
Chapter 3
Measurable Functions

3.1 Definition

This chapter lays the groundwork for integration applied to a large class of real-
valued functions. First we note a useful fact that is independent of the real line.

Theorem 3.1.1. Fix a σ -algebra A in a set X and a function f with domain A ∈A
and range in a set Y . The collection B of all sets B ⊆ Y such that f−1 [B] ∈A con-
tains ∅ and is stable with respect to complementation and the operation of taking
countable unions. That is, B is a σ -algebra in Y .

Proof. The result follows from the fact that f−1 [Y \B] = A \ f−1 [B], and if the
sequence 〈Bn : n ∈ N〉 is in B, then

f−1

[
∞⋃

n=1

Bn

]
=

∞⋃
n=1

f−1 [Bn] .

We will use Lebesgue measure and other measures on the real line to extend
Riemann integration. The extended integral will apply to functions having an
appropriate structure in terms of the family of measurable sets. The definitions and
results in this chapter hold for any integrator on R. The resulting general measure
is denoted by m, but when m is just Lebesgue measure, we write λ . We denote the
class of measurable sets by M . This is the class of sets measurable with respect to
a given outer measure. If that outer measure is specifically Lebesgue outer measure,
then we say “Lebesgue measurable.”

It is convenient to follow the convention of probability theory and write {S( f )}
instead of {x ∈ A : S( f )(x)} for a function f with domain A that is understood, and a
property S involving f . For example, {sin > 0} denotes the set {x ∈R : sin(x)> 0}.

As previously noted, an extended-real valued function is one taking values in the
set R∪ {+∞,−∞}. The hyphen indicates it is R that is extended to a larger set;
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46 3 Measurable Functions

the function is not extended to a larger domain. In working with extended-real val-
ued functions, we exclude certain combinations. We do not allow the addition of +∞
to −∞. Similarly, we do not allow multiplication of 0 with either infinity. One rea-
son for the latter prohibition is that a product of sequences xn ↘ 0 and yn ↗+∞ can
have any nonnegative limiting result, depending on the choice of sequences. When
the operation is allowed, we have +∞+a =+∞, −∞+a =−∞, and +∞ ·a =+∞
if a > 0, +∞ ·a =−∞ if a < 0, −∞ ·a =−∞ if a > 0, and −∞ ·a =+∞ if a < 0.

Definition 3.1.1. An extended-real valued function f with measurable domain A is
a measurable function if for every α ∈R, the set { f > α} is in M . If the class M
consists of the Lebesgue measurable sets, we say that f is a Lebesgue measurable
function.

Definition 3.1.2. A set A is dense in a set B if A ⊆ B and the closure of A contains
the set B.

Note that if A is dense in B, the closure of A may be larger than B. For applications
of the following result, we note that R itself is dense in R, and the rational numbers
are dense in R. Any dense subset D of R contains a countable dense subset of
R since for each rational number r and each n ∈ N, there is a point s ∈ D with
|r− s| < 1/n, so (using the Axiom of Choice) we can choose one point s ∈ D for
each pair (r,n).

Proposition 3.1.1. For an extended-real valued function f with measurable domain
A, the following are equivalent:

1) f is measurable.
2) ∀α in a dense subset of R, { f > α} ∈M .
3) ∀α in a dense subset of R, { f ≥ α} ∈M .
4) ∀α in a dense subset of R, { f < α} ∈M .
5) ∀α in a dense subset of R, { f ≤ α} ∈M .

Proof. Let D be a dense subset of R. We may assume that D is countable. The result
is a consequence of the following equalities, which hold for any α ∈ R:

{ f < α}= A\{ f ≥ α}, { f > α}= A\{ f ≤ α}
{ f ≥ α}=

⋂
γ∈D
γ<α

{ f > γ}, { f < α}=
⋃

γ∈D
γ<α

{ f < γ}

{ f ≤ α}=
⋂

γ∈D
γ>α

{ f < γ}, { f > α}=
⋃

γ∈D
γ>α

{ f > γ}.

