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Preface

This book presents the work of many mathematicians. It is the product of the two-
semester course I have taught at the University of Illinois since 1968, a span of
over 1% of recorded western history. The development of the book’s diverse topics
has often been improved with input from current research, including my own and
joint research with coauthors. In particular, the most difficult material of the first
semester, appearing in Chapter 5, has been considerably simplified and shortened
by application of work with potential theorist Jürgen Bliedtner.

As is common practice for a book on measure theory, the first five chapters are
devoted to measures on the real numbers. This of course includes the generalization
of the Riemann integral using Lebesgue measure. With essentially no more work for
the student, however, it also includes more general measures on R. The generaliza-
tion is important for many applications, such as in statistics and probability theory. It
is also helpful in developing the connection between integration and differentiation.
That topic is considerably simplified in Chapter 5 with the use of a local maximal
function and a simple, optimal covering theorem.

From there, the book continues with an introduction to general measure, metric,
and normed spaces. This includes the Baire Category Theorem and classical Lp

spaces. It is the material needed as a foundation for Chapter 8 on Hilbert spaces,
Fourier series, and the proof of the important Radon-Nikodým Derivative Theorem.

Chapter 9 gives a parallel treatment of spaces with a distance function, i.e., metric
spaces, and more general topological spaces. Open balls are used in a metric space
to determine how close a point x is to a point z: The more balls centered at z that
contain x, the closer x is to z. More general topological spaces replace open balls
with sets not defined by a distance function. The chapter includes a development of
the infinite product of such spaces and an elementary proof that if the spaces are
compact, so is the product.

Chapter 10 is devoted to the construction of general measures including measures
on product spaces. Chapter 11 develops properties of infinite-dimensional vector
spaces with a norm, i.e., a function specifying the distance to 0. The chapter includes
further information about classical Lp spaces and measures associated with linear
maps on spaces of continuous functions.
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viii Preface

The Axiom of Choice is assumed when needed throughout the book. It allows
a point to be chosen from each set in an infinite collection of nonempty sets even
when no rule can be given. The equivalence of several forms of the axiom is proved
in the book’s first appendix. The second appendix simplifies what is needed to show
that a Radon-Nikodým derivative is the result of a limit process. That appendix also
provides two powerful covering theorems for finite-dimensional spaces.

The third appendix introduces the reader to the rigorous use of infinitely large and
infinitely small numbers in subjects such as calculus and measure theory. In calcu-
lus, for example, the treatment of the chain rule and applications of the integral can
inform instruction in an ordinary calculus course. The measure spaces developed
in the appendix have had a number of important applications over several decades.
With the work of Yeneng Sun, for example, there is now a rigorous way of treating
a continuum of independent random variables and traders in an economy.

Answers are provided at the end of the book for many of the problems; these
are marked with an “A”. By putting the period outside the quotes, I have just used
the British rule allowing context to be considered for such punctuation. I have read
that the American rule was set by typesetters to protect delicate type for commas
and periods. Typesetters, however, have not always understood the needs of mathe-
maticians. A famous example is the proof sheet returned to an author with a minute
speck that magnification showed to be an epsilon. The text read “Let epsilon be as
small as possible.”

I am indebted to Erik Talvila for his help and advice in writing this book. I also
thank Agus Soenjaya, Derek Jung, and Sepideh Rezvani for their helpful sugges-
tions and careful reading of the manuscript. Finally, Birkhäuser–Springer editor
Benjamin Levitt is due great thanks for his help and guidance.

Champaign-Urbana, IL, USA Peter A. Loeb
January 2016
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Chapter 1
Set Theory and Numbers

1.1 Terms and Notation

Set notation should be familiar to the reader. Recall x∈ A means that x is an element
of A; the negation is x /∈ A. Notation for every member of a set A belonging to a set
B is A ⊆ B or B ⊇ A. We say that A is a subset of B or B is a superset of A. If A is
a proper subset of B, that is, A ⊆ B but A �= B, then one can write A ⊂ B. To prove
that two sets A and B are equal, it is necessary to show that each is contained in the
other; that is, A ⊆ B and B ⊆ A. Familiar sets are the empty set ∅, which contains
no elements and is a subset of every set, the natural numbers N = {1,2,3, · · ·}, the
integers Z= {· · · ,−2,−1,0,1,2, · · ·}, the rational numbers Q, the real numbers R,
and the complex numbers C.

In our discussion, we will often use quantifiers. The universal quantifier ∀ is
read as “for all” or “for any.” The existential quantifier ∃ is read as “there exists.”

An interval in R is a subset I of R such that if c ∈ I and d ∈ I, and c < d, then
all points x ∈ R with c < x < d are in I. Here is the notation and definition for
open intervals in R: (a,b) := {x ∈ R : a < x < b}; (a,+∞) := {x ∈ R : a < x}; and
(−∞,b) := {x ∈ R : x < b}. The closed intervals [a,b], [a,+∞), and (−∞,b] contain
all real endpoints. The half-open intervals (a,b] and [a,b) have two real endpoints,
but contain only one of them. A singleton set {a} is a degenerate interval. We will
be dealing with subsets of the real line or a more general set X . These can be quite
different than intervals. Indeed, many sets contain no interval at all. Two examples
are the rational numbers and the irrational numbers.

The basic operations on sets are union A∪ B, i.e., the collection of elements
in either A or B, and intersection A∩B, i.e., the collection of elements in both A
and B. The Cartesian product of A and B is the collection of ordered pairs A×B :=
{(a,b) : a ∈ A and b ∈ B}. The power set of a set A is the collection of all subsets
of A, written P(A). Note that for each set A we have A ∈P(A) and ∅ ∈P(A).
The complement of B with respect to A is A \B := {x ∈ A : x �∈ B}. If the set A is
understood, then we write ˜B or �B. For example, when working in the context of
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the real numbers, ˜Q = R\Q denotes the irrational numbers. A collection of sets is
called pairwise disjoint, or just disjoint, if any two distinct members of the family
have an empty intersection.

If A and B are subsets of a set X , then the symmetric difference of A and B,
denoted by A Δ B, is the set (A\B)∪ (B\A). It is the set of points in the union of A
and B but not in the intersection.

A relation is a subset of a Cartesian product A× B. If A = B, the relation is
said to be on A. An equivalence relation on A is a relation ρ with the reflexive
property: (x,x) ∈ ρ for each x ∈ A; the symmetric property: (x,y) ∈ ρ ⇒ (y,x) ∈ ρ;
and the transitive property: (x,y)∈ ρ and (y,z)∈ ρ ⇒ (x,z)∈ ρ . For each x∈ A the
equivalence class of x is written [x]; it is the set {y∈ A : (x,y)∈ ρ}. Note that x∈ [x]
so none of the equivalence classes is empty. For each x,y ∈ A either [x] = [y] or [x]
and [y] are disjoint. The set A is then partitioned into a union of disjoint equivalence
classes. For example, the rational numbers Q is the collection of equivalence classes
of ratios of integers with nonzero denominators.

A function f : A → B is a relation in A×B such that for each x ∈ A there is one
and only one element y ∈ B such that (x,y) ∈ f . That is, if (x,y) ∈ f and (x,z) ∈ f ,
then y = z. One writes y = f (x) and says y is the image of x under f . The set A
is the set of points for which the function is defined; it is called the domain of f .
The set B is the target set (or codomain) of f and is the set in which we expect
an image. The range of f is the set of actual images. For example, if f (x) = x2 on
the real line, then f : R → R has its target set equal to the real line, but the range is
the nonnegative real line. For some algebraists, changing the target set changes the
function even if the range remains the same.

We use the notation f [S] to denote the image of a set S under a function f . That is,

f [S] := {y : ∃x ∈ S∩domain( f ) with f (x) = y}.

Note that if f : A → B, then f [·] is a function from P(A) into P(B). We use
square brackets here because the set function derived from a point mapping f
is not the same function as f . The notation f−1 denotes the inverse relation
of the point mapping f . That is, f−1 is the relation on range( f )× A given by
f−1 := {(y,x) : (x,y) ∈ f}. Note that in general, f−1 is not a function since more
than one element of the domain of f may map to the same y in the range. We use the
notation f−1[S] with square brackets to denote the inverse image under a function f
of a set S contained in the target set of f . That is,

f−1[S] := {x ∈ domain( f ) : ∃y ∈ S with f (x) = y}.

If f : A → B, then f−1[·] is a function mapping P(B) into P(A).
We will write f ≡ α on A if f (x) = α for all points x in a subset A of the domain

of f . We will write f |A for the restriction of a function f to a subset A of its domain.
If f : A → B, then, in general, f [A] ⊆ B. If, however, the range of f is all of B,

then f is a map onto B; we also call f a surjection or say that f is surjective. If
for all x,z ∈ A, f (x) = f (z) only if x = z, then f is a one-to-one map, also called an
injection; we also say that f is injective. If f is both onto and one-to-one, then it is
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called a one-to-one correspondence or a bijection; we also say that f is bijective.
If f : A → B is a bijection, then f−1 is a bijection mapping B onto A. For example, if
x → x2 is restricted to the positive real numbers, then f−1 is the square root function.
A real-valued function f is bounded if its range is contained [−K,K] for some K
in N.

Recall that a finite set is one that is empty or that can be put into one-to-one cor-
respondence with an initial segment of the natural numbers terminating with some
n ∈ N. As usual, non-finite sets are called infinite. A countably infinite set is one
that can be put into one-to-one correspondence with the natural numbers. We will
call such a correspondence an enumeration. In particular, the integers and rational
numbers are countably infinite; as we shall see, the real numbers are not. A set that is
not countable is called uncountable. Often for simplicity, we let “countable” mean
finite or countably infinite. An example is when we state the following fact:

Theorem 1.1.1. A countable union of countable sets is countable.

Proof. Exercise 1.2.

To see how large the collection of subsets of an infinite set can be, let us con-
sider the set of all subsets of the natural numbers N = {1,2,3, · · ·}, i.e., the power
set P(N). The ordinary language we use to describe something has only a countable
number of symbols that we string together in finite sentences. This means that even
for the natural numbers, we can only describe a countable number of subsets. Here
is a proof that there are actually an uncountable number of such subsets: Assume
we have an enumeration A1, A2, · · · of the distinct subsets of N. The enumeration
should include the empty set. Form B by putting m in B if and only if m is not in Am.
Then B has not been counted in the enumeration. The fact that P(N) is uncount-
able can be applied to the binary expansion of numbers in the interval [0,1], while
taking into account duplicate expansions for some numbers, to show that [0,1], and
therefore R, is uncountable.

1.2 Indexed Families

Let I be a set such that for each α ∈ I we have a set Aα . Then I is called an index
set for the family {Aα}α∈I . Note that I may be a finite set, or the natural numbers,
or even an uncountable set. We will often deal with arbitrarily indexed families of
sets and of functions. For example, we have the following rules: If f maps a set X
into a set Y , then for all Aα ⊆ X ,

f

[

⋃

α
Aα

]

=
⋃

α
f [Aα ] , f

[

⋂

α
Aα

]

⊆
⋂

α
f [Aα ] .

Note that the containment goes only one way for intersection. For example, f may
take the same constant value on every one of the sets Aα and these sets may be
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pairwise disjoint. For inverse images, we can say more. That is, if for each index α ,
Bα is a subset of the range of f , then

f−1

[

⋃

α
Bα

]

=
⋃

α
f−1 [Bα ] and f−1

[

⋂

α
Bα

]

=
⋂

α
f−1 [Bα ] .

We also have f−1[�B] = �( f−1[B]) for all B contained in the range of f . Note that
the first complement is with respect to the range and the second is with respect to
the domain of f .

The distributive law for sets says that

B
⋂

[

⋃

α
Aα

]

=
⋃

α
(B∩Aα) and B

⋃

[

⋂

α
Aα

]

=
⋂

α
(B∪Aα) .

Here is an important rule that we will use often; the proof is left to the reader.

Theorem 1.2.1 (De Morgan’s Laws). Given two or more subsets of a set X forming
an indexed family of sets {Aα}α∈I ,

�
[

⋃

α∈I

Aα

]

=
⋂

α∈I

�Aα and �
[

⋂

α∈I

Aα

]

=
⋃

α∈I

�Aα .

We will often employ what is called the Axiom of Choice without explicitly
noting its use. The Axiom of Choice states that if {Sα : α ∈ I } is a nonempty
collection of nonempty sets, then there is a function T : I → ⋃α∈I Sα such that
for each α ∈I , T (α) ∈ Sα . Equivalent statements are discussed in an appendix.

Bertrand Russell gives an example in terms of pairs of shoes and pairs of socks:
Presented with a finite or even countably infinite set of pairs of shoes, one can always
pick one shoe from each pair, e.g., the left shoe. Given a finite collection of pairs
of socks, one can pick one sock from each pair, but what happens with an infinite
collection of pairs of socks when the two socks in any pair are identical? The Axiom
of Choice says that even without a rule, there is a set consisting of exactly one sock
from each pair.

1.3 Algebras and σ -Algebras of Sets

When an operation on a collection of sets, functions, or numbers always produces
another member of the collection, it is common to say that the collection is closed
with respect to the operation. Because the term “closed” has another meaning in real
analysis, we shall say the collection is stable with respect to the operation.

Definition 1.3.1. An algebra A of sets in a set X is a collection of subsets of X
containing the set X as a member and stable with respect to the operations of com-
plementation and forming finite unions.
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Remark 1.3.1. It follows that an algebra contains the empty set ∅ and is stable with
respect to forming finite intersections. If one does not specify that X ∈A , then one
should require that A is nonempty so that then there is a set and its complement in
A , whence the union X ∈A .

Definition 1.3.2. A σ -algebra of sets in a set X is a collection of subsets of X con-
taining X as a member and stable with respect to the operations of complementation
and forming countably infinite unions.

Remark 1.3.2. A σ -algebra contains the empty set and by De Morgan’s laws is also
stable with respect to forming countable intersections. Since the empty set is in a
σ -algebra, a σ -algebra is also an algebra. A σ -algebra is also called a Borel field,
especially in the theory of probability.

An intersection of a nonempty collection of algebras or σ -algebras is again an
algebra or, respectively, a σ -algebra. For each set X , the power set P(X) is an
algebra and a σ -algebra. Therefore, for any collection C of sets in X there is a
smallest algebra and also a smallest σ -algebra (denoted by σ(C )) that contains C .
It follows that if B is a σ -algebra of subsets of X and B ⊇ C , then B ⊇ σ(C ).

The σ -algebra generated by a nontrivial collection C contains more than just
countable unions and intersections of the sets in C . For example, if C is the collec-
tion of open intervals in the real line, then σ(C ) contains countable unions, count-
able intersections of countable unions, countable unions of countable intersections
of countable unions of sets in C , etc.

Example 1.3.1. The algebra generated by intervals of the form [α,β ), with α and
β rational and α < β , consists of finite unions of such intervals. The σ -algebra
generated by this algebra is a much larger collection of sets. For example, for each
real number r, the singleton set {r} is in the σ -algebra but not in the algebra. Other
interesting examples are the algebra and σ -algebra generated by the finite sets in R.

Here is a result we will need for measure theory. A disjoint, or pairwise disjoint,
sequence of sets is a sequence of sets with no point contained in any two of the sets.

Proposition 1.3.1. If A is an algebra of sets and 〈Ai : i ∈ N〉 is a sequence from A ,
then there is a disjoint sequence 〈Bi〉 from A with the same union such that Bi ⊆ Ai

for each i ∈ N.

Proof. Set B1 = A1, and for n > 1, set Bn = An \⋃i<n Ai.

Proposition 1.3.2. Let C be any collection of nonempty subsets of some set X, and
E ∈ σ(C ), i.e., the smallest σ -algebra containing all the sets in C . Then for some
countable collection C0 ⊆ C , E ∈ σ(C0).

Proof. Exercise 1.8(A).
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1.4 Orderings

An ordering on a set is a relation on the set satisfying the properties listed below.
The reader is familiar with the ordering ≤ on R and ⊆ on the power set of a set.

Definition 1.4.1. A partial ordering on a nonempty set E is a relation≤ on E such
that

1) ∀ a ∈ E, a≤ a, (reflexive property) and
2) ∀ a, b, c ∈ E, a≤ b and b≤ c⇒ a≤ c. (transitive property)

We sometimes write b≥ a for a≤ b.
We call a partial ordering antisymmetric if

3) ∀ a, b ∈ E, a≤ b and b≤ a⇒ a = b.
For an antisymmetric ordering we write a < b for a≤ b but a �= b.
A partial ordering ≤ is called a total ordering if

4) ∀ a, b ∈ E, either a≤ b or b≤ a.
A total ordering ≤ is called a linear ordering if it is antisymmetric.

We do not assume that a partial ordering is antisymmetric. There are many
important instances of partial orderings that are not antisymmetric. One example
is the ordering on Riemann sums, which we will discuss in defining the Riemann
integral. An ordering can be put on a river and its tributaries with point b being
further along than point a if it is downstream of a. If the river has any width, the or-
dering is not antisymmetric. Also note that if the points are on different tributaries,
neither may be downstream of the other.

If E has a partial ordering, it is said to be a partially ordered set. We will dis-
tinguish between z ∈ E being the biggest or greatest element of E and z being a
maximal element of E. The first means that for all y ∈ E, y and z are comparable
with y ≤ z, and if we also have z ≤ y, then z = y. A greatest element is unique.
The second means that for each y ∈ E, y need not be related to z, but if y ≥ z, then
we also have y≤ z. For an antisymmetric ordering, this means that y = z. Otherwise,
this may not be the case. Similar definitions hold for the smallest or least element,
and minimal element.

Example 1.4.1. An example is given by the set of points (x,y) in the plane with
0≤ y≤ 1, and (x1,y1)≤ (x2,y2) if and only if y1 ≤ y2; points of the form (x,1) are
maximal. There is no greatest element, and this total ordering is not antisymmetric.

Definition 1.4.2. Given a set E with a partial ordering ≤ and a subset S of E, x ∈ E
is an upper bound of S if for every a ∈ S, a≤ x. An upper bound of S may or may
not be an element of S. An upper bound x is a least upper bound of S if it is the
least of the upper bounds. Lower bounds and greatest lower bounds are similarly
defined.

Example 1.4.2. Given a set X , the power set is partially ordered by ⊆; by defini-
tion, this ordering is antisymmetric. The greatest element is X . Any collection S of
subsets of X has a least upper bound, which is the union of the sets in S .
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Definition 1.4.3. A linear ordering on a set E is called a well-ordering if every
nonempty subset of E contains a first (i.e., least) element.

Example 1.4.3. The set N of natural numbers with the usual ordering is a well-
ordered set.

Throughout this book, we will use R
+ to denote the nonnegative real numbers

and R := R∪{+∞,−∞} to denote the extended real numbers. The linear ordering
≤ on R is extended to R by setting −∞ < x < +∞ for all x ∈ R. When work-
ing with functions, we will use terminology such as “real-valued function” and
“extended-real valued function.” That is, we leave out the hyphen in the latter case
since extending a function refers to augmenting the domain.

1.5 Sequences in R and R

A sequence is a function using the natural numbers for the domain. The image of n∈
N is often denoted by xn, an, fn, etc. The sequence itself will usually be denoted here
using angle brackets; for example, 〈xn : n ∈ N〉 or just 〈xn〉. A real-valued sequence
converges in R if there is a real number x such that, for each ε > 0 there is a K ∈ N

such that |xn− x| < ε for all n ≥ K in N. The number x is the unique limit of the
sequence. We write limn→∞ xn = x and say 〈xn〉 has limit x or converges to x. We
may also write xn → x. Moreover, if xn is increasing, that is, xn ≤ xn+1 for each n,
then we may write xn ↗ x; the notation xn ↘ x may be used if xn is decreasing.

A sequence 〈xn〉 in R is a Cauchy sequence if for each ε > 0 there is a K ∈ N

such that for all m≥ K and n ≥ K in N, |xn− xm|< ε . An important property of the
real numbers is that a real sequence converges if and only if it is a Cauchy sequence.
The requirement of a limit for every Cauchy sequence is often used to define the real
numbers R as an extension of the rational numbers Q.

Theorem 1.5.1. Any nonempty subset of R with an upper bound in R has a least
upper bound in R. Any decreasing sequence of finite closed intervals In in R, i.e.,
In ⊇ In+1 for each n, has a nonempty intersection.

Proof. Let A be a nonempty set with a finite upper bound. For each n ∈ N, we may
choose an ∈ A and an upper bound bn of the set A such that bn−an ≤ 1/n. It is left
to the reader (Exercise 1.15) to show that the bn’s form a Cauchy sequence, and the
limit is the least upper bound of A. For a decreasing sequence of closed intervals,
the set of left endpoints has a least upper bound, which is in all of the intervals.

A sequence 〈xn〉 in R has a cluster point x0 if for each ε > 0 and each K ∈ N

there is an n ≥ K in N for which |xn− x0| < ε . If a point x0 ∈ R is the limit of a
sequence, it is the unique cluster point of the sequence. A sequence may have many
cluster points but no limit, such as the sequence n → (−1)n; it may also have no
cluster point in R, such as the sequence n → n.
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An equivalent condition for convergence of a real-valued sequence 〈xn〉 to x is
that for each open interval I that contains x there is a natural number K so that for all
n≥K in N we have xn ∈ I. We may say that the sequence is eventually in every open
interval containing x. If x0 is a cluster point of a sequence 〈xn〉, then for any open
interval I containing x0 and any K ∈ N there is an n ≥ K with xn ∈ I. We may say
the sequence is frequently in every open interval containing x0.

Since the extended real numbers form a linearly ordered set, the notion of upper
bound and lower bound is the same as for any linear ordered set. A nonempty subset
of R also has a least upper bound, denoted by lub or sup for supremum. If the set
does not have a finite upper bound, then the least upper bound is +∞. It also follows
by multiplying members in a subset of R by −1 that a nonempty subset of the reals
has a greatest lower bound, denoted by glb or inf for infimum. If the set does not
have a finite lower bound, then the greatest lower bound is −∞. In general, if A⊆R

is not empty, then infA ≤ supA, with equality holding if and only if A consists of
only one point. However, since every real number is both an upper bound and a
lower bound of the empty set, sup(∅) =−∞ and inf(∅) = +∞.

If 〈xn〉 is a real-valued sequence, then limn→∞ xn = +∞ if for each M > 0 in R

there is a K ∈N such that xn > M for all n≥K. In this case, the sequence diverges to
plus infinity. A similarly definition gives limn→∞ xn =−∞. The point +∞ is a cluster
point of the sequence if xn is frequently in each interval of type (M,∞) for M ∈ R.
A similarly definition is used for a cluster point at −∞. A bounded sequence is one
for which the range is contained in a finite interval in R.

Theorem 1.5.2. A real-valued sequence has a cluster point in the extended real
line R.

Proof. If neither +∞ nor −∞ is a cluster point, then for some M ∈ N, there is a
K ∈ N such that for all n ≥ K, xn ∈ [−M,M] (Exercise 1.13). In this case, divide
[−M,M] into 2M closed intervals of length 1; i.e., [−M,−M + 1], · · · ,[M− 1,M].
The sequence cannot be eventually in the complement of each of these intervals.
Let I1 = [m,m+ 1]be the first, counting from the left, of these closed intervals to
which the sequence frequently returns. That is, for each J ∈ N there is an n > J
with xn ∈ I1. Divide I1 in half, forming [m,m+ 1/2] and [m+ 1/2,m+ 1]. Let I2

be the first, counting from the left, of these two intervals to which the sequence
frequently returns. Continue in this way, each time cutting the previous interval in
half. At the nth stage, let In+1 be the first, counting from the left, of the two intervals
formed from In to which the sequence frequently returns. Now for each n ∈ N, let
In = [an,bn]. Then an ≤ an+1 < bn+1 ≤ bn, and lim(bn−an) = 0. Therefore, the an’s
form a Cauchy sequence that converges to a point x0, which is also a cluster point of
the original sequence. That is, given ε > 0, there is a K ∈ N such that for all n≥ K,
bn−an < ε , an ≤ x0 ≤ bn, and for infinitely many j’s after K, an ≤ x j ≤ bn, whence
∣

∣x j− x0
∣

∣≤ bn−an < ε .

Remark 1.5.1. If for n ≥ K the sequence is in a bounded interval, then since only a
finite number of terms precede K, the sequence is bounded. The main part of The-
orem 1.5.2 is called the Bolzano-Weierstrass theorem. We will give another proof
when we take up compactness.



1.6 Lim sup and Lim inf 9

Definition 1.5.1. A subsequence of a sequence 〈xn : n ∈ N〉 is given by a function
s from N into N, such that for each k ∈ N, s(k+ 1) > s(k) ≥ k. The corresponding
subsequence is the map k → s(k) → xs(k) from N into the range of the original
sequence. The image of k ∈ N is often denoted by xnk .

Theorem 1.5.3. If x0 ∈ R is a cluster point of a sequence 〈xn : n ∈ N〉, then a sub-
sequence

〈

xnk : k ∈ N
〉

converges to x0.

Proof. If +∞ is a cluster point, then there is a function s from N into N, such that
for each k ∈ N, s(k + 1) > s(k) ≥ k, and xs(k) ≥ k. The sequence xs(k) converges
to +∞. If −∞ is a cluster point, then +∞ is a cluster point of −xn; a subsequence
−xr(k) converges to +∞, so the subsequence xr(k) converges to −∞. If x0 is a real-
valued cluster point, then there is a map s from N into N, such that for each k ∈ N,
s(k+1)> s(k)≥ k, and

∣

∣xs(k)− x0
∣

∣< 1/k.

Corollary 1.5.1. If 〈xn〉 is a sequence of real numbers, then a subsequence 〈xni〉
converges to a real or extended real number.

1.6 Lim sup and Lim inf

Definition 1.6.1. If a and b are real numbers, a∨ b denotes the maximum of a and
b, while a∧ b denotes the minimum of a and b. If 〈xn〉 is a sequence in R,

∨

k xk

denotes the supremum, i.e., lub of the xk’s, and
∧

k xk denotes the infimum, i.e., glb
of the xk’s. The limit superior is the extended real number

limsupxn := inf
n∈N

(sup
k≥n

xk) =
∧

n∈N

(

∨

k≥n

xk

)

.

We may also use limxn to denote this number. The limit inferior is the extended
real number

liminfxn := sup
n∈N

( inf
k≥n

xk) =
∨

n∈N

(

∧

k≥n

xk

)

.

We may also use limxn to denote this number.

Remark 1.6.1. Note that n →∨k≥n xk is a decreasing sequence in R and n →∧k≥n xk

is an increasing sequence in R.

Proposition 1.6.1. If 〈xn〉 is a sequence in R and L = limsupxn is in R, then given
any ε > 0, the sequence is eventually less than L+ ε and frequently greater than
L− ε . If limsupxn = +∞, then for all M > 0, the sequence is frequently greater
than M. If limsupxn =−∞, then limxn =−∞, whence for all M > 0, the sequence is
eventually less than−M. Similar statements are true for liminfxn =− limsup(−xn).
It follows that limsupxn is the largest cluster point of the sequence in R and
liminfxn is the smallest cluster point of the sequence in R.
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Proof. The proof is left to the reader.

Corollary 1.6.1. If 〈xn〉 is a sequence in R, then liminfxn ≤ limsupxn, and the
two are equal if and only if they are the limit of the sequence in the extended real
numbers.

Proposition 1.6.2. Let 〈xn〉 and 〈yn〉 be real-valued sequences. Then provided we
never add or subtract +∞ from itself, we have

limxn + limyn ≤ lim(xn + yn)≤ limxn + limyn

≤ lim(xn + yn)≤ limxn + limyn.

Proof. To show the first inequality, we may assume the left side is not −∞ since
otherwise, the first inequality is trivial. If limxn = +∞, then since, by assumption,
limyn �= −∞, the yn’s are bounded below and eventually the xn’s take arbitrarily
large values, so the sum has lim equal to +∞. A similar fact is true if limyn =+∞.
Assume both terms on the left of the inequality are finite. Given ε > 0, we fix a k
such that for all m≥ k, limxn− ε/2 < xm and limyn− ε/2 < ym. Now it is true that
for all m≥ k, that is, eventually, limxn+ limyn−ε ≤ xm+ym. Next, we note that for
an infinite number of m’s greater than k, i.e., frequently, xm+ym ≤ lim(xn + yn)+ε .
It follows that limxn + limyn ≤ lim(xn + yn). To establish the second inequality, we
use the fact that

lim(xn + yn)+ lim(−yn)≤ limxn,

whence
lim(xn + yn)≤ limxn− lim(−yn) = limxn + limyn.

The rest is left to the reader.

1.7 Open and Closed Sets

Definition 1.7.1. A set O ⊆ R is open if for all x ∈ O, there is an open interval
(x− ε ,x+ ε)⊆ O. A set is closed if its complement in R is open.

Remark 1.7.1. Note that a set is open if and only if its complement is closed. There-
fore, a set A is closed if and only if for each point z not in the set, there is an open
interval (z− ε ,z+ ε)⊆ �A.

Proposition 1.7.1. The collection of open sets is stable under the operations of tak-
ing finite intersections and arbitrary unions. The collection of closed sets is stable
under the operations of taking finite unions and arbitrary intersections.

Proof. Let G =
⋂n

i=1 Oi where the Oi are open sets. Let x ∈G. Then x ∈Oi for each
i, and so there are δi > 0 such that (x−δi,x+δi)⊆Oi. Set δ :=

∧n
i=1 δi. Then δ > 0

and (x− δ ,x+ δ ) ⊆ Oi for each i, whence (x− δ ,x+ δ ) ⊆ G. It follows that G is
open. Now let G = ∪Oα for an arbitrary collection of open sets Oα . If x ∈ G, then



1.7 Open and Closed Sets 11

x∈Oβ for some index β , whence there is a δ > 0 such that (x−δ ,x+δ )⊆Oβ ⊆G.
It follows that G is open. The results for closed sets follow from these facts for open
sets and De Morgan’s laws.

Remark 1.7.2. The sets R and ∅ are both open and closed in R; these are the only
sets both open and closed in R (Exercise 1.22).

Proposition 1.7.2. Every nonempty open set in R is the union of a countable collec-
tion of disjoint open intervals.

Proof. Once we obtain a collection of disjoint intervals, the collection must be finite
or countably infinite because each interval contains a rational number not in any of
the other intervals, and the rational numbers form a countable set. Given a nonempty
open set O, to each x ∈ O we associate the interval Ix = (ax,bx) where ax = inf{z ∈
O : (z,x) ⊆ O} and bx = sup{z ∈ O : (x,z) ⊆ O}. Of course, ax may equal −∞ and
bx may equal +∞. Since O is open, Ix is not the empty set, and neither ax nor bx

is in O. For each x ∈ O, x ∈ Ix ⊆ O, so ∪xIx = O. We now need only show that if
x < y in O and Ix∩ Iy �=∅, then Ix = Iy, since then the Ix’s form the desired disjoint
collection. Suppose there is a point w ∈ Ix∩ Iy. If w≤ x, then x ∈ Iy, and so

ay = inf{z ∈ O : z < x and (z,x)⊆ O}= ax.

If x < w, then the closed interval [x,w]⊆ Ix ⊆O. It follows that x∈ Iy, whence again,
ax = ay. Similarly, bx = by. Therefore, the collection {Ix : x ∈ O} is the desired
collection.

Theorem 1.7.1 (Lindelöf). The union of a collection C of open subsets of the real
line is equal to the union of some countable subcollection of C .

Proof. Let D = {In : n ∈ N} be the collection of all open intervals with rational
endpoints such that each In is contained in a set O ∈ C . The union over the intervals
In is equal to the union over the sets in C . Replace each In with one of the sets
On ∈ C such that In ⊆On. (Here we are using the Axiom of Choice.) The collection
{On} (with no repetitions) is the desired collection.

The following corollary, due to Aldaz [2], works for the real line; it will be useful
later. Recall that an interval is non-degenerate if it is not a singleton set. A point is in
the interior of an interval if it is in the interval but is not an endpoint of the interval.

Corollary 1.7.1. If C is a collection of non-degenerate intervals in R, then the union
of the intervals in C equals the union of some countable subcollection of C .

Proof. Let A be the collection of those intervals in C such that each I ∈A contains
its left endpoint, and that left endpoint is not in the interior of any interval in C . If
I ∈A and a is its left endpoint, then for some ε > 0, the open interval (a,a+ε)⊆ I,
and no left endpoint of any member of A lies in (a,a+ ε). Moreover, (a,a+ ε)
contains a rational number. It follows that the collection AL of left endpoints of
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intervals in A is countable. Let B be the collection of those intervals in C such
that each I ∈ B contains its right endpoint but that right endpoint is not in the
interior of any interval in C . By an argument similar to that for A , the collection
BR of right endpoints of intervals in B also forms a countable set. A countable
subcollection of C contains the points of AL ∪BR. The rest of the union of the
intervals in C is covered by the intervals of C with any endpoints removed, so by
Lindelöf’s theorem, a countable subcollection has the same union. Since a union of
two countable sets is countable, we are done.

1.8 Closures

Definition 1.8.1. A point x ∈ R is a point of closure of a set A ⊆ R if every open
interval about x contains a point of A. A point x ∈ R is an accumulation point of a
set A⊆ R if every open interval about x contains a point of A\{x}.

Note that a point of closure of a set A need not be in A, but every point in A is a
point of closure of A. In particular, any point of closure of A that is not an element
of A is an accumulation point of A. Note that a point of A may or may not be an
accumulation point of A.

Example 1.8.1. Every natural number is a point of closure of N, but there are no
accumulation points of N. The point 0 is the only accumulation point of the set
{1/n : n ∈ N}.
Definition 1.8.2. The closure E of a set E is the set E together with all of its accu-
mulation points.

Remark 1.8.1. It is easy to see that A∪B = A∪B and if A ⊆ B then A ⊆ B. There-
fore, A∩B⊆ A∩B, but the containment does not necessarily go the other way. For
example, A∩B may be empty.

Proposition 1.8.1. A set F is closed if and only if F =F; that is, every accumulation
point of F is a member of F.

Proof. A set F is closed if and only if each point of R\F is contained in an open in-
terval that does not intersect F , if and only if all points of closure of F are contained
in F , if and only if F ⊆ F ⊆ F .

Proposition 1.8.2. The closure of the closure is the closure; i.e., if E ⊆ R, then
(

E
)

= E. It follows that the closure of a set is a closed set.

Proof. If z is a point of closure of E and I = (z−ε , z+ε) for some ε > 0, then there
is a y ∈ E ∩ I. Since y is a point of closure of E, there is an x ∈ E ∩ I. This means
that z is a point of closure of E. Therefore, we cannot obtain a strictly larger set by
going from E to

(

E
)

.
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Proposition 1.8.3. The closure of a set E is the intersection of all closed sets that
contain E.

Proof. By Proposition 1.7.1, if F is the intersection of all closed sets that contain E,
then F is closed. Since E is a closed set, E ⊆ F ⊆ E ⊆ F = F . Therefore, E = F .

A notion analogous to the closure of a set is that of the interior of a set.

Definition 1.8.3. A point x is in the interior A◦ of a set A if for some open interval
Ix centered at x, we have x ∈ Ix ⊆ A.

Remark 1.8.2. Since each y∈ Ix is also in A◦, it follows that A◦ =
⋃

x∈A◦ Ix is an open
subset of A. If y is in an open set O⊆ A, then there is an open interval Iy centered at
y with y ∈ Iy ⊆ O⊆ A. It follows that O⊆ A◦, so A◦ is the largest open subset of A;
it is the union of all open subsets of A. Therefore, A is open if and only if A = A◦.

1.9 Directed Sets and Nets

In this section, we generalize sequences and sequential convergence.

Definition 1.9.1. A directed set is a set D supplied with a partially ordering ≤ hav-
ing the additional property that for all a, b in D, there is a c ∈ D with a ≤ c and
b≤ c.

Remark 1.9.1. It may not be the case that a and b are comparable with respect to
the ordering in D, but there is an element comparable to both and further along than
both. Antisymmetry is not needed for the ordering ≤.

Definition 1.9.2. A net or generalized sequence in the real line is a mapping from
a directed set into R. A net 〈xα : α ∈ D〉 converges to a point L if for any ε > 0, there
is an α0 ∈ D such that for all α ≥ α0 in D, |L− xα |< ε . That is, with respect to the
ordering on D, the net is eventually in every open interval about L. Convergence in
the extended real line is similarly defined.

Example 1.9.1. D = N with the usual ordering gives sequential convergence.

Example 1.9.2. A river with tributaries flowing downstream is a directed set with
a ≤ b if b is downstream of a. The height above sea-level is a net using this
directed set.

Example 1.9.3. Fix c ∈ R, and let D = R \ {c}. Set a � b in D if |b− c| ≤ |a− c|.
For a real-valued function f on R, this gives the notion of limx→c f (x). Note here
that c−1 � c+1 � c−1. That is, we do not have antisymmetry for �.
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Example 1.9.4. Fix an interval [a,b] in R, and let P be the set of finite partitions
of [a,b] used for Riemann sums. Each element of P consists of a finite collection
of partition points a = x0 < x1 < · · · < xn = b for some n ∈ N, and also what
are called tags zi ∈ [xi−1,xi] for 1 ≤ i ≤ n. For a bounded function f : [a,b] → R,
the Riemann sum formed by these partition points and tags is ∑n

i=1 f (zi)(xi− xi−1).
Given two partitions P1 and P2, we have P1 ≤ P2 if the partition points of P1 are
also partition points of P2. For the Riemann integral, the tags are arbitrary within the
required subintervals. This gives the general convergence notion for Riemann sums
converging to the Riemann integral. Note here that we do not have, and absolutely
do not want, antisymmetry for ≤.

As noted, nets generalize sequences and sequential convergence. We also want to
extend the notion of convergence for a series of numbers. Given a series of nonneg-
ative numbers, a sum exists if the partial sums have a finite upper bound. One can
come arbitrarily close to the same sum by adding the numbers in a sufficiently large
finite subset of the set of numbers in the series. Adding any more numbers from the
series will not change the sum by much. That is the idea of an unordered sum.

Example 1.9.5. To obtain an unordered sum of nonnegative numbers forming a set
E, the directed set is the collection F of finite subsets of E. Containment ⊆ is the
ordering on F . This makes F a directed set since if A and B are finite subsets of
E, then while neither may be a subset of the other, the union contains them both. If
it exists, the unordered sum is a number S such that for any ε > 0, there is a finite
subset A of E such that if SB is the sum of the numbers in any finite set B⊇ A, then
|S−SB| < ε . The proof of the following equivalence of unordered sums and series
convergence is left to the reader.

Proposition 1.9.1. Let E be a set of nonnegative real numbers. If the unordered
sum S of the elements of E is a finite number, then there are at most a countable
number of nonzero elements in E. If E itself is a countable set and 〈xn : n ∈ N〉 is an
enumeration, then S is the limit of the partial sums of the series Σ ∞

n=1xn.

1.10 Compactness

Definition 1.10.1. A covering of a set A by open sets is a collection of open sets
{Oα : α ∈ I }, which we may index by some set I , such that each x ∈ A is in
some Oα . That is, A ⊆ ∪α∈I Oα . We speak of an open covering of A. A finite
subcovering of such a covering is a finite subset {Oα1 , · · · ,Oαn} of the original
covering that itself forms a covering of A.

Definition 1.10.2. A collection of sets has the finite intersection property if every
finite subcollection has a nonempty intersection.

Theorem 1.10.1 (Heine-Borel). A set F ⊂ R is closed and bounded if and only if
every covering of F by open sets has a finite subcovering.
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Remark 1.10.1. In general, one calls a set F with this covering property a compact
set. The theorem says a set is compact if and only if it is closed and bounded. The
reader should be warned that for an infinite-dimensional space, compact sets are
closed and bounded but there may be closed and bounded sets, such as the closed
unit ball in an infinite-dimensional Hilbert space, that are not compact in terms of
the open sets defined using the space’s norm. Here is the proof of Theorem 1.10.1
for the space R.

Proof. If A ⊆ R is not bounded, then the covering {(−n,n) : n ∈ N} has no finite
subcovering. If A is not closed, then there is some accumulation point x /∈ A. The
covering {(−∞,x−1/n)∪ (x+1/n,+∞) : n ∈ N} of A has no finite subcovering.

For the converse, we may reduce the proof to the case that F is a finite closed
interval [a,b] ⊂ R. This follows from the fact that if we are given a closed subset
F ⊆ [a,b] and an open covering C of F , adjoining the open set R\F to C gives an
open covering of [a,b]. If we know this covering has a finite subcovering D , then
the open sets in D other than R\F form a finite open covering of F .

It only remains to show that for any a < b in R, the interval [a,b] is compact.
Let C be an open covering of [a,b]. Each point x ∈ [a,b] is contained in an open
interval Ix = (x− δx,x+ δx) that in turn is contained in one of the open sets in C .
Let I = {Ix : x ∈ [a,b]}. We now need only show that I can be reduced to a finite
subcovering of [a,b], since each open interval in that subcovering can be replaced
with a larger open set from C . (Notice that we have simplified the proof by reducing
the generality in two steps.)

Let

S := {x ∈ [a,b] : ∃ a finite subcover from I of [a,x]}.
The set S is not empty since it contains all points of Ia ∩ [a,b]. First, suppose
a < y < b and there is a point x ≤ y in S∩ Iy. Then adding Iy to a finite cover of
[a,x], we obtain a finite cover of [a,z] for some z > y. That is, no point less than b
can be an upper bound of S, so b is the least upper bound of S. But then, given x < b
in Ib ∩ S, we may add Ib to a finite covering of [a,x] to obtain a finite covering of
[a,b], so b ∈ S.

Corollary 1.10.1. A collection C of closed sets in R with the finite intersection prop-
erty has a nonempty intersection provided at least one of the sets is bounded.

Proof. Let K be a bounded set in C ; then, K is compact. Let O be the collection of
complements of the other sets in C ; these are all open. No finite subcollection of
O can cover K since then the intersection of K with the closed complements of the
sets in that subcollection would be empty. Therefore, since K is compact, O does
not cover K. That is, there is a point in K that is in all of the other sets in C .

Example 1.10.1. The collection {[n,+∞) : n∈N} is a collection of closed subsets of
R such that every finite subcollection has a nonempty intersection, but the collection
has empty intersection.

Theorem 1.10.2 (Bolzano-Weierstrass). Every bounded sequence has a cluster
point, and therefore a subsequence converging to that cluster point.
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Proof. Fix M ∈N such that the range of the sequence is in the interval J = [−M,M].
If x ∈ J is not a cluster point of the sequence, then there is an open interval Ix about
x such that for only a finite number of values n ∈ N is xn in Ix. Since N is an infinite
set, no finite subcollection of the intervals Ix can cover J. Since J is compact, the
intervals Ix cannot cover J, so there must be a cluster point of the sequence in J.

1.11 Continuous Functions

We will speak of an ε-neighborhood of a point x ∈ R when we mean an open
interval (x− ε ,x+ ε) for ε > 0. Given two functions f and g on a common domain
A, ( f ∨g)(x) := f (x)∨g(x) and ( f ∧g)(x) := f (x)∧g(x) for all x∈ A. If f : A →R,
g : B → R, and g[B]⊆ A, then ( f ◦g)(x) := f (g(x)) for each x ∈ B.

Definition 1.11.1. A real-valued function f defined on a set A is continuous at x∈A
if for each ε > 0 there is a δ > 0 such that

f [(x−δ ,x+δ )∩A]⊆ ( f (x)− ε , f (x)+ ε).

The function f is continuous on a set B ⊆ A if it is continuous at each point of B.
When f is continuous on its domain, we say that f is continuous. A continuous
bijection f : A → B is a homeomorphism if the function f−1 is continuous on B.

Note that a function can be continuous when restricted to a subset B of its domain
A and not be continuous on A. For example, let A = R, B = N, and set f (x) = 1 for
x ∈ N and 0 for x ∈ R \N. Of course, if f is continuous at each point of B taking
into account its values on A, then it is continuous when restricted to B.

Example 1.11.1. Any continuous real-valued bijection defined on a compact subset
of R is a homeomorphism (Problem 1.36). A counterexample for the case of a non-
compact domain is given by the function f with domain [0,1)∪ [2,3] and values
given by f (x) = x on [0,1) and f (x) = x−1 on [2,3]. The inverse function f−1 has
a discontinuity at 1.

Proposition 1.11.1. The family of continuous real-valued functions on a set A ⊆ R

is stable under addition, subtraction, pointwise multiplication, and also division at
points where the denominator is not 0. If two functions f and g are continuous on A,
so are f ∨g and f ∧g. If f : A →R, g : B →R, and g[B]⊆A, then f ◦g is continuous.

Proof. The proof is left to the reader.

Example 1.11.2. Constant functions and the function x → x are continuous on any
subset of R. Therefore, a polynomial is continuous on any subset of R.

Proposition 1.11.2. A real-valued function f with domain A ⊆ R is continuous on
A if and only if for every open set O ⊆ R, f−1[O] is the intersection of A with an
open set. It follows that if A is open, then f is continuous on A if and only if for each
open set O⊆ R, f−1[O] is open.
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Proof. Assume f is continuous on A, and O is open in R. Then for all x ∈ f−1[O],
we may fix an ε-neighborhood of f (x) contained in O and a corresponding δ -
neighborhood Ux of x such that Ux ∩ A maps into the ε-neighborhood of f (x)
and therefore into O. That is, f [Ux∩A] ⊆ O, whence Ux ∩A ⊆ f−1[O]. Let U =
⋃

x∈ f−1[O]Ux. By definition,

f−1[O]⊆
⋃

x∈ f−1[0]

Ux∩A =U ∩A⊆ f−1[O],

so f−1[O] =U ∩A.
Now assume that for each open set O ⊆ R, f−1[O] is the intersection of A with

an open set. For each x ∈ A and each ε > 0, f−1[( f (x)− ε , f (x)+ ε)] has the form
U ∩A for some open U . For some δ > 0, the open interval (x− δ ,x+ δ ) ⊆U . It
follows that f [(x−δ ,x+δ )∩A]⊆ f [U ∩A]⊆ ( f (x)− ε , f (x)+ ε).

Theorem 1.11.1. The continuous image of a compact set is compact. That is, if A⊂
R is compact and contained in the domain of f , then f [A] is compact. Indeed, this
is true if just the restriction of f to A is continuous.

Proof. Let {Oα : α ∈ I } be an open covering of f [A]. For each α , let Uα be an
open set such that f−1[Oα ] =Uα ∩A. The Uα ’s cover A, so there is a finite subcover
Uα1 , · · · ,Uαn . If x ∈ A∩Uαi for some i, then f (x) ∈ Oαi . It follows that the sets
Oα1 , · · · ,Oαn cover f [A].

Corollary 1.11.1. A continuous real-valued function f takes a finite maximum and
minimum value on any compact set A.

Proof. Let F be the compact set f [A]. Since F is closed and bounded, the least upper
bound and the greatest lower bound of F belong to F .

Theorem 1.11.2 (Intermediate Value Theorem). The continuous image of an in-
terval is an interval. That is, suppose f is continuous when restricted to an interval I
in its domain. Also suppose there are points a and b in I with a< b and f (a) �= f (b).
Then for every point w strictly between f (a) and f (b), there is a point z∈ (a,b) with
f (z) = w.

Proof. We may assume that f (a) < w < f (b); otherwise, we work with − f . Let
S = {z ∈ [a,b] : f (x)≤ w for all x ∈ [a,z]}, and let c = supS. Since f (a)< w, there
is a γ > 0 such that [a,a+ γ) ⊆ S. Therefore, a < c. If f (c) < w, then c < b and
there is an interval (c− δ ,c+ δ ) ⊆ (a,b) on which f (x) < w; but, this contradicts
the definition of c. If f (c)> w, then for some δ > 0, f (x)> w for all x ∈ (c−δ ,c].
This again contradicts the definition of c. Therefore, f (c) = w.

Definition 1.11.2. A real-valued function f defined on a set E ⊆ R is uniformly
continuous on E if for every ε > 0, there is a δ > 0 such that for all points x and y
in E with |x− y|< δ , | f (x)− f (y)|< ε .
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Example 1.11.3. The functions f (x) = 1/x and g(x) = x2 are not uniformly contin-
uous on (0,+∞).

Theorem 1.11.3. A real-valued function continuous on a compact set A is uniformly
continuous on A.

Proof. Fix ε > 0. For each x ∈ A, there is a δx > 0 so that if z ∈ A and |z− x| < δx

then | f (z)− f (x)|< ε/2. For each x ∈ A, let Ux = (x−δx/2,x+δx/2). Take a finite
subcover Ux1 , · · · ,Uxn of the covering of A by the Ux’s. Let δ be the smallest of the
numbers δx1/2, · · · ,δxn/2. Now δ works for ε everywhere on A, for if x and y are in A
and |x− y|< δ , then for some i, |x− xi|< δxi/2, and so |y− xi| ≤ |y− x|+ |x− xi|<
δxi . It follows that

| f (x)− f (y)| ≤ | f (x)− f (xi)|+ | f (y)− f (xi)|< ε/2+ ε/2 = ε .

Remark 1.11.1. Theorem 1.11.3 is needed in rigorous calculus for the integration
on an interval [a,b] of a function that is known to be continuous. The theorem,
however, is beyond the ability of most beginning calculus students. Here is an easier,
equivalent fact: Fix a continuous function f on an interval [a,b]. For each Δx > 0,
divide the interval [a,b] into subintervals [xi−1,xi], each of which has length Δx
except for the last subinterval, which has length at most Δx. The following function
of Δx

E f (Δx) := max
i

(

max
xi−1≤x≤xi

f (x)− min
xi−1≤x≤xi

f (x)

)

has limit 0 as Δx→ 0. If f has a bounded derivative, this result, call it the maximum
change theorem, follows from the mean-value theorem.

Definition 1.11.3. Let 〈 fn : n ∈ N〉 be a sequence of real-valued functions, and let E
be a set on which all are defined. Let f be a real-valued function also defined on E.
The functions fn converge pointwise to f on E if for every x ∈ E, fn(x)→ f (x).
The functions fn converge uniformly to f on E if for every ε > 0 there is an mε ∈N

such that for all x ∈ E and all n > mε , | fn(x)− f (x)|< ε .

Example 1.11.4. For each n ∈ N, let fn(x) = xn. This sequence converges pointwise
but not uniformly to 0 on [0,1). The limit is 1 at 1. Clearly, the limit function is not
continuous on [0,1]. A better result occurs when the convergence is uniform.

Theorem 1.11.4. On any set E ⊆ R, the uniform limit of continuous functions is
continuous.

Proof. Let 〈 fn : n ∈ N〉 be a sequence of real-valued functions converging uniformly
to f on E. Fix ε > 0, and choose n so that | fn(x)− f (x)| < ε/3 for all x ∈ E . Fix
any x ∈ E. Fix δx > 0 so that if z ∈ E and |z− x|< δx, then | fn(z)− fn(x)|< ε/3, in
which case,

| f (z)− f (x)| ≤ | f (z)− fn(z)|+ | fn(z)− fn(x)|+ | fn(x)− f (x)|< ε .



1.12 Problems 19

Proposition 1.11.3. Let F be a closed set in R and f a continuous function on F.
The function f can be extended to all of R with a continuous function g so that
supx∈F f (x) = supx∈R g(x) and infx∈F f (x) = infx∈R g(x).

Proof. Exercise 1.40(A).

Proposition 1.11.4. Let f be a continuous function on a closed and bounded inter-
val [a,b] with b > a. Given ε > 0, there is a polygonal function g, i.e., a continuous
function formed by a finite number of line segments, that is uniformly within ε of f ;
that is, maxx∈[a,b] | f (x)−g(x)| ≤ ε .

Proof. Exercise 1.41(A).

Note that ∩n∈N(− 1
n ,

1
n ) is the singleton set {0}, which is not open. Moreover,

∪n∈N
[−1+ 1

n ,1− 1
n

]

is the open interval (−1,1), which is not closed. We will,
however, have need to consider countable operations acting on open and closed sets
even without stability.

Definition 1.11.4. A Gδ set is a set that is the countable intersection of open sets.
An Fσ set is a set that is the countable union of closed sets. A Gδσ set is a countable
union of Gδ sets. An Fσδ set is a countable intersection of Fσ sets, etc.

Proofs for the following propositions are left as exercises.

Proposition 1.11.5. The set of points of continuity of a real-valued function defined
on the real line R is a Gδ set.

Proposition 1.11.6. If 〈 fn : n ∈ N〉 is a sequence of continuous functions defined on
R, then the set consisting of points where this sequence converges is an Fσδ set.

1.12 Problems

Problem 1.1. Show that for an equivalence relation ρ on a set A and points x,y ∈ A,
either the equivalence class [x] equals the equivalence class [y] or [x] and [y] are
disjoint.

Problem 1.2. Prove that a countable union of countable sets is countable.

Problem 1.3. Prove that the set of rational numbers Q is countable.

Problem 1.4. Prove De Morgan’s laws for two sets A and B.

