Since the term B(u − v,u − v) above is just the Bregman distance related to
quadratic functional J one might think of an analogous property in the case of
nonquadratic J, when the Bregman projection is used. Indeed, we can derive such a
relation in the case of arbitrary convex J. For this sake let again u be a minimizer of
E and uh a minimizer of E constrained to the subspace Xh. Then we have f ∈ ∂J(u)
and thus, since uh minimizes E on Xh, we have for all v ∈ Xh

Df
J(uh,u) = J(uh)− J(u)−〈f ,uh −u〉

= E(uh)− J(u)+ 〈f ,u〉
≤ E(v)− J(u)+ 〈f ,u〉.

Rewriting the last term we hence obtain the Bregman projection property

Df
J(uh,u)≤ Df

J(v,u), ∀ v ∈ Xh. (90)

This observation opens a way to analyse Galerkin methods for such nonlinear
problems in the same way as in the linear case, the key step to be developed for
specific problems and specific discretizations (Xh) is the estimation of the Bregman
projection error.
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Note again the role of the Bregman distance for error estimation: The one-sided
distance Df

J(uh,u) is particularly suitable for the estimation of a-priori errors as
above, while a-posteriori error estimation should rather be based on the distance
Dph

J (u,uh) with ph ∈ ∂J(uh). We have by the minimizing property of u

Dph
J (u,uh) = J(u)− J(uh)−〈ph,u−uh〉

= E(u)−E(uh)+ 〈ph − f ,uh −u〉
≤ 〈ph − f ,uh −u〉.

Using the duality relation u ∈ ∂J∗(f ), this could be further estimated to the full
a-posteriori estimate

Dph
J (u,uh)≤ 〈ph − f ,uh〉+ J∗(2f −ph)− J∗(f ). (91)

For practical purposes the above abstract estimate is not useful in most cases, since
computing the adjoint J∗ means to solve a nonlinear partial differential equation
as well, which might be as difficult as the original one. However, the general
strategy can be exploited together with specific properties of the functional J and
the subspace Xh. In particular for gradient energies of the form

J(u) =
∫
Ω

j(∇u) dx (92)

one can derive alternative versions using only the convex conjugate j∗, which is
significantly easier to compute.

5 Further Developments

In this final section we discuss some aspects of Bregman distances that came up
recently and will potentially have strong further impact, in particular we will explore
some developments related to probability.

5.1 Uncertainty Quantification in Inverse Problems

Since Bregman distances appear to be a suitable tool for estimates in certain
nonlinear deterministic problems, it seems natural to exploit them also in the
stochastic counterparts of such problems. The obvious measure for error estimates
is then the expected value of the Bregman distance with respect to the stochastic
quantity. Such approaches have been used successfully in particular in statistical
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inverse problems (cf., e.g., [58]), which we also want to discuss in the following.
In order to avoid technicalities we restrict ourselves to a purely finite-dimensional
setup.

Consider the inverse problem Ku = f , where K : RN → R
M and the data are

generated from a true solution u∗ with additive Gaussian noise, i.e.,

f = Ku∗+σn, (93)

with n a Gaussian random variable with zero mean and covariance matrix IM . Let
again R be a convex regularization functional and uα a solution of the variational
problem

J(u) =
1

2σ2 ‖(Ku− f )‖2 +αJ(u)→ min
u∈RN

. (94)

Then uα satisfies the optimality condition

1
σ2 K∗K(uα −u∗)+αpα =

1
σ2 K∗n, pα ∈ ∂R(uα), (95)

which implies pα = K∗wα . Now assume u∗ satisfies the source condition (34), then
we have

K(uα −u∗)+ασ2(wα −w∗) = n−ασ2w∗.

Taking the squared norm and subsequently expectation with respect to w in this
identity we obtain

2ασ2E[Dpα ,p∗

R (uα ,u
∗)] ≤ E[‖K(uα −u∗)‖2 +2ασ2Dpα ,p∗

R (uα ,u
∗)+α2σ4‖wα −w∗‖]2

= E[‖n−ασ2w∗‖2]

= E[‖n‖2]+α2σ4‖w∗‖2 = σ2M+α2σ4‖w∗‖2.

Thus, the expected error in the Bregman distance is estimated by

E[Dpα ,p∗
R (uα ,u

∗)]≤ M
2α

+
ασ2

2
‖w∗‖2. (96)

We notice that the above approach not only yields an estimate of the Bregman
distance, but also indeed an exact value for the sum of three error measures, in
addition to the Bregman distance also the residual error as well as the error in the
source space (related to wα−w∗). Usually the latter is the largest of the three, so one
needs to expect a blow up of this term as M → ∞ if α is not increasing as M. If one
is interested in the first two terms only, one can simply use a duality product with
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uα −u∗ in (95) and subsequently estimate the expected value of the right-hand side
in a different way, which may lead to robust estimates in terms of M, respectively,
estimates that can be carried out for infinite-dimensional white noise.

An application of Bregman distances in Bayesian modelling was recently
investigated in [13], considering frequently used posterior densities of the form

π(u|f )∼ e
−‖Ku−f‖2

2σ2 −αR(u)
, (97)

where again R is a convex and Lipschitz continuous functional on R
N (generaliza-

tions to posterior distributions in infinite-dimensional spaces where further studied
in [39]). It has been shown that the posterior can be centred around the so-called
maximum a-posteriori probability (MAP) estimate û, which maximizes p(u|f ), in
the form

π(u|f )∼ e
−‖Ku−Kû‖2

2σ2 −αDp̂
R(u,û). (98)

Based on the observation

〈s,u− û〉= ‖Ku−Kû‖2

σ2 +α〈p− p̂,u− û〉. (99)

for p ∈ ∂R(u) and

s =
1
σ2 K∗(Ku− f )+αp ∈ ∂ (− logπ(u|f )),

a Bayes cost of the form

Γ (v) = Ep(u|f )

[
‖Ku−Kv‖2

σ2 +α〈q− p̂,v− û〉
]

(100)

has been introduced for q ∈ ∂R(v) (note that selection of p ∈ R(u) is only needed on
a set of zero measure due to Rademacher’s theorem). A simple integration by parts
argument then shows that the MAP-estimate û is a minimizer of the Bayes cost,
which is a quite natural choice compared to the highly degenerate cost usually used
to characterize MAP estimates (cf. [43]). A direct consequence is the fact that the
MAP estimate has smaller Bregman distance in expectation than the frequently used
conditional mean estimate, hence one obtains a theoretical argument explaining the
success of MAP estimates in practice.
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5.2 Bregman Distances and Optimal Transport

Bregman distances can be used also as a cost in optimal transport, which has been
investigated in [23] for a convex and differentiable functional J on R

N . Given two
probability measures μ and ν , an optimal transport plan is a probability measure γ
on R

N ×R
N with marginals μ and ν minimizing the functional

F(γ) =
∫
RN×RN

DJ′(u)
J (v,u) dγ(v,u). (101)

The resulting optimal value of F can be interpreted as a transport distance between
the measures μ and ν .

Besides the important question of well-posedness solved in (cf. [23]) there
are several interesting problems such as the existence of transport maps under
certain condition (i.e. concentration of γ on a set described by the graph of a map
T : RN → R

N) as well as relations to uncertainty quantification. A first example
is the Bayes cost approach described in the previous section, which can indeed be
interpreted as the transport distance between the posterior distribution and a measure
concentrated at the MAP estimate. This motivates further research in the future,
an obvious next step might be to estimate distances between different posterior
distributions in transport distances related to Bregman distances.

A different use of Bregman distances in optimal transport was recently made in
[7] for the solution of Monge–Kantorovich formulations in optimal transport. They
consider entropic regularizations of the problem, i.e., for ε > 0 they minimize a
discrete version of

Fε(γ) =
∫
RN×RN

C(v,u) dγ(v,u)+ εE(γ), (102)

where E is the entropy

E(γ) =
∫
RN×RN

log

(
dγ
dL

)
dγ(v,u), (103)

where dγ
dL is the Radon–Nikodym derivative with respect to the Lebesgue measure.

The key observation is that the minimization of Fε can be rewritten equivalently
as the minimization of the Kullback–Leibler divergence, i.e., the Bregman distance
related to E, between γ and the Gibbs measure ϕε with density e−C/ε

DE(γ ,ϕε)→ min
γ
, (104)

which transforms the problem into a Bregman projection problem of the Gibbs
density onto the set of plans with given marginals, which can be computed much
more efficiently than the original transport control problem. Note that the general
procedure can be carried out as well with an arbitrary convex functional whose
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domain are positive densities, the corresponding Gibbs density is then to be defined
as ϕε = (E∗)′(−C/ε). A particular computational advantage of the logarithmic
entropy is the fact that iterative Bregman projections can be computed explicitly and
realized with low complexity, in the discrete sets it only needs multiplications and
scalar products of diagonal matrices with the matrix discretizing the Gibbs measure
(cf. [7] for further details).

5.3 Infimal Convolution of Bregman Distances

Infimal convolution of convex functionals become popular recently in image
processing in order to combine favourable properties of certain regularization func-
tionals, e.g., total variation and higher-order versions thereof. A quite unexplored
topic is the infimal convolution of Bregman distances, however. Since they are
convex functionals of the first variable one may consider the infimal convolution

[Dp1
R (·,u1)�Dp2

R (·,u2)](u) = inf
v∈X

[Dp1
R (u− v,u1)+Dp2

R (v,u2)], (105)

with an obvious extension to more than two values.
Of particular interest in imaging applications appears to be the case of p2 =−p1

and u2 = −u1 for a one-homogeneous functional such as total variation. The latter
was used to obtain a regularization functional enforcing partly equal edge sets
(REF colorbregman). While minimizing the Bregman distance for total variation
strongly favours edge sets with jumps of equal sign (see also the discussion related
to orientation for one-homogeneous functionals in Sect. 2.4), the infimal convolution
of Bregman distances eliminates this part and hence measures differences in
edge sets rather than jumps of the same sign. A further study of theoretical
properties as well as applications of such kind of infimal convolution of Bregman
distances remains an interesting property for future research. Obvious candidates are
problems in compressed sensing where one first of all aims at obtaining the correct
support of the solution rather than the sign.
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On Global Attractor for Parabolic Partial
Differential Inclusion and Its Time
Semidiscretization

Piotr Kalita

Abstract In this article we study the operator version of a first order in time
partial differential inclusion as well as its time discretization obtained by an implicit
Euler scheme. This technique, known as the Rothe method, yields the semidiscrete
trajectories that are proved to converge to the solution of the original problem. While
both the time continuous problem and its semidiscretization can have nonunique
solutions we prove that, as times goes to infinity, all trajectories are attracted towards
certain compact and invariant sets, so-called global attractors. We prove that the
semidiscrete attractors converge upper-semicontinuously to the global attractor of
time continuous problem.

1 Introduction

In the study of the long time behavior of solutions of initial and boundary value
problems for dissipative partial differential equations or inclusions one can either
study the asymptotic behavior of individual trajectories, or, like we do in this article,
study the asymptotic behavior of sets reachable from the bounded sets of initial
conditions.

This second approach leads to the theory of global attractors, the sets which are
compact and invariant (or semiinvariant) in the phase space and attract all bounded
sets of initial conditions. To know that such object, global attractor, exists, would
mean that the dynamics is asymptotically captured by the solution map behavior on
a certain compact set, while all trajectories outside this set become attracted towards
it as time advances to infinity.

For problems governed by dissipative partial differential equations with unique-
ness of solutions, theory of global attractors has been thoroughly studied (see
[8, 9, 32, 36]). The problems without uniqueness of solution, in turn, have focused
much attention recently (see [2]). There are two approaches to deal with the
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problems without uniqueness. One of them is based on the study of multifunctions
that assign to the initial state the set of states reachable after some time t. This
approach, by the so-called multivalued semiflows or m-semiflows was initiated
in [1] and developed in [25, 26], or, more recently, in [11, 16, 40]. The second
technique, by trajectory attractors, consists in the study of shift operators on the
spaces of time dependent trajectories and was developed in [7, 24, 34].

The first approach was used in [21] to study the inclusion

u′(t) ∈ Δu(t)+F(u(t)),

where one of the assumptions on F is that it is Lipschitz continuous in the Hausdorff
metric on R, i.e.

hausR(F(u),F(v))≤ LF|u− v| for all u,v ∈ R.

The authors prove that both the original problem and its semidiscretization (as
well as fully time and space discretized scheme) generate m-semiflows that have
global attractors, and the discrete attractors converge upper-semicontinuously to the
attractor of the original, time continuous, problem.

In this article we obtain a similar result to that of [21] for a more general setup:
namely, the multifunction does not have to be Hausdorff continuous, we require only
strong–weak upper-semicontinuity. Moreover, this multifunction does not have to
be defined on the state space of the problem, it can also originate from multivalued
Neumann-Robin boundary condition, these types of boundary conditions are useful
when modeling friction [23] or other contact phenomena [29]. We use the unified
framework proposed in [15], where the multivalued term can be defined either
on the boundary on inside the domain of interest. Finally, the operator in our
problem does not have to be Laplacian, it must be pseudomonotone: a general
class of not necessarily potential operators that include, for example, p-Laplacian
or quasilinear operators in divergence form satisfying appropriate Leray–Lions
conditions (see [33]).

Note that we prove here only upper-semicontinuous convergence of semidiscrete
attractors to the time continuous one. This means that the attractors cannot
“implode,” i.e. all cluster points of semidiscrete attractors must belong to the time
continuous one, however, it remains unknown, whether there are points in time
continuous attractor, that are not the cluster points of semidiscrete ones, hence
“explosion” of attractors is possible. We note here that the question of lower-
semicontinuous convergence, i.e. whether such “explosion” is indeed possible is
open and only some partial and unsatisfactory responses have been developed so far
(see [2, 30] for the recent review).

The existence of global attractor for m-semiflow governed by the inclusion
with pseudomonotone operator was proved in [17, 19, 20]. Moreover, a strong
convergence of semidiscrete solutions to the time continuous one established in
Theorem 5 below and needed for the convergence of attractors was used in [39]
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Theorem 11.1 for non-monotone autonomous evolution inclusions in strongest
topologies of the extended phase space (see also Theorems 4.1 and 4.2 from [14]
for non-autonomous case and Sect. 6 of [18]).

The plan of the article is the following. In Sect. 2 some preliminary necessary
definitions and results are recalled. Next Sect. 3 contains the definitions of the time
continuous and time discretized problems as well as necessary assumptions. In the
following Sect. 4 we prove the auxiliary result of pseudomonotonicity of Nemytskii
operators. Section 5 is devoted to the convergence of the solutions of semidiscrete
schemes, while Sects. 6 and 7 contain the proofs of the existence of time continuous
and time discretized attractors, respectively. Convergence of discrete attractors to
the time continuous one is proved in Sect. 8. The last Sect. 9 contains the discussion
of the assumptions on the problem data and examples of operators that satisfy them.

2 Definitions

Definition 1. An operator A : X → X∗, where X is a reflexive Banach space is
pseudomonotone (in the sense of Brézis) if for every sequence vn → v weakly in
X such that limsupn→∞〈Avn,vn − v〉X∗×X ≤ 0 we have

〈Av,v−w〉X∗×X ≤ liminf
n→∞

〈Avn,vn −w〉X∗×X for all w ∈ X.

Definition 2. Let X be a reflexive Banach space, and let W ⊂ X be another Banach
space embedded continuously in X. An operator A : X → X∗ is W-pseudomonotone
if for every sequence {vn} ⊂ W with ‖vn‖W bounded such that vn → v weakly in X
and limsupn→∞〈Avn,vn − v〉X∗×X ≤ 0 we have

〈Av,v−w〉X∗×X ≤ liminf
n→∞

〈Avn,vn −w〉X∗×X for all w ∈ X.

The definition of pseudomonotonicity of multifunctions is not a simple generaliza-
tion of single valued case.

Definition 3 (See [13], Chap. 1.3). A multifunction A : X → 2X∗
, where X is a

reflexive Banach space is multivalued pseudomonotone, if

(i) for any v ∈ X the set A(v) is nonempty, weakly compact, and convex,
(ii) A is upper-semicontinuous from every finite dimensional subspace of X into

X∗ furnished with weak topology,
(iii) if vn → v weakly in X and v∗n ∈ A(vn) satisfies limsupn→∞〈v∗n,vn− v〉 ≤ 0 then

for every y ∈ X there exists u(y) ∈ A(v) such that

〈u(y),v− y〉 ≤ liminf
n→∞

〈v∗n,vn − y〉.
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Note that it is useful to check pseudomonotonicity of multifunctions via the
following sufficient condition (see Proposition 1.3.66 in [13] or Proposition 3.1
in [6]).

Proposition 1. Let X be a reflexive Banach space. A multifunction A : X → 2X∗
is

multivalued pseudomonotone, if it satisfies the following conditions

(i) for every v ∈ X the set A(v) is nonempty, weakly compact, and convex,
(ii) A is bounded,

(iii) if vn → v weakly in X and v∗n → v∗ weakly in X∗ with v∗n ∈ A(vn) and if
limsupn→∞〈v∗n,vn − v〉 ≤ 0 then v∗ ∈ A(v) and 〈vn,v∗n〉 → 〈v,v∗〉.

Definition 4. Let I = (a,b) be a finite time interval and let u : I → X, where X is a
Banach space. The q-variation seminorm is defined as

‖u‖q
BVq(I;X) = sup

{
k−1

∑
i=0

‖u(ti+1)−u(ti)‖q
X | k ∈ N,a = t0 < t1 < t2 < .. . < tk = b

}
.

We denote by BVq(I;X) the set of all functions u : I → X for which the q-variation
seminorm is finite.

For Banach spaces X,Y such that X ⊂ Y we define the following Banach space, for
1 ≤ p,q < ∞ (see [15])

Mp,q(I;X,Y) = Lp(I;X)∩BVq(I;Y),

and if u ∈ Mp,q(I;X,Y) for all bounded intervals I ⊂ R
+ then we say that

u ∈ Mp,q
loc (R

+;X,Y). We have the following theorem (see Theorem 1 in [15]) that
motivates the use of space Mp,q.

Theorem 1. Let 1 ≤ p,q < ∞. Let moreover X1 ⊂ X2 ⊂ X3 be Banach spaces such
that X1 is reflexive, the embedding X1 ⊂X2 is compact and the embedding X2 ⊂X3 is
continuous. If a set S ⊂ Mp,q(0,T;X1,X3) is bounded, then it is relatively compact
in Lp(0,T;X2).

We remind a definition of Painlevé-Kuratowski upper convergence of sets, and a
useful theorem on pointwise convergence of weakly convergent sequences (see, for
instance, Proposition 4.7.44 in [12])

Definition 5. Let (X,τ) be a topological space and let {An}∞n=1 be a sequence
of subsets of X. The upper Painlevé-Kuratowski limit of the sequence {An} is
defined by

τ− limsup
n→∞

An = {x ∈ X |x = τ− lim
k→∞

xnk ,xnk ∈ Ank ,n1 < n2 < .. . < nk < .. .}.

Theorem 2. Let I be an open and finite time interval and let X be a reflexive
Banach space. Let f ∈ L1(I;X) and let {fn}∞n=1 be a sequence of functions from
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L1(I;X) such that fn → f weakly in L1(I;X). Moreover, assume that for a.e. t ∈ I we
have ‖fn(t)‖X ≤ Rt, where Rt is a positive constant independent of n, but possibly
dependent on t ∈ I. Then we have

f (t) ∈ conv weak− limsup
n→∞

{fn(t)} for a.e. t ∈ I.

If (X,‖ · ‖X) is a Banach space, then we define the distance from the point x ∈ X to
the set A ⊂ X as distX(x,A) = infy∈A ‖x− y‖X . Moreover we define the Hausdorff
semidistance from the set A ⊂ X to the set B ⊂ X as distX(A,B) = supx∈A distX(x,B).
Let P(X) (B(X),C(X),K(X)) be the family of all nonempty (nonempty and
bounded, nonempty and closed, nonempty and compact) subsets of X. We denote
R
+ = [0,∞). Let T be the additive subgroup of R and T

+ = R
+∩T.

Definition 6. The mapping G : T+ ×X → P(X) is called a multivalued semiflow
(m-semiflow) if

(i) G (0,x) = {x} for all x ∈ X,
(ii) G (t1 + t2,x) ⊂ G (t1,G (t2,x)) for all x ∈ X, t1, t2 ∈ T

+, where for A ⊂ X and
t ∈ T

+ we define G (t,A) =
⋃

x∈AG (t,x).

If in (ii), instead of inclusion, the equality G (t1 + t2,x) = G (t1,G (t2,x)) holds, then
the m-semiflow is said to be strict.

Definition 7. The m-semiflow G is said to be B(X)-dissipative if there exists a
set B0 ⊂B(X) such that for every B ∈B(X) there exists t0 ∈ T

+ such that for all
t0 ≤ t ∈ T

+ we have G (t,B)⊂ B0.

Definition 8. The m-semiflow G is said to be closed if for every t ∈T
+ from un → u

and wn → w (where both convergences must hold in strong topology of X) with
wn ∈ G (t,un) it follows that w ∈ G (t,u).

Definition 9. The m-semiflow G is said to be asymptotically compact if for every
B ∈B(X) and for all sequences {tn} ⊂ T

+ such that tn →∞ and ξn ∈ G (tn,B) for a
subsequence we have ξn → ξ strongly in X with ξ ∈ X.

Definition 10. The m-semiflow G is said to be compact if for every B ∈B(X) and
for all t > 0 the set G (t,B) is relatively compact.

Definition 11. The set A ⊂ X is called a global attractor for an m-semiflow G if it
is nonempty, compact, negatively semiinvariant (i.e., A ⊂ G (t,A ) for all t ∈ T

+),
and attracts all bounded sets in X, i.e. for all B ∈B(X) we have

lim
t→∞

distX(G (t,B),A ) = 0.

The global attractor is said to be invariant if for all t ∈ T
+ we have A = G (t,A ).

We cite the following theorem on the existence of global attractor (see [5]
Theorem 18, [25] Theorem 3 and Remark 8)
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Theorem 3. Let X be a Banach space. If an m-semiflow G : T+ × X → P(X)
is B(X)-dissipative, closed, and asymptotically compact, then is has a global
attractor A . If G is strict, then the attractor A is invariant.

Note that the global attractor, if it exists, must be defined uniquely. Moreover it is
the minimal closed set that attracts all sets from B(X) and it is the maximal bounded
negatively semiinvariant set.

Lemma 1. Let X be a Banach space. If an m-semiflow G :T+×X →P(X) is B(X)-
dissipative and compact then it is asymptotically compact.

Proof. Take B ∈ B(X) and tn → ∞. Choose t > 0. For n large enough we have
G (tn,B) ⊂ G (t,G (tn − t,B)). Again, for n large enough, from B(X)-dissipativity
we have G (tn,B)⊂ G (t,B0), and the assertion follows by compactness.

3 Problem Definition

Let V be a reflexive and separable Banach space, and let H be a Hilbert space.
We consider an evolution triple V ⊂ H ⊂ V∗ with the embeddings being continuous,
dense and compact. The embedding V ⊂ H will be denoted by i : V → H. The
norm in V will be denoted by ‖ · ‖ while all other norms will be denoted by
appropriate subscripts. Similarly, the duality pairing between V and V∗ will be
denoted by 〈·, ·〉, while duality pairings between other spaces will be denoted by
appropriate subscripts. Scalar product in H will be denoted by (·, ·). Let moreover
U be another reflexive Banach space and let ι : V → U be a linear, continuous and
compact operator not identically equal to zero. The norm of ι will be denoted as
‖ι‖ := ‖ι‖L (V;U). We fix p ≥ 2 and denote the adjoint exponent by q, i.e. 1

p +
1
q = 1.

For a finite time interval I, the spaces of time dependent functions will be denoted,
respectively, as V (I) = Lp(I;V), V ∗(I) = Lq(I;V∗), U (I) = Lp(I;U). Moreover
we use the notation W (I) = {u ∈ V (I) |u′ ∈ V ∗(I)}, where u′ is the derivative
in the distributional sense. We will also use the notation Vloc(R

+) (respectively
V ∗

loc(R
+), Wloc(R

+), Uloc(R
+)) for the spaces of functions that belong to V (0,T)

(respectively V ∗(0,T), W (0,T), U (0,T)) for all T > 0.
We assume that A : V → V∗ is a possibly nonlinear operator and F : U → 2U∗

is
a multifunction. The detailed assumptions on the problem data are the following

H(A)

(i) A is pseudomonotone.
(ii) A is coercive in the sense that for all v ∈ V we have 〈Av,v〉 ≥ α‖v‖p with

the constant α > 0.
(iii) A satisfies the growth condition ‖Av‖V∗ ≤ a+ b‖v‖p−1 for all v ∈ V with

b > 0 and a ≥ 0.
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H(F)

(i) For every u ∈ U the set F(u) is nonempty, closed, and convex.
(ii) F satisfies the growth condition ‖ξ‖U∗ ≤ c(1+ ‖u‖p−1

U ) for all u ∈ U and
ξ ∈ F(u) with the constant c > 0.

(iii) Graph of F is a sequentially closed set in (strong − U)× (weak − U∗)
topology.

(iv) F satisfies the dissipativity condition 〈ξ ,u〉U∗×U ≥ c1−c2‖u‖p
U for all u∈U

and ξ ∈ F(u) with c1 ∈ R and 0 ≤ c2 <
α

‖ι‖p .

(H0) f ∈ V∗, u0 ∈ H.
H(U) For all finite time intervals I the Nemytskii mapping for ι denoted as ῑ :

Mp,q(I;V,V∗)→U (I) is compact.

Remark 1. Note that assumption H(U) is motivated by Proposition 2 in [15].
It holds, for example, if we can find another Banach space Z such that V ⊂ Z
compactly, Z ⊂ H continuously and there exists a linear and continuous mapping
γ : Z → U such that for all v ∈ V we have γv = ιv.

Remark 2. If the constant c2 in H(F)(iv) is negative, then the term with F has a
dissipative nature. In such a case we can set c2 = 0. Due to dissipativity of A it is
possible that c2 > 0, then the term with F is “excitatory” but the magnitude of c2 is
limited by the coercivity constant α .

The main problem under consideration is the following

(P) Find u ∈Wloc(R
+) such that u(0) = u0 and for a.e. t > 0 we have

u′(t)+Au(t)+ ι∗F(ιu(t)) � f . (1)

Note that we say that u ∈Wloc(R
+) solves (1) when there exists η : R+ → U∗ such

that for a.e. t ∈ R
+ we have η(t) ∈ F(ιu(t)) and u′(t)+Au(t)+ ι∗η(t) = f .

We fix τ > 0 and we define the temporal semidiscretization of the problem (P),
where we use the implicit Euler scheme

(Pτ ) Find {uk
τ}∞k=0 such that u0

τ = u0τ , where {u0τ} ⊂ H is a sequence such that
u0τ → u0 strongly in H as τ → 0 and for all k ∈ N

+ and v ∈ V we have
uk
τ ∈ V and

(
uk
τ −uk−1

τ
τ

,v

)
+ 〈Auk

τ ,v〉+ 〈ηk
τ , ιu〉U∗×U = 〈f ,v〉, (2)

where ηk
τ ∈ F(ιuk

τ).

We will use the notation T
+
τ = {0,τ ,2τ , . . .}. For a solution of Problem (Pτ ) we

can construct piecewise constant and piecewise linear interpolants ūτ ,uτ : R+ → H

ūτ(t) = uk
τ , uτ(t) = uk

τ
t− (k−1)τ

τ
+uk−1

τ
kτ− t
τ

for t ∈ ((k−1)τ ,kτ ].
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For simplicity we assume that ūτ(0) = u1
τ . Note that, denoting by η̄τ : R+ → U∗ the

piecewise constant function equal to ηk
τ for t ∈ ((k− 1)τ .kτ ], Eq. (2) is equivalent

to the following equation in V∗

u′τ(t)+Aūτ(t)+ ι∗η̄τ(t) = f , (3)

valid for all t > 0.

4 Pseudomonotonicity of Nemytskii Operator for A

Before we pass to the analysis of Problem (P) and its time discretized approxi-
mation we formulate and prove the auxiliary result on pseudomonotonicity of the
Nemytskii operator for the operator A. This operator, denoted as A : V (0,T) →
V ∗(0,T) is defined by the expression (A(u))(t) = A(u(t)). The proof of the next
theorem is inspired by the proof of Theorem 2 in [4] (compare Proposition 1 in [31]
and Lemma 1 in [15]). Since our setup is different than in mentioned works, we
present the proof here.

Theorem 4. Fix T > 0. Let A satisfy H(A) and let W be a Banach space such
that the embedding W ⊂ Lp(0,T;H) is compact. Then the Nemytskii operator A :
V (0,T)→ V ∗(0,T) is W-pseudomonotone.

Proof. Let vn → v weakly in V (0,T) and ‖vn‖W be bounded with

limsup
n→∞

〈Avn,vn −w〉V (0,T)×V ∗(0,T) ≤ 0.

From the compactness of the embedding W ⊂ Lp(0,T;H) it follows that vn → v
strongly in the latter space and, for a subsequence, vn(t) → v(t) strongly in H for
a.e. t ∈ (0,T). The null set on which the convergence does not hold will be denoted
by N. Define ξn(t) = 〈Avn(t),vn(t)− v(t)〉. We have, by H(A)(ii) and H(A)(iii)

ξn(t)≥ α‖vn(t)‖p − (a+b‖vn(t)‖p−1)‖v(t)‖ ≥ α
2
‖vn(t)‖p −a‖v(t)‖−C‖v(t)‖p,

(4)
with a constant C > 0. Let D = {t ∈ [0,T] | liminfn→∞ ξn(t) < 0}. Obviously this
is a measurable set. Assume that m(D) > 0. For t ∈ D \ N the sequence vn(t)
has, by (4) a subsequence which is bounded in V such that, for this subsequence,
limn→∞〈Avn(t),vn(t)− v〉 < 0. Again for a subsequence we have vn(t) → v(t)
weakly in V , where the limit is equal to v(t) since we consider only t /∈ N.
By pseudomonotonicity of A we get 0 ≤ liminfn→∞〈Avn(t),vn(t)− v(t)〉, which
is a contradiction. So, m(D) = 0, which means that liminfn→∞ ξn(t) ≥ 0 for a.e.
t ∈ (0,T). By (4) we can use the Fatou Lemma to get
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0 ≤
∫ T

0
liminf

n→∞
〈Avn(t),vn(t)− v(t)〉dt ≤ liminf

n→∞
〈Avn,vn − v〉V ∗(0,T)×V (0,T)

≤ limsup
n→∞

〈Avn,vn − v〉V ∗(0,T)×V (0,T) ≤ 0.

This means that limn→∞
∫ T

0 ξn(t)dt = 0. Now note that |ξn(t)|= ξn(t)+2ξ−
n (t), and

we have limn→∞ ξ−
n (t) = 0 for a.e. t ∈ (0,T). By (4) we have ξ−

n (t) ≤ a‖v(t)‖+
C‖v(t)‖p ∈ L1(0,T). We can use the Fatou Lemma to get limsupn→∞

∫ T
0 ξ−

n (t)dt ≤ 0
and furthermore limn→∞

∫ T
0 ξ−

n (t)dt = 0. We deduce that ξn → 0 in L1(0,T), and,
for a subsequence, not renumbered, ξn(t)→ 0 a.e. t ∈ (0,T). From (4) it follows that
vn(t)→ v(t) weakly in V where the limit must be equal to v(t) and the convergence
must hold for the subsequence on which vn(t) → v(t) strongly in H. Using the
pseudomonotonicity of A it follows that

Avn(t)→ Av(t) weakly in V∗ and 〈Avn(t),vn(t)〉 → 〈Av(t),v(t)〉. (5)

Choose w ∈ V (0,T). We have, using the Fatou Lemma once again

liminf
n→∞

〈Avn,vn −w〉V ∗(0,T)×V (0,T) ≥
∫ T

0
liminf

n→∞
〈Avn(t),vn(t)−w(t)〉dt. (6)

For subsequence of indices, which may be different for different t we have

liminf
n→∞

〈Avn(t),vn(t)−w(t)〉= lim
k→∞

〈Avnk(t),vnk(t)−w(t)〉.

From previous arguments, for another subsequence we have (5), and, by the
uniqueness of the limit, the convergence must hold for whole nk. Hence

liminf
n→∞

〈Avn(t),vn(t)−w(t)〉= 〈Av(t),v(t)−w(t)〉,

which, together with (6), completes the proof.

5 Convergence of Semi-Discrete Scheme

In this section we formulate and prove the theorem on the convergence of semi-
discrete scheme solutions to a solution of the time continuous problem. We first
formulate the theorem, and then we present several auxiliary results useful in its
proof.

Theorem 5. Let H(A),H(F),(H0),H(U) hold. Then the Problem (P) has a
(possibly nonunique) solution. Moreover Problem (Pτ) has a solution for every
τ > 0. This solution can be possibly nonunique in every time step. If τ → 0, then



44 P. Kalita

for each corresponding sequence of solutions to (Pτ) we can find a subsequence
such that

ūτ → u weakly in Vloc(R
+) and weakly-* in L∞

loc(R
+;H), (7)

ῑ ūτ → ῑu strongly in Uloc(R
+), (8)

uτ → u weakly-* in L∞
loc(R

+;H), (9)

u′τ → u′ weakly V ∗
loc(R

+), (10)

uτ(t)→ u(t) strongly in H for all t ∈ (0,∞), (11)

where u solves the problem (P).

It is enough to prove the above theorem for the finite time interval (0,T) for a given
and fixed T . Indeed, the solution u must belong to C(0,T;H) and hence the value of
this solution at the point T can be taken as the initial condition to construct another
solution of length T . Then, by concatenation of these solutions it is possible to
construct the solution on (0,2T) and by repetition of this procedure on the whole
positive semi-axis. Likewise, it is sufficient to prove the convergences (7)–(11) on
the interval (0,T) and use the diagonal argument to construct a subsequence of
indexes such that (7)–(11) hold on the whole R

+. In the sequel of this section for
simplicity we assume that τn → 0 is a sequence such that T

τn
:=Nn is always a natural

number. This assumption is made to avoid technical difficulties only. To simplify
notation we will write τ ,N in place of τn,Nn.

Lemma 2. Let n ∈N and k ∈ {1, . . . ,N} be given. Under assumptions H(A), H(F),
H0 and H(U), for any τ > 0 there exists uk

τ ∈ V, the solution to Problem (Pτ).

Proof. We rewrite equivalently (2) as follows:

1
τ

uk
τ +Auk

τ + ι∗F(ιuk
τ) �

1
τ

uk−1
τ + f .

We show that, given uk−1
τ ∈ V , there exists uk

τ that satisfies the above inclusion. To
this end, we prove that the range of multifunction V � v → Lv = i∗iv

τ +Av+ ι∗F(ιv)
is the whole space V∗. This will be done by a surjectivity theorem of Brézis
(see, for instance, Theorem 1.3.70 in [13]). We need to show that L is coercive
(in the sense that lim‖v‖→∞ infv∗∈Lv

〈v∗,v〉
‖v‖ = ∞) and multivalued pseudomonotone.

We will the use the fact that sum of multivalued pseudomonotone maps is
multivalued pseudomonotone, cf. [13] Proposition 1.3.68. First, observe that the
operator i∗i

τ satisfies conditions (i)–(iii) of Proposition 1 trivially. The fact that A
satisfies these conditions follows from H(A)(i) and H(A)(iii). To show multivalued
pseudomonotonicity of F observe that (i) of Proposition 1 follows from H(F)(i),
while (ii) is a consequence of H(F)(ii). We prove (iii). Let vn → v weakly in V
and v∗n → v∗ weakly in V∗ be such that v∗n ∈ ι∗F(ιvn). Then v∗n = ι∗ξn for certain
ξn ∈ F(ιvn). Compactness of ι implies that ιvn → ιv strongly in U, and, by the
growth condition H(F)(ii), we have, for a subsequence, ξn → ξ weakly in U∗.
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Now H(F)(iii) implies that ξ ∈ F(ιv), and continuity of the adjoint mapping ι∗
implies that v∗n = ι∗ξn → ι∗ξ weakly in V∗, and ι∗ξ = v∗. Moreover v∗ ∈ ι∗F(ιv)
and 〈v∗n,vn〉= 〈ξn, ιvn〉U∗×U →〈ξ , ιv〉U∗×U = 〈v∗,v〉, and the uniqueness of the limit
implies that the convergence holds for the whole sequence. The assertion (iii) is
proved. In order to show the coercivity of L we need to assume that v∗ ∈ Lv and
estimate 〈v∗,v〉 from below. We have, with certain η ∈ F(ιv)

〈v∗,v〉 ≥ ‖v‖2
H

τ
+α‖v‖p + 〈η , ιv〉U∗×U ≥ ‖v‖2

H

τ
+α‖v‖p − c1 − c2‖ιv‖p

≥ ‖v‖2
H

τ
+(α− c2‖ι‖p)‖v‖p − c1,

where we have used H(A)(ii) and H(A)(iv), whence the coercivity follows. The
proof is complete.

The next result establishes estimates which are satisfied by the solutions of the semi-
discrete problem.

Lemma 3. Under assumptions H(A),H(F),H(U), and H0, if {uk
τ} solve the Prob-

lem (Pτ) then we have for all natural m ≥ 1

‖um
τ ‖2

H + τ
m

∑
k=1

‖uk
τ −uk−1

τ ‖2
H +C1τ

m

∑
k=1

‖uk
τ‖p ≤ mτC2 +‖u0

τ‖2
H , (12)

‖um
τ ‖2

H ≤ C3 +‖u0
τ‖2

H
1

(1+C4τ)m , (13)

where the positive constants C1,C2,C3,C4 are independent of m,τ ,u0
τ .

Proof. The proof is standard. We take duality in (2) with uk
τ and use the relation

‖a‖2−(a,b)= ‖a‖2−‖b‖2+‖a−b‖2

2 . Using H(A)(ii) and H(F)(iv) we obtain for k∈N
+

1
2τ

(‖uk
τ‖2

H −‖uk−1
τ ‖2

H +‖uk
τ−uk−1

τ ‖2
H)+(α−c2‖ι‖p)‖uk

τ‖p+c1 ≤ 〈f ,uk
τ〉. (14)

Now (12) follows by summing (14) from k = 1 to m and a straightforward
computation.

To show (13) observe that from (14) it follows that, for some constants D1,D2

independent of k,τ ,u0
τ

‖uk
τ‖2

H +D1τ‖uk
τ‖p+≤ D2τ+‖uk−1

τ ‖2
H .

Since p ≥ 2, it follows that

‖uk
τ‖2

H(1+D3τ)≤ D4τ+‖uk−1
τ ‖2

H ,

where D3,D4 depend only on D1,D2,p and the norm of the embedding i : V → H.
By a simple induction it follows that (13) holds with C4 = D3 and C3 =

D4
D3

.
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Lemma 4. Let H(A),H(F),H(U),H0 hold and let τ > 0. The following estimates
hold for all natural m ≥ 1

τ
m

∑
k=1

‖Auk
τ‖

q
V∗ + τ

m

∑
k=1

‖ηk
τ ‖

q
U∗ + τ

m

∑
k=1

∥∥∥∥uk
τ −uk−1

τ
τ

∥∥∥∥
q

V∗
≤ M1‖u0

τ‖2
H +M2mτ , (15)

where ηk
τ ∈ F(ιuk

τ) are such that (2) holds and the constants M1,M2 > 0 depend
only on the problem data (excluding τ ,m,u0

τ ).

Proof. From the growth condition H(A)(iii) we have

m

∑
k=1

τ‖Auk
τ‖

q
V∗ ≤ τ

m

∑
k=1

(a+b‖uk
τ‖

p−1
V∗ )q ≤ 2q−1mτaq +2q−1bqτ

m

∑
k=1

‖uk
τ‖

p
V∗ . (16)

Next we observe that by the growth condition H(F)(ii) we have

τ
m

∑
k=1

‖ηk
τ ‖

q
U∗ ≤ cqτ

m

∑
k=1

(1+‖ιuk
τ‖

p−1
U )q ≤ cqτm2q−1 +‖ι‖qcq2q−1τ

m

∑
k=1

‖uk
τ‖p.

(17)

In order to estimate the last term in (15), from (2) we obtain

τ
m

∑
k=1

∥∥∥∥uk
τ −uk−1

τ
τ

∥∥∥∥
q

V∗
≤ τ

m

∑
k=1

∥∥f −Auk
τ − ι∗ηk

τ
∥∥q

V∗ , (18)

where ηk
τ ∈ F(ιuk

τ). Moreover, we have

τ
m

∑
k=1

∥∥∥∥uk
τ −uk−1

τ
τ

∥∥∥∥
q

V∗
≤ Cτm‖f‖V∗ +Cτ

m

∑
k=1

(‖Auk
τ‖

q
V∗ +‖ι‖q‖ηk

τ ‖
q
U∗), (19)

where C > 0. Now the assertion (15) follows from the estimates (16), (17), (19), and
(12) of Lemma 3. The proof is complete.

We formulate the following lemma.

Lemma 5. Under assumptions H(A),H(F),H(U),H0, the sequence {ūτ} is boun-
ded in V (0,T)∩L∞(0,T;H) and the sequence {uτ} is bounded in C(0,T;H) with
{u′τ} bounded in V ∗(0,T). Furthermore {ūτ} is bounded in BVq(0,T;V∗). Finally
{Aūτ} and {η̄τ} are bounded in V ∗(0,T) and U ∗(0,T), respectively.

Proof. It suffices to show the BVq estimate since all the other estimates follow
directly from Lemmata 3 and 4. The BVq seminorm of ūτ is given by

‖ūτ‖q
BVq(0,T;V∗) =

Mτ

∑
j=1

‖umj
τ

τ −umj−1
τ

τ ‖q
V∗ ,
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and it is attained by the partition such that its vertices fall in the grid intervals
indexed by m0

τ ,m
1
τ , . . . ,m

Mτ−1
τ ,mMτ

τ , where m0
τ = 1 and mMτ

τ = N. By the convexity
of the function h(s) = sq, we obtain

‖ūτ‖q
BVq(0,T;V∗) ≤

Mτ

∑
j=1

(mj−1
τ −mj

τ)
q−1

mj
τ

∑
i=mj−1

τ +1

‖ui
τ −ui−1

τ ‖q
V∗

≤
Mτ

∑
j=1

(mj−1
τ −mj

τ)
q−1τq−1τ

mj
τ

∑
i=mj−1

τ +1

∥∥∥∥ui
τ −ui−1

τ
τ

∥∥∥∥
q

V∗

≤ (Nτ)q−1τ
N

∑
i=2

∥∥∥∥ui
τ −ui−1

τ
τ

∥∥∥∥
q

V∗
,

and the assertion follows from (15).