Corollary 3.1.1. If an extended-real valued function f is measurable, then for any
α ∈ R∪{+∞,−∞}, the set { f = α} is measurable.

Remark 3.1.1. Even for a function f that can take the value +∞ or −∞, measurabil-
ity only depends on values α in D ⊆ R.
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We will need sets such as { f ≥α} to be measurable in order to define an integral.
We will say that f is measurable on B if B is measurable and the restriction of f
to B is measurable. Note that measurability of a function involves only measurable
sets; it does not involve a measure.

Proposition 3.1.2. The restriction of a measurable function f with measurable
domain A to a measurable subset B ⊂ A is measurable on B. Conversely, if A is
the union of a finite or countably infinite number of measurable sets on which f is
measurable, then f is measurable on A.

Proof. Exercise 3.3.

In general integration theory, one speaks about a function with measurable
domain A that is measurable with respect to σ -algebras A and B. That is, the
inverse image of each set B ∈B is in A . The usual definition of measurability of
an extended-real valued function uses, as is the case here, the inverse images of
semi-infinite open intervals in the extended real line. That definition, however, is
equivalent to the following definition in terms of the inverse image of Borel sets.

Theorem 3.1.2. An extended-real valued function f with measurable domain A is
measurable if and only if the inverse image of every Borel set in R is measurable
and also f−1 [+∞] and f−1 [−∞] are measurable.

Proof. We have seen that if f is measurable, then the inverse image of every
semi-infinite interval in the extended real line is measurable. Also, f−1 [+∞] =
∩n∈N f−1 [(n,+∞]] and f−1 [−∞] = ∩n∈N f−1 [[−∞,−n)] are measurable. It now fol-
lows that the inverse image of every finite open interval is measurable, and therefore
the inverse image of every open subset of the real line is measurable. Since the
family of Borel sets is the smallest σ -algebra containing all open sets, it follows
from Theorem 3.1.1 that the inverse image of every Borel subset of the real line is
measurable. The converse is clear.

Proposition 3.1.3. A continuous real-valued function is measurable on any measur-
able subset B of its domain.

Proof. If f is continuous, then {x ∈ B : f (x) > α} is the intersection of B with an
open set.

Definition 3.1.3. If A is a measurable subset of R, M(A) denotes the collection of
measurable real-valued functions with domain A.

Recall that for functions f and g, the functions f ∨g and f ∧g are defined point-
wise by setting ( f ∨g)(x) := max( f (x),g(x)) and ( f ∧g)(x) := min( f (x),g(x)).
When adding or multiplying measurable functions, we will often set an arbitrary
value for the sum or product on the set where the original operation is not defined.
Usually that value is 0, and the set where this happens will have measure 0.
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Theorem 3.1.3. If A is a measurable set, M(A) forms a vector space over R, and
M(A) is stable with respect to pointwise multiplication and the operations ∨ and ∧.
Given the collection of measurable extended-real valued functions on A, for each of
the following operations, there is a measurable subset that depends on the functions
involved and is the set where the operation is defined; moreover, the operation yields
a measurable result on that subset. The operations are: Pointwise multiplication,
multiplication by any real number, pointwise addition, and the operations ∨ and ∧.

Proof. Fix f , g in M(A) and c and α in R. If c = 0, c f is constant. Otherwise,

{c f > α}= { f > α/c} if c > 0 and {c f > α}= { f < α/c} if c < 0.

In either case, c f ∈ M(A). If f (x)+g(x)< α , then since the set Q of rational num-
bers is dense in R, there is an r ∈Q with f (x)< r < α −g(x), whence g(x)< α −r.
It follows that

{ f +g < α}=
⋃

r∈Q
[{ f < r}∩{g < α − r}] ∈M .

Therefore, M(A) is a vector space. To see that f g ∈ M(A), we note that the function
f 2 ∈ M(A) since if α < 0, A = { f 2 > α} and for β ≥ 0 and α = β 2,

{ f 2 > α}= { f <−β}∪{ f > β} ∈M .