Problem 1.5. Let E be the set of functions from the natural numbers N into the two
point set {0,1}. Show that E is not a countable set.

Problem 1.6. Show that every open set in R either has no elements or is uncount-
able. You may use the fact that [0,1] is uncountable.
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Problem 1.7. Show that an algebra A is a σ -algebra if and only if A is stable under
countable increasing unions. That is, if 〈Ei : i ∈ N〉 is a sequence in A such that for
all i, Ei ⊆ Ei+1, then ∪∞

i=1Ei is in A .

Problem 1.8 (A). Prove Proposition 1.3.2. Hint: Set A := σ(C ); let A ′ be the
collection of all sets E ∈ A such that the result is true for E (that is, for some
countable collection C0 ⊆ C , E ∈ σ(C0).) You want to show that A ′ is a σ -algebra
and C ⊆A ′. It will then follow by definition that A ′ =A = σ(C ).

Problem 1.9. Recall that the Borel σ -algebra B of R is the smallest σ -algebra con-
taining the open subsets of R. Show that B is also the smallest σ -algebra containing
all intervals of the form [α,β ), with α and β rational and α < β .

Problem 1.10. Show that the relation ⊆ in the power set of R is an antisymmetric
partial ordering but not a total ordering.

Problem 1.11. Prove that a convergent sequence in R is a Cauchy sequence.

Problem 1.12. Let 〈xn〉 be a sequence in R. Suppose that for every subsequence
〈xnk〉 of 〈xn〉, there is a further subsequence 〈xnk�

〉 of 〈xnk〉 such that xnk�
→ x as

�→ ∞. Show that xn → x as n→ ∞.

Problem 1.13. Show that if a real-valued sequence 〈xn〉 has neither +∞ nor −∞
as a cluster point, then for some M ∈ N, there is a K ∈ N such that for all n > K,
xn ∈ [−M,M].

Problem 1.14. a) Give an example of a sequence in R for which the set of cluster
points consists of the natural numbers.

b) Can a sequence in R have uncountably many cluster points?

Problem 1.15. Let A be a nonempty set with a finite upper bound. For each n ∈ N,
you are given an ∈ A and an upper bound bn of the set A such that bn− an ≤ 1/n.
Show that the bn’s form a Cauchy sequence, and the limit is the least upper bound
of A.

Problem 1.16. Let In = [an,bn] be a decreasing sequence of finite closed intervals
in R. That is, for each n ∈ N, an ≤ an+1 ≤ bn+1 ≤ bn. Assume that
limn→∞ (bn−an) = 0. Use Cauchy sequences directly to show that there is a unique
point x0 in ∩nIn.

Problem 1.17. Prove Proposition 1.6.1.

Problem 1.18. Finish the proof of Proposition 1.6.2.

Problem 1.19. Construct a bounded real-valued sequence 〈xn〉 and a bounded real-
valued sequence 〈yn〉 that satisfy:

lim xn + lim yn < lim(xn + yn)< lim xn + lim yn

< lim(xn + yn)< lim xn + lim yn.

In particular, equality does not hold in general in any of the inequalities in Proposi-
tion 1.6.2.
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Problem 1.20. Let x be an accumulation point of a set S⊆R. Show that every open
interval centered at x contains infinitely many points of S.

Problem 1.21. Given n ∈ N, find an example of an open set E ⊆ R with exactly n
accumulation points in R that do not lie in E. Can you find such an example for
some n ∈ N when E is assumed to be closed?

Problem 1.22. a) Let U and V be disjoint open sets in R with union equal to R.
Show that either U or V is empty.

b) Show that the only subsets of R that are both open and closed are the empty set
and R itself.

Problem 1.23. Prove Proposition 1.9.1. Hint: If the unordered sum S of the ele-
ments of E is finite, how many elements of E can be larger than m ∈ N?

Problem 1.24. Let 〈xn : n∈N〉 be a sequence on R such that xn → x0. Show that the
set
⋃∞

n=0 {xn} is compact.

Problem 1.25. Let K ⊂ R be compact, and fix x ∈ K. Let 〈xn〉 be a sequence of
points in K such that every subsequence of 〈xn〉 that converges to some point in
R actually converges to x. Prove that the sequence 〈xn〉 converges to x. If K is not
compact, is the conclusion still true?

Problem 1.26. Show that a sequence 〈xn : n ∈ N〉 in a compact set K ⊆ R has a
cluster point in K by considering the intersection of the sets Cn, where for each n,
Cn is the closure of the tail sequence {xi : i≥ n}.
Problem 1.27. Let K be a compact subset of R. Show that there is a countable dense
subset D of K; that is, the closure D = K.

Problem 1.28. Prove Proposition 1.11.1.

Problem 1.29. Let f : R → R be a continuous function such that for each open
set O ⊆ R, f [O] is open in R. Show that f is either an increasing or a decreasing
function. That is, either it is the case that for all x < y in R, f (x)≤ f (y), or it is the
case that for all x < y in R, f (x)≥ f (y).

Problem 1.30. Let K ⊂ R be a compact set. Suppose that T : K → K satisfies
|T (x)−T (y)|< |x− y| for all points x and y with x �= y in K. Show that there exists
a unique x0 ∈ K such that T (x0) = x0. Hint: Show that the function x → |x−T (x)|
is continuous on K, and so achieves its minimum value.

Problem 1.31. Show that the function f given by f (x) = 1/x is not uniformly con-
tinuous on (0,1).

Problem 1.32. Let f : [0,∞) → R be a continuous function such that limx→∞ f (x)
exists and is finite. Show that f is uniformly continuous on [0,∞).

Problem 1.33. Prove that on a set E ⊆R, the uniform limit of uniformly continuous
functions is uniformly continuous.
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Problem 1.34. Let 〈 fn〉 be a sequence of differentiable functions on R with uni-
formly bounded derivatives, i.e., | f ′n(x)| ≤ M for every n ∈ N and x ∈ R. Suppose
fn(x) converges pointwise to f (x) for all x ∈ R. Show that f is continuous. Hint:
You may use the mean-value theorem.

Problem 1.35. Let K be a subset of R such that every continuous real-valued func-
tion on K is bounded. Show that K is compact.

Problem 1.36. a) Show that a continuous real-valued bijection f : A →B is a home-
omorphism if for any open set U ⊆R, f [U∩A] =V ∩B for some open set V ⊆R.

b) Show that any continuous bijection f mapping a compact domain K ⊆ R onto
S ⊆ R is a homeomorphism. Hint: Given an open set U ⊆ R, what can you say
about K\U?

Problem 1.37 (A). Let K ⊂R be a compact set, and let f : K →K have the property
that | f (x)− f (y)|= |x− y| for all x,y ∈ K. Show that f is a bijection.

Problem 1.38. Show that a continuous real-valued function f defined on an interval
I ⊆ R such that the derivative f ′ exists and is bounded on I is uniformly continuous
on I.

Problem 1.39. Recall that the uniform limit of continuous functions is continuous.

a) Show that if 〈 fn : n ∈ N〉 is an increasing sequence of continuous functions con-
verging pointwise to a continuous function f , i.e., fn(x)↗ f (x), on a compact
set K ⊆ R , then the convergence is uniform (This is Dini’s theorem).

b) Show by example that the result need not be true if the limit f is not continuous.
c) Show by example that the result need not be true if the domain K is not compact.

Problem 1.40 (A).

(a) Let F be a closed set in R and f a continuous function on F . Show that one can
extend f to all of R as a continuous function g so that supx∈F f (x) = supx∈R
g(x) and infx∈F f (x) = infx∈R g(x).

(b) Give an example showing that the result is false if F is replaced with an open
subset of R.

Problem 1.41 (A). Let f be a continuous function on a closed and bounded interval
[a,b] with b > a. Given ε > 0, show that there is a polygonal function g such that
| f (x)−g(x)|< ε for all x ∈ [a,b].

Problem 1.42 (A). Recall that a continuous bijection f : A → B is a homeomor-
phism if the function f−1 is continuous on B.

(a) Show that if A⊂ R is compact and f : A → B is a real-valued homeomorphism,
then f and f−1 are actually uniformly continuous.

(b) Give an example of a closed set K ⊆ R and a real-valued homeomorphism f :
K →B such that f is uniformly continuous, but f−1 is not uniformly continuous.
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(c) Give an example of a bounded set E ⊂R and a real-valued homeomorphism f :
E → B such that f−1 is uniformly continuous, but f is not uniformly continuous.

Problem 1.43 (A). Show that the set Pc of points of continuity of a real-valued func-
tion f defined on the real line R is a Gδ set.

Problem 1.44 (A). Given a sequence 〈 fi〉 of continuous functions defined on R,
show that the set C consisting of points where this sequence converges is an Fσδ .



Chapter 2
Measure on the Real Line

2.1 Introduction

There are many examples of functions that associate a nonnegative real number
or +∞ with a set. There is, for example, the number of members forming the set.
Given a finite probability experiment, probabilities are associated with outcomes.
Riemann integration associates with each finite interval in the real line, the length of
that interval. These are all examples of a “finitely additive measure.” Recall that an
algebra A of subsets of a set X is a collection that contains the set X together with
the complement in X of each of its members; it is also stable under the operation of
taking finite unions and, therefore, finite intersections. Also recall that a collection
of sets is pairwise disjoint if for any two sets A and B in the collection, A∩B =∅.

Definition 2.1.1. A finitely additive measure m is a function from an algebra A
of subsets of a set X into the extended nonnegative real line, R∪{+∞}, such that
m(∅) = 0 and for any finite collection {Ai : i = 1,2, . . . ,n} of pairwise disjoint sets
in A ,

m

(

n
⋃

i=1

Ai

)

=
n

∑
i=1

m(Ai) .

Such a function m is countably additive if for any pairwise disjoint sequence
{Ai : i ∈ N} in A with union also in A ,

m

(

∞
⋃

i=1

Ai

)

=
∞

∑
i=1

m(Ai) .

Remark 2.1.1. If the summation condition for countable additivity holds and
m(∅) = 0, then the summation condition for finite additivity also holds.
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Definition 2.1.2. Given a set A⊆ R and r ∈ R, the translate of A by r, denoted by
A+ r, is the set {a+ r : a ∈ A}. A finitely additive measure m defined on an algebra
A of subsets of R is translation invariant if for each A ∈A and each r ∈R, A+ r
is in A and

m(A+ r) = m(A).

The translation invariant, finitely additive measure m that associates to each
subinterval of R the length of that interval is defined on the algebra consisting of
all finite unions of subintervals of R. Any such union can be written as a finite union
of pairwise disjoint intervals. The sum of the lengths of those intervals is the value,
independent of the decomposition, that is taken by m. We want to extend Riemann
integration. We need, therefore, to extend the function m to a larger class of sets. We
would like the extension to be countably additive and translation invariant. It turns
out that an extension with these properties cannot be defined for all subsets of R.
There is, however, an important translation invariant extension that is defined for all
subsets of R.

2.2 Lebesgue Outer Measure

For each interval I ⊆ R, we write l(I) for the length of I. For example, if I = (a,b),
then l(I) = b− a. If I is an infinitely long interval, then l(I) = +∞. Given a set
A ⊆ R, we let C (A) denote the family of all collections of open intervals such that
the intervals in the collection cover A. That is, I is a member of C (A) if and only
if I is a set of open intervals in R and the union of the intervals in I contains
the set A. By ∑I∈I l(I) we mean the unordered sum of the length of the intervals
in I . Recall that this is the supremum of the sums obtained by adding the length of
intervals in finite subsets of I . If I is an uncountable collection of intervals, then
by the Lindelöf theorem, a finite or countably infinite subfamily of I also covers
A and has a sum of lengths that is no greater than the sum for the whole family.
Therefore, in applying the following definition, we usually consider just finite and
countably infinite families of open intervals that cover A. Every enumeration of a
countably infinite family of intervals will produce the same sum of lengths, which
is the usual limit of partial sums.

Definition 2.2.1 (Lebesgue outer measure). For each subset A⊆ R, the Lebesgue
outer measure, denoted by λ ∗(A), is obtained as follows:

λ ∗(A) = inf
I∈C (A )

(

∑
I∈I

l(I)

)

.

Lebesgue outer measure is defined on the power set of R, that is, the algebra
comprised of all subsets of R. We will show that Lebesgue outer measure is trans-
lation invariant and extends the notion of interval length. To obtain finite additivity,
however, we will need to restrict λ ∗ to a proper subfamily of the algebra of all
subsets of R.
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Proposition 2.2.1. For each A ⊆ R, λ ∗(A) ≥ 0, λ ∗(∅) = 0, λ ∗(R) = +∞, and if
A⊆ B⊆ R, then λ ∗(A)≤ λ ∗(B).

Proof. Since every open interval contains the empty set, λ ∗(∅) = 0. The rest is
clear from the definition.

Theorem 2.2.1. Lebesgue outer measure is translation invariant. That is, for any
A⊆ R and each r ∈ R, λ ∗(A+ r) = λ ∗(A).

Proof. Exercise 2.4(A).

Definition 2.2.2. Given a closed and bounded interval [a,b] with a< b, let BP[a,b]
be the sequence of bisection partitions 〈Pn : n ∈ N〉 of [a,b]. That is, P1 is the pair
{

[a,a+ b−a
2 ], [a+ b−a

2 ,b]
}

, and for each n∈N, Pn+1 is the set of closed intervals ob-
tained by cutting each interval in Pn in half, thus forming closed intervals of length
(b−a)/2n+1.

Proposition 2.2.2. Fix an interval [a,b] and a finite collection of open intervals I =
{(ak,bk) : k = 1, · · · ,k0} covering [a,b]. There is a j ∈ N such that every interval
in the bisection partition Pj ∈ BP[a,b] is contained in at least one of the open
intervals (ak,bk) from I .

Proof. Since a is contained in an open interval from I , there is a first m ∈ N such
that [a,a+ b−a

2m ] is contained in an open interval from I . For any n < m, let xn = a.
For each n > m, let xn be the largest right endpoint of the intervals in Pn such that
each of the intervals in Pn below xn is contained in an open interval from I . The
increasing sequence 〈xn〉 has a limit x0 in [a,b]. Since x0 is contained in an open
interval from I , that limit is b, and b = x j for some j ∈ N.

Theorem 2.2.2. The Lebesgue outer measure of an interval is its length.

Proof. For any x ∈ R, λ ∗([x,x]) = λ ∗({x}) = 0. Now assume the interval is [a,b]
with a < b. For each ε > 0, [a,b] ⊂ (a− ε ,b+ ε), so λ ∗([a,b]) ≤ b− a+ 2ε , and
since ε is arbitrary, λ ∗([a,b]) ≤ l([a,b]). Note that this proof works for any finite
interval. To show the reverse inequality, we must show that whatever the finite or
countably infinite covering of [a,b] by open intervals, the sum of their lengths is
no less than b− a. Fix such a covering, and let {(ak,bk) : k = 1, · · · ,n0} be a finite
subcovering. We need only show that ∑n0

k=1 bk− ak ≥ b− a. By Proposition 2.2.2,
we may fix a bisection partition Pn of [a,b] so that each member of Pn, which is a
subinterval of [a,b] of length (b− a)/2n, is contained in at least one of the open
intervals (ak,bk). For each k ≤ n0, bk−ak is greater than the sum of the lengths of
the closed intervals from Pn that are contained in (ak,bk). Since b− a is the sum
of the lengths of the intervals in Pn and every one of those intervals is in at least
one of the intervals (ak,bk), it follows that ∑n0

k=1 bk−ak ≥ b−a.
We have already shown that for an arbitrary, not necessarily closed, finite int-

erval I of positive length, the Lebesgue outer measure of I is less than or equal
to the length of I. On the other hand, the length is less than or equal to the outer
measure since there are closed intervals Jn ⊂ I with l(Jn) ↑ l(I). That is, for each
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ε > 0, there is an n ∈ N so that l(I)− ε ≤ l(Jn) = λ ∗(Jn) ≤ λ ∗(I). It follows that
λ ∗(I) = l(I). Finally, an infinite interval contains arbitrarily large closed subinter-
vals, so the outer measure of an infinite interval is +∞.

Theorem 2.2.3. Lebesgue outer measure is finitely and countably subadditive. That
is, for any finite or infinite sequence 〈An〉 of subsets of R,

λ ∗
(

⋃

n

An

)

≤∑
n

λ ∗(An).

Proof. If for some n we have λ ∗(An) = +∞, then the inequality is clear. If not, we
fix ε > 0 and for each n find a countable family of intervals covering An with the sum
of the length of those intervals less than λ ∗(An)+ε/2n. The union of these families
of intervals forms a countable interval covering of ∪An, and the sum of the lengths
is less than ∑n λ ∗(An)+ ε . Since ε is arbitrary, the result follows.

Corollary 2.2.1. A countable set has Lebesgue outer measure 0.

Corollary 2.2.2. Any interval of positive length is uncountable.

Example 2.2.1. The set of integers has Lebesgue outer measure 0, and the set of
rational numbers has Lebesgue outer measure 0.

Recall that a Gδ set is a set that is the countable intersection of open sets. An Fσ
set is a set that is the countable union of closed sets. A Gδσ set is a countable union
of Gδ sets. An Fσδ set is a countable intersection of Fσ sets, etc.

Proposition 2.2.3. Given A⊆ R and ε > 0, there is an open set O with A⊆ O and
λ ∗(O)≤ λ ∗(A)+ ε . Moreover, there is a Gδ set S⊇ A with λ ∗(S) = λ ∗(A).

Proof. The first and second part are clear if λ ∗(A) = +∞. For example, let
O = S = R . Otherwise, take open intervals that cover A with total length at most
ε , and let O be the union. For the second part, let On be an open set given in the first
part that works when ε = 1/n. Now the desired set is S =

⋂

n On.

To obtain Lebesgue measure, we will restrict λ ∗ to a family of sets on which it
is finitely additive. The restriction will then, in fact, be countably additive. We will
call the reduced family of sets “the Lebesgue measurable sets”, and the restriction
of λ ∗ will be Lebesgue measure λ .

2.3 General Outer Measures

Lebesgue outer measure generalizes the length of finite open intervals. The length
of a finite interval is the change on the interval of the function F(x) = x. More
general outer measures are constructed using the changes of more general increasing
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functions. Such functions will have discontinuities at points where the limit from the
right and the limit from the left are not equal. Our more general outer measures will
be formed using increasing functions, called “integrators”, that are continuous from
the right.

Definition 2.3.1. An increasing real-valued function F is an integrator if for each
x in the domain of F , F(x) = lim

y→x+
F(y).

We are only interested in the changes of an integrator, so when we restrict work
to a finite interval in R on which the integrator is bounded below, we may add a
constant so that the integrator is nonnegative. The integral that results from general
integrators relates to what is called “the Riemann–Stieltjes integral” in the same
way that the Lebesgue integral relates to the Riemann integral. This generalization
is very important in probability theory. It will cost us essentially nothing to work
with results for which a more general integrator can be used. This generalization
of the approach to Lebesgue integration also simplifies later material on measure
differentiation. It will be clear which results hold only for Lebesgue outer measure
and the corresponding Lebesgue measure.

As noted, the construction of Lebesgue outer measure employs the change of the
integrator F(x) = x on open intervals. For a general integrator F , however, we use
the change F(b)−F(a) on intervals of the form (a,b]. In this way, the value of any
jump of F is associated with the interval on which it occurs. If we already have a
measure taking only finite values, then we may set F(x) equal to the measure of
(−∞,x]. If F is only defined on a finite interval [a,b], then we can extend F with the
value F(a) to points below a and F(b) to points above b. Then the change of F will
be 0 on any interval that does not intersect [a,b]. If an integrator is continuous, such
as the integrator F(x) = x for Lebesgue outer measure, then the same outer measure
is obtained using open intervals or intervals of the form (a,b] (Exercise 2.13). We
have shown in Corollary 1.7.1 that any collection of intervals of the form (a,b] has
a finite or countably infinite subcollection with the same union.

Definition 2.3.2. Let F be an integrator, that is, an increasing real-valued function,
continuous from the right at each point of R. For each subset A ⊆ R, let m∗(A) be
defined in a way similar to Lebesgue outer measure, but using finite intervals of the
form (a,b] and the change F(b)−F(a).

When we used length, we used compactness and open coverings to show that
the outer measure of an interval is its length. The analogous result for a general
integrator F is still true.

Proposition 2.3.1. Let F be an integrator on R. Then m∗(∅) = 0. If A ⊆ B ⊆ R,
then m∗(A)≤ m∗(B), and for any interval (a,b], m∗((a,b]) = F(b)−F(a)<+∞.

Proof. Every interval (a,b] contains the empty set, and for every ε > 0 there is such
an interval for which F(b)−F(a) < ε (Problem 2.14). Therefore, m∗(∅) = 0. It is
clear that a more general outer measure is still an increasing function; that is, the big-
ger the set, the bigger the outer measure. It is also clear that m∗((a,b])≤ F(b)−F(a)
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since (a,b] covers itself. To show the reverse inequality for F , we fix ε > 0. Fix a
countable covering of (a,b] by intervals of the form (cn,dn]. Since F is contin-
uous from the right, we may replace each interval (cn,dn] with an open interval
(cn,en) where en > dn, but F(en)−F(cn) ≤ F(dn)−F(cn)+ ε/2n+1. Fix δ with
0 < δ < b− a and F(a+ δ ) < F(a)+ ε/2. The intervals (cn,en) form an open in-
terval covering of [a+ δ ,b], and so we may assume it is a finite covering of that
interval. By Proposition 2.2.2, we may fix a bisection partition Pn of [a+ δ ,b] so
that each member of Pn, which is a subinterval of [a+δ ,b] of length (b−a−δ )/2n,
is contained in at least one of the open intervals (ck,ek). For each of the intervals
(ck,ek), F(ek)−F(ck) is greater than or equal to the sum of the changes of F on
the closed intervals of Pn contained in (ck,ek). Moreover, F(b)−F(a+δ ) is equal
to the sum of the changes of F on the intervals of Pn. Since each interval of Pn is
contained in at least one of the intervals (ck,ek), it follows that

∞

∑
k=1

[F(dk)−F(ck)]+
ε
2

≥
n

∑
k=1

F(ek)−F(ck)≥ F(b)−F(a+δ )≥ F(b)−F(a)− ε
2

.

Since ε is arbitrary, the result follows.

Remark 2.3.1. It is no longer necessarily true for a more general integrator F that
points have 0 outer measure. If F jumps at a point x, then the outer measure of {x}
is the size of the jump.

Example 2.3.1. If we defined m∗ using open intervals, then it would no longer be
always true that the outer measure of an open interval would equal the change of the
integrator at the endpoints of the interval. For example, if F(x) = 0 for x < 1 and
F(x) = 1 for x≥ 1, then the change of F for (0,1) is 1, but the outer measure using
countable coverings by small open intervals would be 0.

Remark 2.3.2. In what follows, results and proofs that hold for general integrators
will be stated using m∗ and m for the corresponding outer measure and measure. We
will use λ ∗ and λ when the result is special for the Lebesgue case. Since most results
use only the common properties of outer measures, in only a few instances, such as
Proposition 2.3.1 above, is there a difference in wording of proofs for the Lebesgue
and the general case. For the next result, already established for the Lebesgue case,
one can also use the fact that there is an integrator F(x) = x for the Lebesgue case.

Theorem 2.3.1. Outer measure is finitely and countably subadditive. That is, for
any sequence 〈An : n ∈ N〉 of subsets of R, where some sets may be empty,

m∗
(

⋃

n∈N
An

)

≤ ∑
n∈N

m∗(An).

Proof. If for some n, m∗(An) = +∞, then the inequality is clear. If not, fix ε > 0,
and for each n ∈ N find a countable family Fn of appropriate intervals covering An
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such that the sum of the changes of the integrator F is less than m∗(An) + ε/2n.
The union ∪n∈NFn is a countable interval covering of ∪n∈NAn such that the sum
of the changes of F is less than ∑n∈N m∗(An) + ε . Since ε is arbitrary, the result
follows.

2.4 Measure from Outer Measure

As we shall see, Lebesgue outer measure is not even finitely additive on the family of
all subsets of R. There is, however, a finite additivity condition that yields not just
finite additivity, but also countable additivity on an appropriate family of subsets
of R. It is a condition, due to Carathéodory, that is applicable to all outer measures.

Definition 2.4.1 (Carathéodory). A set E ⊆ R is called measurable if for all sub-
sets A⊆ R,

m∗(A) = m∗(A∩E)+m∗(A∩ ˜E).
We denote the family of measurable sets by M . If the outer measure extends length,
we may say “Lebesgue measurable.”

The idea is that a set E is in M if and only if E splits any set in an additive
fashion. Since outer measure is subadditive, we always have

m∗(A)≤ m∗(A∩E)+m∗(A∩ ˜E).

We also have the reverse inequality if m∗(A) = +∞. Therefore, to show E is mea-
surable, we need only show that for any set A⊆ R with m∗(A)<+∞,

m∗(A)≥ m∗(A∩E)+m∗(A∩ ˜E).

Proposition 2.4.1. Any set of outer measure 0 is measurable.

Proof. If m∗(E) = 0, then for any A⊆ R ,

m∗(A)≥ m∗(A∩ ˜E) = m∗(A∩ ˜E)+m∗(A∩E),

since m∗(A∩E)≤ m∗(E) = 0.

Lemma 2.4.1. The family M of measurable sets is an algebra of sets.

Proof. By symmetry, a set E is in M if and only if the complement ˜E = �E is in M .
Moreover, R and ∅ are clearly measurable. We need to show that M is stable under
the operation of taking finite unions. For this we need only consider two measurable
sets E1 and E2. Fix A⊆R . We will use the fact that since E1 and E2 are measurable,

m∗(A) = m∗(A∩E1)+m∗(A∩ ˜E1),

m∗(A∩ ˜E1) = m∗(A∩ ˜E1∩E2)+m∗(A∩ ˜E1∩ ˜E2).
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We will also use the following consequence of subadditivity:

m∗(A∩ [E1∪E2])≤ m∗(A∩E1)+m∗(A∩E2∩ ˜E1).

Now,

m∗(A) ≤ m∗(A∩ [E1∪E2])+m∗(A∩�[E1∪E2])

= m∗(A∩ [E1∪E2])+m∗(A∩ [˜E1∩ ˜E2])

≤ m∗(A∩E1)+m∗(A∩E2∩ ˜E1)+m∗(A∩ [˜E1∩ ˜E2])

= m∗(A∩E1)+m∗(A∩ ˜E1) = m∗(A).

Therefore, E1∪E2 ∈M .

Lemma 2.4.2. For any finite, pairwise disjoint sequence of measurable sets Ei,
1≤ i≤ n, and any A⊆ R,

m∗(A∩ [∪n
1Ei]) =

n

∑
1

m∗(A∩Ei).

Proof. The proof is by induction. The equality is clear for n = 1. Assuming it holds
for n−1, that is,

n−1

∑
i=1

m∗(A∩Ei) = m∗(A∩ [∪n−1
1 Ei]) = m∗(A∩ [∪n

1Ei]∩ ˜En),

we also have
m∗(A∩En) = m∗(A∩ [∪n

1Ei]∩En).

Therefore, equality holds for n since En is measurable and

n

∑
1

m∗(A∩Ei) = m∗(A∩ [∪n
1Ei]∩ ˜En)+m∗(A∩ [∪n

1Ei]∩En)

= m∗(A∩ [∪n
1Ei]).

Recall that an algebra of sets is called a σ -algebra if it is stable with respect to
the operation of taking countable unions.

Definition 2.4.2. A nonnegative function μ defined on a σ -algebra A is a measure
on A if μ (∅) = 0 and μ is countably additive; that is, given a countable, pairwise
disjoint sequence 〈An : n ∈ N〉 of sets in A , where some sets may be empty,

μ

(

⋃

n∈N
An

)

= ∑
n∈N

μ(An).

The pair (A ,μ) is called a measure space.
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Theorem 2.4.1. The family M is a σ -algebra containing all sets of outer measure
0, and the restriction of m∗ to M is a measure on M .

Proof. We have already noted that M contains all sets of outer measure 0. Let Bi,
i ∈ N , be a countable family of sets in M , and let E be the union. We must show
that E ∈M . Since M is an algebra, it follows from Proposition 1.3.1 that we may
replace each set Bi with a subset Ei ∈M so that the Ei’s are pairwise disjoint but
have the same union E. For each finite n, let Fn =

⋃n
i=1 Ei. Then, because M is an

algebra and ˜Fn ⊇ ˜E, for each A⊆ Rwe have

m∗(A) = m∗(A∩Fn)+m∗(A∩ ˜Fn)

=
n

∑
i=1

m∗(A∩Ei)+m∗(A∩ ˜Fn)

≥
n

∑
i=1

m∗(A∩Ei)+m∗(A∩ ˜E).

Since this is true for all n ∈ N, we have by subadditivity

m∗(A) ≥
∞

∑
i=1

m∗(A∩Ei)+m∗(A∩ ˜E) (2.4.1)

≥ m∗(A∩E)+m∗(A∩ ˜E).

Therefore, E ∈M . It now follows from Inequality (2.4.1) applied to any pairwise
disjoint sequence 〈Ei : i ∈ N〉 in M and the set A = E = ∪∞

i=1Ei that the restriction
of m∗ to M is countably additive.

Definition 2.4.3. Lebesgue measure λ is λ ∗ restricted to the σ -algebra M of sets
measurable with respect to λ ∗. For a general outer measure m∗, including Lebesgue
outer measure, we let m denote the measure obtained by restricting m∗ to the corre-
sponding collection of measurable sets.

Recall that the intersection of all σ -algebras in R containing a family of sets S
is again a σ -algebra; it is the smallest σ -algebra in R containing the family S .

Definition 2.4.4. The family of Borel sets in R is the smallest σ -algebra containing
the open subsets of R.

We have seen that every open subset of R is a finite or countably infinite union of
pairwise disjoint open intervals. To show, therefore, that a σ -algebra on R, such as
M , contains the Borel sets, it is enough to show that it contains every open interval.
Indeed, this need only be shown for certain open intervals.

Lemma 2.4.3. The interval I = (a,+∞) is measurable.

Proof. Fix A ⊆ R with m∗(A) < +∞. Let A1 = A \ I = {x ∈ A : x ≤ a} and A2 =
A∩ I = {x ∈ A : x > a}. We must show that m∗(A) ≥ m∗(A1)+m∗(A2). Fix ε > 0.
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For the Lebesgue case, find a countable family of open intervals In that cover A with
total length less than λ ∗(A) + ε . Let I′n = In \ I and I′′n = In ∩ I. For each n, I′n is
either empty or it is an interval, and I′′n is either empty or an interval. Moreover, the
nonempty intervals I′n cover A1, so by subadditivity their total length, which is the
same as their total outer measure, is greater than or equal to λ ∗(A1). Similarly,
the nonempty intervals I′′n cover A2, so their total length, which is the same as their
total outer measure, is greater than or equal to λ ∗(A2). Note that for each n, the
length of In is the length of I′n added to the length of I′′n . Therefore,

λ ∗(A1)+λ ∗(A2) ≤ λ ∗(∪nI′n)+λ ∗(∪nI′′n )
≤ ∑ λ ∗(I′n)+∑ λ ∗(I′′n ) = ∑ l(In)≤ λ ∗(A)+ ε ,

and since ε is arbitrary, the result is established for the Lebesgue case.
For more general outer measures, we modify the above proof using the fact that

if an interval (α,β ] is cut by an interval (a,+∞), that is, if α < a < β , then (α,β ]
will be cut into two intervals of the same kind: (α,a] and (a,β ]. In this case, the
sum of the changes on the two intervals of an integrator F will be the total change
on (α,β ].

Proposition 2.4.2. The family of measurable sets M contains the Borel sets. In par-
ticular, M contains every open set and every closed set.

Proof. We have shown that every open interval of the form (a,+∞) is in M .
Therefore, intervals of the form (−∞,a] are in M . Since (−∞,a) =

⋃

n∈N(−∞,
a− 1

n ] ∈M , and for each a,b ∈ R , (a,b) = (−∞,b)∩ (a,+∞), every open inter-
val is in M . Thus every open set is in M . Since M is a σ -algebra containing the
open sets, M contains the smallest σ -algebra containing the open sets, namely, the
Borel sets.

Remark 2.4.1. The collection M of measurable sets changes with changes in the
integrator, but M always contains the Borel sets. The collection of sets of measure 0
will, in general, be different. For example, suppose an integrator F is constant on the
interval I = (0,1). Then every subset of I will be measurable and have m-measure 0.
As shown in Problem 2.32, however, there are non-Lebesgue measurable subsets
of I.

Proposition 2.4.3. If E and F are measurable sets such that F ⊆ E and F has finite
measure, then m(E \F) = m(E)−m(F).

Proof. This follows from the fact that m(E \F)+m(F) = m(E).

Definition 2.4.5. We will use the notation En ↗ E to indicate a sequence of sets
such that En ⊆ En+1 for all n and ∪nEn = E. Similarly, En ↘ E indicates a sequence
of sets such that En ⊇ En+1 for all n and ∩nEn = E.

Proposition 2.4.4. Let 〈En : n ∈ N〉 be a sequence of measurable sets. If En ↗ E,
then m(E) = limm(En). If En ↘ E, and for some k, m(Ek) is finite, then m(E) =
limm(En).
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Proof. Fix a sequence E1⊆E2⊆ ·· · with union E, and set E0 =∅. Form the disjoint
sequence Fk = Ek \Ek−1 in M with union E. Now, for each n, the set En is the
disjoint union

⋃n
k=1 Fk. Moreover, E =

⋃∞
k=1 Fk, and so m(E) = ∑∞

k=1 m(Fk). The
last equality means m(E) = limn ∑n

k=1 m(Fk) = limn m(En).
Now assume that En ↘ E and for some k, which we may assume is 1,

m(E1)<+∞. Let Hn = E1 \En and H = E1 \E. Then Hn ↗ H, so

m(Hn) = m(E1)−m(En)↗ m(E1)−m(E) = m(H),

whence m(En)− m(E1) ↘ m(E)− m(E1). Since m(E1) < +∞, it follows that
m(En)↘ m(E).

Example 2.4.2. An example showing that the finiteness condition cannot be dropped
is given by Lebesgue measure and the sequence [n,+∞)↘∅.

2.5 Approximation of Measurable Sets

Results for measurable sets are often obtained using results for a smaller class of
approximating sets. In this section we have examples of such approximations.

Lemma 2.5.1. If E ∈M and m(E) < +∞, then for any ε > 0, there is an open set
O⊇ E with m(O\E)< ε .

Proof. If E =∅, set O=∅. Otherwise, for Lebesgue measure λ =m, we take a cov-
ering of E by a countable number of open intervals so that the sum of their lengths
is less than λ (E)+ ε . The open set O is the union of the intervals. By subadditivity,
λ (E)≤ λ (O)< λ (E)+ ε . Since O = (O\E)∪E, λ (O\E) = λ (O)−λ (E)< ε .

For a general integrator F , we can take a covering by intervals of the form (an,bn]
such that the sum of the changes in F is smaller than m(E)+ ε/2. Since F is con-
tinuous from the right, we may replace each interval (an,bn] with an open inter-
val (an,cn) where cn > bn, but F(cn)−F(an) ≤ F(bn)−F(an)+ ε/2n+1. Now by
Proposition 2.3.1,

m((an,cn))≤ m((an,cn]) = F(cn)−F(an)≤ F(bn)−F(an)+ ε/2n+1.

Let O = ∪∞
n=1(an,cn). Then O⊇ E, and by subadditivity,

m(O)≤
∞

∑
n=1

m((an,cn))≤
∞

∑
n=1

(

F(bn)−F(an)+
ε

2n+1

)

< m(E)+ ε ,

whence m(O\E) = m(O)−m(E)< ε .

Theorem 2.5.1. Fix E ⊆ R . Then the following are equivalent:

1) E ∈M .
2) ∀ε > 0, ∃ an open set O⊇ E with m∗(O\E)< ε .
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3) ∀ε > 0, ∃ a closed set F ⊆ E with m∗(E \F)< ε .
4) ∃ a Gδ set G with E ⊆ G such that m∗(G\E) = 0.
5) ∃ an Fσ set S with S⊆ E such that m∗(E \S) = 0.
6) ∃ a Gδ set G and a set A of outer measure 0 such that E = G\A = G∩ ˜A.
7) ∃ an Fσ set S and a set A of outer measure 0 such that E = S∪A.

Proof. (0⇒ 1) Assume E is measurable. Let I1 = [−1,1] and E1 = E ∩ I1. For each
integer n > 1, let In = [−n,−n+ 1)∪ (n− 1,n] and En = E ∩ In. Given ε > 0 and
n ∈ N, there is by Lemma 2.5.1 an open set On ⊇ En such that

m(On \En)< ε/2n.

Now, O := ∪nOn contains E, and since

O\E = O∩ ˜E = ∪n(On∩ ˜E) = ∪n(On \E)⊆ ∪n(On \En),

m∗(O\E)< ε by subadditivity.
(1 ⇒ 3) By taking the intersection over a countable sequence of open sets On

given by Condition 1 with εn = 1/n, we find a Gδ set G⊇ E with m∗(G\E) = 0.
(3 ⇒ 5) Given a Gδ set G ⊇ E with m∗(G \E) = 0, we set A = G \E. Then

E = G\A = G∩ ˜A.
(5⇒ 0) Any set E ⊆ R for which there is a Gδ set G ⊇ E such that A := G \E

has outer measure 0 is measurable since E = G∩ ˜A.
We have shown that measurability, Condition 1, Condition 3, and Condition 5

are equivalent. It follows that the following are equivalent statements with respect
to an arbitrary set E ⊆ R:

i) E is measurable.
ii) R\E is measurable.

iii) ∀ε > 0, ∃ an open O⊇ R\E, whence R\O⊆ E, such that

m∗(O\ (R\E)) = m∗(O∩E) = m∗ (E \ (R\O))< ε .

iv) ∀ε > 0, ∃ a closed F ⊆ E with m∗(E \F)< ε .
v) ∃ an Fσ set S⊆ E such that m∗(E \S) = 0.

vi) ∃ an Fσ set S and a set A of measure 0 such that E = S∪A.

Thus, measurability, Condition 2, Condition 4, and Condition 6 are equivalent.

Corollary 2.5.1. A set E ⊆R is measurable if and only if E is a Borel set, in fact an
Fσ set, to which a set of outer measure 0 has been adjoined.

We will see that very nice properties hold for sets of finite measure from which
appropriate sets of small measure have been removed. The following is an example
of such a result.

Corollary 2.5.2. Given a measurable set A⊆ R with m(A)<+∞, and given ε > 0,
there is a compact set K ⊆ A with m(A\K)< ε .



2.6 LimSup and LimInf of a Sequence of Sets 37

Proof. Since A is measurable, there is a closed subset F of A with m(A\F)< ε/2.
Since the sequence

F ∩ [−n,n]↗ F ,

and m(F)<+∞, there is an n0 such that m(F \ [−n0,n0])< ε/2. The desired com-
pact set is F ∩ [−n0,n0].

Proposition 2.5.1. If A /∈ M , then there is a Gδ set S containing A such that
m∗(S∩ A) + m∗(S∩ ˜A) �= m(S). Therefore, there is no collection larger than M
on which the restriction of m∗ is even finitely additive.

Proof. Exercise 2.24.

2.6 LimSup and LimInf of a Sequence of Sets

Recall that for a sequence 〈xn : n ∈ N〉 in R, limsupxn := infn∈N(supk≥n xk) =
∧

n∈N
(
∨

k≥n xk
)

, and liminfxn := supn∈N(infk≥n xk) =
∨

n∈N
(
∧

k≥n xk
)

. Here are
analogous operations on sets.

Definition 2.6.1. Let 〈An : n ∈ N〉 be an infinite sequence of subsets of a set X .

limsupAn :=
⋂

n∈N

(

⋃

k≥n

Ak

)

liminfAn :=
⋃

n∈N

(

⋂

k≥n

Ak

)

.

Theorem 2.6.1. Let 〈An : n ∈ N〉 be an infinite sequence of subsets of a set X. Then
limsupAn is the set of points in an infinite number of the sets An, while liminfAn is
the set of points in all but a finite number of the sets An.

Proof. Exercise 2.25.

Theorem 2.6.2 (Borel-Cantelli Lemma). Let 〈En : n ∈ N〉 be an infinite sequence
of measurable subsets of R such that ∑∞

n=1 m(En)<+∞. Then limsupEn is a set of
measure 0. That is, outside of a set of measure 0, all points are in at most a finite
number of the sets En.

Proof. Let Sk =∪∞
n=kEn. Since m(S1) = m(∪∞

n=1En)≤∑∞
n=1 m(En)<+∞ and Sk ↘

limsupEn,

m(limsupEn) = lim
k→∞

m(Sk)≤ lim
k→∞

∞

∑
n=k

m(En) = 0.
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2.7 The Existence of a Non-measurable Set

In this section and the next, we work just with Lebesgue outer measure and
Lebesgue measure. Using the Axiom of Choice (see the Appendix), we will show
that there are subsets of [0,1] that are not Lebesgue measurable. Robert Solovay
[47] showed in 1970 that there exist models of set theory in which the Axiom of
Choice does not hold and every subset of the real line is Lebesgue measurable. We
will say “measurable” when we mean Lebesgue measurable.

For the construction of a non-measurable set, we work with [0,1) and addition
modulo 1. That is, for x, y ∈ [0,1) we set x+′ y = x+ y if x+ y < 1, and we set
x+′ y = x+ y−1 if x+ y ≥ 1. By associating 0 with 1, one can think of [0,1) with
addition modulo 1 as the circle of circumference 1 centered at the origin in the plane.
The operation +′ corresponds to rotation or addition of angles. It is easy, therefore,
to see that the operation +′ is commutative and associative.

Lemma 2.7.1. Given y∈ [0,1) and E ⊆ [0,1), λ ∗(E+′ y) = λ ∗(E). If E is Lebesgue
measurable, then so is E +′ y.

Proof. Set E1 = E ∩ [0, 1− y) and E2 = E ∩ [1− y,1). If E is measurable, so is
E +′ y = (E1 + y)∪ (E2 + y−1). If E is any subset of [0,1), then since [0, 1− y) is
measurable and Lebesgue outer measure is translation invariant,

λ ∗ (E) = λ ∗ (E1)+λ ∗ (E2) = λ ∗(E1 + y)+λ ∗(E2 + y−1)

≥ λ ∗ ((E1 + y)∪ (E2 + y−1)) = λ ∗(E +′ y)
≥ λ ∗(

(

E +′ y
)

+′ (1− y)) = λ ∗(E).

The last equality follows since if x ∈ E and x+ y < 1, then (x+′ y)+′ (1− y) = x,
and the same is true if x+ y≥ 1.

We now define an equivalence relation∼ in [0,1) by setting x∼ y if x and y differ
by a rational number. By the Axiom of Choice, there is a set P ⊆ [0,1) containing
exactly one element from each equivalence class. Let 〈ri : i ∈ N∪{0}〉 be an enu-
meration of the rational numbers in [0,1) with r0 = 0. Let Pi = P+′ ri, so P0 = P. If
i �= j, then Pi∩Pj =∅. To see this, assume x ∈ Pi∩Pj. Then for elements pi and p j

in P, we have
x = pi +

′ ri = p j +
′ r j.

It follows that
∣

∣pi− p j
∣

∣ is a rational number, i.e., pi ∼ p j. Since P contains only one
element from each equivalence class, pi = p j and so ri = r j. That is, Pi = Pj. On the
other hand, for each x ∈ [0,1), x is in some equivalence class, so for some p ∈ P and
some ri, x = p+′ ri. Therefore, the collection {Pi} is a countable, pairwise disjoint
collection of sets with union [0,1).

Proposition 2.7.1. The set P is not Lebesgue measurable.
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Proof. Assume that P is measurable. Then λ (P) is defined, and by Lemma 2.7.1,
λ (P) = λ (Pi) for all i, whence λ ([0,1)) =∑λ (Pi) =∑λ (P). Since the sum is finite,
λ (P) = 0. But then λ ([0,1)) = 0. Since this is not true, we conclude that P is not
measurable.

We have actually shown that the following is true.

Proposition 2.7.2. If μ is a σ -additive, translation invariant measure defined on a
σ -algebra containing P, then μ([0,1)) is either 0 or +∞.

2.8 Cantor Set

The Cantor set C, also called the Cantor ternary set, is the closed subset of [0,1]
obtained by removing the following open set:
(

1
3 ,

2
3

)∪ [( 1
9 ,

2
9

)∪ ( 7
9 ,

8
9

)]∪ [( 1
27 ,

2
27

)∪ ( 7
27 ,

8
27

)∪ ( 19
27 ,

20
27

)∪ ( 25
27 ,

26
27

)] · · ·
That is, remove the open middle third from [0,1], and at each successive step, rem-
ove the open middle third of each of the remaining closed intervals. It consists of
all numbers in [0,1] that have a ternary expansion (i.e., an expansion base 3) that
does not use the digit 1. If there are two ternary expansions of a point in C, one of
them satisfies this property. The set C is the intersection of closed subsets of [0,1]
such that no finite subcollection of these closed sets has an empty intersection. Since
[0,1] is compact, the intersection C of all of the closed subsets is nonempty.

The set C is, in fact, uncountable. To see this, assume 〈cn : n ∈ N〉 is a sequence
of points in C. Let F1 be the closed interval remaining after removing ( 1

3 ,
2
3 ) from

[0,1] that does not contain c1. At stage n− 1, we have a closed interval that does
not contain the points c1, c2, · · · , cn−1. We remove the middle third, and let Fn be
the one of the two remaining closed intervals that does not contain cn. For each
n ∈ N, ∩n

i=1Fi �= ∅. Therefore, the set ∩∞
i=1Fi is a nonempty subset of C, and it

contains no point of the enumeration. This shows that we cannot exhaust C with
an enumeration; that is, C is uncountable. Working Exercise 2.33, one shows that
the Lebesgue measure of the removed open set is 1, so λ (C) = 0. Note that C is an
example of an uncountable set of measure 0.

One can form a generalized Cantor set with positive measure by scaling each
of the removed intervals by α where 0 < α < 1 and removing the scaled intervals
from the centers of the intervals left in the previous stage of the construction. The
removed set is an open set O of measure α , and the complement F has measure
1−α . A generalized Cantor set with positive measure is also called a fat Cantor set.

For the Cantor set and any generalized Cantor set, the removed open set O is
dense in [0,1]; that is, its closure is [0,1]. To see this, note that for any x ∈C, there is
a point y1 removed at the first stage so that |x− y1| ≤ 1/2. Similarly, at the nth stage,
there is a point yn removed at that stage such that |x− yn| ≤ 1/2n. The extreme
case would be realized if we removed first the singleton set {1/2}, then the set
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{1/4,3/4}, etc. It would still be true that this removed set (no longer open) would
be dense in [0,1]. Note that if we take the union of the generalized Cantor sets for
each α = 1/n, we get an Fσ set with total measure 1.

Along with the Cantor set, there is a continuous increasing function g called the
Cantor-Lebesgue function mapping [0,1] onto [0,1] taking all of its increase on
the Cantor set, that is, on a set of measure 0. The function g is identically equal to
1/2 on the removed middle third; it is identically equal to 1/4 and 3/4, respectively,
on the next two removed open intervals, etc. The value at points of the Cantor set is
the limit of values on the removed open intervals.

2.9 Problems

Problem 2.1. Let B be the collection of all subsets A⊆R such that either A or R\A
is finite or countably infinite. For each A∈B, let μ(A) = 0 if A is finite or countably
infinite, and let μ(A) = 1 otherwise. Show that B is a σ -algebra and μ is a measure
on B; that is, μ is a nonnegative, countably additive function on B with μ( /0) = 0.

Problem 2.2. Recall that a measure on a set E is a mapping μ from a σ -algebra A
of subsets of E into [0,+∞] such that μ( /0) = 0 and μ is countably additive, whence
μ is also finitely additive. Show that such a general measure is subadditive. That
is, the measure of the union of a countable number of not necessarily disjoint sets in
A is less than or equal to the sum of the measures of the sets forming the union.

Problem 2.3. Let ν be a finitely additive measure on a σ -algebra A of sets in a
set X .

a) Suppose that for any sequence 〈En〉 of sets in A , if En ↗ E, then ν(E) =
limn ν(En). Show that in fact ν is countably additive.

b) Suppose that for any sequence 〈En〉 of sets in A , if En↘∅, then limn ν(En) = 0.
Show that in fact ν is countably additive.

Problem 2.4 (A). Prove Proposition 2.2.1.

Problem 2.5 (A). Recall that the set A consisting of the rationals between 0 and 1 is
countable, and so it has Lebesgue outer measure 0. Show that any finite collection
of open intervals covering A has total length ≥ 1.

Problem 2.6. Fix nonempty sets A and B⊆ R such that

d(A,B) := inf{|x− y| : x ∈ A,y ∈ B}= a > 0.

Show that Lebesgue outer measure λ ∗(A∪B) = λ ∗(A)+λ ∗(B). Hint: Show that for
any ε > 0, there is a countable covering of A∪B by open intervals Ik, each having
length strictly less than a, such that ∑∞

k=1 �(Ik)≤ λ ∗(A∪B)+ ε .
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Problem 2.7. Let E ⊆ R have finite Lebesgue outer measure. Show that E is
Lebesgue measurable if and only if for any open, bounded interval (a,b) we have
b−a = λ ∗((a,b)∩E)+λ ∗((a,b)\E).

Problem 2.8. Suppose A ⊆ R is a Lebesgue measurable set with λ (A) > 0. Show
that for any δ with 0 < δ < 1, there is a bounded interval Iδ = [a,b], with a < b,
such that λ (A∩ Iδ )≥ δ ·λ (Iδ ). That is, A occupies a large part of Iδ .

Problem 2.9. Suppose that A ⊆ [0,1] is a Lebesgue measurable set with λ (A) = 1.
Show that A is dense in [0,1]; that is, the closure A = [0,1].

Problem 2.10. For this problem, let M be the Lebesgue measurable sets in [0,1],
and let ν be a nonnegative, real-valued function on M such that for disjoint sets A
and B in M , ν(A∪B) = ν(A)+ ν(B). Also assume that for any ε > 0 there is a
δ > 0 so that if A ∈M and its Lebesgue measure λ (A)< δ , then ν(A)< ε . Prove
that ν is a measure. Hint: If 〈Ai〉 is a sequence of pairwise disjoint sets in M with
union A, what can you say about A\∪n

i=1Ai?

Problem 2.11. Let M be the collection of Lebesgue measurable sets in R, and
let λ be Lebesgue measure on R. Let f be a real-valued function defined on R.
Let A be the collection of subsets of R with inverse image in M . That is,
A :=

{

S⊆ R : f−1 [S] ∈M
}

. Show that A is a σ -algebra of sets in R. Then for
each S ∈ A , let μ(S) := λ

(

f−1 [S]
)

. Show that μ is a measure on A ; that is, μ is
countably additive with μ(∅) = 0.

Problem 2.12. Let f be an increasing function on [0,1]; that is, for x < y,
f (x)≤ f (y). The jump of f at a point x is limy→x+ f (y)− limy→x− f (y), with the
obvious modification at endpoints of [0,1]. Show that if the jump of f is 0 at every
point of [0,1], then f is continuous on [0,1].

Problem 2.13. Show that if an integrator is continuous, such as the integrator
F(x) = x for Lebesgue outer measure, then the same outer measure is obtained using
open intervals and intervals of the form (a,b].

Problem 2.14. Let F be an integrator on R. Show that for any ε > 0, there is an
interval (a,b] such that F(b)−F(a)< ε .

Problem 2.15. Consider the integrator F on R given by F(x) = 0 for x < 0, and
F(x) = x2 for x≥ 0. Let m∗ be the outer measure generated by the integrator F .

a) Given M ∈ N, suppose 〈In〉 is a sequence of intervals contained in [0,M]. Show
that if l(In)→ 0, then m∗(In)→ 0.

b) Construct a sequence of intervals 〈Jn〉 contained in R such that l(Jn)→ 0, but
m∗(Jn)→ ∞.

c) Construct a sequence of intervals 〈Kn〉 contained in R such that l(Kn)→ 0, but
m∗(Kn) = 1 for all n.

Problem 2.16. Show that an outer measure is translation invariant if and only if the
integrator is F(x) = cx+d for some constants c≥ 0, and d.
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Problem 2.17. Prove or disprove: All subsets of R having 0 Lebesgue measure also
have 0 measure with respect to the measure generated by any continuous, increasing
integrator.

Problem 2.18. Let F : (0,+∞) → R be given by setting F(x) = 0 for x < 1, and
F(x) = n for n ∈N and n≤ x < n+1. Let m∗ be the outer measure generated by the
integrator F .

a) For each set A⊆ (0,+∞), what is the value of m∗(A)?
b) Prove that every subset of (0,∞) is measurable with respect to m∗.
c) Give an example of a Lebesgue measurable set E ⊆ (0,+∞) such that m(E) = ∞,

but the Lebesgue measure λ (E) = 0.
d) Give an example of a Lebesgue measurable set F ⊆ (0,+∞) such that λ (F) = ∞,

but m(F) = 0.