The next Lemma establishes weak and weak-* limits of subsequences of constructed
interpolants.

Lemma 6. Under assumptions H(A),H(F),H(U), and H0, there exists
u ∈ W (0,T) as well as ζ ∈ V ∗(0,T), η ∈ U ∗(0,T) and a subsequence of indices
such that for this subsequence (still denoted by the index τ), we have

ūτ → u weakly in V and weakly-* in L∞(0,T;H), (20)

uτ → u weakly-* in L∞(0,T;H), (21)

u′τ → u′ weakly in V ∗, (22)

ῑ ūτ → ῑu strongly in U , (23)

Aūn → ζ weakly in V ∗, (24)

η̄τ → η weakly in U ∗. (25)

Proof. The fact that the limits of appropriate subsequences exist follows directly
from Lemmata 3–5, and H(U). It only suffices to prove that limits of uτ and ūτ
coincide. This is done in a standard way by showing the estimate on ‖uτ − ūτ‖V ∗ .
By the direct calculation we have

‖uτ − ūτ‖q
V ∗ =

N

∑
k=1

∫ kτ

(k−1)τ

∥∥∥∥uk
τ −uk−1

τ − uk
τ −uk−1

τ
τ

(t− (k−1)τ)
∥∥∥∥

q

V∗
dt

≤ τq

q+1

N

∑
k=1

τ
∥∥∥∥uk

τ −uk−1
τ

τ

∥∥∥∥
q

V∗
.

By the estimate (15), it follows that uτ − ūτ → 0 in V ∗(0,T) as τ → 0 and therefore
the limits of two sequences must coincide.
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Theorem 6. Under assumptions H(A),H(F),H(U), and H0, the function u
obtained in Lemma 6 solves Problem (P).

Proof. First we show that u satisfies the initial condition. From (21) and (22), it
follows, by Corollary 4 of [35], that

uτ → u strongly in C(0,T;V∗), (26)

and furthermore uτ(0) → u(0) strongly in V∗. Since uτ(0) = u0τ and u0τ → u0

strongly in H, from the uniqueness of the limit, it follows that u(0) = u0.
Let us observe that (3) can be equivalently rewritten as the following equality

that holds in V ∗(0,T) for all τ

u′τ +Aūτ + ῑ∗η̄τ = f . (27)

We can pass to the limit in (27) and find

u′+ζ + ῑ∗η = f . (28)

To conclude the proof we must verify that ζ = Au and η(t) ∈ F(ιu(t)) for a.e. t.
First, we verify this last assertion. Since ῑ ūτ → ῑu strongly in U (0,T), then,

moreover, for a subsequence, ι ūτ(t) → ιu(t) strongly in U for a.e. t ∈ (0,T) with
‖ιuτ(t)‖U ≤ a(t) for certain function a ∈ Lp(0,T). Moreover η̄τ → η weakly in
L1(0,T;U∗), with η̄τ(t) ∈ F(ι ūτ(t)) for a.e. t ∈ (0,T).

Growth condition H(F)(ii) implies that for a.e. t ∈ (0,T) we have

‖η̄τ(t)‖U∗ ≤ c(1+‖ι ūτ(t)‖p−1
U )≤ c(1+a(t)p−1).

We can use Theorem 2 to deduce that

η(t) ∈ conv weak− limsup
τ→0

{η̄τ(t)} ⊂ conv weak− limsup
τ→0

F(ι ūτ(t))

for a.e. t ∈ (0,T). The strong convergence ι ūτ(t) → ιu(t) and the assumptions
H(F)(i) and H(F)(iii) imply that

η(t) ∈ convF(ιu(t)) = F(ιu(t))

for a.e. t ∈ (0,T) and the assertion is proved.
Subsequently, we verify that ζ = Au. We use the relation

limsup
τ→0

〈Aūτ , ūτ −u〉V ∗(0,T)×V (0,T) = limsup
τ→0

〈f −u′n − ῑ∗η̄n, ūn −u〉V ∗(0,T)×V (0,T),

whence it follows that

limsup
τ→0

〈Aūτ , ūτ −u〉V ∗(0,T)×V (0,T) = limsup
τ→0

〈u′τ ,u− ūτ〉V ∗(0,T)×V (0,T).
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By the direct calculation, we have

〈u′τ ,u− ūτ〉V ∗(0,T)×V (0,T) = 〈u′τ ,u〉V ∗(0,T)×V (0,T)−〈u′τ , ūτ〉V ∗(0,T)×V (0,T)

= 〈u′τ ,u〉V ∗(0,T)×V (0,T) +
1
2
(‖u0τ‖2

H −‖uτ(T)‖2
H)−

1
2

N

∑
k=1

‖uk
τ −uk−1

τ ‖2
H .

Hence

limsup
τ→0

〈u′τ ,u− ūτ〉V ∗(0,T)×V (0,T)

≤ 〈u′,u〉V ∗(0,T)×V (0,T) +
1
2
(‖u0‖2

H − liminf
τ→0

‖uτ(T)‖2
H).

Finally, we observe that ‖uτ(T)‖H is bounded and therefore we may assume that
for a subsequence uτ(T) → w weakly in H with w ∈ H. It follows from (26) that
uτ(T) → u(T) strongly in V∗. We conclude that w = u(T) and the convergence
holds for the whole subsequence for which the assertion of Lemma 6 holds. From
the weak lower-semicontinuity of the norm, we have

limsup
τ→0

〈u′τ ,u− ūτ〉V ∗(0,T)×V (0,T) ≤
‖u0‖2

H −‖u(T)‖2
H

2
+ 〈u′,u〉V ∗(0,T)×V (0,T) = 0,

which gives

limsup
τ→0

〈Aūτ , ūτ −u〉V ∗(0,T)×V (0,T) ≤ 0. (29)

By Theorems 1 and 4 it follows that the Nemytskii operator A is Mp,q(0,T;V,V∗)-
pseudomonotone. We conclude that

〈Au,u− y〉V ∗(0,T)×V (0,T) ≤ liminf
τ→0

〈Aūτ , ūτ − y〉V ∗(0,T)×V (0,T),

for all y ∈ V . The assertion follows taking, respectively, y = u+w and y = u−w,
where w ∈ V ∗.

We formulate the following theorem.

Theorem 7. Let ε > 0. Under assumptions H(A),H(F),H(U), and H0 for the
convergent subsequence established by Lemma 6, we have uτ → u weakly in
Lp(ε ,T;V) and uτ(t)→ u(t) strongly in H for all t ∈ [0,T].

Proof. Let us first estimate

∫ kτ

(k−1)τ
‖ūτ(t)−uτ(t)‖p dt =

τ
p+1

‖uk
τ −uk−1

τ ‖p ≤ 2p−1τ
p+1

(‖uk
n‖p +‖uk−1

n ‖p).
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Fix ε > 0. Let K(τ ,ε) be the smallest index such that K(τ ,ε)τ > ε . We have

‖ūτ −uτ‖p
Lp(ε ,T;V)

≤
N

∑
i=K(τ ,ε)

2p−1τ
p+1

(‖uk
τ‖p +‖uk−1

τ ‖p)

≤ 2pτ
p+1

N

∑
i=K(τ ,ε)−1

‖uk
τ‖p.

Since τ → 0, for small enough τ we have K(τ ,ε)− 1 ≥ 1 and, from Lemma 5
we obtain that uτ is bounded in Lp(ε ,T;V). It follows that uτ → u weakly in
this space and the convergence must hold for the whole subsequence for which
Lemma 5 holds. Moreover, by Lemma 5, u′n is bounded in V ∗(0,T) and in V ∗(ε ,T).
Hence, by the Aubin–Lions compactness theorem it follows that uτ → u strongly
in Lp(ε ,T;H). From arbitrariness of ε it follows that uτ(t) → u(t) strongly in H
for a.e. t ∈ (0,T), where we do not need to pass to subsequence since we already
know that uτ → u strongly in C(0,T;V∗). To prove the strong convergence for all
t ∈ [0,T] observe that uτ(0) = u0τ → u0 = u(0) strongly in H. Pick t > 0. There
exists ε ∈ (0, t) such that uτ(ε)→ u(ε) strongly in H. Subtracting Eq. (3) from (1),
taking the duality with ūτ −u and integrating over the interval (ε , t), we obtain

〈u′τ −u′, ūτ −u〉V ∗(ε ,t)×V (ε ,t) + 〈Aūτ −Au, ūτ −u〉V ∗(ε ,t)×V (ε ,t) (30)

+ 〈η̄τ −η , ῑ ūτ − ῑu〉U ∗(ε ,t)×U (ε ,t) = 0.

We have ῑ ūτ → ῑu strongly in U (0,T) and moreover in U (ε , t). Furthermore, by
Lemma 5 the sequence η̄n is bounded in U ∗(0,T) and moreover in U ∗(ε , t). Hence,
we get

lim
τ→0

〈η̄τ −η , ῑ ūτ − ῑu〉U ∗(ε ,t)×U (ε ,t) = 0. (31)

Using (31) in (30), we have

lim
τ→0

〈u′τ −u′+Aūτ , ūτ −u〉V ∗(ε ,t)×V (ε ,t) = 0. (32)

Now we need to prove that

limsup
τ→0

〈Aūτ , ūτ −u〉V ∗(ε ,t)×V (ε ,t) ≤ 0.

This follows analogously as the proof of (29) in Theorem 6. The only delicate step
in the proof is the computation of −〈u′τ , ūn〉V ∗(ε ,t)×V (ε ,t). We have



Attractors for Parabolic Inclusions 51

−〈u′τ , ūn〉V ∗(ε ,t)×V (ε ,t) =
‖uτ(ε)‖2

H −‖uτ(t)‖2
H

2
+
∫ t

ε
(u′τ(s),uτ(s)− ūτ(s))ds

≤ ‖uτ(ε)‖2
H −‖uτ(t)‖2

H

2
, (33)

where the inequality holds since, as the simple calculation shows, the integrand is
nonpositive for all s ∈ (0,T). Now, from Theorem 4, it follows that

0 ≤ liminf
τ→0

〈Aūτ , ūτ −u〉V ∗(ε ,t)×V (ε ,t),

so

〈Aūτ , ūτ −u〉V ∗(ε ,t)×V (ε ,t) → 0.

Thus (32) implies

lim
τ→0

〈u′τ −u′, ūτ −uτ +uτ −u〉V ∗(ε ,t)×V (ε ,t) = 0. (34)

The last equation can be reformulated as

lim
τ→0

(
1
2
(‖uτ(t)−u(t)‖2

H −‖uτ(ε)−u(ε)‖2
H)+

+

∫ t

ε
(u′τ(s), ūτ(s)−uτ(s))ds−〈u′, ūτ −uτ〉V ∗(ε ,t)×V (ε ,t)

)
= 0.

Since uτ(ε) → u(ε) strongly in H and ūτ − uτ → 0 weakly in V (0,T) and also
weakly in V (ε , t) we can write

0 = lim
τ→0

(
1
2
‖uτ(t)−u(t)‖2

H +
∫ t

ε
(u′τ(s), ūτ(s)−uτ(s))ds

)
.

Since the integrand in above expression must be positive, analogously to (33) we
get

0 ≥ 1
2

limsup
τ→0

‖uτ(t)−u(t)‖2
H,

and it follows that ‖uτ(t)−u(t)‖H → 0, which concludes the proof.

Now, Theorem 5 follows from Lemma 6 and Theorems 6 and 7.
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6 Global Attractor for Time Continuous Problem

First we prove an a priori estimate on the solutions of Problem (P).

Lemma 7. Let u solve Problem (P) with the initial condition u0 ∈H. Let moreover
η be a corresponding selection of F(ιu(t)). We have the following estimates

‖u(t)‖2
H +C1

∫ t

0
‖u(s)‖p dt ≤ C2t+‖u0‖2

H , (35)

‖u(t)‖2
H ≤ ‖u0‖2

He−C3t +C4, (36)
∫ t

0
‖u′(s)‖q

V∗ ds+
∫ t

0
‖Au(s)‖q

V∗ ds+
∫ t

0
‖η(s)‖q

U∗ ds ≤ C5t+C6‖u0‖2
H . (37)

valid for all t ≥ 0 with the constants C1, . . . ,C6 > 0.

Proof. We take the duality in (1) with u(t) and use H(A)(ii) and H(F)(iv). We get
for a.e. t ≥ 0 with arbitrary ε > 0 and the positive constant C(ε)

1
2

d
dt
‖u(t)‖2

H +(α− c2‖ι‖p − ε)‖u(t)‖p ≤ C(ε)‖f‖q
V∗ − c1.

Now we can choose ε = 1
2 (α − c2‖ι‖p) and (35) follows by direct integration. A

version of Young inequality a2 ≤ ap+D1 valid for a ≥ 0 with a constant D1 > 0 and
the inequality ‖u‖H ≤‖i‖‖v‖, where ‖i‖ := ‖i‖L (V;H) is the norm of the embedding
operator yields

d
dt
‖u(t)‖2

H +D2‖u(t)‖2
H ≤ D3,

for a.e. t > 0 with constants D2,D3 > 0. The application of the Gronwall inequality
gives (36). Now (37) follows in a straightforward way by the application of growth
conditions H(A)(iii), H(F)(ii), the estimate (35), and Eq. (1) for the estimate on the
derivative.

We can define the multivalued map G : R+×H → P(H) by

G (t,u0) = {u(t) | u solves Problem (P) with initial condition u0}.

Obviously, G is a strict m-semiflow. We continue to investigate the properties of G

Lemma 8. The m-semiflow G is B(H)-dissipative.

Proof. The assertion follows directly from the estimate (36).

Lemma 9. The m-semiflow G is closed.

Proof. Choose T ≥ 0. Let un0 → u0 strongly in H and G (T,un0) � wn → w strongly
in H. We must show that w ∈ G (T,u0). There exist the trajectories un such that
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un(0) = un0 and un(T) = wn. Denote the corresponding selections of F(ιun(t))
by ηn. From Lemma 7 it follows that {un} is bounded in W (0,T) and from the
following estimate valid for any interval (a,b)⊂ (0,T)

‖un(b)−un(a)‖q
V∗ ≤

∥∥∥∥
∫ b

a
u′n(t)dt

∥∥∥∥
q

V∗
≤
∫ b

a
‖v′(t)‖q

V∗ dt(b−a)
q
p

≤
∫ b

a
‖v′(t)‖q

V∗ dtT
q
p ,

we deduce that {un} is bounded in Mp,q(0,T;V,V∗). Hence, by H(U), for a
subsequence, we have

un → u weakly in V (0,T) and strongly in Lp(0,T;H), (38)

ῑun → ῑu strongly in U (0,T), (39)

u′n → u′ weakly in V ∗(0,T). (40)

Moreover, by Lemma 7 it follows that for certain ξ ∈ V ∗(0,T) and η ∈ U ∗(0,T)
we have

Aun → ξ weakly in V ∗(0,T), (41)

ηn → η weakly in U ∗(0,T). (42)

Since for v ∈ V and t ∈ [0,T] we have

(un(t)−u(t),v) = (un0 −u(0),v)+
∫ t

0
〈u′n(s)−u′(s),v〉ds, (43)

we deduce the equality

∫ T

0
(un(t)−u(t),v)dt = T(un0 −u(0),v)+

∫ T

0

∫ t

0
〈u′n(s)−u′(s),v〉dsdt

valid for v ∈ V , whence by (38) and (40) it follows that un0 → u(0) weakly in V∗ and
hence u(0) = u0. From (43) written for t = T and (40) it follows that un(T)→ u(T)
weakly in V∗ and we deduce that w= u(T). It remains to show that u solves Problem
(P). We can pass to the limit in (1) and obtain

u′(t)+ξ (t)+ ι∗η(t) = f (t) a.e. t ∈ (0,T).

By (39) we have, for a subsequence, ιun(t)→ ιu(t) and ‖ιun(t)‖U ≤ a(t) with a ∈
Lp(0,T) a.e. t ∈ (0,T) and by (42) we have ηn → η weakly in L1(0,T;U∗). Growth
condition H(F)(ii) implies that

‖ηn(t)‖U∗ ≤ c(1+‖ιun(t)‖p−1
U )≤ c(1+a(t)p−1)
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for a.e. t ∈ (0,T). We are in position to use Theorem 2, whence

η(t) ∈ conv weak− limsup
n→∞

{ηn(t)} ⊂ conv weak− limsup
n→∞

F(ιun(t))

for a.e. t ∈ (0,T). The assumption H(F)(iii) implies that

η(t) ∈ conv F(ιu(t))

for a.e. t ∈ (0,T) and by H(F)(i) we deduce that η(t) ∈ F(ιu(t)) a.e. t ∈ (0,T).
It remains to prove that ξ (t) = Au(t) a.e. t ∈ (0,T), or, in other words ξ =Au. Since
un is bounded in W (0,T) which embeds in Lp(0,T;H) compactly, the Nemytskii
operator A is W (0,T)-pseudomonotone by Theorem 4. Moreover un → u weakly in
V (0,T). Next, we calculate

∫ T

0
〈Aun(t),un(t)−u(t)〉dt =

∫ T

0
〈f (t)−u′n(t)− ι∗ηn(t),un(t)−u(t)〉dt

=
∫ T

0
〈f (t),un(t)−u(t)〉dt−

∫ T

0
〈ηn(t), ιun(t)− ιu(t)〉U∗×U dt

+
∫ T

0
〈u′n(t),u(t)〉dt− ‖un(T)‖2

H −‖un(0)‖2
H

2
.

We can pass to the limit in all terms in the last equality which gives us

lim
n→∞

∫ T

0
〈Aun(t),un(t)−u(t)dt =

∫ T

0
〈u′(t),u(t)〉dt− ‖u(T)‖2

H −‖u(0)‖2
H

2
= 0.

Hence, taking w = v− z for z ∈ V (0,T) in the Definition 2 we get

∫ T

0
〈Au(t),z(t)〉dt ≤ liminf

n→∞

∫ T

0
〈Aun(t),z(t)〉dt.

Taking −z in place of z it follows that Aun → Au weakly in V ∗, and the proof is
complete.

Lemma 10. The m-semiflow G is compact.

Proof. Let t > 0 and let {u0n} be a sequence, bounded in H. Moreover, let wn ∈
G (t,u0n). We must show that {wn} is relatively compact, that is, it contains a
subsequence that converges strongly in H. By (35) the sequence wn is bounded
in H and hence, for a subsequence, wn → w weakly in H for some w ∈ H. We will
continue the argument for this subsequence. There exist the trajectories un such that
un(0) = un0 and un(t) = wn. The corresponding selections of F(ιun(t)) are denoted
by ηn. By Lemma 7 the sequence {un} is bounded in W (0,2t) and Mp,q(0,2t;V,V∗)
and hence, analogously as in the proof of Lemma 9, for a subsequence, we have

un → u weakly in V (0,2t), (44)

ηn → η weakly in U ∗(0,2t), (45)
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un → u strongly in Lp(0,2t;H), (46)

ῑun → ῑu strongly in U (0,2t), (47)

un(s)→ u(s) strongly in H a.e. s ∈ (0,2t). (48)

If un(t) → u(t) strongly in H, then the proof is complete. Suppose this is not the
case. We take duality in (1) written for un with un(t) and integrate over the interval
(0,s) for s ∈ (0,2t). We obtain

1
2
‖u0n‖2

H −
∫ s

0
〈Aun(r),un(r)〉dr

=
1
2
‖un(s)‖2

H +
∫ s

0
〈ηn(r), ιun(r)〉U∗×U dr−

∫ r

0
〈f ,un(r)〉dr.

We introduce the auxiliary functions Vn,V : (0,2t)→ R

Vn(s) =
1
2
‖u0n‖2

H −
∫ s

0
〈Aun(r),un(r)〉dr.

V(s) =
1
2
‖u(s)‖2

H +

∫ s

0
〈η(r), ιu(r)〉U∗×U dr−

∫ r

0
〈f ,u(r)〉dr.

By H(A)(ii) the functions Vn are nonincreasing in time. Moreover, Vn(s) → V(s)
for a.e. s ∈ (0,2t). Let tl ↘ t and sr ↗ t be the sequences such that this convergence
holds. We have for all n,r, l

Vn(sr)≥ Vn(t)≥ Vn(tl)

passing with n → ∞ we get

V(sr)≥ limsup
n→∞

Vn(t)≥ liminf
n→∞

Vn(t)≥ V(tl).

Now we pass with l,r to infinity. Since W (0,2t) ⊂ C(0,2t;H) the mapping s →
‖u(s)‖H is continuous, moreover V is continuous and we obtain

V(t)≥ limsup
t→∞

Vn(t)≥ liminf
n→∞

Vn(t)≥ V(t),

and hence Vn(t)→ V(t) as n → ∞ and it follows that ‖wn‖= ‖un(t)‖H → ‖u(t)‖H .
Since we already know that wn → w weakly in H, from the fact that H is a Hilbert
space it follows that wn →w strongly in H and the proof of compactness is complete.

In view of Theorem 3 and Lemma 1, using Lemmata 8–10, we have shown the
following
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Theorem 8. Under assumptions H(A),H(F),(H0),H(U), the m-semiflow G asso-
ciated with the solution of Problem (P) has a global attractor A which is moreover
invariant.

7 Global Attractor for the Time Discrete Problem

First, as a simple consequence of Lemma 3, we formulate the following corollary:

Lemma 11. There exists R > 0 such that for any B ∈B(H) and any τ > 0 we can
find n0(B,τ) ∈ N such that if u0

τ = u0 ∈ B and {uk
τ}∞k=1 solve (Pτ) with the initial

condition u0
τ then for every n ≥ n0 we have ‖un

τ‖H ≤ R.

We can define the multifunction Gτ : T+
τ ×H → P(H) in the following way:

• Gτ(0,u) = {u},
• Gτ(τ ,u) it the set of all uk

τ that solve Problem (Pτ) with uk−1
τ = u,

• Gτ(kτ ,u) = G (τ ,G ((k−1)τ ,u)) for k ∈ {2,3, . . .}.

Obviously, Gτ defines a strict m-semiflow, and from Lemma 11 it follows that Gτ is
B(H)-dissipative.

Lemma 12. The m-semiflow Gτ is closed.

Proof. Fix τ > 0 and n ∈ N
+. Assume that u0

τm → u0
τ strongly in H as m → ∞ and

Gτ(nτ ,u0
τm) � un

τm → un
τ strongly in H. We must prove that un

τ ∈ Gτ(nτ ,u0
τ). There

exist the corresponding discrete trajectories uk
τm ∈Gτ(τ ,uk−1

τm ) for k∈{1, . . . ,n} with
ηk
τ in (2) denoted as ηk

τm ∈ F(ιuk
τm). From (12) it follows that for all k ∈ {1, . . . ,n}

we have the bound ‖uk
τm‖ ≤ C, where C is a constant dependent on τ ,n but

independent of k,m. We are therefore in position to construct the subsequence of
indices, not renumbered, such that for all k ∈ {1, . . . ,n} we have uk

τm → uk
τ weakly

in V as m → ∞. Hence, ιuk
τm → ιuk

τ strongly in U and uk
τm → uk

τ strongly in H.
From growth conditions H(A)(iii) and H(F)(ii) for the subsequences, which are
not renumbered, we have

Auk
τm → ξ k

τ weakly in V∗ and η̄k
τm → ηk

τ weakly in U∗.

We can pass to the limit in (2) written for m and we get
(

uk
τ −uk−1

τ
τ

,v

)
+ 〈ξ k

τ ,v〉+ 〈ηk
τ , ιu〉U∗×U = 〈f ,v〉.

By the sequential strong–weak closedness of the graph of F (cf. H(F)(iii)) it
follows that ηk

τ ∈ F(ιuk
τ). It remains to prove that ξ k

τ = Auk
τ . We will use the

pseudomonotonicity of A. Let us calculate

〈Auk
τm,u

k
τm −uk

τ〉

= 〈f ,uk
τm −uk

τ〉−〈ηk
τm, ιuk

τm − ιuk
τ〉U∗×U −

(
uk
τm −uk−1

τm

τ
,uk

τm −uk
τ

)
.
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Clearly, limm→∞〈Auk
τm,u

k
τm −uk

τ〉= 0. Hence for any z ∈ V we have

〈Auk
τ ,z〉 ≤ liminf

m→∞
〈Auk

τm,u
k
τm −uk

τ + z〉= liminf
m→∞

〈Auk
τm,z〉= 〈ξ k

τ ,z〉,

and the proof is complete.

Lemma 13. The m-semiflow Gτ is compact.

Proof. Let B∈B(H) and a sequence uk
mτ ∈G (kτ ,B) for some natural k> 0. By (12)

we have ‖uk
mτ‖ ≤ C, where the constant C > 0 depends on τ , which is fixed. Hence,

for a subsequence, uk
τm → w as m → ∞ weakly in V , for certain w ∈ V . Moreover

uk
τm → w strongly in H, and the proof is complete.

In view of Theorem 3 and Lemma 1, since by Lemma 11 the m-semiflow G is
B(H)-dissipative, by Lemma 12 it is closed, and by Lemma 13 it is compact, we
have shown the following Theorem

Theorem 9. Let τ > 0 be given. Under assumptions H(A),H(F),(H0),H(U), the
m-semiflow Gτ associated with the solution of Problem (Pτ) has a global attractor
Aτ which is moreover invariant.

8 Upper-Semicontinuous Convergence of Attractors

We formulate and prove the following theorem on upper-semicontinuous conver-
gence of the semi-discrete attractors to the time continuous attractor. For simplicity
we set τn =

1
n , but the result remains valid for any sequence τn → 0.

Theorem 10. Under assumptions H(A),H(F),(H0),H(U) we have

lim
n→∞

distH(Aτn ,A ) = 0.

Proof. Let K =
⋃∞

n=1Aτn

H
.

Step 1. Compactness of K . We need to show that K is a compact set in H.
To this end choose a subsequence of τn, which we will denote by the same
index and yn ∈ Aτn . It is enough to show that {yn} has a subsequence that
converges strongly in H. From the attractor invariance we have yn ∈ Gτn(1,zn)
for some zn ∈Aτn . Since, by Lemma 11 the ball B(0,R) is absorbing for all τ , it
follows that ‖zn‖H ≤ R and, for a subsequence, not renumbered, we have zn → z
weakly in H. We can construct discrete trajectories {zj

τn}2n
j=0 such that z0

τn
= zn and

zn
τn
= yn. Corresponding piecewise constant and piecewise linear interpolants will

be denoted by z̄τn and zτn . Moreover we denote the piecewise constant selection
of F(ι z̄τn(t)), such that (3) holds, by η̄τn with η̄τn(t) = η j

τn for t ∈ ((j−1)τn, jτn].
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Observe that we have ‖z̄τn‖
p
V (0,2) = τ ∑2n

j=1 ‖zj
τn‖p, and hence, by Lemma 3 the

sequence z̄τn is bounded in V (0,2). Now let us compute for j ≥ 2 the integral

∫ jτn

(j−1)τn

‖zτn(t)− z̄τn(t)‖p dt = ‖zj
τn − zj−1

τn ‖p τn

p+1
.

Hence, provided n ≥ 2, we have

‖zτn − z̄τn‖
p
V ( 1

2 ,2)
≤ τn

p+1

2n

∑
j=[ n

2 ]+1

‖zj
τn − zj−1

τn ‖p ≤ τn2p

p+1

2n

∑
j=[ n

2 ]

‖zj
τn‖p

≤ 2p

p+1
‖z̄τn‖

p
V (0,2).

This means that zτn is bounded in V ( 1
2 ,2). Now we estimate the derivative

‖z′τn
‖q
V ∗(0,2) = τn

2n

∑
j=1

∥∥∥∥∥
zj
τn − zj−1

τn

τn

∥∥∥∥∥
q

V∗
= τn

2n

∑
j=1

‖f −Azj
τn − ι∗η j

τn‖
q
V∗

≤ 3q−1τn

2n

∑
j=1

(
‖f‖q

V∗ +‖Azj
τn‖

q
V∗ +‖ι‖q‖η j

τn‖
q
U∗

)

≤ 3q−1
(

2‖f‖q
V∗ +2qaq +2q−1bqτn

2n

∑
j=1

‖zj
τn‖p

+‖ι‖q2qcq +‖ι‖p+q2q−1cqτn

2n

∑
j=1

‖zj
τn‖

p
V

)
,

where we used the growth conditions H(A)(iii) and H(F)(ii). Hence, from
boundedness of z̄τn in V (0,2) it follows that z′τn

is bounded in V ∗(0,2). Finally,
we need to establish the estimate on ‖z̄τn‖BVq(0,2;V∗). Let m0

n = 1, . . . ,mMn
n = 2n

be the indices of intervals in which the endpoints of the partition realizing the
q-variation seminorm are contained. We have

‖z̄τn‖
q
BVq(0,2;V∗) =

Mn

∑
j=1

‖zmj
n

τn
− zmj−1

n
τn

‖q
V∗

≤
Mn

∑
j=1

⎛
⎝(mj

n −mj−1
n )q−1

mj
n

∑
i=mj−1

n +1

‖zi
τn
− zi−1

τn
‖q

V∗

⎞
⎠

≤ 2q−1nq−1τq−1
n τn

2n

∑
i=2

∥∥∥∥∥
zi
τn
− zi−1

τn

τn

∥∥∥∥∥
q

V∗
≤ 2q−1‖z′τn

‖q
V ∗(0,2),
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and the required estimate follows. Now since z′τn
is bounded in V ∗(0,2) and

zτn is bounded in V ( 1
2 ,2), by the Aubin–Lions compactness theorem it follows

that there exists z ∈ Lp
(

1
2 ,2;H

)
, such that for a subsequence, we have zτn →

z strongly in Lp
(

1
2 ,2;H

)
and moreover zτn(t) → z(t) strongly in H for a.e.

t ∈
(

1
2 ,2

)
. Should this convergence hold for all t ∈

(
1
2 ,2

)
, then we would have the

desired convergence zτn(1) = yn → z(1). Note that, since W
(

1
2 ,2

)
⊂ C

(
1
2 ,2;H

)
it must be that z ∈ C

(
1
2 ,2;H

)
and moreover zτn(t) → z(t) weakly in H for all

t ∈
[

1
2 ,2

]
. Using H(U) it follows that since z̄τn is bounded in Mp,q(0,2;V,V∗),

then there exists z ∈ V (0,2) such that ι z̄τn → ι z̄ strongly in U (0,2) and z̄τn → z̄
weakly in V (0,2). Moreover, from the growth condition H(F)(ii) and the bound
on z̄τn in V (0,2) it follows that η̄τn is bounded in Lq(0,2;U∗) and hence, for a
subsequence we have η̄τn → η̄ weakly in Lq(0,2;U∗). Taking the duality in (3)
with z̄τn(t) and integrating from 0 to t we get

1
2
‖zn‖2

H −
∫ t

0
〈Az̄τn(s), z̄τn(s)〉 ds−

∫ t

0
〈z′τn

(s), z̄τn(s)− zτn(t)〉 ds

=
1
2
‖zτn(t)‖2

H +
∫ t

0
〈η̄τn(s), ι z̄τn(s)〉U∗×U ds−

∫ t

0
〈f , z̄τn(s)〉 ds.

We introduce the discrete energy functions Vn : [0,2]→ R as

Vn(t) =
1
2
‖zn‖2

H −
∫ t

0
〈Az̄τn(s), z̄τn(s)〉 ds−

∫ t

0
〈z′τn

(s), z̄τn(s)− zτn(s)〉 ds,

and the continuous energy function V : ( 1
2 ,2)→ R as

V(t) =
1
2
‖z(t)‖2

H +
∫ t

0
〈η̄(s), ι z̄(s)〉U∗×U ds−

∫ t

0
〈f , z̄(s)〉 ds.

By a straightforward computation we have 〈z′τn
(s), z̄τn(s)− zτn(s)〉 ≥ 0 for all

s ∈ [0,2]. Due to this fact and by H(A)(ii) we have that Vn are nonincreasing in
time. Since

∫ t

0
〈η̄τn(s), ι z̄τn(s)〉U∗×U −〈f , z̄τn(s)〉 ds →

∫ t

0
〈η̄(s), ι z̄(s)〉U∗×U −〈f , z̄(s)〉 ds,

for all t ∈ [0,2] and zτn(t) → z(t) for a.e. t ∈ ( 1
2 ,2) we have Vn(t) → V(t) for

a.e. t ∈ ( 1
2 ,2). Let tl ↘ 1 and sr ↗ 1 be the sequences such that this convergence

holds. We have for all n,r, l

Vn(sr)≥ Vn(1)≥ Vn(tl)
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passing with n → ∞ we get

V(sr)≥ limsup
n→∞

Vn(1)≥ liminf
n→∞

Vn(1)≥ V(tl).

Now we pass with l,r to infinity and we obtain, by continuity of V

V(1)≥ limsup
n→∞

Vn(1)≥ liminf
n→∞

Vn(1)≥ V(1),

and hence Vn(1)→V(1) as n→∞ and it follows that ‖yn‖H →‖z(1)‖H . Since we
already know that yn = zn

τn
= zτn(1)→ z(1) weakly in H, it follows that yn → z(1)

strongly in H and the proof of compactness is complete.
Step 2. Convergence of attractors. From the triangle inequality we have,

for all t ≥ 0

distH(Aτn ,A )≤ distH(Aτn ,G (t,K ))+distH(G (t,K ),A ).

Now fix ε > 0. Since K is bounded and A is the attractor for G we are able to
find sufficiently large t0 such that for all t ≥ t0 we have distH(G (t,K ),A )≤ ε

2 .
We will show that for all t ∈ N we have

lim
n→∞

distH(Aτn ,G (t,K )) = 0.

Suppose that this is not true. Then for some t0 ∈ N
+ and ε0 > 0 and for subse-

quence of indices we can construct yn ∈Aτn such that distH(yn,G (t0,K ))≥ ε0.
By invariance of semi-discrete attractors there exist zn ∈ Aτn ⊂ K such that
yn ∈ Gτn(t0,zn). Since K is compact, for a subsequence we have zn → ẑ strongly
in H with ẑ∈K . We can construct discrete trajectories {zj

τn}
t0n
j=0 such that z0

τn
= zn

and zt0n
τn = yn. Piecewise constant and piecewise linear interpolants corresponding

to these discrete trajectories are denoted, respectively, by z̄τn and zτn . From
Theorem 5 there exists the solution z to Problem (P) with the initial condition
ẑ such that yn = zτn(t0) → z(t0) strongly in H. But z(t0) ∈ G (t0,K ), and we
have the contradiction with the fact that distH(yn,G (t0,K )) ≥ ε0. The proof is
complete.

9 Examples

In this section we discuss the examples of problem data that satisfy the formulated
assumptions and we give some applications of the problems analyzed in this section.

Assumption H(U) Let Ω ⊂ R
d be a bounded and open domain with Lips-

chitz boundary. Let moreover ΓD ⊂ ∂Ω be a relatively open set of positive
boundary measure and let M ∈ N. Then we can set V = {v ∈ W1,p(Ω ;RM) |
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v= 0 on ΓD} and H = L2(Ω ;RM). We have two possible choices of U. One choice is
U = H and ι = i. Obviously ι is compact, and by Theorem 1 so is the Nemytskii
operator ῑ : Mp,q(0,T;V,V∗)→ Lp(0,T;H). For the second choice let ΓC ⊂ ∂Ω be a
relatively open set of positive boundary measure disjoint with ΓD. Let moreover
U = Lp(ΓC;RM). Now ι : V → U will be the trace operator. This operator is
compact. Indeed, define Z =Wδ ,p(Ω ;RM)∩V , equipped with Wδ ,p topology, where
1
p < δ < 1. The embedding V ⊂ Z is compact, and the trace γ : Z → U is linear
and continuous, and hence ι is compact. Moreover, by Theorem 1 the Nemytskii
operator ῑ : Mp,q(0,T;V,V∗)→ Lp(0,T;U) is also compact.

Assumption H(A) Detailed discussion and examples of pseudomonotone opera-
tors can be found in Chap. 27 of [38]. Roughly speaking, such operators are the sums
of two terms: the first one given in divergence form, containing the highest order
space derivatives that satisfy the so-called Leray–Lions conditions, and the second
one being strongly continuous, depending only on lower order space derivatives.
Detailed discussion of these assumptions is presented in Chap. 2 of [33].

Assumption H(F) A notable example of multifunction that satisfies H(F)(i) and
H(F)(iii) is the Clarke subdifferential of a locally Lipschitz functional. If J : U →R

is locally Lipschitz, then its Clarke directional derivative at the point x ∈ U and in
the direction v ∈ U is defined as

J0(x;v) = limsup
z→x,λ→0+

J(z+λu)− J(z)
λ

,

and the Clarke subdifferential ∂J : U → P(U∗) is given by

∂J(x) = {ξ ∈ U∗ | J0(x,v)≥ 〈ξ ,v〉U∗×U for all v ∈ X}.

For the properties of the Clarke subdifferential see [10].
To study another example involving Clarke subdifferential let j : RM → R, and

let U = Lp(Γ ;RM) where either Γ = Ω or Γ ⊂ ∂Ω is a relatively open set, and
Ω ⊂ R

d is open and bounded with Lipschitz boundary. We assume that

(i) j is locally Lipschitz,
(ii) for all s ∈ R

M and ξ ∈ ∂ j(s) we have |ξ | ≤ c(1+ |s|), with the constant c > 0.

Under these assumptions the mapping N : U → 2U∗
defined as N(u) = {ξ ∈

Lq(Γ ;RM) |ξ (x) ∈ ∂ j(u(x)) a.e. x ∈ Γ } satisfies H(F)(i)–(iii) (see [3] for the
proof). Partial differential inclusions with multivalued terms having the form of the
Clarke subdifferential are known as subdifferential inclusions or hemivariational
inequalities. They are used, for example, to model contact conditions in solid
mechanics [29]. Existence of solutions for the first order in time parabolic problems
with this type of multivalued terms was studied, for example, in [22, 27, 28].

Applications First order in time partial differential inclusions with multivalued
terms that have strong–weak closed graph, but are not necessarily Hausdorff
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continuous, can be used to model nonconvex semipermeability problems (Chap. 6.1
in [27]), temperature control problems (see [37]), problems modeling combustion
in porous media or conduction of electrical impulses in nerve axon (Chap. 4.1.3 in
[2]) and in climatology to model the energy balance of the Earth surface (see [2]
Chap. 4.1.4). The analysis presented here can be applied to all mentioned problems,
which shows that they and their time semidiscretizations possess global attractors,
and that the semidiscrete attractors approximate, in the upper-semicontinuous sense,
the global attractors of original problems.
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Passive Control of Singularities by Topological
Optimization: The Second-Order Mixed Shape
Derivatives of Energy Functionals
for Variational Inequalities
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Abstract A class of nonsmooth shape optimization problems for variational
inequalities is considered. The variational inequalities model elliptic boundary
value problems with the Signorini type unilateral boundary conditions. The shape
functionals are given by the first order shape derivatives of the elastic energy. In such
a way the singularities of weak solutions to elliptic boundary value problems can be
characterized. An example in solid mechanics is given by the Griffith’s functional,
which is defined in plane elasticity to measure SIF, the so-called stress intensity
factor, at the crack tips. Thus, topological optimization can be used for passive
control of singularities of weak solutions to variational inequalities.

The Hadamard directional differentiability of metric the projection onto the
positive cone in fractional Sobolev spaces is employed to the topological sensitivity
analysis of weak solutions of nonlinear elliptic boundary value problems. The
first order shape derivatives of energy functionals in the direction of specific
velocity fields depend on the solutions to variational inequalities in a subdomain. A
domain decomposition technique is used in order to separate the unilateral boundary
conditions and the energy asymptotic analysis.

The topological derivatives of nonsmooth integral shape functionals for vari-
ational inequalities are derived. Singular geometrical domain perturbations in an
elastic body Ω are approximated by regular perturbations of bilinear forms in
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variational inequality, without any loss of precision for the purposes of the second-
order shape-topological sensitivity analysis. The second-order shape-topological
directional derivatives are obtained for the Laplacian and for linear elasticity in
two and three spatial dimensions. In the proposed method of sensitivity analysis,
the singular geometrical perturbations ε→ ωε ⊂Ω centred at x̂ ∈Ω are replaced by
regular perturbations of bilinear forms supported on the manifold ΓR = {|x− x̂|=R}
in an elastic body, with R > ε > 0. The obtained expressions for topological
derivatives are easy to compute and therefore useful in numerical methods of
topological optimization for contact problems.

1 Introduction

Topological derivatives of shape functionals Ω → J(Ω) are introduced in [25] for
linear elliptic boundary value problems [6] defined in singularly perturbed domains
ε→Ω(ε), where ε→ 0 is a small parameter which governs the size of small hole or
inclusion in the bounded domain Ω ⊂ R

d, d = 2,3. The topological derivatives are
given by expressions depending on pointwise values of solutions as well as of its
gradients [22]. Therefore, the obtained expressions for topological derivatives are
not well defined in the energy spaces associated with the boundary value problems
under considerations.

In this paper the topological sensitivity analysis of solutions to variational
inequalities is performed by a domain decomposition technique. The regular
perturbations defined on the energy space ε → εdb(ΓR; ·, ·) for bilinear forms
ε → a(Ω(ε); ·, ·) of boundary value problems, with respect to small parameter
ε → 0, are introduced. Such perturbations are given by line integrals in two
spatial dimensions, or by surface integrals in three spatial dimensions. As a result,
the topological derivatives of shape functionals can be derived for solutions of
variational inequalities posed in the intact domain Ω.

In order to derive the topological derivatives by an application of the domain
decomposition technique the artificial interface Σ⊂Ω is introduced and Ω :=Ω1 ∪
Σ∪Ω2 is decomposed into two subdomains.