Therefore,

f g = (1/2)[( f +g)2 − f 2 −g2] ∈ M(A).

Since

{ f ∨g > α}= { f > α}∪{g > α}, { f ∧g > α}= { f > α}∩{g > α},

we have f ∨ g and f ∧ g ∈ M(A). The result for extended-real valued functions is
left as Exercise 3.4(A).

3.2 Limits and Special Functions

Recall that for a sequence 〈 fn : n ∈ N〉, the value of the function supn fn at x is
supn fn(x); a similar definition holds for infn fn. Also, limsupn fn := infn(supk≥n fk),
and liminfn fn := supn(infk≥n fk).

Theorem 3.2.1. If 〈 fn : n ∈ N〉 is a sequence of measurable extended-real valued
functions on a measurable set A, then supn fn, infn fn, limsupn fn, and liminfn fn are
also measurable on A.
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Proof. For any α ∈ R ,

{sup
n

fn > α}= ∪n{ fn > α}, {inf
n

fn < α}= ∪n{ fn < α}.

The rest is clear.

Definition 3.2.1. A measure space (see Definition 2.4.2) is complete if every subset
of a set of measure 0 is measurable. In this case, the measure is also called complete.
If μ is a non-complete measure on a σ -algebra A , then the family of sets

{A∪B : A ∈A , B ⊆C for some C ∈A with μ(C) = 0}

is a σ -algebra on which the extension of μ is a complete measure. The extension of
μ takes the value μ(A) for all sets A∪B with A ∈ A and B ⊆ C for some C ∈ A
with μ(C) = 0. The enlarged σ -algebra together with the extension of μ is called
the completion of the measure space (A,μ).

Proposition 3.2.1. The completion of a measure space is a complete measure space.

Proof. Exercise 3.10.

In the case of a complete measure, the value of the measure on each subset of a
set of measure 0 is 0. The measures we have defined using integrators are all com-
plete. One may, however, want to consider incomplete measures such as Lebesgue
measure restricted to the Borel sets. When dealing with several measures at the same
time, one often cannot complete all of them, since a set of measure 0 for one mea-
sure may not be measurable for another.

When the measure m is understood, we will say that something is true almost
everywhere (a.e.) if it is true in the complement of a set of measure 0. For example,
f = g a.e. on A if there is a subset B of A with m(B) = 0 such that f (x) = g(x)
for every x ∈ A \B. A sequence 〈 fn : n ∈ N〉 converges to f a.e. on A if there is a
subset B ⊆ A of measure 0 such that fn(x)→ f (x) for each x ∈ A\B. We don’t know
what happens on B. This definition is useful in dealing with measures that are not
complete. For example, a function f may be identically 0 except for a non-Borel
subset B of a Borel set of measure 0. For integration, the value taken by f on B is
not important, and so it is useful to say that f = 0 almost everywhere.

Proposition 3.2.2. For a complete measure, such as Lebesgue measure, if f is mea-
surable on A and f = g almost everywhere on A, then g is measurable on A.

Proof. Let B be the set of measure 0 outside of which f = g. Then g is measurable
on A\B, and since any subset of B is measurable, g is measurable on B.

Proposition 3.2.3. If m is a complete measure and 〈 fn : n ∈ N〉 is a sequence of
measurable functions on a measurable set A such that fn → f a.e. on A, then f is
measurable on A.



50 3 Measurable Functions

Proof. The result follows from the equality f = limsupn fn = liminfn fn a.e.

Definition 3.2.2. A step function is a real-valued function g defined on an interval
[a,b] such that for some finite set {xi : 0 ≤ i ≤ n} with a = x0 < · · · < xn = b, g is
constant on each of the open intervals (xi−1,xi).

Definition 3.2.3. A characteristic function is a function that takes only the values
0 and 1. The set on which it takes the value 1 is the associated set A, and the func-
tion is called the characteristic function of A. We will write χA for this function.
Another common notation for the function is 1A. The term indicator function is
also used.