Problem 2.19. Give an example or disprove the following statement: There exists
an integrator F : R → R such that for some set A of strictly positive Lebesgue mea-
sure, the outer measure m∗ generated by F has value m∗({x}) > 0 for each point
x ∈ A.

Problem 2.20. Suppose A is a measurable subset of R such that m(A∩ (a,b)) ≤
1
2 (b−a) for any a,b ∈ R, where a < b. Show that m(A) = 0.

Problem 2.21. a) The Heaviside step function is H = χ[0,∞). That is, H(x) = 0 for
x < 0 and H(x) = 1 for x ≥ 1. Show that the resulting outer measure is in fact
a measure on the σ -algebra consisting of all subsets of R. It is called a Dirac
measure or unit mass at 0, and denoted by δ0. Show that for each set E ⊆R, we
have δ0(E) = 1 if 0 ∈ E and δ0(E) = 0 if 0 �∈ E. A similar unit mass δa can exist
at any point a ∈ R.

b) Define an integrator F such that the corresponding measure on R is Lebesgue
measure to which is added a unit mass at 0, at 1, and at 2.

Problem 2.22 (A). Prove the following result, which is valid for Lebesgue mea-
sure, and show that it is not valid for general measures: If E ∈M , then ∀r ∈ R ,
E + r ∈M .

Problem 2.23. Let 〈μn〉 be a sequence of finite measures on a σ -algebra A of sub-
sets of R; that is, μn(R)<∞ for all n∈N. Let 〈an〉 be a sequence of positive numbers
such that ∑∞

n=1 anμn(R)< ∞. Let μ(A) = ∑∞
n=1 anμn(A) for each A ∈A . Show that

μ is a finite measure on A .

Problem 2.24 (A). Prove Proposition 2.5.1.

Problem 2.25. Prove Theorem 2.6.1.

Problem 2.26. Let μ be a measure defined on the Borel subsets of J := [−1,1] such
that μ (J) = 17. Assume that any Borel set of Lebesgue measure 0 in J is a set of
μ-measure 0. Show that for any ε > 0 there is a δ > 0 such that if E is a Borel set in
J and λ (E)< δ , then μ(E)< ε . Hint: Suppose there is a sequence of Borel sets En

contained in J with λ (En)< 2−n and yet μ (En)≥ ε for each n. Let E = limsupn En.
What is λ (E)? What is μ(E)?



2.9 Problems 43

Problem 2.27. Let f be a real-valued, continuous function defined on R. Show that
for each Borel set E ⊆ R, f−1 [E] is a Borel set.

Problem 2.28. Let m∗ be the outer measure on R generated by an integrator F .

a) Show that for any E ⊆ R, there is a Borel set B with E ⊆ B and m(B) = m∗(E).
b) Let 〈En〉 be a sequence of sets in R and E a subset of R such that En ↗ E. Show

that limn m∗(En) = m∗(E). Hint: For each n, let Bn ⊇ En be the Borel set given
by Part a. Let Cn =

⋂∞
k=n Bk.

Problem 2.29. Let m be a measure on R generated by an integrator F . Let 〈An〉
be a sequence of measurable subsets of R. Show that m(liminfAn)≤ liminfm(An).
Assume that m is a finite measure, and show that m(limsupAn)≥ limsupm(An).

Problem 2.30. Let m be a measure on R generated by an integrator F . Let K be
a compact set such that m(K) < +∞. For each x ∈ K, let B1(x) be the interval
(x−1,x+1), and define f : K →R by setting f (x) = m(B1(x)). Show that for some
x0 ∈ K, f (x0) = α := infx∈K f (x). Hint: Show that there is a convergent sequence
〈xn〉 in K such that f (xn)↘ α , and use Problem 2.29.

Problem 2.31 (A). Show that if E is a Lebesgue measurable subset of the non-
measurable set P constructed in Section 2.7, then λ (E) = 0.

Problem 2.32 (A). Show that if A is any set with Lebesgue outer measure
λ ∗(A)> 0, then there is a non-measurable set E ⊆ A.

Problem 2.33. Show that the Cantor set has Lebesgue measure 0.

Problem 2.34 (A). Use a generalized Cantor set of positive Lebesgue measure to
show there is an open subset of [0,1] having a boundary (i.e., the closure of the
set from which the open set has been removed) such that the boundary has positive
measure.

Problem 2.35. A nonempty set S is perfect if it is closed and each element of S is
an accumulation point of S. Prove that the Cantor set is perfect and has no interior
points.

Problem 2.36. How is the Cantor set changed if closed middle third intervals are
removed at each step?

Problem 2.37. Show the Cantor-Lebesgue function g is continuous on [0,1] and has
derivative g′ equal to 0 outside of a set of Lebesgue measure 0 in [0,1]. Hint: How
much does g increase on the part of the Cantor set C between two successive open
intervals that have been removed at the kth step of the removal process?



Chapter 3
Measurable Functions

3.1 Definition

This chapter lays the groundwork for integration applied to a large class of real-
valued functions. First we note a useful fact that is independent of the real line.

Theorem 3.1.1. Fix a σ -algebra A in a set X and a function f with domain A ∈A
and range in a set Y . The collection B of all sets B⊆ Y such that f−1 [B] ∈A con-
tains ∅ and is stable with respect to complementation and the operation of taking
countable unions. That is, B is a σ -algebra in Y .

Proof. The result follows from the fact that f−1 [Y \B] = A \ f−1 [B], and if the
sequence 〈Bn : n ∈ N〉 is in B, then

f−1

[

∞
⋃

n=1

Bn

]

=
∞
⋃

n=1

f−1 [Bn] .

We will use Lebesgue measure and other measures on the real line to extend
Riemann integration. The extended integral will apply to functions having an
appropriate structure in terms of the family of measurable sets. The definitions and
results in this chapter hold for any integrator on R. The resulting general measure
is denoted by m, but when m is just Lebesgue measure, we write λ . We denote the
class of measurable sets by M . This is the class of sets measurable with respect to
a given outer measure. If that outer measure is specifically Lebesgue outer measure,
then we say “Lebesgue measurable.”

It is convenient to follow the convention of probability theory and write {S( f )}
instead of {x∈ A : S( f )(x)} for a function f with domain A that is understood, and a
property S involving f . For example, {sin > 0} denotes the set {x ∈R : sin(x)> 0}.

As previously noted, an extended-real valued function is one taking values in the
set R∪ {+∞,−∞}. The hyphen indicates it is R that is extended to a larger set;
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the function is not extended to a larger domain. In working with extended-real val-
ued functions, we exclude certain combinations. We do not allow the addition of +∞
to −∞. Similarly, we do not allow multiplication of 0 with either infinity. One rea-
son for the latter prohibition is that a product of sequences xn ↘ 0 and yn ↗+∞ can
have any nonnegative limiting result, depending on the choice of sequences. When
the operation is allowed, we have +∞+a =+∞, −∞+a =−∞, and +∞ ·a =+∞
if a > 0, +∞ ·a =−∞ if a < 0, −∞ ·a =−∞ if a > 0, and −∞ ·a =+∞ if a < 0.

Definition 3.1.1. An extended-real valued function f with measurable domain A is
a measurable function if for every α ∈R, the set { f > α} is in M . If the class M
consists of the Lebesgue measurable sets, we say that f is a Lebesgue measurable
function.

Definition 3.1.2. A set A is dense in a set B if A ⊆ B and the closure of A contains
the set B.

Note that if A is dense in B, the closure of A may be larger than B. For applications
of the following result, we note that R itself is dense in R, and the rational numbers
are dense in R. Any dense subset D of R contains a countable dense subset of
R since for each rational number r and each n ∈ N, there is a point s ∈ D with
|r− s| < 1/n, so (using the Axiom of Choice) we can choose one point s ∈ D for
each pair (r,n).

Proposition 3.1.1. For an extended-real valued function f with measurable domain
A, the following are equivalent:

1) f is measurable.
2) ∀α in a dense subset of R, { f > α} ∈M .
3) ∀α in a dense subset of R, { f ≥ α} ∈M .
4) ∀α in a dense subset of R, { f < α} ∈M .
5) ∀α in a dense subset of R, { f ≤ α} ∈M .

Proof. Let D be a dense subset of R. We may assume that D is countable. The result
is a consequence of the following equalities, which hold for any α ∈ R:

{ f < α}= A\{ f ≥ α}, { f > α}= A\{ f ≤ α}
{ f ≥ α}=

⋂

γ∈D
γ<α

{ f > γ}, { f < α}=
⋃

γ∈D
γ<α

{ f < γ}

{ f ≤ α}=
⋂

γ∈D
γ>α

{ f < γ}, { f > α}=
⋃

γ∈D
γ>α

{ f > γ}.

Corollary 3.1.1. If an extended-real valued function f is measurable, then for any
α ∈ R∪{+∞,−∞}, the set { f = α} is measurable.

Remark 3.1.1. Even for a function f that can take the value +∞ or −∞, measurabil-
ity only depends on values α in D⊆ R.



3.1 Definition 47

We will need sets such as { f ≥α} to be measurable in order to define an integral.
We will say that f is measurable on B if B is measurable and the restriction of f
to B is measurable. Note that measurability of a function involves only measurable
sets; it does not involve a measure.

Proposition 3.1.2. The restriction of a measurable function f with measurable
domain A to a measurable subset B ⊂ A is measurable on B. Conversely, if A is
the union of a finite or countably infinite number of measurable sets on which f is
measurable, then f is measurable on A.

Proof. Exercise 3.3.

In general integration theory, one speaks about a function with measurable
domain A that is measurable with respect to σ -algebras A and B. That is, the
inverse image of each set B ∈B is in A . The usual definition of measurability of
an extended-real valued function uses, as is the case here, the inverse images of
semi-infinite open intervals in the extended real line. That definition, however, is
equivalent to the following definition in terms of the inverse image of Borel sets.

Theorem 3.1.2. An extended-real valued function f with measurable domain A is
measurable if and only if the inverse image of every Borel set in R is measurable
and also f−1 [+∞] and f−1 [−∞] are measurable.

Proof. We have seen that if f is measurable, then the inverse image of every
semi-infinite interval in the extended real line is measurable. Also, f−1 [+∞] =
∩n∈N f−1 [(n,+∞]] and f−1 [−∞] = ∩n∈N f−1 [[−∞,−n)] are measurable. It now fol-
lows that the inverse image of every finite open interval is measurable, and therefore
the inverse image of every open subset of the real line is measurable. Since the
family of Borel sets is the smallest σ -algebra containing all open sets, it follows
from Theorem 3.1.1 that the inverse image of every Borel subset of the real line is
measurable. The converse is clear.

Proposition 3.1.3. A continuous real-valued function is measurable on any measur-
able subset B of its domain.

Proof. If f is continuous, then {x ∈ B : f (x) > α} is the intersection of B with an
open set.

Definition 3.1.3. If A is a measurable subset of R, M(A) denotes the collection of
measurable real-valued functions with domain A.

Recall that for functions f and g, the functions f ∨g and f ∧g are defined point-
wise by setting ( f ∨g)(x) := max( f (x),g(x)) and ( f ∧g)(x) := min( f (x),g(x)).
When adding or multiplying measurable functions, we will often set an arbitrary
value for the sum or product on the set where the original operation is not defined.
Usually that value is 0, and the set where this happens will have measure 0.
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Theorem 3.1.3. If A is a measurable set, M(A) forms a vector space over R, and
M(A) is stable with respect to pointwise multiplication and the operations ∨ and ∧.
Given the collection of measurable extended-real valued functions on A, for each of
the following operations, there is a measurable subset that depends on the functions
involved and is the set where the operation is defined; moreover, the operation yields
a measurable result on that subset. The operations are: Pointwise multiplication,
multiplication by any real number, pointwise addition, and the operations ∨ and ∧.

Proof. Fix f , g in M(A) and c and α in R. If c = 0, c f is constant. Otherwise,

{c f > α}= { f > α/c} if c > 0 and {c f > α}= { f < α/c} if c < 0.

In either case, c f ∈M(A). If f (x)+g(x)< α , then since the set Q of rational num-
bers is dense in R, there is an r ∈Q with f (x)< r < α−g(x), whence g(x)< α−r.
It follows that

{ f +g < α}=
⋃

r∈Q
[{ f < r}∩{g < α− r}] ∈M .

Therefore, M(A) is a vector space. To see that f g ∈M(A), we note that the function
f 2 ∈M(A) since if α < 0, A = { f 2 > α} and for β ≥ 0 and α = β 2,

{ f 2 > α}= { f <−β}∪{ f > β} ∈M .

Therefore,

f g = (1/2)[( f +g)2− f 2−g2] ∈M(A).

Since

{ f ∨g > α}= { f > α}∪{g > α}, { f ∧g > α}= { f > α}∩{g > α},

we have f ∨ g and f ∧ g ∈ M(A). The result for extended-real valued functions is
left as Exercise 3.4(A).

3.2 Limits and Special Functions

Recall that for a sequence 〈 fn : n ∈ N〉, the value of the function supn fn at x is
supn fn(x); a similar definition holds for infn fn. Also, limsupn fn := infn(supk≥n fk),
and liminfn fn := supn(infk≥n fk).

Theorem 3.2.1. If 〈 fn : n ∈ N〉 is a sequence of measurable extended-real valued
functions on a measurable set A, then supn fn, infn fn, limsupn fn, and liminfn fn are
also measurable on A.
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Proof. For any α ∈ R ,

{sup
n

fn > α}= ∪n{ fn > α}, {inf
n

fn < α}= ∪n{ fn < α}.

The rest is clear.

Definition 3.2.1. A measure space (see Definition 2.4.2) is complete if every subset
of a set of measure 0 is measurable. In this case, the measure is also called complete.
If μ is a non-complete measure on a σ -algebra A , then the family of sets

{A∪B : A ∈A , B⊆C for some C ∈A with μ(C) = 0}

is a σ -algebra on which the extension of μ is a complete measure. The extension of
μ takes the value μ(A) for all sets A∪B with A ∈ A and B ⊆ C for some C ∈ A
with μ(C) = 0. The enlarged σ -algebra together with the extension of μ is called
the completion of the measure space (A,μ).

Proposition 3.2.1. The completion of a measure space is a complete measure space.

Proof. Exercise 3.10.

In the case of a complete measure, the value of the measure on each subset of a
set of measure 0 is 0. The measures we have defined using integrators are all com-
plete. One may, however, want to consider incomplete measures such as Lebesgue
measure restricted to the Borel sets. When dealing with several measures at the same
time, one often cannot complete all of them, since a set of measure 0 for one mea-
sure may not be measurable for another.

When the measure m is understood, we will say that something is true almost
everywhere (a.e.) if it is true in the complement of a set of measure 0. For example,
f = g a.e. on A if there is a subset B of A with m(B) = 0 such that f (x) = g(x)
for every x ∈ A \B. A sequence 〈 fn : n ∈ N〉 converges to f a.e. on A if there is a
subset B⊆ A of measure 0 such that fn(x)→ f (x) for each x∈ A\B. We don’t know
what happens on B. This definition is useful in dealing with measures that are not
complete. For example, a function f may be identically 0 except for a non-Borel
subset B of a Borel set of measure 0. For integration, the value taken by f on B is
not important, and so it is useful to say that f = 0 almost everywhere.

Proposition 3.2.2. For a complete measure, such as Lebesgue measure, if f is mea-
surable on A and f = g almost everywhere on A, then g is measurable on A.

Proof. Let B be the set of measure 0 outside of which f = g. Then g is measurable
on A\B, and since any subset of B is measurable, g is measurable on B.

Proposition 3.2.3. If m is a complete measure and 〈 fn : n ∈ N〉 is a sequence of
measurable functions on a measurable set A such that fn → f a.e. on A, then f is
measurable on A.
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Proof. The result follows from the equality f = limsupn fn = liminfn fn a.e.

Definition 3.2.2. A step function is a real-valued function g defined on an interval
[a,b] such that for some finite set {xi : 0 ≤ i ≤ n} with a = x0 < · · · < xn = b, g is
constant on each of the open intervals (xi−1,xi).

Definition 3.2.3. A characteristic function is a function that takes only the values
0 and 1. The set on which it takes the value 1 is the associated set A, and the func-
tion is called the characteristic function of A. We will write χA for this function.
Another common notation for the function is 1A. The term indicator function is
also used.

Clearly, χ∅ is the constant 0, while the characteristic function of the set in which
one is working is the constant 1. A characteristic function is measurable if and only
if the associated set is a measurable set (all with respect to some fixed σ -algebra).
It is easy to see that,

χA∩B = χA · χB, χA∪B = χA + χB− χA · χB, χ
˜A = 1− χA.

Definition 3.2.4. A simple function is a measurable function with range equal to a
finite subset of R.

Any finite linear combination of measurable characteristic functions is a simple
function. Such a representation is not unique. For example, the characteristic func-
tion of the union of two disjoint sets is the sum of their characteristic functions.
Conversely, if α1, · · · ,αn are the distinct nonzero values in the range of a simple
function ϕ that is not identically equal to 0, then ϕ = ∑n

i=1 αi · χ{ϕ=αi}. This is the
simplest such combination that gives ϕ . A step function is a finite linear combi-
nation of characteristic functions of intervals. Some intervals may be degenerate
intervals of the form [c] := {c}.

Recall that the family of Borel sets in R is the smallest σ -algebra containing the
open subsets of R.

Definition 3.2.5. A real-valued function is Borel measurable if the inverse image
of each open subset of R is a Borel set.

Proposition 3.2.4. The Borel measurable real-valued functions defined on a fixed
Borel subset of R form a vector space over R; that vector space contains the con-
tinuous functions and is stable with respect to pointwise multiplication and the
operations ∨ and ∧.

Proof. Exercise 3.12.

Proposition 3.2.5. Let f be a measurable real-valued function with Borel measur-
able range, and let h be a Borel measurable real-valued function with Borel measur-
able range. If g is a Borel measurable real-valued function defined on the range of
f , then g◦ f is measurable. If g is a Borel measurable real-valued function defined
on the range of h, then g◦h is Borel measurable.
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Proof. We know that for any open set O, f−1 [O] is a measurable set, h−1 [O] is a
Borel set, and g−1 [O] is a Borel set. By Theorem 3.1.1, the collection of sets with
measurable inverse images forms a σ -algebra. It follows that for any Borel set B,
f−1 [B] is a measurable set, h−1 [B] is a Borel set, and g−1 [B] is a Borel set. The rest
is clear.

Example 3.2.1. The following example shows that there are Lebesgue measurable
sets that are not Borel sets. Let f1 be the Cantor-Lebesgue function on [0,1]. Recall
that f1 is an increasing continuous function mapping [0,1] onto [0,1]. It is constant
on each of the intervals that is removed to form the Cantor set C. For example,
on (1/3,2/3), f1 takes the value 1/2. Let f be defined on [0,1] by setting f (x) =
f1(x)+x for all x ∈ [0,1]. Since f1 is an increasing continuous function and x → x is
a strictly increasing continuous function, f is strictly increasing and continuous; the
range is [0,2]. Since f is a continuous bijection of the compact set [0,1] onto [0,2], it
is a homeomorphism. (See Problem 1.36.) Each of the open intervals (a,b) removed
from [0,1] to form C has image ( f1(a)+ a, f1(a)+ b), so f [[0,1] \C] has the same
Lebesgue measure in [0,2] as has the set [0,1]\C in [0,1]. Therefore, λ ( f [C]) = 1.
By Problem 2.32, there is a non-Lebesgue measurable set A ⊂ f [C]. The function
g := f−1 is a homeomorphism of [0,2] onto [0,1], and g[A] is a Lebesgue measurable
subset of C since λ (C)= 0. While g[A] is a Lebesgue measurable set, it is not a Borel
set since g is continuous, and therefore Borel measurable, but g−1 [g[A]] = f [g[A]] =
A is not even Lebesgue measurable. Also note that the restriction of the continuous
function f to g[A] does not have a measurable range.

3.3 Approximations and Theorems of Lusin and Egoroff

In this section, we show that a set of finite measure has nice properties once a set
of small measure, appropriate for the property, is removed. This heuristic principle,
i.e., “sets of finite measure are nearly good”, is essentially due to Littlewood [25].
We start with an operation used to indicate the difference of two sets. Recall that for
two sets A and B, the symmetric difference is AΔB := (A\B)∪ (B\A). We apply
the symmetric difference to obtain an approximation for a measurable set of finite
measure in R.

Theorem 3.3.1. Let A be a set of finite measure in R. Given δ > 0, there is a com-
pact subset K of A for which m(A�K) < δ . Given ε > 0, there is a finite collec-
tion of disjoint open intervals Ii such that the measure of the symmetric difference
m(AΔ (∪iIi))< ε .

Proof. We may assume m(A)> 0. As n→ ∞, A∩ [−n,n]↗ A, so we may choose a
positive integer n so that m(A\ [−n,n])< δ/2. By Theorem 2.5.1, there is a closed,
and therefore compact, set K ⊆ A ∩ [−n,n] so that m((A∩ [−n,n])\K)< δ/2.
Therefore, K ⊆ A and m(A \ K) < δ . Choose a compact set K ⊆ A with
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m(A\K)< ε/2. We may cover K with a bounded open set O so that m(O\K)< ε/2.
Since O is the countable union of pairwise disjoint, finite open intervals, those int-
ervals form an open cover of K. We may discard all but a finite number of them and
still cover K with the union ∪iIi. This is the desired approximation since

AΔ (∪iIi) = (A\ (∪iIi))∪ ((∪iIi)\A)⊆ (A\K)∪ (O\K).

Proposition 3.3.1. Let f be a measurable extended-real valued function that is finite
almost everywhere on its domain A. If m(A) < +∞, then for each ε > 0, there is a
measurable subset B⊆ A with m(B)< ε such that for some M ∈ N, | f (x)| ≤M for
all x ∈ A\B.

Proof. Fix ε > 0. If f is already bounded, set B = ∅. Otherwise, for each n ∈ N,
set En = {| f | > n}, and let E = { f =+∞}∪ { f =−∞}. Since m(E1) < +∞ and
En ↘ E, while m(E) = 0, there is an n ∈N with m(En)< ε . Set B = En and M = n.

Example 3.3.1. The function given by f (x) = x is finite everywhere on R, but it is
unbounded on sets of infinite Lebesgue measure.

It follows from Proposition 3.3.1 that, if we are given an unbounded measurable
function f that is finite almost everywhere on an interval [a,b], then for any δ > 0
and some M ∈ N, we may apply our next result to the function −M∨ f ∧M, which
equals f outside of a set of measure less than δ .

Theorem 3.3.2. Let f be a bounded measurable function on a closed, non-
degenerate interval [a,b]. Let s = infx∈[a,b] f (x) and S = supx∈[a,b] f (x). Fix ε > 0.

a) There is a simple function ϕ defined on [a,b] such that s ≤ ϕ and f (x)− ε ≤
ϕ(x)≤ f (x) for all x ∈ [a,b], whence | f −ϕ| ≤ ε on [a,b].

b) If m({x}) = 0 for each singleton set {x} ⊂ [a,b], then there is a subset B1 ⊆ [a,b]
with m(B1)< ε/2 and a step function g defined on [a,b] such that s≤ g≤ S and
g(x) = ϕ(x) for all x ∈ [a,b]\B1.

c) If m({x}) = 0 for each singleton set {x} ⊂ [a,b], then there is a subset B2 ⊆ [a,b]
with m(B2) < ε/2 and a continuous function h defined on [a,b] such that s ≤
h ≤ S and h(x) = g(x) for all x ∈ [a,b] \B2. In this case, | f (x)−g(x)| ≤ ε and
| f (x)−h(x)| ≤ ε for all x ∈ [a,b]\ (B1∪B2).

Proof. a) Partition [s,S] with a finite number of points s = y0 < y1 < · · ·< yk = S,
so that for each i, yi−yi−1 < ε . Of course, f−1[[yi−1,yi)] may be empty for some
values of i. Let

ϕ =

(

k−1

∑
i=1

yi−1 · χ f−1[[yi−1,yi)]

)

+ yk−1 · χ f−1[[yk−1,yk]]
.

Now ϕ is a simple function with s ≤ ϕ , and f (x)− ε ≤ ϕ(x) ≤ f (x) for all
x ∈ [a,b], whence | f −ϕ| ≤ ε on [a,b].
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b) Let α1, · · · , αn be the n distinct values taken by ϕ , and let these be taken on
n pairwise disjoint, measurable subsets A1, · · · , An of [a,b]. By Theorem 3.3.1,
for each set Ak, 1 ≤ k ≤ n, there is a finite, pairwise disjoint collection of open
intervals Ik

1 , · · · , Ik
lk

, with each contained in (a,b), such that m(AkΔ
(∪iIk

i

)

) <

ε/(2n). Set B1 := ∪n
k=1(AkΔ

(∪iIk
i

)

), and note that m(B1)< ε/2. Let J be the

collection of all of the intervals involved; that is, J = ∪n
k=1

{

Ik
1 , · · · , Ik

lk

}

. Let P

be the finite collection of endpoints of the intervals in J . Add the points of the
null set P to B1. For each I ∈J , if I∩P �=∅, replace I with the open intervals
in I�P. Removing duplication, this yields a finite collection I of pairwise
disjoint open intervals such that each interval in I is contained in at least one
interval of J . Consider an interval J ∈I such that for p �= q and some i0 and
j0, J ⊆ I p

i0
∩ Iq

j0
. We now show that since Ap∩Aq =∅, J ⊆ B1. That is, fix x ∈ J.

If x /∈ Ap, then since x ∈ I p
i0

, x ∈ ApΔ
(∪iI

p
i

) ⊆ B1. If x ∈ Ap, then x /∈ Aq, but

x is also in Iq
j0

, so x ∈ AqΔ
(

∪ jI
q
j

)

⊆ B1. In either case, x ∈ B1. Thus, J ⊆ B1.

Discard from the collection I all such intervals contained in B1. Each of the
remaining intervals in I corresponds to a unique Ak; set the value of g equal
to the appropriate αk for each such interval. At all other points of [a,b], set g
equal to (s+ S)/2. The function g is a step function such that s ≤ g ≤ S and
g(x) = ϕ(x) for all x ∈ [a,b]\B1.

c) Given the step function g formed in Part b), center an open interval at each mem-
ber of the finite collection of points consisting of the endpoints of [a,b] together
with the points inside [a,b] where g changes values. The intervals should be pair-
wise disjoint forming a set B2 of total length < ε/2. It follows that [a,b]\B2 is
the disjoint union of closed intervals on each of which g is constant. Use linear
interpolation to obtain a continuous function h on [a,b] such that s ≤ h ≤ S,
and g(x) = h(x) for all x ∈ [a,b]\B2. It is now the case that ϕ(x) = h(x) for all
x ∈ [a,b]\ (B1∪B2).

We have shown that if f is a measurable real-valued function on an interval [a,b]
where points have 0 measure, then outside of a set of small measure we may uni-
formly approximate f with a continuous function h. The values of h, however, are
only near the values of f . An important result due to Lusin [36] states that for a
measurable real-valued function f on a set A of finite measure, there is a compact
subset K of A having most of the measure of A such that the values taken by f on K
are equal to the values taken by a continuous real-valued function g defined on the
real line. In this sense, f is “nearly” continuous on A; that is, f deviates from the
continuous function g on A only on the set of small measure A \K. Recall that by
Proposition 1.11.3, once it is shown that the restriction of f to a compact subset K
of R is continuous, there is a continuous function g defined on the whole real line
such that g = f on K. Moreover, supR g = maxK f , and infR g = minK f .

Theorem 3.3.3 (Lusin). Fix a measurable set A⊆R with m(A)<+∞, and let f be
a real-valued measurable function with domain A. For any ε > 0, there is a compact
set K ⊆ A with m(A\K)< ε such that the restriction of f to K is continuous.
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Proof. Let 〈Vn : n ∈ N〉 be an enumeration of the open intervals with rational end-
points in R. By Theorem 3.3.1, we may fix compact sets Kn ⊆ f−1[Vn] and K′n ⊆
A \ f−1[Vn] for each n so that m(A \ (Kn∪K′n)) < ε/2n. Now, for the compact set
K :=

⋂

n∈N(Kn∪K
′
n), m(A\K) < ε . Given x ∈ K and an open interval I containing

f (x), for some n ∈ N, f (x) ∈Vn ⊆ I. Now x ∈ O := �K′n, and

f [O∩K]⊆ f
[

�K′n∩
(

Kn∪K′n
)]

= f [Kn]⊆Vn.

Remark 3.3.1. This simple proof of Lusin’s theorem was first published by the text’s
author and Erik Talvila in 2004 [34]. Lusin’s theorem holds in quite general settings,
where it is usually stated just for a Borel measurable function f . The domain of f
should have the property that sets of finite measure can be approximated from the
inside by compact sets, and the target set or range of f should have a countable
collection of open sets Vn such that for each open set O and each y ∈O, there is an n
with y∈Vn ⊆O. (Later, we will call this property the second axiom of countability.)

Lusin’s theorem is often established as a corollary of the following approxima-
tion theorem of Egoroff [18]. That important theorem states that on a set of finite
measure, almost everywhere convergence of measurable functions to a finite limit is
actually uniform convergence off of a set of small measure. That is, almost ev-
erywhere convergence on a set of finite measure is “nearly” the same as uniform
convergence.

Lemma 3.3.1. On a set A ⊆ R of finite measure, let 〈 fn : n ∈ N〉 be a sequence of
measurable functions converging a.e. to a function f . Suppose that f is finite a.e. on
A. Then for any δ > 0, there is an N ∈ N and a measurable B ⊆ A with m(B) < δ
such that

∀x ∈ A\B, ∀n≥ N, | fn(x)− f (x)|< δ .

Proof. Let D be the set where either f is not finite-valued or the convergence
fails. Since m(D) = 0, we may set each fn and f equal to 0 on D and work
with the modified functions without loss of generality. Fix δ > 0, and let Sn =
{| fn− f | ≥ δ}. Now, limsup Sn = ∅, so limk→∞ m(∪n≥kSn) = 0. Choose N ∈ N

so that m(∪n≥NSn)< δ , and let B = ∪n≥NSn.

Theorem 3.3.4 (Egoroff). On a set A ⊆ R of finite measure, let 〈 fn : n ∈ N〉 be a
sequence of measurable functions converging a.e. to a function f . Suppose f is
finite a.e. on A. For any ε > 0, there is a measurable set B⊆ A with m(B)< ε such
that fn converges uniformly to f on A\B.

Proof. Fix ε > 0. For each k ∈ N, it follows from Lemma 3.3.1 with δ = ε/2k that
there is an Nk ∈ N and a measurable set Bk ⊂ A with m(Bk)< ε/2k such that

∀n≥ Nk, | fn− f |< ε/2k on A\Bk.

Let B =∪kBk, so m(B)< ε . The functions fn converge uniformly to f on A\B since
for all n≥ Nk, | fn− f |< ε/2k on A\Bk ⊇ A\B.
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3.4 Problems

Problem 3.1. Prove Corollary 3.1.1.

Problem 3.2. Let f : R → R and g : R → R be measurable functions and g(x) �= 0
at any x ∈ R. Show that the function f/g is measurable.

Problem 3.3. Prove Proposition 3.1.2.

Problem 3.4 (A). Finish the proof of Proposition 3.1.3 for extended-real valued
functions.

Problem 3.5. Let 〈 fn〉 be a sequence of real-valued measurable functions on R.
Show that the set {x ∈ R : limn→∞ fn(x) exists and is finite} is measurable.

Problem 3.6. Let f : R → R be a differentiable function. Show that the derivative
f ′ is a measurable function.

Problem 3.7. Prove or give a counterexample: The supremum of an uncountable
family of measurable functions is always measurable.

Problem 3.8. Given f : [0,1] →R, suppose the set {x ∈ [0,1] : f (x) = r} is measur-
able for every r ∈ R. Does it then follows that f is measurable?

Problem 3.9. Suppose that f : [0,1] →R is a function with the property that for any
ε > 0, there is a continuous function fε : [0,1] → R such that f = fε on Aε , where
m([0,1]\Aε)< ε . Show that f is measurable.

Problem 3.10. Prove Proposition 3.2.1. Hint: Given subsets A, B, and C of a set X
with B⊆C,

X \ (A∪B) = (X \ (A∪C))∪ (C \ (A∪B)).

Problem 3.11. Let f be a real-valued function defined on R such that for each
α ∈ R, f−1 [(α,+∞)] is a Borel set.

a) Show that for each open subset O of R, f−1 [O] is a Borel set.
b) Show that for each Borel set E ⊆ R, f−1 [E] is a Borel set.
c) Show that if f is actually continuous on R, then for each Borel set E ⊆R, f−1 [E]

is a Borel set.

Problem 3.12. Prove Proposition 3.2.4.

Problem 3.13. Let {Iα : α ∈ A} be an uncountable collection of open intervals in
the real line such that the measure of the union, m(∪α∈AIα), is a finite number r > 0.
Given an arbitrary ε > 0, show that there is a finite subcollection {I1, I2, · · · , In} of
the collection {Iα : α ∈ A} such that ∑n

i=1 m(Ii)> r− ε .

Problem 3.14. a) Show that there does not exist a simple function ϕ : R → R such
that |x2−ϕ(x)| ≤ 1 for all x ∈ R.



56 3 Measurable Functions

b) Prove or give a counterexample: For every Lebesgue measurable set E ⊂ R of
finite measure, there exists a simple function ψ :R →R such that |x2−ψ(x)| ≤ 1
for all x ∈ E.

Problem 3.15. a) Show that if f is a measurable real-valued function with measur-
able range and g a continuous real-valued function defined on the real line, then
g◦ f is measurable.

b) Show that a continuous function with measurable range followed by a measur-
able function need not be measurable. Hint: See Example 3.2.1.

Problem 3.16. Show that an increasing real-valued function on the interval [0,1]
can have only a finite or countably infinite number of jumps.

Problem 3.17. Define f : (0,1) −→ R as follows: For each k ∈ N, set f (x) =
(

1
k − x
)−1

for all x ∈ [ 1
k+1 ,

1
k

)

. For example, for x ∈ [ 1
2 ,1), f (x) = 1

1−x . For each

n ∈ N, set fn(x) := 1
n f (x) for all x ∈ (0,1). Note that fn converges pointwise to 0,

but not uniformly to 0 on (0,1).

a) Show that fn is a measurable function on (0,1) for each n ∈ N.
b) Fix ε > 0. Construct a Lebesgue measurable set E such that λ (E) < ε and fn

converges uniformly to 0 on (0,1)\E.

Problem 3.18 (A). Given an increasing real-valued function f on an interval I, show
that f is measurable. Hint: First consider the strictly increasing function for some
n ∈ N, x −→ f (x)+ x/n.

Problem 3.19. Let f be a continuous real-valued function on R. Show that if A is
an Fσ subset of R, then f [A] is an Fσ set.

Problem 3.20. Let f : R → R be a Lipschitz function; that is, there is an M > 0
such that | f (x)− f (y)| ≤ M · |x− y| for all x,y ∈ R. Show that for any Lebesgue
measurable set E, f [E] is a Lebesgue measurable set. Hint: Recall Corollary 2.5.1
and Problem 3.19.

Problem 3.21. Let E ⊆R be a measurable set of finite measure, and let f be a real-
valued measurable function on E. Show that f is the a.e. limit of a sequence of
continuous functions.

Problem 3.22. Let f be a real-valued function with domain R such that the inverse
image of every closed subset of R is an open subset of R. Show that for some value
a ∈ R, f (x)≡ a on R. Hint: Recall Problem 1.22.



Chapter 4
Integration

4.1 The Riemann Integral

In this chapter, we extend the operation of taking the Riemann integral to more
general integrals on a large class of functions. A bounded function will always mean
a bounded real-valued function.

The Riemann integral uses the length of intervals, that is, the change on inter-
vals of the integrator F(x) = x; the corresponding measure is Lebesgue measure λ .
The integral we will construct using Lebesgue measure will be called the Lebesgue
integral to distinguish it from integrals obtained from other measures. As before,
we use m to denote a measure constructed from a general integrator. For the
Lebesgue integral and the more general integral, the construction methods are ess-
entially the same. In the literature, therefore, the general integral is often called a
Lebesgue integral. When there is an emphasis on the integrator, however, the gen-
eral integral is also called a Lebesgue–Stieltjes integral. We begin here by recalling
the construction of the Riemann integral.

Definition 4.1.1. A partition P of a closed and bounded interval [a,b] is a finite set
of points a = x0 < x1 < · · ·< xn = b. The value of n depends on the partition P. Let
f be a bounded function on [a,b]. Given a partition P of [a,b], for 1 ≤ i ≤ n, set
mi = inf[xi−1,xi] f and Mi = sup[xi−1,xi]

f . The lower and upper Riemann sums of f
are the finite sums

s(P, f ) = s(P) :=
n

∑
i=1

mi(xi− xi−1), and S(P, f ) = S(P) :=
n

∑
i=1

Mi(xi− xi−1),

respectively.

Proposition 4.1.1. Let f be a bounded function on [a,b]. If P1 and P2 are partitions
of [a,b], then s(P1) ≤ s(P1 ∪P2) ≤ S(P1 ∪P2) ≤ S(P2). It follows that every lower
sum for f is smaller than any upper sum.
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Proof. Given an interval [xi−1,xi]⊆ [a,b] and a point c with xi−1 < c < xi,

inf
[xi−1,xi]

f ≤ inf
[xi−1,c]

f ≤ sup
[xi−1,c]

f ≤ sup
[xi−1,xi]

f .

A similar inequality holds for [c,xi]. The rest is clear.

Definition 4.1.2. Let P denote the set of all partitions of [a,b]. Let f be a real-
valued function on [a,b]. The lower and upper Riemann integrals of f on [a,b]
are given by

R
∫ b

a
f (x)dx := sup

P∈P
s(P, f ), and R

∫ b

a
f (x)dx := inf

P∈P
S(P, f ),

respectively. The function f is Riemann integrable if the lower and upper Riemann
integrals are equal. In this case, the Riemann integral of f is equal to the common
value and is denoted by R

∫ b
a f (x)dx.

The definition of upper and lower sums uses intervals overlapping at endpoints.
To illuminate the relationship of the Riemann integral with Lebesgue measure and
the Lebesgue integral, we now show that the Riemann integral can be obtained using
step functions formed from pairwise disjoint intervals.

Definition 4.1.3. A partition P of a closed and bounded interval [a,b] is a partition
for a step function ψ if ψ is constant on the open intervals between partition points.
Such a partition P is minimal for a step function ψ on [a,b] if it is a partition for
ψ and for each partition point xi in (a,b), it is not the case that limx→xi−ψ(x) =
ψ(xi) = limx→xi+ ψ(x). That is, ψ changes values in crossing xi; the function ψ
may take the same value on the right and on the left of xi, but then it must take a
different value at xi.

Note that a minimal partition of [a,b] for a step function ψ is unique. Moreover,
the definition leaves the endpoint a in the partition P even if limx→a+ ψ(x) = ψ(a).
Similarly, the endpoint b is in P.

Definition 4.1.4. Given a step function ψ on [a,b] and a minimal partition for ψ
consisting of points a = x0 < x1 < · · ·< xn = b, set I1 = [x0], I2 = (x0,x1), I3 = [x1],
I4 =(x1,x2), etc. Let c j be the value of ψ on I j. This may be 0. The sum ψ =∑c j ·χI j

is the minimal representation of the step function ψ .

A step function is, of course, also a simple function. A simple function, however,
may associate into a single set any two intervals where the same value is taken.
Recall that for an interval I, the Lebesgue measure λ (I) is the length l(I).

Definition 4.1.5. If ψ is a step function with minimal representation ∑c jχI j , then
the integral with respect to Lebesgue measure λ is

∫

ψ dλ := ∑c jλ (I j) = ∑c jl(I j).
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Proposition 4.1.2. If ψ is a step function on [a,b] and {Jk} is any finite, pairwise
disjoint collection of subintervals of [a,b] such that ψ = ∑ak · χJk , then

∫

ψ dλ = ∑akλ (Jk) = ∑akl(Jk).

Proof. Without changing the value of the sum ∑akλ (Jk), we may assume that any
endpoint of an interval Jk is a singleton interval [xi] in the collection. Since ψ is
constant on each Jk, each Jk is contained in one of the intervals for the minimal
partition. We may also assume, without changing the value of the sum ∑akλ (Jk),
that [a,b] =∪kJk. That is, we adjoin intervals where ψ is 0. If I is one of the intervals
formed by the minimal partition, then λ (I) = ∑Jk⊆I λ (Jk), and the value of ψ on I
is the same as its value on each of the intervals Jk contained in I. The rest is clear.

Definition 4.1.6. A function g dominates a function f on a common domain A if
g(x)≥ f (x) for all x ∈ A.

Theorem 4.1.1. Given a bounded function f on an interval [a,b], the upper Riemann
integral of f is the infimum of the integrals of all step functions that dominate f . Sim-
ilarly, the lower Riemann integral of f is the supremum of the integrals of all step
functions that are dominated by f .

Proof. Fix M > sup[a,b] | f |. Fix a partition P consisting of points a = x0 < x1 <
· · · < xn = b. As before, for each i, Mi = sup[xi−1,xi]

f , but we set ψ = Mi only on
(xi−1,xi), and we set ψ = M on {xi−1} and {xi}. Then ψ ≥ f and

∫

ψ dλ = S(P, f ).
That is, every upper sum is equal to the integral of a step function that dominates f .
It follows that the infimum of the integrals of all step functions that dominate f is
less than or equal to the upper Riemann integral. To show it cannot be strictly less
than the upper Riemann integral, let ψ = ∑c jχI j be a step function given in minimal
form with domain [a,b] such that ψ ≥ f . For any ε > 0, there is a partition P of [a,b]
such that the endpoints of the partition intervals I j for ψ are contained in intervals
formed by P of total length at most ε/M; the contribution to the upper sum of f over
these intervals is no more than ε . The step function ψ is constant and dominates f
on each of the remaining closed intervals [xi−1,xi]. It follows that the upper Riemann
sum S(P, f ) ≤ ∫ ψ dλ + ε , and since ε is arbitrary, the result is established for the
upper Riemann sum. Applying that result to− f , we obtain the desired result for the
lower Riemann sum.

The problem of characterizing those functions for which the Riemann integral
exists first occurs in calculus. The answer can now be given in terms of Lebesgue
measure λ .

Theorem 4.1.2. A bounded function f on an interval [a,b] is Riemann integrable if
and only if the set of points of discontinuity of f in [a,b] has Lebesgue measure 0.

Proof. Let Us( f ) be the set of all step functions ψ ≥ f on [a,b], and let Vs( f ) be
the set of all step functions ϕ ≤ f on [a,b]. For each n ∈ N, let
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Bn = {x ∈ [a,b] : ∀δ > 0, ∃y ∈ [a,b] with |y− x|< δ and | f (y)− f (x)| ≥ 1/n}.

The set of points of discontinuity of f is B = ∪nBn. We assume first that f is Rie-
mann integrable and show that for each n ∈ N, λ (Bn) = 0, whence λ (B) = 0. Fix
ε > 0. By Theorem 4.1.1 and the assumption that f is Riemann integrable, there is
a ψ ∈ Us and a ϕ ∈ Vs with

∫

(ψ−ϕ) dλ < ε . Let S be the finite set of partition
points, including a and b, associated with the minimal representation of the step
function ψ −ϕ . The set [a,b] \ S consists of a finite number of disjoint open inter-
vals I1, · · · , Ik on each of which ψ−ϕ is constant. Given n ∈ N, let On be the union
of those intervals for which that constant is at least 1/n. The set Bn ⊆ On∪S. Since
1
n ·λ (On) ≤

∫

(ψ−ϕ) dλ < ε , the measure λ (Bn) ≤ λ (S)+λ (On) < nε . Since ε
is arbitrary, λ (Bn) = 0.

Now assume that λ (B) = 0. Fix M > sup[a,b] | f |, and again fix ε > 0. There
is a countable collection J of open intervals for which the union O contains B
and λ (O) < ε/(4M). For each x ∈ [a,b] that is not in B, there is an open interval
Ix = (x−δx,x+δx) such that for every y∈ Ix∩ [a,b], | f (y)− f (x)|< ε

4(b−a) , whence

for every y and z in Ix∩ [a,b], | f (y)− f (z)|< ε
2(b−a) . A finite subcollection of these

open intervals together with a finite number of intervals from J forms a covering
of the compact set [a,b]. Let P consist of the endpoints in [a,b] of the intervals in
this finite covering together with the points a and b. The set P is a partition of [a,b]
such that each of the open intervals Ji between adjacent partition points is either
contained in O or is contained in Ix for some x /∈ B, or both. On each such interval
Ji, let ψ take the value supJi

f and ϕ take the value infJi f . On the points of P, let
ψ = M and ϕ =−M. Then

∫

(ψ−ϕ) dλ ≤ 2M ·λ (O)+
ε

2(b−a)
(b−a)< ε .

Since ψ ∈Us( f ), ϕ ∈ Vs( f ), and ε is arbitrary, it follows from Theorem 4.1.1 that
f is Riemann integrable.

4.2 The Integral of Simple Functions

While step functions are appropriate for the development of the Riemann integral,
for a more general integral, we replace step functions with simple functions. Recall
that a simple function is a measurable function with range equal to a finite subset of
R. By extending such a function with the value 0, we may assume that it is defined
on all of R. Most of the results that follow hold for a measure m generated by
an arbitrary integrator, in which case, “measure”, “measurable”, and “almost eve-
rywhere” (abbreviated “a.e.”) refer to the measure m. Of course, Lebesgue measure
λ is a special case.

Definition 4.2.1. A simple function with finite measure support is a simple func-
tion that is 0 outside a set of finite measure. Such a function ψ that is not identically
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equal to 0 is presented in canonical form as the finite sum ∑aiχAi where the Ai’s
are measurable with finite measure and pairwise disjoint, and the ai’s are distinct
and not equal to 0. The canonical representation of the function 0 is 0.

Definition 4.2.2. The integral
∫

ψ of a simple function ψ with finite measure sup-
port and canonical form ∑aiχAi is the sum ∑ai ·m(Ai). The integral of 0 is 0. Nota-
tion that stresses the measure is

∫

ψ dλ and
∫

ψ λ (dx) for the integral with respect
to Lebesgue measure and

∫

ψ dF and
∫

ψ dm, as well as
∫

ψ m(dx), for the integral
with respect to a more general measure m. Given a measurable set E,

∫

E ψ denotes
the integral

∫

ψ · χE .

Definition 4.2.3. Given a nonempty measurable set E and a finite number of mea-
surable subsets Ei of E, the partition refinement of E determined by the sets Ei is
the finite collection of nonempty, measurable, pairwise disjoint subsets
{

A j : 1≤ j ≤ k
}

of E such that E = ∪ jA j, and each Ei is the union of the A j’s
that have nonempty intersection with Ei.

Note that such a partition refinement is obtained by taking all the nonempty int-
ersections of the sets Ei, E�Ei with the sets E j, E�E j for i �= j.

Proposition 4.2.1. If ϕ is a finite linear combination ∑n
i=1 αiχEi of characteristic

functions of nonempty, measurable sets Ei with m(Ei) <+∞ for each i, then ϕ is a
simple function with finite measure support, and

∫

ϕ = ∑n
i=1 αi ·m(Ei).

Proof. Let E = ∪iEi, and note that m(E)<+∞. The function ϕ is measurable and
takes only a finite number of values, so ϕ is a simple function with finite measure
support. Let {A j, 1 ≤ j ≤ k} be the partition refinement of E determined by the
sets Ei. Now ϕ = ∑k

j=1 c jχA j , where for each j, c j = ∑Ei⊇A j
αi. It follows that

n

∑
i=1

αi ·m(Ei) =
n

∑
i=1

αi ·
(

∑
A j⊆Ei

m(A j)

)

=
n

∑
i=1

∑
A j⊆Ei

αi ·m(A j)

=
k

∑
j=1

(

∑
Ei⊇A j

αi

)

·m(A j) =
k

∑
j=1

c j ·m(A j) .

Given the representation ϕ =∑k
j=1 c jχA j , we may drop any term with c j = 0 without

changing the function or the value of the sum ∑k
j=1 c j ·m(A j). Also, we can combine,

by taking a union, all of the remaining sets A j with the same value c j into one set
without changing the function or the value of the sum ∑k

j=1 c jχA j . The result is the
canonical form for ϕ and its integral.

Proposition 4.2.2. Let ϕ and ψ be simple functions with finite measure support.
Then for any α,β ∈R,

∫

(αϕ+βψ) = α
∫

ϕ +β
∫

ψ . If ψ ≥ ϕ a.e., then
∫

ψ ≥ ∫ ϕ .

Proof. Let E = {|ϕ| + |ψ| > 0}. If E = ∅, the result is clear; in any case,
m(E)<+∞. Take the partition refinement {A j : 1 ≤ j ≤ k} of E determined by
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the sets Ei ⊆ E on which ϕ takes distinct values (including 0) and the sets Fk ⊆ E
on which ψ takes distinct values (including 0). Then ϕ and ψ have representations
ϕ = ∑ j c jχA j and ψ = ∑ j d jχA j . Therefore,

∫

(αϕ +βψ) = ∑
j
(αc j +βd j)m(A j) = α ∑

j
c jm(A j)+β ∑d jm(A j)

= α
∫

ϕ +β
∫

ψ .

If ϕ ≥ ψ a.e., we may change their values on a set of measure 0 without changing
the integrals so that ϕ ≥ ψ on E. Now for each j, c j ≥ d j, so

∫

ϕ ≥ ∫ ψ .

Corollary 4.2.1. Given ϕ and ψ as in the proposition, if b≤ϕ ≤B on E = {ϕ �= 0},
then b ·m(E) ≤ ∫ ϕ ≤ B ·m(E). If 0 ≤ ψ −ϕ ≤ ε on E = {|ψ|+ |ϕ| �= 0}, then
0≤ ∫ ψ− ∫ ϕ ≤ ε ·m(E).

Proof. Clear.

4.3 The Integral of Bounded Measurable Functions

In this section, we use the results for simple functions to define the integral for
bounded, measurable functions defined on sets of finite measure. As before, the
measure m need not be Lebesgue measure. In what follows, we use terminology
that is common in the literature, and say that a function vanishes on a set if it is
identically equal to 0 on the set. As before, we call a measurable set of measure 0 a
null set.

Definition 4.3.1. Given a measurable set E of finite measure and a bounded mea-
surable function f on E, let U ( f ), or just U , denote the set of all simple functions
ψ that vanish on R\E such that ψ ≥ f on E. Let V ( f ), or just V , denote the set of
all simple functions ϕ that vanish on R\E such that ϕ ≤ f on E.

Proposition 4.3.1. Let E be a nonempty measurable set of finite measure and f a
bounded function on E. If f is measurable on E, then there is an increasing sequence
〈ϕn : n ∈ N〉 in V ( f ) and a decreasing sequence 〈ψn : n ∈ N〉 in U ( f ) with both
converging uniformly to f on E. It follows that

inf
ψ∈U

∫

ψ = sup
ϕ∈V

∫

ϕ. (4.3.1)

Conversely, given that m is a complete measure, if Equation (4.3.1) holds, then f is
measurable on E.
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Proof. For each ψ ∈U and ϕ ∈ V , ψ ≥ f ≥ ϕ , so
∫

ψ− ∫ ϕ ≥ 0, and

inf
ψ∈U

∫

ψ− sup
ϕ∈V

∫

ϕ ≥ 0.

Assume that f is measurable on E. Let s = infE f and S = supE f ; if s = S, the result
is clear. Otherwise, fix n ∈ N. Partition [s,S] with points s = y0 < y1 < · · ·< yk = S
so that yi− yi−1 < 1/n for each i. As in Theorem 3.3.2, let

ϕn =

(

k−1

∑
i=1

yi−1 · χ f−1[[yi−1,yi)]

)

+ yk−1 · χ f−1[[yk−1,S]]
.

Then ϕn is a simple function with s≤ ϕn≤ f on E and f −ϕn < 1/n on E. Similarly,
or applying this result to − f , there is a simple function ψn with f ≤ ψn ≤ S on
E and ψn − f < 1/n on E. Therefore, ψn − ϕn ≤ 2/n on E. Replacing ϕn with
ϕ1∨ϕ2∨·· ·∨ϕn and ψn with ψ1∧ψ2∧·· ·∧ψn, we obtain increasing and decreasing
sequences of simple functions converging uniformly to f . It now follows that for any
ε > 0, there is a ψ ∈ U and a ϕ ∈ V with ψ −ϕ < ε on E, whence

∫

ψ − ∫ ϕ <
ε ·m(E). Therefore, Equation (4.3.1) holds.