For the boundary value problem under considerations such a decomposition is
indeed useful. In some applied problems we are interested in the influence of singu-
lar perturbations in subdomain Ω1 on the behaviour of solutions in subdomain Ω2.
The functional under consideration is the elastic energy E(Ω) of whole domain Ω.
The mixed second-order derivatives of shape-topological or topological-shape types
for the elastic energy are evaluated. The shape sensitivity analysis is performed e.g.,
in Ω2, then the asymptotic analysis is performed in the second subdomain Ω1. In the
framework of shape-topological sensitivity analysis the velocity method is applied
in order to determine the shape functional J(Ω) := dE(Ω;V), where V is the specific
vector field in derivation of V → dE(Ω;V). Then the asymptotic expansion of
ε→ J(Ωε) is evaluated. In the framework of topological-shape sensitivity analysis,
first the asymptotic expansion of ε→ E(Ωε) is performed, and the first order term
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of such an expansion is called the topological derivative. It turns out [22, 25] that
the topological derivative of energy functional is not well defined for arbitrary
elements from the energy space of the elasticity boundary value problems under
considerations. Therefore, we introduce the equivalent representations of topolog-
ical derivatives which are well defined in the energy space. These representations
can be used as well to modify the state equations by replacing the singular domain
perturbations by the regular perturbations of bilinear forms in variational setting.

The asymptotic expansion of the energy functional performed in one subdomain,
e.g., Ω1, can be used in the second subdomain Ω2 to evaluate the asymptotic
expansion of the Steklov–Poincaré operator on the interface between subdomains.
The method is justified by the fact that the first order expansion of the energy
functional in the subdomain leads to the first order asymptotic expansion of
the Dirichlet-to-Neumann mapping on the interface between subdomains. Thus,
the first order expansion of the Steklov–Poincaré operator on the interface for the
second subdomain is obtained. In this way the first order expansion of the energy
functional in the truncated domain Ω2 is derived. The precision of the obtained
expansion is sufficient [27, 28] to replace the original energy functional by its first
order expansion, provided the obtained expression is well defined on the energy
space. Furthermore, the first order approximation of the energy functional in Ω
is established. We point out that another method of approximation of the state
equation by using the so-called self-adjoint extensions of the elliptic operators can
be considered [20, 21].

1.1 Asymptotic Approximation for Variational Inequalities

The proposed domain decomposition method is important for variational inequali-
ties. The asymptotic analysis of solutions to variational inequalities is more involved
[3] compared to the analysis of solutions to linear elliptic boundary value problems.

The variational inequality under consideration results from the minimization
problem of quadratic functional

v → I(v) =
1
2

a(v,v)−L(v) (1)

over a convex, closed subset K ⊂ H of the Hilbert space H called the energy space.
The function space H := H(Ω) is a Sobolev space which contains the functions
defined over a domain Ω ⊂ R

d, d = 2,3. The singular geometrical perturbation ωε

centred at x̂ ∈ Ω of the domain Ω is denoted by Ωε, the size of perturbation is
governed by a small parameter ε→ 0. The simple example of such a perturbation is
the hole or inclusion at the origin Bε := {|x|< ε}.
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The quadratic functional defined on H := H(Ωε) becomes

v → Iε(v) =
1
2

aε(v,v)−Lε(v) (2)

with the minimizers denoted by uε ∈ K := K(Ωε).
The expansion of associated energy functional

ε→E(Ωε) := Iε(uε) =
1
2

aε(uε,uε)−Lε(uε) (3)

is considered at ε= 0.
Namely, we are looking for its asymptotic expansion

E(Ωε) = E(Ω)+ εdT (x̂)+o(εd), (4)

where x̂→T (x̂) is the topological derivative [22, 25]. We show that there are regular
perturbations of the bilinear form defined on the energy space H(Ω),

v → b(v,v)

such that the perturbed quadratic functional defined on the unperturbed function
space H(Ω)

v → Iε(v) =
1
2

[
a(v,v)+ εdb(v,v)

]
−L(v) (5)

furnishes the first order expansion (4). In our applications to contact problems in
linear elasticity it turns out that the bilinear form v → b(v,v) is supported on ΓR :=
{|x− x̂|= R} ⊂Ω with R > ε > 0.

Remark 1. The contact problems in elastic bodies are modeled by variational
inequalities

u ∈ K : a(u,v−u)≥ L(v−u) ∀v ∈ K. (6)

For the sensitivity analysis in singularly perturbed geometrical domains, the weak
solutions of contact problems ε→ uε are given by perturbed variational inequalities

u ∈ K : a(u,v−u)+ εdb(u,v−u)≥ L(v−u) ∀v ∈ K, (7)

where ε→ 0 measures the size of singular perturbation. This is the main contribution
of the paper. Therefore, we need the form of εdb(u,v− u) in order to apply our
method of sensitivity analysis to numerical methods of topological optimization.

Variational inequalities are used to model contact problems in elasticity. It
is known that the solutions to variational inequalities are Lipschitz continuous
with respect to the shape [29]. In general, the state governed by a variational
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inequality is not Fréchet differentiable with respect to the shape. For a class of
variational inequalities described by the unilateral constraints in Sobolev spaces of
Dirichlet type the metric projection onto the constraints turns out to be Hadamard
differentiable [7]. This property is used in order to obtain the first order directional
differentiability of the associated shape functionals.

In order to show the second-order shape differentiability for variational inequal-
ities, we have to restrict ourselves to energy-type shape functionals. The energy
functional is the so-called marginal function and it is Fréchet differentiable with
respect to the shape [7]. The first order shape derivative of the energy functional in
the direction of a specific velocity vector field is considered as the shape functional
for topological optimization. Thus, its topological derivative is evaluated.

The possible applications of shape-topological derivatives include the control of
singularities of solutions to variational inequalities by insertion of elastic inclusions
far from the singularities.

We describe the shape-topological differentiability of the energy shape functional
for the Signorini problem in two spatial dimensions. The same idea can be used for
the frictionless contact problems in linear elasticity.

Let us consider the Signorini problem posed in Ω ⊂ R
2, with boundary ∂Ω =

Γ∪Γ0, and Γc ⊂ Γ. Denote H1
Γ0
(Ω) = {v ∈ H1(Ω) | v = 0 on Γ0 ⊂ ∂Ω}.

The solution u ∈ K minimizes the quadratic functional

I(v) =
1
2

a(Ω;v,v)− (f ,v)Ω

over the cone

K = {v ∈ H1
Γ0
(Ω) | v ≥ 0 on Γc ⊂ Γ⊂ ∂Ω}.

The shape functional is the energy

E(Ω) =
1
2

a(Ω;u,u)− (f ,u)Ω,

where

a(Ω;u,u) =
∫

Ω

∇u ·∇udx,

(f ,u)Ω =
∫

Ω

fudx.

We assume that Γ∩Γ0 = /0. Let Γt
0 := Tt(V)(Γ0) be the boundary variations [29] of

the Dirichlet boundary Γ0.
Let us consider the decomposition of Ω = Ω1 ∪Σ∪Ω2, Ω1 ∩Ω2 = /0, such that

Γ0 ⊂ ∂Ω1 and Γc ⊂ ∂Ω2. It means that the boundary variations as well as the
topological asymptotic analysis are performed in Ω1, and the unilateral conditions
are prescribed in the second subdomain Ω2.
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The shape derivative of the energy functional with respect to the boundary
variations of Γ0 can be written in distributed form [29]

dE(Ω;V) =
∫

Ω1

〈A′(0) ·∇u,∇u〉dx

where A′(0) = divVI−DV −DV�, under the assumption that the velocity field V is
supported in a small neighbourhood of Γ0 and that supp V ∩ supp f = /0.

The second shape functional for the purposes of topological optimization is
simply defined by

J(Ω) :=
∫

Ω1

〈A′(0) ·∇u,∇u〉dx. (8)

We are going to determine the topological derivatives of Ω → J(Ω) for insertion
of small inclusions in Ω1 far from Γ0. In this way we could control the possible
singularities on Γ0 by topology optimization in Ω.

We consider the domain decomposition method for purposes of the shape-
topological differentiability of energy shape functionals. First, the domain Ω is
split into two subdomains Ω1,Ω2 and the interface Σ. The differentiability with
respect to small parameter of the Dirichlet-to-Neumann map which lives on the
boundary Σ⊂ ∂Ω1 is established. This map is called the Steklov–Poincaré operator
for subdomain Ω2.

Once, the derivative of the energy functional is given, we can proceed with the
subsequent topological optimization problem. For topological optimization another
decomposition Ω :=ΩR ∪ΓR ∪Ωc is introduced. The small inclusion ωε centred at
the origin x̂ :=O is located in subdomain ΩR ⊂Ω with the interface ΓR ⊂ ∂ΩR.

2 Applications of Steklov–Poincaré Operators
in Asymptotic Analysis

We analyse the precision of the proposed method of approximation for variational
inequalities in singularly perturbed geometrical domains. We assume for simplicity
that the singular perturbation is a disc Bε = {|x|< ε}.

The Signorini variational inequality in Ωε :=Ω\Bε,

uε ∈ K(Ωε) : a(Ωε;uε,v−uε)−L(Ωε;v−uε)≥ 0 ∀v ∈ uε ∈ K(Ωε), (9)

can be considered in the truncated domain Ωc := Ω \BR for R > ε > 0, R small
enough. It is assumed that the source or linear form v → L(Ω;v) := (f ,v)Ωc is
supported in Ωc. Hence the restriction uε ∈ K(Ωc) of uε ∈ K(Ωε) to the truncated
domain is given by the solution to variational inequality
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uε ∈ K(Ωc) : a(Ωc;uε,v−uε)+〈Aε(uε),v−uε〉−L(Ωc;v−uε)≥ 0 ∀v ∈ K(Ωε),
(10)

where Aε stands for the Steklov–Poincaré operator which replaces the portion of
bilinear form defined over the ring C(R, ε) := {R > |x|> ε}.

Proposition 1. Assume that the Steklov–Poincaré operator admits the one-term
expansion

〈Aε(v),v〉= 〈A(v),v〉+ ε2〈B(v),v〉+o(ε2;v,v) (11)

with the compact remainder o(ε2;v,v), then we can replace in (10) the Steklov–
Poincaré operator by its one term approximation

ũε ∈ K(Ωc) : a(Ωc; ũε,v− ũε)+ 〈A(ũε),v− ũε〉

+ ε2〈B(ũε),v− ũε〉−L(Ωc;v− ũε)≥ 0 ∀v ∈ K(Ωε), (12)

with the estimate

‖ũε−uε‖= o(ε2). (13)

Remark 2. From Proposition 1 it follows that for the shape-topological differentia-
bility of the energy functional we can consider the variational inequality

ûε ∈ K(Ω) : a(Ω; ûε,v− ûε)+ ε2〈B(ûε),v− ûε〉−L(Ω;v− ûε)≥ 0 ∀v ∈ K(Ω),
(14)

since ‖ûε−uε‖= o(ε2) in Ωc.
In this way, the approximation (5) of quadratic functional (2) is justified for the

first order topological derivatives of variational inequalities in truncated domains.

For the quadratic functional (1) and the associated boundary value problem, the
bilinear form

v → b(ΓR;v,v) := 〈B(v),v〉

is determined. The linear operator B is obtained from the one term expansion of
the Steklov–Poincaré operator Aε, the expansion results from the energy expansion
in the subdomain ΩR. Therefore, the perturbed quadratic functional (3) can be
replaced by its approximation given by (5). For the Signorini problem in two spatial
dimensions it means that the variational inequality is obtained for minimization of
the perturbed functional (3) over the energy space in unperturbed domain Ω, and the
associated energy functional

Eε(Ω) =
1
2

a(Ω;uε,uε)+
ε2

2
b(ΓR;uε,uε)− (f ,uε)Ω,

is evaluated for the solution of variational inequality

uε ∈ K(Ω) : a(Ω;uε,v−uε)+ ε2b(ΓR;uε,v−uε)− (f ,v−uε)Ω ≥ 0 ∀v ∈ K(Ω).
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3 Asymptotic Analysis by Domain Decomposition Method

In order to apply the domain decomposition technique to topological differen-
tiability ωε → Jε(Ω) in topologically perturbed domains Ω := Ωε for the shape
functionals Ω → J(Ω), we need the appropriate results on topological differentia-
bility ε→Bε of the Steklov–Poincaré pseudodifferential boundary operators defined
on the artificial interface Σ. In the particular case of holes ε → ωε the notation
is straightforward, with the singularly perturbed domain Ωε := Ω \ωε and with
the shape functional to be analysed with respect to small parameter ε → Jε(Ω) :=
J(Ω \ωε). In the case of inclusions ε → ωε the shape functional depends on the
characteristic functions ε → χε of the domain perturbation ωε. For inclusions the
state solution ε→ uε ∈ H(Ω) is obtained by solving boundary value problems with
operator coefficients depending on the small parameter ε → 0. In both cases the
asymptotics of Steklov–Poincaré operators are obtained by asymptotic analysis of
the energy functional for linear elliptic boundary value problems in subdomains Ω2

which contains the perturbations ε→ ωε.
Let us consider the direct method of sensitivity analysis in subdomain Ω1

which contains the contact subset Γc ⊂ ∂Ω. This is possible due to the conical
differentiability of metric projection onto the convex set K which is valid under
some assumptions (e.g., the convex, closed cone K is polyhedric in the Dirichlet
space H(Ω) [7]).

In the case of the Signorini problem in two spatial dimensions the direct method
of asymptotic analysis for the shape functional (8)

Jε(Ωε) :=
∫

Ω1

〈A′(0) ·uε,uε〉dx

can be described as follows for the disc ωε := B(ε) = {|x| < ε} located at the
origin.

1. We solve the variational inequality in Ω1 : determine u ∈ K and its coincidence
set Ξ := {x ∈ Γc : u(x) = 0}. Thus, the convex cone

S = {v ∈ H1
Γ0
(Ω) : v ≥ 0 on Ξ, a(Ω;u,v) = (f ,v)Ω}

used in conical differentiability of the element u with respect to the shape can be
determined.

2. The asymptotic analysis of solutions to variational inequality in singularly
perturbed domain Ω(ε) : Ω \B(ε) with respect to small parameter ε → 0 which
governs the size of the hole B(ε) leads to the expansion

uε = u+ ε2q+o(ε2)
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obtained by the domain decomposition method with the Steklov–Poincaré
boundary operators, where

q ∈ S : a(Ω;q,v−q)+ ε2〈Bq,v−q〉R ≥ ∀v ∈ S.

3. The shape functional

Jε(Ωε) :=
∫

Ω1

〈A′(0) ·uε,uε〉dx

can be expanded in Ω1, the expansion is valid in the whole domain Ω,

Jε(Ωε) =
∫

Ω

〈A′(0) ·u,u〉dx+2ε2
∫

Ω

〈A′(0) ·q,u〉dx+o(ε2),

however the obtained expression for the topological derivative may not be
constructive in numerical methods. We want to obtain an equivalent expression,
when possible, which replaces the topological derivative

T (O) = 2
∫

Ω

〈A′(0) ·q,u〉dx

in the first order expansion of the energy functional for Signorini problem. In the
linear boundary value problems such an expression can always be obtained by
the introduction of an appropriate adjoint state. We point out that for variational
inequalities the existence of an adjoint state cannot be expected in general.

4 Asymptotic Analysis of Boundary Value Problems in Rings
or Spherical Shells

4.1 Elasticity Boundary Value Problems

In this section we shall consider asymptotic corrections to the energy function
corresponding to the elasticity system or Laplace equation in Rd, where d = 2,3.
The change of the energy is caused by creating a small ball-like void of variable
radius ε in the interior of the domain Ω, with homogeneous Neumann boundary
condition on its surface. We assume that this void has its centre at the origin
O. In order to eliminate the variability of the domain, we take as ΩR the open
ball B(O,R) = B(R) with fixed R. In this way the void B(ε) is surrounded by
B(R) ⊂ intΩ. We denote also the ring or spherical shell as C(R, ε) = B(R) \B(ε),
Ω(R) =Ω\B(R) and ΓR = ∂B(R).
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Using these notations we define our main tool, namely the Dirichlet-to-Neumann
mapping for linear elasticity or the Steklov–Poincaré operator

Aε : H1/2(ΓR) �−→ H−1/2(ΓR)

by means of the boundary value problem:

(1−2ν)Δw+graddivw = 0, in C(R, ε), (15)

w = v on ΓR,

σ(w).n = 0 on Γε

so that

Aεv = σ(w).n on ΓR. (16)

Domain Decomposition: Steklov–Poincaré Operator Let uR be the restriction of
u to Ω(R) and γRϕ the projection of ϕ on ΓR. We may then define the functional

IR
ε (ϕε) =

1
2

∫
Ω(R)

σ(ϕε) : ε(ϕε)dx−
∫
ΓN

h.ϕε ds+ (17)

+
1
2

∫
ΓR

(AεγRϕε).γ
Rϕε ds

and the solution uR
ε as a minimal argument for

IR
ε (u

R
ε ) = inf

ϕε∈K⊂Vε

IR
ε (ϕε), (18)

Here lies the essence of the domain decomposition concept: we have replaced
the variable domain by a fixed one, at the price of introducing variable boundary
operator Aε.

The above expressions have even simpler form in case of a single Laplace
equation. It is enough to replace the displacement by the scalar function u, elasticity
operator by −Δ, and

σ(u) := gradu, ε(u) := gradu, σ(u).n := ∂u/∂n.

The goal is to find the expansion

Aε =A+ εdB+Rε, (19)

where the remainder Rε is of order o(εd) in the operator norm in the space
L(H1/2(ΓR),H−1/2(ΓR)), and the operator B is regular enough, namely it is bounded
and linear:
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B ∈ L
(
L2(ΓR),L2(ΓR)

)
.

Under this assumption the following propositions hold.

Proposition 2. Assume that (19) holds in the operator norm. Then strong conver-
gence takes place

uR
ε → uR (20)

in the norm of H1(Ω(R)).

Proposition 3. The energy functional has the representation

IR
ε (u

R
ε ) = IR(uR)+ εd〈B(uR),uR〉R +o(ε3) , (21)

where o(εd)/εd → 0 with ε→ 0 in the same energy norm.

Here IR(uR) denotes the functional IR
ε on the intact domain, i.e. ε := 0 and Aε :=A,

applied to truncation of u.
Generally, the energy correction for both elasticity system and Laplace operator

has the form

〈B(uR),uR〉R = −cdeu(O),

where cd = vol(B(1)) with B(1) being the unit ball in Rd. The energy-like density
function eu(O) has the form:

• In case of the Laplace operator

eu(O) =
1
2
‖∇uR(O)‖2

for both d = 2 and d = 3, see [27].
• In case of the elasticity system

eu(O) =
1
2
Pσ(uR(O) : ε(uR(O),

where for d = 2 and plain stress

P =
1

1−ν
(4I− I⊗ I)

and for d = 3

P =
1−ν

7−5ν
(10I− 1−5ν

1−2ν
I⊗ I)
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see [22, 26]. Here I is the fourth order identity tensor, and I is the second-order
identity tensor.

This approach is important for variational inequalities since it allows us to
derive the formulas for topological derivatives which are similar to the expressions
obtained for the corresponding linear boundary value problems.

4.2 Explicit form of the Operator B for the Laplacian in Two
Spatial Dimensions

If the function u is harmonic in a ball B(R) ⊂ R2, of radius R > 0 and centre at
x0 = O, then the exact expressions for the first order derivatives of u take on the
following form [27]

u/1(O) =
1

πR3

∫
ΓR

u · x1 ds,

u/2(O) =
1

πR3

∫
ΓR

u · x2 ds.

Since the line integrals on ΓR are well defined for functions in L2(ΓR), it follows
that the operator B can be extended to the bounded operator on L2(ΓR),

B ∈ L(L2(ΓR)→ L2(ΓR)).

The symmetric bilinear form for this operator, given by

〈Bu,v〉R =

− 1
2πR6

[(∫
ΓR

ux1 ds

)(∫
ΓR

vx1 ds

)
+

(∫
ΓR

ux2 ds

)(∫
ΓR

vx2 ds

)]

is continuous for all u,v ∈ L2(ΓR). In fact, the bilinear form

L2(ΓR)×L2(ΓR) � (u,v) �→ b(ΓR;u,v) ∈ R

is continuous with respect to the weak convergence because of the simple structure

b(ΓR;u,v) = l1(u)l1(v)+ l2(u)l2(v) u,v ∈ L1(ΓR)

with two linear forms v → li(v), i = 1,2,

li(u) =
1√
2π

R−3
∫
ΓR

uxi ds
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defined as line integrals on ΓR. This gives an additional regularity for the regular
nonlocal perturbation B of the pseudo-differential Steklov–Poincaré boundary
operator Aε.

4.3 Explicit form of the Operator B for the Laplacian in Three
Spatial Dimensions

Similarly as in two spatial dimensions, for harmonic functions in R3, it may be
proved [27] that

u/1(O) =
3

4πR4

∫
S(R)

ux1 ds,

u/2(O) =
3

4πR4

∫
S(R)

ux2 ds,

u/3(O) =
3

4πR4

∫
S(R)

ux3 ds.

Using this one can easily write down the bilinear form

b(ΓR;u,v) = 〈Bu,v〉R = l1(u)l1(v)+ l2(u)l2(v)+ l3(u)l3(v),

where

li(u,v) =

√
3

8π
R−4

∫
S(R)

uxi ds.

From the computational point of view, the effort in comparison with the two-
dimensional case grows similarly as the difficulty of computing integrals over circle
versus integrals over sphere.

4.4 Explicit form of the Operator B for Elasticity
in Two Spatial Dimensions

Let us denote for the plain stress case

k =
λ +μ
λ +3μ

.

It has been proved in [27] that the following exact formulae hold
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ε11(O)+ ε22(O) =
1

πR3

∫
ΓR

(u1x1 +u2x2)ds,

ε11(O)− ε22(O) =
1

πR3

∫
ΓR

[
(1−9k)(u1x1 −u2x2)+

12k
R2 (u1x3

1 −u2x3
2)
]

ds,

2ε12(O) =
1

πR3

∫
ΓR

[
(1+9k)(u1x2 +u2x1)−

12k
R2 (u1x3

2 +u2x3
1)
]

ds.

These expressions are easy to compute numerically, but contain additional integrals
of third powers of xi. Therefore, strains εij(O) may be expressed as linear combina-
tions of integrals over circle which have the form

∫
ΓR

uixj ds,
∫
ΓR

uix
3
j ds.

The same is true, due to Hooke’s law, for stresses σij(O). They may then be
substituted into expression for the operator B, yielding

〈B(uR),vR〉R =−1
2

c2Pσ(u) : ε(v).

These formulas are quite similar to the ones obtained for Laplace operator and easy
to compute numerically.

4.5 Explicit form of the Operator B for Elasticity in Three
Spatial Dimensions

It turns out that similar situation holds in three spatial dimensions, but obtaining
the formulas is more difficult. Assuming given values of u on ΓR, the solution of
elasticity system in B(R) may be expressed, following partially the derivation from
[17] (pages 285 and later), as

u =
∞

∑
n=0

[Un +(R2 − r2)kn(ν)graddivUn], (22)

where kn(ν) = 1/2[(3−2ν)n−2(1−ν)] and r = ‖x‖. In addition

Un =
1

Rn [an0dn(x)+
n

∑
m=1

(anmcm
n (x)+bnmsm

n (x))]. (23)

The vectors

an0 = (a1
n0,a

2
n0,a

3
n0)

�,
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anm = (a1
nm,a

2
nm,a

3
nm)

�,

bnm = (b1
nm,b

2
nm,b

3
nm)

�

are constant and the set of functions

{d0; d1,c
1
1,s

1
1; d2,c

1
2,s

1
2,c

2
2,s

2
2; d3,c

1
3,s

1
3,c

2
3,s

2
3,c

3
3,s

3
3; . . .}

constitutes the complete system of orthonormal harmonic polynomials on ΓR,
related to Laplace spherical functions, see the next paragraph. Specifically,

cl
k(x) =

P̂l,c
k (x)

‖P̂l,c
k ‖R

, sl
k(x) =

P̂l,s
k (x)

‖P̂l,s
k ‖R

, dk =
Pk(x)

‖P̂k‖R
.

For example,

c2
3(x) =

1
R4

√
7

240π
(15x2

1x3 −15x2
2x3),

If the value of u on ΓR is assumed as given, then, denoting

〈φ ,ψ〉R =
∫
ΓR

φψ ds,

we have for n ≥ 0, m = 1, . . . ,n, i = 1,2,3:

ai
n0 = Rn〈ui,dn(x)〉R, (24)

ai
nm = Rn〈ui,c

m
n (x)〉R,

bi
nm = Rn〈ui,s

m
n (x)〉R.

Since we are looking for εij(O), only the part of u which is linear in x is relevant. It
contains two terms:

û = U1 +R2k3(ν)graddivU3. (25)

For any f (x), graddiv(af ) = H(f ) ·a, where a is a constant vector and H(f ) is the
Hessian matrix of f . Therefore

û =
1
R
[a10d1(x)+a11c1

1(x)+b11s1
1(x)] (26)

+R2k3(ν)
1

R3

[
H(d3)(x)a30

+
3

∑
m=1

(
H(cm

3 )(x)a3m +H(sm
3 )(x)b3m

)]
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From the above we may single out the coefficients standing at x1,x2,x3 in
u1,u2,u3. For example,

ε11(O) =
1

R3

√
3

4π
a1

11 +
1

R5 k3(ν)
[
−3

√
7

4π
a3

30 −9

√
7

24π
a1

31

−3

√
7

24π
b2

31 +30

√
7

240π
a3

32 +90

√
7

1440π
a1

33 +90

√
7

1440π
b2

33

]
,

ε12(O) =
1

R3

√
3

4π
(b1

11 +a2
11)+

1
R5 k3(ν)

[
−3

√
7

24π
a2

31 −
√

7
24π

b1
31

+15

√
7

60π
b3

32 −90

√
7

1440π
a2

33 +90

√
7

1440π
b1

33

]
.

Observe that

ε11(O)+ ε22(O)+ ε33(O) =
1

R3

√
3

4π
(
R〈u1,c

1
1〉R +R〈u2,s

1
1〉R +R〈u3,d1〉R

)

and c1
1 = 1

R2

√
3

4π x1, s1
1 = 1

R2

√
3

4π x2, d1 = 1
R2

√
3

4π x3, exactly the same as for the
case of Laplace equation. This should be expected, since trε is a harmonic function.

As a result, the operator B may be defined by the formula

〈Bu,u〉R =−c3Pσ(u(O)) : ε(u(O))

but the right-hand side consists of integrals of u multiplied by first and third order
polynomials in xi over ΓR resulting from (24). This is a very similar situation as in
two spatial dimensions. Thus, the new expressions for strains make it possible to
rewrite B in the form possessing the desired regularity.

4.6 Laplace Spherical Polynomials

For n = 1:

P̂1(x) = x3, P̂1,c
1 (x) = x1, P̂1,s

1 (x) = x2,

‖P̂1‖R = ‖P̂1,c
1 ‖R = ‖P̂1,s

1 ‖R = R2

√
4π
3
,
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and for n = 3:

P̂3(x) = x3
3 −

3
2

x2
2x3 −

3
2

x2
1x3, ‖P̂3‖R = R4

√
4π
7
,

P̂1,c
3 (x) = 6x1x2

3 −
3
2

x3
1 −

3
2

x1x2
2, ‖P̂1,c

3 ‖R = R4

√
24π

7
,

P̂1,s
3 (x) = 6x2x2

3 −
3
2

x3
2 −

3
2

x2
1x2, ‖P̂1,s

3 ‖R = R4

√
24π

7
,

P̂2,c
3 (x) = 15x2

1x3 −15x2
2x3, ‖P̂2,c

3 ‖R = R4

√
240π

7
,

P̂2,s
3 (x) = 15x1x2x3, ‖P̂2,s

3 ‖R = R4

√
60π

7
,

P̂3,c
3 (x) = 15x3

1 −45x1x2
2, ‖P̂3,c

3 ‖R = R4

√
1440π

7
,

P̂3,s
3 (x) = 45x2

1x2 −15x3
2, ‖P̂3,s

3 ‖R = R4

√
1440π

7
,

5 Asymptotic Analysis of Steklov–Poincaré Operators
in Reinforced Rings in Two Spatial Dimensions

In this section the similar asymptotic analysis of elliptic boundary value problems
in subdomain ΩR ∈R2 is performed, but we modify the situation, assuming that the
hole is filled only partially, different material constituting a fixed part of it. In this
way, we may consider double asymptotic transition, where both the size of the hole,
and the proportion of the different material contained in it can vary. Mechanically,
this situation corresponds e.g., to the hole with hardened walls.

The analysis is based again on exact representation of solutions and allows to
obtain the perturbation of solutions, using the fact that these solutions may be
considered as minimizers of energy functional. The method is also suitable for
double asymptotic expansions of solutions as well as energy form. The ultimate goal
is to use obtained formulas in the evaluation of topological derivatives for elliptic
boundary value problems.



82 G. Leugering et al.

Ω
ΓR

ε

Γ0

Γc

Fig. 1 The domain with the hole and the surrounding circle

5.1 Model Problem

Let us consider the domain Ω containing the hole with boundary made of modified
material as depicted in Fig. 1. For simplicity the hole is located at the origin of the
coordinate system. In order to write down the model problem, we introduce some
notations.

Bs = {x ∈R2 |‖x‖< s}

Cs,t = {x ∈R2 |s < ‖x‖< t}

Γs = {x ∈R2 |‖x‖= s}
Ωs =Ω\Bs.

Then the problem in the intact domain Ω has the form

k1Δw0 = 0 in Ω

w0 = g0 on ∂Ω.
(27)

The model problem in the modified domain reads:

k1Δwρ = 0 in Ωρ

wρ = g0 on ∂Ω

wρ = vρ on Γρ

k2Δvρ = 0 in Cλρ ,ρ

(28)
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k2
∂vρ
∂n2

= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ
∂n2

= 0 on Γρ ,

where n1—exterior normal vector to Ωρ , n2—exterior normal vector to Cλρ ,ρ , and
0 < λ < 1.

We want to investigate the influence of the small ring-like inclusion made of
another material on the difference wρ −w0 in ΩR, where ΓR surrounds Cλρ ,ρ and R
is fixed. We assume that ρ → 0+ and λ is considered temporarily constant.

If we define

uρ =

{
wρ in Ωρ

vρ in Cλρ ,ρ

then the problem (28) reduces to finding the minimum of the energy functional

E1(uρ) =
1
2

∫
Ωρ

k1∇uρ ·∇uρ dx+
1
2

∫
Cλρ ,ρ

k2∇uρ ·∇uρ dx (29)

for uρ ∈ H1(Ωρ), uρ = g0 on ∂Ω.
This expression may be rewritten as

E1(uρ) =
1
2

∫
ΩR

k1∇wρ ·∇wρ dx+

+
1
2

∫
Cρ ,R

k1∇wρ ·∇wρ dx+

+
1
2

∫
Cλρ ,ρ

k2∇vρ ·∇vρ dx.

Using integration by parts we obtain

E1(uρ) =
1
2

∫
ΩR

k1∇wρ ·∇wρ dx+

+
1
2

∫
Γρ

(
wρk1

∂wρ

∂n1
+ vρk2

∂vρ
∂n2

)
ds+

+
1
2

∫
ΓR

k1wρ
∂wρ

∂n3
ds,
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where n3 is the exterior normal to ΩR. Hence, due to boundary and transmission
condition,

E1(uρ) =
1
2

∫
ΩR

k1∇wρ ·∇wρ dx+
1
2

∫
ΓR

k1wρ
∂wρ

∂n3
ds. (30)

5.2 Steklov–Poincaré Operator

Observe that E1(w0) corresponds to the problem (27). Therefore the main goal is to
find the Steklov–Poincaré operator

Aλ ,ρ : w ∈ H1/2(ΓR) �−→ ∂wρ

∂n3
∈ H−1/2(ΓR), (31)

where the normal derivative is computed from auxiliary problem

k1Δwρ = 0 in Cρ ,R

wρ = w on ΓR

wρ = vρ on Γρ

k2Δvρ = 0 in Cλρ ,ρ

k2
∂vρ
∂n2

= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ
∂n2

= 0 on Γρ .

(32)

The geometry of domains of definition for functions is shown in Fig. 2. Now let
us adopt the polar coordinate system around origin and assume the Fourier series
form for w on ΓR.

w = C0 +
∞

∑
k=1

(Ak coskϕ+Bk sinkϕ) (33)

The general form of the solution wρ is

wρ = Aw +Bw logr+
∞

∑
k=1

(wc
k(r)coskϕ+ws

k(r)sinkϕ) , (34)

where

wc
k(r) = Ac

krk +Bc
k

1
rk , ws

k(r) = As
krk +Bs

k
1
rk .
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Γρ ΓRΓλρ

wρ

vρ

Fig. 2 Domains of definition for wρ and vρ

Similarly for vρ

vρ = Av +Bv logr+
∞

∑
k=1

(vc
k(r)coskϕ+ vs

k(r)sinkϕ) , (35)

where

vc
k(r) = ac

krk +bc
k

1
rk , vs

k(r) = as
krk +bs

k
1
rk .

Additionally, we denote the Fourier expansion of vρ on Γρ by

vρ = c0 +
∞

∑
k=1

(ak coskϕ+bk sinkϕ) (36)

From boundary conditions on Γλρ it follows easily Bv = 0, Av = c0, and then Bw = 0,
Aw = Av = c0 = C0. There remains to find ak, bk, ac

k, bc
k, as

k, bs
k, Ac

k, Bc
k, As

k, Bs
k

assuming Ak, Bk as given.

5.3 Asymptotic Expansion

In order to eliminate the above-mentioned coefficients we consider first the terms at
coskϕ . From boundary and transmission conditions we have for k = 1,2, . . .
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Ac
kRk +Bc

k
1

Rk = Ak

Ac
kρ

k +Bc
k

1
ρk −ak = 0

ac
kρ

k +bc
k

1
ρk −ak = 0

ac
k(λρ)

k−1 −bc
k

1
(λρ)k+1 = 0

k1Ac
kρ

k−1 − k1Bc
k

1
ρk+1 − k2ac

kρ
k−1 + k2bc

k
1

ρk+1 = 0

(37)

This may be rewritten in the matrix form. By grouping unknown parameters into a
vector pk = [Ac

k,B
c
k,a

c
k,b

c
k,ak]

� we obtain

T(k1,k2,R,λ ,ρ)pk = RkAke1

where

T =

⎡
⎢⎢⎢⎢⎢⎣

R2k 1 0 0 0
ρ2k 1 0 0 −ρk

0 0 (λρ)2k 1 −ρk

0 0 (λρ)2k −1 0
k1ρ2k −k1 −k2ρ2k k2 0

⎤
⎥⎥⎥⎥⎥⎦

(38)

where e1 = [1,0,0,0,0]�. It is easy to see that

pk = p0
kAk +ρ2kp1

kAk +o(ρ2k) (39)

where

p0
k = lim

ρ→0+
lim

λ→0+

pk(k1,k2,R,λ ,ρ)
Ak

and p0
k = [1/Rk,0,0,0,0]�, which corresponds to the ball BR filled completely with

material k1. Similar reasoning may be conducted for terms containing sinkϕ .
As a result,

Aλ ,ρ =A0,0 +ρ2A1
λ ,ρ(k1,k2,R,λ ,ρ ,A1,B1)+o(ρ2). (40)

The exact form of A1
λ ,ρ(k1,k2,R,λ ,ρ ,A1,B1) is obtained from inversion of matrix

T , but, what is crucial, it is linear in both A1 and B1. They, in turn, are computed as
line integrals
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A1(w) =
1

πR2

∫
ΓR

wx1 ds, B1(w) =
1

πR2

∫
ΓR

wx2 ds.

As a result, for computing uρ we may use the following energy form

E(uρ) =
1
2

∫
Ω

k1∇uρ ·∇uρ dx+

+ρ2Q(k1,k2,R,λ ,ρ ,A1,B1)+o(ρ2),

(41)

where A1 = A1(uρ), B1 = B1(uρ) and Q is a quadratic function of A1, B1. This
constitutes a regular perturbation of the energy functional which allows computing
perturbations of any functional depending on this solution and caused by small
inclusion of the described above form.

5.4 Extension to Linear Elasticity

Let us consider the plane elasticity problem in the ring CR,ρ . We use polar
coordinates (r,θ) with er pointing outwards and eθ perpendicularly in the coun-
terclockwise direction. Then there exists an exact representation of both solutions,
using the complex variable series. It has the form [12, 17, 19]

σrr − iσrθ = 2ℜφ ′ − e2iθ (z̄φ ′′+ψ ′)

σrr + iσθθ = 4ℜφ ′

2μ(ur + iuθ ) = e−iθ (κφ − zφ̄ ′ − ψ̄).

(42)

The functions φ , ψ are given by complex series

φ = A log(z)+
k=+∞

∑
k=−∞

akzk

ψ =−κĀ log(z)+
k=+∞

∑
k=−∞

bkzk.

(43)

Here μ—the Lame constant, ν—the Poisson ratio, κ = 3− 4ν in the plain strain
case, and κ = (3−ν)/(1+ν) for plane stress.

Similarly as in the simple case described in former sections, the displacement
data may be given in the form of Fourier series,

2μ(ur + iuθ ) =
k=+∞

∑
k=−∞

Akeikθ (44)
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The traction-free condition on some circle means σrr = σrθ = 0. From (42), (43) we
get the formula for displacements

2μ(ur + iuθ ) = 2κAr log(r)
1
z
− Ā

1
r

z+

+
p=+∞

∑
p=−∞

[κrap+1 − (1−p)ā1−pr−2p+1

− b̄−(p+1)r
−2p−1]zp.

(45)

Similarly, we obtain representation of tractions on some circle

σrr − iσrθ = 2A
1
z
+(κ+1)

1
r2 Āz+

+
p=+∞

∑
p=−∞

(1−p)[(1+p)ap+1 + ā1−pr−2p

+
1
r2 bp−1]z

p.

(46)

As we see, in principle it is possible to repeat the same procedure again, glueing
solutions in two rings together and eliminating the intermediary Dirichlet data on the
interface. The only difference lies in considerably more complicated calculations,
see, e.g., [9]. This could be applied for making double asymptotic expansion, in term
of both ρ and λ . However, in our case λ does not need to be small in comparison
with ρ .

6 Asymptotic Expansions of the Steklov–Poincaré Operators
and Perturbations of Bilinear Forms in Particular Cases

The explicit form of solutions in BR allows us to conclude that for

‖wρ‖H1/2(ΓR)
≤ Λ0

the correction to the energy functional contains the part proportional to ρd and
the remainder of order o(ρd). This in turn [27, 28] implies the possibility of
representation

wρ = w0 +ρ2q+o(ρ2) in H1(ΩR)

for both standard and contact problems, justifying computations of topological
derivatives.
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It is well known that the singularities of solutions to Partial Differential Equations
due to the singularities of geometrical domains can be characterized by specific
shape derivatives of the associated energy shape functionals [7]. Therefore, the
influence of topological changes in domains on the singularities can be measured
by the appropriate second-order topological derivatives of the energy functionals. It
means that we evaluate the shape derivatives of the energy functional by using the
velocity field method, and subsequently the second-order topological derivatives of
the functionals by an application of the domain decomposition method

• the portion Γ0 of the boundary with the homogeneous Dirichlet boundary
conditions is deformed to obtain t → Tt(V)(Γ0) as well as t → E(Ωt) for the
energy shape functional; as a result the first order shape derivative J(Ω) :=
dE(Ω;V) is obtained in the distributed form as a volume integral,

• the second-order derivative of the energy functional is evaluated with respect to
small parameter ε → 0, the parameter governs the size of small inclusion with
the material defined by a contrast parameter γ ∈ [0,∞).

We consider the energy shape functional Ω→ E(Ω) for Signorini problems for
the Laplacian as well for the frictionless contact. The shape derivative J(Ω) :=
dE(Ω;V) of this functional is evaluated with respect to the boundary variations of
the portion Γ0 ⊂ ∂Ω. In another words the velocity vector field V is supported in a
small neighbourhood of Γ0. The topological derivatives of J(Ω) are evaluated with
respect to nucleation of small inclusions far from Γ0. The domain decomposition
method is applied in order to obtain the robust expressions for topological deriva-
tives.

7 Directional Differentiability of the Metric Projection
onto Positive Cone in Fractional Sobolev Spaces

Let us consider the subdomain Ωc := Ω\ΩR with the contact zone Γc in the scalar
case as well as in an elastic body, see Fig. 1.

We recall that the convex cone for the contact problem in elasticity with
linearized non-penetration conditions takes the form

K := {v ∈ H1(Ωc) : �v� ∈ K(Γc)⊂ H1/2(Γc)},

where K(Γc) is the positive cone in the fractional Sobolev space H1/2(Γc). The

particular case is the space H1/2
00 (Γc) for Γc ⊂ Σ and the homogeneous Dirichlet

conditions on the complement Σ \ Γc, for the cracks. Therefore, we establish the
Hadamard differentiability [11, 18] of the metric projection in the Dirichlet space
H1/2(Γc) onto its positive cone [7].

Let us consider the directional differentiability of the metric projection onto the
positive cone in the fractional Sobolev spaces H1/2(Γc). In order to present the
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results, we are going to consider a simple geometry of the contact zone Γc. In the
general setting the results can be obtained in the similar way. Therefore, we consider
the subset B= {|x|<R}, x= (x1, · · · ,xd)⊂Ω, of an elastic body Ω, with the contact
set Γc := {x = (x′,xd) ∈ R

d : xd = 0, |x′|< R/2} and Σ defined by an extension
of the subset Σ̃ := {x = (x′,xd) ∈ B : xd = 0}. In such a case, the unit normal vector
to the contact set n := (0, . . . ,0,1) is constant on Γc, and the unit tangent vector
orthogonal to n on the boundary ∂Γc is n := (n1, . . . ,nd−1,0). For the displacement
field u = (u1, · · · ,ud) it follows that un = ud, hence, the unilateral constraints for

the normal component over the contact set H1/2
00 (Γc) � �u�n = ud ≥ 0. Thus, the

convex cone of admissible displacements for the contact problem takes the form

Uad = {v = (v1, · · · ,vd) ∈ H1(Ωc) : vd ≥ 0 on Γc}

and our analysis of the metric projection is reduced to the positive cone in H1/2
00 (Γc),

hence, in H1/2(Σ).