Clearly, χ∅ is the constant 0, while the characteristic function of the set in which
one is working is the constant 1. A characteristic function is measurable if and only
if the associated set is a measurable set (all with respect to some fixed σ -algebra).
It is easy to see that,

χA∩B = χA · χB, χA∪B = χA + χB − χA · χB, χÃ = 1− χA.

Definition 3.2.4. A simple function is a measurable function with range equal to a
finite subset of R.

Any finite linear combination of measurable characteristic functions is a simple
function. Such a representation is not unique. For example, the characteristic func-
tion of the union of two disjoint sets is the sum of their characteristic functions.
Conversely, if α1, · · · ,αn are the distinct nonzero values in the range of a simple
function ϕ that is not identically equal to 0, then ϕ = ∑n

i=1 αi · χ{ϕ=αi}. This is the
simplest such combination that gives ϕ . A step function is a finite linear combi-
nation of characteristic functions of intervals. Some intervals may be degenerate
intervals of the form [c] := {c}.

Recall that the family of Borel sets in R is the smallest σ -algebra containing the
open subsets of R.

Definition 3.2.5. A real-valued function is Borel measurable if the inverse image
of each open subset of R is a Borel set.

Proposition 3.2.4. The Borel measurable real-valued functions defined on a fixed
Borel subset of R form a vector space over R; that vector space contains the con-
tinuous functions and is stable with respect to pointwise multiplication and the
operations ∨ and ∧.

Proof. Exercise 3.12.

Proposition 3.2.5. Let f be a measurable real-valued function with Borel measur-
able range, and let h be a Borel measurable real-valued function with Borel measur-
able range. If g is a Borel measurable real-valued function defined on the range of
f , then g◦ f is measurable. If g is a Borel measurable real-valued function defined
on the range of h, then g◦h is Borel measurable.
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Proof. We know that for any open set O, f−1 [O] is a measurable set, h−1 [O] is a
Borel set, and g−1 [O] is a Borel set. By Theorem 3.1.1, the collection of sets with
measurable inverse images forms a σ -algebra. It follows that for any Borel set B,
f−1 [B] is a measurable set, h−1 [B] is a Borel set, and g−1 [B] is a Borel set. The rest
is clear.

Example 3.2.1. The following example shows that there are Lebesgue measurable
sets that are not Borel sets. Let f1 be the Cantor-Lebesgue function on [0,1]. Recall
that f1 is an increasing continuous function mapping [0,1] onto [0,1]. It is constant
on each of the intervals that is removed to form the Cantor set C. For example,
on (1/3,2/3), f1 takes the value 1/2. Let f be defined on [0,1] by setting f (x) =
f1(x)+x for all x ∈ [0,1]. Since f1 is an increasing continuous function and x �→ x is
a strictly increasing continuous function, f is strictly increasing and continuous; the
range is [0,2]. Since f is a continuous bijection of the compact set [0,1] onto [0,2], it
is a homeomorphism. (See Problem 1.36.) Each of the open intervals (a,b) removed
from [0,1] to form C has image ( f1(a)+ a, f1(a)+ b), so f [[0,1] \C] has the same
Lebesgue measure in [0,2] as has the set [0,1]\C in [0,1]. Therefore, λ ( f [C]) = 1.
By Problem 2.32, there is a non-Lebesgue measurable set A ⊂ f [C]. The function
g := f−1 is a homeomorphism of [0,2] onto [0,1], and g[A] is a Lebesgue measurable
subset of C since λ (C)= 0. While g[A] is a Lebesgue measurable set, it is not a Borel
set since g is continuous, and therefore Borel measurable, but g−1 [g[A]] = f [g[A]] =
A is not even Lebesgue measurable. Also note that the restriction of the continuous
function f to g[A] does not have a measurable range.

3.3 Approximations and Theorems of Lusin and Egoroff

In this section, we show that a set of finite measure has nice properties once a set
of small measure, appropriate for the property, is removed. This heuristic principle,
i.e., “sets of finite measure are nearly good”, is essentially due to Littlewood [25].
We start with an operation used to indicate the difference of two sets. Recall that for
two sets A and B, the symmetric difference is AΔB := (A\B)∪ (B\A). We apply
the symmetric difference to obtain an approximation for a measurable set of finite
measure in R.