Now assume that infψ∈U
∫

ψ = supϕ∈V
∫

ϕ = α . Again using the operations ∧
and ∨, we may find a decreasing sequence 〈ψn〉 in U and an increasing sequence
〈ϕn〉 in V with

∫

ψn → α and
∫

ϕn → α . Let ψ = inf ψn and ϕ = sup ϕn. Then
ϕ ≤ f ≤ ψ , and ψ and ϕ are measurable. Since the measure is complete, we need
only show that ϕ = f = ψ a.e. Fix k ∈ N, and let Bk = {ψ −ϕ ≥ 1/k}. For every
n ∈ N, (1/k) ·m(Bk) ≤

∫

ψn−
∫

ϕn, so m(Bk) = 0. Since {ψ−ϕ > 0} = ∪kBk, it
follows that ψ = f = ϕ a.e., so f is measurable.

The last statement of the proposition may not be true if the measure is not com-
plete. For example, if B is a non-measurable subset of a null set A⊆ E, then f = χB

is not measurable, but Equation (4.3.1) still holds.

Definition 4.3.2. Let f be a bounded measurable function defined on a measur-
able set E of finite measure. The integral of f is the common value infψ∈U

∫

ψ =
supϕ∈V

∫

ϕ . The integral is denoted by
∫

E f , or if E is understood, just
∫

f . Again,
notation that stresses the measure is

∫

f dλ and
∫

f λ (dx) for the integral with
respect to Lebesgue measure, called the Lebesgue integral; for the integral with
respect to a more general measure m, it is

∫

f dF and
∫

f dm, as well as
∫

f m(dx).
If A is a measurable subset of the domain of f , we write

∫

A f for
∫

f · χA.

It is easy to see that this definition of the integral gives the same value as the pre-
vious definition of the integral when applied to simple functions with finite measure
support. It follows from the definitions of U ( f ) and V ( f ) that the integral of f on
the empty set is 0. It is also easy to show (Problem 4.3) that for a measurable subset
A ⊂ E,

∫

A f =
∫

f · χA has the same value as the integral obtained by restricting f
to A. We next show that the Lebesgue integral is indeed an extension of the Riemann
integral.
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Theorem 4.3.1. If f is a bounded Riemann integrable function on [a,b], then f is
measurable with respect to Lebesgue measure λ , and the Riemann integral of f and
the Lebesgue integral of f are equal.

Proof. The step functions on [a,b] that dominate f are in U ( f ), and the step func-
tions that are dominated by f are in V ( f ). Therefore,

R
∫

f ≤ sup
ϕ∈V

∫

ϕ dλ ≤ inf
ψ∈U

∫

ψ dλ ≤ R
∫

f .

By assumption, all terms of the inequality are equal, so the result follows from the
resulting equality and Proposition 4.3.1.

Recall that for a nonempty measurable set E ⊆ R, we write M(E) for the
space of real-valued measurable functions on E. By Theorem 3.1.3, it is a vector
space over R. We will use MB(E) to denote the vector subspace of bounded mea-
surable functions on E.

Proposition 4.3.2. Let E be a measurable set of finite measure. The map f → ∫E f
is a positive linear functional on MB(E). That is, the integral is a mapping from
MB(E) into the real numbers that sends nonnegative functions to nonnegative real
numbers. Moreover, given f and g in MB(E) and numbers α , β ∈R,

∫

(α f +βg) =
α
∫

f +β
∫

g. It now follows that if f ≤ g on E, then 0≤ ∫ (g− f ), whence
∫

f ≤ ∫ g.

Proof. Fix f and g in MB(E), and fix α , β in R. Then for α > 0,

α ·
∫

f = α
(

inf
ψ∈U ( f )

∫

ψ
)

= inf
ψ∈U ( f )

∫

αψ = inf
ψ∈U (α f )

∫

ψ =
∫

α f .

If α = 0, α
∫

f =
∫

α f = 0. If α < 0, then
∫

α f =
∫

(−α)(− f ) =−α
∫

(− f )

= −α

(

sup
ϕ∈V (− f )

∫

ϕ

)

=−α ·
(

− inf
ψ∈U ( f )

∫

ψ
)

= α
∫

f .

If ψ1 ∈U ( f ) and ψ2 ∈U (g), then ψ1 +ψ2 ∈U ( f +g), so it follows from Propo-
sition 4.2.2 that

∫

( f +g)≤
∫

(ψ1 +ψ2) =
∫

ψ1 +
∫

ψ2.

Since this is true for any ψ1 ∈U ( f ) and ψ2 ∈U (g), we have
∫

( f +g)≤ ∫ f +
∫

g.
Similarly, if ϕ1 ∈ V ( f ) and ϕ2 ∈ V (g), then ϕ1 +ϕ2 ∈ V ( f + g), so

∫

( f +g) ≥
∫

ϕ1 +
∫

ϕ2, whence
∫

( f +g)≥ ∫ f +
∫

g, and so
∫

( f +g) =
∫

f +
∫

g. If g≥ 0 on
E, then 0 ∈ V (g), so 0≤ ∫ g.
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Corollary 4.3.1. Fix f and g in MB(E).

a) Changing the value of f on a null set A⊂ E does not change the value of
∫

f .
b) If f ≤ g a.e. on E, then

∫

f ≤ ∫ g.
c) If f = g a.e. on E, then

∫

f =
∫

g.
d) |∫ f | ≤ ∫ | f |.
e) If s≤ f ≤ S on E, then s ·m(E)≤ ∫E f ≤ S ·m(E).
f) If A and B are disjoint measurable subsets of E, then

∫

A∪B f =
∫

A f +
∫

B f .

Proof. Exercise 4.4.

Many theorems concerning the integral have the form “The integral of the limit
is the limit of the integral.” Most basic of these is the following consequence of
Egoroff’s theorem.

Theorem 4.3.2 (Bounded Convergence). Suppose E is a measurable set of finite
measure and 〈 fn : n ∈ N〉 is a uniformly bounded sequence of measurable functions
converging a.e. to f on E, then

∫

f = limn→∞
∫

fn.

Proof. By assumption, there is a constant M > 0 such that | fn| ≤M for every n∈N.
Replacing the limit f with −M ∨ f ∧M changes f only on a null set. Therefore,
we may also assume that | f | ≤ M. Fix ε > 0. By Egoroff’s theorem, there is a
measurable set B ⊆ E with m(B) < ε/(3M) such that fn converges uniformly to f
on E \B. Now for every n ∈ N,

∣

∣

∣

∣

∫

E
fn−
∫

E
f

∣

∣

∣

∣

≤
∫

E
| fn− f | ≤

∫

E\B
| fn− f |+

∫

B
| fn|+

∫

B
| f | .

The result follows from the inequalities
∫

B | fn|< ε/3,
∫

B | f |< ε/3, and
∫

E\B
| fn− f | ≤ sup

E\B
| fn− f | ·m(E) .

Example 4.3.1. An unbounded sequence for which the result fails is the mapping
n → n ·χ(0,1/n]. It is an exercise (4.7) to show that the theorem fails for the Riemann
integral.

4.4 The Integral of Nonnegative Measurable Functions

Extending the integral to unbounded functions defined on sets of infinite mea-
sure raises the problem of dealing with infinities. That is, +∞ and −∞ should
not appear together in the calculation of an integral. For the purpose of integra-
tion, therefore, we will decompose any measurable function f into the difference
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( f ∨0)− (− f ∨0), and define the integral for each of the nonnegative functions in
the decomposition. We note again that the product of 0 with either +∞ or −∞ is
undefined.

For the rest of this chapter, it will be understood that a measurable function takes
extended-real values and is defined on some nonempty measurable subset of R. It is
easy to see that the following definition agrees with the definition of the integral we
have previously given when both definitions apply.

Definition 4.4.1. Let f be a nonnegative measurable function defined on E ⊆R. Let
W ( f ), or just W , denote the class of all bounded measurable functions h defined on
E such that h vanishes off of a set of finite measure and 0≤ h≤ f . Then the integral
∫

E f := suph∈W
∫

E h ≤+∞. If A is a measurable subset of E and g = f on A, while
g = 0 on E�A, then

∫

A f :=
∫

E g. In particular,
∫

∅
f = 0.

Proposition 4.4.1. Let f and g be nonnegative measurable functions, both defined
on E ⊆R, and fix c > 0 in R. Then

∫

c f = c
∫

f , and
∫

( f +g) =
∫

f +
∫

g. Changing
the value of f on a null set does not change the value of its integral. If g ≥ f a.e.,
then

∫

g≥ ∫ f , and if g = f a.e., then
∫

g =
∫

f .

Proof. Since W (c f ) = {ch : h ∈W ( f )}, ∫ c f = c
∫

f . If h ∈W ( f ) and k ∈W (g),
then h+ k ∈W ( f +g), so

∫

( f +g)≥ ∫ h+
∫

k, whence
∫

( f +g)≥ ∫ f +
∫

g. Now
fix q ∈W ( f +g). Let h = q∧ f , so h ∈W ( f ). Note that h≤ q, and set k = q−h, so
0≤ k≤ q. If at x we have q(x)< f (x), then h(x) = q(x) and k(x) = 0≤ g(x). If at x
we have q(x)≥ f (x), then f (x)<+∞ and

k(x) = q(x)−h(x) = q(x)− f (x)≤ ( f +g)(x)− f (x) = g(x).

It follows that k ∈W (g). Therefore,
∫

f +
∫

g≥ ∫ h+
∫

k =
∫

q. Since q is arbitrary
in W ( f + g),

∫

f +
∫

g ≥ ∫ ( f + g), whence the inequality is in fact equality. It is
an exercise (4.14) to prove that the integral of f is not changed if the value of f is
changed on a set of measure 0. If g≥ f a.e., we may assume that g≥ f everywhere
without changing the integrals. Since W (g) ⊇ W ( f ),

∫

g ≥ ∫ f . It follows that if
g = f a.e. then

∫

g =
∫

f .

Remark 4.4.1. If f ≥ 0 and
∫

f <+∞, then f is finite outside of a null set. Therefore,
0 · f (x) = 0 a.e., and of course 0 · ∫ f = 0.

The program of comparing limits of functions and limits of integrals continues
with the next result called “Fatou’s Lemma.” Despite being called a lemma, the
result is basic and very important in working with integration. Recall that for a
sequence of functions fn, liminfn f = lim fn = ∨n (∧k≥n fk).

Theorem 4.4.1 (Fatou’s Lemma). Let 〈 fn : n ∈ N〉 be a sequence of nonnegative
measurable functions on E ⊆ R. Then

∫

E
lim fn ≤ lim

∫

E
fn.
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Proof. Fix h ∈W (lim fn). For each n ∈ N, set hn = h∧ fn. For each x ∈ E, hn(x)≤
h(x)≤ lim fn(x). Moreover, hn(x)→ h(x) since lim fn(x) is the smallest cluster point
of the sequence 〈 fn(x)〉, and so for any ε > 0, there are at most a finite number n’s
with

hn(x) = fn(x)≤ h(x)− ε ≤ lim fn(x)− ε .

Now h is bounded, and it vanishes off of a set of finite measure. Also, 0≤ hn ≤ h,
and 0≤ hn ≤ fn for each n ∈N. It follows from the Bounded Convergence Theorem
that

∫

h = lim
∫

hn ≤ lim
∫

fn.

Therefore,
∫

lim fn := sup
h∈W (lim fn)

∫

h≤ lim
∫

fn.

Remark 4.4.2. If fn → f a.e. on E, then f = lim fn a.e. and
∫

E f =
∫

E lim fn ≤
lim
∫

E fn. Even here, the inequality is not necessarily equality. An example using
Lebesgue measure is provided by the functions fn = χ[n,+∞) on R. This is a good
example to keep in mind to remember which way the inequality goes in Fatou’s
Lemma.

Theorem 4.4.2 (Monotone Convergence Theorem). Let 〈 fn : n ∈ N〉 be an inc-
reasing sequence of nonnegative measurable functions on a fixed set E; that is, for
each n ∈ N, fn ≤ fn+1. Let f denote the extended-real valued limit. Then

∫

f = sup
n∈N

∫

fn = lim
n→∞

∫

fn.

Proof. For each n ∈ N, fn ≤ supn∈N fn = lim fn, so
∫

fn ≤
∫

lim fn. Therefore,
lim
∫

fn ≤
∫

lim fn. The result now follows from Fatou’s Lemma since

lim
∫

fn ≤
∫

lim fn =
∫

f ≤ lim
∫

fn ≤ lim
∫

fn.

Corollary 4.4.1. If 〈un : n ∈ N〉 is a sequence of nonnegative measurable functions
on a fixed set E, then

∫

(∑n∈N un) = ∑n∈N
∫

un.

Proof. The result follows by setting fn = ∑n
i=1 ui for each n ∈ N .

Corollary 4.4.2. If f is a nonnegative measurable function and 〈Ei : i ∈ N〉 is a
pairwise disjoint sequence of measurable sets in the domain of f , then

∫

∪Ei
f =

∑∞
i=1
∫

Ei
f .

Proof. For each i ∈ N, let Ai = Ei ∩ f−1 [+∞]. If for some i, m(Ai) > 0, then both
sides of the desired equality have the value +∞. If m(Ai) = 0 for all i, then without
changing any of the integrals for f , we may set f = 0 on ∪iAi. The result then
follows from Corollary 4.4.1 with un = f · χEn .
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Corollary 4.4.3. If f is a nonnegative measurable function on a measurable set
E ⊆ R, then the map A → ∫A f is an extended-real valued measure, called the mea-
sure generated by f . It is defined for all measurable subsets of E. In particular, if A
and B are measurable subsets of E with A⊆ B, then

∫

A f ≤ ∫B f .

Definition 4.4.2. Given a nonnegative measurable function f , we say that f is inte-
grable on a measurable set E ⊆R if

∫

E f <+∞. If E is the domain of f , we simply
say that f is integrable.

Proposition 4.4.2. If f is integrable on E and g is measurable with 0≤ g≤ f on E,
then g is integrable on E. Moreover,

∫

E g≤ ∫E f and

∫

E
( f −g) =

∫

E
f −
∫

E
g.

Proof. This follows since
∫

E g+
∫

E( f −g) =
∫

E f <+∞.

Next we show that the measure generated by a nonnegative integrable function f
has a continuity property with respect to the measure m. The property is obvious if
f is bounded.

Proposition 4.4.3. Let f ≥ 0 be integrable on E ⊆R, and let ν be the finite measure
on the measurable subsets of E generated by f (see Corollary 4.4.3). For any ε > 0,
there is a δ > 0 such that if A is a measurable subset of E with m(A) < δ , then
ν(A) =

∫

A f < ε .

Proof. Let fn = f ∧ n. By the Monotone Convergence Theorem, since fn ↗ f , the
difference of the integrals (

∫

E f − ∫E fn)↘ 0. We may choose N so large in N that
the difference is at most ε/2. Fix δ = ε/(2N). For any measurable set A ⊆ E with
m(A)< δ ,

ν(A) =
∫

A
f =
∫

A
( f − fN)+

∫

A
fN ≤ ε

2
+m(A) ·N < ε .

4.5 The Integral of Measurable Functions

We will use the notation f+ := f ∨ 0, and f− := − f ∨ 0, so f = f+ − f−, and
| f |= f++ f−. The following definition and results are given in terms of an arbitrary
integrator and corresponding measure m.

Definition 4.5.1. A measurable function f is integrable on a measurable set E ⊆ R

if f+ and f− are integrable on E. In this case, set
∫

f :=
∫

f+−∫ f−. If only one of
the integrals of f+ and f− is finite, the function f is not integrable, but the integral of
f is the difference of the two integrals, and is therefore either +∞ or−∞. A function
f is called “integrable” only if it is measurable.
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Proposition 4.5.1. A measurable function f is integrable on a measurable set E ⊆R

if and only if | f | is integrable on E. In this case, f is finite almost everywhere on E.

Proof. Exercise 4.6.

Example 4.5.1. Suppose E is a measurable set of finite measure. Let B⊆ E be non-
measurable with positive outer measure. If f = χB− χE\B, then | f | = χE is inte-
grable, but f is not measurable.

Integrability and the corresponding integral have been defined for a measurable
function f in terms of f+ and f−. Of course, f = f+− f− is not the only way
that a function f may be presented as a difference of two functions. The follow-
ing proof demonstrates a useful general technique for working with two equivalent
differences.

Proposition 4.5.2. Let g and h be nonnegative measurable functions on E ⊆R such
that g−1[+∞]∩h−1[+∞] =∅. Let f = g−h a.e. If g and h are integrable, then f is
integrable and

∫

f =
∫

g− ∫ h. If
∫

g =+∞ and h is integrable, then
∫

f =+∞. If g
is integrable and

∫

h =+∞, then
∫

f =−∞.

Proof. If g and h are both integrable, we may assume, without changing the values
of the integrals, that g and h are finite everywhere on E, and f = g−h everywhere
on E. Now f+ = g−(g∧h) and f−= h−(g∧h), so f+ and f− are integrable. Since
g−h = f = f+− f−, we have g+ f− = h+ f+, so

∫

g+
∫

f− =
∫

h+
∫

f+, whence
∫

g−∫ h =
∫

f+−∫ f− =
∫

f . If
∫

g =+∞ and h is integrable, we may assume that
h is finite everywhere. Moreover, g∧ h and f− = h− (g∧ h) are integrable. Now
f+ = g− (g∧ h). Suppose f+ is integrable; then, we may assume that f+ is finite
everywhere, whence g is finite everywhere, and g = f++(g∧h) is integrable. Since
g is not integrable, it follows that

∫

f+ = +∞. Applying this result to − f finishes
the proof.

Proposition 4.5.3. The family of real-valued functions integrable on E ⊆ R is a
vector space, and the mapping f → ∫ f is a positive linear functional on that space.
In particular, this means that if f ≥ 0 a.e. on E, then

∫

f ≥ 0.

Proof. Assume f and g are real-valued integrable functions. If c ≥ 0, then c f =
c f+− c f−, so c f is integrable and

∫

c f = c
∫

f+− c
∫

f− = c
∫

f . If c < 0, then
c f = (−c(− f )) is integrable and

∫

c f =−c
∫ − f = (−c)(−∫ f ) = c

∫

f . By Propo-
sition 4.5.2, the sum f +g = ( f++g+)− ( f−+g−) is integrable and

∫

( f +g) =
∫

f+−
∫

f−+
∫

g+−
∫

g− =
∫

f +
∫

g.

If f ≥ 0 a.e., then
∫

f =
∫

f+ ≥ 0.

Proposition 4.5.4. If g≥ 0 is integrable on E ⊆R and f is measurable with | f | ≤ g
a.e., then f is integrable on E.

Proof. We may assume | f |= f++ f− ≤ g at all points. The rest is clear.
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Remark 4.5.1. The space of integrable functions on E ⊆ R is not quite a vector
space because an integrable function may be infinite on a set of measure 0. Such
functions can be changed on a set of measure 0 to become real-valued functions
without changing the value of the integral. In that sense, the integral is a positive
linear functional on the integrable functions on E. Moreover, if f and g are inte-
grable and f ≤ g a.e., then

∫

(g− f )≥ 0, so
∫

g≥ ∫ f .

4.6 Generalization of Fatou’s Lemma

In its simplest form, Fatou’s Lemma is applicable only to sequences of nonnega-
tive functions. It may, however, be applied to functions that take both positive and
negative values by adding on a positive integrable function that lifts the range of
the combination to the nonnegative real line. With such domination by an integrable
function, we have the following theorem and important corollary.

Theorem 4.6.1 (First General Fatou Lemma). Let 〈 fn : n ∈ N〉 be a sequence of
measurable functions on a measurable set E and g≥ 0 an integrable function on E
such that for any n ∈ N, | fn| ≤ g a.e. Then

∫

lim fn ≤ lim
∫

fn ≤ lim
∫

fn ≤
∫

lim fn.

Proof. This is a corollary of the Second General Fatou Lemma stated below.

Corollary 4.6.1 (Lebesgue Dominated Convergence). Let 〈 fn : n ∈ N〉 be a se-
quence of measurable functions on a measurable set E and g≥ 0 an integrable func-
tion on E such that for each n∈N, | fn| ≤ g a.e. If f = lim fn a.e., then

∫

f = lim
∫

fn.

Proof. When f = lim fn = lim fn a.e., the inequality in Theorem 4.6.1 becomes
equality.

As noted, Theorem 4.6.1 is an immediate consequence of an even more general
result. That result uses the fact that if an → a and bn is another sequence, then
lim(an +bn) = lim(an)+ lim(bn) and a similar equality holds for lim(an +bn).

Theorem 4.6.2 (Second General Fatou Lemma). Let 〈 fn : n ∈ N〉 be a sequence
of measurable functions on a measurable set E, and let 〈gn : n ∈ N〉 be a se-
quence of integrable functions on E with | fn| ≤ gn a.e. for each n ∈ N. Assume
that the sequence gn converges a.e. to an integrable function g. Also assume that
∫

g = limn→∞
∫

gn. Then
∫

lim fn ≤ lim
∫

fn ≤ lim
∫

fn ≤
∫

lim fn.
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Proof. We may, without loss of generality, assume finiteness, domination, and con-
vergence at all points x ∈ E. We then have

−g =− limgn ≤ lim fn ≤ lim fn ≤ limgn = g,

so lim fn and lim fn are integrable. Moreover, for each n ∈ N, fn +gn ≥ 0, so
∫

g+
∫

lim fn =
∫

(g+ lim fn) =
∫

(lim gn + lim fn) =
∫

lim(gn + fn)

≤ lim
∫

(gn + fn) = lim(
∫

gn +
∫

fn) = lim
∫

gn + lim
∫

fn

=
∫

g+ lim
∫

fn.

It follows, even when the fn’s take both positive and negative values, that
∫

lim fn ≤
lim
∫

fn ≤ lim
∫

fn. The inequality lim
∫

fn ≤
∫

lim fn is an immediate consequence
of the result for lim fn applied to the sequence − fn. That is,

−
∫

lim fn =
∫

lim(− fn)≤ lim(−
∫

fn) =−lim
∫

fn.

Remark 4.6.1. The first General Fatou Lemma is a corollary of the second by setting
gn = g for each n ∈ N. Without the assumption

∫

gn →
∫

g in the second Fatou
Lemma, there are such counterexamples as fn = gn = χ[n,n+1] and f = g= 0, or fn =
gn = nχ(0,1/n] and f = g = 0. A more general Dominated Convergence Theorem is
also an immediate corollary of Theorem 4.6.2.

4.7 Improper Riemann Integral

The improper Riemann integral of a function f that is continuous Lebesgue a.e. on
the interval [0,+∞) and bounded on bounded subintervals is limB→+∞

∫ B
0 f (x)dx.

If the interval is (−∞,+∞), then the improper Riemann integral of f is given by
limA→−∞

B→+∞

∫ B
A f (x)dx. The values of A and B must tend independently to their respec-

tive limits. For example, consider the integral of f (x) = x on the real line. Similarly,
if f has a problem at 0 (we use the number 0 to illustrate) and f is appropriate on
(0,+∞), then the improper Riemann integral of f is lim a→0+

B→+∞

∫ B
a f (x)dx. Again, the

values of a and B must tend independently to their respective limits.
Because of cancellation, the improper Riemann integral may exist as a finite

number without f being Lebesgue integrable. For example, for the function

f (x) :=
∞

∑
n=1

(−1)n

n
· χ[n−1,n),
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the improper Riemann integral on [0,+∞) looks like the sum of the alternating har-
monic series, while the integrals of f+ and f− look like the sums of the even and
odd terms of the harmonic series. The proof of the following result is Exercise 4.31.

Theorem 4.7.1. Assume f is both Riemann integrable and Lebesgue integrable on
an interval I over which the Riemann integral R

∫

I f is improper. Then R
∫

I f =
∫

I f .

4.8 Convergence in Measure

Again in this section, we work with a measure m derived from a general integrator.
There is a notion of convergence that has many applications but is weaker than
convergence almost everywhere. It is especially important in probability theory.

Definition 4.8.1. A sequence 〈 fn : n ∈ N〉 of measurable functions converges to 0 in
measure if for any ε > 0, m{| fn| > ε} → 0. In general, fn converges to a function
f in measure means that f is measurable and finite almost everywhere, and | fn− f |
converges to 0 in measure.

Remark 4.8.1. One can also define the convergence of fn to f in measure with the
condition that for any ε > 0, there is an N ∈ N such that

∀n≥ N, m{| fn− f |> ε}< ε .

Note that the values taken by | fn− f | that are greater than ε have no influence on
the measure of the set {| fn− f |> ε}.

By Egoroff’s Theorem (3.3.4), if fn → f a.e. on a set E of finite measure, then
fn → f in measure. For a set of infinite measure this is not true. For example, the se-
quence n → χ[n,n+1] converges to 0 pointwise, but not in measure. On the other hand,
convergence in measure, even on a set of finite measure, does not imply convergence
almost everywhere. For example, let

f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], f4 = χ[0,1/4], f5 = χ[1/4,1/2], etc.

Then fn converges to 0 in measure, but for every x ∈ [0,1], lim fn(x) = 1 while
lim fn(x) = 0; that is, we have convergence at no point. We do, however, have almost
everywhere convergence for a subsequence.

Theorem 4.8.1. Let 〈 fn : n ∈ N〉 be a sequence of measurable functions converging
in measure to f on a measurable set E. Then there is a subsequence

〈

fnk : k ∈ N
〉

that converges to f almost everywhere on E.

Proof. Set n0 = 0. For each k ∈ N , we can choose gk =
∣

∣ fnk − f
∣

∣ so that nk > nk−1

and m{gk > 1/2k} < 1/2k. We need only show that gk → 0 a.e. Let Ak = {gk >
1/2k}, and mirror the Borel-Cantelli Lemma (2.6.2). That is, for

A = limAk = ∩∞
n=1∪∞

k=n Ak,
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we have A = {x ∈ E : x is in an infinite number of the Ak}. Now for each n ∈ N,

m(A)≤ m(∪∞
k=nAk)≤

∞

∑
k=n

1/2k = 2/2n,

and so m(A) = 0. If x /∈ A, then for some n ∈ N , x /∈ ∪∞
k=nAk, and so for all k ≥ n,

0≤ gk(x)≤ 1/2k. It follows that gk(x)→ 0 for all x /∈ A.

Remark 4.8.2. For a set E of finite measure, there is a distance function that mea-
sures how far apart two functions f and g are in measure. It is given by the mapping
( f ,g) → ∫E | f − g| ∧ 1. We will develop such notions of distance later when we
discuss metric spaces.

4.9 Problems

Problem 4.1. Using just Riemann sums and properties of continuous functions,
show that any continuous real-valued function f on [a,b] is Riemann integrable
on [a,b].

Problem 4.2. Let ψ be the step function on [0,7] given by the sum

ψ = 2 · χ[0,3] +3 · χ[2,4] +5 · χ[6,7].

a) Find the minimal representation of the step function ψ .
b) The function ψ is a simple function. Find its canonical form as a simple function.

Problem 4.3 (A). Given a bounded measurable function f on a set E of finite mea-
sure, show that for any measurable subset A of E,

∫

A f :=
∫

f ·χA has the same value
as the integral obtained by restricting f to A.

Problem 4.4. Prove Corollary 4.3.1.

Problem 4.5. Let f = χ{0}; that is, f (0) = 1, and f (x) = 0 for x �= 0. Let g = χ{0,1}.
Recall that for each x ∈ R, g ◦ f (x) = g( f (x)). Show that g ◦ f is not Lebesgue
integrable.

Problem 4.6. Prove Proposition 4.5.1.

Problem 4.7. a) Use upper and lower Riemann sums to show that the characteristic
function of the rational numbers in [0,1] is not Riemann integrable. b) Show that
the Bounded Convergence Theorem does not hold for the Riemann integral.

Problem 4.8. Suppose that f : (0,∞) → (0,∞) is Lebesgue integrable. Show that
there exists a sequence 〈xk〉 increasing to +∞ such that limk→∞ xk · f (xk) = 0. Hint:
It suffices to show that limx→+∞x · f (x) = 0.
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Problem 4.9. Recall the generalized Cantor sets of positive measure constructed in
Section 2.8. Let E ⊂ [0,1] be such a set with Lebesgue measure 1/2.

a) Use the construction of E to form a decreasing sequence 〈ϕn〉 of step functions
on [0,1] such that limn→∞ ϕn(x) = χE(x) for all x ∈ [0,1]. Show that

lim
n→∞

R
∫ 1

0
ϕn(x) dx = λ (E).

b) Show that χE is not Riemann integrable on [0,1].

Problem 4.10. Prove or give a counterexample: If fn is a sequence of negative-
valued, Lebesgue measurable functions on [0,+∞), then limsup

∫

fn ≤
∫

limsup fn.

Problem 4.11 (A). Prove the following proposition: If f is measurable but not inte-
grable on R, and

∫

f =+∞, and if h is integrable on R, then
∫

( f +h) =
∫

f +
∫

h.

Problem 4.12. Let m be the measure generated by an integrator F . Fix a nonnegative
measurable function f defined on a measurable set E ⊆ R. Recall Definition 4.4.1:
∫

E f dm := suph∈W ( f )
∫

E h dm. Show that

∫

E
f dm = sup

0≤ϕ≤ f , ϕ simple

∫

ϕ dm,

where the supremum runs over all nonnegative simple functions dominated by f .
Hint: Prove the result for any h ∈W .

Problem 4.13. Let f (x) = e−x2
on R. It is well-known that

∫ +∞
−∞ e−x2

dx=
√

π . Show
that

∫

R
ϕ dλ = +∞ for any simple function ϕ dominating f on R. Compare with

Problem 4.12.

Problem 4.14. Let f be a nonnegative measurable function on E ⊆ R. Prove that
the integral of f is not changed if the value of f is changed on a null set even if f is
identically equal to +∞ on that null set. Hint: Suppose the value of f is changed to
0 on a null set.

Problem 4.15. Simplify the proof of Theorem 4.6.2 to give a direct proof of
Theorem 4.6.1.

Problem 4.16. a) Prove the following inequality of Chebyshev: If f ≥ 0 is mea-
surable, then for any α > 0, m{ f ≥ α} ≤ 1

α
∫

f .
b) Prove the following result: If f ≥ 0 is integrable and

∫

f = 0, then f = 0 a.e.

Problem 4.17. Let 〈 fn : n ∈ N〉 be a sequence of real-valued integrable functions
on X . Suppose that for some integrable function f , we have

∫

X | fn(t)− f (t)| ≤ 2−n

for all n ∈ N. Show that fn → f a.e. Hint: ∑∞
k=1 | fk+1(t)− fk(t)| < ∞ a.e., whence

fn(t) = f1(t)+∑n
k=2 ( fk(t)− fk−1(t)) converges a.e. Moreover, fn → f in measure.

Problem 4.18. Let m be a measure on R. Show that a measurable function f :
R →[0,∞) is integrable if the series ∑∞

n=0 m({x : f (x)≥ n}) converges.



4.9 Problems 75

Problem 4.19. Fix a function f ≥ 0 that is integrable on R. Set F(x) =
∫

(−∞,x] f .
Clearly F is an increasing function of x. Show that F is uniformly continuous on R.

Problem 4.20. Suppose 〈 fn〉 is a sequence of nonnegative measurable functions that
converge pointwise to f , but not necessarily monotonically, i.e., we don’t necessarily
have fn(x) ≤ fn+1(x) or fn(x) ≥ fn+1(x) for all n and x. Suppose, however, that
fn ≤ f ∀n. Show that lim

∫

fn exists and equals
∫

f .

Problem 4.21. a) Show that the Monotone Convergence Theorem may not hold for
a decreasing sequence.

b) Give a sufficient condition on the first function in the decreasing sequence for the
result to hold.

Problem 4.22 (A). Prove the following result: Suppose that 〈 fn〉 is a sequence of
nonnegative measurable functions on R such that fn → f a.e. and

∫

R
fn →

∫

R
f <

+∞. Then for each measurable set E,
∫

E fn →
∫

E f .

Problem 4.23. Let f : R → [0,∞) be a Lebesgue integrable function and g : R →
[a,b] be a measurable function. Show that there is c ∈ [a,b] such that

∫

f g = c
∫

f .

Problem 4.24. Show that for any integer n ≥ 2, the unbounded function x−1/n is
Lebesgue integrable on (0,1].

Problem 4.25. Let 〈 fn〉 be a sequence of nonnegative, Lebesgue integrable func-
tions on [0,1], such that for Lebesgue measure λ , limn→∞

∫

[0,1] fn dλ = 0. Must the
sequence fn converge to 0 in measure on [0,1]? Briefly justify your answer.

Problem 4.26. Let f be an integrable function on [0,1].

a) Show that if f > 0 on a set F ⊆ [0,1] of positive measure, then
∫

F f (x) m(dx)> 0.
b) Suppose for each x ∈ [0,1], m({x}) = 0, and for each y ∈ [0,1],

∫ y
0 f (x) m(dx) =

0. Show that f (x) = 0 for m-a.e. x ∈ [0,1].

Problem 4.27. Let 〈 fi〉 be a sequence of Lebesgue measurable functions on [0,1].
Show that if fi converges to f in (Lebesgue) measure on [0,1], then f is Lebesgue
measurable.

Problem 4.28. Suppose 〈 fn〉 is a sequence of nonnegative measurable functions
converging to f in measure. Show that

∫

f ≤ lim
∫

fn.

Problem 4.29. a) Let 〈 fn〉 be a sequence of measurable real-valued functions on a
set E ⊆ R of finite measure. Let f be a measurable real-valued function on E.
Show that fn → f in measure if and only if every subsequence 〈 fnk〉 has a further
subsequence that converges to f pointwise almost everywhere on E.

b) Now also suppose that gn→ g in measure on E. Show that fngn→ f g in measure.

Problem 4.30. In the setting of Problem 2.18, let f be a nonnegative, real-valued
function on (0,∞). Show that

∫

(0,∞) f dm = ∑n∈N f (n).
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Problem 4.31 (A). Prove Theorem 4.7.1.

Problem 4.32 (A). Use the Second General Fatou Lemma (4.6.2) to prove the fol-
lowing result: Let 〈 fn〉 be a sequence of integrable functions with fn → f a.e., and
assume f is integrable. Then

∫ | fn− f | → 0 if and only if
∫ | fn| →

∫ | f |.
Problem 4.33. Let fn : [0,1] → [0,∞) be a sequence of Lebesgue integrable func-
tions on [0,1] converging Lebesgue a.e. to f . Show that limn→∞

∫ 1
0 fne− fndλ =

∫ 1
0 f e− f dλ . Hint: Where is the maximum value of x → xe−x?

Problem 4.34. Evaluate limn→∞
∫ ∞

0

(

sinx
x

)n
dx.

Problem 4.35. Let f : [0,1] →R be a continuous function. Using Lebesgue measure
λ , show that limn→∞

∫ 1
0 xn f (x) λ (dx) = 0.

Problem 4.36. Let 〈 fn〉 be a sequence of measurable functions with fn : R → [0,∞)
for each n∈N and fn → f a.e. Suppose limn→∞

∫

fn(x) = 0. Show that f (x) = 0 a.e.

Problem 4.37. Suppose that f : [0,1] → R and h : [0,1] → R are measurable func-
tions on [0,1] such that

∫ 1
0 f =

∫ 1
0 h. Show that either f = h a.e. on [0,1] or there

exists a measurable set A⊆ [0,1] such that
∫

A h <
∫

A f .

Problem 4.38. Let f be a nonnegative Lebesgue measurable function on X ⊆ R

such that
∫

X f 2dλ < ∞. Show that limb→∞ b2 ·λ ({ f ≥ b}) = 0. Hint: For each n ∈
N∪{0}, let En = {x ∈ X : n≤ f < n+1}. Note that

∫

X f 2dλ ≥ ∑∞
n=0 n2λ (En).

Problem 4.39. a) Show that the First General Fatou Lemma holds for a uniformly
bounded sequence of measurable functions defined on a fixed set of finite mea-
sure.

b) Give an example of a sequence 〈 fn : n ∈ N〉 of measurable functions on [0,2]
taking the values 1 and −1 such that for all n ∈ N,

∫

lim fn dλ < lim
∫

fn dλ < lim
∫

fn dλ <
∫

lim fn dλ .

This shows that in general, strict inequality may hold for each of the inequalities
in the First General Fatou Lemma. Hint: The sequence can be chosen so that
fn = fn+4 for all n ∈ N.

Problem 4.40. a) Using Lebesgue measure, prove the following version of the
Riemann-Lebesgue Lemma, which is important in Fourier analysis: If f is int-
egrable on a finite closed interval [a,b], then taking the limit as n→ ∞,

∫

[a,b]
f (x) · cos(nx)λ (dx)→ 0, and

∫

[a,b]
f (x) · sin(nx)λ (dx)→ 0.

Hint: Approximate f with a step function.
b) Show that if f is integrable with respect to Lebesgue measure on the real line R,

then
∫

R
f (x) · cos(nx)λ (dx)→ 0.
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Problem 4.41. For each of the following statements, state whether it is true or false
and quote a theorem or give an example as a reason for your answer:

a) There is a sequence of simple functions fn taking only the values 0 and 1 defined
on the interval [0,1] such that for each x ∈ [0,1], the sequence fn(x) converges to
0, but the sequence

∫ 1
0 fn(x)dx does not converge to 0.

b) There is a sequence of simple functions fn taking only the values 0 and 1 defined
on the interval [0,1] such that for each x ∈ [0,1], the sequence fn(x) does not
converge, but the sequence

∫ 1
0 fn(x)dx converges to 0.

c) There is a sequence of simple functions fn taking only the values 0 and 1 defined
on the interval [0,+∞) such that for each x ∈ [0,+∞), the sequence fn(x) con-
verges to 0, but the sequence

∫

[0,+∞) fn(x)dx does not converge to 0.
d) There is a sequence of simple functions fn taking only the values 0 and 1 defined

on the interval [0,+∞) such that the sequence fn converges to 0 in measure, but
the sequence

∫

[0,+∞) fn(x)dx does not converge to 0.

Problem 4.42. Let 〈 fn〉, 〈gn〉, and 〈hn〉 be sequences of real-valued μ-integrable
functions converging μ-a.e. on R to μ-integrable functions f , g, and h, respectively,
where fn ≤ gn ≤ hn for all n ∈ N. Assume that limn→∞

∫

fn(x)dμ =
∫

f (x)dμ and
limn→∞

∫

hn(x)dμ =
∫

h(x)dμ . Show that limn→∞
∫

gn(x)dμ =
∫

g(x)dμ .

Problem 4.43. Recall that the continuity property of the mapping A → ∫A g for a
nonnegative integrable g is the property that for any ε > 0, there is a δ > 0 such
that if m(A)< δ , then

∫

A g < ε . Use this property for such a function g to show that
for a sequence 〈 fn〉 of measurable functions with | fn| ≤ g for all n, if fn converges
in measure to f , then

∫ | fn− f | → 0. Hint: First show that | fn− f | ≤ 2g a.e. You
may then, after subtracting f , assume that for this problem, 0≤ fn ≤ g for all n and
fn → 0 in measure. You then want to show that

∫

fn → 0.

Problem 4.44 (A). Suppose f (x,y) is defined on the unit square, i.e., the set in
the xy-plane with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Also suppose f (·,y) is a measurable
function of x for each y and that function f (·,y) is dominated in absolute value
by a fixed integrable function g that does not change with y. Finally suppose that
limy→0+ f (x,y) = f (x). Show that limy→0+

∫

f (x,y)dx =
∫

f (x)dx.



Chapter 5
Differentiation and Integration

5.1 Introduction

In this chapter, we consider under what conditions and to what extent integration and
differentiation are inverse operations on a function. We apply new results obtained
by the author of this text with J. Bliedner [11]. Those results use “local maximum
functions”; they extend and simplify the usual techniques used for the material pre-
sented in this chapter.

As before, we use λ to denote Lebesgue measure and m to denote a general mea-
sure generated by an integrator F . We write mF when emphasizing the integrator.
Of course, for the integrator F given by F(x) = x, the measure mF = λ .

Bounded intervals in the real line are the natural setting for differentiation, so we
will work in a fixed, bounded, open interval J = (−K,K) where K is a positive real
number. We know that for any Borel set A⊆ J, the Lebesgue measure λ (A)≤ 2K. A
general integrator F is always real-valued. We may assume that F is continuous at
K and −K since an increasing function can have only a countable number of jumps.
(See Problem 5.6.) Therefore, one can always assure continuity at the endpoints of
J by slightly stretching or shrinking J. For any Borel set A ⊆ J, mF(A) ≤ F(K)−
F(−K). We may subtract F(−K) from F to produce a nonnegative integrator on J
that generates the same measure as F .

If we start with a finite Borel measure ν already defined on the closure of J, and
for any x ∈ J we set F(x) = ν ([−K,x]), then we have an increasing integrator that
is continuous from the right since ν [−K,x] = limn→∞ ν [−K,x+1/n]. That integra-
tor will generate the measure ν . In this way, we can work with any finite measure
defined at least on the Borel sets of J, and indeed on the completion (with respect to
the measure) of the Borel sets in J (See Definition 3.2.1). Only finite measures will
be considered on J.

We know that any set that is measurable with respect to a finite measure m is
the union of an Fσ set and a subset of a Borel set of m-measure 0. Therefore, if we
want to put an upper bound on the measure of sets, we need only do so for Borel
sets. As before, we say that a property holds Lebesgue almost everywhere if it holds
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except on a set of Lebesgue measure 0. A measure that is of particular interest is the
measure λ f formed using Lebesgue measure λ and a nonnegative function f that is
Lebesgue integrable on J. That is, λ f (A) =

∫

A f dλ for any Lebesgue measurable
set A⊆ J.

5.2 A Covering Theorem for R

Among the most important tools in analysis are results known as covering theorems;
they are used to show that the set where a desired property fails has measure 0. For
the real line, the sets used to cover are intervals. Recall that there are four types of
finite intervals: open, closed, open at the left and closed at the right, and closed at
the left and open at the right. A degenerate interval is a closed interval [a] consisting
of only one point. In this section, we present the optimal covering theorem for the
real line. The set covered here is the union of the covering intervals. The result is an
extension by J. Aldaz [2] of a lemma of T. Radó [41]. We have modified the Aldaz
result by using the constant 3 instead of his constant 2+ ε for an arbitrary ε > 0.
(See Problem 5.1.) For higher-dimensional spaces, one can use geometric results
such as the two presented in this book’s appendix on limit and covering theorems.

Theorem 5.2.1 (Radó-Aldaz). Let m be a finite, Borel measure on J = (−K,K).
Given an arbitrary collection I of non-degenerate intervals, all contained in J,
the set ∪I∈I I is measurable, and there is a finite disjoint subset {I1, · · · , In} ⊆ I
such that

m(∪I∈I I)≤ 3 ·Σ n
k=1m(Ik).

Proof. By Corollary 1.7.1, we may assume that I itself is a countable collection
given by the enumeration {In : n∈N}, whence ∪I∈I I =∪∞

n=1In is measurable. Since
all the intervals are contained in J,

m(∪∞
n=1In) = lim

N∈N
m(∪N

n=1In)≤ m(J)<+∞.

We employ Radó’s result after first choosing N ∈ N so that

3
2
·m(∪N

n=1In)≥ m(∪∞
n=1In) = m(∪I∈I I).

Given the enumeration of the N intervals, we discard the first interval if it is covered
by the remaining intervals. Otherwise, we keep the first interval and consider the
second. In either case, the union of the intervals we keep is the same as the union
of the original N intervals. Continuing in this way, we may assume that each of
the remaining intervals in our finite collection contains a representative point x not
in any other interval of the collection. Now we give the finite set of representative
points the ordering inherited from R , and we reorder the remaining finite set of
intervals so that they have the same ordering as their representative points. It follows
that for any indices i, j, and k with i < j < k we have xi < x j < xk. Moreover, since
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x j /∈ Ii, Ii ⊆ (−∞,x j), and since x j /∈ Ik, Ik ⊆ (x j,+∞). Thus, the intervals with even
indices form a disjoint collection, as do the intervals with odd indices. Therefore, the
desired subset of I is whichever of these two families has the greater total measure.
For example, if that is the family with even indices, then

3 ·m(∪nI2n) =
3
2
·2 ·m(∪nI2n)≥ 3

2
·m(∪nIn)≥ m(∪I∈I I).

5.3 A Local Maximal Function

In this section, we work with both a finite measure m on J = (−K,K) and Lebesgue
measure λ . We set I (x,r) equal to the collection of intervals I ⊆ J containing x
(perhaps as an endpoint) with strictly positive length λ (I)≤ r, and we set

M(m,r,x) := sup
I∈I (x,r)

m(I)
λ (I)

. (5.3.1)

For example, if m is the measure λ f generated by λ and a nonnegative, integrable
function f ,

M(λ f ,r,x) = sup
I∈I (x,r)

1
λ (I)

∫

I
f dλ .

As r decreases, the collection I (x,r) gets smaller. Therefore, M(m,r,x) decreases
as r decreases, and so we may set

M(m,x) := lim
r→0+

M(m,r,x).

We call the function given by x → M(m,x) a local maximal function. The word
“local” distinguishes the function from the classical maximal function, defined by
the supremum operation in Equation (5.3.1) with no upper bound on the interval
length.

Proposition 5.3.1. Given a set E ⊆ J and α > 0, let Eα := {x ∈ E : M(m,x)> α}.
Then the Lebesgue outer measure

λ ∗(Eα)≤ 3
α
·m(J).

Proof. Given x ∈ Eα , there is an interval Ix ∈I (x,r) for some r ≤ 1 such that

α ·λ (Ix)≤ m(Ix).

These intervals form a collection I that covers Eα , so by the Radó-Aldaz covering
theorem 5.2.1, there is a finite disjoint subcollection {I1, · · · , In} ⊂I such that

λ ∗ (Eα)≤ λ (∪I∈I I)≤ 3 ·Σ n
k=1λ (Ik)≤ 3

α
Σ n

k=1m(Ik)≤ 3
α
·m(J).
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This last result is similar to the one that is well-known for the classical maximal
function. We next, however, indicate the advantage of using a local maximal func-
tion. We are implicitly using the fact that a set of measure 0 is contained in a Borel
set of measure 0.

Theorem 5.3.1. Let m be a finite measure on J, and let E be a Borel subset of J.
If m(E) = 0, then M(m,x) = 0 for Lebesgue almost all x ∈ E.

Proof. Fix α > 0, and then fix ε > 0. Since m(E) = 0, there is an open set U ⊇ E
in J such that m(U) < εα/3. Let μ be the finite measure on J defined by setting
μ(A) = m(A∩U) for each Borel set A ⊆ J. Now in calculating the values of the
local maximal function on E, we need only consider small intervals that fit inside
the open set U . Therefore,

Eα := {x ∈ E : M(m,x)> α}= {x ∈ E : M(μ ,x)> α}.

Therefore, λ ∗(Eα)≤ 3
α μ(J) = 3

α μ(U)< ε . Since ε is arbitrary, λ ∗(Eα) = 0. Since
α is an arbitrary positive number, the result follows.

Corollary 5.3.1. Let λ f be the finite measure on J generated by Lebesgue measure
λ and a nonnegative, integrable function f . Let E be a Borel subset of J. If f (x) = 0
for Lebesgue almost all points of E, then M(λ f ,x)= 0 for Lebesgue almost all x∈E.

5.4 Differentiation

In this section, we establish various differentiation results. In all of its forms, dif-
ferentiation is about limits of ratios; the denominator here is always interval length.
Moreover, each ratio is bounded above by the supremum used to calculate the local
maximal function. If the local maximal function is 0, the limit of the bounded ratios
is 0.

First we have the Lebesgue Differentiation Theorem and its corollary extending
a form of the Fundamental Theorem of Calculus. The theorem is obvious for contin-
uous functions, and uses the fact (Lusin’s theorem 3.3.3) that a measurable function
on a set of finite measure is nearly continuous. Recall that the Radó-Aldaz cover-
ing theorem uses coverings with intervals that may contain the endpoint at one or
both ends. Also recall that a Lebesgue integrable function f on a subset of R can be
extended with the value 0 to all of R. We will at times write

∫ c
a f dλ for the integral

∫

[a,c] f dλ .

Theorem 5.4.1 (Lebesgue Differentiation). Let f be a Lebesgue integrable func-
tion on R. Then each of the following equalities holds Lebesgue almost everywhere
on R:
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lim
r→0+

1
2r

∫

[x−r,x+r]
f dλ = f (x),

lim
r→0+

1
r

∫

[x,x+r]
f dλ = f (x),

lim
r→0+

1
r

∫

[x−r,x]
f dλ = f (x).

Proof. We need only prove the result for f ≥ 0 and x in our bounded, open inter-
val J = (−K,K). Without changing the value of any integral, we may assume that
f takes only finite values. By Lusin’s theorem, for each n ∈ N, there is a compact
set Cn ⊂ J with λ (J \Cn) < 1/n such that f |Cn is continuous on Cn. By Propo-
sition 1.11.3, we may extend the function f restricted to Cn with a nonnegative,
bounded, continuous function g that vanishes on Cn so that h := f · χCn + g is con-
tinuous on J. Since h is continuous on J, each of the limit results holds at any x ∈ J
with h replacing f . Now on J, the function

f = h−g+ f · χJ\Cn .

Recall that λg is the measure on J defined by setting λg(A) =
∫

A g dλ for every
Lebesgue measurable set A⊆ J. Moreover, each of the desired limits using g instead
of f is bounded above by the limit of the local maximal function M(λg,x) at each
x ∈ J. Since λg (Cn) = 0, it follows from Corollary 5.3.1 that each of those limits for
g is 0 Lebesgue almost everywhere on Cn. Similarly each of the desired limits using
f ·χJ\Cn instead of f is 0 Lebesgue almost everywhere on Cn. Therefore, the desired
limit results hold Lebesgue almost everywhere on Cn for f = h−g+ f ·χJ\Cn . It now
follows that they hold Lebesgue almost everywhere on ∪n∈NCn, which is Lebesgue
almost everywhere on J.

Corollary 5.4.1 (Extended Fundamental Theorem of Calculus). Suppose that f
is Lebesgue integrable on [a,b], and for each x ∈ [a,b], F(x) =

∫ x
a f dλ +C where

C is a constant. Then F ′(x) = f (x) for Lebesgue almost all x ∈ [a,b].

Proof. For Δx = r > 0 and x+Δx≤ b,

F(x+Δx)−F(x)
Δx

=
1
r

∫

[x,x+r]
f dλ .

For Δx =−r < 0 and x+Δx≥ a,

F(x+Δx)−F(x)
Δx

=
1
−r
·−
∫

[x−r,x]
f dλ =

1
r

∫

[x−r,x]
f dλ .

The value F(x) in the corollary is often written F(x)=
∫ x

a f dλ +F(a). The corol-
lary says that one can differentiate the indefinite integral of a Lebesgue integrable
function and get back the integrand almost everywhere. We will seek conditions for
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when the process can be reversed so that integrating the derivative of a function re-
stores the function except for an additive constant. We know this is impossible for
the Cantor-Lebesgue function since that function’s derivative is 0 Lebesgue almost
everywhere.

Theorem 5.4.2 (Lebesgue Density). If A is a Lebesgue measurable subset of R,
then

lim
r→0+

λ (A∩ [x− r,x+ r])
2r

= 1 for λ -a.e. x ∈ A.

That is, λ -almost all points of A are “points of density” of A.

Proof. Exercise 5.3.

We have used Theorem 5.3.1 to show the existence Lebesgue almost everywhere
of a derivative for any integrator of the form F(x) =

∫

[−K,x] f dλ , where f ≥ 0 is
Lebesgue integrable. The same theorem also yields a result for general integrators.

Theorem 5.4.3. Let F be an integrator on J, and let m be the corresponding mea-
sure. If E is a Borel subset of J with m(E) = 0, then F has a zero derivative Lebesgue
almost everywhere on E.

Proof. Since m(E) = 0, m({a}) = 0 for each point a ∈ E. Given a point a ∈ E and
given Δx > 0,

F(a+Δx)−F(a)
Δx

=
m(a,a+Δx]

Δx
=

m[a,a+Δx]
Δx

,

F(a−Δx)−F(a)
−Δx

=
F(a)−F(a−Δx)

Δx
=

m(a−Δx,a]
Δx

.

By Theorem 5.3.1, M(m,a) = 0 for Lebesgue almost all points a in E. Therefore,
both of the above ratios have limit 0 Lebesgue almost everywhere on E as Δx→ 0,
whence F ′(a) exists and is 0 for Lebesgue almost every a in E.

5.5 Functions of Bounded Variation

We have been using increasing functions to construct measures on R. Finite signed
measures take both positive and negative values. They correspond to differences of
increasing functions. These are the functions of “bounded variation”, which we now
consider. We work with a fixed, finite interval [a,b]⊂ R. Recall that P denotes the
set of all partitions of [a,b] formed by points a = x0 < x1 < · · ·< xn = b.