Remark 3. We recall that in general for a domain Ω with the boundary Γ, the
Sobolev spaces H1(Ω) and H1/2(Γ) are [2, 10] the so-called Dirichlet spaces. It
means that for the scalar product a(·, ·), with v+ := sup{v,0} and v− := sup{−v,0},
the property a(v+,v−)≤ 0 holds for all elements of the Sobolev spaces.

Remark 4. The metric projection in the Dirichlet space onto the cone of nonneg-
ative elements is considered for the purpose of sensitivity analysis of solutions to
frictionless contact problems in [29]. This result is extended to the crack problem. In
order to avoid unnecessary technicalities, we restrict ourselves to a model problem.
Now, we consider the Hadamard differentiability of metric projection in Dirichlet
space onto the cone of positive elements, and recall the result on its conical
differentiability.

Consider the convex, closed cone

K = {v ∈ H1/2(Σ) : v ≥ 0 on Σ}

and the metric projection H1/2(Σ) � f → u = PK(f ) ∈ K onto K which is defined by
the variational inequality

u ∈ K : (u− f ,v−u)1/2,Σ ≥ 0 ∀v ∈ K.

We denote v+ = v∧0 := sup{v,0} and v− =−v∧0 := sup{−v,0} in H1/2(Σ).
With the element u = PK(f ) we associate the convex cone

CK(u) = {v ∈ H1/2(Σ) : u+ tv ∈ K for some t > 0}

and denote by TK(u) the closure of CK(u) in H1/2(Σ). On the other hand, [7] there is
a nonnegative Radon measure m such that for all v ∈ H1/2(Σ) we have the equality∫

vdm = (u− f ,v)1/2,Σ, hence, we denote
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m[v] := (u− f ,v)1/2,Σ.

Definition 1. The convex cone K is polyhedric [11, 18] at u ∈ K if

TK(u)∩m⊥ = CK(u)∩m⊥ .

We recall the result on polyhedricity of the positive cone in a Dirichlet space [7].

Lemma 1. The convex cone

CK(u)∩m⊥ := {v ∈ H1/2(Σ) : v ∈ CK(u) such that (u− f ,v)1/2,Σ = 0}

is dense in the closed, convex cone

TK(u)∩m⊥ := {v ∈ H1/2(Σ) : v ∈ TK(u) such that (u− f ,v)1/2,Σ = 0}.

Proof. Using the property of the Dirichlet space

(v+,v−)1/2,Σ ≤ 0 for all v ∈ H1/2(Σ)

then

TK(u)∩m⊥ = CK(u)∩m⊥

follows easily.
Indeed, let

w ∈ TK(u)∩m⊥ .

Then w = 0 m-a.e. Let CK(u) � vn → w. Then v−n → w−, v+n → w+ and v+n ∧w+−
v−n → w, here v ∧ w = inf{v,w}. Now, if v ∈ CK(u), then u + tv ≥ 0. We claim
v+n ∧w+− v−n ∈ CK(u)∩m⊥. Indeed, u+ t[v+n ∧w+− v−n ] ≥ 0 so v+n ∧w+− v−n ∈
CK(u) and m[v+n ∧w+− v−n ] = m[v+n ∧w+] = 0, because of m[w+] = 0.

Remark 5. In [7] the tangent cone TK(u) is derived for u ∈ K, in the case of the
positive cone K = {v ∈ H : v ≥ 0} in the Dirichlet space H equipped with the
scalar product (u,v)H. We have

TK(u) = {v ∈H : v ≥ 0 on {u = 0}}.

The convex cone S := TK(u)∩m⊥ is important for our applications. It is obtained
in [7]

TK(u)∩m⊥ = {v ∈H : v ≥ 0 on {u = 0} and v = 0 m− a.e.}.
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The following result on the directional differentiability of metric projection holds
for polyhedric convex sets [11, 18].

Lemma 2. Let K be a polyhedric cone. For t > 0, t small enough,

PK(u+ th) = PK(u)+ tPS(h)+o(t;h) in H1/2(Σ)

where

S := TK(u)∩m⊥

and the remainder o(t;h) is uniform on compact subsets of H1/2(Σ). Hence,
the directional derivative of the metric projection is uniquely determined by the
variational inequality

q := PS(h) ∈ S : (q−h,v−q)1/2,Σ ≥ 0 ∀v ∈ S.

For a contact set Γc ⊂ Σ we introduce the following convex cones

K(Σ) := {v ∈ H1/2(Σ) : v = 0 on Σ\Γc, v ≥ 0 on Γc},

and

K(Γc) := {v ∈ H1/2
00 (Γc) : v ≥ 0 on Γc}.

For the variational problems with unilateral conditions for the normal component
of the displacement vector field over the contact set, the convex cones K(Γc) and
K(Σ) are employed in order to show the polyhedricity of the cone of admissible
displacements.

Remark 6. The proof of Lemma 1 applies as well to the convex cone K(Γc) ⊂
H1/2

00 (Γc) since the space C∞
0 (Γc) is dense in H1/2

00 (Γc), hence, a nonnegative
distribution is a Radon measure. In addition, contraction operates [4] for the scalar

product (55) in H1/2
00 (Γc). Let us note that the scalar products in H1/2(Σ) and in

H1/2
00 (Γc) are not the same, the latter is a weighted space.

We recall an abstract result on shape sensitivity analysis of variational inequali-
ties.

Sensitivity Analysis of Variational Inequalities The conical differentiability of
solutions to variational inequalities for the contact problem follows from the abstract
result given by Theorem 1. The general result [29] is adapted here to our setting
within the domain decomposition framework. Thus, the bilinear form a(·, ·)+bt(·, ·)
defined in the subdomain Ωc is introduced, where bt(·, ·) is the contribution from the
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Steklov–Poincaré operator on ΓR = ∂ΩR. The real parameter t > 0 governs the shape
perturbations of the inclusion t → ωt in ΩR, where t → 0 governs the topological
changes of ΩR in the framework of asymptotic analysis.

Two boundary value problems in two subdomains are coupled by the trans-
mission conditions on the interface ΓR. The linear boundary value problem in
ΩR furnishes the expansions of the Steklov–Poincaré operators resulting from
perturbations of the inclusion in the interior of the subdomain. The sensitivity
analysis of solutions to variational inequality in Ωc is performed for compact
perturbations of nonlocal boundary conditions on the interface. As a result, the weak
solution to the unilateral elasticity boundary value problem under considerations is
directionally differentiable with respect to the parameter t → 0 which governs the
perturbations of the inclusion far from the contact set.

Now, we provide the precise result on the conical differentiability of solutions to
variational inequalities [11, 18, 29] (see also [7]) which is given here without the
proof.

Let K ⊂ H be a convex and closed subset of a Hilbert space H, and let 〈·, ·〉
denote the duality pairing between H′ and H, where H′ denotes the dual of H. Let us
assume that there are given symmetric bilinear forms a(·, ·)+bt(·, ·) : H×H→ R

parametrized by t ≥ 0, and the linear form f ∈H′, such that

Condition 1. 1. There are 0 < α ≤ M such that

|a(u,v)+bt(u,v)| ≤ M‖u‖‖v‖, α‖u‖2 ≤ a(v,v)+bt(v,v) ∀u,v ∈H
(47)

uniformly with respect to t ∈ [0, t0). Furthermore, there exists Q′ ∈ L(H;H′)
such that

Qt =Q+ tQ′+o(t) in L(H;H′) , (48)

where Qt ∈ L(H;H′)

a(φ ,ϕ)+bt(φ ,ϕ) = 〈Qt(φ),ϕ〉 ∀φ ,ϕ ∈H.

2. The set K⊂H is convex and closed, and the solution operator H′ � f →P(f ) ∈
H for (52)

P(f ) ∈ K : a(P(f ),ϕ−P(f ))≥ 〈f ,ϕ−P(f )〉 ∀ϕ ∈ K (49)

is differentiable in the sense that

∀h ∈H′ : P(f + sh) = P(f )+ sP′(h)+o(s) in H (50)
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for s > 0, s small enough, where the mapping P′ : H′ → H is continuous and
positively homogeneous, in addition, the remainder o(s) is uniform with respect
to the direction h ∈H′ on compact subsets of H′.

Let us consider the unique solutions ut = Pt(f ) to variational inequalities
depending on a parameter t ∈ [0, t0), t0 > 0,

ut ∈ K : a(ut,ϕ−ut)+bt(ut,ϕ−ut)≥ 〈f ,ϕ−ut〉 ∀ϕ ∈ K . (51)

In particular, for t = 0

u ∈ K : a(u,ϕ−u)+b(u,ϕ−u)≥ 〈f ,ϕ−u〉 ∀ϕ ∈ K , (52)

with u = P(f ) a unique solution to (52). The mapping t → ut is strongly differen-
tiable in the sense of Hadamard at 0+, and its derivative is given by a unique solution
of the auxiliary variational inequality [29].

Theorem 1. Assume that Condition 1 is satisfied. Then the solutions to the
variational inequality (51) are right-differentiable with respect to t at t = 0, i.e.
for t > 0, t small enough,

ut = u+ tu′+o(t) in H , (53)

where

u′ = P′(−Q′u) . (54)

7.1 Metric Projection onto Positive Cone in H1/2
00 (Γc)

For boundary value problems in domains with contact conditions, unilateral condi-
tions are prescribed on the contact set for the normal component of the displacement
field. Hence, the normal component of the displacement field belongs to the
positive cone in the fractional Sobolev space H1/2(Γc). The sensitivity analysis of
variational inequalities for Signorini problems was reduced in [29] to the directional
differentiability of the metric projection onto the positive cone in a fractional space
which is the Dirichlet space. This result is further extended in [7] to some crack
problem. The method is also used in the present paper, however for the purposes of
sensitivity analysis of contact problems.

Sensitivity Analysis of the Crack Problem We are going to explain how the
results obtained in [29] for the Signorini problem in linear elasticity can be extended
to the crack problems with unilateral constraints. To this end, the abstract analysis
performed in [7] for the differentiability of the metric projection onto the cone of
nonnegative elements in the Dirichlet space is employed.
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The framework for analysis is established in function spaces over Ω :=Ω+∪Σ∪
Ω−, where Σ is a C1,1 regular curve without intersections. The regularity assumption
can be weakened, if necessary.

Let Γc ⊂ Σ be the segment {(x1,0) : 0 < x1 < 1} included in the curve Σ. We
denote by n the unit normal vector field on Σ which points out of Ω+, and by τ the
unit normal vector field on ∂Γc orthogonal to n . We consider deformations of the
crack in the direction of the vector field V collinear with τ in the neighbourhood of
the crack tip A = (1,0) ∈Ωc ⊂ R

2.
In the Sobolev space defined on the cracked domain Ωc, the elements enjoy

jumps over the crack which are denoted by �v� := v+ − v−, and we have the

regularity property of traces �v� ∈ H1/2
00 (Γc). In our geometry of Ωc, the Sobolev

space H1/2
00 (Γc) coincides with the linear subspace of H1/2(Σ)

H1/2
00 (Γc) = {ϕ ∈ H1/2(Σ) : ϕ = 0 q.e. on Σ\Γc},

where q.e. means quasi-everywhere with respect to the capacity, see, e.g., [1, 24] for
the definition and elementary properties of the capacity useful for the existence of
optimal shapes in shape optimization problems with nonlinear PDE’s constraints.

In order to investigate the properties of the metric projection in the space of
admissible displacement fields onto the convex cone

K := {v ∈ H1(Ωc) : �v�n ≥ 0},

where H1(Ωc) := H1(Ωc;R2), we need to show that the positive convex cone

K = {ϕ ∈ H1/2
00 (Γc) : ϕ ≥ 0 on Γc}.

is polyhedric in the sense of [7, 11, 18].
We consider here the rectilinear crack Γc in two spatial dimensions. The scalar

product in H1/2
00 (Γc) := H1/2

00 (0,1) is defined

〈ϕ,ψ〉c =
∫

Γc

∫

Γc

(ϕ(x)−ϕ(y))(ψ(x)−ψ(y))
|x− y|2 dxdy (55)

+
∫

Γc

[
ϕ(x)ψ(x)+

ϕ(x)ψ(x)
dist(x,∂Γc)

]
dx

Polyhedricity of the Positive Cone in H1/2
00 (Γc) In order to show the polyhedricity

of the nonnegative cone K in H := H1/2
00 (0,1), it is enough to check the property

〈ϕ+,ϕ−〉c ≤ 0 ∀v ∈ H1/2
00 (0,1)
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which is straightforward, here ϕ+(x) = max{v(x),0}. The full proof of polyhedric-
ity in such a case is provided in [7]. It is easy to check that the polyhedricity with
respect to the scalar product implies the polyhedricity with respect to a bilinear form
which is equivalent to the scalar product.

Theorem 2. Let us consider the variational inequality for the metric projection of
f + th ∈H onto K

ut ∈ K : 〈ut − f − th,v−ut〉 ≥ 0 ∀v ∈ K,

where f ,h ∈H are given, denote by Ξ{u}= {x ∈ Γc : u(x) = 0}. Then

ut = u+ tq(h)+o(t;h) in H,

where the remainder o(t;h) is uniform on compact subsets of H, and the conical
differential of the metric projection q := q(h) is given by the unique solution to the
variational inequality

q ∈ S(u) : 〈q−h,v−q〉 ≥ 0 ∀v ∈ S(u)

and the closed convex cone

S(u) = {ϕ ∈H : ϕ ≥ 0 q.e. on Ξ{u}, 〈u− f ,ϕ〉= 0}.

8 Rectilinear Crack in Two Spatial Dimensions

In this section the general method of shape-topological sensitivity analysis is
presented in the domain Ω :=Ωc ∪ΓR ∪ΩR, where the first subdomain Ωc contains
the rectilinear cracks Γc and the second subdomain ΩR contains the inclusion ω .

We denote by Ωin :=Ωc ∪Γc, the first subdomain in the elastic body without the
crack. We assume that there is a regular C1,1-curve Σ ⊂ Ωin, without intersections,
which contains the rectilinear crack Γc := {(x1,0) : 0 ≤ x1 ≤ 1}. To simplify the
presentation, let us consider a torus Ω := T := T

2 with 2π-periodic coordinates
x = (x1,x2).

The deformations of the subdomain Ωc are defined by the vector field (x, t) →
V(x, t) = (v(x, t),0), where the C∞

0 (Ω
+) function (x, t) → v(x, t) is supported in

[1− δ ,1+ δ ]2 × [−t0, t0] ⊂ Ω+ ⊂ R
2 ×R and v(x, t) ≡ 1 on [1− δ/2,1+ δ/2]2 ×

[−t0/2, t0/2]. In our notation, the real variable t ∈R is a parameter. It means that the
vector field V deforms the reference domain Ω+

c to t → Tt(V)(Ω+
c ) just by moving

the tip of the crack X = (1,0)→ x(t) = (x1(t),0) in the direction of the x1-axis. The
mapping Tt : X → x(t) is given by the system of equations
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dx
dt
(t) = V(x(t), t), x(0) = X.

The boundary value problem of linear isotropic elasticity in Ωc is defined by the
variational inequality

u ∈ K : a(u,v−u)≥ (f ,v−u) ∀u ∈ K , (56)

where

K = {v ∈ H1(Ωc) : �v� · n := (v+− v−) · n ≥ 0 on Γc}, (57)

here �v� = v+ − v− is the jump of the displacement field over the crack Γc. The
bilinear form

a(u,v) =
∫

Ωc

[
μ
2

2

∑
j,k=1

(∂juk +∂kuj)(∂jvk +∂kvj)+λdivudivv

]
dx

is associated with the operator

Lu :=−μΔu− (λ +μ)graddivu. (58)

The deformation tensor 2ε(u) = ∂juk + ∂kuj and the stress tensor σ(u) associated
with the displacement field u are useful in the description of the boundary value
problems in linear elasticity.

The energy functional E(Ωc) = 1/2a(u,u)− (f ,u)Ωc is twice differentiable [7]
in the direction of a vector field V , for the specific choice of the field V = (v,0). The
first order shape derivative

V → dE(Ωc;V) =
1
t

lim
t→0

(E(Tt(Ωc))−E(Ωc)

can be interpreted as the derivative of the elastic energy with respect to the crack
length, we refer the reader to [15] for the proof, the same result for the Laplacian is
given in [5, 13, 14].

Theorem 3. We have

dE(Ωc;V) =
1
2

∫

Ωc

{
divV · εij(u)−2Eij(V;u)

}
σij(u)−

∫

Ωc

div(Vfi)ui . (59)

Now we restrict our consideration to the perturbation of the crack tip only in
the direction which coincides with the crack direction. The derivative is evaluated
in the framework of the velocity method [29] for a specific velocity vector field V
selected in such a way that the result dE(Ωc;V) is independent of the field V and
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it depends only on the perturbation of the crack tip. That is why, this derivative is
called the Griffith’s functional J(Ωc) := dE(Ωc;V) defined for the elastic energy in a
domain with crack. We are interested in the dependence of this functional on domain
perturbations far from the crack. As a result, shape and topological derivatives of
the nonsmooth Griffith’s shape functional are obtained with respect to the boundary
variations of an inclusion.

8.1 Green Formulae and Steklov–Poincaré Operators

The Steklov–Poincaré operator on the interface for the domain Ωc ∪ ΓR ∪ΩR is
defined by the Green formula, first as the Dirichlet-to-Neumann map in ΩR, then it
is used on the interface as nonlocal boundary operator. Therefore, we recall here the
Green formula for linear elasticity operators in two and three spatial dimensions.

We start with analysis in two spatial dimensions. To simplify the presentation
let us consider the reference domain without a crack in the form of the torus T :=
T

2 with 2π-periodic coordinates x = (x1,x2). For the purpose of shape-topological
sensitivity analysis we assume that the elastic body without the crack is decomposed
into two subdomains, Ωin and ΩR, separated from each other by the interface ΓR.
Thus, the elastic body with the crack Γc is written as

Ω :=Ωc ∪ΓR ∪ΩR .

The rectilinear crack Γc ⊂ Σ ⊂ Ωin is an open set, where the fictitious interface
Σ⊂Ωin is a closed C1,1-curve without intersections. In our notation Ωc =Ωin \Γc.

The bilinear form of the linear isotropic elasticity is associated with the operator

Lu :=−μΔu− (λ +μ)graddivu

for given Lame coefficients μ > 0,λ ≥ 0.
The displacement field u in the elastic body Ω is given by the unique solution of

the variational inequality

u ∈ K : a(u,v−u)≥ (f ,v−u) ∀u ∈ K , (60)

where

K = {v ∈ H1(Ωc) : �v� · n := (v+− v−) · n ≥ 0 on Γc}, (61)

here �v� = v+− v− is the jump of the displacement field over the crack Γc.
Given the unique solution u ∈ K of the variational inequality and the admissible

vector field V compactly supported in Ωc, we consider the associated shape
functional (59) evaluated in Ωc, which is called the Griffith’s functional

J(Ωc) := dE(Ωc;V) . (62)
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Let ω ⊂ΩR be an elastic inclusion. Introduce the family of inclusions t → ωt ⊂ΩR

governed by the velocity field W compactly supported in ΩR. The elastic energy in
ΩR with the inclusion ωt is denoted by

ωt →Et(ΩR) :=
1
2

at(ΩR ; u,u)− (f ,u)ΩR .

Its shape derivative dE(ΩR;W) in the direction W is obtained by differentiation of
the function at t = 0

t →Et(ΩR) :=
1
2

at(ΩR ; u,u)− (f ,u)ΩR .

Proposition 4. Assume that the energy shape functional in the subdomain ΩR,

ω →E(ΩR) :=
1
2

a(ΩR ; u,u)− (f ,u)ΩR

is differentiable in the direction of the velocity field W compactly supported in
a neighbourhood of the inclusion ω ⊂ ΩR, then the Griffith’s functional (62) is
directionally differentiable in the direction of the velocity field W. Therefore, the
second-order directional shape derivative dE(Ω;V,W) of the energy functional in
Ω in the direction of fields V,W is obtained.

This result can be proved by the domain decomposition technique:

• the shape differentiability of the energy functional in the subdomain ΩR implies
the differentiability of the associated Steklov–Poincaré operator defined on
the Lipschitz curve given by the interface ΩR ∩Ωc with respect to the scalar
parameter t → 0 which governs the boundary variations of the inclusion ω;

• the expansion of the Steklov–Poincaré nonlocal boundary pseudodifferential
operator obtained in the subdomain ΩR is used in the boundary conditions for
the variational inequality defined in the cracked subdomain Ωc and leads to the
conical differential of the solution to the unilateral problem in the subdomain;

• the one term expansion of the solution to the unilateral problem is used in the
Griffith’s functional in order to obtain the directional derivative with respect to
the boundary variations of the inclusion.

Remark 7. For the circular inclusion ω := {x ∈ ΩR : |x− y| < r0}, r0 > 0, the
scalar parameter t → 0 which governs the shape perturbations of ∂ω in the direction
of a field W [29] can be replaced by the parameter r → r0. Thus, the moving domain
t → ωt is replaced by the moving domain r → {x ∈ ΩR : |x− y| < r}. In this way
the shape sensitivity analysis [29] for r0 > 0 and the topological sensitivity analysis
[22] for r0 = 0+ are performed in the same framework for the simple case of circular
inclusion.
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9 Shape and Topological Derivatives of Elastic Energy
in Two Spatial Dimensions for an Inclusion

In the subdomain Ωc the unique weak solutions

ε → u := uε

of the elasticity boundary value subproblem are given by the variational inequality

u ∈ K : a(Ωc;u,v−u)+bε(ΓR;u,v−u)≥ (f ,v−u)Ωc ∀v ∈ K.

In order to differentiate the solution mapping for this variational inequality, it is
required to differentiate the bilinear form ε → bε(ΓR;u,v), which is performed in
this section.

9.1 Shape and Topological Derivatives of the Energy
Functional in ΩR with Respect to the Inclusion ω

In order to evaluate the topological derivative of energy functional in isotropic
elasticity, the shape sensitivity analysis is combined with the asymptotic analysis
[22], see also [8, 16, 23] for related results. In this section the small parameter is
denoted by ε → 0, and the circular inclusion ε → ωε := Bε is considered.

The general shape of inclusion ε → ωε can be considered in the same way for
shape sensitivity analysis [29] and the asymptotic analysis [22].

For the sake of simplicity, the subscript R is omitted, thus, we denote Ω :=
ΩR, since the inclusion is located in the subdomain ΩR. We also allow for the
Neumann ΓN and Dirichlet ΓD pieces of the boundary ∂Ω := ∂ΩR, thus, ∂ΩR :=
ΓN ∪ ΓD ∪ Γ. Thus, we evaluate the shape and topological derivative [22] of the
total potential energy associated with the plane stress linear elasticity problem,
considering the nucleation of a small inclusion, represented by Bε ⊂ Ω, as the
topological perturbation. In this way the expansion of the Steklov–Poincaré operator
on the interface Γ := ΓR is obtained.

Steklov–Poincaré Operator Let us consider the nonhomogeneous Dirichlet linear
elasticity boundary value problem in the domain Ω with the boundary ∂Ω := ΓN ∪
ΓD ∪Γ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find u, such that
divσ(u) = 0 in Ω ,

σ(u) = C∇us ,

u = 0 on ΓD ,

u = u on Γ ,

σ(u)n = 0 on ΓN ,

(63)
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where the only nonhomogeneous term is the Dirichlet condition u = u on the
interface Γ. Let

a(u,u) :=
∫
Ω
σ(u) ·∇us

stands for the associated bilinear form, thus the elastic energy of the solution u is
given by

E(Ω;u) =
1
2

a(u,u).

Then by Green’s formula

E(Ω;u) = 〈T (u),u〉Γ. (64)

In the case of an inclusion ωε ⊂Ω, the formula becomes

Eε(Ω;u) = 〈Tε(u),u〉Γ. (65)

Hence, the expansion of the energy functional in Ω, on the left-hand side of (65)
with respect to the parameter ε → 0 can be used in order to determine the associated
expansion of the Steklov–Poincaré operator u→T (u) on the right-hand side of (65).
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Optimal Control for Applications in Medical
and Rehabilitation Technology: Challenges
and Solutions

Katja Mombaur

Abstract This paper gives an overview of the mathematical background and
possible applications of optimal control and inverse optimal control in the field of
medical and rehabilitation technology, in particular in human movement analysis,
therapy and improvement by means of appropriate medical devices. One particular
challenge in this area is the formulation of suitable subject-specific models of
motions for healthy and impaired humans including skeletal multibody dynamics
and potentially neuromuscular components, and their combination with models of
the technical components. The formulation of hybrid multi-phase optimal control
problems arising in this context involves non-standard elements such as the open-
or closed loop stability of the dynamic motion. Efficient methods for the solution of
optimal control and inverse optimal control are discussed and particular difficulties
of this problem class are highlighted. In addition, we present several example
applications of these methods in the development of mobility aids for geriatric
patients, the optimization-based design of exoskeletons, the analysis of running
motions with prostheses, the optimal functional electrical stimulation of hemiplegic
patients, as well as stability studies for different types of movement.

1 Introduction

Optimal control problems are ubiquitous in medical applications, in particular in
the field of motion generation and analysis in rehabilitation. This paper serves
to highlight challenges for applied mathematics, and especially optimization and
optimal control, arising from this interesting area of applications and to present
potential solution approaches. The goals in this context are to better understand
human movement and to use this understanding to improve the movement either by
controlling it directly, by developing better training and rehabilitation techniques,
or by optimally designing technical devices that support or guide the movement.
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The human is a complex, dynamic, unpredictable system with a control system of
its own, and the particular challenge is to make the complex technology developed
nevertheless work in conjunction with the human in a variety of situations.

It is a common assumption that many processes and structures in nature are
optimal. This optimality hypothesis also holds for natural motions of humans and
animals that have been shaped by evolution, learning, and training [3, 4]. From a
mathematical perspective it is therefore logical to formulate dynamic motion tasks
such as walking, running, standing up, grasping, etc. as optimal control problems.
Optimality therefore appears in two different ways in this context—first, as a way
to predict natural human movement, and second to increase performance of the
technical devices.

The first goal of this paper is to discuss in detail some of the mathematical
challenges arising from these applications and their potential solutions, such as:

• The efficient and flexible modeling of these complex biomechanical systems: The
mathematical descriptions of such motions result in highly nonlinear systems
of ordinary differential or differential-algebraic equations, generally including
multiple phases of motion, implicitly defined phase changes and discontinuities
of state variables between phases. These multibody system models need to be
adjustable to different subjects and situations, and the right level of complexity
has to be chosen for each application. The identification of good data for human
models also presents a big issue.

• Neuromuscular modeling: The problem gets even significantly more complex
if muscular elements and neural excitation and control loops are considered in
the model. This has so far only been done for parts of the human body, and
the establishment of a whole-body human model with muscles and neural parts
for excitation and control that can efficiently be used in forward simulation and
optimization is subject to ongoing and future work.

• Integrating models of the technical devices: since the interaction of the human
with the medical device is to be investigated, detailed models of the devices and
control systems are required and must be integrated with the human model in a
combined model.

• A correct formulation of optimal control problems for the generation and control
of such motions: this generally results in a hybrid multi-phase optimal control
problem including switches, continuous and discrete phases, constraints and
objective functions. Avoiding global and local redundancy of the constraints
poses a particular challenge in some applications. Objective functions can get
very complex as soon as stability issues are involved: in this case, derivatives
of the trajectories have to be considered in the objective function or constraint
formulations, and the variational differential equation of the hybrid dynamics
has to be included in the dynamic constraints of the problem.

• The initialization of state and control variables: due to the large number of
variables an automated initialization is favorable, and due to the local nature of
the optimization procedures, a good initialization is very important.
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• An efficient solution of optimal control problems is essential, both for offline
(generation/selection of motions) and online problems (control of motions).
Direct optimal control techniques using multiple shooting have proved very
efficient for the solution of such problems. While in the offline case, precise
solutions for whole body human models can be sought for, reduced models and
real-time methods have to be used in the online case. Also methods for model
reduction play an important role in this context.

• An efficient solution of inverse optimal control problems: Inverse optimal control
problems are formulated to identify optimization objectives of motions from
(partial) measurements of state variables and potentially control variables. This
class of problems is particularly challenging, since it consists in solving a
parameter estimation problem in an optimal control problem. Bi-level as well
as one-level methods have been developed to solve this type of problems.

• Handling of uncertainties and variability in data: data in this context is recorded
by optical motion tracking systems, inertial measurement units, force plates,
EMG, etc. None of these measurements is precise. In addition, there is a lot
of variation between subjects, motion trials, scenarios, etc. Deciding which data
can be combined for which analysis (e.g., which motions are combined in one
inverse optimal control computation with the hypothesis that they share the same
underlying objective function) is a very hard problem.

• The transfer of optimization results to reality also is an issue. Once optimal
motions have been computed for a prosthesis, an exoskeleton, another physical
assistive device, or a stimulation pattern, they have to be applied to the real
system, and methods for coping with the model mismatch are required.

The second goal of this paper is to summarize some of the work on medical
optimal control problems performed in our research group on different topics in
each of which several of the above challenges have been successfully addressed.
We will present optimal control problems in the following applications:

• optimization of geriatric motions with and without the support of physical
assistive device, in particular optimal sit to stand transfer;

• the study of walking and running motions with prostheses, e.g. in the context
of disability sports: high-speed running of bipedal amputees on carbon fiber
prostheses;

• the optimization-based development and control of an exoskeleton for full motion
support of paraplegic patients;

• the generation of optimal muscle stimulation patterns for functional electrical
stimulation (FES) in walking, in particular for the treatment of the drop foot
syndrome of stroke patients;

• the analysis and improvement of stability of normal and pathological gait.

The paper is organized as follows: Sect. 2 describes the types of mathematical
models that are required for motion studies. In Sect. 3, we give an overview of
different mathematical stability criteria. Section 4 presents our approach to the
formulation and solution of optimal control problems to generate motions for this
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Fig. 1 Example applications from medical technology and rehabilitation discussed in this paper
in which model-based optimal control has been applied: (a) Lower-limb exoskeleton (b) Running
prosthesis (c) Functional electrical stimulation of the tibialis anterior (d) Rollator type actuated
physical assistive device (e) Nurse type physical assistive device

type of applications. In Sect. 5 we introduce inverse optimal control problems.
Sections 6–10 summarize results of optimal control projects in the five medical
application areas listed in the previous paragraph. In Sect. 11, we draw some
conclusions and give an outlook to future optimization work in that area.

2 Mathematical Models for Motion Studies in Medical
and Rehabilitation Engineering

This section discusses challenges related to the formulation of mathematical models
of humans and technical devices for optimization-based motion studies and medical
and rehabilitation applications. From the mathematical perspective, it should not
be expected that human whole-body models in a form that is numerically suitable
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for optimization are available from the medical or biomechanical field. Existing
models are quite often too simple or sometimes mechanically wrong, and they
typically include discontinuities and non-differentiabilities. In the past, we have
therefore developed in our group two different modeling tools which represent
general multibody systems modeling tools but serve in our case the primary goal
to generate whole-body human and humanoid models. The first one, named RBDL,
[19, 20], is based on an order n recursive algorithm by Featherstone [18], the other
one, named Dynamod [38], is based on explicit code generation. The choice of
the level of detail of the model is not straightforward and depends on the particular
question asked. We will discuss different choices in the context of the applications in
Sects. 6–10. All models involve many anthropomorphic parameters. Model data
is highly individual and very hard to identify. Some data can be measured (but
measurements may be expensive), whereas others can only be estimated, and there
is no way to measure them. We will also comment on some data choices within this
section and the sections on the different applications.

In this section, we first present rigid body models that describe the whole-body
actions of the human assuming that there are torques acting on the joints. After that,
we discuss what would have to be added to the model in order to describe how
these torques result from the actions of the neuromuscular system. In the end of this
section, we describe how models of medical and rehabilitation devices can be set up
and integrated with the human models. Due to lack of space, none of these sections
is meant to give a complete overview of the respective area. Instead, we try to give a
flavor of the challenges and of the types of models that are to be faced, and present
some solution approaches.

2.1 Whole-Body Models of Humans

To describe the human body we use a multibody system model with a set of rigid
bodies that are connected by different types of joints. The choice of using three-
dimensional (3D) models or planar (2D) models (e.g., in the sagittal plane) as
well as the precise number of degrees of freedom (DOF) depends on the particular
question investigated. For our investigations we use 3D models with 35–40 DOF
in some cases, and 2D models with 9–15 DOF in others. In the general case, we
assume that the system is powered by torques in the internal joints. For geometry
and inertia parameters, tabular anthropometric data can be used, e.g. from de Leva
[42] or Winter [75], but if a precise match between model and real human or
good prediction quality is to be achieved, the parameters have to be adjusted to
the individual properties of the subject or at least of a particular group (see, e.g.,
Sect. 6). One approach to establish subject-specific dynamic human models based
on kinematic measurements is proposed in [20, 21].

The motions that we consider in our research generally consist of multiple phases
of motion produced by the changing contacts of the human with the environment, in
many cases by his hands and feet, and discontinuities between phases, i.e. they take
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the form of hybrid dynamical problems. Each phase is characterized by its own set of
equations of motion. Depending on the choice of coordinates q, we obtain ordinary
differential or differential algebraic equations for each phase, all of them highly
nonlinear. For the choice of minimal coordinates q (i.e., the number of coordinates
is equal to the number of DOF of the system), the motion is described by a set of
ordinary differential equations of the following form:

M(q,p)q̈+N(q, q̇,p)q̇ = F(q, q̇,p,M ), (1)

M is the mass or inertia matrix and N the vector of nonlinear effects. F is the vector
of all external forces (including gravity, joint torques M , drag, etc.) Note that q(t)
and v(t) = q̇(t) are functions in time and form the state variables of the system, and
p is the vector of model parameters which are fixed in time, but may still be free
parameters in the optimal control problems to be discussed in the next sections.

If redundant coordinates q are used (i.e., there are more position variables than
DOF), the coupling can be described by a constraint of the form g(q,p) = 0 and a
corresponding constraint force in the differential equation. This results in a system
of differential algebraic equations (DAE) of index 3 for the equations of motion. For
numerical treatment, we reduce this to a DAE of index 1 by index reduction:

q̇ = v (2)

v̇ = a (3)(
M(q,p) G(q,p)T

G(q,p) 0

)(
a
λ

)
=

(
−N(q,v)+F(q,v,p,M )

γ(q,v,p)

)
(4)

gpos = g(q(t),p) = 0 (5)

gvel = G(q(t),p) · q̇(t) = 0. (6)

with acceleration a = q̈ and Lagrange multipliers λ . The matrix G is the Jaco-
bian of the position constraints G = (∂g/∂q), and γ the corresponding Hessian
γ = ((∂G/∂q) q̇) q̇. Equations (5) and (6) describe the invariants on position and
velocity level resulting from the index reduction that the solution still must satisfy.

In the case of modeling tools that are based on explicit code generation, such as
Dynamod [38] or HuMAnS [74], we obtain codes for the different parts of these
equations, such as M, G, N, and γ which allows us to set up the above systems
of equations and solve them for the accelerations a. In the case of modeling tools
based on recursive formalisms, such as RBDL [19], we don’t obtain an explicit
code for these expressions, but only the resulting accelerations based on a recursive
evaluations for the kinematic tree structure of the system. No unique answer can
be given to the question which of the two approaches is preferable in terms of
computational speed since it depends on the precise characteristics of the system,
e.g. the number of DOF and the particular processor used as well as the specific
implementation. However it can be stated that computation times for both codes
developed in our group (RBDL and Dynamod) are in the same order of magnitude
for the type of problems discussed here and are internationally very competitive.
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Several contacts occurring in motion models, such as ground contact during
walking and running, are unilateral (i.e. the ground can only push against the foot but
not pull it). This can be taken care of in optimization by formulating an appropriate
inequality constraint on the Lagrange multiplier associated with the normal contact
force (see Eq. (4)).

Phase changes between the motion phases described above usually do not occur
at given time points, but depend on the states of the system, which can be described
by a phase switching condition of type

s(q(τs),v(τs),p) = 0. (7)

To give an example from walking and running motions: touch-down occurs when
the lowest point of the foot reaches ground height, and lift-off takes place when the
vertical contact force (i.e., the negative of the corresponding Lagrange multiplier in
Eq. (4)) becomes zero.

The discontinuities between phases that make up the hybrid nature of the problem
are usually discontinuities of the velocities that are caused by inelastic impacts (e.g.,
at touchdown) which instantaneously set velocities at some points to zero. The other
velocities after impact v+ can be computed as

(
M(q,p) G(q,p)T

G(q,p) 0

)(
v+
Λ

)
=

(
M(q)v−

0

)
, (8)

where v− are the corresponding velocities immediately before impact. Matrices M
and G are the same as in Eq. (4).

Some of the motions that we consider, like walking and running motions,
are periodic or quasi-periodic. It is therefore often suitable to impose periodicity
constraints to the model on all velocity variables v and a reduced set of position
variables qred, only eliminating the coordinate describing the person’s direction of
motion. Typically, in this case, we are also interested to determine a symmetric gait
with identical left and right steps, such that the periodicity constraint is applied after
one step, after formulating a shift of sides in the model.

2.2 Including Neuromuscular Models in the Human Model

In the models described in the previous section, motions are driven by joint torques
M . For many medical applications it may be desirable or even necessary to explore
the process of joint torque generation further and include models of the underlying
mechanisms into the overall model of human movement. These models can include
the process of force generation in the muscles as well as all processes related to
neural excitation of muscles and to the feedback of sensory signals about motion,
muscle states, and the environment.
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Fig. 2 Components of a full neuro-musculo-skeletal human model

An overview of the different components of a human neuro-musculo-skeletal
model is given in Fig. 2. While the box to the right was treated in the previous
section, here we discuss the boxes in the middle and briefly the one to the left.
It is important to note at this point that the state of the art is still very far from the
formulation of a full dynamic human neuro-musculo-skeletal model. Some attempts
for setting up musculo-skeletal models (without the neural part) have been pursued
successfully (e.g., [14, 59, 60]). We will now first discuss some details about muscle
modeling in the next paragraphs, and then come back to the issue of neuronal
modeling towards the end of this section.

In humans and animals, joint torques Mi at joint i result from the sum of torques
Mij produced by all nmus,i muscles acting on the respective joint which are the
product of the muscle forces Fij times the lever arms dij:

Mi =
nmus,i

∑
j=1

Mij =
nmus,i

∑
j=1

Fij ·dij. (9)

Muscle models are used to describe forces of individual muscles Fij as a function
of the input and of the system’s state. There are various types of muscle models. The
most popular class of models is formed by the so-called Hill type muscle models
that go back to the original work of Hill [30]. There are many variants of the Hill
type model in use today. The model we describe here corresponds essentially to
the model established by van den Bogert and Ackermann [1, 11]; one exception is
that we assume here a constant tendon length while they allow for variable tendon
length which is important for some muscles. We give here the equations to give an
idea about the mathematical form of these models.

As in most Hill-type models, the muscle is modeled as a combination of a
contractile element, a parallel elastic and a parallel damping element FTA = FCE +
FPE+FPD. The force in the contractile element is generally computed as the product
of the maximum isometric force Fiso,max and three factors, the activation level fad,
the force-length factor ffl, and the force-velocity factor ff v:

FCE = Fiso,max · fad · ffl · ff v (10)
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The activation level fad (with 0 ≤ fad ≤ 1) which can be seen as an input of the
above equation is at the same time the output of the activation dynamics of the
muscle

ḟad = (ε− fad)

(
ε

Tact
− 1.0− ε

Tdeact

)
. (11)

Muscle excitation ε (0 ≤ ε ≤ 1) is the entry or control variable of this model of
activation dynamics, and Tact and Tdeact are the time constants for activation and
deactivation of the particular muscle.

The length of the muscle-tendon complex can be computed as a function of the
corresponding joint angles. The computation depends obviously on the fact if the
muscle spans one or two joints. In the case of monoarticular muscles it is of the form

lMT = lMT,0 ±dl ·φ (12)

with rest length lMT,0, muscle specific constant dl, relative joint angle φ , and the sign
of the last term depending on the sign convention for the joint angle φ and the side
of the joint on which the muscle acts. The tendon length l′T is assumed to be constant
here and the length of the contractile element, i.e. the muscle itself, follows from

lCE = lMT − lT . (13)

In this case, the contraction speed of the muscle can be computed as

vCE =±dl · φ̇ . (14)

If the tendon is modeled as elastic, typically a linear spring model is used, and
tendon length and muscle length have to be iteratively determined from the force
balance between muscle and tendon.

The force-length factor ffl describes the dependency of the muscle force on the
current length of the contractile element lCE

ffl = e
−
(

lCE−lCE,opt
WlCE,opt

)2

(15)

where lCE,opt denotes the fiber length at which the optimum force can be generated,
and W is the so-called width parameter that describes how the filaments in the
sarkomer overlap which is the crucial low level mechanism responsible for the force
length relationship.

The force-velocity factor ff v describes the dependency of the muscle force
on the contraction speed of the muscle and can be modeled by two hyperbolic
relationships:
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ff v =
gmaxvCE + c

vCE + c
if vCE > 0 (extension), (16)

ff v =
λvmax + c

λvmax − vCE/A
else (contraction), (17)

where gmax is the normalized maximum force during extension and A is a constant.
With the parameter λ , we take into account that the activation level influences the
maximum contraction speed

λ (fad) = 1− e−c1fad + fade−c1 . (18)

The factor c in Eqs. (16) and (17) is introduced to produce continuous first order
derivatives at vCE = 0 where the two branches intersect, and is computed as

c =
λvmaxA(gmax −1)

A+1
. (19)

The force in the parallel elastic element can be computed as

FPE = k1(lCE − lslack,PE) if lCE ≤ lslack,PE, (20)

FPE = k1(lCE − lslack,PE)+ k2,PE(lCE − lslack,PE)
2 else, (21)

while the force in the parallel damping element is

FDE = bvCE. (22)

These equations contain several parameters, such as dl, Tact, Tdeact, W, A,
k1, lslack,PE, b,c, c1, which are different for each muscle and for each person.
Determining good parameter values for muscle models is a very difficult issue, since
some parameters can only be identified in cadavers and therefore no truly individual
values can be obtained for a living subject.