Theorem 3.3.1. Let A be a set of finite measure in R. Given δ > 0, there is a com-
pact subset K of A for which m(A�K) < δ . Given ε > 0, there is a finite collec-
tion of disjoint open intervals Ii such that the measure of the symmetric difference
m(AΔ (∪iIi))< ε .

Proof. We may assume m(A)> 0. As n → ∞, A∩ [−n,n]↗ A, so we may choose a
positive integer n so that m(A\ [−n,n])< δ/2. By Theorem 2.5.1, there is a closed,
and therefore compact, set K ⊆ A ∩ [−n,n] so that m((A∩ [−n,n])\K)< δ/2.
Therefore, K ⊆ A and m(A \ K) < δ . Choose a compact set K ⊆ A with
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m(A\K)< ε/2. We may cover K with a bounded open set O so that m(O\K)< ε/2.
Since O is the countable union of pairwise disjoint, finite open intervals, those int-
ervals form an open cover of K. We may discard all but a finite number of them and
still cover K with the union ∪iIi. This is the desired approximation since

AΔ (∪iIi) = (A\ (∪iIi))∪ ((∪iIi)\A)⊆ (A\K)∪ (O\K).

Proposition 3.3.1. Let f be a measurable extended-real valued function that is finite
almost everywhere on its domain A. If m(A) < +∞, then for each ε > 0, there is a
measurable subset B ⊆ A with m(B)< ε such that for some M ∈ N, | f (x)| ≤ M for
all x ∈ A\B.

Proof. Fix ε > 0. If f is already bounded, set B = ∅. Otherwise, for each n ∈ N,
set En = {| f | > n}, and let E = { f =+∞}∪ { f =−∞}. Since m(E1) < +∞ and
En ↘ E, while m(E) = 0, there is an n ∈N with m(En)< ε . Set B = En and M = n.

Example 3.3.1. The function given by f (x) = x is finite everywhere on R, but it is
unbounded on sets of infinite Lebesgue measure.

It follows from Proposition 3.3.1 that, if we are given an unbounded measurable
function f that is finite almost everywhere on an interval [a,b], then for any δ > 0
and some M ∈ N, we may apply our next result to the function −M∨ f ∧M, which
equals f outside of a set of measure less than δ .

Theorem 3.3.2. Let f be a bounded measurable function on a closed, non-
degenerate interval [a,b]. Let s = infx∈[a,b] f (x) and S = supx∈[a,b] f (x). Fix ε > 0.

a) There is a simple function ϕ defined on [a,b] such that s ≤ ϕ and f (x)− ε ≤
ϕ(x)≤ f (x) for all x ∈ [a,b], whence | f −ϕ| ≤ ε on [a,b].

b) If m({x}) = 0 for each singleton set {x} ⊂ [a,b], then there is a subset B1 ⊆ [a,b]
with m(B1)< ε/2 and a step function g defined on [a,b] such that s ≤ g ≤ S and
g(x) = ϕ(x) for all x ∈ [a,b]\B1.

c) If m({x}) = 0 for each singleton set {x} ⊂ [a,b], then there is a subset B2 ⊆ [a,b]
with m(B2) < ε/2 and a continuous function h defined on [a,b] such that s ≤
h ≤ S and h(x) = g(x) for all x ∈ [a,b] \B2. In this case, | f (x)−g(x)| ≤ ε and
| f (x)−h(x)| ≤ ε for all x ∈ [a,b]\ (B1 ∪B2).

Proof. a) Partition [s,S] with a finite number of points s = y0 < y1 < · · ·< yk = S,
so that for each i, yi−yi−1 < ε . Of course, f−1[[yi−1,yi)] may be empty for some
values of i. Let

ϕ =

(
k−1

∑
i=1

yi−1 · χ f−1[[yi−1,yi)]

)
+ yk−1 · χ f−1[[yk−1,yk]]

.