Definition 5.5.1. Let IP denote the collection of sets of intervals associated with
partitions of [a,b]. Each member Q of IP is called an interval partition of [a,b].
It is a finite set of closed intervals [xi−1,xi], 1 ≤ i ≤ n, overlapping only at the end-
points and having union [a,b].
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Definition 5.5.2. Given a real-valued function f on [a,b], and a subinterval I =
[xi−1,xi] of [a,b], we set ΔI f = f (xi)− f (xi−1). For each Q ∈IP , we set pQ f =
ΣI∈Q[(ΔI f )∨0], nQ f = ΣI∈Q[(−ΔI f )∨0], and tQ f = pQ f +nQ f = ΣI∈Q |ΔI f |. We
call

P=Pb
a f := sup

Q∈IP
(pQ f ), N =Nb

a f := sup
Q∈IP

(nQ f ), and T = T b
a f := sup

Q∈IP
(tQ f )

the positive, negative, and total variation of f , respectively, on the interval [a,b].
We say the function f is of bounded variation on [a,b], and we write f is BV , or
f ∈ BV , if T b

a f <+∞.

Note that all of the quantities discussed are nonnegative. Moreover, for each Q ∈
IP , pQ +nQ = tQ ≤ T , so if T is finite, then so are P and N.

Definition 5.5.3. A refinement of an interval partition Q of [a,b] is an interval
partition of [a,b] obtained by adding partition points to the partition points of Q.

Proposition 5.5.1. Given the real-valued function f on [a,b], if Q is a refinement of
Q0 in IP , then pQ0 ≤ pQ, nQ0 ≤ nQ, and tQ0 ≤ tQ.

Proof. Exercise 5.5.

Proposition 5.5.2. If f is BV on [a,b], then T = P+N, and f (b)− f (a) = P−N.

Proof. For each interval partition Q ∈IP , pQ−nQ = f (b)− f (a), so

pQ = nQ + f (b)− f (a)≤ N + f (b)− f (a).

Therefore P≤ N + f (b)− f (a). Also,

nQ = pQ + f (a)− f (b)≤ P+ f (a)− f (b),

so N ≤ P+ f (a)− f (b), whence N + f (b)− f (a)≤ P. Therefore, P = N + f (b)−
f (a). Since f ∈ BV , we may subtract and obtain P−N = f (b)− f (a).

To show T = P+N, we note that for each Q ∈IP ,

tQ = pQ +nQ = pQ +(pQ− pQ)+nQ = pQ + pQ + f (a)− f (b),

so tQ ≤ 2P+ f (a)− f (b), whence T ≤ 2P+ f (a)− f (b). On the other hand, 2pQ +
f (a)− f (b) = tQ ≤ T , whence 2P+ f (a)− f (b) ≤ T . It follows that T = 2P+
f (a)− f (b) = 2P+(N−P) = P+N.

Theorem 5.5.1. A real-valued function f on [a,b] is of bounded variation if and
only if it is the difference g− h of two increasing real-valued functions g and h on
[a,b]. In this case,

Pb
a f ≤ g(b)−g(a), Nb

a f ≤ h(b)−h(a), so T b
a f ≤ g(b)−g(a)+h(b)−h(a).

(5.5.1)
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Proof. Assume f ∈ BV . For each x ∈ [a,b], Px
a f and Nx

a f are increasing functions
bounded above by T b

a f , and f (x) = [ f (a)+Px
a f ]−Nx

a f .
Conversely, if f = g− h, where g and h are increasing functions, then for any

Q ∈IP ,

pQ = ΣI∈Q[(ΔI f )∨0]≤ ΣI∈Q [(ΔIg∨0)] = ΣI∈QΔIg = g(b)−g(a),

so Pb
a f ≤ g(b)−g(a). Similarly Nb

a f ≤ h(b)−h(a), so T b
a f ≤ g(b)−g(a)+h(b)−

h(a). It follows that f is BV on [a,b].

Note that we do not necessarily have equality in Equation (5.5.1). For example,
if f (x)≡ 0 on [0,1], then f = g−h, where g(x) = x and h(x) = x for all x in [0,1].

Corollary 5.5.1. Let m be a finite measure on [a,b], and let f be a function in-
tegrable with respect to m on [a,b]. Then the function x → G(x) :=

∫ x
a f dm =

∫

[a,x] f dm is BV on [a,b], and T b
a G≤ ∫[a,b] | f | dm.

Proof. Since G(x) :=
∫ x

a f+dm− ∫ x
a f−dm, G is BV , and

T b
a G≤

∫ b

a
f+dm+

∫ b

a
f−dm =

∫

[a,b]
| f | dm.

5.6 Absolute Continuity

In this section, we consider which functions on an interval [a,b] have the form x →
∫ x

a gdλ +C where g is Lebesgue integrable and C is a constant. By Proposition 4.4.3,
such functions are uniformly continuous. Indeed, for any ε > 0, there is a δ > 0 such
that if A is a Lebesgue measurable subset of [a,b] with λ (A)< δ , then

∫

A |g| dλ <
ε . In particular, given a finite set of disjoint intervals of total Lebesgue measure
(i.e., length) smaller than δ , the total measure obtained by integrating |g| over those
intervals is less than ε . We call functions with this property of the function x →
∫ x

a |g| dλ “absolutely continuous.” We state below the formal definition of absolute
continuity for our interval J = (−K,K). One may replace J here with any non-
degenerate interval or even the whole line R.

First, let Sδ (J) denote all finite sets of closed intervals I ⊆ J with pairwise
disjoint interiors and total length less than δ . That is, S ∈ Sδ (J) if and only if
S = {I1, I2, · · · , In} where each Ii is a closed interval in J, for i �= j, Ii ∩ I j is either
empty or one point, and the sum of the length of the intervals in S is smaller than δ .

Definition 5.6.1. A real-valued function f defined on an interval J is said to be
absolutely continuous on J if for any ε > 0, there is a δ > 0 so that for any S ∈
Sδ (J), the sum ΣI∈S |ΔI f |< ε .

The functions absolutely continuous on an interval J are all uniformly continu-
ous on J. It is an easy exercise (5.13) to show that they form a vector space over R
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containing the constants. A function absolutely continuous on an interval J is abso-
lutely continuous on any subinterval of J. A function absolutely continuous on an
interval [a,b] can be extended with constant values to form an absolutely continuous
function on R. We shall see that although the Cantor-Lebesgue function is continu-
ous on [0,1], and therefore uniformly continuous on the compact set [0,1], it is not
absolutely continuous on [0,1].

As noted, every function x → ∫ x
a g dλ +C formed from a Lebesgue integrable

function g on an interval [a,b] is absolutely continuous on [a,b]. We will show that
all absolutely continuous functions on [a,b] have this form. It will follow that they
are functions of bounded variation on [a,b], but we need that result first.

Proposition 5.6.1. If a real-valued function f is absolutely continuous on an inter-
val [a,b], then f is BV on [a,b], and the functions mapping x to T x

a f , Px
a f , and Nx

a f
are all absolutely continuous on [a,b].

Proof. Fix δ > 0 that works for ε = 1 in terms of the absolute continuity of f . Then
fix an n∈N such that (b−a)/n < δ . Let Qn be the interval partition of [a,b] formed
by the points xi = a+ i · (b−a)/n for 0≤ i≤ n. Given any interval I of the partition
Qn, by the choice of δ , any finite interval partitioning of I results in a sum of the
absolute values of the change of f of no more than 1. Let Q0 be an arbitrary interval
partition of [a,b], and let Q be the refinement obtained by adding the partition points
of Qn to the partition points of Q0. Since tQ0 ≤ tQ ≤ n, the total variation T b

a f ≤ n,
so f is BV on [a,b].

To show x → Px
a f is absolutely continuous, fix ε > 0 and then a δ > 0 that works

for ε/2 in terms of the absolute continuity of f . Also fix a finite set of intervals
S0 ∈ Sδ ([a,b]). We will show that ΣI∈S0ΔIPx

a f < ε . Let Q be a partition of the
entire interval [a,b] such that Pb

a f − pQ f < ε/2. We may assume, without loss of
generality, that among the partition points of Q are the endpoints of the intervals of
S0. Let S be the set of intervals formed from the intervals of S0 by cutting with the
partition points of Q that are contained in the intervals of S0. Clearly, S∈Sδ ([a,b]).
Now since Px

a f is a function for which the value increases as x increases,

ΣI∈S0ΔIP
x
a f = ΣI∈SΔIP

x
a f ≤ ε

2
+ΣI∈S ((ΔI f )∨0)≤ ε

2
+ΣI∈S |ΔI f |< ε .

This shows that Px
a f is absolutely continuous. Similarly, Nx

a f = Px
a (− f ) is also ab-

solutely continuous, and so the sum T x
a f is absolutely continuous on [a,b].

Corollary 5.6.1. Any absolutely continuous function f on an interval [a,b] is the
difference of two nonnegative, increasing, absolutely continuous functions on [a,b].

Proof. Since f ∈ BV on [a,b], for any x ∈ [a,b], f (x)− f (a) = Px
a −Nx

a .

Next we explore the relationship between the notion of absolute continuity of
a function and what is called absolute continuity of a measure with respect to
Lebesgue measure. We work again with our finite interval J = (−K,K)⊂R. Recall
that if m is a finite measure on J obtained from an integrator F , we may assume that
F is continuous at −K and K.
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Definition 5.6.2. Let m be a finite measure on J = (−K,K). The measure m is
absolutely continuous with respect to Lebesgue measure λ if m(E) = 0 for every
Lebesgue measurable set E with λ (E) = 0; in this case, we write m << λ . A finite
measure ν on J is singular with respect to Lebesgue measure if there is a Lebesgue
measurable subset B ⊂ J with λ (B) = 0 such that ν(J�B) = 0. In this case,
we write ν⊥λ .

Remark 5.6.1. These definitions work for pairs of measures, but for this chapter
we only work with absolute continuity and singularity with respect to Lebesgue
measure. If m<< λ , then every Lebesgue measurable set is measurable with respect
to m (Exercise 5.16).

We show next that if m is a finite measure on J = (−K,K), then absolute continu-
ity of m with respect to Lebesgue measure is equivalent to the following condition
on the Borel subsets E of J:

(*) ∀ε > 0 ∃δ > 0 such that λ (E)< δ ⇒ m(E)< ε .

Note that by Proposition 4.4.3, if for each Lebesgue measurable set A, m(A) =
∫

A f dλ for a fixed, nonnegative, Lebesgue integrable function f , then Condition
(*) holds.

Proposition 5.6.2. If m is a finite measure on J = (−K,K), then m << λ if and only
if Condition (*) holds for m.

Proof. Clearly, if (*) holds and the Lebesgue measure of E is 0, then whatever
the positive value of δ might be, λ (E) < δ , so m(E) < ε for every positive ε ,
whence m(E)= 0. That is, if Condition (*) holds, then m<< λ . To establish the rev-
erse implication, we assume that (*) is false. Then there is an ε > 0 and a sequence
of Borel sets En contained in J with λ (En) < 2−n and yet m(En) ≥ ε for each n.
Let E := limsupn En. Then λ (E) = 0 by the Borel-Cantelli Lemma, Theorem 2.6.2.
However, for each k, m(∪∞

n=kEn)≥ ε , so since m(J)<+∞, we have

m(E) = m(∩∞
k=1(∪∞

n=kEn))≥ ε .

Hence, when (*) is false, there is a Borel set of Lebesgue measure 0 in J with positive
m-measure.

Example 5.6.1. It need not be true for an infinite measure that Condition (*) follows
from the implication λ (E) = 0⇒ m(E) = 0. If, for example, we obtain m on the
nonnegative real line by setting m(E) =

∫

E x dλ for each Lebesgue measurable set
E, we still have m << λ , but Condition (*) does not hold.

Here is the connection between absolute continuity of a finite measure and that
of its integrator.

Theorem 5.6.1. If m is a finite measure obtained from an integrator F on
J = (−K,K), then m << λ if and only if F is absolutely continuous on J.
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Proof. If m << λ on J, then singleton sets have m-measure 0, and Condition (*)
holds for m. The absolute continuity of F follows directly from Condition (*).
Conversely, suppose F is absolutely continuous on J. As noted, we may assume that
F is continuous at the endpoints of J. Moreover, singleton sets have m-measure 0.
Given ε > 0, fix δ > 0 so that 2δ works for ε/2 with respect to the absolute
continuity of F . Fix E ⊆ J with λ (E) < δ . Fix an open set O with E ⊆ O ⊆ J
and λ (O) < 2δ . The open set O is a countable union of disjoint open intervals
Ik = (ak,bk). For any n ∈ N, Σ n

k=1(bk−ak)< 2δ . It now follows that Condition (*)
holds for m since for sufficiently large n ∈ N,

m(E)≤ m(∪∞
k=1Ik)≤ 2 ·Σ n

k=1m(Ik) = 2 ·Σ n
k=1 (F(bk)−F(ak))< 2 · ε

2
= ε .

We now want to employ a special case of the Radon-Nikodým Derivative
Theorem. It will be proved later using Hilbert space techniques.

Theorem 5.6.2 (Special Radon-Nikodým Theorem). Let F be an increasing, abs-
olutely continuous function on J = (−K,K) with continuity at the endpoints of
J, so F is also absolutely continuous on [−K,K]. Let mF be the measure gener-
ated on J using F as an integrator, so mF << λ . Then there is a nonnegative,
Lebesgue integrable function f on J such that for any Lebesgue measurable set
A⊆ J, mF(A) =

∫

A f dλ . In particular, F(x)−F(−K) =
∫

[−K,x] f dλ .

We now have the following important result stating when a function can be rec-
aptured from its derivative using integration.

Theorem 5.6.3. Let F be a real-valued function on an interval [a,b]. If for some
Lebesgue integrable function f on [a,b], F(x) = F(a)+

∫

[a,x] f dλ for all x ∈ [a,b],
then F is absolutely continuous on [a,b]. On the other hand, if F is absolutely con-
tinuous on [a,b], then an integrable derivative F ′ exists Lebesgue almost everywhere
on [a,b], and F(x) = F(a)+

∫ x
a F ′ dλ for all x∈ [a,b]. That is, the indefinite integral

of the derivative of an absolutely continuous function on [a,b] is the function plus a
constant.

Proof. By Corollary 5.6.1, we may assume that F is increasing on [a,b]. By Theo-
rem 5.6.2, there is a nonnegative, Lebesgue integrable function f on [a,b] such that
for all x ∈ [a,b], F(x)−F(a) =

∫

[a,x] f dλ . By Theorem 5.4.1, the derivative F ′(x)
exists and equals f (x) for Lebesgue almost all x ∈ [a,b].

Remark 5.6.2. We know that the Cantor-Lebesgue function g has a derivative equal
to 0 at Lebesgue almost all points of [0,1]. Since we do not have 1 = g(1) =
∫ 1

0 g′(x) dλ , we know that g is not absolutely continuous.

Finally, we want to show that any increasing real-valued function, and hence
a BV function, has a derivative Lebesgue almost everywhere. If we start with an
increasing function on an interval [a,b], we can always extend it with constant values
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to form an increasing function on R. Therefore, we will work with an increasing,
real-valued function on the interval [−K,K]. To transform such a function to an
integrator, we need the following result.

Proposition 5.6.3. Let F be an increasing function on J = (−K,K), continuous at
−K and K. Let G be another such increasing function on J such that for all x ∈ J,

lim
y→x−F(y)≤ G(x)≤ lim

y→x+
F(y).

Then the set of points x ∈ J where the derivative F ′ (x) exists equals the set of points
x ∈ J where G′(x) exists. Moreover, F ′(x) = G′(x) at those points.

Proof. Exercise 5.17(A).

We also need the following result, which is proved later as an immediate conse-
quence of the Radon-Nikodým Derivative Theorem.

Theorem 5.6.4 (Special Lebesgue Decomposition Theorem). If m is a finite mea-
sure on J, then m = μ +ν on J, where μ << λ and ν⊥λ . The decomposition of m
into an absolutely continuous measure and a singular measure is unique.

Theorem 5.6.5. An increasing real-valued function on an interval in the real line
has a derivative Lebesgue almost everywhere on the interval, whence the same is
true of a BV function.

Proof. Let F be an increasing real-valued function on J = (−K,K) that is continu-
ous at the endpoints of J. By subtracting a constant and then changing F at at most
a countable number of points (see Problem 5.6), we may assume that F is an int-
egrator with F(−K) = 0. By Proposition 5.6.3, we need only establish the result
for the changed function F . Now such an integrator F generates a finite measure.
By Theorem 5.6.4, the measure generated by F is the sum of a measure μ << λ
and a measure ν⊥λ . By definition, there is a set B of Lebesgue measure 0 such that
ν(J�B) = 0. It follows from Theorem 5.4.3 that the integrator Fν for the measure
ν has a zero derivative λ -a.e. on J \B, but since λ (B) = 0, Fν has a zero derivative
λ -a.e. on J. On the other hand, μ is absolutely continuous with respect to λ . There-
fore, by Theorem 5.6.3, its integrator Fμ has a derivative λ -a.e. on J. It follows that
F = Fμ +Fν has a derivative λ -a.e. on J.

5.7 Problems

Problem 5.1. a) Prove the Radó-Aldaz covering theorem 5.2.1 with the constant 3
replaced with the constant 2+ ε for an arbitrary ε > 0.

b) Show that in Part a, the constant 3 cannot be replaced with just 2.

Problem 5.2. Give a counterexample for each of the following statements about a
collection of intervals for which the hypotheses of Theorem 5.2.1 need not hold:
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a) Given an arbitrary collection I of intervals (some possibly degenerate), all con-
tained in (−1,1), the set ∪I∈I I is Lebesgue measurable.

b) Given an arbitrary collection I of non-degenerate intervals in R and Lebesgue
measure λ , there is a finite disjoint subset {I1, · · · , In} ⊆I such that

λ (∪I∈I I)≤ 3 ·
n

∑
k=1

λ (Ik).

Problem 5.3. Prove Theorem 5.4.2. Hint: Work with χA.

Problem 5.4. For each Borel set A ⊆ R, let m(A) = λ (A∩ [0,1]), where λ is
Lebesgue measure. Find the set of all x ∈ R for which the local maximal function
M(m,x)≥ 1/2.

Problem 5.5. Prove Proposition 5.5.1. Hint: What happens when a single point is
added to the partition points forming an interval partition?

Problem 5.6. Show that a monotone (i.e., increasing or decreasing) real-valued
function, and therefore a BV function, can have only a countable number of dis-
continuities. Hint: If f is increasing, and the total increase on an interval J is S, how
many jumps of size 1 can f have in J?

Problem 5.7. Show that if f is BV on [a,b], then right- and left-hand limits exist at
all points of (a,b).

Problem 5.8. a) Show that if f is an increasing function on [a,b], then Nb
a f = 0,

and Pb
a f = T b

a f = f (b)− f (a).
b) Given a real-valued function f on [a,c] and a point b with a < b < c , show that

Pb
a f +Pc

b f = Pc
a f with similar equalities for N and T .

c) Let G(x) =
∫ 4π

0 sinx dx. Show that T 4π
0 G =

∫ 4π
0 |sinx| dx.

d) Let C be the “fat” Cantor set in [0,1] such that λ (C) = 1/2. Let f (x) = 1 for all
x ∈C and f (x) = −1 for all x ∈ [0,1]�C. Let H(x) =

∫ x
0 f dλ for all x ∈ [0,1].

Is T 1
0 H =

∫ 1
0 | f | dλ? Explain.

Problem 5.9. Let f (0) = 0 and f (x) = x2 sin(1/x2) for x �= 0. Determine if f is a
function of bounded variation on [0,1]. Hint: For each n ∈ N , let xn =

√

2/(nπ).

Problem 5.10. Let g(0) = 0 and g(x) = x2 sin(1/x) for x �= 0. Determine if g is a
function of bounded variation on [0,1].

Problem 5.11. a) Show that if f is BV on [a,b], then f is bounded on [a,b].
b) Show that if f and g are BV on [a,b], then f g is BV on [a,b].

Problem 5.12 (A). Give an example of an increasing function on [0,1] that is dis-
continuous at each rational number and continuous at each irrational number.

Problem 5.13. Show that the absolutely continuous functions on an interval J form
a vector space over R containing the constants.
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Problem 5.14. a) Assume f is BV on [a,b], and suppose f is bounded below by
some positive constant c > 0. Show that 1/ f is also BV on [a,b].

b) Let f be an absolutely continuous function on [a,b] such that for all x ∈ [a,b],
f (x) �= 0. Show that 1/ f is also absolutely continuous on [a,b].

Problem 5.15. Define f :R →R by setting f (x) = cos(πx) for each x∈R. For each
n ∈ N, prove that f is BV on [0,2n], and calculate P2n

0 f , N2n
0 f , and T 2n

0 f .

Problem 5.16. Show that if m << λ , then every Lebesgue measurable set is mea-
surable with respect to m.

Problem 5.17 (A). Prove Theorem 5.6.3. Hint: Suppose x0 is a point where a
derivative F ′(x0) exists, and xn is a sequence of points where a jump may occur
with xn ↘ x0. Since a countable set cannot form an open interval, there is a se-
quence of non-jump points yn ↘ x0 and a sequence of non-jump points zn ↘ x0

with yn ≤ xn ≤ zn for each n.

Problem 5.18. Suppose f is BV on [a,b]. Show that if the function V (x) = T x
a f is

absolutely continuous on [a,b], then f is absolutely continuous on [a,b].

Problem 5.19 (A). Suppose g is a monotone (increasing or decreasing), absolutely
continuous function on [0,1] and E a set of Lebesgue measure 0 in [0,1]. Show that
the Lebesgue measure λ (g[E]) = 0.

Problem 5.20. Let m be a finite measure on [a,b] such that m << λ . Then there is
a Lebesgue integrable function g on [a,b] such that for every m-integrable function
f ,
∫

f dm =
∫

f g dλ . Hint: Recall Theorem 5.6.2.

Problem 5.21 (A).

a) Show that if f satisfies a Lipschitz condition, i.e., there is a constant M > 0 such
that for all x and y in the domain of f ,

| f (x)− f (y)| ≤M · |x− y|

then f is absolutely continuous. Note that the constant M is called a Lipschitz
constant, and the letter combination “sh” is rarely used in German.

b) Show that an absolutely continuous function f satisfies a Lipschitz condition if
and only if the absolute value of the derivative, | f ′|, is bounded (where it exists).

c) Assume f : R → R satisfies a Lipschitz condition, and g : [0,1] → R is an abso-
lutely continuous function. Recall that for all x ∈ [0,1], f ◦g(x) = f (g(x)). Show
that f ◦g is an absolutely continuous function on [0,1].

Problem 5.22. Let f : [a,b] →R be an absolutely continuous function. Show that f
is a constant function if and only if f ′(x) = 0 Lebesgue almost everywhere.

Problem 5.23. Let f be an absolutely continuous function for every interval I ⊆ R.
Suppose that f and f ′ are both Lebesgue integrable on R. Show that

∫

R
f ′dλ = 0.

Hint: What are the limits of f at ±∞?
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Problem 5.24. Let 〈 fn〉 be a sequence of absolutely continuous functions on [0,1]
such that f (x) = ∑∞

n=1 fn(x) for all x ∈ [0,1] and ∑∞
n=1 | f ′n(x)| is Lebesgue integrable

on [0,1]. Show that f is absolutely continuous on [0,1].

Problem 5.25. For each bounded, Lebesgue measurable function f on R and each
x ∈R, let T ( f ,x) := limr→0+

1
2r

∫

[x−r,x+r] f dλ . Let C be the “fat” Cantor set in [0,1]
such that λ (C) = 1/2. Suppose f is a bounded Lebesgue measurable function of R
such that the restriction of f to C is continuous at each point of C (that is, one ignores
the values taken by f on R\C). Use Theorem 5.4.2 to show that T ( f ,x) = f (x) at
λ -almost all points of C. Don’t forget that T ( f ,x) makes use of the values of f off
of C.



Chapter 6
General Measure Spaces

6.1 Introduction

In this chapter, we extend results obtained for the real line to more general spaces
supplied with a measure. Recall that a σ -algebra in a set X is a collection of subsets
of X ; the collection contains X itself and is stable with respect to the operations
of taking complements and countably infinite unions. It follows that a σ -algebra
contains the empty set, and so it is also stable with respect to the operations of
taking finite unions, and finite and countably infinite intersections. Also recall that
the Borel subsets of the real line form the smallest σ -algebra containing the open
subsets of R.

Definition 6.1.1. A measurable space is a pair (X ,B) consisting of a set X and a
σ -algebra B formed from subsets of X . Members of the collection B are called
measurable. A measure μ on a measurable space (X ,B) is a function from B into
the extended nonnegative real line, [0,+∞], such that μ(∅) = 0 and for any pairwise
disjoint sequence {Ai : i ∈ N} in B,

μ

(

∞
⋃

i=1

Ai

)

=
∞

∑
i=1

μ (Ai) .

A measure space is a triple (X ,B,μ), consisting of a measurable space (X ,B),
and a measure μ on (X ,B). If μ(X) is finite, μ is a finite measure, and (X ,B,μ)
is a finite measure space. If X is the countable union of sets of finite μ-measure, μ
is a σ -finite measure, and (X ,B,μ) is a σ -finite measure space. A set B ∈B is a
null set if μ(B) = 0. A property holds μ-almost everywhere, or just a.e., if it holds
outside of a null set. A measure is complete if any subset of a null set is measurable.
A measure space is complete if the measure is complete.

Remark 6.1.1. In probability theory, a probability measure μ is a measure on a
measurable space (X ,B) with μ(X) = 1. The measure space (X ,B,μ) is called a
probability space.

© Springer International Publishing Switzerland 2016
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A measure space (X ,B0,μ) that is not complete can be extended to a complete
measure space as indicated in the construction for R in Definition 3.2.1. When we
are working with only one measure, we will in general assume that the measure
space is complete. Clearly, we must be more careful when more than one measure
is involved in the discussion. Again, we will use the notation En ↗ E to indicate a
sequence of sets such that En ⊆ En+1 for all n ∈ N and ∪nEn = E. Also, En ↘ E
indicates a sequence of sets such that En ⊇ En+1 for all n and ∩nEn = E. Moreover,
we have the following limit result.

Proposition 6.1.1. Let (X ,B,μ) be a measure space, and let 〈En : n ∈ N〉 be a se-
quence of measurable sets. If En ↗ E, then μ(E) = lim μ(En). If En ↘ E, and for
some k μ(Ek)<+∞, then μ(E) = lim μ(En).

Proof. Exercise 6.1.

6.2 Integration

We next extend results for measurable, extended-real valued functions and their
corresponding integrals to measurable spaces that are not necessarily based on the
real line. To avoid repetitive definitions, we treat real-valued functions as extended-
real valued functions for which the infinite values are taken on the empty set.

Definition 6.2.1. Given a measurable space (X ,B), an extended-real valued func-
tion f defined on X is measurable if the inverse image with respect to f of each
open subset of R is in B and both f−1 [{+∞}] ∈B and f−1 [{−∞}] ∈B.

Remark 6.2.1. Since inverse images preserve complements, unions, and intersec-
tions, it is enough to know the measurability of f−1 [{+∞}], f−1 [{−∞}], and the
inverse image of each interval of the form (α,+∞) where α is a rational number. As
is true for functions defined on R, it then follows that each Borel set in the real line
has measurable inverse image. In this chapter it will be understood that a measurable
function takes its values in the real or extended real line.

Remark 6.2.2. In probability theory, a measurable real-valued function on a prob-
ability space is called a random variable. When terminology was set in the first
half of the twentieth century, Joseph Doob wanted to call such a function a “chance
variable”, and William Feller disagreed, wanting to call it a “random variable”; so
they tossed a coin, and Feller won.1

For what follows, we fix a complete measure space (X ,B,μ). The measure may
not be finite. Results are stated for the whole space X ; similar results are true for
any measurable subset E of X . Either restrict the measure and all functions to E
or replace all function values with 0 off of E. We first construct the integral for
nonnegative functions.

1 This history was verified by the author in a conversation with Joseph Doob.
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Definition 6.2.2. A simple function is a measurable function with finite range in R.
A simple function that is not identically equal to 0 is presented in canonical form
as the finite sum ∑aiχAi , where the Ai’s are measurable and pairwise disjoint, and
the ai’s are distinct and not 0. The canonical representation of the function 0 is 0.
The integral with respect to μ of a nonnegative, nonzero simple function having
canonical form ∑aiχAi is the sum ∑ai ·μ(Ai). The integral of 0 is 0. We write

∫

ϕ to
denote the integral of ϕ; notation that stresses the measure is

∫

ϕ dμ and
∫

ϕ μ(dx).
Given a measurable set E ⊆ X ,

∫

E ϕ denotes the integral
∫

ϕ · χE .

Definition 6.2.3. Given a nonempty measurable set E ⊆ X and a finite number of
nonempty measurable subsets Ei of E, the partition refinement of E determined by
the sets Ei is the finite collection of nonempty, measurable, pairwise disjoint subsets
{

A j : 1≤ j ≤ k
}

of E such that E = ∪ jA j, and each Ei is the union of the A j’s that
have nonempty intersection with Ei.

Proposition 6.2.1. If ϕ is a finite linear combination ∑n
i=1 αiχEi of characteristic

functions of nonempty, measurable sets Ei with each αi > 0, then ϕ is a nonnegative
simple function, and

∫

ϕ dμ = ∑n
i=1 αi ·μ(Ei).

Proof. Let E =∪iEi. Since ϕ is measurable and takes only a finite number of values,
ϕ is a simple function. Let {A j : 1 ≤ j ≤ k} be the partition refinement of E deter-
mined by the sets Ei. Now ϕ = ∑k

j=1 c jχA j , where for each j, c j = ∑i, A j⊆Ei
αi > 0.

It follows that

n

∑
i=1

αi ·μ(Ei) =
n

∑
i=1

αi ·
(

∑
j,A j⊆Ei

μ(A j)

)

=
n

∑
i=1

∑
j,A j⊆Ei

αi ·μ(A j)

=
k

∑
j=1

∑
i,A j⊆Ei

αi ·μ(A j) =
k

∑
j=1

c j ·μ(A j).

Given the representation ϕ = ∑k
j=1 c jχA j , we may combine (by taking a union) all

of the sets A j with the same value c j into one set without changing the function or
the integral. This is now the canonical form for ϕ and its integral.

Proposition 6.2.2. If ϕ and ψ are nonnegative, nonzero simple functions and α > 0
is in R , then

∫

αϕ = α
∫

ϕ , and
∫

(ϕ + ψ) =
∫

ϕ +
∫

ψ . If ψ ≥ ϕ a.e., then
∫

ψ ≥ ∫ ϕ .

Proof. It is clear that
∫

αϕ = α
∫

ϕ . Let E = {ϕ +ψ > 0}. Take the partition ref-
inement {A j : 1 ≤ j ≤ k} of E determined by the sets Ei ⊆ E on which ϕ takes
distinct values (including 0) and the sets Fk ⊆ E on which ψ takes distinct values
(including 0). Then ϕ and ψ have representations ϕ = ∑ j c jχA j and ψ = ∑ j d jχA j .
On each set A j, c j +d j > 0. Therefore,

∫

(ϕ +ψ) = ∑
j
(c j +d j)μ(A j) = ∑

j, c j �=0

c jμ(A j)+ ∑
j, d j �=0

d jμ(A j) =

∫

ϕ +

∫

ψ .
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If ϕ ≥ ψ a.e., we may change their values on a null set without changing the inte-
grals, so that ϕ ≥ ψ on E. Now for each j, c j ≥ d j, so

∫

ϕ ≥ ∫ ψ .

Corollary 6.2.1. If 0 < b≤ ϕ ≤ B on E = {ϕ > 0}, then b ·μ(E)≤ ∫ ϕ ≤ B ·μ(E).
Proof. Clear.

Proposition 6.2.3. Any nonnegative, extended-real valued, measurable function f
is the limit of an increasing sequence of simple functions.

Proof. Exercise 6.4.

Definition 6.2.4. The integral of a nonnegative measurable function f is the supre-
mum of the integrals of the nonnegative simple functions it dominates. We write
∫

f to denote the integral of f , but notation that stresses the measure is
∫

f dμ and
∫

f μ(dx). The function f is called the integrand of the integral.

Remark 6.2.3. Clearly, this definition of the integral agrees with the definition for
nonnegative simple functions when both definitions apply. Moreover, the following
result is an easy application of the definition.

Proposition 6.2.4. For nonnegative measurable functions, the integral is increasing.
That is, 0 ≤ f ≤ g⇒ ∫ f ≤ ∫ g. If c > 0 in R, then

∫

c · f = c · ∫ f . Moreover, the
value of the integral is independent of changes on sets of measure 0.

Example 6.2.1. Given a nonempty set X , let the σ -algebra B consist of all subsets
of X , and let μ be the measure on (X ,B) such that μ({x}) = 1 for each point
x ∈ X . It follows that μ(A) = +∞ if A is not a finite set. The measure μ is called
counting measure on X . Every extended-real valued function on X is measurable.
The integral of a nonnegative function is the unordered sum of its values on X ; that
is, it is the supremum of sums over finite subsets of X . This is the sequential sum if
X is countable.

We next prove the Fatou Lemma directly from the definition of the integral.

Theorem 6.2.1 (Fatou’s Lemma). Let 〈 fn : n ∈ N〉 be a sequence of nonnegative
measurable functions on X. Then

∫

liminf fn ≤ liminf
∫

fn.

Proof. Fix a nonnegative simple function ϕ ≤ liminf fn. We must show that
∫

ϕ ≤
liminf

∫

fn. First, assume that
∫

ϕ = +∞. Then for some set A of infinite measure
and some strictly positive constant a, ϕ > a on A. For each k ∈ N set Bk = {x ∈
A : fk(x) > a}, and for each n ∈ N set An =

⋂

k≥n Bk. Now 〈An〉 is an increas-
ing sequence of measurable sets with union equal to A since liminf fn > a on A.
Therefore, lim μ(An) = μ(A) = +∞. Since for all k ≥ n,

∫

fk ≥ a · μ(An)→ +∞,
liminf

∫

fn =+∞.
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Now assume that
∫

ϕ is finite. Since ϕ takes only a finite number of values, the
set A where ϕ(x)> 0 has finite measure. The desired result holds for ϕ if it holds for
(1−δ )ϕ for all small positive δ . Therefore, we may assume that ϕ(x)< liminf fn(x)
for all x ∈ A. Let M be the maximum value of ϕ . For each k ∈ N, set Bk = {x ∈ A :
fk(x) > ϕ(x)}, and for each n ∈ N, set An =

⋂

k≥n Bk. Then A\An decreases to the
empty set, so the measure decreases to 0. Given ε > 0, there is an n ∈ N such that
μ(A\An)< ε , whence for all k ≥ n,

∫

fk ≥
∫

Bk

fk ≥
∫

Bk

ϕ ≥
∫

An

ϕ =
∫

A
ϕ−
∫

A\An

ϕ ≥
∫

ϕ− ε ·M.

Since ε > 0 is arbitrary, the result follows.

Remark 6.2.4. A good reminder of the direction of the inequality in Fatou’s Lemma
is the Lebesgue integral applied to characteristic functions for the sequence n →
[n,n+1].

Corollary 6.2.2. If fn → f a.e., and for all n ∈ N, 0≤ fn ≤ f a.e., then
∫

fn →
∫

f .

Proof.
∫

f =
∫

liminf fn ≤ liminf
∫

fn ≤ limsup
∫

fn ≤
∫

f .

Corollary 6.2.3 (Monotone Convergence Theorem). Suppose fn ↗ f a.e., that is,
outside of a null set, 0≤ fn ≤ fn+1 for all n∈N and lim fn = f . Then

∫

f = lim
∫

fn.

Proposition 6.2.5. For nonnegative measurable functions, the map f → ∫ f pre-
serves addition, i.e., the integral of a sum is the sum of the integrals. Moreover, the
map preserves multiplication by strictly positive real numbers. Also,

∫

f = 0 if and
only if f = 0 a.e.

Proof. Exercise 6.5.

Remark 6.2.5. If
∫

f =+∞, then 0 · ∫ f is not defined. If
∫

f is finite, then f is finite
a.e., 0 · ∫ f = 0, and 0 · f (x) is defined and equals 0 a.e.

Definition 6.2.5. A nonnegative measurable function is called integrable if its in-
tegral is finite. A measurable function f is called integrable if f+ := f ∨ 0 and
f− :=− f ∨0 are integrable, and then the integral is given by

∫

f =
∫

f+− ∫ f−. If
just one of these integrals is finite, we still call the difference the integral of f . We
say a function is integrable on a set E if replacing the function’s values with 0 off
of E yields an integrable function.

Proposition 6.2.6. For integrable functions, the map f → ∫ f is linear. Moreover,
if f1 and f2 are nonnegative integrable functions taking only finite values such that
f = f1− f2, then

∫

f =
∫

f1−
∫

f2.

Proof. Assume f is integrable and α ∈ R. Without changing its integral, we may
assume that f takes only finite values. If α ≥ 0, then
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∫

α f =
∫

(α f )+−
∫

(α f )− = α
∫

f+−α
∫

f− = α
∫

f .

If α < 0, then
∫

α f =
∫

(α f )+−
∫

(α f )−

=
∫

(−α) f−−
∫

(−α) f+ = α
∫

f+−α
∫

f− = α
∫

f .

Suppose f1 and f2 are nonnegative integrable functions taking only finite values
such that f = f1− f2. To show that

∫

f =
∫

f1−
∫

f2, we note that f = f+− f− =
f1− f2, so f++ f2 = f1 + f−. It follows that

∫

f++
∫

f2 =
∫

f1 +
∫

f−,

whence
∫

f =
∫

f+−
∫

f− =
∫

f1−
∫

f2.

To finish the proof of linearity, suppose that g is also an integrable function taking
only finite values. Then

f +g = ( f++g+)− ( f−+g−)

so
∫

f +g=
∫

( f++g+)−
∫

( f−+g−) =
∫

f++
∫

g+−
∫

f−−
∫

g−=
∫

f +
∫

g.

Proposition 6.2.7. If f is measurable and g≥ 0 is integrable and | f | ≤ g a.e., then
f is integrable.

Proof. Since f+ ≤ g and f− ≤ g a.e., the result is clear.

Corollary 6.2.4. A measurable function f is integrable if and only if | f | is inte-
grable.

Remark 6.2.6. We must assume measurability. Otherwise, Lebesgue measure and
the characteristic function of a non-measurable set in [0,1] minus the characteristic
function of its complement in [0,1] provide a counterexample.

Proposition 6.2.8. If f and g are integrable, and f ≤ g a.e., then
∫

f ≤ ∫ g.

Proof. Without changing the integrals, we may assume that both functions take only
finite values. Since g− f ≥ 0 a.e.,

∫

g− ∫ f =
∫

(g− f )≥ 0.

Theorem 6.2.2 (Dominated Fatou Lemma). Let 〈 fn : n ∈ N〉 be a sequence of
measurable functions and 〈gn : n ∈ N〉 a sequence of integrable functions with
| fn| ≤ gn a.e. for each n ∈ N. Assume gn converges to an integrable function g a.e.
and
∫

gn →
∫

g. Then lim fn and lim fn are integrable, and



6.2 Integration 101

∫

lim fn ≤ lim
∫

fn ≤ lim
∫

fn ≤
∫

lim fn.

Proof. By making changes on a null set, we may assume finiteness, domination,
and convergence at all points. Since

−g =− limgn ≤ lim fn ≤ lim fn ≤ limgn = g,

the functions lim fn and lim fn are integrable and take only finite values. Moreover,
∫

g+
∫

lim fn =
∫

(g+ lim fn) =
∫

(limgn + lim fn) =
∫

lim(gn + fn)

≤ lim
∫

(gn + fn) = lim

(

∫

gn +
∫

fn

)

= lim
∫

gn + lim
∫

fn

=
∫

g+ lim
∫

fn.

It follows that
∫

lim fn ≤ lim
∫

fn ≤ lim
∫

fn. To show that lim
∫

fn ≤
∫

lim fn, we
apply this calculation to the sequence − fn to get

−
∫

lim fn =
∫

lim(− fn)≤ lim

(

−
∫

fn

)

=−lim
∫

fn.

Remark 6.2.7. We must assume that
∫

gn →
∫

g. Without this assumption, we have
many counterexamples such as the Lebesgue integral applied to the sequence fn =
gn = χ[n,n+1] and f = g = 0, or fn = gn = nχ[0,1/n] and f = g = 0. Of course, a
simpler result holds, as in the following corollary, if a single function g can replace
all of the functions gn. See Problem 6.6.

Corollary 6.2.5 (Lebesgue Dominated Convergence). Let 〈 fn : n ∈ N〉 be a se-
quence of measurable functions with fn → f a.e. Assume that g ≥ 0 is integrable,
and for all n ∈ N and almost every x ∈ X, | fn(x)| ≤ g. Then

∫

f = limn
∫

fn.

Remark 6.2.8. The integral with respect to a probability measure of an integrable
function f is a weighted average of the values taken by f . In probability theory,
such an integral is called the expectation of f .

Remark 6.2.9. For some of our work, we will integrate complex-valued functions
using an extended-real valued measure. Recall that a complex number z has the
form x + iy where x and y are real numbers and i =

√−1. We associate the set
C of complex numbers with the xy-plane by mapping x+ iy to the point (x,y). The
number z has a complex conjugate z= x− iy. The product z ·z= x2+y2 = |z|2, where
|z| is the modulus of z, which is the distance of z from the origin. The modulus |z|= 1
if and only if for some value θ ∈ [0,2π], z = cosθ + isinθ = eiθ . While a complex
number w has the above form in terms of a real part x and an imaginary part y, it
also has the form |w|eiφ . Multiplying such a complex number w by eiθ produces a
value |w|ei(φ+θ), which is a point on the circle of radius |w| rotated from w by the
angle θ .
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Definition 6.2.6. If h is a complex-valued function, h denotes the function taking
the value h(x) for each x in the domain of h. If f and g are real-valued integrable
functions and h = f + ig, then the integral of h is given by

∫

h =
∫

f + i
∫

g.

The notion of convergence in measure is important in our general setting.

Definition 6.2.7. Let (X ,B,μ) be a measure space. A sequence 〈 fn : n ∈ N〉 of mea-
surable functions converges to 0 in measure if for each ε > 0, μ ({| fn|> ε})→ 0.
In general, fn converges to a measurable f in measure if | fn− f | converges to 0 in
measure.

The latter definition is usually put as follows: for any ε > 0, there is an N ∈ N

such that for all n≥ N, μ{| fn− f | ≥ ε}< ε . Note that we do not take into account
how much larger than ε the function fn is when | fn|> ε .

As noted in Problem 6.12, Egoroff’s theorem holds not just for R, but for this
general setting as well. It follows that if fn → f μ-a.e. on a set E of finite measure,
then fn → f in measure. For a set of infinite measure this is not true. For exam-
ple, χ[n,n+1] converges to 0 pointwise, but not in measure using Lebesgue measure.
Moreover, convergence in measure, even on a set of finite measure, does not imply
a.e. convergence. An example is given by Lebesgue measure and the sequence

f1 = χ[0,1] f2 = χ[0,1/2] f3 = χ[1/2,1] f4 = χ[0,1/4] etc.

Here, fn converges to 0 in measure, but we have convergence at no point. In general,
however, we do have the following result. The proof is essentially the same as for
R; see Theorem 4.8.1.

Theorem 6.2.3. Suppose a sequence 〈 fn〉 of measurable functions converges to a
measurable f in measure. Then a subsequence converges to f μ-a.e.

6.3 Signed Measures

Fix a measurable space (X ,B). An extended-real valued function μ on B is called
a signed measure if μ(∅) = 0 and μ is countably additive. That is, if 〈An〉 is a
finite or countably infinite disjoint sequence in B, then the measure of the union
is the sum of the measures. For this to make sense, we must assume that one or
both of the series ∑∞

n=1(μ(An)∨0), ∑∞
n=1(−μ(An)∨0) is finite. A signed measure,

therefore, can take only one of the two infinite values in the extended real line. If,
for example, +∞ is the measure of any set, then −∞ is not the measure of any set.

As before, a set is call measurable if it is in B. We will reserve the term measure
for a set function on (X ,B) taking only nonnegative values.

Definition 6.3.1. Given a signed measure μ on a measurable space (X ,B), a pos-
itive set (with respect to μ) is a measurable set, all of the measurable subsets of
which have nonnegative measure. A negative set is a measurable set, all of the mea-
surable subsets of which have nonpositive measure. A set that is both positive and
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negative is called a null set. A Hahn decomposition of X with respect to μ is a
pair of disjoint sets A and B with union X such that A is a positive set and B is a
negative set.

Note that a null set is a set of measure 0, but a set of measure 0 may not be
a null set. Moving a null set from one set of a Hahn decomposition to the other
set produces another Hahn decomposition. By definition any measurable subset of
a positive set, negative set, or null set is, respectively, positive, negative, or null.
Moreover, it is easy to see that a countable union of positive, negative, or null sets
is, respectively, positive, negative, or null.

Proposition 6.3.1. Let μ be a signed measure on (X ,B) and E a measurable set
with 0 < μ(E)<+∞. Then there is a positive set A⊆ E with 0 < μ(A)<+∞.

Proof. If there is a subset of E of measure ≤ −1, remove it and work with the
complement in E. We can only do this a finite number of times since μ(E) is pos-
itive and finite. Therefore, if E is not itself a positive set, there is a subset E1 of
positive measure for which no further subset has measure ≤−1. We work with E1.
Now if there is a subset of E1 of measure ≤ − 1

2 , remove it. You can do this only
once. Now if there is a subset of what remains of measure ≤ − 1

4 , remove it. You
can do this only once. Continuing in this way, we remove a countable disjoint union
of sets from E. The remainder A is a positive set since there is no subset of strictly
negative measure. Moreover, μ(A) is finite and strictly positive since A⊆ E and the
union of the removed sets has finite negative measure.

Corollary 6.3.1. Let μ be a signed measure on (X ,B) that takes both strictly pos-
itive and strictly negative values on B. If there is no measurable subset of X with
infinite positive measure, then there is a finite upper bound to the measure of positive
subsets of X. If there is no measurable subset of X with infinite negative measure,
then there is a finite lower bound to the measure of negative subsets of X. Moreover,
at least one of these two conditions must hold.

Proof. Suppose every measurable subset of X with positive measure has finite mea-
sure. Then it follows from the proposition that any subset of X with strictly positive
measure contains a positive set A with 0 < μ(A) < +∞. If for each n ∈ N there
would exist a positive set An with μ(An) ≥ n, then ∪nAn would be a positive set
with infinite positive measure, contradicting the assumption. Therefore, in this case
there is a finite upper bound to the measure of positive subsets of X . Similarly, if
there is no measurable subset of X with infinite negative measure, then there is a
finite lower bound to the measure of negative subsets of X . By the definition of a
signed measure, there cannot be a subset of X with infinite positive measure and
a subset of X with infinite negative measure.

Theorem 6.3.1 (Hahn Decomposition). Suppose μ is a signed measure on (X ,B)
that takes both strictly positive and strictly negative values. Then there is a Hahn
decomposition of X into a positive set A and negative set B. Given any other such
Hahn decomposition, A1 and B1, the symmetric differences AΔA1 and BΔB1 are
μ-null sets; that is, the Hahn decomposition is determined up to μ-null sets.
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Proof. We assume that there is no measurable subset of X with infinite positive
measure; otherwise, we may work with −μ . Set

λ := sup{μ(A) : A is a μ-positive subset of X}.

By Corollary 6.3.1, λ is finite. Let 〈An : n ∈ N〉 be a sequence of positive sets with
μ(An)≥ λ −1/n for each n, and let A =∪nAn. Then A is a positive set, and for each
n ∈ N,

λ −1/n≤ μ(An)≤ μ(A)≤ λ ,

whence μ(A) = λ . It now follows that B = X \A is a negative set, for if not, there is
a subset C ⊆ B with finite strictly positive measure, and then by Proposition 6.3.1,
a positive set D⊆C with finite strictly positive measure, whence A∪D is a positive
set with μ(A∪D) > λ . To show that a Hahn decomposition A, B is unique except
for null sets, we assume that A1, B1 is another Hahn decomposition. Now

A\A1 ⊆ A, A\A1 ⊆ B1, A1 \A⊆ A1, and A1 \A⊆ B.

Thus, A\A1 is both a positive set and a negative set, and the same is true for A1 \A.
That is, both are null sets, so the symmetric difference AΔA1 = (A \A1)∪ (A1 \A)
is a null set. A similar proof shows that BΔB1 is a null set.

Recall that the term “measure” refers to a function on (X ,B) taking only non-
negative values.

Definition 6.3.2. Two measures μ and ν on a measurable space (X ,B) are called
mutually singular measures, and we write μ ⊥ ν , if there are disjoint measurable
sets A and B with X = A∪B and μ(B) = ν(A) = 0. A Jordan decomposition of a
signed measure γ is given by a pair of mutually singular measures γ+ and γ− with
γ = γ+− γ−.

Theorem 6.3.2. Every signed measure γ on (X ,B) has a unique Jordan decompo-
sition obtained from a Hahn decomposition of X into a positive set A and a negative
set B. The Jordan decomposition sets γ+(E) = γ(E ∩A) and γ−(E) = −γ(E ∩B)
for all E ∈B.

Proof. Clearly, what we have constructed is a Jordan decomposition. If γ = γ1−
γ2 is another Jordan decomposition and A1, B1 are the disjoint sets with γ1(B1) =
γ2(A1) = 0, then A1, B1 is a Hahn decomposition for γ , so AΔA1 is null. It follows
that γ+(E) = γ1(E) for all E ∈B. A similar statement is true for γ−.

Definition 6.3.3. Given a Jordan decomposition γ = γ+− γ− of a signed measure γ
on (X ,B), the absolute value or total variation of γ is the measure |γ | := γ++ γ−.
A signed measure γ is called finite if |γ |(X) is finite.

Note that a set is γ-null if and only if it is a set of |γ |-measure 0. Examples of
signed measures can be obtained from a measurable function f for which either f+
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or f− or both are integrable with respect to a measure μ by setting γ(E) =
∫

E f dμ .
In this case, a Hahn decomposition is the pair of sets { f ≥ 0}, { f < 0}. Another
Hahn decomposition is the pair { f > 0}, { f ≤ 0}. The measure |γ | is given by
integrating | f |.
Definition 6.3.4. Let f be a measurable function and γ a signed measure on (X ,B).
Then f is integrable with respect to γ if it is integrable with respect to |γ |, in which
case

∫

f dγ :=
∫

f dγ+− ∫ f dγ−.

6.4 Convexity and Jensen’s Inequality

Definition 6.4.1. A real-valued function ϕ defined on an open interval J ⊆ R is
called convex if for any pair of points x < y in J, the line segment joining (x,ϕ(x))
to (y,ϕ(y)) lies above the graph. That is, given α ≥ 0, and β ≥ 0 with α +β = 1,

ϕ(α · x+β · y)≤ α ·ϕ(x)+β ·ϕ(y).

The function ϕ is strictly convex on J if the above inequality is strict when α > 0
and β > 0.

Remark 6.4.1. For an indication of the relationship between convexity and Jensen’s
Inequality, fix an open interval J containing points x and y with x < y. Let ν be
a measure on the closed interval [x,y] with ν({x}) = α and ν({y}) = β , while
ν ((x,y)) = 0. This is a probability measure on X := [x,y] because the total measure
is 1. Now for the function f given by f (x) = x and f (y) = y together with a convex
function ϕ on [x,y], we have

ϕ(
∫

X
f dν)≤

∫

X
ϕ ◦ f dν .

Proposition 6.4.1. A real valued function ϕ defined on an open interval J ⊆ R is
convex if and only if for any triple x < y < z in J,

(*)
ϕ(y)−ϕ(x)

y− x
≤ ϕ(z)−ϕ(y)

z− y
.

If ϕ is convex on J, then on any close interval [a,b] ⊂ J, ϕ satisfies a Lipschitz
condition, and is therefore (Problem 5.21) absolutely continuous.

Proof. Let y = α ·x+β · z. If (y,ϕ(y)) is on the line from (x,ϕ(x)) to (z,ϕ(z)), then
we have equality in (*). On the other hand, (y,ϕ(y)) is below the line if and only if
the left side of (*) is less than the right side of (*). Suppose ϕ is convex on J, and
let [a,b] be a closed interval in J. Fix c ∈ J and d ∈ J with c < a and b < d. Then
for points x < y in [a,b],

ϕ(a)−ϕ(c)
a− c

≤ ϕ(x)−ϕ(a)
x−a

≤ ϕ(y)−ϕ(x)
y− x

≤ ϕ(b)−ϕ(y)
b− y

≤ ϕ(d)−ϕ(b)
d−b

.
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The constant M =
∣

∣

∣

ϕ(a)−ϕ(c)
a−c

∣

∣

∣+
∣

∣

∣

ϕ(d)−ϕ(b)
d−b

∣

∣

∣ works as the desired Lipschitz constant.

Corollary 6.4.1. If ϕ has an increasing derivative at all points of J, then ϕ is
convex.