We would like to point out that the whole set of Eqs. (10)–(22) is necessary to
describe the dynamics of one single muscle. As stated in (9), several muscles—at
least two muscles, an agonist and an antagonist, but often more—are responsible
for the torque around one joint axis. So to give an idea of how much complexity
a decision to include muscle models into the whole-body model brings along:
this means that for a human model with 30 internal DOF, we would need to add
at least 60 muscles, i.e. add 60 times the equations stated in this paragraph to
the previous system described in Sect. 2.1. And for all these muscles, appropriate
model parameters would have to be determined and good input variables chosen.
However, for several medical applications this additional effort must be taken, since
it is important to study muscle behavior in detail to explore constraints, delays, or
interfaces with technical devices.
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Even more challenging is the formulation of good models of the neuronal control
of muscle activity including all feedback loops. Muscle excitation processes for
movement generation are far from being fully understood with some signals coming
from the brain, and others from the spinal cord. No full model exists yet, but attempts
to set up neuro-muscular models for part of the body such as the arm have been
established, e.g. in [70]. It is assumed that the neural control does not work with
the full set of mechanical degrees of freedom, but performs control tasks on a much
smaller space [8]. In the previous paragraph it was still assumed that the incoming
excitations of the different muscles of the whole-body model are independent. This
is however not true, since higher level control levels of the CNS and the peripheral
nervous system typically send commands to whole groups of muscles which are
responsible for the same tasks. This is investigated under the name of muscle
synergies or muscle excitation primitives by various researchers, e.g. [23, 69, 71].

The research field of Human motor control (e.g., [67]) is dedicated to the general
study of how humans use their neuromuscular system to move their body and
coordinate the limbs and how sensorimotor signal about the state of the body and
the environment are integrated. However, a lot of research so far is performed on
simpler motor skills such as pointing and reaching and no global models of the
human body that would allow to investigate medical devices in the context of whole-
body motions and address, e.g. stability questions, have been established yet.

2.3 Modeling the Rehabilitation Device and Establishing
a Combined Model

A major challenge in the context of medical and rehabilitation applications is to
design and control technical devices that optimally support humans with different
pathologies and for different types of motions. While the particular demands for the
different systems discussed in that paper—prostheses, orthoses and exoskeletons,
external physical assistive devices and stimulation equipment- are different, the
common request is that they are able to work in conjunction with the human patient
and significantly improve his or her motion.

For this, it is essential to have an integrated model of the human and the
respective device that allows to study their interactions and their movement as a
whole and that allows to evaluate different design and control selections for the
device. So in addition to the model discussed in the previous sections, the following
steps have to be taken:

(a) Development of good mechanical models of the device;
(b) Choice of appropriate strategy of combination of device model with human

model.

Part (a) obviously depends a lot on the particular device considered. What can be
said in general:
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• In most of the cases that we considered so far, devices are also modeled as
multibody system models and resulted in further sets of ordinary differential
equations or differential-algebraic equations of the same type as above (1)–(8).

• All device models are set up in a parameterized way in order to allow for
parameter optimization in the optimal control context.

• Some devices are purely passive, i.e. they consist of springs, dampers, passive
locking devices, etc. One example for this is the running prostheses discussed in
Sect. 7 which essentially is a carbon fiber spring. Also soft tissues with different
passive properties are gaining more importance in this field.

• Some devices are active and can include all kinds of linear or rotational actuators
(electric, hydraulic, pneumatic, etc.). Depending on the particular question, there
is the possibility to

– either represent the actuators by their resulting forces or torques which then
act as input to the remaining model,

– or to include full models of the actuators themselves in order to take their
dynamics into account which then results in additional differential equations.
For example in the case of electric motors a model of the following type can
be used:

ψ(i) = τ(ϕ̇) · (a · i−dM(i) − 1
2π

κkf ϕ̇ − Iκϕ̈), (23)

with τ being the motor’s efficiency, a · i− dM(i) describing the linear char-
acteristics of electric motors with slope a and damping term dM , the anti
proportionality factor kf of the torque to the number of revolutions per
second, transmission ratio κ , and the inertia I of the rotor. These characteristic
parameters would have to be determined for every motor.

• In some cases, an inclusion of partial differential equations may be very useful
for describing some details of the device, e.g. if large deformable parts with
contacting surfaces are involved, e.g. soft soles of an exoskeleton. This goes
however beyond the scope of this paper and will not be discussed in the examples
here.

With respect to (b), the goal is to integrate the model of the human (Sects. 2.1
and potentially 2.2) and the model of the medical device discussed in (a) into a
combined model that allows to optimize the actions of the whole system at once.
Different approaches maybe applied depending on the type of device and the amount
of contact between human and device as well as on the level of detail desired:

• Rigid coupling of the medical device to the human, assuming perfect nonsliding
contact between the two and perfect alignment of the joint axes (where kinematic
structures overlap, e.g. in exoskeletons). This results in a multi-body system
which consists of all segments of the two subsystems and in the case of
overlapping structures of segments that are combinations of attached human and
device (exoskeleton) segments. As results we obtain combined joint efforts and
combined loads on the whole system.
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• Compliant coupling between human and the device at several identified contact
points by the formulation of spring elements. This generally results in larger
systems of equations since human and device do not share any degrees of
freedom, but allows to compute separate torques and loads on human and device.

• Compliant coupling between human and the device on extended compliant
surfaces caused by soft tissue and/or compliant elements in the devices such as
cushions, etc. Such a contact model again has to be formulated by means of finite
elements that have to be integrated in the whole-body human model.

3 Mathematical Stability Criteria for Human Movement

Stability of human movement with or without supporting devices is a crucial
property in many applications in medical technology and rehabilitation. Human
motions are typically not statically stable (i.e., the center of mass is not sitting well
within the polygon of support and the motion is not negligible) such that dynamic
or at least quasi-dynamic stability criteria have to be used. We give an overview
of some stability criteria in this section, and come back to applications of stability
criteria in Sect. 10.

There is no uniquely accepted way to define stability in the context of motions,
and we will discuss different possible criteria in this section.

3.1 ZMP Related Criteria

In the field of humanoid robots, stability definitions based on the concept of the
zero moment point (ZMP) play an important role. The ZMP [73] defines the point
where the resulting torques of inertia and gravity forces of the robot about the
horizontal axes lying in the ground become zero. The ZMP is equivalent to the
center of pressure (CoP) for nonsliding motions on level ground, but while the CoP
is computed based on ground reaction forces, the ZMP is generally defined using
inertia and accelerations of the segments of the robots.

pZMP,Q =
n×Mgi

Q

Rgi ·n
(24)

where pZMP,Q denotes the position of the ZMP with respect to a general point Q,
n denotes the normal direction of the contact force, Rgi the sum of the gravity
and inertia force at the center of mass, and Mgi

Q the moment at point Q caused by
acceleration, gravity, and change in angular momentum of the segments [68].

In humanoid robotics, for simplicity and speed, the ZMP is often computed
using the simplified so-called table-cart model of Kajita [36] in which essentially
only the horizontal movement of the pelvis center is considered and all the mass
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is assumed to be gathered in this point. The position of the table cart ZMP on the
floor (pZMP,x,pZMP,y) in forward (x) and sideward (y) direction then follows from
the center of mass position x,y,zc (with the height zc assumed to be constant) and
accelerations:

pZMP,x = x− zc

g
ẍ, (25)

pZMP,y = y− zc

g
ÿ. (26)

To produce stable gaits, ZMP control algorithms aim at keeping the simplified
ZMP within the polygon of support, usually with a large safety margin to the
boundary. Some of the most famous control algorithms for humanoid robots fall into
that category. This results in quite conservative and slow gaits which do not look
very dynamic. CoP measurements for human movement show that the CoP/ZMP
goes to the edge of the polygon of support quite frequently: even during normal
walking the CoP travels from extreme heel to toes during each foot contact. During
very dynamic balancing motions, the CoP goes to the boundary of the polygon of
support at many different places and for extended periods of time, and with the ZMP
criterion, even if precisely computed, it is not possible to predict if the system will
fail in the next second or if it can be stabilized. For medical applications, a ZMP
criterion only can be used in very limited cases, where the motions are not very
dynamic, and the basin of support is large and therefore large safety margins can be
applied without constraining the motion too much.

3.2 Lyapunov’s First Method

From a mathematical perspective, stability in the sense of Lyapunov is a much better
way to describe stability of moving systems. Here stability is not defined in terms
of a momentary glimpse on the position of a point, but by looking at the behavior of
the solution under the effect of small perturbations.

It is well known that a solution of a non-autonomous nonlinear system is
asymptotically stable in the sense of Lyapunov if small perturbations of the initial
values result in a perturbed solution that always stays in a finite neighborhood of
the original solution (stability) and if the effect of the perturbation vanishes for
t → ∞, i.e. the perturbed solution converges to the unperturbed one (e.g., [13]). For
autonomous systems, we consider orbital asymptotic stability which corresponds
to the above definition with the exception that orbital shifts of the solution by the
perturbation (i.e., shifts in time) may occur and remain, but are not considered.

In human motions many stability questions arise in the context of periodic
motions such as gaits, so we have to consider the stability of periodic limit cycles.
This is defined by Lyapunov’s first method (compare e.g. [13, 34]): a T-periodic
solution of a T-periodic non-autonomous system
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ẋ(t) = f (t,x(t)) with f (t, ·) = f (t+T, ·) (27)

is asymptotically stable if all eigenvalues of the monodromy matrix are inside the
unit circle

|λi(X(T))|< 1. (28)

The monodromy matrix—also referred to as transfer matrix or sensitivity matrix or
Jacobian of the Poincaré map is defined as

X(T) =
dx(T)
dx(0)

, (29)

i.e., it describes the sensitivities or first order derivatives of the end values of the
trajectories with respect to their initial values.

If not all entries of x are periodic, e.g. if there is one direction of travel in the
motion, the non-periodic directions have to be eliminated by projection prior to
using the eigenvalue stability criterion. Also in the case of autonomous systems,
i.e. systems without any actuation or other kinds of input variables, where there is
always an invariant eigenvalue of one describing that perturbations along the orbit
are conserved, this eigenvalue has to be eliminated by projection.

Note that this stability criterion is also valid for hybrid multi-phase systems, if
the order of phases is preserved and the state after the discontinuity is twice con-
tinuously differentiable with respect to initial values (although non-differentiable
in time), as we have shown in [53]. For a motion consisting of several phases, the
monodromy matrix over the whole interval [0,T] is computed as the matrix product
of the matrices at the individual phases:

X(0, tm = T) = X(tm−1, tm) · . . . ·X(t1, t2) ·X(0, t1). (30)

If a discontinuity J(t,x) occurs at some point ts that is only implicitly defined by a
switching function s, then the so-called update formula (to update the monodromy
matrix) has to be applied:

X(0, tm = T) = X(ts, tm) ·U(ts) ·X(0, ts) (31)

and the update of the matrix at the discontinuity is computed as

U(ts) =
(
Δ f − Jt − Jxf (t−s )

)
· 1

ṡ
(sx)

T + I + Jx (32)

with Δ f being the discontinuity in the right-hand side f , Jt and Js the partial
derivatives of J, sx the partial derivative of the switching function f with respect
to x, and ṡ its total derivative with respect to time.
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We will present how we have applied this criterion for stability optimization in
the context of optimal control problems, see Sect. 4. This criterion has been applied
to walking motions of very simple systems by various authors (e.g., [12, 24, 35, 47]),
who used it to analyze the stability of a given motion, but not in optimization.

Other than the spectral radius, possible choices for objective functions are
induced matrix norms of the monodromy matrix, such as the 1- or ∞-norm or
the singular value which all are upper bounds on the spectral radius according to
the theorem of Hirsch (e.g., Theorem 6.9.1 in [72]) and therefore represent stricter
measures of stability .

3.3 Lyapunov’s Second Method

The more famous second method of Lyapunov takes a different approach than the
previously described first method (see many textbooks on differential equations, e.g.
[13]. It does not rely on any linearization or first order sensitivity information, but
instead uses a so-called Lyapunov function V(t,x) to determine if the solution x ≡ 0
of the nonlinear differential equation ẋ = f (t,x(t), i. e. 0 = f (t,0) is stable.

The concept of the Lyapunov function is inspired by the fact that the potential
energy of a physical system is minimal at a stable equilibrium and maximal at
an unstable equilibrium. The Lyapunov function V(t,x) represents a generalization
of the potential energy function. The Lyapunov function is defined on the domain
Dv = {(t,x)|t > t1, |x|< A} and must have the following properties:

• continuous first partial derivatives with respect to t and xi : V(t,x) ∈ C 1(D),
• V(t,0) = 0 for t > t1,
• positive definiteness: V(t,x)> 0 for x �= 0,
• negative definiteness of derivative: V̇(t,x)≤ 0.

The derivative V̇(t,x) which is the derivative of V(t,x) along the solution x(t) is
defined as

V̇(t,x(t)) =
n

∑
i=1

∂V
∂xi

ẋi +
∂V
∂ t

. (33)

Lyapunov’s second method states that if such a function exists, then the trivial
solution 0 = f (t,0) is stable. In detail, we distinguish the following cases:

• V̇(x)≤ 0 in D ⇒ stability in the sense of Lyapunov,
• V̇(x)< 0 in D ⇒ asymptotic stability,
• V̇(x) ≤ −αV(x) and V(x) ≥ b|x|β in D with (α,β ,b > 0) ⇒ exponential

stability.

If this method is to be applied to a real world application, e.g. in medical and
rehabilitation technology, a suitable Lyapunov function for this system must be
constructed. This is difficult, since such functions have only been found for certain
classes of systems, e.g. the total energy is a Lyapunov function for Hamiltonian
systems. In particular the use of stability criteria in stability optimization, as we
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envision it (see next section) requires the automatic construction and evaluation
of such a function in every optimization step which is very hard. In recent years,
an approach to construct Lyapunov functions based on sums of squares has been
proposed [61] and was also extended to systems with contacts and discontinuities
[64]. So far, this method has been applied successfully to develop controllers for
given equilibrium solution [46], but not to optimize the solution, i.e. the motion
itself, as we wish to do it. This is still ongoing work.

3.4 Capture Point Stability Criteria

Another type of stability criteria that has become very popular in robotics is based
on the capture point. The capture point is defined as the point on the floor where the
human or robot would have to place its foot—or to be more precise, the CoP (or the
ZMP)—in order to come to a full stop [66]. As in the case of the ZMP, the capture
point reflections are usually based on a linear inverted pendulum, i.e. an inverted
pendulum for which the mass stays at the same height. The capture point is also
known in biomechanics under the name of “extrapolated center of mass” (Xcom)
[33]. In order to reach the stop, the pendulum mass has to come to rest exactly
above the COP which results in the following equation for the capture point (here in
x direction, y direction is equivalent):

pCP,x = x+
ẋ
ω

with ω =

√
g
zc
. (34)

The system dynamics in x direction can be described with the following two
equations for the capture point and the center of mass:

ẋ = −ω(x−pCP,x) (35)

ṗCP,x = ω(pCP,x −pZMP,x). (36)

While the dynamics of the center of mass x are stable, those of the capture point
pCP,x are unstable. In robotics, several capture point related control approaches are
based on the concept of only controlling the capture point since the center of mass
follows automatically, e.g. [17]. There are several possible extensions (see [40]):

• instead of the capture point, also the concept of n-step capturability and capture
regions (stopping in n steps instead of 1 step) is explored;

• the linear inverted pendulum can be augmented by additional components, e.g.
a finite sized foot instead of a point foot, or an extended mass instead of a point
mass as upper body.

The capture point is certainly an interesting concept for rehabilitation applications,
but the exact type of model still remains to be determined.
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3.5 Angular Momentum

Another criterion that is frequently mentioned in the context of stability of human
motion is the total angular momentum about the center of mass

H =
n

∑
i=1

(ri ×miṙi)+
n

∑
i=1

(Θiωi) (37)

and its change. mi andΘi are the mass and inertia of segment i, ri the distance of the
segment center of mass from the total center of mass, ṙi the corresponding velocity,
and ωi the angular velocity. During walking and running motions as well as in any
other upright form of movement without rotations the average angular momentum
must be zero since there is no persisting rotation and the overall orientation of the
human body remains the same. This changes for motions with rotations such as
somersaults for which a significant angular momentum is generated about the frontal
axis and for spinning jumps, e.g. in figure skating, where angular momentum about
the vertical axis is required. Physically, angular momentum can only change if a
external torque is applied, i.e. the angular momentum about the center of mass is
constant about any possible axis when the human is in the air. During walking and
running it can change by the action of ground reaction forces. The absolute values
of the total angular momentum about the center of mass during walking as well
as the contributions of the different segments have been studied by Popovic et al.
[62] and Herr and Popovic [28]. The values are quite small over the cycle but show
characteristic peaks and zeros. The result has also been confirmed in our research
on emotional locomotion [20].

4 Formulation and Solution of Optimal Control Problems
for Motion Generation

The dynamic models presented in Sect. 2 can in principle be used in the context
of forward or inverse dynamics simulations, but in practice this becomes difficult.
Forward dynamics simulations would require joint torques—or muscle actuations
or excitations in the case of muscle models—as well as torques and forces for
the devices as inputs in order to be able to simulate the resulting motions. In the
inverse dynamics case, motions, i.e. precise position and velocity profiles, would
be required to perform a simulation and compute the required torques, forces, or
muscle inputs. However, for complex human motions none of these quantities is
precisely known in general. Optimal control is very helpful in the context of motion
generation for two reasons:
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• It solves the feasibility problem by computing motions and joint torques, etc. that
satisfy all the different equality and inequality constraints imposed on the system
and the motion task.

• It solves the redundancy problem by determining—from an infinity of different
ways to perform a given motion task—the one that is optimal in some sense.
Different optimality criteria will be discussed below.

4.1 Multi-Phase Hybrid Optimal Control Problems
with Standard Criteria

The task to generate an optimal motion for a model described in Sect. 2 results in
the following multi-phase optimal control problem:

min
x(·),u(·),p,τ

nph

∑
j=1

(∫ τj

τj−1

φj(x(t),u(t),p) dt+ Φj(τj,x(τj),p)

)
(38)

s. t. ẋ(t) = fj(t,x(t),u(t),p) for t ∈ [τj−1,τj],

j = 1, . . . ,nph, τ0 = 0,τnph = T (39)

x(τ+j ) = x(τ−j )+ J(τ−j ,x(τ−j ),p) for j = 1, . . . ,nph (40)

gj(t,x(t),u(t),p)≥ 0 for t ∈ [τj−1,τj] (41)

req(x(0), ..,x(T),p) = 0 (42)

rineq(x(0), ..,x(T),p)≥ 0. (43)

In these equations, x(t) denotes the vector of state variables, summarizing position
and velocity variables, and u(t) is the vector of control variables of the system. In the
case of pure rigid body systems (Sects. 2.1 and 2.1), these are the joint torques Mi

as well as the input variables of the medical devices, in the case of musculoskeletal
models, these are the muscle inputs, i.e. the muscle activations or excitations. p is
the vector of free model parameters. τ is the vector of phase switching times, and
the overall time of the motion is T = τnph .

Equations (39) and (40) describe the hybrid system dynamics with continuous
and discrete motion phases. Here, ordinary differential equations are used for
simplicity of presentation; however in reality, we usually face DAE models for most
or part of the phases, as described in Sect. 2.1.

Equation (41) summarizes all continuous inequality constraints, which includes
simple lower and upper bounds on all variables as well as more complex relations
between several variables. In addition, there are coupled and decoupled pointwise
equality (42) and inequality constraints (43), e.g. start and end point constraints on
the states, phase switching conditions or periodicity constraints.
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Equation (38) describes the objective function that is applied to the motion: the
first part

∫
φjdt gives the general form of integral objective functions of Lagrange

type while the second part denotes Φj Mayer type objective functions that only
depend on values at the end of the respective phase. Typical Mayer type objective
functions are minimum phase times, minimum total maneuver time, or maximum
distance traveled. Typical examples of Lagrange type objective functions include
different types of energy or effort minimization, e.g. minimization of mechanical
energy or minimization of weighted torques squared, minimization of muscle
excitations or activations (to different powers), efficiency maximization, etc. Also
some of the stability criteria such as angular momentum minimization or ZMP
and capture point related criteria can be formulated as Lagrange type functions.
A special form used in context with human movement data is a least squares function
minimizing the square between computed (position) trajectories and measured ones.
In practice, this is often not a continuous function since measurement points are
discrete, but takes the form of a sum over all measurement points, the number of
which depends on measurement frequency and phase times:

min
x(·),u(·),τ

nph

∑
j=1

nM ,j

∑
m=1

(x′(tjm)− xM
′(tjm))

TW(x′(tjm)− xM
′(tjm)). (44)

Here, the superscript ′ denotes the subset of state variables that are actually measured
directly or indirectly (typically the position variables, not the velocities), where x′M
denotes the measured values and x′ the corresponding computed variables at all
measurement points tjm.

4.2 Multi-Phase Hybrid Optimal Control Problems
with Non-standard Criteria Related to Stability

The computation of the objective function and the whole optimal control problem
gets, however, much more involved, if asymptotic stability in the sense of Lyapunov
is taken into account based on his first method. As described above in Sect. 3,
asymptotic stability of a periodic solution of a periodic nonlinear system requires
that for all eigenvalues of the monodromy X(T) associated with the periodic
solution, we have |λi(X(T)| < 1, i.e. for the spectral radius ρ := |λi(X(T)|max < 1.
In the optimal control context, this can be formulated as an objective function that
minimizes the spectral radius

minρ(X(T)). (45)

Please note the comments on necessary projections for some cases in Sect. 3 which
have to be applied before computing the maximum eigenvalue.
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As described above, X(T) is the monodromy or transfer matrix of the periodic
solution which depends on sensitivity information of all state end values with respect
to perturbations in all initial values. But this first order derivative information is
usually not accessible in the objective function of the optimal control problem,
compare (38)–(43). We therefore have to reformulate the optimal control problem
with augmented dynamics:

min
x(·),X(·),u(·),p,τ

∫ T

0
φ(x(t),u(t),p) dt+ Φ(T,x(T),X(T),p) (46)

s. t. ẋ(t) = fj(t,x(t),u(t),p) for (*) (47)

x(τ+j ) = x(τ−j )+ J(τ−j ,x(τ−j ),p) for (**) (48)

Ẋ(t) =
∂ fj
∂x

(t,x(t),u(t),p)X(t) for (*) with X(0) = I (49)

X(τ+j ) = ((fj+1(τ+j )− fj(τ−j )− Jt − Jxfj(τ−j )) · 1
ṡ

sT
x

+I + Jx)X(τ−j ) for (**) (50)

gj(t,x(t),u(t),p)≥ 0 for (*) (51)

req(x(0), ..,x(T),p) = 0 (52)

rineq(x(0), ..,x(T),X(T),p)≥ 0. (53)

(∗) t ∈ [τj−1,τj], j = 1, . . . ,nph, τ0 = 0,τnph = T

(∗∗) j = 1, . . . ,nph

In addition to the original hybrid dynamics, this formulation includes the variational
differential equation (49) and the corresponding update formula for sensitivi-
ties (50), which takes into account that the state dependent phase switching points
would move in time in the presence of perturbations.

An interesting alternative to using stability as an objective function (which
sometimes does not lead to very natural motions) is to use stability as an inequality
constraint, together with another criterion, e.g. related to energy or efficiency. This
results in a constraint of the following form

ρ(X(T))≤ c < 1 (54)

which again results in the necessity to compute the monodromy matrix X(T) by
means of a solution of the variational equation as described above.

The spectral radius criterion may have a problem of ill-conditioning at points
of multiple maximum eigenvalues, since the monodromy matrix is a nonsymmetric
matrix. The spectral radius becomes non-differentiable, and sometimes even non-
Lipschitz at these points, which may occur no matter if the criterion is used as an
objective function or as a constraint. We will, however, see below that a solution has
been possible anyway.
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4.3 Numerical Solution of Optimal Control Problems

For the solution of both types of optimal control problems, we built upon the direct
optimal control methods developed by Bock and co-workers (MUSCOD [10, 41]).
This code can be applied to mechanical DAEs of the above form, as we showed
in [53] and adapted them to handle index-3 DAEs. Optimal control problems can
be considered as infinite-dimensional problems (in the sense that x(t) and u(t) are
variables in function space), but they can be transformed into finite dimensional
problems by means of discretization. The MUSCOD method is based on a direct
approach for control discretization using local base functions, such as piecewise
constant or linear functions. State parameterization is performed by the multiple
shooting approach which splits the entire integration interval into many smaller
ones and transforms the original boundary value problem into a set of initial value
problems with corresponding continuity and boundary conditions. We use the same
grid for both control discretization and state parameterization. These two steps
produce a structured non-linear programming problem which can then be solved
by an efficient tailored sequential quadratic programming (SQP) algorithm. We
would like to point out that a special feature of this multiple shooting approach
(as opposed to, e.g. collocation) is that it still includes a simulation of the full
problem dynamics on each of the multiple shooting intervals. The accuracy of these
simulations can be chosen independently of the multiple shooting and control grid
and the discretization is much finer. The simulation is performed simultaneously
to the NLP solution using fast and reliable integrators which are also capable to
efficiently and accurately compute sensitivity information by internal numerical
differentiation (IND [9]).

SQP techniques in general require second-order differentiable functions which
pose a theoretical problem with the Lyapunov stability criterion. Our numerical
computations in the past have shown that despite this partial violation of theoretical
assumptions the optimal control techniques described above work very well, using
finite differences for gradient evaluation, even at non-differentiable points; compare
Sect. 10.

5 Formulation and Solution of Inverse Optimal Control
Problems for Analysis of Motions in Medical Applications

Another problem of interest in the study of human motion—in normal as well as
in pathological cases—is the so-called inverse optimal control problem. Assuming
that human motion is always optimal or close to optimal, the question here is how
the objective function—or typically combination of objective functions—must be
chosen to result in a particular motion. In this context, we are not only interested in
a qualitative reasoning on contributing factors but in a precise determination of the
different elements of the objective function for a given set of real human motions.
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The human motion can be experimentally observed and quite precisely measured
by different techniques, such as motion capture systems (optical systems or inertial
measurement units), force plates for ground reaction forces, EMG measurements
for muscle activity, etc. The inverse optimal control problem consists then in
determining, from a movement that is (partly) known from measurements, the
optimization criterion that has produced this solution. This problem is hard since
it consists in solving a parameter estimation problem within an optimal control
problem which results naturally in a bilevel formulation (see below) that addresses
the parameter identification problem in the upper level and the optimal control
problem solution in the lower level.

The term inverse optimal control for the identification of an objective function
in an optimal control problem from measurements was first used by Kalman [37]
in the context of linear problems. Heuberger [29] discussed inverse optimization in
combinatorial problems.

In the mathematical community, the main interest in the field of inverse optimal
control problems is to develop solution methods based on a reformulation of the
original problem as one-level problem, treating it as a so-called MPEC (mathemat-
ical program with equilibrium constraints). Here the lower level optimal control
problem is replaced by the corresponding first order optimality or Karush-Kuhn-
Tucker (KKT) conditions, which then are formulated as constraints of the higher
level parameter estimation problem [45]. A lot of work is performed on the theory of
MPECs formulating appropriate optimality conditions and constraint qualifications
(e.g., [15, 76]). If this approach is applied in the context of direct optimal control
methods (or first-discretize-then-optimize-methods), the optimality conditions must
be formulated for the discretized optimal control problem. One example for an
applied method of this type is given in [2] which is based on a state discretization by
collocation and a solution of the resulting nonlinear programming problem (NLP)
by an interior point method, and which is applied to study human arm movement.
Hatz et al. [26] proposed an alternative approach in which the KKT conditions are
formulated for an optimal control problem discretized by a direct multiple shooting
technique and in which the NLP is solved by sequential quadratic programming
(SQP). The method is used to investigate walking motions of cerebral palsy patients
[25].

An alternative approach that we proposed for nonlinear inverse optimal control
problems [57] is to keep the bilevel formulation using a combination of an efficient
direct optimal control technique for the lower level and a gradient-free optimization
technique for the upper level. The method which is outlined below has been used to
identify objective functions of human locomotion trajectory generation, for whole-
body human running motions at moderate speeds on a treadmill [58] and for human
yoyo-playing [52]. Recently, a new version of this method has been implemented
and is currently used to study walking motions in a variety of situations. Liu et
al. [44] studied realistic movement generation for character animation by physics-
based models and addressed a similar problem: instead of the objective function,
which is assumed to be known, they identify unknown model parameters from
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motion capture data using a nonlinear inverse optimization technique. In motion
studies there are also several authors that combine methods from reinforcement
learning, which is a popular approach in robotics with optimization methods to solve
problems of the inverse optimal control type (e.g., [16, 43]).

To be able to solve the inverse optimal control problem, we assume that
we are able to establish a set of reasonable independent base functions Ψi(t)
for the objective function which are usually based on expert guesses from the
biomechanical or medical field (e.g., a minimum energy or effort, minimum pain
in a particular joint or segment, minimum translational or rotational acceleration or
jerk, minimum muscle effort, terms related to the perception of the target, etc.). The
use of such base functions which have a physical meaning is generally preferable
over purely mathematical base functions since they provide the only way to obtain
a result that can be interpreted from the application perspective.

The relative contributions of all base functions Ψi(t) are expressed by the
respective weight factors αi, which are precisely the unknowns that we aim to
determine by the inverse optimal control approach. The inverse optimal control
problem is formulated as

min
α

m

∑
j=1

||z∗(tj;α)− zM(tj)||2 (55)

where z∗(t;α) is the solution of

min
x,u,T

∫ T

0

[
n

∑
i=1

αiΨi(x(t),u(t))

]
dt (56)

s. t. ẋ(t) = f (t,x(t),u(t)) (57)

g(t,x(t),u(t))≥ 0 (58)

req(x(0), ..,x(T)) = 0 (59)

rineq(x(0), ..,x(T))≥ 0. (60)

This problem is a bilevel optimization problem. In the upper level, we aim to
minimize the distance between the measured motion and the computed one by
optimizing over the vector of weight parameters α . In the lower level, we solve
a (forward) optimal control problem for the current iterate of α in order to compute
the solution z∗ to evaluate the objective function of the higher level problem. The
problem formulation shown here only uses single phase problems for simplicity
of presentation, however it is no problem to extend this formulation to the type
of multi-phase optimal control problems discussed in the previous section. In fact,
many of the inerse optimal control applications that we have treated in the past were
of this type (e.g., [58]).

In the above formulation, the vector z represents the observation vector of states
and possibly control variables with z = h(x,u), where h is the observation function.
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In the lower level, the task is to efficiently solve the forward optimal control
problem which arises in each iteration of the upper level. For this, we can use
the direct boundary value problem approach MUSCOD that has been described in
the previous section. In the upper level, the unknown weight factors α have to be
determined such that they solve the least squares objective fitting the computational
model to measurements. Every function evaluation here requires the solution of
the lower level optimal control problem, i.e. the upper level function cannot be
expected to satisfy the usual smoothness assumptions. Derivative information of
this function could only be generated in a black-box finite difference way. We
therefore prefer to apply a derivative-free optimization technique for the upper level,
i.e. it only requires function evaluations and no explicit gradient information. The
derivative-free optimization code BOBYQA (Bound Optimization BY Quadratic
Approximation) by Michael Powell [65] which can also handle bounds on the free
parameters performs particularly well in this context.

6 Model-Based Optimization for Physical Assistive Devices
for Geriatric Patients

In this and the following sections, we will describe some examples of applications
of model-based optimal control in medical and rehabilitation applications. This
section summarizes some of our optimization work performed in the still ongoing
EU project MOBOT (www.mobot-project.eu). The goal of the MOBOT project in
general is to enhance the mobility of elderly people by designing and controlling
appropriate robotic physical assistive devices for the support of daily activities such
as walking around, standing up, etc. In contrast to the still common passive physical
assistive devices (rollators) that are available on the market, the devices developed
in this project are inspired by robotic technology and equipped with a variety of
sensors to detect the current state of the person as well as the environment, perform
predictions of the future and are adaptive since the segments are movable by motors
to provide the best postural support. Two different devices are considered in this
context:

• an adaptive rollator type device with two handles that the patient can hold onto;
• a device acting more like a human caretaker by actively holding onto the patients

waist area and supporting his motions, also referred to as the nurse-type device.

There is a variety of optimization tasks performed by us in MOBOT, e.g.

1. optimization-based motion synergy for geriatric models and different movement
tasks;

2. the optimal design of assistive devices (including kinematic and dynamic
structure as well as choice of motors, etc.);

3. the identification of the patients’ behavior;
4. the optimal online control of the devices’ motions.

www.mobot-project.eu
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Here, we cannot give a full overview of all optimization work performed, but focus
on the first type of problems and discuss the example of optimizing supported
sit to stand (STS) motions. Standing up from a sitting position is a particular
challenging type of motion for the class of patients considered and can already
pose problems when other types of motions such as walking can still be performed
without difficulty. The optimization results presented here provide input to the
design of the two different devices and can be used to predict human behavior in the
context of control. The models used were set up based on a qualitative evaluation
of geriatric motion capture experiments in the project [22]. In these computations,
we want to determine how an external physical assistive device would have to act
on the subject in order to provide the best possible support for STS motions. The
action of the rollator type device is simulated by external forces acting on the hands
of the subject. For the nurse type device several alternatives have been studied; the
one presented here is simulated by a force acting on the mid-trunk in upward and
forward direction as well as two smaller pushing forces below the knee from the
front. The advantage of this approach is to use at this point only the human model
and not the model of the device itself is that it allows to determine optimal forces
and optimal force insertion trajectories from the perspective of the human without
introducing any constraints due to an a priori chosen design of the device.

Figure 3a shows the model used for the study of STS motions. It is a symmetric
model in the sagittal plane since standard STS motions can be assumed to satisfy
these conditions. Left and right half can be assumed to move synchronously such
that the corresponding segments of left and right body half can be combined and we
can set up a model with eight segments (head, upper trunk, mid-trunk, pelvis and
combined segments for the upper arms, lower arms, thighs and shanks, respectively)
and 8 DOF. The motion considered here has two phases: a first preparatory phase
still sitting on the chair but already moving, and a second phase in which the person
has already left the seat and moves upwards to standing configuration. Also the
external forces acting on both hands, knees, etc. are combined to one force. The
equations of motions take the general form (1)–(8). Liftoff from the chair takes
place when the contact force becomes zero, which is a state-dependent switching
function, only implicitly defining switching time.

To this model, we impose an objective function of the following form:

min
x(.),u(.),τ

2

∑
i=1

∫ τi

τi−1

(
nact

∑
j=1

(
αu2

j +β |ujφ̇j|
)
+ γφ̇ 2

abs,head +δ
next

∑
k=1

u2
ext,k

)
dt. (61)

The elements of this function and their weights have been chosen such that they
result in natural movement for the class of patients considered in a qualitative
evaluation; unfortunately, the motion capture data collected was not precise enough
to allow to perform inverse optimal control computations with it. Since the goal of
the devices developed in MOBOT is not to fully support the motion but to provide
partial support, we restrict the external vertical support forces to 25% of the person’s
weight for the hand force of the rollator and to 50% for the force at mid-trunk of
the nurse-type device.
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Fig. 3 Sit to stand transfer optimizations with different external forces: Multibody systems model
used with 8 DOF in sagittal plane (a); Optimal handle trajectories (b), optimal profiles for vertical
force (c) and animation of resulting motion (d), all for external forces at hands, mimicking rollator
type device; animation of optimal motion for external forces at trunk and knees (e), mimicking
nurse type device. Green arrows in (d) and (e) show size and direction of external forces

Figure 3 shows exemplary results for the motion of an average (50th percentile)
female subject (1.585 m, 64.3 kg) for the rollator type device (d) and the nurse-
type device (e). The green arrows depict the orientation and the (relative) value of
the external force. Figure 3 shows the corresponding force profiles (c) and force
insertion point trajectories (b) for the rollator type device. We have performed
such computations for six different sets of anthropomorphic model parameters
representing the 20th, 50th, and 80th percentile of male and female geriatric
subjects. For these six cases, kinematic and dynamic parameters of all segments
are computed using regression formulas specially adapted to the properties of the
older population [31]. All results are given in [51].

These results defining the best conditions for humans can then be used as inputs
for computations aiming to fix the design of the assistive device. This has been
pursued for the rollator in [31] finding the segment lengths joint locations, linear
actuator insertion points, actuator characteristics, etc. by again solving a optimal
control problem, this time for the dynamic model of the rollator.
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7 Optimization and Analysis of Motions with Lower Limb
Prostheses

The objective of prostheses is to replace the functionality of a human limb for
a variety of desired tasks. For lower limb prostheses, we distinguish transtibial
prostheses that replace part of the shank and the foot and transfemural prostheses
which replace a large part of the leg and are attached to the body at the level of
the thigh. Prostheses for everyday use exist at different levels of actuation, control
and sophistication and are designed to provide assistance for standard motions such
as walking, standing or standing up. There are also special purpose prostheses
for special types of sports, such as running or mountain climbing. In the case of
general multi-purpose prostheses the ultimate goal is to achieve a performance and
versatility level that is comparable to the one of a healthy human. In contrast, in the
case of special purpose prostheses, it is sometimes assumed—but not yet proven—
that performance can go even beyond, as we will see below.

Mathematical optimization can be applied in the context of prosthetic motions
to match modeled motions to recorded motions or to optimized design and control
parameters of the prostheses. It can also be used to analyze the interaction between
human and prosthesis. In the control context, real time optimization could be applied
to optimize an intelligent prosthesis’ reaction during the motion.

The optimization example we are presenting here covers a study of fast running
motions with special purpose prosthetic legs. It is discussed in detail in [50]. The
case became popular for the South African bilateral transtibial amputee sprinter O.
Pistorius who showed such a remarkable performance in the 400 m run that he did
not only win the Paralympics but did also get close to the best able-bodied sprinters.
A debate started whether he should be excluded from the regular competition or not
since his prostheses might provide him with an unfair advantage over able-bodied
athletes. The same question appeared again for the German long-jumper M. Rehm
who was not allowed to participate in the European championships in 2014 even
though he had just won the national competitions.

The special purpose prostheses used for running and jumping are passive
torsional carbon-fiber springs that are considerably lighter than human lower legs,
can store energy as every spring, but don’t have any actuation nor any other
means of adjustment. It is not possible to validate the assumption of a potential
advantage by means of measurements alone since there are not enough subjects at
this high level of performance and the same level of impairment that statistically
relevant statements could be inferred. Instead, mathematical modeling, simulation,
and optimization can be used to look inside the combined human-prostheses system.

We have performed an optimization study of running motions of a bilateral
amputee with the anthropomorphic data corresponding to O. Pistorius as well as
of a comparable able-bodied sprinter model for reference. The anthropomorphic
model used consists of nine segments (two thighs, shanks, feet and arms as well as
a combined trunk-head segment) and describes running in the sagittal plane with 11
DOF. The motion is driven by torques at all internal joints. In the amputee model, the
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active torque at the two ankles is replaced by a torque produced by a spring-damper
element that has the characteristics of the prosthetic device. We have investigated
purely periodic and symmetric running motions which consist of sequences of
identical steps such that the model can be reduced to one step consisting of a single
support phase, a flight phase, and a touchdown discontinuity. Contact during running
only occurs with the ball of the foot. The equations of motion take the form of
(1)–(8). We have imposed an average speed of 9 m/s and optimized the integral over
the weighted sum of all joint torques squared:

nph

∑
i=1

min
x(·),u(·),τ

∫ τi

τi−1
∑

i=1,...,8
(wiu

2
i ) dt. (62)

The weight factors wi take into account the maximum torque at each joint. The
same problem is solved for the double amputee and the able-bodied model. Image
sequences of both results are given in Fig. 4a, b. Part (c) of the figure shows the
resulting active joint torques in the able-bodied vs. the amputee sprinter. It is obvious
that the required torque effort is much smaller in the amputee sprinter even though
the imposed running speed is the same in both cases. Also mechanical energy input
is much smaller in the amputee due to the high level of energy storage and release
in the spring.

It is, however, too early to conclude that this is a clear indication for an advantage
of the double amputee over able-bodied sprinters due to a number of reasons:

• Not only steady-state top speed running, but also start, acceleration and deceler-
ation phase must be considered in the model in order to allow a full evaluation of
the course.

• The contact between stump and prosthesis which has been considered as rigid
in the computations so far is actually quite flexible sometimes, and should be
included as a kind of passive joint with limited range in the motion.

• Other actuators (e.g., knee muscles), and not only the ankle muscles can also
be compromised by the amputation and therefore it is not fair in the model to
assume comparable joint properties for everything but the ankle.

• The precise objective function for 400 m running and the good performance
indicator still have to be determined. In addition to maximum speed and
maximum forces, fatigue also might play a role and has to be included in the
model. It also might be possible to extend the human models by the relevant
muscle models.

• Modeling of pain at the intersection stump and shaft also might be important in
order to describe realistic constraints for motions.

Many of the issues discussed are highly individual, and models first have to be
developed and then adjusted to subjects by careful parameter estimation. This is all
subject to ongoing research, and the question about advantage and disadvantage is
still not solved.
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Fig. 4 Some results of model-based optimization for analysis of running with prostheses:
optimized motion sequence for able-bodied runner (a) and double amputee (b), comparison of
active joint torques in eight internal joints at hip, knee, ankle, and shoulder (c)

8 Model-Based Optimization for the Design of Lower Limb
Exoskeletons

The task of orthoses or exoskeletons is not to replace missing limbs, but to provide
motion assistance for existing segments of the body by means of an external
structure. There are orthoses that only cover one joint, e.g. the knee, and others
that cover several or many segments. Orthoses can be purely passive, e.g. consist
of elastic and damping material or elements, or they can be actively powered by
different types of motors. If an orthosis covers a very large part of the body, e.g. the
entire lower or upper extremities or the entire spine, usually the term exoskeleton is
used. Exoskeletons have been developed to enhance the existing power of motion of
able-bodied people, but also to fully drive motions of paraplegic people, resulting
in different required levels of actuation. This section discusses an exoskeleton for
the lower extremities as shown in Fig. 1, which was studied in the context of
the project HEIKA-EXO within the strategic HEIKA collaboration between the
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Fig. 5 Combined model of human and lower exoskeleton (left, feet not shown); result of least
squares optimal control problem for slope down motion

University of Heidelberg and the KIT (www.heika-research.de). This was a small
pilot project towards the ultimate goal to develop an exoskeleton as walking support
for paraplegics.