Now ϕ is a simple function with s ≤ ϕ , and f (x)− ε ≤ ϕ(x) ≤ f (x) for all
x ∈ [a,b], whence | f −ϕ| ≤ ε on [a,b].
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b) Let α1, · · · , αn be the n distinct values taken by ϕ , and let these be taken on
n pairwise disjoint, measurable subsets A1, · · · , An of [a,b]. By Theorem 3.3.1,
for each set Ak, 1 ≤ k ≤ n, there is a finite, pairwise disjoint collection of open
intervals Ik

1 , · · · , Ik
lk

, with each contained in (a,b), such that m(AkΔ
(∪iIk

i

)
) <

ε/(2n). Set B1 := ∪n
k=1(AkΔ

(∪iIk
i

)
), and note that m(B1)< ε/2. Let J be the

collection of all of the intervals involved; that is, J = ∪n
k=1

{
Ik
1 , · · · , Ik

lk

}
. Let P

be the finite collection of endpoints of the intervals in J . Add the points of the
null set P to B1. For each I ∈J , if I ∩P �=∅, replace I with the open intervals
in I�P. Removing duplication, this yields a finite collection I of pairwise
disjoint open intervals such that each interval in I is contained in at least one
interval of J . Consider an interval J ∈I such that for p �= q and some i0 and
j0, J ⊆ I p

i0
∩ Iq

j0
. We now show that since Ap ∩Aq =∅, J ⊆ B1. That is, fix x ∈ J.

If x /∈ Ap, then since x ∈ I p
i0

, x ∈ ApΔ
(∪iI

p
i

) ⊆ B1. If x ∈ Ap, then x /∈ Aq, but

x is also in Iq
j0

, so x ∈ AqΔ
(
∪ jI

q
j

)
⊆ B1. In either case, x ∈ B1. Thus, J ⊆ B1.

Discard from the collection I all such intervals contained in B1. Each of the
remaining intervals in I corresponds to a unique Ak; set the value of g equal
to the appropriate αk for each such interval. At all other points of [a,b], set g
equal to (s+ S)/2. The function g is a step function such that s ≤ g ≤ S and
g(x) = ϕ(x) for all x ∈ [a,b]\B1.

c) Given the step function g formed in Part b), center an open interval at each mem-
ber of the finite collection of points consisting of the endpoints of [a,b] together
with the points inside [a,b] where g changes values. The intervals should be pair-
wise disjoint forming a set B2 of total length < ε/2. It follows that [a,b]\B2 is
the disjoint union of closed intervals on each of which g is constant. Use linear
interpolation to obtain a continuous function h on [a,b] such that s ≤ h ≤ S,
and g(x) = h(x) for all x ∈ [a,b]\B2. It is now the case that ϕ(x) = h(x) for all
x ∈ [a,b]\ (B1 ∪B2).

We have shown that if f is a measurable real-valued function on an interval [a,b]
where points have 0 measure, then outside of a set of small measure we may uni-
formly approximate f with a continuous function h. The values of h, however, are
only near the values of f . An important result due to Lusin [36] states that for a
measurable real-valued function f on a set A of finite measure, there is a compact
subset K of A having most of the measure of A such that the values taken by f on K
are equal to the values taken by a continuous real-valued function g defined on the
real line. In this sense, f is “nearly” continuous on A; that is, f deviates from the
continuous function g on A only on the set of small measure A \K. Recall that by
Proposition 1.11.3, once it is shown that the restriction of f to a compact subset K
of R is continuous, there is a continuous function g defined on the whole real line
such that g = f on K. Moreover, sup

R
g = maxK f , and infR g = minK f .