Proof. This follows from the mean-value theorem of calculus.

Theorem 6.4.1 (Jensen’s Inequality). Let (X ,A ,μ) be a probability space (i.e.,
μ(X) = 1), and fix an integrable function f on X with range contained in an open
interval J ⊆ R. Let ϕ be a convex function on J. Then ϕ(

∫

X f dμ)≤ ∫X ϕ ◦ f dμ .

Proof. Set y :=
∫

X f dμ . Then y ∈ J (Problem 6.19). Now, if

β = sup
x<y, x∈J

ϕ(y)−ϕ(x)
y− x

then for any z > y in J, β ≤ ϕ(z)−ϕ(y)
z−y . If z < y in J, then by the definition of β ,

β ≥ ϕ(y)−ϕ(z)
y−z = ϕ(z)−ϕ(y)

z−y . It follows for both positive and negative values of z− y
that ϕ(z)≥ ϕ(y)+β · (z− y) holds for all z in J. For any t ∈ X , set z = f (t), so

ϕ( f (t))≥ ϕ(y)+β ( f (t)− y).

In particular, ϕ( f (t)) is bounded below by an integrable function. Since ϕ is abso-
lutely continuous on any closed interval contained in J, it is the difference there of
two increasing continuous functions, so ϕ ◦ f is measurable. Since μ(X) = 1, when
we integrate both sides of the inequality for ϕ( f (t)), we have the desired result

ϕ
(

∫

X
f dμ
)

= ϕ (y)+β ·0≤
∫

X
ϕ ◦ f dμ .

Example 6.4.1. Let ϕ(x) = ex on J = R. Let X be a set consisting of n points in R

with each point having probability 1/n. Let f be the function given by x → x on X .
Then

exp

(

x1 + · · ·+ xn

n

)

≤ ex1 + · · ·+ exn

n
.

Putting yi = exi , this gives the classical inequality between the arithmetic and geo-
metric mean for positive numbers:

(y1 · y2 · · ·yn)
1
n ≤ y1 + y2 + · · ·+ yn

n
.

A generalization works with positive weights αi such that Σαi = 1. That is,

yα1
1 · · · yαn

n ≤ α1y1 + · · ·+αnyn.

For a countable number of points, we have

Π ∞
n=1yαi

i ≤ Σ ∞
n=1αiyi.
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6.5 Problems

Problem 6.1. Prove Proposition 6.1.1. Hint: See Proposition 2.4.4.

Problem 6.2. Let M be the collection of all subsets A ⊆ R such that either A or
R \A is finite or countably infinite. For each A ∈M , let μ(A) = 0 if A is finite or
countably infinite, and let μ(A) = 1 otherwise. Show that M is a σ -algebra and μ
is a measure on M .

Problem 6.3. Let X =R, and let B be the Borel subsets of R. Show that every con-
tinuous real-valued function f is measurable with respect to the measurable space
(X ,B).

Problem 6.4. Show that any nonnegative measurable function f is the limit of an
increasing sequence of simple functions, with the obvious meaning of the limit at
points where f takes the value +∞.

Problem 6.5. Prove Proposition 6.2.5. Hint: For addition, apply Corollary 6.2.3 and
Proposition 6.2.2.

Problem 6.6. State and prove a simplified form of Theorem 6.2.2 for the case that
a single function g can replace all of the functions gn.

Problem 6.7. Let (X ,B,μ) be a finite measure space, and let g and h be two
bounded measurable functions on X . Suppose that for each integrable function f
on X ,

∫

X f ·g dμ =
∫

X f ·h dμ . Show then g(x) = h(x) for μ-almost all x ∈ X .

Problem 6.8. Let ([0,1],B,μ) be a measure space, and let fn : [0,1] → [0,∞) be
sequence μ-integrable functions such that

∫ 1
0 fn dμ = 1 and

∫ 1
1/n fn dμ < 1/n for all

n ∈ N. Show that
∫ 1

0 (supn∈N fn)dμ =+∞.

Problem 6.9. Let (Ω ,B,μ) be a σ -finite measure space, and let f : Ω → R be a
measurable real-valued function. Suppose there exists a constant c > 0 such that for
all X ⊂Ω of finite measure we have |∫X f dμ | ≤ c. Show that f is integrable on Ω .

Problem 6.10. Let (X ,B,μ) be a measure space, and let f be an integrable,
extended-real valued function on (X ,B,μ). Show that for any ε > 0, there is a
δ > 0 such that if E ∈B and μ (E)< δ , then |∫E f dμ | ≤ ∫E | f |dμ < ε .

Problem 6.11. Let (X ,B,μ) be a measure space, and let f be an integrable,
extended-real valued function on (X ,B,μ). Prove the following inequality called
Chebyshev’s Inequality: Given a > 0 in R, μ ({| f | ≥ a})≤ 1

a

∫ | f |dμ .

Problem 6.12. a) Let (X ,B,μ) be a finite measure space. Extend Egoroff’s
Theorem 3.3.4 to the case of measurable real-valued functions on (X ,B,μ).

b) Show that fn → f in measure if and only if every subsequence 〈 fnk〉 has a further
subsequence 〈 fnk j

〉 converging μ-a.e. to f .
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c) Let g : R → R be a continuous function, and let 〈 fn : n ∈ N〉 be a sequence of
measurable real-valued functions on X converging to f in measure. Show that
g◦ fn → g◦ f in measure.

Problem 6.13. a) Find a Lebesgue measurable function f : R → R such that the
Lebesgue measure λ ( f−1[n])> 0 for all n ∈ N.

b) Find an example of a measure space (X ,B,μ) and a measurable function f :
X → R such that 0 < μ( f−1[t])< ∞ for all t ∈ R.

Problem 6.14. a) Let ν be a signed measure, and let μ1, μ2 be positive measures on
X such that ν = μ1−μ2. Show that μ1 ≥ ν+ and μ2 ≥ ν−, where ν = ν+−ν−
is the Jordan decomposition of ν .

b) Suppose that ν1 and ν2 are signed measures that either both omit the value +∞
or both omit the value −∞. Show that |ν1 +ν2| ≤ |ν1|+ |ν2|.

Problem 6.15. Let μ be a positive measure on (X ,B), and let f be a μ-integrable
function. Show that ν defined by ν(E) =

∫

E f dμ for any measurable set E ⊆ X is a
signed measure.

Problem 6.16. Let γ be a signed measure on (X ,B).

a) Suppose f is a γ-integrable function on X . Show that |∫ f dγ | ≤ ∫ | f |d|γ |.
b) Extend, where possible, the definition of the integral of a function g with respect

to γ to cases where g is not integrable with respect to |γ |.
c) Show that there is a simple function h that may not be integrable with respect to
|γ |, such that for any E ∈B,

∫

E h dγ = |γ |(E).
Problem 6.17. Let 〈νi〉 be a sequence of positive measures on (X ,B), and let μ be
a positive measure on (X ,B). Suppose νi ⊥ μ for all i ∈ N. Show that μ ⊥ ∑i∈N νi.

Problem 6.18. a) Let B be the Borel σ -algebra on R. Given N ∈ N, give an
example of a signed measure μ on (R,B) that takes every value in the inter-
val [−N,N].

b) Is there a signed measure on (R,B) that takes very real value?

Problem 6.19. Let (X ,A ,μ) be a probability space (i.e., μ(X) = 1), and fix an
integrable function f on X with range contained in an open interval J ⊆ R. Show
that y :=

∫

X f dμ is a point in the interval J.



Chapter 7
Introduction to Metric and Normed Spaces

7.1 Metric Spaces

In this chapter, we extend the notion of distance and absolute value from the real and
complex number systems to more general spaces, in particular, spaces of functions.

Definition 7.1.1. A nonempty set X supplied with a distance function d is called
a metric space. The pair is denoted by (X ,d). The distance function d is called a
metric. It is a nonnegative, real-valued function on X ×X such that for all points x,
y, and z in X ,

1) (positive definite) d(x,y) = 0 if and only if x = y,
2) (symmetric) d(x,y) = d(y,x), and
3) (triangle inequality) d(x,y)≤ d(x,z)+d(z,y).

Example 7.1.1. Euclidean n-space with the usual distance function is an example of
a metric space. In particular, R is a metric space with the usual distance function
d(x,y) = |x− y|.
Example 7.1.2. If we identify functions that are equal almost everywhere, then on a
set E of finite measure in R, convergence in measure with respect to a measure m is
given by the metric d( f ,g) =

∫

E | f −g|∧1 dm.

For the rest of this section, we work in a metric space (X ,d). The notions of
neighborhoods and convergence at points x ∈ X are defined in terms of ε-balls of
the form B(x,ε) := {y ∈ X : d(x,y)< ε}. These generalize the use of open intervals
in R and open disks in C.

Definition 7.1.2. A set O is open if for each x ∈O there is an ε-ball B(x,ε)⊆O for
some ε > 0. A set C is closed if the complement is open; that is, if for each x /∈C
there is an ε-ball B(x,ε) with B(x,ε)∩C =∅.
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We leave proofs of the following 4 properties of (X ,d) as exercises.

Proposition 7.1.1. For each x ∈ X and ε > 0, the ε-ball B(x,ε) is an open set.

Remark 7.1.1. For emphasis one often speaks of an open ball.

Proposition 7.1.2. If x �= y in X, then for some ε > 0, B(x,ε)∩B(y,ε) =∅.

Proposition 7.1.3. The set X and the empty set are both open subsets of X. The
open subsets of X are stable with respect to the operations of taking finite intersec-
tions and arbitrary unions. The closed subsets of X are stable with respect to the
operations of taking finite unions and arbitrary intersections.

Definition 7.1.3. A sequence 〈xn : n ∈ N〉 in X converges to a point x ∈ X , and x is
the limit of the sequence, if for any ε > 0 there is a k ∈ N such that for all n ≥ k,
xn ∈ B(x,ε); that is, the sequence is eventually in B(x,ε). A point x ∈ X is a cluster
point of a sequence 〈xn : n ∈ N〉, if for each ε > 0 and each k ∈ N, there is an n≥ k
with xn ∈ B(x,ε); that is, the sequence is frequently in B(x,ε).

Proposition 7.1.4. A sequence can have at most one limit, but many cluster points.

Example 7.1.3. The sequence n → (−1)n has two cluster points in R, while the
sequence n → n has none.

Proposition 7.1.5. If x is a cluster point of a sequence 〈xn : n ∈ N〉 in X, then a
subsequence

〈

xnk : k ∈ N
〉

converges to x.

Proof. There is an n1 ∈ N with xn1 ∈ B(x,1). Given k ≥ 1 and nk, there is an
nk+1 > nk with xnk+1 ∈ B(x, 1

k+1 ). The subsequence
〈

xnk : k ∈ N
〉

converges to x.

Definition 7.1.4. Given a subset A of X , we write A for the set of all points x ∈ X
such that for each ε > 0, B(x,ε)∩A �= ∅. The set A is called the closure of A, and
points of A are called closure points of A.

Proposition 7.1.6. If A is a nonempty subset of X, then A ⊆ A. Moreover, (A) = A;
that is, the closure of the closure is the closure. Any cluster point of a sequence in A
is in A. For a metric space, it is also true that any point of A is the limit of a sequence
in A.

Proof. It is clear from the definition that A⊆ A. If z ∈ (A), then for each ε > 0 there
is a point y∈B(z,ε)∩A. Since B(z,ε) is open, there is a δ > 0 with B(y,δ )⊂B(z,ε).
Since y ∈ A, there is an x ∈ A∩B(y,δ ) ⊆ A∩B(z,ε). If follows that (A) = A. If z
is a cluster point of a sequence in A, then for each ε > 0, there is a point of the
sequence in B(z,ε), whence z ∈ (A) = A. If w ∈ A, then for each n ∈ N, there is a
point xn ∈ A∩B(w,1/n). The sequence 〈xn〉 converges to w.

Remark 7.1.2. We have used the fact, true for a metric space, that for each x∈ X and
each open set O containing x, there is an n ∈ N with B(x,1/n)⊆ O.
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Proposition 7.1.7. A subset A of a metric space (X ,d) is closed if and only if A = A,
and this is true if and only if every sequence in A converging to a point of X actually
converges to a point of A.

Proof. Exercise 7.6.

Proposition 7.1.8. If A ⊆ B, then A ⊆ B. The closure of A is a closed set; it is the
intersection of all closed subsets of X containing A, and is, therefore, the smallest
closed subset of X that contains A.

Proof. Exercise 7.7.

Definition 7.1.5. A sequence 〈xn : n ∈ N〉 in (X ,d) is a Cauchy sequence if for any
ε > 0 there is a k ∈ N such that for all n≥ k and m≥ k, d(xn,xm)< ε . A sequence
〈xn : n ∈ N〉 in (X ,d) is bounded if for some x ∈ X and M ∈ N, xn ∈ B(x,M) for all
n ∈ N. A metric space (X ,d) is complete if every Cauchy sequence in X converges
to a point of X .

Example 7.1.4. By definition, a metric space is nonempty. The real and complex
numbers are complete metric spaces. The continuous real-valued functions on a
closed and bounded interval [a,b] form a complete metric space using the dis-
tance d( f ,g) = maxx∈[a,b] | f (x)−g(x)| (Problem 7.25). Completeness here fol-
lows from the fact that the uniform limit of continuous functions is continuous
(Theorem 1.11.4).

Proposition 7.1.9. A Cauchy sequence is a bounded sequence. A convergent
sequence is a Cauchy sequence.

Proof. Exercise 7.8.

If S is a nonempty subset of a metric space (X ,d), then S is a metric space when
supplied with the restriction of the metric d to pairs of points in S.

Proposition 7.1.10. If S ⊂ X and (S,d) is complete, then S is a closed subset of X.
If S⊂ X is closed and (X ,d) is complete, then (S,d) is complete.

Proof. If (S,d) is complete, and x ∈ X is the limit of a sequence in S, then that
sequence is Cauchy. Since S is complete, x ∈ S. By Proposition 7.1.7, S is closed.
If S is a closed subset of a complete metric space (X ,d), any Cauchy sequence in S
has a limit x in X . Since S is closed, x ∈ S. It follows that S is complete.

Definition 7.1.6. Given metric spaces (X ,d) and (Y,ρ), let f be a function from X
into Y . The function f is continuous at x ∈ X if for any ε > 0 there is a δ > 0 such
that the image f [B(x,δ )] ⊆ B( f (x),ε). The function f is continuous on X if it is
continuous at each point of X . The function f is uniformly continuous on A ⊆ X
if for any ε > 0 there is a δ > 0 such that for any pair of points x and y in A, if
d(x,y)< δ , then ρ( f (x), f (y))< ε .



112 7 Introduction to Metric and Normed Spaces

Proposition 7.1.11. Let (X ,d) and (Y,ρ) be metric spaces, and let f : X → Y be
uniformly continuous on X. If 〈xn : n ∈ N〉 is a Cauchy sequence in (X ,d), then
〈 f (xn) : n ∈ N〉 is a Cauchy sequence in (Y,ρ).

Proof. Exercise 7.9.

Example 7.1.5. Let X = R, and let Y = (−1,1), both with the usual metric. Let
f : X → Y be the function defined by setting f (x) = x/(1+ |x|) for all x ∈ R. Then
f is bijective, and both f and f−1 are continuous. In fact, for any x and z in R,
| f (x)− f (z)| ≤ |x− z|, whence f is uniformly continuous on R. On the other hand,
X = R is complete, but Y = (1,1) is not complete.

Definition 7.1.7. A subset A of a metric space (X ,d) is dense in X if the closure of
A equals X . A metric space is separable if there is a countable dense subset of the
space.

Remark 7.1.3. Note that A is dense in X if and only if for every x ∈ X and for every
ε > 0, there is an a∈ A with d(a,x)< ε . That is, A has a nonempty intersection with
every open ball.

Example 7.1.6. The rational numbers are dense in R supplied with the usual distance
function. Therefore, R is a separable metric space.

Remark 7.1.4. In what follows, we write Bc(x,r) for the set {y ∈ X : d(x,y) ≤ r};
the set is called the closed ball centered at x of radius r. One should be somewhat
careful with balls in a general metric space. For example, if every point is distance
1 from every other point, as with the set of natural numbers supplied with the usual
distance, then the open ball B(x,1) consists just of the point x, so the closure of the
open ball is not the closed ball Bc(x,1). It is, however, an exercise (7.15) to show
that a closed ball Bc(x,r) is a closed set containing B(x,r).

7.2 Baire Category

We now establish an important principle for a complete metric space that yields
many unexpected results.

Theorem 7.2.1 (Baire). Given a complete metric space (X ,d), the countable inter-
section of dense open subsets of X is dense in X.

Proof. Let On denote the nth dense open subset. Given any open ball B(x0,r0),
we must show that there is a point x that is in B(x0,r0) and also in ∩nOn. We do
this by finding a decreasing sequence of closed balls Bc(xn,rn) ⊆ On ∩ B(x0,r0)
with rn → 0. We require that for every n ∈ N , Bc(xn+1,rn+1) ⊆ B(xn,rn). Since O1

is dense, there is a point x1 ∈ B(x0,r0)∩O1 and an r1 with 0 < r1 < 1 such that
Bc(x1,r1) ⊆ B(x0,r0)∩O1. Similarly, there is a point x2 ∈ B(x1,r1)∩O2 and an r2

with 0 < r2 < 1/2 such that Bc(x2,r2)⊆ B(x1,r1)∩O2. Continuing in this way, the
xn’s form a Cauchy sequence for which the limit x must be in all of the closed balls
Bc(xn,rn). It follows that x ∈ B(x0,r0)∩ (∩nOn).
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Definition 7.2.1. A subset of a metric space is nowhere dense if its closure contains
no open balls; that is, the complement of the closure is dense. A set is said to be of
the Baire first category or meager if it is the countable union of nowhere dense
sets. A set is said to be of the Baire second category if it is not of the first category.

Note that the category notions are relative to the overall metric space X . We will
show, for example, that the real line R is second category as a subset of itself. On
the other hand, R is a closed, nowhere dense subset of the plane.

Proposition 7.2.1. If E is a set of first category in (X ,d) and A⊆ E, then A is a set
of the first category in X.

Proof. Exercise 7.16(A).

Theorem 7.2.2 (Baire Category Theorem). A set X forming a complete metric
space with metric d is a set of the second Baire category as a subset of itself.

Proof. Let En be a sequence of nowhere dense sets in X . The complements of the
closures of the En’s form a countable collection of dense open sets. The intersection
of those complements is dense and therefore cannot be empty. It follows that the
space X is not the union of the En’s.

Proposition 7.2.2. Let E be a subset of a complete metric space (X ,d) such that the
complement of E is a dense subset of X. Then any closed subset of E is nowhere
dense, and any Fσ subset of E is a set of the first category in X. It follows that if E
and its complement ˜E are both dense in X, then at most one of them is an Fσ set.

Proof. Exercise 7.17.

Corollary 7.2.1. The rational numbers Q do not form a Gδ set in R.

Proof. Exercise 7.18.

Here is an important application called the general uniform boundedness
principle.

Theorem 7.2.3. Let F be a family of real-valued continuous functions on a com-
plete metric space X. Suppose that for each x ∈ X, there is a positive constant Mx

such that sup f∈F | f (x)| ≤Mx. Then there is a nonempty open set O and a constant
M such that for every x ∈ O and every f ∈F , | f (x)| ≤M.

Proof. For each m ∈ Nand each f ∈F , let Em, f = {x ∈ X : | f (x)| ≤ m}. Set Em =
∩ f∈FEm, f . Since each f ∈F is continuous, each Em, f is closed, and so each Em is
closed. By assumption, X = ∪mEm. By the Baire Category Theorem, at least one of
the Em’s contains an open set O.
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7.2.1 Application to Differentiable Functions

Let C be the set of continuous functions on [0,1]. A metric ρ on C is given by
ρ( f ,g) = maxx∈[0,1] | f (x)−g(x)|. Convergence in this metric is uniform conver-
gence. This makes C a complete metric space (Problem 7.25). We now show that
most (in terms of Baire category) of the functions of C fail to have a derivative at
any point of [0,1].

Suppose f ∈ C has a right-hand derivative at some point x f in [0,1). Then f
has the property that for some n ∈ N, there is a δ with 0 < δ ≤ 1− x f such that
∣

∣

∣

f (x)− f (x f )

x−x f

∣

∣

∣ ≤ n, i.e.,
∣

∣ f (x)− f (x f )
∣

∣ ≤ n
(

x− x f
)

for all x ∈ (x f ,x f + δ ]. Since f is

bounded on [0,1], we may assume, perhaps by increasing n, that
∣

∣ f (x)− f (x f )
∣

∣ ≤
n
(

x− x f
)

for all x ∈ [x f ,1] and x f ≤ 1− 1
n . Let Fn denote the set of functions in C

with this property for some point x f ∈ [0,1− 1
n ].

For each n ∈N, Fn is a closed subset of C. That is, if 〈 fk〉 is a sequence in Fn and
fk→ f uniformly, then f ∈Fn. To see this, we set xk := x fk . By taking a subsequence,
we may assume that the points xk converge to a point x with 0 ≤ x ≤ 1− 1

n . Fix a
point y with x < y ≤ 1. Since xk → x < y, we need only consider those k ∈ N with
xk < y. For each such k,

| f (y)− f (x)|
≤ | f (y)− fk(y)|+ | fk(y)− fk(xk)|+ | fk(xk)− f (xk)|+ | f (xk)− f (x)|
≤ 2 · max

z∈[0,1]
| f (z)− fk(z)|+n(y− xk)+ | f (xk)− f (x)| .

As k → ∞, maxz∈[0,1] | f (z)− fk(z)| → 0 by the uniform convergence of fk to
f , | f (xk)− f (x)| → 0 since f is continuous, and n(y− xk) → n(y− x), whence
| f (y)− f (x)| ≤ n(y− x), and thus, f ∈ Fn.

The closed set Fn is nowhere dense, since any g ∈C can be uniformly approxi-
mated to within an arbitrary ε > 0 by a polygonal path with the absolute value of the
right-hand derivative everywhere ≥ 2n. That is, the complement of Fn is dense in C.
The subset of C consisting of functions that have a finite right derivative for at least
one point of [0,1) is the union ∪n∈NFn, and is therefore a set of the first category.
Similarly, the functions in C that have a finite left derivative for at least one point of
(0,1] form a set of first category in C. The union of these two sets is also of the first
category. Since a subset of a set of first category is of the first category, the functions
in C with a derivative anywhere in [0,1], including at the endpoints, is a set of the
first category.

7.3 Normed Spaces

A norm is a mapping from a vector space, also called a linear space, into the non-
negative real numbers. Since our application here will be to spaces of functions
and equivalence classes of functions, we write f , g, etc., for elements of the linear
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space V . We use lower case Greek letters for elements of the scalar field, which
is usually the real numbers R, but can be the complex numbers C. We use |α| to
denote the absolute value of α for a real-valued scalar; it is the modulus of α if α
is a complex scalar. We use 0 to denote the additive identity in both the scalar field
and the linear space.

Definition 7.3.1. A norm is a mapping ‖·‖ from a linear space V into the nonnega-
tive real numbers with the following properties:

1) (positive definite) ‖ f‖= 0 if and only if f = 0 in V .
2) (homogeneous) ‖α f‖= |α|‖ f‖ for each f ∈V and α in the scalar field.
3) (triangle inequality) ‖ f +g‖ ≤ ‖ f‖+‖g‖ for all f ,g ∈V .

We call a linear space with a norm a normed space.

Example 7.3.1. The absolute value function on R and the modulus on C are exam-
ples of norms on normed spaces. Another example is the Euclidean norm on R

m.
That is, if x=(x1,x2, . . . ,xm), then ‖x‖=(∑m

i=1 x2
i )

1/2. This makes Rm into a normed
space.

There is a natural metric d on a normed space, namely, ( f ,g) → d( f ,g) :=
‖ f −g‖. By Property 1, d( f ,g) = 0 if and only if f = g. Moreover, d( f ,g) = d(g, f )
since ‖g− f‖ = ‖(−1)( f −g)‖. The triangle inequality follows from the fact that
for all f , g, and h in V ,

d( f ,h) = ‖ f −h‖= ‖( f −g)+(g−h)‖ ≤ ‖ f −g‖+‖g−h‖= d( f ,g)+d(g,h).

Remark 7.3.1. For a normed space X and all x, y in X , ‖x‖ ≤ ‖x− y‖+ ‖y‖, and
‖y‖ ≤ ‖x− y‖+ ‖x‖, whence |‖x‖−‖y‖| ≤ ‖x− y‖. This means that x → ‖x‖ is a
continuous map from X into R

+.

We next define some important norms on spaces of equivalence classes of
measurable functions.

7.4 Classical Normed Spaces

In this section, we work with a measure space (X ,B,μ). We don’t assume μ is a
complete measure, but f = g almost everywhere means that we have equality outside
of a null set, that is, a set of μ-measure 0; nothing is said about what happens
on the null set. Throughout this section, two functions are equivalent if they are
equal almost everywhere. We use notation such as f for both the function f and the
equivalence class it represents. Moreover, | f | denotes the absolute value of f when
f is extended-real valued, and the modulus of f when f is complex-valued.

Definition 7.4.1. The essential supremum of a nonnegative, measurable, extended-
real valued function f that is bounded outside of a null set is the infimum of values
α such that f−1 [(α,+∞)] is a null set. If f is not bounded outside of a null set, then
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the essential supremum is +∞. If f is an equivalence class of measurable functions,
i.e., functions equal a.e., then ‖ f‖∞ denotes the essential supremum of | f |, where
f is any representative of the equivalence class. The space L∞(μ) consists of those
equivalence classes of measurable functions f for which ‖ f‖∞ is finite; such an f is
said to be essentially bounded.

Definition 7.4.2. For 1 ≤ p < ∞, the space Lp(μ) consists of those equivalence
classes of measurable functions f such that

∫ | f |p dμ is finite. For each f ∈ Lp(μ),

‖ f‖p :=

[

∫

| f |p
]1/p

.

For 1 ≤ p ≤ ∞, ‖ f‖p is well-defined since if f and g are measurable functions
with f = g μ-a.e., then ‖ f‖p = ‖g‖p. The space Lp(μ) (also denoted by just Lp)
is a linear space with respect to the scalar field. That is, it is stable with respect to
the operation of scalar multiplication, and it is stable with respect to addition since
for 1 ≤ p < ∞, | f +g|p ≤ 2p(| f |p + |g|p), and the sum of two essentially bounded
functions is essentially bounded.

Recall Example 6.2.1. When dealing only with counting measure on N, we write
�p instead of Lp. The space �1 is the space of absolutely summable sequences,
while for real scalars, the space �2 is the space of square summable sequences.
The space �∞ is the space of bounded sequences, since only the empty set has zero
counting measure.

A modification of �p uses counting measure on a finite set such as an initial
segment of N. It is instructive to consider the surface S of the unit ball centered at 0
when using counting measure and real scalars on a set consisting of 2 points. Points
of that space correspond to points of the plane. For p = 1, S is the diamond shaped
curve consisting of the line segments y= 1−x for x∈ [0,1], y=−1+x for x∈ [0,1],
y = 1+x for x ∈ [−1,0], and y =−1−x for x ∈ [−1,0]. For p = 2, S is the circle of
radius 1 about the origin. For p = ∞, S is the rectangle formed by the line segments
y =±1 for x ∈ [−1,1] and x =±1 for y ∈ [−1,1].

Note that if μ(X)<+∞, then for p < q, Lq(μ)⊆ Lp(μ); we need only consider
the integral where the integrand is greater than 1. If μ(X) = +∞, then the contain-
ment goes the other way for bounded functions; that is, consider the integral where
the integrand is less than 1.

It will be important to establish relationships between Lp and Lq where 1/p+
1/q = 1. Values p and q satisfying this equality are called conjugate exponents.
An important example is when p = q = 2. The pair L1 and L∞ are also important in
what follows.

Since Lp(μ) consists of equivalence classes, ‖ f‖p = 0 if and only if each rep-
resentative of the equivalence class f takes the value 0 μ-a.e. That is, the map
f → ‖ f‖p is positive definite. Moreover the map is clearly homogeneous. To show,
therefore, that f → ‖ f‖p is a norm, we need only establish the triangle inequality.
For this, we need two important inequalities for the integral. We use the following
special case of Jensen’s Inequality.
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Proposition 7.4.1. Let x and y be nonnegative real numbers, and suppose α > 0,
β > 0, and α +β = 1. Then

xα yβ ≤ α · x+β · y.

Moreover, this inequality is an equality if and only if x = y.

Proof. If x or y is 0, the result is clear. Otherwise, let x = es and y = et . By the strict
convexity of the exponential function, we have

xα yβ = eαs+β t ≤ α · es +β · et = α · x+β · y.

This inequality is an equality if and only if s = t, i.e., x = y.

Theorem 7.4.1 (Hölder’s Inequality). Assume either that p and q are real numbers
larger than 1 with 1/p+1/q = 1 or that p = 1 and q = ∞. In either case, if f ∈ Lp

and g ∈ Lq, then f ·g ∈ L1 and

‖ f g‖1 ≤ ‖ f‖p · ‖g‖q .

The inequality is equality if the right side is 0. Otherwise, for p = 1, equality holds if
and only if |g(x)|= ‖g‖∞ for almost all x such that f (x) �= 0, while for p> 1, equality
holds if and only if there are positive constants s and t such that s · | f |p = t · |g|q a.e.

Proof. For p= 1 and q=∞, the result is Exercise 7.26. Suppose 1< p<∞. We may
assume that ‖ f‖p ·‖g‖q �= 0 since otherwise the result is trivial. By Proposition 7.4.1,

with x =
( | f |
‖ f‖p

)p
and y =

( |g|
‖g‖q

)q
, since 1/p+1/q = 1,

| f |
‖ f‖p

· |g|‖g‖q
≤ 1

p
·
(

| f |
‖ f‖p

)p

+
1
q
·
(

|g|
‖g‖q

)q

.

Integrating, we have
‖ f g‖1

‖ f‖p · ‖g‖q
≤ 1

p
+

1
q
= 1,

and the inequality follows.
By the condition for equality in Proposition 7.4.1, the inequality is actually an

equality if and only if almost everywhere we have
(

| f |
‖ f‖p

)p

=

(

|g|
‖g‖q

)q

,

that is, ‖g‖q
q · | f |p = ‖ f‖p

p · |g|q a.e. If the latter equality holds, then clearly, there are
positive constants s and t such that s · | f |p = t · |g|q a.e. Conversely, if such constants
exist, then

‖ f‖p
p =
∫

| f |p = t
s

∫

|g|q = t
s
· ‖g‖q

q ,
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so
‖g‖q

q · | f |p =
s
t
· ‖ f‖p

p ·
t
s
· |g|q = ‖ f‖p

p · |g|q a.e.

The next result establishes the triangle inequality for ‖ f‖p.

Theorem 7.4.2 (Minkowski’s Inequality). If for 1≤ p≤∞, f and g are in Lp, then
so is the sum f +g and

‖ f +g‖p ≤ ‖ f‖p +‖g‖p .

Proof. For p = 1 and p = ∞, the result is an easy exercise (7.27). Assume that
1 < p < ∞ and f and g are in Lp. As already noted,

| f +g|p ≤ (| f |+ |g|)p ≤ 2p (| f |p + |g|p) ,

so f + g ∈ Lp. We may assume that ‖ f‖p · ‖g‖p �= 0, since otherwise the result is
trivial. Now,

∫

| f +g|p ≤
∫

(

| f +g|p−1 · | f |
)

+
∫

(

| f +g|p−1 · |g|
)

.

Choose q so that 1/p + 1/q = 1. Then (p+ q)/pq = 1, so p+ q = pq, whence
p = q · (p−1). Now by Hölder’s Inequality

∫

(

| f +g|p−1 · | f |
)

≤ ‖ f‖p ·
(

∫

| f +g|p
)1/q

= ‖ f‖p · ‖ f +g‖p/q
p .

Similarly,

∫

(

| f +g|p−1 · |g|
)

≤ ‖g‖p ·
(

∫

| f +g|p
)1/q

= ‖g‖p · ‖ f +g‖p/q
p .

It follows that
‖ f +g‖p

p ≤
(

‖ f‖p +‖g‖p

)

· ‖ f +g‖p/q
p .

Since p− p/q = p(1−1/q) = p [(1/p+1/q)−1/q] = 1, the inequality follows.

Theorem 7.4.3. For 1≤ p≤ ∞, the map f → ‖ f‖p is a norm on Lp.

Definition 7.4.3. For Lp with 1≤ p < ∞, norm convergence is often called conver-
gence in the mean of order p. Convergence in L∞ is often called nearly uniform
convergence.

The last result of this section is an important application of the Fatou Lemma. We
will later use the result to establish the Radon-Nikodým Derivative Theorem using
Hilbert space techniques. Recall that the norm on an Lp space is used to generate a
metric on the space.

Theorem 7.4.4 (Riesz–Fisher). An Lp space, with 1≤ p≤ ∞, is a complete metric
space.
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Proof. We give the proof for the case 1 ≤ p < ∞; the case p = ∞ is an exer-
cise (7.35(A)). We write ‖·‖ for the Lp-norm. Given a Cauchy sequence 〈 fn : n ∈ N〉
in Lp, we replace the sequence with a subsequence such that for m > n, ‖ fm− fn‖<
2−n. We will show that the subsequence converges to a limit f . As noted in Prob-
lem 7.12, it will follow that the original sequence converges to the same limit. For
each k ∈ N, we set

gk =
k

∑
n=1

| fn+1− fn| , and g =
∞

∑
n=1

| fn+1− fn| .

By Fatou’s Lemma,

‖g‖p =
∫

(

∞

∑
n=1

| fn+1− fn|
)p

=
∫

lim
k

(

k

∑
n=1

| fn+1− fn|
)p

≤ liminf
k

∫

(

k

∑
n=1

| fn+1− fn|
)p

= liminf
k

‖gk‖p

≤ liminf
k

(

k

∑
n=1

‖ fn+1− fn‖
)p

≤ 1.

It follows that g(x) is finite μ-a.e., so the series

f1(x)+
∞

∑
n=1

( fn+1(x)− fn(x))

converges absolutely μ-a.e. Where we have convergence, denote the limit by f (x);
elsewhere, set f (x) = 0. By definition, fn(x)→ f (x) μ-a.e. Given n ∈ N, we have
again by Fatou’s Lemma

∫

| f − fn|p ≤ liminf
m→∞

∫

| fm− fn|p = liminf
m→∞

‖ fm− fn‖p ≤ (2−n)p.

It follows that f − fn ∈ Lp, whence f = ( f − fn) + fn ∈ Lp. It also follows that
limn→∞ ‖ f − fn‖= 0.

Remark 7.4.1. A normed space, such as an Lp space, that is complete with respect
to the metric generated by the norm is called a Banach space. Coincidently, Banach
called such a space a space of type B. We will study these spaces in greater detail
after first considering the special example of Hilbert spaces.

7.5 Linear Functionals

Let (V,‖·‖) be a normed linear space with real or complex scalars. We don’t neces-
sarily assume that V is complete with respect to the metric generated by the norm.
As usual, |α| is the absolute value of α if α ∈ R, and |α| is the modulus of α
if α ∈ C.
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Definition 7.5.1. A linear map F from V into the scalar field is called a linear func-
tional. If there is a nonnegative constant M such that for all x ∈V , |F(x)| ≤M · ‖x‖,
then F is called a bounded linear functional on V . The infimum of the values M
that work for all x in V is called the norm of F ; it is denoted by ‖F‖.
Proposition 7.5.1. If F is a bounded linear functional on V , then the norm ‖F‖ =
sup‖x‖=1 |F(x)|.

Proof. ‖F‖= supx �=0
|F(x)|
‖x‖ = supx �=0

∣

∣

∣F
(

x
‖x‖
)∣

∣

∣= sup‖x‖=1 |F(x)|.

Theorem 7.5.1. If a linear functional F on V is continuous at just one point, then it
is bounded. On the other hand, a bounded linear functional is uniformly continuous
on V . Therefore, a linear functional is continuous, and even uniformly continuous,
on V if and only if it is bounded.

Proof. Assume F is continuous at a point x ∈ V . Then for any ε > 0 there is a
δ > 0 such that the open ball B(x,δ ) = {y ∈V : ‖x− y‖< δ} about the point x maps
into the interval (F(x)− ε ,F(x)+ ε) about F(x). (For complex scalars, replace an
interval in R with the appropriate open disk in C.) Now the translate

B(x,δ )− x := {y : y = z− x, z ∈ B(x,δ )}

is the open ball B(0,δ ), and F [B(0,δ )] is contained in (F(x)− ε ,F(x)+ ε) trans-
lated by adding −F(x). This is the interval (or disk) about 0 of radius ε . It follows
that F is continuous at the point 0 ∈V . Moreover, F is a bounded linear functional,
since ‖x‖< δ if and only if

∥

∥

2
δ x
∥

∥< 2, so

‖F‖= sup
‖x‖=1

|F(x)| ≤ sup
‖x‖<2

|F(x)|= 2
δ
· sup

x∈B(0,δ )
|F(x)|< 2ε

δ
.

The uniform continuity follows from the fact that for all x, y in V ,

|F(x)−F(y)|= |F(x− y)| ≤ ‖F‖ · ‖x− y‖ .

That is, F satisfies a Lipschitz condition with Lipschitz constant ‖F‖.
Remark 7.5.1. We will show later that the bounded linear functionals form a Banach
space, and F → ‖F‖ is the norm on that space. The next result, which we will refine
later, is an immediate consequence of Hölder’s Inequality.

Proposition 7.5.2. Assume either that p and q are real numbers larger than 1 with
1/p+ 1/q = 1 or that p = 1 and q = ∞. In either case, if g ∈ Lq, then the map
f → ∫ f ·g is a bounded linear functional Fg on Lp with

∥

∥Fg
∥

∥≤ ‖g‖q.
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7.6 Problems

Problem 7.1. Show that the triangle inequality holds in Example 7.1.2.

Problem 7.2. Prove Proposition 7.1.1.

Problem 7.3. Prove Proposition 7.1.2.

Problem 7.4. Prove Proposition 7.1.3.

Problem 7.5. Prove Proposition 7.1.4.

Problem 7.6. Prove Proposition 7.1.7.

Problem 7.7. Prove Proposition 7.1.8.

Problem 7.8. Prove Proposition 7.1.9.

Problem 7.9. Prove Proposition 7.1.11.

Problem 7.10. a) Give an example of a set X and two metrics d, ρ on X such that
(X ,d) is complete, but (X ,ρ) is not complete.

b) Prove or give a counterexample: If X is a finite set and d is a metric on X , then
(X ,d) is complete.

Problem 7.11. Let (X ,d) be a metric space, and let 〈xn〉 be a Cauchy sequence on X .
Show that there exists a subsequence 〈xnk〉 of 〈xn〉 such that ∑k∈N d(xnk ,xnk+1)< ∞.

Problem 7.12. Show that if a subsequence of a Cauchy sequence converges to a
point x, then the original sequence converges to x.

Problem 7.13. Let f be a continuous mapping from a metric space (X ,d) onto a
metric space (Y,ρ). Show that if (X ,d) is separable, then (Y,ρ) is separable.

Problem 7.14. Let (X ,d) and (Y,ρ) be two metric spaces, and let f be a uniformly
continuous bijection from X onto Y . Assume that f−1 : Y → X is also continuous. If
Y is complete, must X also be complete? Compare with Example 7.1.5.

Problem 7.15. Show that a closed ball Bc(x,r) in a metric space is a closed set.

Problem 7.16 (A). Prove that if E is a set of first category in X and A ⊆ E, then A
is a set of the first category in X .

Problem 7.17. Prove Proposition 7.2.2.

Problem 7.18. Prove Corollary 7.2.1.

Problem 7.19. a) Show that a countable union of sets of first category is also of first
category.
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b) To construct a general Cantor set Cn of measure 1− 1/n, one follows a process
similar to the construction of a Cantor set. At each stage, however, one removes
from the middle of each closed interval that remains, an open interval of length
1/n times a third of the length of the closed interval from which it is removed.
Show that a general Cantor set Cn in [0,1] is closed, has Lebesgue measure 1− 1

n ,
and is nowhere dense.

c) Does there exist a set A of the first Baire category in [0,1] supplied with the usual
metric such that the Lebesgue measure of A is 1?

d) Does there exist a set B of the second Baire category in [0,1] supplied with the
usual metric such that the Lebesgue measure of B is 0?

Problem 7.20 (A). A point x in a metric space is called isolated if the singleton
set {x} is open. For example, the set of natural numbers N with the usual distance
function forms a countable, complete metric space such that all points are isolated;
notice that every Cauchy sequence is eventually constant. Prove that a complete
metric space without isolated points has an uncountable number of points. (Note
this implies that [0,1] is uncountable.)

Problem 7.21. Suppose one shows that the rational numbers in [0,1] have Lebesgue
measure 0 as follows: Order the rationals and center an open interval of length
1/(2mn) about the mth rational so that the rationals are contained in the union,
which is an open set On of measure at most 1/n. Can it be that the rationals are
exactly the set ∩∞

n=1On?

Problem 7.22. Show that the characteristic function of the rationals, i.e., χQ, is not
the pointwise limit of a sequence of continuous function on R. Hint: If there were
such a sequence 〈 fn〉, what could you say about the sequence n → f−1

n [(1/2,∞)]?

Problem 7.23. Either give an example of the following sequence 〈An : n ∈ N〉 of
subsets of R or state why no such sequence can exist: If I is any open interval in
R, then for each set An, there is a point in I that is not the limit of any sequence of
points in An, and R= ∪nAn.

Problem 7.24. Recall the construction in Problem 5.12 of a function continuous at
each irrational number in [0,1] and discontinuous at each rational number in [0,1].
Also recall Problem 1.43 characterizing the set of points of continuity of a real-
valued function as a Gδ set. Is there a function continuous at each rational number
in [0,1] and discontinuous at each irrational number in [0,1]?

Problem 7.25. Let C be the set of continuous functions on [a,b]. A metric ρ on C
is given by ρ( f ,g) = maxx∈[a,b] | f (x)−g(x)|. Show that (C,ρ) is a complete metric
space.

Problem 7.26. Prove Theorem 7.4.1 for the case p = 1 and q = ∞.

Problem 7.27. Prove Minkowski’s Inequality for the cases p = 1 and p = ∞.

Problem 7.28. Let (X ,B,μ) be a measure space, and fix p with 1 ≤ p ≤ ∞. Show
that if f and g are in Lp(μ), then max( f ,g) ∈ Lp(μ).
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Problem 7.29. Show that ‖ f‖p =
(

∫ 1
0 | f |p dλ

)1/p
does not define a norm on [0,1]

supplied with Lebesgue measure when 0 < p < 1. Hint: Let f = χ[0,1/2) and
g = χ[1/2,1].

Problem 7.30. Suppose f is a nonnegative, real-valued, Lebesgue measurable func-
tion on [0,1], and the product x · ( f (x))3 has a finite Lebesgue integral on [0,1]. Use
the fact that 1

3 +
2
3 = 1 together with the fact that x−1/3

(

x1/3 f (x)
)

= f (x) for x > 0
to show that f has a finite integral on [0,1].

Problem 7.31. For each k ∈ N, fix a sequence
〈

a(k)i : i ∈ N

〉

in �1 with norm

∑i∈N
∣

∣

∣a
(k)
i

∣

∣

∣≤ 1. For each i ∈N, assume that limk→∞ a(k)i exists, and denote that limit

by ai. Use Fatou’s Lemma to show that the sequence 〈ai : i ∈ N〉 is in �1 with norm
∑i∈N |ai| ≤ 1.

Problem 7.32. Fix a sequence 〈ai : i ∈ N〉 in �1. Show that there is a signed measure
μ defined on the power set of N such that for every sequence b = 〈bi : i ∈ N〉 in �∞,
∑∞

i=1 bi ·ai =
∫

N
b dμ .

Problem 7.33. Suppose fn → f almost everywhere and all functions are in Lp for
1 ≤ p < ∞. Show that ‖ fn− f‖ → 0 if and only if ‖ fn‖ → ‖ f‖. Hint: Use the
General Lebesgue Dominated Convergence Theorem, which is a consequence of
Theorem 4.6.2. That is, let gn = 2p | fn|p + 2p | f |p for each n ∈ N, and note that
gn → g := 2p+1 | f |p almost everywhere.

Problem 7.34. Fix a measure space (X ,B,μ), and fix p with 1 ≤ p < ∞. Let 〈 fn〉
be a Cauchy sequence in Lp such that for n ≥ k in N, ‖ fn− fk‖p < 2−k and fn(x)
converges to f (x) at all x∈ X . Show that f is in Lp and limk→∞ ‖ f − fk‖p = 0. Hint:
For each k ∈ N, f = ( f − fk)+ fk.

Problem 7.35 (A). Fix a measure space (X ,B,μ).

a) Let 〈 fn〉 be a sequence in L∞. Prove that fn → f in L∞ if and only if there is a set
E of measure 0 such that fn converges to f uniformly on the complement of E.

b) Prove that L∞ is complete. Note that given the generality of the underlying mea-
sure space, this also proves that �∞ is complete.

Problem 7.36. Fix a measure space (X ,B,μ), and let 〈 fn〉 be a sequence in L2(μ)
such that for some M > 0 and all n ∈ N, ‖ fn‖2 ≤ M. Show that fn(x)/n → 0 for
μ-almost all x ∈ X . Hint: Consider ∑n∈N

∫

X ( fn/n)2dμ .

Problem 7.37. Fix a measure space (X ,B,μ), and fix p with 1≤ p < ∞.

a) Prove or give a counterexample: if fn → f in Lp, then fn(x)→ f (x) for μ-almost
all x ∈ X .

b) Fix p and q with 1 ≤ p < q < ∞. Show that if fn → f in Lp and fn → g in Lq,
then f = g μ-a.e.
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Problem 7.38. Let (X ,B,μ) be a measure space, and fix p and q with 1 ≤ p < ∞,
1 < q≤∞, and 1/p+1/q = 1. In particular, if p = 1, q = ∞. Let 〈 fn〉 be a sequence
in Lp(μ), and let 〈gn〉 be a sequence in Lq(μ). Suppose fn → f in Lp and gn → g in
Lq. Show that fngn → f g in measure.

Problem 7.39 (A). Given that the space c consisting of convergent real-valued seq-
uences is a linear subspace of �∞(N), show that it is a Banach space; that is, show
that it is complete with respect to the �∞-norm.

Problem 7.40. a) Use the distance function on L∞[0,1] (with respect to Lebesgue
measure) to show that L∞[0,1] cannot contain a countable dense subset. Hint:
For each r, s ∈ (0,1) with r �= s, ‖χ[0,r)− χ[0,s)‖∞ =?

b) Describe a countable family of step functions that are dense in L1[0,1] (with
respect to Lebesgue measure).

Problem 7.41 (A). Fix a measure space (X ,B,μ). Fix f ∈ Lp(μ), 1≤ p<∞. Given
ε > 0, show that there is a simple function ϕ vanishing outside a set of finite measure
such that ‖ f −ϕ‖p < ε .

Problem 7.42. a) Show that the set E of integrable real-valued functions that take
the value 1 on (1/2,1) form a closed subset of L1 (λ ), where λ is Lebesgue mea-
sure on [0,1]. Again, we consider two functions equal a.e. to represent the same
thing, so E consists of integrable functions that take the value 1 almost every-
where on [1/2,1].

b) Show that the set S of continuous real-valued functions on [0,1] that take the
value 1 on (1/2,1) do not form a closed subset of L1 (λ ), where λ is Lebesgue
measure on [0,1].

Problem 7.43 (A). Let (X ,B,μ) be a measure space, and let f be a function that is
in every Lp for 1≤ p≤ ∞. Show that limp→∞ ‖ f‖p = ‖ f‖∞.

Problem 7.44. Let 〈qn : n ∈ N〉 be an enumeration of the rational numbers, and
set fn := n · χ[qn,qn+2−n] for each n ∈ N. Let f = ∑n∈N fn. Show that f ∈ Lp with
respect to Lebesgue measure on R for every p such that 1 ≤ p < ∞, but f is not
essentially bounded on any non-degenerate interval. Hint: For sufficiently large k,
k ≤ 2k/2p. Moreover, S = ∑∞

k=1 2−k/2p is finite, as seen by considering a · S− S for
an appropriate value of a.

Problem 7.45. Let Fn, n ∈ N, and F be bounded linear functionals on a normed
space (V,‖ · ‖). Assume that ‖Fn−F‖→ 0. Let 〈xn〉 be a sequence in V converging
to x in V . Show that Fn(xn)→ F(x).

Problem 7.46. Let C([0,1]) denote the space of continuous real-valued functions
on [0,1]. For each f ∈C([0,1]), let ‖ f‖= maxx∈[0,1] f (x) be the norm of f obtained
by restricting the L∞(λ ) norm with respect to Lebesgue measure to C([0,1]). Fix
g∈C([0,1]). Let F be the linear functional defined by setting F( f ) =

∫ 1
0 f (t)g(t)dλ

for each f ∈C([0,1]). Show that F is bounded, and ‖F‖= ‖g‖1, i.e., the L1(λ ) norm
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of g. Hint: Let h(x) = 1 on the set {g≥ 0}, and let h(x) = −1 on the set {g < 0}.
Use Lusin’s Theorem 3.3.3 to show that h is the λ -a.e. limit of a sequence 〈 fn〉 in
C([0,1]) with ‖ fn‖= 1 for all n ∈ N.

Problem 7.47 (A). Let C([0,1]) denote the space of continuous real-valued func-
tions on [0,1]. Note that each g ∈C([0,1]) is a member of an L∞-equivalence class
with respect to Lebesgue measure λ on [0,1]. Suppose f ∈ L∞(λ ) is a point of clo-
sure of the subspace of L∞(λ ) formed by C([0,1]). Show that f is a member of that
subspace.



Chapter 8
Hilbert Spaces

8.1 Basic Definitions

A Hilbert space is, among other things, a linear space with either real or complex
scalars; it is stable with respect to addition and scalar multiplication. To avoid repe-
tition, we will work with the complex case, which will include the real case. That is,
for a complex number z = x+ iy (x and y real), the conjugate is z = x− iy. For a real
number a, the conjugate a = a. Therefore, if the scalar field is just the real numbers,
then the conjugation operation a → a is just the identity operation on R. For this
reason, we can treat both the real and complex scalar cases at the same time. Here
is the definition of the space.

Definition 8.1.1. An inner product space H is a linear space with real or com-
plex scalars for which there is an inner product (x,y) : H×H → C, such that the
following holds:

i) The inner product is linear in the first variable, i.e., for all x,y,z ∈ H and all
scalars α,β ,

(αx+βy,z) = α(x,z)+β (y,z).

ii) It is complex conjugate symmetric, i.e., for all x,y ∈ H, (x,y) = (y,x) if the
scalar field is C, and (x,y) = (y,x) if the scalar field is R.

iii) The inner product is positive definite, i.e., for each x ∈ H, (x,x) is real and
nonnegative, and (x,x) = 0 if and only if x = 0.

We will show that the mapping x →√(x,x) is a norm on an inner product space.
We will work with the completion with respect to the corresponding metric.

Definition 8.1.2. A Hilbert space is an inner product space that is complete with
respect to the metric generated by the norm x → ‖x‖ :=

√

(x,x).

© Springer International Publishing Switzerland 2016
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A Hilbert space, for which the scalar field is R, is called a real Hilbert space.
Note that by Properties i and ii, (x,αy+β z) = α (y,x)+β (z,x) for all α,β ∈ C. If
the scalar field is R, then (x,αy+β z) = α (y,x)+β (z,x). That is, the inner product
is linear in both arguments; this is also called the bilinear property of the inner
product for a real Hilbert space.

Example 8.1.1. a) Euclidean spaces form real Hilbert spaces with (x,y) = x ·y. That
is, if x = (x1,x2, · · · ,xm) and y = (y1,y2, · · · ,ym) with real components xi and
yi for each i, then the usual scalar product (x,y) = x · y = ∑m

i=1 xiyi is an inner
product.

b) The sequence space �2 forms a Hilbert space with either real or complex scalars.
Here, (〈x〉 ,〈y〉) = ∑∞

n=1 xn ·yn. We know by Hölder’s inequality that this is finite.
For any element 〈xn : n ∈ N〉 ∈ �2, we have the norm ‖〈xn〉‖2 =

√

(〈xn〉 ,〈xn〉) =
(

∑∞
n=1 |xn|2

)1/2
. If the scalar field is R, then |xn| is the absolute value of xn; it is

the modulus of xn if the scalar field is C.
c) Given a measure space (X ,B,μ), the space L2 formed from equivalence classes

of appropriate functions is a Hilbert space with either real or complex scalars.
Here, ( f ,g)=

∫

f ·g. We know by Hölder’s inequality that this is finite. Of course,
for any element f ∈ L2, ‖ f‖2 =

√

( f , f ).