When designing an exoskeleton, the challenge is to choose the structure and
the powered elements strong enough to support the desired range of motion with
the person inside, while at the same time getting not too heavy. Simulations and
optimizations that help to make these design choices have to take into account the
dynamics of the motions of the combined system human-exoskeleton. In the project,
an optimization-based tool called Exo-Opt has been developed to support the design
process of exoskeleton, which is described in detail in [39].

For the study presented a 3D whole-body human model with 32 DOF (6 global
and 26 at internal joints) has been established as shown in Fig. 5 (left). The
exoskeleton covers 12 of these internal joints in the lower extremity. For the first
study we have rigidly attached the exoskeleton to the human assuming that they are
able to move in perfect conjunction. For later work, an elastic coupling between
the two model parts will be considered. The exoskeleton model is kept in a very
general form and composed of many different elements with individually adjustable
geometry and inertia properties. We have investigated walking motions on level
ground as well as up and down different slopes. For all these situations, recordings
of an able-bodied person have been taken. The goal was then to determine the joint
torques required for the combined human-exoskeleton system to mimic the recorded
motion for all position variables xM,l(l = 1, ..,npos) by performing a least squares fit
to the measurement data in an optimal control formulation

min
x(·),u(·),p

nph

∑
i=1

(
npos

∑
l=1
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∑
s=1

αl |xl(ts)− xM,l(ts)|2 +
∫ τi

τi−1

βuTudt

)
. (63)

The second term with a small value of β is a regularization term for reducing
measurement noise that becomes necessary because of the discretization schemes

www.heika-research.de
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of the direct optimal control method and the grid used for the evaluation of the
measurements. For the optimal control problem formulation, the mechanical model
of the whole walking cycle with all constraints has to be formulated in form of
(1)–(8). Walking consists of a sequence of single support and double support phases,
but ground contact in walking is more complex than in running since the foot is
“rolling” on the ground, and we can distinguish heel only, full foot and toe/ball
only contact. This results in four different phases for a walking step with additional
discontinuities at touchdown of heel and of toes/ball. This computation has been
performed for 15 different combinations of human and exoskeleton masses and
inertias and for different slope angles. The results are presented in [39]. Among
other information, we have identified:

• the required joint torques as functions of time which help to choose motors and
gear types;

• torque-joint angle curves that indicate which motors could be replaced by passive
elements like springs;

• structural loads and torques in the constrained DOF as functions of time which
serve to support the decision how strong the structure has to be built.

In the design process such a tool can be used in an iterative way: starting with a
first estimation for geometry and mass distribution of structure and motors, the tool
would be used to compute torques and loads, which then might lead to the necessity
to change the structural design and the choice of motors and therefore the dynamic
model for which then a new computation would be performed, etc.

The approach presented here is not limited to lower limb exoskeletons but can
be used for general exoskeletons and orthoses—as well as for prostheses—if a
parameterized dynamic model can be established. This is subject of our ongoing
and projected research, e.g. in the context of the new European project SPEXOR
(www.spexor.eu) on spinal exoskeletons.

9 Optimization of Functional Electrical Stimulation
for Walking Motions of Hemiplegic Patients

FES—sometimes also called neuro-prosthetics—is a technique used in orthopedics
and rehabilitation in which the muscles are artificially stimulated by electrical
impulses induced locally into the muscle via external or implanted electrodes. FES
is often used in patients who have an intact musculo-skeletal system but for whom
the neural signal processing does not work, such as different types of paralysis.
There is also very promising research on stimulating the nerves in the spinal cord
[5] instead of locally in the muscle, but this will not be discussed here. In this
section, we discuss optimization work done in the context of the drop foot syndrome
of hemiplegic patients that was performed in a collaboration with the LIRMM in
Montpellier. The drop foot syndrome is a common problem in hemiplegic patients
while walking who are not able to lift the tip of their affected foot such that it is

www.spexor.eu
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touching the ground even if a lot of compensatory movement is performed in the
hip, and the foot cannot be swung forward. Next to classical, usually rigid, orthoses
that keep the ankle joint at a constant right angle, FES is a common treatment for the
drop foot syndrome since in this case the stimulation of a single muscle—the tibialis
anterior—is usually sufficient [6, 63]. Optimization can be used in this context to
address different questions:

• What is the optimal stimulation pattern? Typically simple stimulation patterns,
e.g., of trapezoidal shape are used, but these are not necessarily the best possible
patterns for the patient. Also a stimulation pattern that leads to a reproduction
of a healthy person’s motion might not be the optimal choice. Optimization can
help to determine optimal patterns with respect to a chosen criterion.

• How can the timing of the stimulation be adjusted to the movement of the healthy
leg? What is the good start and end time of stimulation in the gait cycle and which
phase shift should be aimed for?

• How can the stimulation process be controlled online? Which sensor information
is required for a good state estimation and which information realistically is
available? How can nonlinear model predictive control based on optimization
methods be used to solve the control problems online?

Here we briefly discuss the first topic, i.e. the generation of motions with optimal
stimulation patterns. It should be noted that even though we are interested in a
whole-body motion, namely walking, we focus on the part of the motion that can be
controlled via the tibialis anterior muscle which is the relative motion in the ankle
with respect to the shank. The question is then how to best control the stimulation of
the tibialis anterior to lift the foot given a specific or normal motion of the rest of the
leg, i.e. given a position and orientation history of the shank during the swing phase
of walking. The mechanical multibody system model used in this context therefore
does not include the full human body as in the previous three examples, but only the
shank and the foot. The torque input at the ankle is replaced by the torque generated
by the tibialis anterior muscle which can be described by a Hill type model and
the corresponding activation dynamics (see Sect. 2.2). The antagonistic torque is
generated by gravity acting on the foot; no other muscle is included in the model
so far. The motion considered only covers one phase—the swing phase—starting at
lift off and lasting until touch-down of the swing foot. A constraint is formulated to
guarantee foot clearance. Different objective functions are studied and compared:

• a least squares fit to a measured motion of a healthy person described by a subset
of the state variables, in this case the ankle angle φankle:

min
nM

∑
i=1

(φankle(ti)−φankle,ref (ti))
2; (64)

• a minimization of the metabolic energy consumed which can be expressed in
terms of the activation of the tibialis anterior fad:
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min
∫ T

0
f 2
addt; (65)

• a minimization of muscle fatigue which can be described by the third power of
the activation [1]:

min
∫ T

0
f 3
addt; (66)

• criteria related to the muscle excitation ε, e.g.

min
∫ T

0
ε2dt. (67)

Except for the first criterion for which the time must be fixed, we perform
optimizations with free and fixed swing times. Figure 6 shows optimal control
results some of which have been presented in [27]. They show clearly that

• for the data studied a perfect fit of the model to measurements is not possible with
the tibialis anterior torque alone; an antagonist would be required. It remains to
be checked if this is true for general walking motions;

Fig. 6 Optimal stimulation patterns for the tibialis anterior for different objective functions and
constraints
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• the minimization of energy leads to a much smaller activation level;
• a minimization of fatigue results in activation patterns that show a tendency of

having two activation peaks which is related to the patterns observed in healthy
humans.

These patterns could be implemented in an open-loop manner on stimulation devices
of patients, and their preferences for one or the other input signal could be explored.
Currently the focus of this project is on state estimation without drift based on a
single IMU at the ankle [7], on the synchronization with the healthy leg and on an
implementation of model predictive control algorithms for FES, i.e. a solution of the
optimal control problem online, which requires the state estimation as crucial input.
This will first be performed in a real time setting in simulation on a computer and
on a later stage on the stimulation device on the patient.

10 Stability Studies of Human Walking

This section is different in nature from the previous ones since it does not discuss
a specific project, but a topic which is important across all movement studies, in
particular in medical and rehabilitation applications, namely the topic of stability.
Also for all the examples discussed in the four previous sections, stability is very
important, and different criteria presented in Sect. 3 play a role. As mentioned earlier
in this paper, the challenge faced in all cases is that in order to control stability by
the actions of the medical device, the actions of the human the loop which can only
partly be predicted must be compensated by the stability control.

In the case of the assisted STS transfers in the MOBOT project, stability can
be defined in terms of static stability asking for the overall center of mass to lie
inside the joint polygon of support created by the human and the device. This
criterion can be used since the motion is quite slow. A safety margin should be added
to compensate for very small dynamic effects. Otherwise also the ZMP criterion
discussed in Sect. 3 is applicable.

For other motions with the MOBOT mobility assistance devices like walking,
capture point related criteria get interesting. Multiple contacts with the environment
have to be considered from the perspective of the human (ground contact and device
contact at handles/lower arm/trunk, etc.), and for some of the contacts unilaterality
conditions or maximum force conditions (e.g., due to limited wrist force) have to be
taken into account. Again, the role of the ZMP of the joint system (human + device)
is investigated.

For the more dynamic motions discussed in Sects. 7–9, ZMP and static stability
are not very relevant or useful. In the case of the prosthetic running motion, the ZMP
criterion cannot be applied at all due to the existence of flight phases and the point
contacts in ground contact phase. Also static stability is obviously not defined since
there is no polygon of support—just a point (in contact) or nothing at all (in flight).
Instead, more dynamic criteria related to the capture point or Lyapunov stability
have to be used.
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Fig. 7 Results of stability optimization: open-loop stable motions for mono- and bipedal systems.
The same approach can be used to explain stability in humans if appropriate models involving
relevant feedback are established

We already have investigated the role of the capture point in walking [32] with
the goal to extend this study to prosthetic walking. The study showed that subjects
step surprisingly close to the capture point.

Lyapunov stability as a truly dynamic stability concept and its mathematical
definition has been presented in Sect. 3. In Sect. 4, we have discussed how to
formulate Lyapunov stability in the optimal control context as hybrid multi-
phase stability optimization problem (Eqs. (46)–(53)). Applying Lyapunov stability
criteria to the open-loop optimization to bipedal motion has led to very interesting
results for running and different types of jumping and somersaulting [48, 54, 55],
see Fig. 7, first two rows. In [49] we have shown open-loop stable running with a
planar bipedal model with 11 DOF, similar to the one used in the prostheses studies.
For the model we have used with anthropometric data according to de Leva [42].
An animation sequence of the optimal motion is shown in Fig. 7, third row. The
solution is stable without any feedback (i.e., the eigenvalues of the monodromy
matrix are all smaller than one), but not very robust.

It is important to note that this model may have realistic dynamic parameters
for a human, but it is still far away from the human body in terms of explaining
human stability control. In this case, we have only investigated the purely open-
loop stability of the mechanical system induced by a proper choice of the highly
dynamic trajectories and mechanical feedback. In order to explain human stability
control also all feedback loops of the human body would have to be included in the
model. This includes all relevant muscles (that also exhibit a mechanical kind of
self-stability) as well as all neural control loops.

A first step in this direction has been performed in [56] where muscles have
been included in a model for juggling motion in order to investigate the role of
self-stabilizing properties of muscles. In order to fully explain stability of human
whole-body motions based on Lyapunov’s first method, it is still a long way to go.
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11 Conclusion and Perspectives

In this paper, we have discussed the role of movement primitive in medical
applications involving movement studies of healthy and pathological locomotion.
From the medical perspective there is a need to better understand human movement
and to evaluate how medical and rehabilitation technology should be designed and
controlled in order to best support the human. In the introduction, we have listed a
number of challenges that arise in this field. For several of these challenges, we also
have presented solutions:

• the efficient formulation of personalized whole-body models of human move-
ment with multiple phases;

• some steps towards the formulation of neuromuscular elements in the models;
• general approaches of modeling medical devices and combining them with the

human model;
• the formulation of complex movement criteria such as stability which result in

non-standard optimal control problems;
• the formulation and solution of optimal control problems for motion generation;
• the identification of situation-specific human optimization criteria from measure-

ments by means of inverse optimal control.

We have demonstrated the usefulness of these methods on some practical examples
that we have worked on in interdisciplinary projects, ranging from prostheses and
orthoses/exoskeletons over external mobility aids and FES to some general stability
studies. All these examples had different requirements with respect to the models
and the optimization methods. However, as we have mentioned in several places in
this paper, there are still many open challenges and this is still a very active field of
research.

We expect the most important research topics in the coming years to be:

• Subject specific modeling: Having a subject-specific model of the patient
currently under investigation is crucial for obtaining meaningful optimization
results. There are several characteristics that have to be adjusted specifically
to the subject. Kinematic and dynamic parameters of the multibody dynamics
can partly be identified from kinematic measurements but can also be refined
by imaging techniques, body material measurements, etc. Also subject-specific
parameters for the muscles are required. In addition, for some pathologies such
as cerebral palsy also the model topology such as the orientation of joint axes or
of muscle origins and insertion points have to be heavily adjusted to the subject.
For amputees, a subject-specific modeling of the stump is crucial. A framework
for automatically adjusting all these parameters from all types of measurements
of a patient would be very desirable.

• Neuromuscular modeling: As mentioned in Sect. 2.2, there is still a long way to
go towards a good neuromuscular model of the human, but it is crucial for some
applications. The field of neuromechanics which tries to bridge the gap between
biomechanics and neuroscience has a focus on this topic and research in motor
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control will also contribute with findings on learning and adjustment in different
feedback loops. Developments in the next years will not result in a complete
model but will partly focus on more detailed models of parts of the body, e.g.
just an arm or a leg, and partly on whole-body models with reduced muscles and
control loops.

• Soft tissue modeling: The models discussed in this paper are essentially rigid
body models that partly take into account the force generation processes in
the muscles but only from the functional perspective, and not their softness
property. However, compliance and softness, not only in the muscles but also
in all other tissues, in the joints, etc. are considered an essential property of
human movement which also is to be copied in technical systems. It is therefore
essential to also be able to include continuous mechanics models, in particular
finite element models, in the rigid body models to describe soft elements in
humans, the devices and in the contacts with each other and the environment.
In the next years we will see a lot of development in this area, not only driven by
the field of prosthetics and orthotics, but also by the robotics community that is
developing robots with soft components.

• Online optimization: In this paper, we have essentially focused on optimal
control for the task of motion generation and design optimization, which are
offline tasks. But of course, optimal control also plays an important role in
the context of online motion control which can be tackled by nonlinear model
predictive control (NMPC) methods. NMPC plays an important role also in the
MOBOT and FES projects, but the details have not been given here for the sake of
brevity, and since this is still work in progress. NMPC computes controls for the
system online by solving an optimal control problem on a short finite horizon,
starting from initial states provided by a state estimator. NMPC methods for
problems of the nonlinear multi-phase type that we are facing here are currently
under investigation and will have to be further refined and sped up to make them
work online on the full system. Ultimately the NMPC algorithms will also have
to be implemented on the chips or onboard computers of the medical devices and
therefore should be able to work with these limited resources.

• Reduced models: Due to the complexity of the combined model of human and
device and the limited online computing power, the development of reduced
models for use in online control and optimization will be crucial. They should
be as sophisticated as possible (so more complex than the standard pendulum or
table-cart models currently used in robotics), but still allow all evaluations to be
performed in real time.

• Stability and robustness of motions: As outlined in Sects. 3 and 10, stability is a
crucial topic in healthy and pathological locomotion, but no unique accepted and
generally applicable stability criterion exists. In that sense also the robustness
of a solution plays a role which in technology usually refers to the size of the
basin of attraction of a stable solution of the nonlinear system and not—as in
the mathematical definition—to the first order sensitivities. The development of
good and reliable stability and robustness measures for truly dynamic motion
will also receive significant attention in coming years with a particular focus on
measures that can be evaluated online.
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• Optimality criteria for predicting human movement: In most motion gen-
eration and control tasks for technical devices, the human is in the loop and
therefore his behavior must be predicted even though it is not fully predictable.
As described above, assuming that the movement is always optimal with respect
to some criterion is usually a very helpful average guess. The question remains
which criterion to apply in which situation. As discussed in Sect. 5, inverse
optimal control can do the job, but it presents a lot of work, and in many
cases, no appropriate data is available. It would therefore be very helpful to
create a database of potential optimality criteria depending on age, general
physical condition, pathology, potentially psychological condition, and particular
task. Work performed in the KoroiBot project currently goes in that direction
for healthy subjects since we study optimality criteria for walking in different
terrains. Similar work will have to be performed for patients with different
diseases or injuries, or walking with different devices.

Of course, the list of medical and rehabilitation applications given here is not
exhaustive. Due to reasons of space, and since we wanted to focus on motion-related
problems, we have omitted some very important medical applications in the wider
sense, e.g. the entire fields of surgery planning, drug treatment, etc. which also offer
a vast terrain for optimal control methods.
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Abstract We survey the results on no-gap second-order optimality conditions
(both necessary and sufficient) in the Calculus of Variations and Optimal Con-
trol, that were obtained in the monographs Milyutin and Osmolovskii (Calculus
of Variations and Optimal Control. Translations of Mathematical Monographs.
American Mathematical Society, Providence, 1998) and Osmolovskii and Maurer
(Applications to Regular and Bang-Bang Control: Second-Order Necessary and
Sufficient Optimality Conditions in Calculus of Variations and Optimal Control.
SIAM Series Design and Control, vol. DC 24. SIAM Publications, Philadelphia,
2012), and discuss their further development. First, we formulate such conditions
for broken extremals in the simplest problem of the Calculus of Variations and
then, we consider them for discontinuous controls in optimal control problems
with endpoint and mixed state-control constraints, considered on a variable time
interval. Further, we discuss such conditions for bang-bang controls in optimal
control problems, where the control appears linearly in the Pontryagin-Hamilton
function with control constraints given in the form of a convex polyhedron. Bang-
bang controls induce an optimization problem with respect to the switching times
of the control, the so-called Induced Optimization Problem. We show that second-
order sufficient condition for the Induced Optimization Problem together with the
so-called strict bang-bang property ensures second-order sufficient conditions for
the bang-bang control problem. Finally, we discuss optimal control problems with
mixed control-state constraints and control appearing linearly. Taking the mixed

N.P. Osmolovskii (�)
University of Technology and Humanities, ul. Malczewskiego 20a, 26-600 Radom, Poland

Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6,
01-447 Warszawa, Poland

Moscow State University of Civil Engineering, Jaroslavskoe shosse 26, 129337 Moscow, Russia
e-mail: osmolovski@uph.edu.pl

H. Maurer
Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms–Universität
Münster, Einsteinstr. 62, 48149 Münster, Germany
e-mail: maurer@math.uni-muenster.de

© Springer International Publishing Switzerland 2016
J.-B. Hiriart-Urruty et al. (eds.), Advances in Mathematical Modeling, Optimization
and Optimal Control, Springer Optimization and Its Applications 109,
DOI 10.1007/978-3-319-30785-5_6

147

mailto:osmolovski@uph.edu.pl
mailto:maurer@math.uni-muenster.de


148 N.P. Osmolovskii and H. Maurer

constraint as a new control variable we convert such problems to bang-bang control
problems. The numerical verification of second-order conditions is illustrated on
three examples.

1 Introduction

We survey some main results presented in the recent monograph of the authors
[36] (SIAM, 2012) and also some results obtained in the earlier monograph of
Milyutin and Osmolovskii [28] (AMS, 1998). We discuss further developments of
these results and give various applications.

Our main goal is to present and discuss the no-gap second-order necessary and
sufficient conditions in control problems with bang-bang controls. In [28], it was
shown how, by using quadratic conditions for the general problem of the Calculus
of Variations with regular mixed equality constraint g(t,x,u) = 0, one can obtain
quadratic (necessary and sufficient) conditions in optimal control problems in which
the control variable enters linearly and the control constraint is given in the form
of a convex polyhedron. These features were proved in Milyutin and Osmolovskii
[28], who first used the property that the set ex U of vertices of a polyhedron U
can be described by a nondegenerate relation g(u) = 0 on an open set Q consisting
of disjoint open neighborhoods of vertices. This allowed us to develop quadratic
necessary conditions for bang-bang controls. Further, in [28] it was shown that a
sufficient condition for a minimum on ex U guarantees (in the problem in which the
control enters linearly) the minimum on its convexification U. In this way, quadratic
sufficient conditions for bang-bang controls were obtained in Osmolovskii and
Maurer [36]. This property, which is not discussed in the present paper, constitutes
the main link between the second-order optimality conditions for broken extremals
in the Calculus of Variations and the second-order optimality conditions for bang-
bang controls in optimal control.

The paper is organized as follows. In Sect. 2, we formulate no-gap second-
order conditions for broken extremals in the simplest problem of the Calculus
of Variations. In Sect. 3, we consider such conditions for discontinuous controls
in optimal control problems on a fixed time interval with endpoint constraints of
equality and inequality type and mixed state-control constraints of equality type. In
Sect. 4, we present an extension of the results of Sect. 3 to problems on a variable
time interval. In Sect. 5, we discuss no-gap conditions for bang-bang controls. Bang-
bang controls induce an optimization problem with respect to the switching times
of the control that we call the Induced Optimization Problem (IOP). We have shown
in our monograph [36] that the classical second-order sufficient condition for the
IOP, together with the so-called strict bang-bang property, ensures second-order
sufficient conditions for the bang-bang control problem. We discuss such conditions
in Sect. 6.

In the next two sections, the theoretical results are illustrated by numerical
examples. Namely, in Sect. 7, we study the optimal control of the chemotherapy of
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HIV, when the control-quadratic objective in [18] of L2-type is replaced by a more
realistic L1-objective. In Sect. 8, we consider time-optimal controls in two models
of two-link robots; cf. [36]. Finally, in Sect. 9, we discuss optimal control problems
with running mixed control-state constraints and control appearing linearly. Taking
the mixed constraint as a new control variable we convert such problem to a bang-
bang control problem. We use this transformation to study extremals in the optimal
control problem for the Rayleigh equation.

2 Second-Order Optimality Conditions for Broken
Extremals in the Simplest Problem in the Calculus
of Variations

2.1 The Simplest Problem in the Calculus of Variations

Let a closed interval [t0, tf ], two points a,b ∈ Rn, an open set Q ⊂ R2n+1, and a
function L : Q �→R of class C2 be given. The simplest problem of the Calculus of
Variations has the form

(SP) Minimize J (x(·)) :=
∫ tf

t0
L(t,x(t), ẋ(t))dt, (1)

x(t0) = a, x(tf ) = b, (t,x(t), ẋ(t)) ∈Q. (2)

We consider this problem in the space W1,∞ of Lipschitz continuous functions.
The last condition in (2) is assumed to hold almost everywhere. A weak minimum
is defined as a local minimum in the space W1,∞. We say that a function x ∈
W1,∞([t0, tf ],Rd(x)) is admissible if x satisfies (2) and, moreover, there exists a
compact set C ⊂ Q such that (t,x(t), ẋ(t)) ∈ C a.e. in [t0, tf ]. Set u := ẋ and
w = (x,u). We call u the control.

Let an admissible function x0(t) be an extremal in the sense that it satisfies the
Euler equation

d
dt

Lẋ = Lx. (3)

Here and in the sequel, partial derivatives are denoted by subscripts. Set

u0(t) := ẋ0(t), w0(t) = (x0(t),u0(t)).

Let

w̄(·) = (x̄(·), ū(·)) ∈W2 := W1,2 ×L2,
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where W1,2 is the space of absolutely continuous functions with square integrable
derivative and L2 is the space of square integrable functions. In the space W2, let us
define the subspace

K := {w̄ ∈W2 | d
dt

x̄(t) = ū(t) a.e., x̄(t0) = x̄(tf ) = 0}

and the quadratic form

Ω(w̄) =
∫ tf

t0 〈Lww(t,w0(t))w̄(t), w̄(t)〉dt

=
∫ tf

t0

(
〈Lxxx̄(t), x̄(t)〉+2〈Lxuū(t), x̄(t)〉+ 〈Luuū(t), ū(t)〉

)
dt.

The following theorem is well known.

Theorem 1. (a) If the extremal x0 is a weak minimum, then Ω(w̄)≥ 0 on K .
(b) If Ω(w̄) is positive definite on K , then the extremal x0 is a (strict) weak

minimum.

As is known, the quadratic conditions in Theorem 1 can be tested via the Jacobi
conditions or via bounded solutions to an associated Riccati equation.

For a broken extremal, the quadratic form has to be stated in a different way
that allows for the formulation of no-gap necessary and sufficient second-order
conditions. We will formulate these conditions and discuss their extensions to
different classes of optimal control problems, including bang-bang control problems
and problems with mixed constraints and control appearing linearly.

2.2 Second-Order Optimality Conditions for Broken Extremals

Let again x0(t) be an extremal in the simplest problem (1), (2), and let u0(t) = ẋ0(t)
be the corresponding control. Assume now that the control u0(t) is piecewise
continuous with one discontinuity point t∗ ∈ (t0, tf ). Hence, x0(t) is a broken
extremal with a corner at t∗. We say that t∗ is an L-point of the function u0(t) if there
exist ε > 0 and C > 0 such that |u0(t)− u0(t∗−)| ≤ C|t− t∗| for all t ∈ (t∗ − ε , t∗)
and |u0(t)−u0(t∗+)| ≤ C|t− t∗| for all t ∈ (t∗, t∗+ ε). Henceforth, we assume that
t∗ is an L-point of the function u0(t). The following question naturally arises: which
quadratic form corresponds to a broken extremal?

Let us change the definition of a weak local minimum as follows. Set Θ := {t∗}
and define a notion of a Θ -weak minimum. Assuming additionally that the control
u0(t) is left-continuous at t∗, denote by cl u0(·) the closure of the graph of u0(t).
Denote by V a neighborhood of the compact set cl u0(·).
Definition 1. We say that x0 is a point of aΘ -weak minimum (or an extended weak
minimum) if there exists a neighborhood V of the compact set cl u0(·) such that
J (x)≥J (x0) for all admissible x(t) such that u(t) ∈ V a.e., where u(t) = ẋ(t).
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Clearly, we have the following chain of implications among minima:

strong minimum =⇒ Θ–weak minimum =⇒ weak minimum.

Let us formulate optimality conditions for a Θ -weak minimum. To this end, we
introduce the Pontryagin function (Hamiltonian)

H(t,x,u,λ ) = λu+L(t,x,u),

where λ is a row vector of the dimension n. Defining λ (t) := −Lu(t,x0(t),u0(t)),
we have in view of the Euler equation (3):

Hu(t,x
0(t),u0(t),λ (t)) = 0, −λ̇ (t) = Hx(t,x

0(t),u0(t),λ (t)).

Denote by [λ ] the jump of the function λ (t) at the point t∗, i.e., [λ ] = λ+ − λ−,
where λ− = λ (t∗−) and λ+ = λ (t∗+). Let [H] stand for the jump of the function
H(t) := H(t,x0(t),u0(t),λ (t)) at the same point. The equalities

[λ ] = 0, [H] = 0

constitute the Weierstrass–Erdmann conditions. They are known as necessary con-
ditions for a strong minimum. However, they are also necessary for the Θ -weak
minimum. We add one more necessary condition for the Θ -weak minimum:

D(H) :=−L+
x ẋ0−+L−

x ẋ0+− [Lt]≥ 0,

where ẋ0− = ẋ0(t∗−), L−
x = Lx(t∗,x0(t∗−),u0(t∗−)), [Lt] = L+

t −L−
t , etc. Clearly,

D(H) := λ̇+ẋ0−− λ̇−ẋ0++[λ̇0],

where λ0(t) = −H(t) (recall that d
dt H(t) = Ht(t) a.e.). Moreover, it can be shown

that D(H) is equal to the negative derivative of the function

ΔH(t) := λ (t)[u0]+L(t,x0(t),u0(t∗+))−L(t,x0(t),u0(t∗−))

at t∗. The existence of the derivative has been proved and, hence, this derivative can
also be calculated as d

dt (ΔH)(t∗−) or as d
dt (ΔH)(t∗+).

Now, let us formulate second-order optimality conditions for a Θ -weak mini-
mum. Denote by PΘW1,2 the Hilbert space of piecewise continuous functions x̄(t),
absolutely continuous on each of the two intervals [t0, t∗) and (t∗, tf ], and such that
their first derivative is square integrable. Any x̄ ∈ PΘW1,2 can have a nonzero jump
[x̄] = x̄(t∗+0)− x̄(t∗ −0) at the point t∗. Let t̄ be a numerical parameter. Denote by
Z2(Θ) the space of triples z̄ = (t̄, x̄, ū) such that t̄ ∈R, x̄(·)∈ PΘW1,2, ū(·)∈ L2, i.e.,

Z2(Θ) =R×PΘW1,2 ×L2.
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In this space, define the quadratic form

ΩΘ (z̄) = D(H)t̄2 −2[Lx]x̄av t̄+
∫ tf

t0
〈Lww(t,w

0(t))w̄(t), w̄(t)〉dt,

where [Lx] is the jump of the function Lx(t,w0(t)) at the point t∗, and

x̄av =
1
2

(
x̄(t∗−)+ x̄(t∗+)

)
.

Set

KΘ = {z̄ ∈ Z2(Θ) | d
dt

x̄(t) = ū(t) a.e., [x̄]+ [ẋ0]t̄ = 0, x̄(t0) = x̄(tf ) = 0}.

Theorem 2. (a) If x0 is a Θ -weak minimum, then ΩΘ (z̄)≥ 0 on KΘ . (b) If ΩΘ (z̄)
is positive definite on KΘ , then x0 is a (strict) Θ -weak minimum.

The proof of this theorem is given in [28]. Let us note that in [28], instead of t̄,
we used a numerical parameter ξ̄ such that t̄ =−ξ̄ . This remark also applies to the
subsequent presentation.

3 Second-Order Optimality Conditions for Discontinuous
Controls in the General Problem of the Calculus
of Variations on a Fixed Time Interval

3.1 The General Problem in the Calculus of Variations
on a Fixed Time Interval

Now consider the following optimal control problem in Mayer form on a fixed time
interval [t0, tf ]. It is required to find a pair of functions w(t) = (x(t),u(t)), t ∈ [t0, tf ],
minimizing the functional

min J (w) := J(x(t0),x(tf )) (4)

subject to the constraints

F(x(t0),x(tf ))≤ 0, K(x(t0),x(tf )) = 0, (x(t0),x(tf ))) ∈P,

ẋ(t) = f (t,x(t),u(t)), h(t,x(t),u(t)) = 0, (t,x(t),u(t)) ∈Q,

}
(5)

where P and Q are open sets, x, u, F, K, f , and h are vector-functions.
We assume that J, F, and K are defined and twice continuously differentiable on

P , and f and h are defined and twice continuously differentiable on Q. It is also
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assumed that the gradients with respect to the control hiu(t,x,u), i = 1, . . . ,d(h) are
linearly independent at each point (t,x,u)∈Q such that h(t,x,u) = 0 (the regularity
assumption for the equality constraint h(t,x,u) = 0). Here hi are the components of
the vector function h and d(h) is the dimension of this function.

Problem (1), (2) is considered in the space

W := W1,1([t0, tf ],R
n)×L∞([t0, tf ],R

m),

where n = d(x), m = d(u). Define a norm in this space as a sum of the norms:

‖w‖ := ‖x‖1,1 +‖u‖∞ = |x(t0)|+
∫ tf

t0
|ẋ(t)|dt+ esssup[t0,tf ]|u(t)|.

A weak minimum is defined as a local minimum in the space W . We say that w =
(x,u) is an admissible pair if it belongs to W , satisfies the constraints of the problem,
and, moreover, there exists a compact set C ⊂Q such that (t,x(t),u(t))∈ C for a.a.
t ∈ [t0, tf ].

It is well known that an optimal control problem with a functional in Bolza form,

min J (w) := J(x(t0),x(tf ))+
∫ tf

t0
f0(t,x(t),u(t))dt, (6)

can be converted to Mayer form by introducing the ODE ẏ = f0(t,x,u), y(t0) = 0.

3.2 First-Order Necessary Conditions

Let w0 = (x0,u0) be an admissible pair. We introduce the Pontryagin function (or
the Hamiltonian)

H(t,x,u,λ ) = λ f (t,x,u)

and the augmented Pontryagin function (or the augmented Hamiltonian)

Ha(t,x,u,λ ,ν) = H(t,x,u,λ )+νh(t,x,u),

where λ and ν are row-vectors of the dimensions d(x) = n and d(h), respectively.
For brevity we set

x0 = x(t0), xf = x(tf ), η = (x0,xf ).

Denote by Rn∗ the space of n-dimensional row-vectors. Define the endpoint
Lagrange function
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l(η ,α0,α,β ) = α0J(η)+αF(η)+βK(η),

where α0 ∈ R, α ∈ (Rd(F))∗, β ∈ (Rd(K))∗. Introduce a tuple of Lagrange
multipliers

μ = (α0,α,β ,λ (·),ν(·))

such that λ (·) : [t0, tf ]→Rn∗ is absolutely continuous and ν(·) : [t0, tf ]→ (Rd(h))∗

is measurable and bounded. Denote by Λ0 the set of the tuples μ satisfying the
following conditions at the point w0:

α0 ≥ 0, α ≥ 0, αF(η0) = 0, α0 +∑d(F)
i=1 αi +∑d(K)

j=1 |βj|= 1,

λ̇ =−Ha
x , λ (t0) =−lx0 , λ (tf ) = lxf , Ha

u = 0,

where η0 = (x0(t0),x0(tf )), the derivatives lx0 and lxf are at (η0,α0,α,β ) and the
derivatives Ha

x , Ha
u are at (t,x0(t),u0(t),λ (t),ν(t)), t ∈ [t0, tf ]. By αi and βj we

denote the components of the row vectors α and β , respectively.

Theorem 3. If w0 is a weak local minimum, then Λ0 is nonempty. Moreover, Λ0 is a
finite dimensional compact set, and the projector (α0,α,β ,λ (·),ν(·))→ (α0,α,β )
is injective on Λ0.

The condition Λ0 �= /0 is called the local Pontryagin minimum principle, or the
Euler–Lagrange equation. Let M0 be the set of all μ = (α0,α,β ,λ (·),ν(·)) ∈ Λ0

satisfying the minimum condition for a.a. t ∈ [t0, tf ]:

H(t,x0(t),u,λ (t))≥ H(t,x0(t),u0(t),λ (t)) ∀u ∈ U(t,x0(t)),

where

U(t,x) := {u ∈Rm | (t,x,u) ∈Q, h(t,x,u) = 0}.

The condition M0 �= /0 is called the (integral) Pontryagin minimum principle, which
is a necessary condition for the so-called Pontryagin minimum.

Definition 2 (A.A. Milyutin). The pair w0 affords a Pontryagin minimum if for any
compact set C ⊂Q there exists ε > 0 such that J (w)≥J (w0) for all admissible
pairs w(t) =

(
x(t),u(t)

)
satisfying the conditions

max
[t0,tf ]

|x(t)− x0(t)|< ε ,
∫ tf

t0
|u(t)−u0(t)|< ε , (t,x(t),u(t)) ∈ C a.e.
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3.3 Second-Order Necessary Conditions

Set

W2 := W1,2([t0, tf ],R
n)×L2([t0, tf ],R

m),

Let K be the set of all w̄ = (x̄, ū) ∈W2 satisfying the following conditions:

J′(η0)η̄ ≤ 0, F′
i(η0)η̄ ≤ 0 ∀ i ∈ IF(η0), K′(η0)η̄ = 0,

d
dt x̄(t) = fw(t,w0(t))w̄(t), for a.a. t ∈ [t0, tf ],

hw(t,w0(t))w̄(t) = 0, for a.a. t ∈ [t0, tf ],

where η̄ = (x̄(t0), x̄(tf )), IF(η0) := {i : Fi(η0) = 0} is the set of active indices.
Obviously, K is a convex cone in the Hilbert space W2. We call it the critical cone.

Let us introduce a quadratic form in W2. For μ ∈Λ0 and w̄ = (x̄, ū) ∈W2, we set

Ω(μ , w̄) = 〈lμηη(η0)η̄ , η̄〉+
∫ tf

t0
〈Haμ

ww(t)w̄(t), w̄(t)〉dt,

where lμηη(η0) = lηη(η0,α0,α,β ), Haμ
ww(t) = Ha

ww(t,x
0(t),u0(t),λ (t),ν(t)), and

η̄ = (x̄(t0), x̄(tf )).

Theorem 4. If w0 is a weak minimum, then the set Λ0 is nonempty and

max
μ∈Λ0

Ω(μ , w̄)≥ 0 for all w̄ ∈K .

The necessary condition for a Pontryagin minimum differs from this condition only
by replacing the set Λ0 by the set M0.

Theorem 5. If w0 is a Pontryagin minimum, then the set M0 is nonempty and

max
μ∈M0

Ω(μ , w̄)≥ 0 for all w̄ ∈K .

We now assume that the control u0 is a piecewise continuous function on
[t0, tf ] with the set of discontinuity points Θ = {t1, . . . , ts}, t0 < t1 < · · · < ts < tf .
We also assume that each tk ∈ Θ is an L-point of the function u0 (see the
definition in Sect. 2.2). In this case, the regularity assumption for h implies
that, for any μ = (α0,α,β ,λ (·),ν(·)) ∈ Λ0, ν(t) has the same properties
as u0(t): the function ν(t) is piecewise continuous and each of its point of
discontinuity is an L-point which belongs to Θ . By virtue of the adjoint
equation λ̇ = −Ha

x , the same is true for the derivative λ̇ (t) of the adjoint
variable λ . Now, the second-order necessary conditions can be refined as follows.
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For μ ∈ M0, set

Dk(Haμ) = λ̇ k+ẋ0k−− λ̇ k−ẋ0k+− [Haμ
t ]k, (7)

where [Haμ
t ]k is the jump of the derivative Ha

t (t,x
0(t),u0(t),λ (t),ν(t)) at the point

tk, and λ̇ k− := λ̇ (tk−), λ̇ k+ := λ̇ (tk+), etc. Note that Ha
t = −λ̇0, where λ0(t) =

−H(t), and hence −[Ha
t ]

k = [λ̇0]
k. Sometimes we omit the superscript μ in the

notation Dk(Haμ).
We can calculate Dk(Ha) using another method. Namely, Dk(Ha) can be

calculated as the derivative of the “jump of Ha” at the point tk. Introduce the function

(ΔkHa)(t) = (ΔkH)(t)+(Δk(νh))(t)

= λ (t)
(
f (t,x0(t),u0k+)− f (t,x0(t),u0k−)

)
+
(
νk+h(t,x0(t),u0k+)−νk−h(t,x0(t),u0k−)

)
.

It can be shown that the function (ΔkHa)(t) is continuously differentiable at the
point tk ∈Θ , and its derivative at this point coincides with −Dk(Ha). Therefore, we
can obtain the value of Dk(Ha) by calculating the left or right limit of the derivatives
of the function (ΔkHa)(t) at the point tk:

Dk(Ha) =− d
dt
(ΔkHa)(tk±).

For any μ ∈ M0, it can be shown that Dk(Haμ)≥ 0, k = 1, . . . ,s. Set

Z2(Θ) :=Rs ×PΘW1,2 ([t0, tf ],R
n)×L2 ([t0, tf ],R

m) ,

where PΘW1,2([t0, tf ],Rn) is the Hilbert space of piecewise continuous functions
x(t), absolutely continuous on each interval of the set [t0, tf ]\Θ such that their first
derivatives are square integrable. Define a quadratic form in Z2(Θ) as follows:

ΩΘ (μ , z̄) = Σ s
k=1

(
Dk(Haμ)t̄2

k +2[λ̇ ]kx̄k
av t̄k

)
+ 〈lμηη(η0)η̄ , η̄〉+

∫ tf
t0 〈H

aμ
ww(t)w̄(t), w̄(t)〉dt,

where z̄ = (θ̄ , x̄, ū), θ̄ = (t̄1, . . . , t̄s), η̄ = (x̄(t0), x̄(tf )), x̄k
av = 1

2 (x̄(tk−) + x̄(tk+)),
w̄ = (x̄, ū). Define the critical cone KΘ in the same space by the relations

J′(η0)η̄ ≤ 0, F′
i(η0)η̄ ≤ 0 ∀ i ∈ IF(η0), K′(η0)η̄ = 0,

d
dt x̄(t) = fw(t,w0(t))w̄(t), for a.a. t ∈ [t0, tf ],

[x̄]k +[ẋ0]kt̄k = 0, k = 1, . . . ,s

hw(t,w0(t))w̄(t) = 0 for a.a. t ∈ [t0, tf ].
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Theorem 6. If w0 is a Pontryagin minimum, then the following Condition AΘ
holds: the set M0 is nonempty and

max
μ∈M0

ΩΘ (μ , z̄)≥ 0 for all z̄ ∈KΘ .

Let us give another possible representation for the terms
(
Dk(Haμ)t̄2

k + 2[λ̇ ]kx̄k
av t̄k

)
of the quadratic form ΩΘ (μ , z̄) on the critical cone K .

Lemma 1. Let μ ∈ M0 and z = (θ̄ , x̄, ū) ∈ KΘ . Then, for any k = 1, . . . ,s, the
following formula holds

Dk(H̄μ)t̄2
k +2[λ̇ ]kx̄k

av t̄k = [λ̇0 + λ̇ ẋ0]kt̄2
k +2[λ̇ x̄]kt̄k. (8)

Proof. Everywhere in this proof we will omit the subscript and superscript k. Taking
into account that

D(Ha) = λ̇+ẋ0−− λ̇−ẋ0++[λ̇0], [x̄]+ [ẋ0]t̄ = 0,

we obtain

D(Ha) t̄2 +2[λ̇ ] x̄av t̄ = t̄2 [λ̇0]+ t̄2
(
λ̇+ẋ0−− λ̇−ẋ0+

)
+2t̄ [λ̇ ] x̄av

= t̄2[λ̇0]+ t̄2
(
[λ̇ ẋ0]− λ̇+[ẋ0]− λ̇−[ẋ0]

)
+2t̄[λ̇ ]x̄av

= t̄2
(
[λ̇0]+ [λ̇ ẋ0]

)
+ λ̇+[x̄]t̄+ λ̇−[x̄]t̄+2t̄[λ̇ ]x̄av

= [λ̇0 + λ̇ ẋ0] t̄2 +
(
λ̇+(x̄+− x̄−)+ λ̇−(x̄+− x̄−)+(λ̇+− λ̇−)(x̄−+ x̄+)

)
t̄

= [λ̇0 + λ̇ ẋ0] t̄2 +2[λ̇ x̄] t̄.