Theorem 3.3.3 (Lusin). Fix a measurable set A ⊆R with m(A)<+∞, and let f be
a real-valued measurable function with domain A. For any ε > 0, there is a compact
set K ⊆ A with m(A\K)< ε such that the restriction of f to K is continuous.
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Proof. Let 〈Vn : n ∈ N〉 be an enumeration of the open intervals with rational end-
points in R. By Theorem 3.3.1, we may fix compact sets Kn ⊆ f−1[Vn] and K′

n ⊆
A \ f−1[Vn] for each n so that m(A \ (Kn ∪K′

n)) < ε/2n. Now, for the compact set
K :=

⋂
n∈N(Kn ∪K

′
n), m(A\K) < ε . Given x ∈ K and an open interval I containing

f (x), for some n ∈ N, f (x) ∈Vn ⊆ I. Now x ∈ O := �K′
n, and

f [O∩K]⊆ f
[
�K′

n ∩
(
Kn ∪K′

n

)]
= f [Kn]⊆Vn.

Remark 3.3.1. This simple proof of Lusin’s theorem was first published by the text’s
author and Erik Talvila in 2004 [34]. Lusin’s theorem holds in quite general settings,
where it is usually stated just for a Borel measurable function f . The domain of f
should have the property that sets of finite measure can be approximated from the
inside by compact sets, and the target set or range of f should have a countable
collection of open sets Vn such that for each open set O and each y ∈ O, there is an n
with y ∈Vn ⊆ O. (Later, we will call this property the second axiom of countability.)

Lusin’s theorem is often established as a corollary of the following approxima-
tion theorem of Egoroff [18]. That important theorem states that on a set of finite
measure, almost everywhere convergence of measurable functions to a finite limit is
actually uniform convergence off of a set of small measure. That is, almost ev-
erywhere convergence on a set of finite measure is “nearly” the same as uniform
convergence.

Lemma 3.3.1. On a set A ⊆ R of finite measure, let 〈 fn : n ∈ N〉 be a sequence of
measurable functions converging a.e. to a function f . Suppose that f is finite a.e. on
A. Then for any δ > 0, there is an N ∈ N and a measurable B ⊆ A with m(B) < δ
such that

∀x ∈ A\B, ∀n ≥ N, | fn(x)− f (x)|< δ .

Proof. Let D be the set where either f is not finite-valued or the convergence
fails. Since m(D) = 0, we may set each fn and f equal to 0 on D and work
with the modified functions without loss of generality. Fix δ > 0, and let Sn =
{| fn − f | ≥ δ}. Now, limsup Sn = ∅, so limk→∞ m(∪n≥kSn) = 0. Choose N ∈ N

so that m(∪n≥NSn)< δ , and let B = ∪n≥NSn.

Theorem 3.3.4 (Egoroff). On a set A ⊆ R of finite measure, let 〈 fn : n ∈ N〉 be a
sequence of measurable functions converging a.e. to a function f . Suppose f is
finite a.e. on A. For any ε > 0, there is a measurable set B ⊆ A with m(B)< ε such
that fn converges uniformly to f on A\B.

Proof. Fix ε > 0. For each k ∈ N, it follows from Lemma 3.3.1 with δ = ε/2k that
there is an Nk ∈ N and a measurable set Bk ⊂ A with m(Bk)< ε/2k such that

∀n ≥ Nk, | fn − f |< ε/2k on A\Bk.

Let B =∪kBk, so m(B)< ε . The functions fn converge uniformly to f on A\B since
for all n ≥ Nk, | fn − f |< ε/2k on A\Bk ⊇ A\B.
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3.4 Problems

Problem 3.1. Prove Corollary 3.1.1.

Problem 3.2. Let f : R �→ R and g : R �→ R be measurable functions and g(x) �= 0
at any x ∈ R. Show that the function f/g is measurable.

Problem 3.3. Prove Proposition 3.1.2.

Problem 3.4 (A). Finish the proof of Proposition 3.1.3 for extended-real valued
functions.

Problem 3.5. Let 〈 fn〉 be a sequence of real-valued measurable functions on R.
Show that the set {x ∈ R : limn→∞ fn(x) exists and is finite} is measurable.

Problem 3.6. Let f : R �→ R be a differentiable function. Show that the derivative
f ′ is a measurable function.

Problem 3.7. Prove or give a counterexample: The supremum of an uncountable
family of measurable functions is always measurable.