We show next that for a general inner product space, a norm can be defined by
setting ‖x‖ =√(x,x). In doing so, we recall that for the special case of a function
in L2, the function represents 0 if and only if it takes the value 0 almost everywhere.
In general, it follows from Property iii that ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0.
Moreover, if a scalar α is real, ‖αx‖2 = (αx,αx) = α2(x,x) = α2‖x‖2, while if α is
complex, ‖αx‖2 = (αx,αx) =αᾱ(x,x) = |α|2‖x‖2. In either case, ‖αx‖= |α| ·‖x‖.
To finish, we need the triangle inequality, and for that we generalize the L2 case
of the Hölder Inequality. We prove that generalization for both real and complex
scalars.

8.2 Basic Inequalities

Theorem 8.2.1 (Cauchy–Buniakowsky–Schwarz (CBS) Inequality). Let H be an
inner product space. For all x,y ∈ H,

|(x,y)| ≤ ‖x‖ · ‖y‖.

Proof. We may assume that neither x nor y is zero. Choose α with |α| = 1 so that
α(y,x) = |(x,y)|. In the real case, α = 1 or α = −1. For the complex case where
(y,x) = reiθ , α = e−iθ . Note that ᾱ(x,y) = |(x,y)| and αα = 1. Now, for any positive
real number λ ,

0 ≤ (x−λαy,x−λαy) = ‖x‖2−λ [α(y,x)+ ᾱ(x,y)]+λ 2‖y‖2

= ‖x‖2−2λ |(x,y)|+λ 2‖y‖2.
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Setting λ = ‖x‖/‖y‖, we have

2|(x,y)| ≤ ‖y‖‖x‖‖x‖
2 +

‖x‖
‖y‖‖y‖

2 = 2(‖x‖ · ‖y‖).

Corollary 8.2.1. The inner product is a continuous function on H×H.

Proof. Exercise 8.1.

Corollary 8.2.2 (Triangle Inequality). For all x, y ∈ H, ‖x+ y‖ ≤ ‖x‖+‖y‖.
Proof. Since (x,y)+(y,x) = 2Re(x,y)≤ 2 |(x,y)| ≤ 2‖x‖ · ‖y‖,

‖x+ y‖2 = (x+ y,x+ y) = ‖x‖2 +(x,y)+(y,x)+‖y‖2 ≤ (‖x‖+‖y‖)2.

Corollary 8.2.3. The mapping x → ‖x‖ :=
√

(x,x) is a norm on H.

Note that a Hilbert space is a particular example of a Banach space; that is, a
complete normed linear space. Next, we generalize the equality that holds for the
diagonals of parallelograms in the plane.

Proposition 8.2.1 (Parallelogram law). Let H be an inner product space. For all
x,y in H,

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2 .

Proof. Note that

‖x+ y‖2 = (x+ y,x+ y) = ‖x‖2 +(y,x)+(x,y)+‖y‖2

‖x− y‖2 = (x− y,x− y) = ‖x‖2− (y,x)− (x,y)+‖y‖2 .

Adding these equations completes the proof.

8.3 Convex Sets, Orthogonality, and Bounded
Linear Functionals

In this section we work with a fixed Hilbert space H �= {0}.
Proposition 8.3.1. For each y∈H, the mapping x → (x,y) is a bounded linear func-
tional on H. (See Definition 7.5.1.) Moreover, the norm of the functional is equal
to ‖y‖.
Proof. By the CBS inequality, for all x∈H, |(x,y)| ≤ ‖x‖·‖y‖, and by the definition
of the norm, |(y,y)|= ‖y‖ · ‖y‖, so the functional has norm ‖y‖.
Remark 8.3.1. We will show in Theorem 8.3.3 below that every bounded linear func-
tional on H has the form x → (x,y) for a unique y ∈ H.
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A linear subspace of H inherits the inner product. If the subspace is closed, it
is complete (Proposition 7.1.10), so it is again a Hilbert space. A translate of a
subspace Y is a set of the form Y + x := {y+ x : y ∈ Y} for some x ∈ H.

Definition 8.3.1. A set is convex if it contains every line segment joining points in
the set. That is, if x and y are in the set, so is αx+βy for all nonnegative α,β ∈ R

such that α +β = 1.

Example 8.3.1. Any subspace, and all of its translates, is convex (Problem 8.2).

Theorem 8.3.1. Let E be a closed, convex subset of H. Then E contains a unique
element of smallest norm. That is, there is a unique element closest to the point 0
in H.

Proof. Let a = inf{‖x‖ : x ∈ E}. Fix x and y in E. Applying the parallelogram
law (8.2.1) to 1

2 x and 1
2 y, we have

1
4
‖x− y‖2 =

1
2
‖x‖2 +

1
2
‖y‖2−

∥

∥

∥

∥

x+ y
2

∥

∥

∥

∥

2

.

Since E is convex, x+y
2 ∈ E, so

‖x− y‖2 ≤ 2‖x‖2 +2‖y‖2−4a2. (8.3.1)

Equation (8.3.1) shows that there can be at most one point in E with norm a. If now
x and y are replaced by elements of a sequence 〈xn〉 in E such that ‖xn‖ → a, then
Equation (8.3.1) shows that the sequence is Cauchy, and so the limit x, which must
be in E, has norm a.

Definition 8.3.2. Elements x and y in H are called orthogonal, and we write x⊥ y,
if (x,y) = 0. We write x⊥ for the set of all y orthogonal to x. Given A ⊆ H, A⊥ :=
⋂

x∈A x⊥.

Proposition 8.3.2. For each x ∈ H, the space x⊥ is a closed subspace of H.

Proof. The fact that x⊥ is a linear subspace follows from the linearity of the first
argument of the inner product. This space is closed since it is the inverse image of 0
with respect to the continuous functional y → (y,x).

Corollary 8.3.1. Given A⊆ H, A⊥ =
⋂

x∈A x⊥ is a closed subspace of H.

The next fact is an easy generalization of the Pythagorean Theorem.

Proposition 8.3.3. If x⊥ y in H, then ‖x+ y‖2 = ‖x‖2 +‖y‖2.

Proof.

‖x+ y‖2 = (x+ y,x+ y) = ‖x‖2 +‖y‖2 +(x,y)+(y,x) = ‖x‖2 +‖y‖2.
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The following result is central to our later calculations. We will give the proof
for the case of complex scalars; the real case follows since the conjugate operation
is the identity map on R.

Theorem 8.3.2. Let M be a closed subspace of H. For each x ∈H, let Px denote the
(unique) nearest point to x in M, that is, the element y ∈ M such that y− x is the
element of smallest norm in M− x; let Qx denote the (unique) nearest point to x in
M⊥. Then ‖x‖2 = ‖Px‖2 +‖Qx‖2. The mappings P : H →M and Q : H →M⊥ are
linear, and for each x∈H, x = Px+Qx. Moreover, this is the only way to decompose
x into an element of M plus an element of M⊥.

Proof. The case M = {0}, M⊥ = H is clear. Given x ∈ H, let z be the element of
smallest norm in M+ x. Then z = u+ x for some u ∈M, so x− z =−u ∈M. Fix an
arbitrary nonzero element y ∈M, scaled so that ‖y‖= 1. We will show that z ∈M⊥
by showing that α := (z,y) = 0. Since z ∈ M + x, z−αy ∈ M + x. Since z has the
smallest norm in M+ x,

0 ≤ ‖z−αy‖2−‖z‖2 = (z−αy,z−αy)− (z,z)

= −α(y,z)−α (z,y)+αα (y,y) =−αα−αα +αα =−αα
= −|(z,y)|2 ≤ 0.

Therefore, (z,y) = 0 for all y ∈M, i.e., z ∈M⊥.
Given any element y ∈M, we have x− z− y ∈M. Since z ∈M⊥,

‖x− y‖2 = ‖z+[(x− z)− y]‖2 = ‖z‖2 +‖x− z− y‖2.

This is a minimum when y = x− z, so x− z = Px. Given any element w ∈M⊥, we
have

‖x−w‖2 = ‖x− z+ z−w‖2 = ‖x− z‖2 +‖z−w‖2.

This is a minimum when z = w, so z = Qx.
We now have a decomposition of x into an element of M and M⊥, namely, x =

(x− z) + z. To show that such a decomposition must be unique, we suppose that
x = x1 + x2 is another decomposition with x1 ∈ M and x2 ∈ M⊥. Then Px+Qx =
x = x1 + x2, so

Px− x1 = x2−Qx ∈M∩M⊥ = {0},
whence x1 = Px and x2 = Qx. To show that P and Q are linear, we note that for any
x, y ∈ H and scalars α and β ,

α[P(x)+Q(x)]+β [P(y)+Q(y)] = αx+βy = P(αx+βy)+Q(αx+βy),

so

P(αx+βy)−αP(x)−βP(y) = αQ(x)+βQ(y)−Q(αx+βy) ∈M∩M⊥ = {0}.

Corollary 8.3.2. If M is a closed subspace of H with M �= H, then there is a nonzero
element y ∈ H such that y⊥M.
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Theorem 8.3.3. If L is a bounded linear functional on H, then there is a unique
y ∈ H such that L(x) = (x,y) for all x ∈ H. The norm of L is ‖L‖= ‖y‖.
Proof. The element, if it exists, must be unique since if y and z both produce the
same functional, then L(y− z) = (y− z,y) = (y− z,z), whence (y− z, y− z) = 0, so
y− z = 0. If L = 0, take y = 0. Otherwise, let K be the kernel of L, i.e., the closed,
linear subspace consisting of all elements that L maps to 0. Fix z∈K⊥ with ‖z‖= 1.
Then L(z) = α �= 0. Let y = ᾱz. We will show that L is represented by y. Fix x ∈H;
we must show that L(x)− (x,y) = 0. Now L(L(x)z−L(z)x) = 0. This means that
L(x)z−L(z)x ∈ K. Since z ∈ K⊥ and ‖z‖= 1,

L(x)− (x,y) = L(x)−α(x,z) = L(x)(z,z)−L(z)(x,z) = (L(x)z,z)− (L(z)x,z)

= (L(x)z−L(z)x,z) = 0.

Corollary 8.3.3. If L is a nonzero, bounded linear functional on H, then K⊥ is a
one-dimensional space. That is, for any z �= 0 in K⊥ and any w ∈ K⊥, w = γz for
some scalar γ .

Proof. Exercise 8.6.

8.4 Radon-Nikodým Theorem

We now have sufficient background to establish the Radon-Nikodým Derivative
Theorem. We will start with the results for just finite measures μ and ν on a mea-
surable space (X , B) with ν << μ . This means that B is a σ -algebra of subsets
of a set X , and the values taken by our measures for sets in B are finite. It also
means that ν is absolutely continuous with respect to μ , i.e., sets of μ-measure 0
have ν-measure 0. We will then extend the result to the case that μ is a σ -finite
measure, that is, X is a finite or countably infinite union of measurable sets of finite
μ-measure, and ν is an arbitrary measure on (X , B) absolutely continuous with
respect to μ .

We will also establish as a corollary, the Lebesgue Decomposition Theorem for
pairs μ and ν of σ -finite measures on (X , B). For this result, recall that μ and ν are
called mutually singular, and we write ν ⊥ μ , if there are disjoint measurable sets A
and B with X = A∪B and μ(B) = ν(A) = 0.

Important for this section is the fact that given a measure space (X , B,μ), the
function space L2 is a Hilbert space. In particular, we use the fact that L2 is complete
with respect to the metric derived from the L2-norm. Moreover, as shown in The-
orem 8.3.3, L2 is its own space of bounded linear functionals. We need only work
here with real scalars. The proof we now give of the Radon-Nikodým Theorem is
due to John von Neumann.

Proposition 8.4.1. Let (X ,B,μ) be a finite measure space, and fix an integrable
function g ≥ 0 on X. The set function E → ν (E) :=

∫

E g dμ is a finite measure on
(X ,B). Moreover, if f ≥ 0 is measurable on (X ,B), then

∫

f dν =
∫

f g dμ .
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Proof. It follows from Corollary 4.4.3 that ν is a finite measure on (X ,B). If f ≥ 0
is measurable on X , and ϕn is an increasing sequence of simple functions converging
up to f , then for all n ∈ N,

∫

ϕn dν =
∫

ϕng dμ , so by the Monotone Convergence
Theorem applied twice,

∫

f dν = lim
n

∫

ϕn dν = lim
n

∫

ϕng dμ =
∫

f g dμ .

Proposition 8.4.2. Let μ and ν be finite measures on the measurable space (X ,B),
and set λ := μ +ν . Define F( f ) :=

∫

f dμ for all f ∈ L2(λ ). Then F is a bounded
linear functional on L2(λ ). Fix the g ∈ L2(λ ) that represents F; that is, for each
f ∈ L2(λ ), F( f ) =

∫

f dμ =
∫

f g dλ . Then 0≤ g≤ 1 λ -a.e. on X, whence we may
assume that the inequality holds at all points of X.

Proof. The map F is clearly linear on L2(λ ). If f ∈ L2(λ ) with norm ‖ f‖2, then by
Hölder’s Inequality,

|F( f )|=
∣

∣

∣

∣

∫

f dμ
∣

∣

∣

∣

≤
∫

| f |dμ ≤
∫

| f |dλ =
∫

| f ·1| dλ ≤ ‖ f‖2 · ‖1‖2.

Therefore, F is bounded. Fix the g ∈ L2(λ ) that represents F , i.e., ( f ,g) = F( f ) for
all f ∈ L2(λ ). The inequality 0≤ g≤ 1 λ -a.e. follows from the fact that for every
E ∈B,

0≤
∫

χE dμ = F(χE) =
∫

g · χE dλ =
∫

E
g dλ =

∫

E
dμ ≤

∫

E
dλ = λ (E) .

That is, if for some n ∈N there is a set E ∈B such that g≤− 1
n on E, then we must

have λ (E) = 0, since 0≤ ∫E g dλ . Therefore, λ ({g < 0}) = 0. If there is a set E ∈
B such that g ≥ 1+ 1

n on E, then we must have λ (E) = 0, since
∫

E g dλ ≤ λ (E).
Therefore, λ ({g > 1}) = 0.

Corollary 8.4.1. Add the additional hypothesis that ν << μ . Then λ ({g = 0}) = 0.
Moreover, for each set E ∈B,

μ (E) =
∫

E
g dλ , ν (E) =

∫

E
(1−g) dλ ,

λ (E) =
∫

E

1
g

dμ , ν (E) =
∫

E
(1−g) · 1

g
dμ .

Proof. Given E ∈B,

μ (E) =
∫

χE dμ =
∫

χE ·g dλ =
∫

E
g dλ .

ν (E) = λ (E)−μ (E) =
∫

E
1 dλ −

∫

E
g dλ =

∫

E
(1−g) dλ .

If μ (E) = 0, then ν (E) = 0, so λ (E) = 0. That is, λ << μ . In this case, since
μ({g = 0}) = ∫{g=0} g dλ = 0, λ ({g = 0}) = 0. By Proposition 8.4.2, for any f in
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L2(λ ),
∫

f dμ =
∫

f ·g dλ . Set f = 1
g where g > 0 and f = 1 where g = 0. For each

n ∈ N, set Gn := {g≥ 1/n}. If E is a measurable subset of Gn, then f ·χE ∈ L2(λ ),
and by Proposition 8.4.2,

λ (E) =
∫

E
1 dλ =

∫

E
f ·g dλ = F( f · χE) =

∫

E

1
g

dμ .

Since this is true for each n ∈ N, it follows from the Monotone Convergence
Theorem that for every measurable set E ⊆ {g > 0}, λ (E) =

∫

E
1
g dμ . Since

μ ({g = 0}) = 0, λ (E) =
∫

E
1
g dμ for any set E ∈B . Since ν (E) =

∫

E(1−g)dλ ,
it again follows from the Monotone Convergence Theorem that ν (E) =

∫

E(1−g) ·
1
g dμ for any measurable set E ⊆ {g > 0}, and thus for any E ∈B.

Let g be the function defined by Proposition 8.4.2, and let h=(1−g) · 1
g on the set

{g > 0} and h = 1 on the μ-null set {g = 0}. Then h is a representative function of
the Radon-Nikodým derivative of ν with respect to μ , denoted by dν/dμ . That is,
for each E ∈B, ν (E) =

∫

E
dν
dμ dμ when μ and ν are finite measures with ν << μ .

Thus, we have established for finite measures the existence part of the following
result.

Theorem 8.4.1 (Radon-Nikodým). Let μ be a σ -finite measure on a measurable
space (X ,B), and let ν be a measure on (X ,B) with ν << μ . Then there is a
nonnegative measurable function, denoted by dν/dμ , such that for any measurable
E ⊆ X, ν (E) =

∫

E (dν/dμ)dμ . The function dν/dμ is unique except for changes
on μ-null sets.

Proof. As noted, we have already established the existence for the case of finite
measures. For that case, let h and f be two functions with the properties of the
Radon-Nikodým derivative. For any n ∈ N, let En = { f > h+1/n}. We then have

ν(En) =
∫

En

f dμ ≥
∫

En

h dμ +
1
n

μ(En) = ν(En)+
1
n

μ(En).

Since ν(En) is finite, it follows that μ(En) = 0, and this is true for each n ∈ N, so
f ≤ h μ-a.e. Similarly, h≤ f μ-a.e., so h = f μ-a.e.

Now assume that μ is a finite measure and ν is an arbitrary measure that is
absolutely continuous with respect to μ on (X ,B). For each n ∈N, let An and Bn be
the positive set and negative set, respectively, for a Hahn decomposition of X with
respect to the signed measure ν − nμ . (See Definition 6.3.1.) Let S1 = B1, and for
each n> 1, let Sn =Bn\∪n−1

i=1 Bi. Then the sets Sn are disjoint, and∪∞
n=1Sn =∪∞

n=1Bn.
For each n ∈ N, Sn ⊆ Bn, so for any measurable subset E of Sn, (ν − nμ)(E) ≤ 0,
whence ν (E) ≤ nμ (E) < +∞. Therefore, there is a Radon-Nikodým derivative hn

on Sn for ν with respect to μ . We define h on S := ∪nSn by setting h(x) := hn(x)
when x ∈ Sn. Any subset E of S is the disjoint union ∪n(Sn ∩E), so h is a Radon-
Nikodým derivative on S, and any other Radon-Nikodým derivative on S equals
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h μ-a.e. If E is a measurable subset of X�S and μ(E) > 0, then for each n ∈ N,
E ⊆ An, so ν (E)−nμ (E)≥ 0, whence ν (E) = +∞. We complete the formation of
a Radon-Nikodým derivative dν/dμ on X by extending h to X�S with the value
+∞. Any other Radon-Nikodým derivative must take the same value on any subset
of X�S having positive μ-measure.

Finally, we assume that μ is a σ -finite but not finite measure, and ν is an arbitrary
measure absolutely continuous with respect to μ . It then follows that X is a count-
ably infinite union of disjoint measurable sets Ei on which μ is a finite measure.
Let νi be the restriction of ν to the collection of measurable subsets of Ei. Clearly
νi << μ on Ei. Let fi = dνi/dμ ≥ 0 on Ei and fi ≡ 0 on X \Ei. Then f := ∑∞

i=1 fi

is measurable. Moreover, f works as the Radon-Nikodým derivative, since for each
measurable subset E of X ,

ν(E) =
∞

∑
i=1

νi(E ∩Ei) =
∞

∑
i=1

∫

E∩Ei

fi dμ =
∞

∑
i=1

∫

E∩Ei

f dμ

= lim
n

∫

E∩(∪n
i=1Ei)

f dμ =
∫

E
f dμ .

If g also works, then on each set Ei, g = fi μ-a.e., so g = f μ-a.e. on X .

Corollary 8.4.2 (Lebesgue Decomposition Theorem). Suppose μ and ν are σ -
finite measures on a measurable space (X ,B). Then ν has a unique decomposition
ν = ν0 + ν1, called the Lebesgue decomposition of ν with respect to μ , such that
ν0 ⊥ μ and ν1 << μ .

Proof. Let λ = ν +μ . It is easy to see that X is a countable union of sets of finite λ -
measure (Problem 8.12). Moreover, μ << λ . Let f = dμ/dλ . Let A := { f > 0}, and
let B := { f = 0}. For any E ∈B, set ν1 (E) := ν(E∩A), and set ν0 (E) := ν(E∩B).
Then ν = ν0 +ν1. Moreover, ν0 ⊥ μ since μ (B) = 0 and ν0 (A) = 0. If E ∈B and
μ (E) = 0, then f = 0 λ -a.e. on E. That is, λ (E∩A) = 0. Since ν << λ , ν(E∩A) =
ν1 (E) = 0. Thus ν1 << μ . To show the uniqueness of the Lebesgue decomposition,
suppose ν = ˜ν0 + ˜ν1 is another decomposition with ˜ν0 ⊥ μ and ˜ν1 << μ . Let C
and D be disjoint measurable sets with X =C∪D and μ(D) = ˜ν0(C) = 0. Let S be
a measurable subset of X of finite ν-measure. On S, we have ν = ν0+ν1 = ˜ν0+˜ν1,
whence on S the signed measure ρ := ν0−˜ν0 = ˜ν1−ν1. Since ν0 (A) = ˜ν0 (C) = 0,
S∩A∩C is a null set for ρ . Since μ(B) = μ(D) = 0, S∩B∩C, S∩A∩D, and
S∩B∩D are all null sets for ρ . Thus, any measurable subset of X of finite ν-measure
is a null set for ν0−˜ν0 = ˜ν1−ν1. It follows that the decomposition is unique.

8.5 Orthonormal Families and Fourier coefficients

In this section, H �= {0} is a Hilbert space with complex scalars. By an indexed
family, we mean a set for which there is given a bijection from a set acting as index
onto the family.
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Definition 8.5.1. A subset S ⊆ H is called linearly independent if every finite
linear combination with total 0 has all of the coefficients equal to 0. That is, if
α1x1 +α2x2 + · · ·+αnxn = 0 for some scalars αi and xi ∈ S, then each αi = 0. We
write span(S) for the set of all finite linear combinations of elements of S.

If the elements of S are linearly independent, then there is only one way to write
an element of span(S) as a finite linear combination of the elements of S, since the
difference of two combinations with the same sum is a representation of 0. The span
of S is the smallest vector space containing S (Exercise 8.14).

Definition 8.5.2. An orthogonal family is one for which every element is orthog-
onal to every other element. An orthonormal family is an orthogonal family for
which every element has norm 1.

Remark 8.5.1. An indexed family {uα} is an orthonormal family if and only if
(uα ,uβ ) = 1 when α = β and (uα ,uβ ) = 0 otherwise. While the element 0 ∈ H
is orthogonal to every element of H, it cannot be an element of an orthonormal
family.

Example 8.5.1. The vectors i, j, k in R
3 form an orthonormal family.

Proposition 8.5.1. An orthonormal family is linearly independent.

Proof. If in the family, a finite linear combination s = α1u1 + · · ·+αnun = 0, then
for each i with 1≤ i≤ n, we have 0 = (s,ui) = αi.

Definition 8.5.3. Given an indexed orthonormal family {uα}, the αth Fourier co-
efficient of x ∈ H is the complex number x̂(α) := (x,uα).

Proposition 8.5.2. Given an indexed orthonormal family {uα}, for each index α ,
the map x → x̂(α) is linear and also continuous, since

|x̂(α)− ŷ(α)|= |(x− y,uα)| ≤ ‖x− y‖ .

Moreover, ‖auα‖= |a| since ‖auα‖2 = (auα ,auα) = |a|2.

The next result is the heart of what we need for Fourier series.

Proposition 8.5.3. Let {uα ∈H : α ∈ I} be a finite orthonormal family in H (i.e., I is
a finite index set), and let MI be its span. Then MI is closed. If y = ∑α∈I aα uα ∈MI,
then for each α ∈ I, ŷ(α) = (y,uα) = aα , and ‖y‖2 = (y,y) = ∑α∈I |ŷ(α)|2. Given
any x ∈ H, let sI(x) := ∑α∈I x̂(α)uα . Then (x− sI(x)) ∈M⊥

I , so sI(x) is the unique
closest element to x in MI, (x− sI(x)) is the unique element closest to x in M⊥

I , and

‖x‖2 = ‖sI (x)‖2 +‖x− sI (x)‖2 ,

whence
‖sI(x)‖2 = ∑

α∈I

|x̂(α)|2 ≤ ‖x‖2.
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Proof. If y = ∑aα uα ∈MI , then for each α ∈ I,

ŷ(α) = (y,uα) = ∑
β∈I

aβ (uβ ,uα) = aα ,

and
‖y‖2 = (y,y) = ∑

α∈I
∑
β∈I

ŷ(α)ŷ(β )(uα ,uβ ) = ∑
α∈I
|ŷ(α)|2.

In general, the span of a finite set in a linear space is closed, but here is a simple
proof for our setting. If 〈xn : n ∈ N〉 is a sequence in MI with limit y ∈ H, then
by the continuity of the inner product, (xn− y,uα)→ 0 for each α ∈ I. Let yI =

∑α∈I(y,uα)uα ∈MI . For each n ∈ N, xn = ∑α∈I(xn,uα)uα , so

‖xn− yI‖ =
∥

∥

∥

∥

∥

∑
α∈I

(xn,uα)uα −∑
α∈I

(y,uα)uα

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∑
α∈I

(xn− y,uα)uα

∥

∥

∥

∥

∥

≤ ∑
α∈I

‖(xn− y,uα)uα‖= ∑
α∈I

|(xn− y,uα)| → 0.

Since a limit is unique in H, xn → y = yI ∈MI . It follows that MI is closed.
Next, we note that for any x ∈ H with sI(x) = ∑α∈I x̂(α)uα , and any z =

∑β∈I bβ uβ ∈MI ,

(x− sI(x),z) =

(

x, ∑
β∈I

bβ uβ

)

−
(

∑
α∈I

x̂(α)uα , ∑
β∈I

bβ uβ

)

= ∑
β∈I

bβ (x,uβ )−∑
α∈I

∑
β∈I

x̂(α)bβ (uα ,uβ )

= ∑
β∈I

bβ x̂(β )−∑
β∈I

x̂(β )bβ = 0.

The rest follows from Theorem 8.3.2.

Next we use the Axiom of Choice to show that there is a maximal orthonormal
family in H, i.e., one not properly contained in a larger orthonormal family. Again,
we assume that H �= {0}. Note that for any nonzero x∈H, the singleton set {x/‖x‖}
is an orthonormal family.

Theorem 8.5.1. Every orthonormal family B in H is contained in a maximal (also
known as complete) orthonormal family in H.

Proof. We use the Hausdorff Maximal Principle, which, as shown in the appendix,
is equivalent to the Axiom of Choice. We partially order by containment the or-
thonormal families in H that contain B. That is, a family S1 is further along in the
ordering than a family S0 if S1 contains S0. Let S be the union of a maximal (with
respect to containment) linearly ordered family of orthonormal sets all containing



138 8 Hilbert Spaces

B. Then S is orthonormal since if u and v are in S, they are in some orthonormal
family contained in S. By definition, S is maximal.

We now show that for a maximal orthonormal family in a Hilbert space, the
closure of the span is H. Recall that the span of a set is the collection of all finite
linear combinations of members of the set. By Problem 8.14, the span of a set is a
linear space, and the closure of the span is also a linear space.

Theorem 8.5.2. An orthonormal family {uα : α ∈ A} is maximal in H if and only if
the closure of its span is all of H.

Proof. Let S be the span of {uα : α ∈ A}, and let M be the closure of S. Then M is a
closed linear subspace of H. By Theorem 8.3.2, M �= H if and only if M⊥ �= {0}. If
M⊥ �= {0}, then there is an element u0 �= 0 in M⊥, which by normalization we may
assume has norm 1. By definition, (uα ,u0) = 0 for each index α ∈A, so {uα : α ∈A}
is not maximal since adjoining u0 produces a larger orthonormal family. On the other
hand, if {uα : α ∈ A} is not maximal, then there is a u0 of norm 1 that is orthogonal
to every element of {uα : α ∈ A}, whence it is orthogonal to S. By continuity of the
inner product, u0 is then orthogonal to M, whence M⊥ �= {0} and M �= H.

8.6 Separability

Recall that a Hilbert space is a metric space using the distance function generated
by the norm. Recall that such a space is called separable if there is a countable sub-
set with closure equal to the whole space. There is a special relationship between
separable Hilbert spaces and the �2 space formed from sequences of scalars. On
the other hand, much of what is true for separable Hilbert spaces works without
the assumption of separability if norm convergence of sequences is replaced with
the norm convergence of unordered sums. We will discuss results for both the sep-
arable case using norm convergence of sequences and the non-separable case using
unordered sums. We will use the fact shown in Theorems 8.5.1 and 8.5.2 that there
exists a maximal orthonormal family in a Hilbert space H, and the closure of the
span of that family is all of H.

Theorem 8.6.1. A Hilbert space H is separable if and only if every orthonormal
family in H is either finite or countably infinite.

Proof. Suppose an orthonormal family in H for which the span is all of H is finite
or countably infinite. Then finite linear combinations formed from members of
the family using rational real and imaginary parts for the coefficients produce a
dense subset of H, whence H is separable. On the other hand, if there exists an unc-
ountable orthonormal family {uα ∈ H : α ∈ A}, then for any two distinct members

uα and uβ of the family,
∥

∥uα −uβ
∥

∥

2
= (uα −uβ ,uα −uβ ) = 2, so the ball of radius
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√
2/3 about each member of the orthonormal family contains no other member of

the orthonormal family, but must contain a point of a dense set. In this case, there
cannot be a countable dense subset of H. In particular, there cannot be a finite or
countably infinite orthonormal family with span equal to H.

8.7 Unordered Sums and �2 Spaces

To include non-separable Hilbert spaces in our discussion, we need facts about uno-
rdered sums for general normed spaces as well as scalar fields. If we are given an
infinite collection of vectors or scalars S = {xα : α ∈ A} indexed by an index set A,
we can make the collection F consisting of all finite subsets of S into a partially
ordered set using containment. That is, a finite subset F1 of S is “further along in
the ordering” than a finite set F0 of S if F1 contains F0. Given any two members F1

and F2 in F , the union F1 ∪F2 is again in F . Therefore, the map F → ∑xα∈F xα
is a net with directed set F . This net converges to x0 if for each ε > 0 there is an
Fε ∈F such that for each F ∈F with F ⊇ Fε , ‖∑xα∈F xα − x0‖ < ε . We call x0

the unordered sum of the collection {xα : α ∈ A}. If a series in the scalar field is
absolutely convergent, then the sum of the terms is an unordered sum; conversely,
if a scalar series has an unordered sum, then the series is absolutely convergent
(Problem 8.15).

The limit of a net in a normed space is unique. To see this for our special case,
assume that x0 and x1 are such limits. Then for any ε > 0, there is an Fε ∈F and a
Gε ∈F such that for any F ∈F containing Fε and any G ∈F containing Gε ,

∥

∥

∥

∥

∥

x0− ∑
xα∈F

xα

∥

∥

∥

∥

∥

< ε/2 and

∥

∥

∥

∥

∥

x1− ∑
xα∈G

xα

∥

∥

∥

∥

∥

< ε/2,

whence
∥

∥

∥

∥

∥

x0− ∑
xα∈Fε∪G ε

xα

∥

∥

∥

∥

∥

< ε/2 and

∥

∥

∥

∥

∥

x1− ∑
xα∈Fε∪G ε

xα

∥

∥

∥

∥

∥

< ε/2,

and so ‖x0− x1‖< ε . Since ε is arbitrary, x0 = x1.
Note that in dealing with a finite unordered sum of terms xα in any normed space

X , including R and C, we must have xα = 0 except for at most a countable number
of terms (Problem 8.16(A)).

If we think of counting measure on a set A, that is, for x ∈ A, the singleton set
{x} has measure 1, then the unordered sum of the values taken by a nonnegative,
real-valued function f on A corresponds to the integral of f with respect to counting
measure. Recall that the Hilbert space �2 consists of scalar sequences 〈an : n ∈ N〉
for which ∑n∈N |an|2 <+∞. We will write �2 (N) to indicate that the index set is N.
A larger class of Hilbert spaces is obtained using unordered sums on a set A. Here,
the measure space is A with counting measure. All subsets of A are measurable,
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and the only null set is the empty set. This is an example of an L2-space, but we
will write �2 (A). That is, a scalar function ϕ on A is in �2(A) if the unordered sum
∑α∈A |ϕ(α)|2 exists in R. The following is an application of the fact that an L2-space
is a Hilbert space; it is stated for the scalar field C.

Theorem 8.7.1. The set �2(A) is a vector space over C. If ϕ and ψ are any two
elements of �2(A), then the unordered sum (ϕ,ψ) = ∑α∈A ϕ(α)ψ(α) exists in C,
and the CBS inequality holds. That is,

|(ϕ,ψ)| ≤ ‖ϕ‖2 · ‖ψ‖2.

It follows that (·, ·) is an inner product, ‖·‖2 =
√

∑α∈A |ϕ(α)|2 is a norm, and �2(A)
is a Hilbert space.

8.8 Fourier Series

Recall that a map T from one linear space to another is linear if for all points x and
y in the domain and all scalars α and β , T (αx+ βy) = αT (x)+ βT (y). We now
establish the existence of a linear map between any Hilbert space H and an appro-
priate �2 space via the Fourier coefficient map. If H is separable, the corresponding
�2 space is either finite-dimensional or �2(N). We give separate consideration to the
separable and the non-separable case.

Theorem 8.8.1. Let H be a Hilbert space. Let {uα : α ∈ A} be an orthonormal
family in H, and let M be the closure of its span. Then M is a Hilbert subspace of
H. The map ˆ: H → �2(A) given by x → x̂, where x̂(α) is the αth Fourier coefficient,
satisfies Bessel’s inequality:

‖x̂‖2
2 = ∑

α∈A

|x̂(α)|2 ≤ ‖x‖2.

The map x → x̂ is linear and continuous. Its restriction to points x∈M is a bijection,
i.e., a one-to-one map of M onto �2(A). It is, in fact, an isometry; that is, for each
x∈M, ‖x̂‖2 = ‖x‖. As already noted, M =H if and only if {uα : α ∈A} is a maximal
orthonormal family in H.

Proof. The span, and therefore, the closure of the span are stable under addition
and scalar multiplication. A closed subspace of a complete space is complete, since
a Cauchy sequence has a limit in the complete space, and that limit must be in the
closed subspace. Therefore, the restriction of the inner product to points of M makes
M a Hilbert subspace of H. By Theorem 8.5.2, M = H if and only if {uα : α ∈ A}
is a maximal orthonormal family in H.

For each α ∈ A, the map x → (x,uα) = x̂(α) is linear, so the map x → x̂ is linear.
We have seen in Proposition 8.5.3 that for any finite subset F ⊆ A and any x ∈ H,
∑α∈F |x̂(α)|2 ≤ ‖x‖2. This shows that the set of Fourier coefficients of any x ∈ H
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is in �2(A), and that Bessel’s inequality holds. It follows from Bessel’s inequality
that the linear map x → x̂ is continuous since ‖x̂− ŷ‖2 ≤ ‖x− y‖. We need to show
that for each y ∈ �2(A), there is a unique x ∈ M such that x̂ = y, and moreover,
‖x‖= ‖x̂‖2.

To show the uniqueness, suppose x̂ = ẑ. Let w = x−z. By linearity ŵ = x̂− ẑ = 0.
It follows that for each α ∈ A, (w,uα) = 0, whence w⊥span({uα : α ∈ A}). By
continuity, w∈M⊥. If x and z are both in M, then w∈M∩M⊥, whence w= x−z= 0
in H.

Assume that H is separable. By Theorem 8.6.1, A is either finite or countably in-
finite. We work with the case that A=N, leaving the finite case as an exercise (8.19).
Fix y∈ �2(N). That is, y = {ai : i∈N}, and ∑∞

i=1 |ai|2 <+∞. The sequence of partial
sums ∑n

i=1 aiui is a Cauchy sequence in H since for m < n,

∥

∥

∥

∥

∥

n

∑
i=1

aiui−
m

∑
i=1

aiui

∥

∥

∥

∥

∥

2

=
n

∑
i=m+1

|ai|2.

Since M is closed, that Cauchy sequence converges to a point x0 ∈ M. Since the
norm and the map ˆ are continuous,

‖x0‖2 = lim
n

∥

∥

∥

∥

∥

n

∑
i=1

aiui

∥

∥

∥

∥

∥

2

= lim
n

n

∑
i=1

|ai|2 = ‖y‖2
2,

and ai = x̂0(i) for each i ∈ N. Thus, for each y ∈ �2(N), there is an x ∈M such that
x̂ = y and ‖x‖= ‖y‖2. It follows that the Fourier coefficient map x → x̂ maps M onto
�2(N), and the map is an isometry when restricted to M.

Now suppose H is not separable. Fix y ∈ �2(A). That is, y = {bα : α ∈ A}, and
the unordered sum ∑α∈A |bα |2 exists in R. Let B be the finite or countably infinite
set of α’s in A for which bα �= 0. Let yB = {bα : α ∈ B}. We work with the case
that B is infinite, leaving the finite case as an exercise (8.19). Let MB be the closure
of the span of {uα : α ∈ B}. Order the set of uα ’s, α ∈ B, to form the enumerated
orthonormal family {ui : i ∈ N}, and for each i ∈ N, let bi be the corresponding
element of y. As is true for the separable case, x = limn ∑n

i=1 biui exists and is in
MB ⊆ M. Moreover, x̂(i) = yB(i) for each i ∈ N, and ‖x‖ = ‖yB‖2. For each α ∈
A�B, x̂(α) = (x,uα) = 0. Therefore, x̂ = y. Also,

‖x̂‖2 = ‖yB‖2 = ‖y‖2 = ‖x‖.

It follows that for each y ∈ �2(A), there is an x ∈M such that x̂ = y, and ‖x‖= ‖x̂‖2.

Corollary 8.8.1. The equality ‖x̂‖2 =

√

∑α∈A |x̂(α)|2 =
√

(x,x) = ‖x‖ holds for
every x ∈ H if and only if {uα : α ∈ A} is a maximal orthonormal family in H.

Proof. Exercise 8.23.
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Corollary 8.8.2 (Parseval’s Equality). The equality (x̂, ŷ)=∑α∈A x̂(α)ŷ(α)= (x,y)
holds for every x and y in H if and only if {uα : α ∈ A} is a maximal orthonormal
family in H.

Proof. If there is a u0 of norm 1 in M⊥, then û0 = 0, so (û0, û0) = 0, while
(u0,u0) = 1. If M = H, then the corresponding inner products in �2(A) and in H
are equal because they can be written in terms of the norm using the following iden-
tities, called the polarization identities: For the real case,

(x,y) =
1
4
‖x+ y‖2− 1

4
‖x− y‖2

=
1
4
[(x,x)+2(x,y)+(y,y)]− 1

4
[(x,x)−2(x,y)+(y,y)].

For the complex case,

(x,y) =
1
4

[

‖x+ y‖2−‖x− y‖2 + i‖x+ iy‖2− i‖x− iy‖2
]

.

8.9 Trigonometric Series

In this section, we show that the family {1,cos(nt),sin(nt) : n ∈ N} is, after a suit-
able normalization, a complete orthonormal system for L2([0,2π]). The orthogonal-
ity is obtained with the usual integrals using trigonometric identities. For each n> 0,
the normalization is given by multiplying each sine and cosine function by 1/

√
π

since
∫ 2π

0 cos2(nt)dt =
∫ 2π

0 sin2(nt)dt = π . Since
∫ 2π

0 12 dt = 2π , the normalization
for 1 is given by 1/

√
2π . If we like, we can integrate from −π to π instead of from

0 to 2π , since we are working with period 2π .
Given an orthonormal family in L2 and f ∈ L2, we associate f with its expansion;

that is, f ∼ ∑ f̂ (α)uα , where f̂ (α) = ( f ,uα). Here, we have the expansion

f (x)∼ a0

2
+

∞

∑
n=1

[an cos(nx)+bn sin(nx)] .

Usually, one drops the normalization of the cosine and sine terms in writing the
Fourier series, and one writes the constant term of the Fourier series as a0/2.
The normalization is put back when finding the Fourier coefficients. That is, to find
the coefficient of the kth cosine term ak, we think of f as being given by its Fourier
series, and for k ≥ 1, we evaluate the integral

1
π

∫ π

−π
f (t)cos(kt)dt =

1
π

∫ π

−π

(

a0

2
+

∞

∑
n=1

an cos(nt)+bn sin(nt)

)

· cos(kt)dt

=
∫ π

−π
ak · cos(kt)√

π
· cos(kt)√

π
dt = ak.
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Similarly,

1
π

∫ π

−π
f (t)sin(kt)dt =

1
π

∫ π

−π

(

a0

2
+

∞

∑
n=1

an cos(nt)+bn sin(nt)

)

· sin(kt)dt

=
∫ π

−π
bk · sin(kt)√

π
· sin(kt)√

π
dt = bk.

To find the value of a0, we evaluate

1
π

∫ π

−π
f (t)dt =

1
π

∫ π

−π

(

a0

2
+

∞

∑
n=1

an cos(nt)+bn sin(nt)

)

dt

=
∫ π

−π

(

a0 · 1√
2π

)

· 1√
2π

dt = a0.

The maximality (also known as, completeness) of the trigonometric system for the
interval [0,2π] follows first from the fact that the space C(T), consisting of the con-
tinuous functions taking the same value at 0 and 2π , is dense in L2([0,2π]). We
think of associating 0 and 2π so that they represent a single point. The domain is
then a circle of circumference 2π (hence, the T for torus). One needs the fact that fi-
nite linear combinations of the trigonometric functions are dense in the space C(T),
and are, therefore, dense in L2([0,2π]). The denseness in the space C(T) is a conse-
quence of the Stone-Weierstrass Theorem, which is discussed in Example 9.11.1.

8.10 Problems

Problem 8.1. Show that it follows from the CBS inequality that the inner product
on an inner product space H is a continuous function on H×H.

Problem 8.2. Verify Example 8.3.1.

Problem 8.3. Let H = R
2 with the inner product be equal to the usual dot-product

of vectors. Let M be the line of slope a > 0. That is, M := {(t,at) : t ∈ R}.
a) Find the closest point P(x,0) on the line M to the point (x,0) on the real axis.
b) Show that the vector P(x,0)− (x,0) is orthogonal to M.

Problem 8.4. Let H be a Hilbert space.

a) Show that if A⊆ B⊆ H, then B⊥ ⊆ A⊥.
b) Show that A⊥ =

(

A
)⊥

.

Problem 8.5. Let M be a closed Hilbert subspace of a Hilbert space H. Show that
(

M⊥)⊥ = M.

Problem 8.6. Prove Corollary 8.3.3.
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Problem 8.7. Let H be a Hilbert space, and let A ⊆ X . If A contains an open ball
B(a,r) for some a ∈ A, r > 0, show that A⊥ = {0}. Hint: Suppose there is a point
y ∈ A⊥ with ‖y‖= r/2. What can you say about a+ y?

Problem 8.8. Show that the parallelogram law fails for the space C([−1,1]) consist-
ing of the continuous real-valued functions on [−1,1] and equipped with the norm
‖ f‖= maxx∈[−1,1] | f (x)|.
Problem 8.9. Show that �p(N) is a Hilbert space if and only if p = 2. Hint: Check
the parallelogram law.

Problem 8.10. Let λ be Lebesgue measure on the real line R. Suppose E is a
measurable subset of R and ν is defined on any measurable subset A by setting
ν(A) = λ (A∩E). Clearly, ν is absolutely continuous with respect to λ , i.e., ν << λ .
Describe the Radon-Nikodým derivative dν/dλ .

Problem 8.11. Let X = {1,2, . . . ,n}, and let μ be counting measure on X . That is,
μ(i) = 1 for each i ∈ X . Given any measure ν on the subsets of X , calculate dν

dμ .

Problem 8.12. Show that if μ and ν are σ -finite measures on a measurable space
(X ,B), then X is a countable union of measurable sets on which both μ and ν are
finite measures.

Problem 8.13. a) Let μ and ν be σ -finite measures on a measurable space (X ,B)
with ν << μ . Show that if g ∈ L1(ν), then

∫

X gdν =
∫

X g dν
dμ dμ .

b) Assume in addition that γ is a σ -finite measure on (X ,B) such that μ << γ .
Show that dν

dγ = dν
dμ

dμ
dγ , γ-a.e.

Problem 8.14. a) Show that the span of a subset S of a Hilbert space H is a linear
space. That is, S is stable with respect to addition and scalar multiplication.

b) Show that the span of S is the smallest linear subspace of H containing S.
c) Show that the closure of the span of a subset S of a Hilbert space H is a linear

space.

Problem 8.15. Show the following: If a series in the scalar field is absolutely con-
vergent, then the sum of the terms is an unordered sum. Conversely, if a scalar series
has an unordered sum, then the series is absolutely convergent.

Problem 8.16 (A). Show that in dealing with a finite unordered sum of terms xα in
any normed space X , including R or C, we must have xα = 0 except for at most a
countable number of terms.

Problem 8.17. Let {u1,u2,u3} be a three-element orthonormal family in a Hilbert
space H. Let M be the span of the set {u1,u2,u3}. Given h ∈ H, let a1 = (h,u1),
a2 = (h,u2), and a3 = (h,u3).

a) Show that h− (a1u1 +a2u2 +a3u3) is in M⊥.
b) Describe in terms of the elements u1, u2, and u3, the nearest element to h in M

and the nearest element to h in M⊥.
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Problem 8.18. Show that the span of a finite orthonormal family in a real or com-
plex inner product space is complete.

Problem 8.19 (A).

a) Prove Theorem 8.8.1 for the case that H is separable and A is a finite set.
b) Prove Theorem 8.8.1 for the case that H is not separable and B is a finite set.

Problem 8.20. Let H be a Hilbert space, and let M ⊂H be a closed linear subspace
such that M �= H and M �= {0}. Show that there is a maximal orthonormal basis for
H consisting only of elements of M and of M⊥.

Problem 8.21. Let H be a separable Hilbert space, and let V be a dense subspace of
H. Show that V contains a maximal orthonormal family for H.

Problem 8.22. Show that a linear isometry from one normed space to another is an
injection, that is, a one-to-one map.

Problem 8.23. Prove Corollary 8.8.1.

Problem 8.24. Use the fact that the family

{ 1√
2π
}∪{ 1√

π
cosnx : n ∈ N}∪{ 1√

π
sinnx : n ∈ N}

is a maximal orthonormal family in L2[0,2π] with respect to Lebesgue measure to
show that for any f ∈ L2[0,2π], limn→∞

∫ 2π
0 cos(nx) f (x)dx = 0.

Problem 8.25. Show that for a Hilbert space with complex scalars, the inner product
is given by the polarization identity.

(x,y) =
1
4

[

‖x+ y‖2−‖x− y‖2 + i‖x+ iy‖2− i‖x− iy‖2
]

.



Chapter 9
Topological Spaces

9.1 Neighborhoods

In this chapter, we generalize the notion of closeness given by a metric or norm.
Recall that if we start with a metric space (X ,d), then open balls play a central
role in obtaining results. An open ball with center x and radius r > 0 is denoted by
B(x,r); it is the set {y ∈ X : d(x,y) < r}. In R, B(x,r) = (x− r,x+ r). A set O is
called open in a metric space if for each x∈O there is an r > 0 such that the open ball
B(x,r) is contained in O. If z ∈ B(x,r), then there is an open ball B(z,δ ) ⊆ B(x,r).
Just let δ = r− d(x,z). This property makes an open ball such as B(x,r) an open
set. A subset of a metric space is again a metric space when the metric is restricted
to pairs of points in the subset. In a space X with a norm, such as a Hilbert space,
the corresponding metric is given by d(x,y) = ‖x− y‖. Note that for any z ∈ X ,
B(0,r)+ z = B(z,r). Also, for any z ∈ X , ‖z‖= ‖z−0‖= d(z,0).

If x and y are points in a metric space, then the more open balls centered at x that
contain y, the closer y is to x. Given two open balls centered at x, the intersection
contains, and in fact equals, an open ball centered at x. We now generalize these
properties so that we can deal with topologies in essentially the same way that we
deal with metrics. First we note that given a point x in a metric space, the collection
Fx of open sets containing x has the properties of what is called a filter base. That is,
Fx is a nonempty collection of nonempty sets each containing x, and the intersection
of any two members of Fx contains another member of Fx. Here is what we will
use.

Definition 9.1.1. Fix a nonempty set X . A local filter base at a point x ∈ X is a
nonempty collection Bx of subsets of X , each containing x, such that

∀U,V ∈Bx, ∃W ∈Bx such that x ∈W ⊆U ∩V.

Example 9.1.1. An example of a local filter base not given by a metric is one for
pointwise convergence of real-valued functions on [0,1]. Here, each point is actually
a function f , and an element of B f specifies a finite set {r1, · · · ,rn} in the interval
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[0,1] and an ε > 0. A function g is in the member of B f given by these parameters
if for 1 ≤ i ≤ n, |g(ri)− f (ri)| < ε . To see that the necessary condition for a local
filter base is met, simply take two such sets for a given f , take the union of the two
sets of points in [0,1] and the smaller of the two ε’s. This gives a member of B f

contained in the two initial ones.

Definition 9.1.2. Assume we are given a local filter base Bx, at each point x in a set
X . A set O⊆ X is called open if for each y ∈ O there is a U ∈By with y ∈U ⊆ O.
A collection T of subsets of a nonempty set X is called a topology, and (X ,T ) is
called a topological space, if T contains X as well as the empty set, and T is stable
with respect to the operations of taking arbitrary unions and finite intersections.

We will usually assume that the members of a local filter base are themselves
open sets. Even without this simplifying assumption, we have the following result,
used, for example, to construct a topology in [21].

Theorem 9.1.1. Given an assignment of a local filter base Bx at each point x of a
nonempty set X, the collection T of open subsets of X is a topology on X.

Proof. Since there are no points in the empty set, the condition for the empty set to
be open is vacuously satisfied. Since for each x∈ X , Bx �=∅, the set X itself is open.
If {Uα} is a collection of open sets and the union contains x, then for some index
α0, x ∈Uα0 , and so for some W ∈Bx, x ∈W ⊆Uα0 ⊆

⋃

α Uα . Therefore
⋃

α Uα is
open. If {U1, . . . ,Un} is a finite collection of open sets, each of which contains x,
then for 1 ≤ i ≤ n, there is a set Wi ∈Bx with x ∈Wi ⊆Ui. By the properties of a
local filter base, there is a set W0 ∈Bx with x ∈W0 ⊆⋂n

i=1 Wi ⊆⋂n
i=1 Ui. Therefore

⋂n
i=1 Ui is open.

Definition 9.1.3. If for each x in a set X , x →Bx is an assignment of a local filter
base consisting of open sets, then we say that we are given an open base at each
x ∈ X .

We have noted that for a metric space, the open balls centered at a point form an
open base at the point. It is also easy to see that the base described for pointwise
convergence in Example 9.1.1 consists of open sets. In much of the literature, one
starts with a topology T , calling the members “open sets”; only later is an open
base at a point of the space defined. If one starts with a topology T , the mapping
x → {O ∈ T : x ∈ O} gives the largest possible open base at each x that yields T
as the collection of open sets. On the other hand, if one is given an open base Bx at
each point of a set X and U : ={U : ∃ x ∈ X , U ∈Bx}, then the topology consists
of all possible unions of sets from U .

An open set containing a point x is often called an open neighborhood (or just
a neighborhood) of x. In general, many choices of open bases give rise to the same
topology. For the Euclidean plane, for example, open disks centered at points of
the plane generate the topology of open subsets of the plane. The same topology,
however, is generated by the insides of squares centered at points of the plane, and
also by open balls of radius 1/n, n ∈ N, centered at points of the plane. For this
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reason, the overall collection of open sets is the first thing that is usually defined
when considering a topology. On the other hand, just as with open balls in a metric
space, it is the generating open neighborhoods of points that one considers for the
most part when actually working with a topology.

The emphasis on open neighborhoods will allow us to develop the notions of
topology in parallel with the notions of metric spaces. Indeed, if we are given a
metric space, we will usually assume that the open base at a point is the set of
open balls with that point as center. Even when a metric is available, however, it
is sometimes better to work with a neighborhood system not directly given by the
metric. For example, the topology of uniform convergence on compact sets is of
fundamental importance in complex function theory. A metric is available, but it
is more natural to think of a neighborhood of a continuous function f as given by
a compact subset K ⊆ C and an ε > 0; the neighborhood consists of appropriate
continuous functions g such that maxz∈K | f (z)−g(z)|< ε . (See Problem 9.1.)

Finally, we note some additional structure that can be added to a topological
space to obtain results not available for generic topological spaces.

Definition 9.1.4. A subset S of a topological space (X ,T ) is dense in X if every
O ∈ T contains a point of S. That is, S = X . A topological space that contains a
countable dense subset is called separable.

Example 9.1.2. The rational numbers are dense in R, so R is separable. The points
with rational coordinates are dense in R

n, so R
n is separable.