3.4 Second-Order Sufficient Conditions

Here, we will formulate sufficient optimality conditions, but only in the case of
discontinuous control u0. Let again u0 be a piecewise continuous function with
the set of discontinuity points Θ and let each tk ∈ Θ be an L-point. A natural
strengthening of the necessary condition A in Theorem 6 turned out to be sufficient
not only for the Pontryagin minimum, but also for the so-called bounded strong
minimum. This type of minimum will be defined below.

Definition 3. The component xi of the state vector x is called unessential if the
functions f and h do not depend on xi and the functions J, F, and K are affine
in xi(t0) and xi(tf ). Let x denote the vector composed by essential components of
vector x.
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For instance, the integral functional J =
∫ tf

t0 f0(t,x,u)dt can be brought to the
endpoint form: J = y(tf )− y(t0), where ẏ = f0(t,x,u). Clearly, y is unessential
component.

Definition 4. An admissible pair w0 affords a bounded strong minimum if for
any compact set C ⊂ Q there exists ε > 0 such that J (w) ≥ J (w0) for all
admissible pairs w(t) =

(
x(t),u(t)

)
satisfying the conditions |x(t0)− x0(t0)| < ε ,

max[t0,tf ] |x(t)− x0(t))|< ε and (t,x(t),u(t)) ∈ C a.e. on [t0, tf ].

Definition 5. An admissible pair w0 affords a strong minimum if there exists ε > 0
such that J (w)≥J (w0) for all admissible pairs w(t) =

(
x(t),u(t)

)
satisfying the

conditions |x(t0)− x0(t0)|< ε and max[t0,tf ] |x(t)− x0(t))|< ε .

The following assertion follows from the definitions.

Lemma 2. If there exists a compact set C ⊂Q such that {(t,x,u) ∈Q : h(t,x,u) =
0} ⊂ C , then the bounded strong minimum is equivalent to the strong minimum.

Let us formulate sufficient conditions for a bounded strong minimum. For μ ∈
M0, we introduce the following conditions of the strict minimum principle:

(a) H(t,x0(t),u,λ (t))> H(t,x0(t),u0(t),λ (t))
for all t ∈ [t0, tf ]\Θ , u �= u0(t), u ∈ U(t,x0(t)),

(b) H(tk,x0(tk),u,λ (tk))> Hk

for all tk ∈Θ , u ∈ U(tk,x0(tk)), u �= u0(tk−), u �= u0(tk+), where
Hk := H(tk,x0(tk),u0(tk−),λ (tk)) = H(tk,x0(tk),u0(tk+),λ (tk)).

We denote by M+
0 the set of all μ ∈ M0 satisfying conditions (a) and (b).

For μ ∈ M0 we also introduce the strengthened Legendre-Clebsch conditions:

(i) for each t ∈ [t0, tf ]\Θ the quadratic form

〈Ha
uu(t,x

0(t),u0(t),λ (t),ν(t))u,u〉

is positive definite on the subspace of vectors u ∈Rm such that

hu(t,x
0(t),u0(t))u = 0.

(ii) for each tk ∈Θ , the quadratic form

〈H̄uu(tk,x
0(tk),u

0(tk−),λ (tk),ν(tk−))u,u〉

is positive definite on the subspace of vectors u ∈Rm such that

hu(tk,x
0(tk),u

0(tk−))u = 0.

(iii) this condition is symmetric to condition (ii) by replacing (tk−) everywhere by
(tk+).
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Note that for each μ ∈ M0 the non-strengthened Legendre–Clebsch conditions hold,
i.e., the same quadratic forms are nonnegative on the corresponding subspaces.

We denote by Leg+(M
+
0 ) the set of all μ ∈ M+

0 satisfying the strengthened
Legendre–Clebsch conditions (i)–(iii) and also the conditions

(iv) Dk(Haμ)> 0 for all k = 1, . . . ,s.

Let us introduce the functional

γ̄(z̄) = 〈θ̄ , θ̄〉+ 〈x̄(t0), x̄(t0)〉+
∫ tf

t0
〈ū(t), ū(t)〉dt,

where z̄ = (θ̄ , x̄, ū) and θ̄ = (t̄1, . . . , t̄s).

Theorem 7. For the pair w0, assume that the following Condition BΘ holds: the
set Leg+(M

+
0 ) is nonempty and there exist a nonempty compact set M ⊂ Leg+(M

+
0 )

and a number C > 0 such that

max
μ∈M

ΩΘ (μ , z̄)≥ Cγ̄(z̄)

for all z̄ ∈K . Then the pair w0 affords a (strict) bounded strong minimum.

The sufficient condition BΘ guarantees a certain growth condition for the cost
which will be presented below. We define now the concept of the order function
Γ (t,u).

Assuming that the function u0(t) is left-continuous, denote by cl u0(·) the closure
(in Rm+1) of its graph. Denote by cl u0(tk−1, tk) the closure in Rm+1 of the graph
of the restriction of u0(t) to the interval (tk−1, tk), k = 1, . . . ,s+1, where ts+1 = tf .
Then

cl u0(·) =
s+1⋃
k=1

cl u0(tk−1, tk).

Denote by Vk, k = 1, . . . ,s+ 1, a system of non-overlapping neighborhoods of the

compact sets cl u0(tk−1, tk). Let V =
s+1⋃
k=1

Vk.

Definition 6. The function Γ (t,u) : R1+m → R is said to be an order function if
there exist disjoint neighborhoods Vk of the compact sets cl u0(tk−1, tk) such that
the following five conditions hold (Fig. 1):

(1) Γ (t,u) = |u−u0(t)|2 if (t,u) ∈ Vk, t ∈ (tk−1, tk), k = 1, . . . ,s+1;
(2) Γ (t,u) = 2|t− tk|+ |u−u0k−|2 if (t,u) ∈ Vk, t > tk, k = 1, . . . ,s;
(3) Γ (t,u) = 2|t− tk|+ |u−u0k+|2 if (t,u) ∈ Vk+1, t < tk, k = 1, . . . ,s;
(4) Γ (t,u)> 0 if (t,u) /∈ V ;
(5) Γ (t,u) is Lipschitz continuous on each compact set in R1+m.
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t

u

t0 t ft1

u1−u0(t)

u01+ u0(t)

Γ (t,u) > 0

Γ (t,u) > 0

Γ (t,u) = |u−u0(t)|2 Γ (t,u) = |u−u01−|2 +2|t− t1|

Γ (t,u) = |u−u0(t)|2

Γ (t,u) = |u−u01+|2 +2|t− t1|

Fig. 1 Illustration of the order function Γ (t,u)

For δw(t) = (δx(t),δu(t)) in W we set

γ(δw) = ‖δx‖2
∞+

∫ tf

t0
Γ (t,u0(t)+δu(t))dt.

We call γ the higher order. This higher order corresponds to a typical minimum in
the case of discontinuous control, and the order function Γ (t,v) corresponds to a
typical Hamiltonian in this case.

Note that the order
∫ tf

t0 (Γ (t,u0(t) + δu(t))dt is much finer (smaller) than the

functional
∫ tf

t0 |δu(t))|2 dt. On the other hand, it can be proved that, on each compact

set (in Rm), the following lower bound holds for
∫ tf

t0 Γ (t,u0(t)+δu(t))dt :

(∫ tf

t0
|δu(t)|dt

)2

≤ C
∫ tf

t0
Γ (t,u0(t)+δu(t))dt,

where C > 0 depends only on the compact set.
Define the violation function at the point w0:

V(δw)= (J(η0+δη)−J(η0))++
d(F)

∑
i=1

Fi(η0+δη)++ |K(η0+δη)|+‖δ ẋ−δ f‖1,
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where η0 = (x0(t0),x0(tf )), δη = (δx(t0),δx(tf )), δ f = f (t,w0 + δw)− f (t,w0),
δw = (δx,δu), ‖.‖1 is the norm in the space L1 of integrable functions, and a+ :=
max{a,0} for a ∈R.

Definition 7. We say that a bounded strong γ-sufficiency holds at the point w0 if
there exists C > 0 such that for any compact set C ⊂ Q there exists ε > 0 such
that the inequality V(δw)≥ Cγ(δw) holds for all δw = (δx,δu)∈W satisfying the
conditions

|δx(t0)|< ε , ‖δx‖∞ < ε ,
(t,w0(t)+δw(t)) ∈ C , h(t,w0(t)+δw(t)) = 0 a.e.

}
(9)

Obviously, a bounded strong γ-sufficiency implies a (strict) bounded strong mini-
mum. Moreover, if the point w0 + δw is admissible, then, obviously, V(δw) =
(J(w0 + δw)− J(w0))+. Therefore, a bounded strong γ-sufficiency implies the
following:
γ-growth condition for the cost: there exists C > 0 such that for any compact set
C ⊂Q there exists ε > 0 such that

J(w0 +δw)− J(w0)≥ Cγ(δw)

for all δw = (δx,δu) ∈W satisfying (9) and such that (w0 +δw) is an admissible
pair.

Theorem 8. The sufficient condition BΘ in Theorem 7 is equivalent to the bounded
strong γ-sufficiency.

Theorems 6–8 were proved in [31]. Generalizations of these theorems for opti-
mal control problem with regular mixed inequality state-control constraints were
recently published in [33, 34]. An extension of the results of this section to problems
on a variable time interval was obtained in [32].

4 The General Problem in the Calculus of Variations
on a Variable Time Interval

4.1 Statement of the Problem

Here, quadratic optimality conditions, both necessary and sufficient, are presented
in the following canonical problem on a variable time interval. Let T denote a
process (x(t),u(t) | t ∈ [t0, tf ]), where the state variable x(·) is a Lipschitz continuous
function, and the control variable u(·) is a bounded measurable function on a time
interval Δ = [t0, tf ]. The interval Δ is not fixed. For each process T , we denote
here by
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η = (t0,x(t0), tf ,x(tf ))

the vector of the endpoints of time-state variable (t,x). It is required to find T
minimizing the functional

minJ (T ) := J(η) (10)

subject to the constraints

F(η)≤ 0, K(η) = 0, η ∈P, (11)

ẋ(t) = f (t,x(t),u(t)), h(t,x(t),u(t)) = 0, (t,x(t),u(t)) ∈Q, (12)

where P and Q are open sets, x, u, F, K, f , and h are vector-functions.
We assume that the functions J, F, and K are defined and twice continuously

differentiable on P , and the functions f and h are defined and twice continuously
differentiable on Q. It is also assumed that the gradients with respect to the control
hiu(t,x,u), i = 1, . . . ,d(h) are linearly independent at each point (t,x,u) ∈ Q such
that h(t,x,u) = 0. Here d(h) is a dimension of the vector h.

4.2 First-Order Necessary Conditions

We say that the function u(t) is Lipschitz-continuous if it is piecewise continuous
and satisfies the Lipschitz condition on each interval of the continuity. Let

T = (x(t),u(t) | t ∈ [t0, tf ]) (13)

be a fixed admissible process such that the control u(·) is a piecewise Lipschitz-
continuous function on the interval Δ with the set of discontinuity points

Θ = {t1, . . . , ts}, where t0 < t1 < · · ·< ts < tf .

In order to make the notations simpler we do not use here such symbols and indices
as zero, hat or asterisk to distinguish the process T from others.

Let us formulate the first-order necessary condition for optimality of the pro-
cess T . We introduce the Pontryagin function H (Hamiltonian), the augmented
Pontryagin function Ha, and the endpoint Lagrange function l as in Sect. 3.2, but
remember that now η = (t0,x0, tf ,xf ), Also we introduce a tuple of Lagrange
multipliers

μ = (α0,α,β ,λ (·),λ0(·),ν(·)) (14)
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such that λ (·) : Δ → (Rd(x))∗ and λ0(·) : Δ →R1 are piecewise smooth functions,
continuously differentiable on each interval of the set Δ \Θ , and ν(·) :Δ → (Rd(h))∗

is a piecewise continuous function and Lipschitz continuous on each interval of the
set Δ \Θ .

Denote by M0 the set of the normed tuples μ satisfying the conditions of the
minimum principle for the process T :

α0 ≥ 0, α ≥ 0, αF(η) = 0, α0 +∑αi +∑ |βj|= 1,
λ̇ =−Ha

x , λ̇0 =−Ha
t , Ha

u = 0, t ∈ Δ \Θ ,

λ (t0) =−lx0 , λ (tf ) = lxf , λ0(t0) =−lt0 , λ0(tf ) = ltf ,

min
u∈U(t,x(t))

H(t,x(t),u,λ (t)) = H(t,x(t),u(t),λ (t)), t ∈ Δ \Θ ,

H(t,x(t),u(t),λ (t))+λ0(t) = 0, t ∈ Δ \Θ ,

(15)

where U(t,x) = {u ∈Rd(u) | h(t,x,u) = 0, (t,x,u) ∈Q}. The derivatives lx0 and lxf

are at (η ,α0,α,β ), where η = (t0,x(t0), tf ,x(tf )), and the derivatives Ha
x , Ha

u , and
Ha

t are at (t,x(t),u(t),λ (t),ν(t)), where t ∈ Δ \Θ . (Condition Ha
u = 0 follows from

other conditions in this definition, and therefore, could be excluded; yet, we need to
use it later.)

Let us give the definition of Pontryagin minimum in problem (10)–(12) on a
variable interval [t0, tf ].

Definition 8. The process T affords a Pontryagin minimum if for each compact set
C ⊂Q there exists ε > 0 such that J (T̃ ) ≥J (T ) for all admissible processes
T̃ = (x̃(t), ũ(t) | t ∈ [t̃0, t̃f ]) satisfying the conditions

(a) |t̃0 − t0|< ε , |t̃f − tf |< ε ,
(b) max

Δ̃∩Δ
|x̃(t)− x(t)|< ε , where Δ̃ = [t̃0, t̃f ],

(c)
∫

Δ̃∩Δ
|ũ(t)−u(t)|dt < ε ,

(d) (t, x̃(t), ũ(t)) ∈ C a.e. on Δ̃ .

The condition M0 �= /0 is equivalent to Pontryagin’s minimum principle. It is the
first-order necessary condition for Pontryagin minimum for the process T . Thus,
the following theorem holds.

Theorem 9. If the process T affords a Pontryagin minimum, then the set M0 is
nonempty.

Assume that the set M0 is nonempty. Using its definition and the full rank condition
for the matrix hu on the surface h = 0 one can easily prove the following statement:

Proposition 1. The set M0 is a finite-dimensional compact set, and the mapping
μ �→ (α0,α,β ) is injective on M0.

As in Sect. 3, for each μ ∈ M0, tk ∈Θ , we define Dk(Haμ) by relation (7). Then, for
each μ ∈ M0 the following inequalities hold: Dk(Haμ)≥ 0, k = 1, . . . ,s.
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4.3 Second-Order Necessary Conditions

Let us formulate a quadratic necessary condition for a Pontryagin minimum for the
process T as in (13). First, for this process, we introduce a Hilbert space Z2(Θ) and
the critical cone K ⊂ Z2(Θ). Again, we denote by PΘW1,2(Δ ,Rd(x)) the Hilbert
space of piecewise continuous functions x̄(·) : Δ →Rd(x), absolutely continuous on
each interval of the set Δ \Θ and such that their first derivative is square integrable.
We set

z̄ = (t̄0, t̄f , θ̄ , x̄, ū) ,

where

t̄0 ∈R1, t̄f ∈R1, θ̄ = (t̄1, . . . , t̄s) ∈Rs, x̄ ∈ PΘW1,2(Δ ,Rd(x)), ū ∈ L2(Δ ,Rd(u)).

Thus,

z̄ ∈Z2(Θ) :=R2 ×Rs ×PΘW1,2(Δ ,Rd(x))×L2(Δ ,Rd(u)).

Moreover, for given z̄ we set

w̄ = (x̄, ū), x̄0 = x̄(t0), x̄f = x̄(tf ), (16)

¯̄x0 = x̄(t0)+ t̄0ẋ(t0), ¯̄xf = x̄(tf )+ t̄f ẋ(tf ), ¯̄η = (t̄0, ¯̄x0, t̄f , ¯̄xf ). (17)

By IF(η) = {i ∈ {1, . . . ,d(F)} | Fi(η) = 0} we denote the set of active indices of
the constraints Fi ≤ 0. Let KΘ be the set of all z̄ ∈Z2(Θ) satisfying the following
conditions:

J′(η) ¯̄η ≤ 0, F′
i(η) ¯̄η ≤ 0 ∀i ∈ IF(η), K′(η) ¯̄η = 0,

d
dt x̄(t) = fw(t,w(t))w̄(t), for a.a. t ∈ [t0, tf ],

[x̄]k +[ẋ]kt̄k = 0, k = 1, . . . ,s,

hw(t,w(t))w̄(t) = 0, for a.a. t ∈ [t0, tf ].

(18)

Clearly, KΘ is a convex cone in the Hilbert space Z2(Θ). We call it the critical
cone. If the interval Δ is fixed, then we set η := (x0,xf ) = (x(t0),x(tf )), and in the
definition of K we have t̄0 = t̄f = 0, ¯̄x0 = x̄0, ¯̄xf = x̄f , and ¯̄η = η̄ := (x̄0, x̄f ).

Let us introduce a quadratic form on Z2(Θ). For μ ∈ M0 and z̄ ∈KΘ , we set

2ΩΘ (μ , z̄) = 〈lμηη ¯̄η , ¯̄η〉+
∫ tf

t0
〈Haμ

www̄(t), w̄(t)〉dt+
s

∑
k=1

(
Dk(Haμ)t̄2

k +2[λ̇ ]kx̄k
av t̄k

)

+
(
λ̇ (t0)ẋ(t0)+ λ̇0(t0)

)
t̄2
0 +2λ̇ (t0)x̄(t0)t̄0

−
(
λ̇ (tf )ẋ(tf )+ λ̇0(tf )

)
t̄2
f −2λ̇ (tf )x̄(tf )t̄f , (19)
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where lμηη = lηη(η ,α0,α,β ), Haμ
ww =Ha

ww(t,x(t),u(t),λ (t),ν(t)).We now formu-
late the main necessary quadratic condition of Pontryagin minimum in the problem
on a variable time interval.

Theorem 10. If the process T yields a Pontryagin minimum, then the following
Condition AΘ holds: the set M0 is nonempty and

max
μ∈M0

ΩΘ (μ , z̄)≥ 0 for all z̄ ∈KΘ .

Using (8), we can represent the quadratic form ΩΘ on KΘ as follows:

2ΩΘ (μ , z̄) = 〈lμηη ¯̄η , ¯̄η〉+
∫ tf

t0
〈Haμ

www̄(t), w̄(t)〉dt+
s

∑
k=1

(
[λ̇ ẋ+ λ̇0]

kt̄2
k +2[λ̇ x̄]kt̄k

)

+
(
λ̇ (t0)ẋ(t0)+ λ̇0(t0)

)
t̄2
0 +2λ̇ (t0)x̄(t0)t̄0

−
(
λ̇ (tf )ẋ(tf )+ λ̇0(tf )

)
t̄2
f −2λ̇ (tf )x̄(tf )t̄f . (20)

4.4 Second-Order Sufficient Conditions

Let us give the definition of a bounded strong minimum in problem (10)–(12) on
a variable interval [t0, tf ]. Let again x denote a vector composed of all essential
components of vector x (cf. Definition 3).

Definition 9. The process T affords a bounded strong minimum if for each
compact set C ⊂Q there exists ε > 0 such that J (T̃ )≥J (T ) for all admissible
processes T̃ = (x̃(t), ũ(t) | t ∈ [t̃0, t̃f ]) satisfying the conditions

(a) |t̃0 − t0|< ε , |t̃f − tf |< ε , |x̃(t̃0)− x(t0)|< ε ,
(b) max

Δ̃∩Δ
|x̃(t)− x(t)|< ε , where Δ̃ = [t̃0, t̃f ],

(c) (t, x̃(t), ũ(t)) ∈ C a.e. on Δ̃ .

The strict bounded strong minimum is defined in a similar way, with the nonstrict
inequality J (T̃ )≥J (T ) replaced by the strict one and the process T̃ required
to be different from T .

Let us formulate a sufficient optimality Condition BΘ , which is a natural
strengthening of the necessary Condition AΘ . The condition BΘ is sufficient not
only for a Pontryagin minimum, but also for a strict bounded strong minimum.

Theorem 11. For the process T , assume that the following Condition BΘ holds:
the set Leg+(M

+
0 ) is nonempty and there exist a nonempty compact set M ⊂

Leg+(M
+
0 ) and a number C > 0 such that
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max
μ∈M

ΩΘ (μ , z̄)≥ Cγ̄(z̄) (21)

for all z̄ ∈KΘ . Then the process T affords a strict bounded strong minimum.

Here the set Leg+(M
+
0 ) has the same definition as in Sect. 3.4.

5 Second-Order Optimality Conditions for Bang-Bang
Controls

5.1 Optimal Control Problems with Control Appearing
Linearly

Let again T denote a process (x(t),u(t) | t ∈ [t0, tf ]), where the time interval Δ =
[t0, tf ] is not fixed. As above, we set

η = (t0,x(t0), tf ,x(tf )).

We will refer to the following control problem (22)–(24) as the basic control
problem:

Minimize J (T ) := J(η) (22)

subject to the constraints

F(η)≤ 0, K(η) = 0, η ∈P, (23)

ẋ(t) = f (t,x(t))+g(t,x(t))u(t), u(t) ∈ U, (t,x(t)) ∈Q, t0 ≤ t ≤ tf . (24)

Here x ∈Rn, u ∈Rm, F, K, and f are vector functions, g is n×m matrix function
with column vector functions g1(t,x,u), . . . ,gm(t,x,u), P ⊂R2n+2 and Q ⊂Rn+1

are open sets, U ⊂ Rm is a convex polyhedron. The functions J, F, and K are
assumed to be twice continuously differential on P , and the functions f and g are
twice continuously differential on Q.

A process T = (x(t),u(t) | t ∈ [t0, t1]) is said to be admissible if x(·) is absolutely
continuous, u(·) is measurable bounded and the pair of functions (x(t),u(t)) on
the interval Δ = [t0, t1] with the end-points η = (t0,x(t0), t1,x(t1)) satisfies the
constraints (23), (24).

Let us give the definition of Pontryagin minimum for the basic problem.

Definition 10. The process T̂ = (x̂(t), û(t) | t ∈ [t̂0, t̂f ]) affords a Pontryagin

minimum in the basic problem if there exists ε > 0 such that J (T ) ≥ J (T̂ )
for all admissible processes T = (x(t),u(t) | t ∈ [t0, tf ]) satisfying
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|t0 − t̂0|< ε , |t1 − t̂1|< ε , max
Δ∩Δ̂

|x(t)− x̂(t)|< ε ,
∫

Δ∩Δ̂

|u(t)− û(t)|dt < ε ,

where Δ = [t0, tf ], Δ̂ = [t̂0, t̂f ].

Note that, for a fixed time interval Δ , a Pontryagin minimum corresponds to an
L1-local minimum with respect to the control variable.

5.2 Necessary Optimality Conditions: The Minimum Principle
of Pontryagin et al.

Let T = (x(t),u(t) | t ∈ [t0, tf ]) be a fixed admissible process such that the control
u(·) is a piecewise constant function on the interval Δ = [t0, tf ]. Denote by

Θ = {t1, . . . , ts}, t0 < t1 < · · ·< ts < tf ,

the finite set of all discontinuity points (jump points) of the control u(t). Then ẋ(t) is
a piecewise continuous function whose discontinuity points belong toΘ , and hence
x(t) is a piecewise smooth function on Δ .

Let us formulate the Pontryagin minimum principle, which is the first-order
necessary condition for optimality of the process T . The Pontryagin function has
the form

H(t,x,u,λ ) = λ f (t,x)+λg(t,x)u = λ f (t,x)+
m

∑
i=1

λgi(t,x)ui, (25)

where λ is a row-vector of the dimension d(λ ) = d(x) = n while x,u, f ,F, and K
are column-vectors. The factor of the control u in the Pontryagin function is the
switching vector function, a row vector of dimension d(u) = m. Set

σ(t,x,λ ) : = Hu(t,x,u,λ ) = λg(t,x),
σi(t,x,λ ) : = Hui(t,x,u,λ ) = λgi(t,x), i = 1, . . . ,m,

σi(t) : = σi(t,x(t),u(t)).
(26)

The endpoint Lagrange function is

l(α0,α,β ,η) = α0J(η)+αF(η)+βK(η),

where α and β are row-vectors with d(α) = d(F), d(β ) = d(K), and α0 is a
number. By

μ = (α0,α,β ,λ (·),λ0(·))
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we denote a tuple of Lagrange multipliers such that λ (·) : Δ →Rn∗ and λ0(·) : Δ →
R are continuous on Δ and continuously differentiable on each interval of the set
Δ \Θ .

Let M0 be the set of the normed collections μ satisfying the conditions of
Minimum Principle for the process T :

α0 ≥ 0, α ≥ 0, αF(η) = 0, α0 +
d(F)

∑
i=1

αi +
d(K)

∑
j=1

|βj|= 1, (27)

λ̇ =−Hx, λ̇0 =−Ht ∀t ∈ Δ \Θ , (28)

λ (t0) =−lx0 , λ (tf ) = lxf , λ0(t0) =−lt0 , λ0(tf ) = ltf , (29)

min
u∈U

H(t,x(t),u,λ (t)) = H(t,x(t),u(t),λ (t)) ∀t ∈ Δ \Θ , (30)

H(t,x(t),u(t),λ (t))+λ0(t) = 0 ∀t ∈ Δ \Θ . (31)

The derivatives lx0 and lxf are taken at the point (α0,α,β ,η), and the derivatives
Hx,Ht are evaluated at the point (t,x(t),u(t),λ (t)). We use the simple abbreviation
(t) for indicating all arguments (t,x(t),u(t),λ (t)), t ∈ Δ \Θ .

Theorem 12. If the process T affords a Pontryagin minimum, then the set M0 is
nonempty. The set M0 is a finite-dimensional compact set and the projector μ �→
(α0,α,β ) is injective on M0.

In view of this theorem, we can identify each tuple μ ∈ M0 with its projection
(α0,α,β ). In what follows we set μ = (α0,α,β ). For each μ ∈ M0 and tk ∈ Θ ,
we define again the quantity Dk(Hμ). Set

(ΔkH)(t) = H(t,x(t),uk+,λ (t))−H(t,x(t),uk−,λ (t)) = σ(t) [u]k. (32)

For each μ ∈ M0 the following equalities hold:

d
dt
(ΔkH)

∣∣
t=tk− =

d
dt
(ΔkH)

∣∣
t=tk+

, k = 1, . . . ,s.

Consequently, for each μ ∈ M0 the function (ΔkH)(t) has a derivative at the point
tk ∈Θ . Set

Dk(Hμ) =− d
dt
(ΔkH)(tk).

Then, for each μ ∈ M0, the minimum condition (30) implies the inequalities:

Dk(Hμ)≥ 0, k = 1, . . . ,s. (33)

As we know, the value Dk(Hμ) can be written in the form
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Dk(Hμ) = −Hk+
x Hk−

λ +Hk−
x Hk+

λ − [Ht]
k = λ̇ k+ẋk−− λ̇ k−ẋk++[λ0]

k,

where Hk−
x and Hk+

x are the left-hand and the right-hand values of the function
Hx(t) := Hx(t,x(t),u(t),λ (t)) at tk, respectively, [Ht]

k is a jump of the function Ht(t)
at tk, etc. It also follows from the above representation that we have

Dk(Hμ) =−σ̇(tk±)[u]k, (34)

where the values on the right-hand side agree for the derivative σ̇(tk+) from the
right and the derivative σ̇(tk−) from the left. In the case of a scalar control u, the
total derivative σt +σxẋ+σλ λ̇ does not contain the control variable explicitly and
hence the derivative σ̇(t) is continuous at tk.

Definition 11. For a given extremal process T = {(x(t),u(t)) | t ∈ Δ } with a
piecewise constant control u(t) we say that u(t) is a strict bang-bang control if
there exists μ = (α0,α,β ,λ ,λ0) ∈ M0 such that

Arg minu′∈U σ(t)u′ = [u(t−),u(t+)] , t ∈ [t0, tf ] (35)

where [u(t−),u(t+)] denotes the line segment spanned by the vectors u(t−) and
u(t+) in Rd(u) and σ(t) := σ(t,x(t),λ (t)) = λ (t)g(t,x(t)).

Note that [u(t−),u(t+)] is a singleton {u(t)} at each continuity point of the control
u(t) with u(t) being a vertex of the polyhedron U. Only at the points tk ∈Θ does the
line segment [uk−,uk+] coincide with an edge of the polyhedron.

It is instructive to evaluate the condition (35) in greater detail when the control
set is the hypercube

U =
d(u)

∏
i=1

[ui,min , ui,max], ui,min < ui,max (i = 1, . . . ,d(u)). (36)

Let Si = {tk,i, k = 1, . . . ,ki}, ki ≥ 0, be the set of switching times of the i − th
control component ui(t) and let σi(t) = λ (t)gi(t,x(t)) be switching function for
ui, i = 1, . . . ,d(u). Then the set of all switching times is given by

Θ = {t1, . . . , ts}=
d(u)⋃
i=1

Si ,

and the condition (35) for a strict bang-bang control requires that

(a) σi(t) �= 0 ∀ t /∈ Si (i = 1, . . . ,d(u)),
(b) there is no simultaneous switching of control components ui(t),

i.e., Si ∩Sj = /0 ∀ i �= j.
(37)
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Hence, the i-th control component is determined by the control law

ui(t) =

{
ui,min, if σi(t)> 0
ui,max, if σi(t)< 0

}
∀ t ∈ Δ \Si. (38)

Remark 1. There exist examples, where condition (a) in (37) is slightly violated
as σi(tf ) = 0 holds for certain control components ui; cf. the Rayleigh problem in
Sect. 9.2 and the collision avoidance problem in Maurer et al. [27]. In this case, we
require in addition that σ̇i(tf ) �= 0 holds to compensate for the condition σi(tf ) =
0. This property is fulfilled for the Rayleigh problem in Sect. 9.2 and the control
problem in [27].

5.3 Second-Order Necessary Optimality Conditions

Here, we formulate quadratic necessary optimality conditions for a Pontryagin
minimum for a given bang-bang control. (Their strengthening yields quadratic
sufficient conditions for a strong minimum.) These quadratic conditions are based
on the properties of a quadratic form on the critical cone.

Let again T = (x(t),u(t) | t ∈ [t0, tf ]) be a fixed admissible process such that
the control u(·) is a piecewise constant function on the interval Δ = [t0, tf ], and let
Θ = {t1, . . . , ts}, t0 < t1 < · · · < ts < tf , be the set of discontinuity points of the
control u(t). For the process T , we introduce the space Z (Θ) and the critical
cone KΘ ⊂ Z (Θ) as follows. Denote by PΘC1(Δ ,Rd(x)) the space of piecewise
continuous functions x̄(·) : Δ → Rd(x) that are continuously differentiable on each
interval of the set Δ \Θ . For each x̄ ∈ PΘC1(Δ ,Rd(x)) and for tk ∈Θ we set x̄k− =
x̄(tk−), x̄k+ = x̄(tk+) and [x̄]k = x̄k+− x̄k−. Now set

z̄ = (t̄0, t̄f , θ̄ , x̄),

where t̄0, t̄f ∈R1, θ̄ = (t̄1, . . . , t̄s) ∈Rs, x̄ ∈ PΘC1(Δ ,Rd(x)). Thus,

z̄ ∈Z (Θ) :=R2 ×Rs ×PΘC1(Δ ,Rd(x)).

For each z̄ we set

¯̄x0 = x̄(t0)+ t̄0ẋ(t0), ¯̄xf = x̄(tf )+ t̄f ẋ(tf ), ¯̄η =
(
t̄0, ¯̄x0, t̄f , ¯̄xf

)
. (39)

The vector ¯̄η is considered as a column vector. Note that t̄0 = 0, respectively, t̄f = 0
for fixed initial time t0, respectively, final time tf . Let

IF(η) = {i ∈ {1, . . . ,d(F)} | Fi(η) = 0}
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be the set of indices of all active endpoint inequalities Fi ≤ 0 at the point η =
(t0,x(t0), tf ,x(tf )). Denote by KΘ the set of all z̄ ∈Z (Θ) satisfying the following
conditions:

J′(η) ¯̄η ≤ 0, F′
i(η) ¯̄η ≤ 0 ∀ i ∈ IF(η), K′(η) ¯̄η = 0, (40)

d
dt

x̄(t) = (fx(t,x(t))+gx(t,x(t))u(t)) x̄(t), (41)

[x̄]k +[ẋ]kt̄k = 0, k = 1, . . . ,s. (42)

It is obvious that KΘ is a convex, finite-dimensional, and finite-faced cone in the
space Z (Θ). We call it the critical cone. Each element z̄ ∈KΘ is uniquely defined
by the numbers t̄0, t̄f , the vector θ̄ and the initial value x̄(t0) of the function x̄(t). Two
important properties of the critical cone are formulated in the next two propositions.

Proposition 2. For any μ ∈ M0 and z̄ ∈KΘ , we have

α0J′(η) ¯̄η = 0, αiF
′
i(η) ¯̄η = 0 ∀ i ∈ IF(η).

Proposition 3. Suppose that there exist μ ∈ M0 with α0 > 0. Then adding the
equalities αiF′

i(η) ¯̄η = 0 ∀i ∈ IF(η) to the system (40)–(42) defining KΘ , one can
omit the inequality J′(η) ¯̄η ≤ 0 in that system without affecting KΘ .

Thus, KΘ is defined by conditions (41), (42) and by the condition ¯̄η ∈K e
Θ , where

K e
Θ is the cone in R2d(x)+2 given by (40). But if there exists μ ∈ M0 with α0 > 0,

then we can put

K e
Θ = { ¯̄η ∈Rd(x)+2 | F′

i(η) ¯̄η ≤ 0, αiF
′
i(η) ¯̄η = 0 ∀ i ∈ IF(η), K′(η) ¯̄η = 0}. (43)

If, in addition, αi > 0 holds for all i ∈ IF(η), then K e
Θ is a subspace in Rd(x)+2.

Let us introduce a quadratic form on the critical cone KΘ defined by the
conditions (40)–(42). For each μ ∈ M0 and z̄ ∈KΘ we set

2ΩΘ (μ , z̄) = 〈lμηη ¯̄η , ¯̄η〉+
∫ tf

t0
〈Hμ

xxx̄(t), x̄(t)〉dt+
s

∑
k=1

(
Dk(Hμ)t̄2

k +2[λ̇ ]kx̄k
av t̄k

)

+
(
λ̇ (t0)ẋ(t0)+ λ̇0(t0)

)
t̄2
0 +2λ̇ (t0)x̄(t0)t̄0

−
(
λ̇ (tf )ẋ(tf )+ λ̇0(tf )

)
t̄2
f −2λ̇ (tf )x̄(tf )t̄f , (44)

where lμηη = lηη(η ,α0,α,β ), Hμ
xx = Hxx(t,x(t),u(t),λ (t)) and ¯̄η was defined in

(39). Note that for a problem on a fixed time interval [t0, tf ] we have t̄0 = t̄f = 0. The
following theorem gives the main second-order necessary condition of optimality.
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Theorem 13. If the process T affords a Pontryagin minimum, then the following
Condition AΘ holds: the set M0 is nonempty and maxμ∈M0 ΩΘ (μ , z̄) ≥ 0 for all
z̄ ∈KΘ .

Using (8), we can also represent the quadratic form ΩΘ as follows:

2ΩΘ (μ , z̄) = 〈lμηη ¯̄η , ¯̄η〉+
∫ tf

t0
〈Hμ

xxx̄(t), x̄(t)〉dt+
s

∑
k=1

(
[λ̇ ẋ+ λ̇0]

kt̄2
k +2[λ̇ x̄]kt̄k

)

+
(
λ̇ (t0)ẋ(t0)+ λ̇0(t0)

)
t̄2
0 +2λ̇ (t0)x̄(t0)t̄0

−
(
λ̇ (tf )ẋ(tf )+ λ̇0(tf )

)
t̄2
f −2λ̇ (tf )x̄(tf )t̄f . (45)

5.4 Second-Order Sufficient Optimality Conditions (SSC)

The state variable xi is called unessential if the function f does not depend on xi

and the functions F,J,K are affine in xi0 := xi(t0) and xif := xi(tf ). Let x denote the
vector of all essential components of state vector x. Let us define a strong minimum
in the basic problem.

Definition 12. The process T affords a strong minimum if there exists ε > 0 such
that J (T̃ ) ≥ J (T ) for all admissible processes T̃ = (x̃(t), ũ(t) | t ∈ [t̃0, t̃f ])
satisfying the conditions

(a) |t̃0 − t0|< ε , |t̃f − tf |< ε , |x̃(t̃0)− x(t0)|< ε ,
(b) max

Δ̃∩Δ
|x̃(t)− x(t)|< ε , where Δ̃ = [t̃0, t̃f ],

The strict strong minimum is defined in a similar way, with the non-strict inequality
J (T̃ ) ≥ J (T ) replaced by the strict one and the process T̃ required to be
different from T .

A natural strengthening of the necessary Condition AΘ of Theorem 13 turns out
to be a sufficient optimality condition not only for a Pontryagin minimum, but also
for a strong minimum.

Theorem 14. Let the following Condition BΘ be fulfilled for the process T :

(a) u(t) is a strict bang-bang control (i.e., there exists μ ∈ M0 such that condition
(35) holds),

(b) there exists μ ∈ M0 such that Dk(Hμ)> 0, k = 1, . . . ,s,
(c) max

μ∈M0
ΩΘ (μ , z̄)> 0 for all z̄ ∈KΘ \{0}.

Then T is a strict strong minimum.

Note that the condition (c) is automatically fulfilled if KΘ = {0}, which gives a
first-order sufficient condition for a strong minimum in the problem. Also note that
the condition (c) is automatically fulfilled if there exists μ ∈ M0 such that
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ΩΘ (μ , z̄)> 0 for all z̄ ∈KΘ \{0}. (46)

Sufficient conditions for inequality (46) were obtained in [21] and [22] (see also
[36], Section 6.3). Clearly, there is no gap between the necessary condition AΘ of
Theorem 13 and the sufficient condition BΘ of Theorem 14.

6 Induced Optimization Problem for Bang-Bang Controls
and the Verification of SSC

We continue our discussion of bang-bang controls. Second-order sufficient opti-
mality conditions for bang-bang controls had been derived in the literature in two
different forms. The first form was discussed in the last section. The second one is
due to Agrachev et al. [1], who first reduce the bang-bang control problem to a finite-
dimensional optimization problem and then show that the well-known sufficient
optimality conditions for this optimization problem supplemented by the strict bang-
bang property furnish sufficient conditions for the bang-bang control problem. The
bang-bang control problem, considered in this section, is more general than that
in [1]. Following [35], we claim the equivalence of both forms of second-order
conditions for this problem.

6.1 Formulation of the Induced Optimization Problem
and Necessary Optimality Conditions

Let T̂ = (x̂(t), û(t) | t ∈ [̂t0, t̂f ]) be an admissible process for the basic control
problem (22)–(24). We denote by ex U the set of vertices of the polyhedron U.
Assume that û(t) is a bang-bang control in Δ̂ = [t̂0, t̂f ] taking values in the set ex U,

û(t) = uk ∈ ex U for t ∈ (t̂k−1, t̂k), k = 1, . . . ,s+1,

where t̂s+1 = t̂f . Thus, Θ̂ = {t̂1, . . . , t̂s} is the set of switching points of the control
û(·) with t̂k < t̂k+1 for k = 0,1, . . . ,s. Assume now that the set M0 of multipliers is
nonempty for the process T̂ . Put

x̂(t̂0) = x̂0, θ̂ = (t̂1, . . . , t̂s), ζ̂ = (t̂0, t̂f , x̂0, θ̂). (47)

Then θ̂ ∈Rs, ζ̂ ∈R2 ×Rn ×Rs, where n = d(x).
Take a small neighborhood V of the point ζ̂ in R2 ×Rn ×Rs, and let

ζ = (t0, tf ,x0,θ) ∈ V ,
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t1t0 t0 t1 t2 t2 t f t f

t

u(t; t0, t f , t1, t2)

u1 u3

u2

Fig. 2 Bang-bang control with two switches

where θ = (t1, . . . , ts) satisfies t0 < t1 < t2 < .. . < ts < tf . Define the function
u(t; t0, tf ,θ) by the condition (Fig. 2)

u(t; t0, tf ,θ) = uk for t ∈ (tk−1, tk), k = 1, . . . ,s+1, (48)

where ts+1 = tf . The values u(tk; t0, tf ,θ), k = 1, . . . ,s, may be chosen in U
arbitrarily. For definiteness, define them by the condition of continuity of the control
from the left: u(tk; t0, tf ,θ) = u(tk−; t0, tf ,θ), k = 1, . . . ,s.

Let x(t; t0, tf ,x0,θ) be the solution of the initial value problem (IVP)

ẋ = f (t,x)+g(t,x)u(t; t0, tf ,θ), t ∈ [t0, tf ], x(t0) = x0. (49)

For each ζ ∈ V this solution exists if the neighborhood V of the point ζ̂ is
sufficiently small. We obviously have

x(t; t̂0, t̂f , x̂0, θ̂) = x̂(t), t ∈ Δ̂ , u(t; t̂0, t̂f , θ̂) = û(t), t ∈ Δ̂ \Θ̂ .

Consider now the following finite-dimensional optimization problem in the space
R2 ×Rn ×Rs of the variables ζ = (t0, tf ,x0,θ):

J (ζ ) := J(t0,x0, tf ,x(tf ; t0, tf ,x0,θ))→ min,
F (ζ ) := F(t0,x0, tf ,x(tf ; t0, tf ,x0,θ))≤ 0,
G (ζ ) := K(t0,x0, tf ,x(tf ; t0, tf ,x0,θ)) = 0.

(50)

We call (50) the Induced Optimization Problem (IOP) or simply Induced Problem
which represents an extension of the IOP introduced in [1]. The following assertion
is almost obvious.
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Theorem 15. Let the process T̂ be a Pontryagin local minimum for the basic
control problem (22)–(24). Then the point ζ̂ is a local minimum of the IOP (50),
and hence it satisfies first and second-order necessary conditions for this problem.