Problem 3.8. Given f : [0,1] �→R, suppose the set {x ∈ [0,1] : f (x) = r} is measur-
able for every r ∈ R. Does it then follows that f is measurable?

Problem 3.9. Suppose that f : [0,1] �→R is a function with the property that for any
ε > 0, there is a continuous function fε : [0,1] �→ R such that f = fε on Aε , where
m([0,1]\Aε)< ε . Show that f is measurable.

Problem 3.10. Prove Proposition 3.2.1. Hint: Given subsets A, B, and C of a set X
with B ⊆C,

X \ (A∪B) = (X \ (A∪C))∪ (C \ (A∪B)).

Problem 3.11. Let f be a real-valued function defined on R such that for each
α ∈ R, f−1 [(α,+∞)] is a Borel set.

a) Show that for each open subset O of R, f−1 [O] is a Borel set.
b) Show that for each Borel set E ⊆ R, f−1 [E] is a Borel set.
c) Show that if f is actually continuous on R, then for each Borel set E ⊆R, f−1 [E]

is a Borel set.

Problem 3.12. Prove Proposition 3.2.4.

Problem 3.13. Let {Iα : α ∈ A} be an uncountable collection of open intervals in
the real line such that the measure of the union, m(∪α∈AIα), is a finite number r > 0.
Given an arbitrary ε > 0, show that there is a finite subcollection {I1, I2, · · · , In} of
the collection {Iα : α ∈ A} such that ∑n

i=1 m(Ii)> r− ε .

Problem 3.14. a) Show that there does not exist a simple function ϕ : R �→ R such
that |x2 −ϕ(x)| ≤ 1 for all x ∈ R.
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b) Prove or give a counterexample: For every Lebesgue measurable set E ⊂ R of
finite measure, there exists a simple function ψ :R �→R such that |x2−ψ(x)| ≤ 1
for all x ∈ E.

Problem 3.15. a) Show that if f is a measurable real-valued function with measur-
able range and g a continuous real-valued function defined on the real line, then
g◦ f is measurable.

b) Show that a continuous function with measurable range followed by a measur-
able function need not be measurable. Hint: See Example 3.2.1.

Problem 3.16. Show that an increasing real-valued function on the interval [0,1]
can have only a finite or countably infinite number of jumps.

Problem 3.17. Define f : (0,1) �−→ R as follows: For each k ∈ N, set f (x) =(
1
k − x

)−1
for all x ∈ [

1
k+1 ,

1
k

)
. For example, for x ∈ [ 1

2 ,1), f (x) = 1
1−x . For each

n ∈ N, set fn(x) := 1
n f (x) for all x ∈ (0,1). Note that fn converges pointwise to 0,

but not uniformly to 0 on (0,1).

a) Show that fn is a measurable function on (0,1) for each n ∈ N.
b) Fix ε > 0. Construct a Lebesgue measurable set E such that λ (E) < ε and fn

converges uniformly to 0 on (0,1)\E.

Problem 3.18 (A). Given an increasing real-valued function f on an interval I, show
that f is measurable. Hint: First consider the strictly increasing function for some
n ∈ N, x �−→ f (x)+ x/n.

Problem 3.19. Let f be a continuous real-valued function on R. Show that if A is
an Fσ subset of R, then f [A] is an Fσ set.

Problem 3.20. Let f : R �→ R be a Lipschitz function; that is, there is an M > 0
such that | f (x)− f (y)| ≤ M · |x− y| for all x,y ∈ R. Show that for any Lebesgue
measurable set E, f [E] is a Lebesgue measurable set. Hint: Recall Corollary 2.5.1
and Problem 3.19.

Problem 3.21. Let E ⊆R be a measurable set of finite measure, and let f be a real-
valued measurable function on E. Show that f is the a.e. limit of a sequence of
continuous functions.

Problem 3.22. Let f be a real-valued function with domain R such that the inverse
image of every closed subset of R is an open subset of R. Show that for some value
a ∈ R, f (x)≡ a on R. Hint: Recall Problem 1.22.
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