6.2 Second-Order Optimality Conditions for Bang-Bang
Controls in Terms of the Induced Optimization Problem

We shall clarify a relationship between the second-order conditions for the Induced
Optimization Problem (50) at the point ζ̂ and those in the basic bang-bang control
problem (22)–(24) for the process T̂ . It turns out that there is a one-to-one
correspondence between Lagrange multipliers in these problems and a one-to-one
correspondence between elements of the critical cones. Moreover, for corresponding
Lagrange multipliers, the quadratic forms in these problems take equal values on the
corresponding elements of the critical cones. This allows to express the necessary
and sufficient quadratic optimality conditions for a bang-bang control, formulated
in Theorems 13 and 14, in terms of the IOP (50). Thus we are able to establish the
equivalence between our quadratic sufficient conditions and those due to Agrachev
et al. [1].

Let T̂ = (x̂(t), û(t) | t ∈ [t̂0, t̂f ]) be an admissible process in the basic problem
with the properties assumed in Sect. 5.2 and let ζ̂ = (t̂0, t̂f , x̂0, θ̂) be the corre-
sponding admissible point in the IOP. The Lagrange function for the Induced
Optimization Problem (50) is

L (μ ,ζ ) =L (μ , t0, tf ,x0,θ) = α0J (ζ )+αF (ζ )+βG (ζ ), (51)

where μ = (α0,α,β ), ζ = (t0, tf ,x0,θ), θ = (t1, . . . , ts). We denote by K0 the
critical cone at the point ζ̂ in the IOP. Thus, K0 is the set of collections ζ̄ =
(t̄0, t̄f , x̄0, θ̄) such that

J ′(ζ̂ )ζ̄ ≤ 0, F ′
i (ζ̂ )ζ̄ ≤ 0, i ∈ I, G ′(ζ̂ )ζ̄ = 0, (52)

where I = {i |Fi(ζ̂ ) = 0} is the set of indices of the inequality constraints active at
the point ζ̂ . For μ ∈ M0 the quadratic form, of the induced optimization problem, is
equal to 〈Lζζ (μ , ζ̂ )ζ̄ , ζ̄ 〉.

Let us formulate now second-order optimality conditions for the basic control
problem in terms of the IOP.

Theorem 16 (Second-Order Necessary Conditions). If the process T̂ affords a
Pontryagin minimum in the basic problem, then the following Condition A0 holds:
the set M0 is nonempty and

max
μ∈M0

〈Lζζ (μ , ζ̂ )ζ̄ , ζ̄ 〉 ≥ 0 for all ζ̄ ∈K0.
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Theorem 17 (Second-Order Sufficient Conditions). Let the following Condition
B0 be fulfilled for an admissible process T̂ in the basic problem:

(a) û(t) is a strict bang-bang control with finitely many switching times t̂k, k =
1, . . . ,s (hence, the set M0 is nonempty and condition (35) holds for some
μ ∈ M0),

(b) there exists μ ∈ M0 such that Dk(Hμ)> 0, k = 1, . . . ,s,
(c) max

μ∈M0
〈Lζζ (μ , ζ̂ )ζ̄ , ζ̄ 〉> 0 for all ζ̄ ∈K0 \{0}.

Then T̂ is a strict strong minimum in the basic problem.

Theorem 17 is a generalization of sufficient optimality conditions for bang-bang
controls obtained in Agrachev et al. [1]. Detailed proofs of Theorems 16 and 17 are
given in [35] and in our book [36].

Remark 2. Noble and Schättler [29] and Schättler and Ledzewicz [38] develop
sufficient optimality conditions using methods of geometric optimal control. There
is some evidence that their sufficient conditions are closely related to the SSC in our
work [35, 36]. However, a formal proof of the equivalence of both types of sufficient
conditions has not yet been worked out.

6.3 Numerical Methods for Solving the Induced
Optimization Problem

The arc-parametrization method developed in [16, 26] provides an efficient method
for solving the IOP. To better explain this method, for simplicity let us consider
the basic control problem with fixed initial time t0 = 0 and fixed initial condition
x0(0) = x0, and without inequality constraints F (ζ ) ≤ 0. For this problem,
we slightly change the notation and replace the resulting optimization vector
ζ = (tf , t1, . . . , ts) by the vector z = (t1, . . . , ts, ts+1), ts+1 = tf . Instead of directly
optimizing the switching times tk , k = 1, . . . ,s, we determine the arc lengths (arc
durations)

ξk := tk − tk−1, k = 1, . . . ,s,s+1, (53)

of bang-bang arcs. Hence, the optimization variable z = (t1, . . . , ts, ts+1)
∗ is replaced

by the optimization variable

ξ := (ξ1, . . . ,ξs,ξs+1)
∗ ∈Rs+1, ξk := tk − tk−1. (54)

The variables z and ξ are related by a linear transformation involving the regular
(s+1)× (s+1)-matrix R :



Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls 177

ξ = Rz, z = R−1ξ , R =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0
−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎠
. (55)

In the arc-parametrization method, the time interval [tk−1, tk] is mapped to the fixed
interval

Ik :=

[
k−1
s+1

,
k

s+1

]
, k = 1, . . . ,s+1, (56)

by the linear transformation

t = ak +bkτ , τ ∈ Ik , (57)

where

ak = tk−1 − (k−1)ξk, bk = (s+1)ξk. (58)

Identifying

x(τ)∼= x(ak +bkτ) = x(t) (59)

in the relevant intervals, we obtain the ODE system

ẋ(τ) = (s+1)ξk(f (ak +bkτ ,x(τ))+g(ak +bkτ ,x(τ))uk) for τ ∈ Ik. (60)

By concatenating the solutions in the intervals Ik we get the continuous solution
x(t) = x(t;ξ ) in the normalized interval [0,1]. When expressed via the new opti-
mization variable ξ , the Induced Optimization Problem (IOP) in (50) is equivalent

to the following optimization problem (ĨOP) with tf =
s+1
∑

k=1
ξk :

Minimize J̃ (ξ ) := J(tf ;x(1,ξ ))
subject to G̃ (ξ ) := K(tf ;x(1,ξ )) = 0.

(61)

The Lagrangian function is given by

L̃ (μ ,ξ ) = α0J̃ (ξ )+β G̃ (ξ ), μ = (α0,β ). (62)

Using the linear transformation (55), it can easily be seen that the SSCs for
the Induced Optimization Problems (IOP) and (ĨOP) are equivalent; cf. similar
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arguments in [26]. To solve the (ĨOP), we use a suitable adaptation of the control
package NUDOCCCS in Büskens [4, 5]. Then we can take advantage of the fact that
NUDOCCCS also provides the Jacobian of the terminal constraints and the Hessian
of the Lagrangian which are needed in the check of the second-order condition in
Theorem 17.

In practice, we shall verify the positive definiteness condition (c) in Theorem 17
in a stronger form. We assume that the multiplier can be chosen as μ = (1,β ) and
that the following regularity condition holds:

rank G̃ξ (ξ̂ ) = d(K).

Let N be the nξ × (nξ − d(K)) matrix, nξ = n+ s+ 1 (where n = d(x)), with full

column rank nξ − d(K), whose columns span the kernel of G̃ξ (ξ̂ ). Then condition
(c) in Theorem 17,

〈L̃ξξ (ξ̂ ,β )ξ̄ , ξ̄ 〉> 0 ∀ξ̄ �= 0, G̃ξ (ξ̂ )ξ̄ = 0, (63)

is equivalent to the condition that the projected Hessian is positive definite [6],

N∗L̃ξξ (ξ̂ ,β )N > 0 . (64)

7 Numerical Example with Fixed Final Time: Optimal
Control of the Chemotherapy of HIV

The treatment of patients infected with the human immunodeficiency virus (HIV)
is still of great concern today (Kirschner et al. [18]). The problem of determining
optimal chemotherapies has been treated in Kirschner et al. [18] in the framework
of optimal control theory. The optimal control model is based on a simple dynamic
model in Perelson et al. [37] which simulates the interaction of the immune system
with HIV. Kirschner et al. [18] use a control quadratic cost functional of L2-type.
It has been argued in Schättler et al. [39] that in a biological context it is more
appropriate to consider cost functionals of L1-type which are linear in the control
variable. Therefore, in this section, we are studying an objective of L1-type, where
the quadratic control is replaced by a linear control. The state and control variables
have the following meaning:

T(t): concentration of uninfected CD4+ T cells,
T∗(t): concentration of latently infected CD4+ T cells,
T∗∗(t): concentration of actively infected CD4+ T cells,
V(t): concentration of free infectious virus particles,
u(t): control, rate of chemotherapy.
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The treatment starts at t0 = 0 and terminates at the fixed final time tf = 500 (days).
Thus, the control process is considered in the interval [0, tf ]. The dynamics of the
populations are (omitting the time argument):

dT/dt = s
1+V −μTT + rT

(
1− T+T∗+T∗∗

Tmax

)
− k1VT , T(0) = T0,

dT∗/dt = k1VT −μTT∗ − k2T∗ , T∗(0) = T∗
0 ,

dT∗∗/dt = k2T∗ −μbT∗∗, T∗∗(0) = T∗∗
0

dV/dt = (1−u)NμbT∗∗ − k1VT −μV V , V(0) = V0 .

(65)

The control constraint is given by

0 ≤ u(t)≤ 1 ∀ t ∈ [0, tf ], (66)

where u(t) = 1 represents maximal chemotherapy, while u(t) = 0 means that no
chemotherapy is administered. Note that Kirschner et al. [18] consider the control
variable v= 1−u. It is convenient to write the ODE (65) as the control affine system
(24),

ẋ = f (x)+g(x)u, x(0) = x0, x = (T,T∗,T∗∗,V) ∈R4, (67)

with obvious definitions of the vector functions f (x) and g(x). As in [18] we consider
two sets of initial conditions which depend on the time at which the treatment starts
after the infection. The following initial conditions are interpolated from [18] and
have already been used in the [15].

Initial conditions after 800 days:

T0 = 982.8, T∗
0 = 0.05155, T∗∗

0 = 0.0006175 , V0 = 0.07306. (68)

Initial conditions after 1000 days:

T0 = 904.1, T∗
0 = 0.3447, T∗∗

0 = 0.004167, V0 = 0.4939. (69)

The parameter and constants are taken from [18] and are listed in Table 1.
Kirschner et al. [18] consider the following objective of L2-type which is

quadratic in the control variable:

Minimize J(x,u) =
∫ tf

0
(−T(t)+Bu(t)2)dt (B = 50). (70)

Recall that the state variable is defined as x := (T,T∗,T∗∗,V) ∈ R4. The optimal
control that minimizes (70) subject to the constraints (65)–(69) is a continuous
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Table 1 Parameters and constants

Parameters and constants Values

μT : death rate of uninfected CD4+ T cell population 0.02 d−1

μT∗ : death rate of latently infected CD4+ T cell population 0.02 d−1

μb : death rate of actively infected CD4+ T cell population 0.24 d−1

μV : death rate of free virus 2.4 d−1

k1 : rate CD4+ T cells becomes infected by free virus 2.4×10−5 mm3 d−1

k2 : rate T∗ cells convert to actively infected 3×10−3 mm3 d−1

r : rate of growth for the CD4+ T cell population 0.03 d−1

N : number of free virus produced by T∗∗ cells 1200

Tmax : maximum CD4+ T cell population level 1.5×103 mm−3

s : source term for uninfected CD4+ T cells, 10 d−1 mm−3

where s is the parameter in the source term s/(1+V)

Fig. 3 Optimal control for the L2 functional (70). (Left) begin of treatment after 800 days: initial
conditions (68). (Right) begin of treatment after 1000 days: initial conditions (69)

function, since the associated Hamiltonian H(x,λ ,u) has a unique minimum with
respect to u and the strict Legendre-Clebsch condition Huu = 2B > 0 holds. For the
two sets of initial conditions (68) and (69), the numerical discretization and NLP
approach using AMPL [12] and IPOPT [42] yield the optimal controls shown in
Fig. 3 which were also obtained in Hannemann [15].

Hannemann [15] showed that second-order sufficient conditions (SSC) are
satisfied for the controls displayed in Fig. 3, since the associated matrix Riccati
equation has a bounded solution. Note that Riccati equations are discussed in
[19, 24] and in our book [36], Chap. 4.

Instead of the L2 functional (70) we consider now the functional of L1-type:

Minimize J1(x,u) =
∫ tf

0
(−T(t)+Bu(t))dt (B = 50). (71)

The Hamiltonian or Pontryagin function for this control problem is given by

H(x,λ ,u) =−T +Bu+λ (f (x)+g(x)u) , (72)
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where λ = (λT ,λT∗ ,λT∗∗ ,λV) ∈ R4 denotes the adjoint variable. The adjoint
equation and transversality condition are given by

λ̇ =−Hx(x,λ ,u), λ (tf ) = (0,0,0,0),

since the terminal state x(tf ) is free and the objective (71) does not contain a Mayer
term. We do not write out the adjoint equation λ̇ =−Hx(x,λ ,u) explicitly, since this
equation is not needed in the sequel. The adjoint variables can be computed from
the Lagrange multipliers of the associated Induced Optimization Problem (IOP).
The switching function is given by

σ(x,λ ) = Hu(x,λ ,u) = B−λVNμbT∗∗, σ(t) = σ(x(t),λ (t)). (73)

The minimization of the Hamiltonian with respect to u yields the switching
condition

u(t) =

{
1, if σ(t)< 0
0, if σ(t)> 0

}
. (74)

The control has a singular arc in an interval [t1, t2] ⊂ [0,T] if σ(t) = 0 holds on
[t1, t2]. However, we do not discuss singular controls further because for the data
in Table 1 we never found singular arcs. Indeed, the optimal control for the L1-
functional (71) is the following bang-bang control with only one switch at t1 :

u(t) =

{
1 for 0 ≤ t < t1
0 for t1 ≤ t ≤ tf

}
(75)

The terminal arc u(t) = 0 results from the terminal value σ(tf ) = B > 0 of
the switching function and the minimum condition (74). Hence, the IOP has
only the scalar optimization variable t1 and thus the objective (71) reduces to a
function J1(t1) = J1(x,u). The arc-parametrization method [26, 36] and the code
NUDOCCCS [4] yield the following numerical results, where state variables are
listed with 8 digits and adjoint variables with 6 digits.

J1 = −489810.5, t1 = 161.6957, T(tf ) = 983.4926,

T∗(tf ) = 0.04934668, T∗∗(tf ) = 0.0005910497, V(tf ) = 0.06993300,

λT(0) = −0.125173, λT∗(0) = −1.51988, λT∗∗(0) = −2.94704,

λV(0) = −0.449700.

(76)

The state and control variables and the switching function are displayed in Fig. 4.
To verify that the second-order sufficient conditions (SSC) are satisfied for the
computed extremal solution, we have to check the conditions of Theorem 17. The
strict bang-bang property is satisfied, since we infer from Fig. 4 (bottom, right) that
the switching function satisfies
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Fig. 4 Optimal solution for initial conditions (68): treatment starts after 800 days. Top row:
(left) uninfected CD4+T cells, (right) latently infected CD4+T∗ cells. Middle row: (left) actively
infected CD4+T∗∗ cells, (right) infectious virus particles V . Bottom row: (left) bang-bang control
u, (right) bang-bang control u and (scaled) switching function σ in (73) satisfying the switching
condition (74)

σ(t)< 0 for 0 ≤ t < t1 , σ̇(t1)> 0, σ(t)> 0 for t1 < t ≤ tf = 500.
(77)

To verify the positive definiteness in condition (63), we note that the Hessian
is simply the second derivative of the objective J1(t1) evaluated at the optimal
switching time t1 = 161.695711 for which we find
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d2J1

dt2
1

= 1.5469 > 0.

Hence, the extremal solution (76) displayed in Fig. 4 provides a strict strong
minimum.

Now we try to improve the optimal terminal value T(tf ) = 983.493 of the
uninfected CDC4+T cells. For that purpose we prescribe a higher terminal value
and minimize the functional J1(x,u) subject to the boundary condition

T(tf ) = 995 . (78)

The arc-parametrization method [26, 36] and the control package NUDOCCCS
[4] furnish the results

J1 = −489044.529, t1 = 198.566451, T(tf ) = 995.0,

T∗(tf ) = 0.014576433, T∗∗(tf ) = 0.00017436211, V(tf ) = 0.020625442,

λT(0) = −33.7027, λT(tf ) = −211.377, λT∗(0) = 28078.4

λT∗∗(0) = 2.76312, λV(0) = 405.843.
(79)

Figure 5 displays the state and control variables and the switching function.
Figure 5 (bottom, right) shows that the strict bang-bang property (77) is satisfied.
Condition (c) in Theorem 17 holds because the critical cone K0 = {0} contains of
zero element. Therefore, the extremal displayed in Fig. 5 provides a strict strong
minimum.

Finally, we study the optimal solution for the initial values (69), when the
treatment starts after 1000 days and, again, the boundary condition T(tf ) = 995
is prescribed. The arc-parametrization method in [26, 36] and the control package
NUDOCCCS yield the results

J1 = −483480.9, t1 = 254.5443, T(tf ) = 995.0,

T∗(tf ) = 0.01457694, T∗∗(tf ) = 0.0001743682, V(tf ) = 0.02062616,

λT(0) = −35.629, λT(tf ) = −214.021, λT∗(0) = 4209.98,

λT∗∗(0) = 2.69187, λV(0) = 136.835.
(80)

Figure 6 depicts the state and control variables and the switching function. The
SSC in Theorem 17 are satisfied, since the strict bang-bang property (77) holds and
condition (63) holds in view of K0 = {0}. Therefore, the extremal (80) provides a
strict strong minimum.
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Fig. 5 Optimal solution for initial conditions (68): treatment starts after 800 days and and terminal
condition T(tf ) = 995. Top row: (left) uninfected CD4+T cells, (right) latently infected CD4+T∗.
Middle row: (left) actively infected CD4+T∗∗ cells, (right) infectious virus particles V . Bottom
row: (left) bang-bang control u, (right) bang-bang control u and scaled switching function σ in
(73) satisfying the switching condition (74)

8 Numerical Example with Free Final Time: Time-Optimal
Control of Two-Link Robots

In this section, we review the results in our book [36] on the optimal control of
two-link robots which has been addressed in various articles; cf., e.g. [9, 13, 14, 30].
In these papers, optimal control policies are determined solely on the basis of first
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Fig. 6 Optimal solution for initial conditions (69): treatment starts after 1000 days and terminal
condition T(tf ) = 995. Top row: (left) uninfected CD4+T cells, (right) latently infected CD4+T∗.
Middle row: (left) actively infected CD4+T∗∗ cells, (right) infectious virus particles V . Bottom
row: (left) bang-bang control u, (right) bang-bang control u and scaled switching function σ in
(73) satisfying the switching condition (74)

order necessary conditions, since sufficient conditions were not available. In this
section we show that SSC hold for both types of robots considered in [9, 14, 30].

First, we study the robot model considered in Chernousko et al. [9]. Göllmann
[14] has shown that the optimal control candidate presented in [9] is not optimal,
since the sign conditions of the switching functions do not comply with the
Minimum Principle. Figure 7 displays the two-link robot schematically. The state
variables are the angles q1 and q2. The parameters I1 and I2 are the moments of
inertia of the upper arm OQ and the lower arm QP with respect to the points O and
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Fig. 7 Schematical
representation of a two-link
robot

O x1

x2

q1

q2

Q

P

C

Q, resp. Further, let m2 be the mass of the lower arm, L1 = |OQ| the length of the
upper arm, and L1 = |QC| the distance between the second link Q and the center of
gravity C of the lower arm. With the abbreviations

A = I1 +m2L2
1 + I2 +2m2L1Lcosq2 , B = I2 +m2L1Lcosq2 ,

R1 = u1 +m2L1L(2q̇1 + q̇2)q̇2 sinq2 , R2 = u2 −m2L1Lq̇2
1 sinq2 ,

D = I2 , Δ = AD−B2 ,

(81)

the dynamics of the two-link robot can be described by the ODE system

q̇1 = ω1 , ω̇1 = 1
Δ (DR1 −BR2) ,

q̇2 = ω2 , ω̇2 = 1
Δ (AR2 −BR1) ,

(82)

where ω1 and ω2 are the angular velocities. The torques u1 and u2 in the two links
represent the two control variables. Therefore, the state variable and control variable
are given by

x = (q1,q2,ω1,ω2) ∈R4, u = (u1,u2) ∈R2.

The control problem consists in steering the robot from a given initial position to a
terminal position in minimal final time tf ,

q1(0) = 0 , q2(0) = 0 , ω1(0) = 0 , ω2(0) = 0 ,
q1(tf ) = −0.44 , q2(tf ) = 1.83 , ω1(tf ) = 0 , ω2(tf ) = 0 .

(83)
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The control components are bounded by

|u1(t)| ≤ 2 , |u2(t)| ≤ 1 , t ∈ [0, tf ] . (84)

The Pontryagin function (Hamiltonian) is

H = λ1ω1 +λ2ω2 +
λ3

Δ
(DR1(u1)−BR2(u2))+

λ4

Δ
(AR2(u2)−BR1(u1)) . (85)

The adjoint equations are rather complicated and are not given here explicitly. The
switching functions are

σ1(x,λ ) = Hu1 =
λ3

Δ
D− λ4

Δ
B , σ2(x,λ ) = Hu2 =

λ4

Δ
A− λ3

Δ
B . (86)

For the parameter values

L1 = 1 , L = 0.5 , m2 = 10 , I1 = I2 =
10
3
,

Göllmann [14] has found the following control structure with four bang-bang arcs,

u(t) = (u1(t),u2(t)) =

⎧⎪⎪⎨
⎪⎪⎩

(−2,1) , 0 ≤ t < t1
(2,1) , t1 ≤ t < t2

(2,−1) , t2 ≤ t < t3
(−2,−1) , t3 ≤ t ≤ tf

⎫⎪⎪⎬
⎪⎪⎭
, 0 < t1 < t2 < t3 < tf . (87)

This control structure differs substantially from the one in Chernousko et al. [9]
which violates the switching conditions. Obviously, the bang-bang control (87)
satisfies the assumption that only one control components switches at a time. Since
the initial point (q1(0),q2(0),ω1(0),ω2(0)) is specified, the optimization variable
in the IOP (61) is

ξ = (ξ1,ξ2,ξ3,ξ4), ξ1 = t1, ξ2 = t2 − t1, ξ3 = t3 − t2, ξ4 = tf − t3 .

Using the code NUDOCCCS we compute the following arc durations and switching
times

t1 = 0.7677893 , ξ2 = 0.3358820 , t2 = 1.1036713 ,
ξ3 = 1.2626739 , t3 = 2.3663452 , ξ4 = 0.8307667 ,
tf = 3.1971119 .

(88)

Numerical values for the adjoint functions are also provided by the code NUDOC-
CCS, e.g., the initial values
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Fig. 8 Control of the two-link robot (81)–(84). Top row: (left) control u1 and scaled switching
function σ1, (right) control u2 and scaled switching function σ2. Bottom row: (left) angle q1 and
velocity ω1, (right) angle q2 and velocity ω2

λ1(0) = −1.56972 , λ2(0) = −0.917955 ,
λ3(0) = −2.90537 , λ4(0) = −1.45440 .

(89)

Figure 8 shows that the switching functions σ1 and σ2 comply with the minimum
condition and that the strict bang-bang property (35) and the inequalities Dk(H)> 0,
k = 1,2,3 are satisfied:

σ1(t) �= 0 for t �= t1 , t3 , σ2(t) �= 0 for t �= t2 ,

σ̇1(t1)< 0 , σ̇1(t3)> 0 , σ̇2(t2)> 0 .

For the terminal conditions (83) we obtain the Jacobian

G̃ ξ (ξ̂ ) =

⎛
⎜⎜⎝

−0.75104 0.035106 0.25890 0
3.7612 1.8493 −0.20417 0
−0.32635 0.077005 0.21272 −0.10782
1.2685 0.44545 −0.48745 −0.23363

⎞
⎟⎟⎠ .

This square matrix has full rank in view of
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det G̃ ξ (ξ̂ ) = 0.076652 �= 0 ,

which means that the positive definiteness condition (63) trivially holds. Thus we
have verified first-order sufficient conditions showing that the extremal solution
given by (87)–(89) provides a strict strong minimum.

In the model treated above, some parameters like the mass of the upper arm
and the mass of a load at the end of the lower arm appear implicitly in the system
equations. The mass m1 of the upper arm is included in the moment of inertia I2 and
the mass M of a load in the point P can be added to the mass m2, where the point
C and therefore the length L have to be adjusted. The length L2 of the lower arm is
incorporated in the parameter L.

The second robot model that we are going to discuss is taken from Geering et al.
[13] and Oberle [30]. Here, every physical parameter enters the system equation
explicitly. The dynamic system is as follows:

q̇1 = ω1 , ω̇1 = 1
Δ (AI22 −BI12 cosq2) ,

q̇2 = ω2 −ω1 , ω̇2 = 1
Δ (BI11 −AI12 cosq2) ,

(90)

where we have used the abbreviations

A = I12ω2
2 sinq2 +u1 −u2 , B = −I12ω2

1 sinq2 +u2 ,

Δ = I11I22 − I2
12 cos2 q2 , I11 = I1 +(m2 +M)L2

1 ,

I12 = m2LL1 +ML1L2 , I22 = I2 + I3 +ML2
2 .

(91)

Here, I3 denotes the moment of inertia of the load with respect to the point P and ω2

is now the angular velocity of the angle q1+q2. For simplicity, we set I3 = 0. Again,
the torques u1 and u2 in the two links are used as control variables by which the robot
is steered from a given initial position to a non-fixed end position in minimal final
time tf ,

q1(0) = 0 ,
√
(x1(tf )− x1(0))2 +(x2(tf )− x2(0))2 = r ,

q2(0) = 0 , q2(tf ) = 0 ,
ω1(0) = 0 , ω1(tf ) = 0 ,
ω2(0) = 0 , ω2(tf ) = 0 ,

(92)

where (x1(t),x2(t)) are the Cartesian coordinates of the point P,

x1(t) = L1 cosq1(t)+L2 cos(q1(t)+q2(t)) ,
x2(t) = L1 sinq1(t)+L2 sin(q1(t)+q2(t)) .

(93)

The initial point (x1(0),x2(0)) = (2,0) is fixed. Both control components are
bounded,
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|u1(t)| ≤ 1 , |u2(t)| ≤ 1 , t ∈ [0, tf ] . (94)

The Hamilton–Pontryagin function is given by

H = λ1ω1 +λ2(ω2 −ω1)+
λ3
Δ (A(u1,u2)I22 −B(u2)I12 cosq2)

+λ4
Δ (B(u2)I11 −A(u1,u2)I12 cosq2) .

(95)

The switching functions are computed as

σ1(x,λ ) = Hu1 =
1
Δ (λ3I22 −λ4I12 cosq2) ,

σ2(x,λ ) = Hu2 =
1
Δ (λ3(−I22 − I12 cosq2)+λ4(I11 + I12 cosq2)) .

(96)

For the parameter values

L1 = L2 = 1 , L = 0.5 , m1 = m2 = M = 1 , I1 = I2 =
1
3
, I3 = 0 , r = 3,

we will show that the optimal control has the following structure with five bang-
bang arcs with 0 = t0 < t1 < t2 < t3 < t4 < t5 = tf (Fig. 9):

u(t) = (u1(t),u2(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1,1) for 0 ≤ t < t1
(−1,−1) for t1 ≤ t < t2
(1,−1) for t2 ≤ t < t3
(1,1) for t3 ≤ t < t4

(−1,1) for t4 ≤ t ≤ tf

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (97)

Since the initial point (q1(0),q2(0),ω1(0),ω2(0)) is specified, the optimization
variable in the optimization problem (50), resp., (61) is

z = (ξ1,ξ2,ξ3,ξ4,ξ5), ξk = tk − tk−1 , k = 1, . . . ,5.

The code NUDOCCCS yields the arc durations and switching times

t1 = 0.546174 , ξ2 = 1.21351 , t2 = 1.75968 ,
ξ3 = 1.03867 , t3 = 2.79835 , ξ4 = 0.906039 ,
t4 = 3.70439 , ξ5 = 0.185023 , tf = 3.889409 ,

(98)

as well as the initial values of the adjoint variables,

λ1(0) = 0.184172 , λ2(0) = −0.011125 ,
λ3(0) = 1.482636 , λ4(0) = 0.997367 .

(99)
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The strict bang-bang property (35) and the inequalities Dk(H) > 0, k = 1,2,3,
hold in view of

σ1(t) �= 0 for t �= t2, t4 , σ̇1(t2)< 0 , σ̇1(t4)> 0 ,
σ2(t) �= 0 for t �= t1, t3 , σ̇2(t1)> 0 , σ̇2(t3)< 0.

For the terminal conditions in (92), the Jacobian in the optimization problem is
computed as the (4×5)-matrix

G̃ξ (ξ̂ ) =

⎛
⎜⎜⎝

−10.858 −12.746 −5.8833 −1.1500 0
0.19928 −2.7105 −1.4506 −1.9148 −4.83871
−0.62256 3.3142 2.3155 2.9435 6.1936
9.3609 3.0393 0.48446 0.040581 0

⎞
⎟⎟⎠

which has full rank. The Hessian of the Lagrangian is given by
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Fig. 9 Control of the two-link robot (90)–(94). Top row: (left) control u1, (right) control u2.
Bottom row: (left) angle q1 and velocity ω1, (right) angle q2 and velocity ω2
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L̃ξξ (ξ̂ ,β ) =

⎛
⎜⎜⎜⎜⎜⎝

71.142 90.761 42.130 8.4989 −0.051822
90.761 112.54 51.313 10.769 0.14985
42.130 51.313 23.963 5.1240 0.13860
8.4989 10.769 5.1240 1.4999 0.17078
−0.051822 0.14985 0.13860 0.17078 0.29736

⎞
⎟⎟⎟⎟⎟⎠
.

This yields the projected Hessian (64) as the positive number

N∗L̃ξξ (ξ̂ ,β )N = 0.326929 .

Hence, all conditions in Theorem 17 are satisfied and thus the extremal (97)–(99)
yields a strict strong minimum.

It is interesting to note that there exists a second local minimum with the same
terminal time tf = 3.88941. Though the control has also five bang-bang arcs, the
control structure is substantially different from that in (97),

u(t) = (u1(t),u2(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1,−1) , 0 ≤ t < t1
(−1,−1) , t1 ≤ t < t2
(−1,1) , t2 ≤ t < t3
(1,1) , t3 ≤ t < t4

(1,−1) , t4 ≤ t ≤ tf

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (100)

where 0 < t1 < t2 < t3 < t4 < t5 = tf . NUDOCCCS determines the switching times

t1 = 0.1850163 , t2 = 1.091075 , t3 = 2.129721 ,
t4 = 3.343237 , tf = 3.889409 ,

(101)

for which the strict bang-bang property (35) holds and Dk(H)> 0 for k = 1,2,3,4.
Moreover, computations show that rank ( G̃ξ (ξ̂ )) = 4 and that the projected Hessian
of the Lagrangian (64) is the positive number

N∗L̃ξξ (ξ̂ ,β )N = 0.326929 .

It is remarkable that this value is identical with the value of the projected Hessian
for the first local minimum. Therefore, also for the second solution we have verified
that all conditions in Theorem 17 hold, and thus the extremal (100), (101) is a strict
strong minimum. The phenomenon of multiple local solutions all with the same
minimal time tf has also been observed by Betts [3], Example 6.8 (Reorientation of
a rigid body).
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9 Optimal Control Problems with Mixed Control-State
Constraints and Control Appearing Linearly

To the best of our knowledge, second-order sufficient optimality conditions (SSC)
for optimal control problems with mixed control-state constraints have only been
studied for the class of regular controls, where the strict Legendre–Clebsch
condition holds. Such control problems have not yet been considered, when the
control variable appears linearly in the system dynamics and in the mixed control-
state constraint. For a two-sided control-state constraint we will show that the
constraining function itself can be taken as a new control variable, whereby the
original control problem is transformed into a classical control problem with an
affine control variable subject to simple control bounds. Hence, optimal controls for
the transformed control problem are concatenations of bang-bang and singular arcs.
The material in this section is based on our paper [23].

9.1 Statement of the Problem and Transformed
Control Problem

For simplicity, we consider an optimal control problem with fixed initial time t0 = 0,
fixed initial conditions and terminal equality constraints, and with a scalar control.
Let x ∈Rn denote the state variable and u ∈R be the control variable. The terminal
time tf > 0 is either fixed or free. The dynamic equation and boundary conditions are

ẋ = f (t,x)+g(t,x)u, x(0) = x0, K(x(tf )) = 0. (102)

We consider a two-sided mixed control-state constraint which is affine in the control
variable:

α ≤ a(x(t))+b(x(t))u(t)≤ β for a.e. t ∈ [0, tf ] . (103)

The optimal control problem consists in finding a control u ∈ L∞([0, tf ],R) that
minimizes the objective functional in Mayer form

J (x,u) = J(x(tf )). (104)

The functions f ,g : Rn →Rn, a,b : Rn →R, J : Rn →R and K : Rn →Rd(K) (0 ≤
d(K) ≤ n) are assumed to be twice continuously differentiable. We remind the
reader that a Bolza functional of the form

J (x,u) = J(x(tf ))+

tf∫

0

(f0(t,x)+g0(t,x)u)dt (105)



194 N.P. Osmolovskii and H. Maurer

can be reduced to Mayer form by introducing the additional state variable y that
solves the initial value problem ẏ = f0(t,x)+g0(t,x)u, y(0) = 0 and minimizing the
functional J(x(tf ))+ y(tf ).

The following regularity assumption will be assumed to hold for feasible
trajectories:

b(t,x(t)) �= 0 for t ∈ [0, tf ] . (106)

This assumption allows us to introduce a new control variable v that is related to the
control variable u as follows:

v := a(x)+b(x)u, i.e., u = (v−a(x))/b(x). (107)

The transformed optimal control problem consists in minimizing the objective (104)
subject to the transformed dynamics

ẋ = f̄ (t,x)+ ḡ(t,x)v, x(0) = x0, K(x(tf )) = 0, (108)

where the transformed functions f̄ , ḡ are defined by

f̄ (t,x) = f (t,x)−g(t,x)a(x)/b(x), ḡ(t,x) = g(t,x)/b(x). (109)

The mixed control-state constraint (103) then is equivalent to the simple control
constraint

α ≤ v(t)≤ β . (110)

Thus, we can apply the second-order conditions developed in Sects. 5 and 6 to the
transformed problem.

9.2 Numerical Example: Optimal Control of the Rayleigh
Equation

The Rayleigh equation describes oscillations of the electric current, resp., voltage
in an electric circuit. The optimal control of the Rayleigh equation for a control-
quadratic objective has been studied in Maurer and Augustin [20], Osmolovskii and
Maurer [36], and Chen and Gerdts [8], where both simple control bounds and a
mixed control-state constraint were investigated.

Let x1 denote the electric current and x2 the voltage. The control u represents the
voltage at the generator which steers the following dynamic equations:

ẋ1 = x2, x1(0) =−5,
ẋ2 =−x1 + x2(1.4−0.14x2

2)+u, x2(0) =−5.
(111)
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We consider the mixed control-state constraint

α ≤ u+ x1 ≤ β (α =−5, β = 0). (112)

Various other bounds α and β have been studied in Maurer and Omolovskii [23].
The mixed constraint is a slight modification of the one considered in [8, 20]. The
objective is to minimize the quadratic functional

J (x,u) =
∫ tf

0
(x1(t)

2 + x2(t)
2)dt . (113)

First, we consider this control problem with fixed terminal time tf = 4.5. Later, we
shall prescribe the terminal condition

x1(tf ) = 0 (114)

and solve the control problem with free terminal time tf .
According to (107), the new control variable v is given by

v = u+ x1 , u = v− x1 . (115)

The Pontryagin function (Hamiltonian) with respect to the control v becomes

H(x,λ ,v) = x2
1 + x2

2 +λ1x2 +λ2(−x1 + x2(1.4−0.14x2
2)+ v− x1). (116)

The adjoint equations are

λ̇1 =−Hx1 =−2x1 +2λ2,

λ̇2 =−Hx2 =−2x2 −λ1 +λ2(0.42x2
2 −1.4).

(117)

For the first control problem with free endpoint x(tf ) and fixed final time tf = 4.5,
we get the transversality condition

λ1(tf ) = 0, λ2(tf ) = 0, (118)

while the second control problem with terminal constraint x1(tf ) = 0 and free
terminal time tf gives the transversality conditions

H(tf ) = 0, λ2(tf ) = 0. (119)

The switching function σ = Hv = λ2 determines the optimal control according to

v(t) =

⎧⎨
⎩
β , if λ2(t)< 0,
α , if λ2(t)> 0,
singular , if λ2(t) = 0 ∀ t ∈ Is ⊂ [0, tf ].

(120)
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We do not discuss singular controls further, because for the chosen bounds α =−5
and β = 0 in the mixed constraint (112) we obtain bang-bang controls. Singular
controls for smaller values of α are discussed in [23].

In the first control problem with free terminal state x(tf ) and fixed terminal time
tf , we obtain a bang-bang control with three bang-bang arcs:

v(t) =

⎧⎨
⎩

0 , if 0 ≤ t ≤ t1
−5 , if t1 < t ≤ t2
0 , if t2 < t ≤ tf

⎫⎬
⎭ . (121)

The code NUDOCCCS [4] yields the following results:

J (x,u) = 62.165171, t1 = 0.77996717, t2 = 2.6835574,
x1(tf ) = −0.40342897, x2(tf ) = −1.4332277,
λ1(0) = −13.364385, λ2(0) = −5.591549.

The corresponding extremal solution is shown in Fig. 10.

Fig. 10 Objective (113) and constraint −5 ≤ v = u+ x1 ≤ 0. Top row: (left) state variables x1,x2,
(right) transformed control v and switching function σ = λ2. Bottom row: (left) adjoint variables
λ1,λ2, (right) control u
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Next, we compute the Hessian of the Lagrangian for the IOP:

L̃ z̃ z̃ =

(
573.237 458.854
458.854 377.399

)
.

Obviously, this matrix is positive-definite. Moreover, Fig. 10 (top row, right)shows
that the switching function σ(t) = λ2(t) satisfies the strict bang-bang property (37);
cf. also Remark 5.1:

λ2(t)< 0 ∀ 0 ≤ t < t1, λ2(t1) = 0, λ̇2(t1)> 0,
λ2(t)> 0 ∀ t1 < t < t2, λ2(t2) = 0, λ̇2(t2)< 0,
λ2(t)< 0 ∀ t2 < t < tf , λ2(tf ) = 0, λ̇2(tf )> 0.

Hence, the extremal shown in Fig. 10 satisfies the SSC in Theorem 17 and thus is a
strict strong minimum.

Now we study the solution, when the terminal condition x1(tf ) = 0 is imposed
and the terminal time tf is free. In this case we obtain a bang-bang control with only
one switch:

v(t) =

{
0 , if 0 ≤ t ≤ t1
−5 , if t1 < t ≤ tf

}
. (122)

The corresponding IOP has the two optimization variables t1, tf and the scalar
equality constraint x1(tf ) = 0. The code NUDOCCCS yields the following results:

J (x,u) = 60.72697, t1 = 0.8343100, tf = 2.364688,
x1(tf ) = 0.0, x2(tf ) = 1.600202,
λ1(0) = −13.4868, λ1(tf ) = −1.60020,
λ2(0) = −5.72868, λ2(tf ) = 0.0.

The extremal solution with state, control, adjoint variables, and switching function
is shown in Fig. 11.

The reduced Hessian (64) of the Lagrangian for the IOP is a scalar which we
compute as the positive number 4.3525. Moreover, Fig. 11, top row, right, shows
that the strict bang-bang property is fulfilled; cf. also Remark 5.1:

λ2(t)< 0 ∀ 0 ≤ t < t1, λ2(t1) = 0, λ̇2(t1)> 0,
λ2(t)> 0 ∀ t1 < t < tf , λ2(tf ) = 0, λ̇2(tf )< 0.

Hence, the extremal shown in Fig. 11 satisfies the SSC in Theorem 17 and thus
provides a strict strong minimum.
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Fig. 11 Objective (113) with free terminal time tf and constraints −5≤ v= u+x1 ≤ 0, x1(tf ) = 0.
Top row: (left) state variables x1,x2, (right) transformed control v and switching function σ = λ2.
Bottom row: (left) adjoint variables λ1,λ2, (right) control u = v− x1

10 Conclusion

We presented no-gap necessary and sufficient second-order optimality conditions
for extremals with discontinuous controls in the simplest problem of the Calculus
of Variations and the general optimal control problem with regular mixed constraint
g(t,x,u) = 0 on a variable time interval [t0, tf ]. We formulated similar conditions for
bang-bang controls in an optimal control problem with a Mayer functional, where
the dynamical system is affine in control variable and the control constraint is given
by a convex polyhedron. Bang-bang controls induce an optimization problem with
respect to the switching times of the control, the so-called Induced Optimization
Problem IOP. We showed that the classical second-order sufficient condition for
the IOP together with the strict bang-bang property of the switching function
ensure second-order sufficient conditions (IOP) for the bang-bang control problem.
The verification of SSC for bang-bang controls was illustrated on two numerical
examples. First, we studied extremals in the optimal control of the chemotherapy
of HIV. Then, following [36], we investigated extremals in time-optimal control
problems of two-link robots. We also discussed optimal control problems with
running mixed control-state constraints and control appearing linearly. Taking the
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mixed constraint as a new control variable we converted such problems to bang-
bang control problems. As an example, we studied extremals in the optimal control
problem for the Rayleigh equation.

The results on SSC naturally lend themselves to sensitivity results for the IOP and
the underlying bang-bang control problem using the well-known sensitivity results
for finite-dimensional optimization problems developed by Fiacco [11]. Sensitivity
results for bang-bang controls may be found in Felgenhauer [10], Kim and Maurer
[17] and Maurer and Vossen [25]. Sensitivity results also allow to develop real-
time control techniques as indicated already in Büskens et al. [7]. These issues
will be the topic of a future paper. Related sensitivity results may be obtained for
bang-singular controls as suggested in Vossen [40, 41]. This approach still needs
a practical method of verifying the more abstract SSC for bang-singular controls
given in Aronna et al. [2].
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