Definition 9.1.5. Given a topological space (X ,T ), a collection B ⊆ T is called
a base for T if for each open O and each x ∈ O there is a U ∈B with x ∈U ⊆ O.
That is, every open set O is the union of the sets from B contained in O.

Remark 9.1.1. If B is a base for a topology T , then x → {U ∈B : x∈U} is an open
base at x. On the other hand, given an open base Bx at each point of X , ∪x∈XBx is
also a base for the topology. Usually, a base B is a smaller collection of open sets.

Example 9.1.3. For a separable metric space such as Rn, it follows from Problem 9.3
that open balls of radius 1/n, n ∈ N, centered at points of a dense subset of X form
a base for the metric topology.

Definition 9.1.6. A topological space with a countable open base Bx at each point
is said to satisfy the first axiom of countability. One also says the space is “first
countable.” A topological space with a countable base B for the topology is said
to satisfy the second axiom of countability. One also says the space is “second
countable.”

We will show that sequences suffice for convergence to closure points when a
space satisfies the first axiom of countability. Also, a space that satisfies the second
axiom of countability satisfies the first axiom, since the sets in the base containing
x form a base at x.

Example 9.1.4. A metric space (X ,d) satisfies the first axiom of countability since
open balls of radius 1/n, n ∈ N, centered x ∈ X form an open base at x.



150 9 Topological Spaces

Theorem 9.1.2. A topological space (X ,T ) that satisfies the second axiom of
countability is separable. If (X ,T ) is separable and satisfies the first axiom of
countability, then it satisfies the second axiom of countability.

Proof. Given a countable base for the topology, use the Axiom of Choice to select
one point from each base set. Given a countable dense set S ⊆ X and a countable
open base Bx at each x ∈ S, the union ∪x∈SBx forms a countable base for the topol-
ogy.

Remark 9.1.2. For the most part, we work with open bases at points of a topological
space. Recall, however, that if we are given a local filter base at each point of a set X ,
then a set E is open in the corresponding topology if and only if for each x∈ E, there
is a set S in the local filter base at x such that x ∈ S ⊆ E. This raises the question
as to whether such a set must at least contain an open subset. The answer is “not
always.” For example, the set {a,b,c} with the trivial topology is generated by the
local filter base that associates the set {a,b} with a and associates the set {a,b,c}
with both b and c. Here is a partial positive answer for a Hausdorff space; that is, a
space for which distinct points have disjoint open neighborhoods.

Proposition 9.1.1. Let (X ,T ) be a Hausdorff space. Let p be a point in X for which
there is a countable open base at p, whence there is a sequence 〈On : n ∈ N〉 of open
sets with p ∈ On+1 ⊆ On for each n, and ∩nOn = {p}. Let Lp be a local filter base
for p. Then each S ∈Lp contains an open set.

Proof. For each n ∈ N, there is an Sn ∈ Lp with p ∈ Sn ⊆ On. If some S0 ∈ Lp

contains no open set, then we may assume that each Sn is contained in S0. Now,
for each n ∈ N, there is a point xn ∈ On�S0. Let A = {xn : n ∈ N}. Since (X ,T )
is Hausdorff, for each point x �= p in X , there is an m ∈ N and an open set V that
contains x such that Om∩V = ∅. Using the fact that X is Hausdorff again, there is
an open neighborhood U of x contained in X�A. Since p ∈ S0 ⊆ X�A, X�A is an
open set. On the other hand, A is not closed since p is a point of closure of A. This
contradiction establishes the result.

9.2 Metric and Topological Notions

We now establish some properties of both metric and topological spaces. Through-
out this section, we work with a nonempty set X and an assignment of an open base
Bx at each x ∈ X . When the space is a metric space, which we assume is nonempty,
the open base at x consists of open balls centered at x. For this reason, our results
will recapitulate results for metric spaces.

Definition 9.2.1. Given A ⊆ X , and x ∈ X , we say that x is a point of closure or a
closure point of A if for each U ∈Bx, U ∩A �=∅. We write A for the set of points
of closure of A. A set A is called closed if A = A. Moreover, A is called the closure
of A.
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Proposition 9.2.1. Fix A, B ⊆ X. Clearly, A ⊆ A. If A ⊆ B, then A ⊆ B. In general,
A∪B = A∪B, and A∩B⊆ A∩B.

Proof. If C ⊆ D ⊆ X , then a closure point of C is a closure point of D. It follows
that, A∩B⊆ A∩B, and A∪B⊇ A∪B. If x is in A∪B and x is not a point of closure
of A, then some neighborhood of x does not intersect A. Every neighborhood in Bx

must then intersect B, so x ∈ B. It follows that A∪B = A∪B.

Example 9.2.1. On R, if A = (0,1) and B = (1,2), then A∩B =∅, but A∩B = {1}.

Proposition 9.2.2. The closure of the closure is the closure; i.e.,
(

A
)

= A.

Proof. Let x be a point of closure of A, and fix an arbitrary U ∈Bx. By definition,
there is a z ∈U ∩A. Since U is open, there is a V ∈Bz with z ∈V ⊆U . Since z ∈ A,
there is a y ∈V ∩A⊆U ∩A, whence x ∈ A.

Proposition 9.2.3. The closure of a set A ⊆ X is the intersection of all closed sets
containing A.

Proof. Exercise 9.4.

Proposition 9.2.4. The closure of a dense subset S⊆ X is all of X.

Proof. Exercise 9.5.

Theorem 9.2.1. A set A is closed if and only if its complement X \A is open.

Proof. Exercise 9.6.

Proposition 9.2.5. The set X and the empty set ∅ are closed. Moreover, finite unions
and arbitrary intersections of closed sets are closed.

Proof. Use De Morgan’s law.

Remark 9.2.1. We have already noted in Remark 7.1.4 that a closed ball in a metric
space is a closed set, and for some spaces, the closure of an open ball may not be
the closed ball with the same radius.

Definition 9.2.2. The interior of a set E ⊆ X is the set of all x for which there is a
U ∈Bx with x ∈U ⊆ E. We write E◦ for the interior.

Proposition 9.2.6. The interior of a set E is the union of all open sets contained
in E.

Proof. Exercise 9.7.

Definition 9.2.3. If A is a subset of a metric space, then A is bounded if A is con-
tained in an open ball about some point of the metric space.
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9.3 Continuous Mappings

In this section, we assume that X and Y are two sets; we let x →Bx be an open base
at each point of X while y →Dy is an open base at each point of Y .

Definition 9.3.1. A function f from X into Y is continuous at x ∈ X if for each V ∈
D f (x), there is a U ∈Bx with f [U ]⊆V . We say that f is continuous or continuous
on X if it is continuous at each point x ∈ X .

Theorem 9.3.1. A function f mapping X into Y is continuous on X if and only if for
each open set O contained in Y , f−1[O] is open in X.

Proof. Assume that for every open O ⊆ Y , f−1[O] is open. Given x ∈ X and V ∈
D f (x), f−1[V ] is open and contains x. Therefore, there is a U ∈Bx with x ∈U ⊆
f−1[V ], whence f [U ] ⊆ V . It follows that f is continuous on X . Conversely, if f is
continuous on X and O is open in Y , then given x ∈ f−1[O], set y = f (x) ∈ O. Now
there is a V ∈ Dy with y ∈ V ⊆ O, and there is a U ∈Bx with f [U ] ⊆ V ⊆ O. That
is, x ∈U ⊆ f−1[O]. It follows that f−1[O] is open in X .

Proposition 9.3.1. Assume now that Z is a third set with open base Fz at each point
z of Z. Fix x ∈ X. If f : X → Y is continuous at x, and g : Y → Z is continuous at
f (x), then g◦ f : X → Z is continuous at x. If this is true at each point of x, then the
composition function is continuous. That is, a continuous function of a continuous
function is a continuous function.

Proof. For the second part, if O is open in Z, then g−1[O] is open in Y , whence
(g◦ f )−1[O] = f−1[g−1[O]] is open in X .

Definition 9.3.2. A bijection f mapping X onto Y is called a homeomorphism be-
tween X and Y if f and f−1 are continuous. If such a mapping exists, we say that X
and Y are homeomorphic.

Properties invariant under homeomorphic mappings are often called topological
properties. If (X ,ρ) and (Y,σ) are metric spaces and f is a mapping from X onto
Y such that for every x, z ∈ X , σ( f (x), f (z)) = ρ(x,z), we say that f is an isometry
between X and Y . If such a mapping exists, we say that X and Y are isometric
spaces. An example of a homeomorphism that is not an isometry is given by the
identity mapping from R

n to R
n where the domain is supplied with the Euclidean

metric ρ and the range has the distance function min(ρ ,1).

9.4 Sequences and Nets

Example 9.4.1. We want to use ordinal numbers as an example in this section. We
summarize some results from the appendix on the Axiom of Choice. It follows from
that axiom that any set can be well-ordered. Take an uncountable set and impose
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a well-ordering on it. Every nonempty subset of the set will have a first element
with respect to the ordering. There is, therefore, a first element ω such that the set
of its predecessors, corresponding to the elements of N, is an infinite set. There
is a first element Ω such that the set of its predecessors form an uncountable set.
There is a bijection between any two well-ordered sets terminating in an element
that is the first element for which the set of predecessors is an uncountable set. That
terminating element is called the first uncountable ordinal Ω . If S is such a set,
then any element smaller than Ω has an immediate successor but not necessarily
an immediate predecessor. Since each α < Ω has an immediate successor ν , γ ≤
α if and only if γ < ν . An open base at each α ≤ Ω consists of the sets Uβ =
{γ ∈ S : β < γ ≤ α } for each β < α in S. The corresponding topology is called
the order topology on S. The element Ω and its predecessors form the ordinal
numbers up to the first uncountable ordinal.

Throughout this section, we let (X ,T ) be a topological space, and for each x∈X ,
we let Bx be an open base such that the assignment x →Bx generates the topol-
ogy T . Recall that for each x ∈ X , Bx may consist of all open sets containing x.

Definition 9.4.1. A sequence 〈xn;n ∈ N〉 in X converges to a point x ∈ X if it is
eventually in each U ∈ Bx. That is, for every U ∈ Bx, there is an m ∈ N such
that for all n ≥ m, xn ∈U . The point x is a cluster point of xn if the sequence xn is
frequently in every U ∈Bx. That is, for every m∈N, there is an n≥m with xn ∈U .

A generalization of sequential convergence is given by net convergence. Recall
that a directed set is a set D together with a transitive relation ≤ such that for any
pair a, b in D , there is a c in D with a≤ c and b≤ c. A net in X is a mapping from
a directed set into X . We write xa for the image in X of a ∈D ; we write 〈xa : a ∈D〉
for the net.

Definition 9.4.2. A net 〈xa : a ∈D〉 in X converges to a point x ∈ X if for each
U ∈Bx there is a c ∈ D such that for all a ≥ c in D , xa ∈ U . That is, the net is
eventually in every open neighborhood of x. A point x ∈ X is a cluster point of the
net 〈xa : a ∈D〉 if for every U ∈Bx and every b ∈ D , there is a c ≥ b in D with
xc ∈U . That is, the net is frequently in every neighborhood of x.

Example 9.4.2. We have already noted in Examples 1.9.3 and 1.9.4 the use of net
convergence beyond sequential convergence in calculus. Unordered sums are also
an example of net convergence. Our topological space (X ,T ) provides still another
example. That is, fix x ∈ X , and let the directed set D := Bx. We set V ≥U in D
if V ⊆U . The property that makes Bx a local filter base makes D a directed set.
Choose xU ∈U for each U ∈Bx. Then the net 〈xU : U ∈Bx〉 converges to x since
it is eventually in every U ∈Bx. Note that such a net always converges to x, but if
(X ,T ) does not satisfy the first axiom of countability, there may be no sequence
except one eventually identically equal to x that converges to x. An example is given
by the set of ordinal numbers up to and including the first uncountable ordinal Ω
described in Example 9.4.1 and Problems 9.9 and 9.20. There is no countable base
at Ω for the order topology. There is no sequence of ordinals smaller than Ω that
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converges to Ω even though, using the order topology, Ω is a closure point of the
set of its predecessors. On the other hand, the set of ordinals smaller than Ω forms
a directed set, and the identity map α → α provides a net converging to Ω .

Proposition 9.4.1. A point x is a closure point of E ⊆ X if and only if there is a
net in E converging to x. If there is a countable base for the topology at x, then a
sequence in E converges to x.

Proof. If such a net exists, then every neighborhood of x contains a point of E.
Conversely, if every neighborhood of x contains a point of E, then Example 9.4.2,
with xU ∈ E for each U ∈Bx, gives a net converging to x.

Definition 9.4.3. A topological space (X ,T ) is a Hausdorff space if distinct points
x and y in X have disjoint open neighborhoods U ∈Bx and V ∈By.

Remark 9.4.1. A metric space with the topology generated by the metric is a Haus-
dorff space. For these, and for more general spaces, the following is clear.

Proposition 9.4.2. A net, in particular a sequence, can have at most one limit in a
Hausdorff space.

9.5 Subspaces

Given a subset Y ⊂ X , where (X ,d) is a metric space, we can restrict the metric
to Y ×Y . For each x ∈ Y , we then look at open balls in Y ; these have the form
{y ∈ Y : d(x,y)< r}. For spaces without a metric, we can still restrict the topology.
Let (X ,T ) be a topological space, and let x →Bx be an assignment of an open base
at each x ∈ X . Fix Y ⊂ X . If y ∈ Y , then BY

y :=
{

U ∩Y : U ∈By
}

is a local filter
base at y since

W ⊆U ∩V ⇒W ∩Y ⊆ (U ∩Y )∩ (V ∩Y ) .

Definition 9.5.1. Sets open in Y with respect to the assignment y →BY
y are called

relatively open in Y . The corresponding topology on Y is called the relative topol-
ogy on Y .

Proposition 9.5.1. For Y ⊆ X, a subset W ⊆ Y is open in Y , i.e., relatively open, if
and only if there is an open O⊆ X with W = O∩Y .

Proof. Assume W is nonempty and relatively open in Y . For each y ∈W , choose a
Uy ∈By so that y ∈Uy ∩Y ⊆W . The set O := ∪y∈WUy is the desired open subset
of X . Conversely, if W = O∩Y for some open subset O of X , then for each y ∈W ,
y ∈ O, so there is a U ∈ By with U ⊆ O. Since U ∩Y ∈BY

x , and U ∩Y ⊆W . It
follows that W is relatively open in Y .

Corollary 9.5.1. For each y∈Y , BY
y is an open base at y with respect to the relative

topology on Y .
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Corollary 9.5.2. If Z ⊆Y ⊆ X, the relative topology of Z with respect to the relative
topology of Y equals the relative topology of Z with respect to the topology for X.

Corollary 9.5.3. A set A is relatively closed in Y if and only if there is a closed set
F in X with F ∩Y = A. Moreover, for a general subset of Y , the relative closure in
Y is the intersection of the closure in X with Y .

Proof. Exercise 9.8.

Proposition 9.5.2. If B is a base for the topology T , and Y ⊂X, then the restriction
of the sets in B to Y is a base for the relative topology on Y .

Corollary 9.5.4. If (X ,T ) is separable and satisfies the first axiom of countability,
then every subspace of X is separable.

Proof. Apply Theorem 9.1.2.

Corollary 9.5.5. Every subspace of a separable metric space is separable.

9.6 Connectedness

Connected sets in topological spaces generalize intervals in the real line.

Definition 9.6.1. A subset A of a topological space (X ,T ) is connected if it is not
the union of two disjoint, nonempty, relatively open sets. Equivalently, it is con-
nected if it is not the union of two disjoint, nonempty, relatively closed sets. In
either case, such a pair of sets is called a disconnection of A. If A = X , relatively
open is just open, and relatively closed is just closed.

Theorem 9.6.1. Suppose A is a nonempty subset of a topological space (X ,T ), and
f is a continuous function from A with the relative topology into a topological space
(Y,S ). In particular, f may be the restriction to A of a continuous function on X.
Then the inverse image of a disconnection of f [A] is a disconnection of A. It follows
that the continuous image of a connected set is connected.

Proof. Suppose U and V are open sets in Y such that f [A] ⊂ U ∪V and U ∩V ∩
f [A] =∅. Then U∩ f [A] and V ∩ f [A] are relatively open sets in f [A]. It follows that
f−1 [U ] and f−1 [V ] are relatively open in A, their union is A and their intersection
is empty. That is, they form a disconnection of A.

Example 9.6.1. The Intermediate Value Theorem in calculus is an example of the
fact that an interval is connected, and so its continuous image is connected.

Theorem 9.6.2. If (X ,T ) is a topological space, and {Aγ : γ ∈ I } is an indexed
family of connected subsets of X such that for any α and β in I , Aα ∩Aβ �=∅, then
the union ∪γ∈I Aγ is connected.
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Proof. Exercise 9.10(A).

Theorem 9.6.3. If A is a connected subset of a topological space (X ,T ), and the
set A⊂ B⊆ A, then B is connected. In particular, A is connected.

Proof. Let U and V be disjoint, relatively open subsets of B such that B = U ∪V .
If U ∩A = ∅, then since any point of B�A is a point of closure of A, U = ∅. A
similar fact holds for V . Since A is connected, it follows from Corollary 9.5.2 that
either U =∅ or V =∅. Therefore, B is connected.

Definition 9.6.2. Let (X ,T ) be a topological space. A path in X joining x ∈ X to
y ∈ X is a continuous function h mapping a closed interval [a,b] ⊂ R into X with
h(a) = x and h(b) = y. The space (X ,T ) is pathwise connected if every pair of
points x and y in X can be joined by a path in X .

Remark 9.6.1. One can always use a continuous transformation to change the parametriz-
ing interval [a,b] to [0,1]. In the literature, a pathwise connected space is also called
arcwise connected.

Theorem 9.6.4. Every pathwise connected topological space is connected. In par-
ticular, every interval in the real line is connected.

Proof. First we show that every closed and bounded interval [a,b]⊂R is connected.
Suppose U and V are disjoint open sets in R with a ∈ U and [a,b] ⊆ U ∪V . Let
c = sup{x ∈ [a,b] : [a,x] ⊆U}. Since U and V are open, c = b, and c ∈U , whence
V ∩ [a,b] =∅. Now suppose that (X ,T ) is a nonempty, pathwise connected space,
and fix x ∈ X . By Theorem 9.6.1, every path in X from x to another point in X is
a connected set. Since X is the union of such paths, it follows from Theorem 9.6.2
that X is connected. In particular, any interval in R is connected.

Example 9.6.2. Let X be the plane R
2 with the Euclidean topology, and let A be the

graph of the function x → sin(1/x) for 0 < x≤ 1/π . Since A is pathwise connected
it is connected. The closure A in R

2 adjoins the interval from −1 to 1 on the y-axis.
By Proposition 9.6.3, A is connected. It is not, however, pathwise connected. See
Problem 9.13.

Remark 9.6.2. Here are some further aspects of connectedness that appear in the
literature. The component of a point is the union of all connected sets containing
the point. By Theorems 9.6.2 and 9.6.3, a component is both closed and connected.
A locally connected space is one having an open base x →Bx at each point con-
sisting of connected sets.

9.7 Compact Spaces

We next consider compactness for an arbitrary topological space (X ,T ). For a his-
tory of the notion, see [42].
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Definition 9.7.1. An open covering of a set A contained in a topological space
(X ,T ) is a collection of open sets in X such that each point of A is in at least
one of the open sets. A finite subcover of an open cover of A is a finite subcollec-
tion of the open cover that again forms a cover of A. A set A⊆ X is called compact
if every open cover of A has a finite subcover. A collection of sets has the finite
intersection property if every finite subcollection has a nonempty intersection.

Proposition 9.7.1. A set A ⊂ (X ,T ) is compact in X if and only if A is a compact
topological space with respect to the relative topology.

Proof. This follows from Proposition 9.5.1.

Fix (X ,T ). A collection of sets fails to cover a set A ⊆ X if there is a point of
A in all of the complements. Therefore, by DeMorgan’s law, we have an equivalent
formulation of compactness using closed sets. For the space (X ,T ) itself, relatively
closed just means closed.

Theorem 9.7.1. A set A ⊆ X is compact if and only if any collection of open sets
having no finite subcover of A does not itself cover A. Equivalently, A⊆X is compact
if any collection of relatively closed subsets of A with the finite intersection property
has a nonempty intersection.

Recall that a topological space is Hausdorff if any two distinct points have dis-
joint open neighborhoods.

Theorem 9.7.2. A closed subset of a compact set is compact. A compact subset of a
Hausdorff space is closed. A compact subset of a metric space is bounded.

Proof. Suppose A ⊂ B ⊆ X , and A is a closed subset of B, while B is a compact
subset of X . Adjoin X�A to any open cover O of A. The augmented collection
covers B, and so there is a finite subcollection that covers B. The members of that
finite subcollection that are in O cover A. Now suppose A ⊂ X is compact and
(X ,T ) is Hausdorff. If z is a point that is not in A, then for any x ∈ A, there are
disjoint open sets Ux and Vz about x and z, respectively. There is a finite subcover
U1, . . . ,Un of the U’s, and the corresponding finite intersection of the V ’s does not
intersect A, so z is not a point of closure of A. It follows that A is closed. Now assume
that if A ⊆ X is compact and the topology on X is generated by a metric. Fix any
point x0 in A. The open balls B(x0,n), n ∈ N, cover A, so A is contained in a finite
number of them, whence A is bounded.

Theorem 9.7.3. The continuous image of a compact set is compact.

Proof. Let f be a continuous function on a compact set A. If {Oα} is an open cover
of f [A], then { f−1[Oα ]} is an open cover of A. Since A is compact, there are a finite
number O1, · · ·,On of the Oα ’s such that { f−1[Oi] : 1 ≤ i ≤ n} covers A. It follows
that {Oi : 1≤ i≤ n} covers f [A].
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Corollary 9.7.1. A real-valued continuous function f defined on a compact set A
takes a maximum and minimum value.

Proof. The image f [A] is a compact subset of R. By Theorem 9.7.2, f [A] is a closed
subset of [−n,n] for some n ∈ N, whence f [A] contains its lub and glb in R.

Theorem 9.7.4. A continuous function f from a compact metric space (X ,d) into a
metric space (Y,ρ) is uniformly continuous.

Proof. Given ε > 0, cover X with open balls of half the radius that works for conti-
nuity and ε/2 at each x ∈ X . Take a finite subcover, and let δ be half the minimum
radius for that finite subcover. If d(x,y) < δ , then both x and y are in a ball B(z,r)
that maps into B( f (z),ε/2). It follows that ρ( f (x), f (y))< ε .

Proposition 9.7.2. If B is a base for the topology of X, then a subset of X is compact
if and only if every covering by sets from B has a finite subcovering.

Proof. Replace each set from an open covering by the sets from B that it contains.
Reduce that covering to a finite subcovering B1, · · · ,Bn. Then replace each Bi with
one of the original open sets that contains Bi.

Definition 9.7.2. A topological space (X ,T ) has the Bolzano-Weierstrass prop-
erty if every sequence in X has at least one cluster point in X .

Theorem 9.7.5. If X is compact, then every net in X, and in particular every se-
quence in X, has a cluster point in X. That is, the space has the Bolzano-Weierstrass
property. Conversely, if every net in X has a cluster point, then X is compact. On
the other hand, if X satisfies the second axiom of countability, then X is compact if
and only if X has the Bolzano-Weierstrass property.

Proof. Suppose 〈xα : α ∈D〉 is a net in X and X is compact. Then the collection of
closed sets Fγ = {xα : α ≥ γ}, γ ∈ D , has the finite intersection property, so there
is a point x in the intersection. For any open neighborhood U of x and any γ ∈ D ,
U ∩{xα : α ≥ γ} �=∅. That is, x is a cluster point of the net.

Conversely, let F be a family of closed subsets of X such that F has the finite
intersection property. Let D denote the collection of finite subcollections of F . The
ordering is given by ⊆, with the larger set being further along in the ordering. The
relation ⊆ is transitive, and given two finite collections, their union contains them
both. Therefore, 〈D ,⊆〉 is a directed set. For each finite subcollection of F in D ,
let the corresponding value of the net be an element chosen in the intersection of
the members of F . (In general, we are using the Axiom of Choice here.) We are
assuming that this net has a cluster point x. Therefore, for each neighborhood U of
x and for each F ∈F , there is a finite subset {F1, . . . ,Fn} of F containing F , and
there is a point y in the intersection ∩n

i=1Fi with y ∈U . Since y ∈ F , x is a closure
point of the closed set F , i.e., x ∈ F . It follows that x is in the intersection of all of
the sets in F .

Assume X has a countable base B. To show X is compact, it is enough to show
that every covering by sets from B has a finite subcovering. Equivalently, it is
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enough to consider a countable family {F1, F2, · · ·} consisting of the complements
of the sets in B with the property that for any n ∈ N, ∩n

i=1Fi �= ∅. Now for each
n ∈ N, we pick a point xn ∈ ∩n

i=1Fi. The assumption that this sequence has a cluster
point x means that x is a point of closure of each of the Fi’s, whence x ∈∩F . There-
fore, to establish compactness for a space with a countable base, one need only show
that the space has the Bolzano-Weierstrass property.

Example 9.7.1. In a space satisfying the first axiom of countability, such as a metric
space, if a sequence 〈xn〉 has a cluster point x, then a subsequence 〈xni〉 converges
to x. On the other hand, the space of ordinals, with the order topology, up to but
not including the first uncountable ordinal Ω satisfies the first but not the second
axiom of countability. (See Remark 9.4.1 and Problem 9.9.) For that space, every
sequence has a cluster point with a subsequence converging to that cluster point,
but the space is not compact. We will see (Example 9.9.1) that there is a compact
space, namely the Stone-Čech compactification of the natural numbers, that contains
a sequence with no converging subsequence even though the space must have the
Bolzano-Weierstrass property.

Proposition 9.7.3. Suppose (X ,d) is a metric space with the Bolzano-Weierstrass
property, and fix n ∈ N. Then there is a finite subset S of X with the following prop-
erties:

i) For distinct points x and y in S, d(x,y)≥ 1/n, and
ii) For any z ∈ X such that z /∈ S, there is an x ∈ S with d(x,z)< 1/n.

Proof. Any subset of X with just one point satisfies the first property. If S satisfies
the first but not the second property, then there is a point that can be added to S and
the first property will still be satisfied. This addition must stop at some finite step,
since a countably infinite set with the first property forms a sequence with no cluster
point.

Theorem 9.7.6. Suppose (X ,d) is a metric space with the Bolzano-Weierstrass
property. Then X is separable and compact.

Proof. By Proposition 9.7.3, for each n∈N, there is a finite set Sn such that for each
x ∈ X , there is an s ∈ Sn with d(x,s)< 1/n. The union ∪n∈NSn is a countable dense
set. By Theorem 9.1.2, X has a countable base for the topology, so by Theorem 9.7.5
X is compact.

Theorem 9.7.7 (Heine-Borel). A subset of Rm, m ∈ N, is compact if and only if it
is closed and bounded.

Proof. By Theorem 9.7.2, a compact subset of Rm is closed and bounded. Let A be
a closed and bounded subset of Rm. Let 〈xn : n ∈ N〉 be a sequence in A. Choose a
subsequence 〈xni : i ∈ N〉 so that the first coordinates of the subsequence converge to
the limsup of the first coordinates of the original sequence. Choose a subsequence
of that subsequence so that the second coordinates converge. After m steps, one has
a subsequence converging to a point that must be in A since A is closed. The limit
of the subsequence is a cluster point of the original sequence, so A is compact.
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Example 9.7.2. Warning: It is not true for an infinite-dimensional space, such as
�2, that a closed and bounded set is compact. Let A be the basis for �2 consisting
of sequences ei that are zero except at the ith place, where the value 1 is taken.
Each element of A is a distance

√
2 from every other element. Therefore, the closed

unit ball of �2, although closed and bounded, does not have the Bolzano-Weierstrass
property.

Definition 9.7.3. A metric space is totally bounded if for each ε > 0, the space is
covered by a finite number of balls of radius ε .

Theorem 9.7.8. A metric space is compact if and only if it is both complete and
totally bounded.

Proof. Clearly, a compact metric space is totally bounded, and any Cauchy se-
quence has a cluster point to which the whole sequence must converge. For the
converse, we assume that (X ,d) is complete and totally bounded. For each n ∈ N,
take a finite covering Cn of X by balls of radius 1/n. Let Sn be the finite set of cen-
ters of those balls. The union ∪n∈NSn is a countable dense set, so by Theorem 9.1.2,
(X ,d) has a countable base for the topology. Let 〈xn : n ∈ N〉 be a sequence in X .
A subsequence is in some ball B(y1,1) ∈C1. A subsequence of that sequence is in
some ball B(y2,1/2) ∈ C2, etc. The diagonal sequence, formed by mapping each
n ∈ N to the nth point in the nth subsequence, is Cauchy, and therefore has a limit.
That limit is a cluster point of the original sequence.

Example 9.7.3. The map tanx is a homeomorphism from (−π
2 ,

π
2 ) onto R. Note that

(−π
2 ,

π
2 ) is totally bounded, but R is not. This shows that total boundedness may not

be preserved by a homeomorphic map. It is, however, preserved by any uniformly
continuous map. See Problem 9.14.

9.8 Properties of Topologies

Two topologies that always exist on any nonempty set X are given by T = {X ,∅}
and by T =P(X), i.e., the set of all subsets of X . The first is called the trivial
topology; the second is called the discrete topology, since every point forms an open
set. The discrete topology can be generated by the following metric: Set d(x,y) = 1
for all x, y ∈ X .

It is common to have two topologies, T1 and T2, on X where every set open for
the first is open for the second; that is, T1⊆T2. We say T1 is weaker or coarser than
T2 and T2 is stronger or finer than T1. Of course, the trivial topology is the weakest
possible topology, and the discrete topology is the strongest possible topology on a
set. A topology T2 is stronger than T1 on a set X if for each point x ∈ X , any T1-
open neighborhood of x contains a T2-open neighborhood of x. Of course, if each
topology is stronger than the other, then they are equal. Recall that in a Hausdorff
space, distinct points have disjoint open neighborhoods.
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Theorem 9.8.1. Suppose (X ,T ) is a compact Hausdorff space. Then any strictly
weaker topology is not a Hausdorff topology, and with any strictly stronger topology,
the space is not compact.

Proof. Assume that T0 is strictly weaker than T , and let f be the identity map
x → x on X mapping (X ,T ) onto (X ,T0). The map f is continuous. Fix O in T
such that O /∈ T0, and let C = X�O. By Theorems 9.7.2 and 9.7.3, C is compact
with respect to T , so C is compact with respect to T0. On the other hand, C is not
closed with respect to T0, so (X ,T0) is not Hausdorff. The rest is Problem 9.16.

Any collection of subsets of X generates a topology on X . The generated topol-
ogy is the intersection of all topologies (including the discrete topology) containing
the given collection. It is the weakest topology containing the collection. (See Prob-
lem 9.21.)

Definition 9.8.1. We say that disjoint sets A and B in a topological space can be
separated by disjoint open sets if there are open sets U , V with U ∩V = ∅ and
A⊆U , B⊆V .

Definition 9.8.2. Let (X ,T ) be a topological space. The following is a list of sepa-
ration properties, given in increasing order of strength, with all properties assuming
that singleton sets in X are closed. That is, if x ∈ X , then X�{x} is open.

Hausdorff) If x and y are distinct points in X , then there are disjoint open neigh-
borhoods of x and y, respectively.

Regular) If F is a closed subset of X and x ∈ X�F , then there are disjoint open
sets containing F and x, respectively.

Completely Regular) The family F of bounded, real-valued, continuous func-
tions on X separates points and closed sets. That is, if F is a closed subset of X
and x ∈ X�F , then there is an f ∈F such that f (x) /∈ f [F ].

Normal) Disjoint closed subsets of X can be separated by disjoint open sets.

Remark 9.8.1. Given that singleton sets are closed, it is easy to see that regular
spaces are Hausdorff, and completely regular spaces are regular. The fact that nor-
mal spaces are completely regular follows from Urysohn’s Lemma, which is pre-
sented next. We also note that a convenient formulation of regularity is that for
any point x ∈ X and any open set U with x ∈ U , there is an open set V with
x ∈V ⊆V ⊆U . See Problem 9.22.

Theorem 9.8.2 (Urysohn’s Lemma). Let A and B be disjoint closed subsets of a
normal space X. There is a continuous function f : X → [0,1] such that f ≡ 0 on A
and f ≡ 1 on B.

Proof. If a space is normal, then for any closed set F and any open set W with F ⊆
W , there is an open set O with F ⊆O⊆O⊆W . Recall that dyadic rational numbers
in [0,1] have the form k/2n for k ∈ N, 0≤ k ≤ 2n. Let O1 = X −B, and fix an open
set O0 with A⊆O0 ⊆O0 ⊆O1 = X−B. Choose O1/2 with O0 ⊆O1/2 ⊆O1/2 ⊆O1.
Between O0 and O1/2, and between O1/2 and O1, we can fit open sets O1/4 and O3/4
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with similar properties. Continuing in this way, there is a countable family of open
sets {Or} indexed by the dyadic rationals in [0,1] such that the following holds: If
r < s, then A ⊆ Or ⊆ Or ⊆ Os ⊆ X −B, etc. Now as shown in Problem 9.23, the
desired function f is obtained by setting f (x) = inf{r : x ∈ Or}.

Next we sketch an application of Urysohn’s Lemma generalizing the useful prop-
erty that a continuous function on a closed subset of R has a continuous extension
to all of R.

Theorem 9.8.3 (Tietze’s Extension Theorem). Any continuous real-valued func-
tion f defined on a closed set S in a normal space X has a continuous extension to
all of X; the extension can keep the same bounds as the original function.

Proof. By composing f with a homeomorphism, we may assume that we have
supx∈S f (x) = 1 and infx∈S f (x) = −1. The final step of the proof is to com-
pose the constructed function with the inverse of the homeomorphism. Let A =
{x ∈ S : f (x)≤−1/3}, and let B = {x ∈ S : f (x) ≥ 1/3}. Both sets are closed. Let
h1 be a continuous function on X such that h1 : X → [−1/3,1/3], h1 ≡ −1/3 on A
and h1 ≡ 1/3 on B. Since | f (x)| ≤ 1/3 on S�(A∪B), −2/3 ≤ f −h1 ≤ 2/3 on S.
Let g = 3

2 · ( f − h1). Applying the previous step, there is a continuous function h2

on X such that 3
2 h2 : X → [−1/3,1/3], and −2/3≤ g− 3

2 h2 ≤ 2/3 on S. It follows

that h2 : X → [− 2
32 ,

2
32 ], and −(2/3)2 ≤ f −h1−h2 ≤ (2/3)2 on S. It now follows

that for each n≥ 2, there is a collection of continuous functions {h1,h2, · · · ,hn} on

X such that ∑n
i=1 |hi| ≤ ∑n

i=1
2i−1

3i , whence the sum h := ∑∞
i=1 hi is continuous on X .

Moreover, | f −∑n
i=1 hi| ≤ (2/3)n, whence h = f on S.

Definition 9.8.3. A topological space is Lindelöf if any collection of open sets has
a countable subcollection with the same union.

Proposition 9.8.1. A topological space with a countable base for the topology is
Lindelöf.

Proof. For each point in the union of the original collection of open sets, choose a
base set containing the point and contained in one of the open sets of the collection.
This collection of base sets is countable. Replace each one of these with one of the
original open sets containing it.

Theorem 9.8.4. A regular, Lindelöf space is normal. In particular, a regular, second
countable space is normal.

Proof. Given disjoint closed sets A and B in the space X , we may enclose each point
x ∈ A in an open set O such that x ∈ O⊆ O⊆ X \B. We may do the same thing for
each point in B. By the Lindelöf property, A is contained in the union of a countable
family of open sets Ui such that Ui ∩B = ∅ for each i. Similarly, B is contained in
the union of a countable family of open sets Vi such that V i∩A =∅ for each i. For
each n ∈ N, let On =Un \∪i≤nV i and let Wn =Vn \∪i≤nUn. Then O = ∪n∈NOn and
W = ∪n∈NWn are open sets with A ⊆ O and B ⊆W . If x ∈ O, then there is a first n
with x ∈On. It follows that x /∈Vi for 1≤ i≤ n. It also follows that x /∈Wj for j > n.
Therefore, x /∈W . Thus O∩W =∅.
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Proposition 9.8.2. A compact Hausdorff space is normal.

Proof. Given disjoint closed and therefore compact sets A and B, for each x ∈ A and
y ∈ B, there are disjoint open sets Ux and Uy containing x and y, respectively. Given
x ∈ A, take a finite subcover of the Uy’s, y ∈ B; let Wx be the finite intersection of
the corresponding Ux’s. This yields disjoint open sets Wx and Vx with x ∈Wx and
B ⊆ Vx. Cover A with the open sets Wx, x ∈ A, and take a finite subcover. For each
Wx in that finite subcover, there is an open Vx with B ⊆ Vx and Wx ∩Vx = ∅. Let W
be the union of the finite subcover of the Wx’s, and let V be the finite intersection of
the corresponding Vx’s. The sets W and V are disjoint open sets containing A and B,
respectively.

9.9 Product Spaces, Metrization, and Compactification

In R
n, each point (x1,x2, · · · ,xn) is a function from the index set {1,2, · · · ,n} into

the real numbers. It is this point of view that we extend to an index set that is not
necessarily finite, and with not necessarily real value at each index.

Definition 9.9.1. Let I be an index set, and for each α ∈I , let Xα be a topological
space. The product Πα∈I Xα is the set of all functions f on I with f (α) ∈ Xα for
each α ∈I . Each space Xα is called a factor of the product. The product topology,
also known as the topology of pointwise convergence, is generated by the following
open base f →B f at each element of this space of functions: An element U ∈B f

is determined by a finite set F of indices α and an open set Vα in Xa containing f (α)
for each α ∈ F . The set U consists of all elements g ∈ Πα∈I Xα such that for each
α ∈ F , g(α) ∈Vα ; for an index γ /∈ F , g(γ) can be any value in Xγ . We say that U is
restricted at the indices of F . The set Πα∈I Xα with the product topology is called
a product space. The mapping that takes each f ∈ Πα∈I Xα to the restriction on a
subset (possibly a singleton set) J of I is called the projection on Πα∈J Xα .

A helpful way to picture a product space is to think of the index set as points on
the x-axis in the plane. For each index α , the topological space Xα is represented by
a vertical line above α . An element f of the product is represented by a path passing
through each of the vertical lines. An element U of the open base B f at f is given
by a finite set F of indices α and an open interval Vα containing f (α) in the vertical
line above α . An element g of the product is in U if it takes a value in Vα at each α
in F . A special case of such an element in B f is given by specifying a single α to
form by itself the finite subset of the index set. The corresponding Uα in B f must
be open, and finite intersections of these form a typical element of B f . Since any
topology containing the product topology must contain such sets Uα , we have the
following result.
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Proposition 9.9.1. The product topology is the weakest topology for which each
projection f → f (α) from the product space to Xα , α ∈I , is a continuous map.

Proposition 9.9.2. Each factor Xα of a product space is Hausdorff if and only if the
product space Πα∈I Xα is Hausdorff, in which case, each subspace of the product
is Hausdorff.

Proof. Exercise 9.25.

We can indicate with appropriate notation a subset of a product space where the
elements are restricted at certain indices. For example, suppose β and γ are indices
and Sβ ⊂ Xβ while Sγ ⊂ Xγ . Let T be the subset of the product space consisting
of those elements for which the value at β is restricted to Sβ and the value at γ is
restricted to Sγ , and there are no other restrictions. Let J =I�{β ,γ}. Then T =
Sβ ×Sγ ×Πα∈J Xα .

An important special type of a product space is the one where each factor Xα is
a compact interval Iα ⊂R. If the index set is countably infinite, we will assume it is
N, and write Πn∈NIn for the product.

Definition 9.9.2. A topological space (X ,T ) is metrizable if there is a metric on X
such that the metric topology equals T . We also say that T is metrizable.

Theorem 9.9.1. A finite or countably infinite product of compact intervals with the
product topology is compact. Moreover, the product topology is metrizable.

Proof. The proof for a finite product is Problem 9.27. Let P denote the prod-
uct Πn∈NIn. An element of a countable base for P is formed by a finite set F =
{n1, · · · ,nk} from N, and an open interval Uni with rational endpoints contained in
Ini for i = 1,· · · , k. It consists of all elements of P that take values in Uni at the index
ni. That is the product

Un1 ×·· ·×Unk ×Πn∈N�F In.

Since P has a countable base for the topology, sequences suffice to establish com-
pactness. Given a sequence 〈 fm : m ∈ N〉, choose a subsequence

〈

f 1
m

〉

that converges
in I1. Given

〈

f k
m

〉

chose a subsequence
〈

f k+1
m

〉

that converges in Ik+1. The diagonal
sequence 〈 f m

m : m ∈ N〉 converges in P, and the limit is a cluster point of the original
sequence.

There is a metric dn on the nth factor of P, namely, dn(x,y) = |x− y| ∧ 1; that
is, we take the smaller of the usual distance and 1. The sum d := ∑∞

n=1 2−n · dn is
a metric on P. The fact that d is symmetry and has the transitive property follows
from those properties for each dn. Moreover, f = g in P if and only if f (n) = g(n)
for every index n, so d( f ,g) = 0 if and only if f = g. To show that d generates the
product topology on P, fix f ∈ P. Fix a basic product neighborhood of f consisting
of elements g ∈ P for which the values at indices in F = {n1, · · · ,nk} are restricted
to small open intervals containing the values taken by f . There is an ε > 0 such that
the elements g∈ P for which d( f ,g)< ε all meet those finite number of restrictions.
Conversely, given an open metric ball B( f ,r) centered at f , there is a k ∈ N such
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that ∑∞
n=k+1

1
2n < r/2. Fix a positive δ < r

2k . The product open neighborhood of f
consisting of elements g ∈ P such that | f (n)−g(n)|< δ for 1≤ n≤ k is contained
in B( f ,r). It follows that the metric topology equals the product topology on P.

Remark 9.9.1. With a similar proof, the same result is valid for a countable product
of second countable, compact metric spaces. We next show, however, that any prod-
uct of compact spaces is compact. The proof is taken from the author’s 1965 article
[26]. It uses the Axiom of Choice, which, by a result of Kelley [24], is unavoidable
for the general case. Also see the proof of Theorem C.12.2.

Lemma 9.9.1. Let X and Y be topological spaces, and assume that X is compact.
Let O be a collection of sets of the form U×V , where U is open in X and V is open
in Y . Assume that there is no finite subset of O for which the union is all of X ×Y .
Then there is a nonempty closed set C ⊆ X such that for each x ∈C and each finite
set {Ui×Vi : 1≤ i≤ n} ⊆ O with x ∈ ∩n

i Ui, Y�∪n
i=1 Vi �=∅.

Proof. Let F be the collection of all finite sets {Ui×Vi : 1≤ i≤ n} ⊆ O such that
Y = ∪n

i=1Vi. For each such set F in F , let WF := ∩n
i=1Ui. If (x,y) is in X ×Y and

x∈WF , then y∈∪n
i=1Vi, so (x,y) is in one of the members of F . Therefore, the family

of open set WF , F ∈F , does not cover X , for if it did, then a finite subcollection
{

WFj : 1≤ j ≤ k
}

would cover X , and the corresponding collection ∪k
j=1Fj would

cover X×Y . Let C = X�∪F∈F WF . Now if x ∈C, and F = {Ui×Vi : 1≤ i≤ n} is
a finite subset of O with x ∈Ui for each i, then Y �= ∪n

i=1Vi.

Theorem 9.9.2 (Tychonoff Product Theorem). The product of compact spaces is
compact.

Proof. We will call a collection of sets from a base for the topology “admissible”
if no finite subcollection covers the space. Let O be an admissible collection of
sets from the base for the product topology. By Proposition 9.7.2, we need to find
an element f in the product Πα∈I Xα that is in none of the sets in O . Using the
Axiom of Choice, we assume that the index set I is well-ordered; that is, any
nonempty set has a first member in the ordering. If the index set is supplied with
an enumeration, such as for N, a well-ordering is available without the Axiom of
Choice. By moving the first element of I to the last position, we may also assume
that I has a terminating element τ . We also assume that there is a function T that
chooses an element from each closed subset of each factor. For sets such as intervals
[a,b], a function T is available without the Axiom of Choice.

Let Xα1 denote the first factor in the product, and let Yα1 := Πα>α1Xα . By the
lemma, there is a closed subset Cα1 of Xα1 and a point f (α1) chosen by T from Cα1

such that if Oα1 is the subset of O consisting of sets for which the projection on
Xα1 contains f (α1), then the projection of the sets in Oα1 on Yα1 is an admissible
collection on Yα1 .

Now let K be the set of indices α ∈I such that a value f (γ) has been chosen
for all indices γ ≤ α . Let Oα consist of those members O of O such that for each
γ ≤ α , the projection of O on Xγ contains f (γ). We assume the further property
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for K that for each α ∈ K , the projection of the sets in Oα on Πγ>α Xγ is an
admissible collection on Πγ>α Xγ . We have shown that α1 ∈K . Suppose all indices
α < β are in K . Let Oβ− := ∩α<βOα . If β has an immediate predecessor ξ , then
since ξ ∈K , the projection of the sets in Oβ− is an admissible collection Πγ≥β Xγ .
Suppose β has no immediate predecessor. (An example would be the first index
bigger than those indices that have a finite number of predecessors.) Let F be a
finite subset of Oβ−. Each O ∈ F is restricted at only a finite number of indices,
and since F is finite, there is a ξ < β such that no O in F is restricted at indices
γ with ξ < γ < β . Since ξ ∈K , the projection of the sets in F on Πα>ξ Xα does
not cover Πα>ξ Xα , so the projection of the sets in F on Πα≥β Xα does not cover
Πα≥β Xα . In either case, it follows that the projection of the sets in Oβ− on Πγ≥β Xγ
is an admissible collection on Πγ≥β Xγ . Applying the lemma to the projection of the
sets in Oβ− on Πγ≥β Xγ where X = Xβ and Y = Πα>β Xα , we may choose f (β ) so
that β ∈K .

It now follows, since I is well-ordered, that all indices smaller than the terminal
index τ are in K . Therefore, the projection of the sets in Oτ− := ∩α<τOα on Xτ
is a collection of open subsets of Xτ with no finite subcover. Since Xτ is compact,
there is a value f (τ) in the complement of all of those projections. This completes
the choice of f on I so that f is in no O ∈ O .

The following construction of an imbedding in a product space is the foundation
of metrization and classical compactifications.

Theorem 9.9.3. Let (X ,T ) be a completely regular space, and let F be family
of continuous functions on X such that each f ∈F takes its values in a compact
interval I f ⊂ R. We assume that the family F separates points and closed sets. Let
P := Π f∈F I f . For each x ∈ X, let φ(x) be the element of P such that for each index
f ∈F , φ(x)( f ) = f (x). Then φ is a homeomorphism of X onto φ [X ]⊆ P.

Proof. If x �= y in X , then some f ∈ F takes a value f (x) �= f (y), so φ is an in-
jective map. Given x ∈ X , let S be a basic open neighborhood of φ(x). The set S is
determined by a finite number of functions f1, · · · , fn in F and open sets Vi con-
taining fi(x) in I fi for i = 1, · · · ,n. By continuity, there is an open neighborhood
W of x such that for each i = 1, · · ·n, fi [W ] ⊆ Vi. This shows that φ is continuous
on X . Now fix an open neighborhood W of x in X and a function g in F such
that g(x) ∈ V := Ig�g [X�W ]. Note that V is an open subset of Ig. If y /∈W , then
g(y) ∈ g [X�W ], whence g(y) /∈ V . Therefore, if g(z) ∈ V , then z ∈W . Let U be
the open subset of P consisting of those elements of P taking values in V at f0 and
unrestricted at other indices in F . Now,

φ−1 [U ] = φ−1 [V ×Π f �=gI f
]

= g−1 [V ]⊆W.

This now shows that, φ is a homeomorphism of X onto φ [X ]⊆ P.

Theorem 9.9.4 (Urysohn Metrization). A regular, second countable topological
space (X ,T ) is metrizable.
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Proof. By Theorem 9.8.4, (X ,T ) is normal. Let B be a countable base of open sets
for T . Fix a closed set C �=∅ and a point x /∈C. There are open sets U and V in B
such that

x ∈V ⊆V ⊆U ⊆U ⊂ X�C.

By Urysohn’s Lemma 9.8.2, there is a continuous function f : X → [0,1], such that
f (x)≡ 0 on V and f (x)≡ 1 on X�U . Since B is countable, it follows from Theo-
rem 9.9.3 that there is a homeomorphism from (X ,T ) onto a subspace of a count-
able product of compact intervals. By Theorem 9.9.1, (X ,T ) is metrizable.

We now turn to imbedding spaces as dense subsets of compact spaces. By The-
orem 9.9.3, we may think of the original space as a subspace of an appropriate
product space. The set of elements that are adjoined to the original space to form
the compact space is called the remainder.

Definition 9.9.3. Let (X ,T ) be a topological space, and let Q be a family of con-
tinuous, bounded, real-valued functions on X . Let Z be a compact space containing
X as a dense subspace such that each f ∈ Q has a continuous extension ˜f to Z, and
the set of extensions separates the points of Z�X . That is, if ξ and η are in Z�X ,
then there is an f ∈Q such that ˜f (ξ ) �= ˜f (η). Then Z is called a Q-compactification
of X .

Proposition 9.9.3. Suppose (X ,T ) is a dense subspace of a compact Hausdorff
space (Z,S ); that is, T is the relative S-topology on X. Then for some family Q,
(Z,S ) is a Q-compactification of X. Moreover, we may assume that Q contains
sufficient functions to separate points and closed subsets of X.

Proof. For each pair of distinct points ξ and η in Z�X , there is a continuous func-
tion f on Z taking values in [0,1] with f (ξ ) = 0 and f (η) = 1. Let Q contain the
restriction to X of one such function for each pair of points in Z�X . Recall that a
T -closed subset of X is C∩X , where C is S -closed. If x ∈ X�C, then there is a
continuous function g on Z taking values in [0,1] with f (x) = 0 and f (z)≡ 1 on C.
We may assume that the restriction of g to X is also in Q.

Theorem 9.9.5. Let (X ,T ) be a completely regular space, and let Q be a family of
continuous functions on X such that each f ∈Q takes its values in a compact interval
I f ⊂ R. Suppose Q separates points and closed subsets of X. Let P := Π f∈QIf , and
let φ be the homeomorphism of (X ,T ) onto the subspace Y := φ [X ] ⊆ P given by
Theorem 9.9.3. Then the closure Y is a compact Hausdorff space containing Y as
a dense subspace. For each f ∈ Q, let ˜f be the function on Y given by ˜f (φ(x)) =
φ(x)( f ) = f (x). Then each ˜f has a continuous extension ˜f to the remainder, and
that extension separates points of the remainder. Thus, if we associate X with its
homeomorphic image Y , then Y is a Q-compactification.

Proof. Since a closed subset of a compact space is compact, Y is compact. By
Proposition 9.9.2, Y is Hausdorff, and by definition, Y is dense in Y . Fix f ∈ Q,
and let p f be the projection of the product space P onto the space I f . Since p f is
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continuous, the restriction to Y is continuous, but that restriction on Y is ˜f . If ξ �= η
in P, then for some f ∈ Q, ξ ( f ) �= η( f ), whence if ξ and η are points in the re-
mainder, then ˜f (ξ ) �= ˜f (η).
Definition 9.9.4. A space is locally compact if there is an open base x →Bx at each
point consisting of sets with compact closure.

In the following result, we do not distinguish between a topological space X and
its homeomorphic image in an appropriate product space.

Theorem 9.9.6. Let (X ,T ) be dense subspace of a compact Hausdorff space (Z,S ).
That is, T is the relative S-topology on X. Then X is S -open in Z if and only if
(X ,T ) is locally compact.

Proof. Exercise 9.30(A).

Definition 9.9.5. A continuous function with compact support on a topological
space (X ,T ) is a continuous function that is identically equal to 0 outside of some
compact subset of X .

Proposition 9.9.4. Let (X ,T ) be a locally compact Hausdorff space. Let F be the
set of continuous functions with compact support mapping X into [0,1]. Then F
separates points and closed subsets of X, whence (X ,T ) is completely regular.

Proof. Let C �= ∅ be a closed subset of X , and fix x /∈C. Let U be an open neigh-
borhood of x with compact closure U such that U ∩C = ∅. If, as for example, in a
discrete space, U = U , let h ≡ 1 on U and h ≡ 0 on X�U . Otherwise, by Proposi-
tion 9.8.2, U with the relative topology is normal, so there is a continuous function
g on U taking its values in [0,1] such that g(x) = 1 and g ≡ 0 on U�U . Let h = g
on U and h≡ 0 on X�U . By Problem 9.31, h is continuous on X .

Finally we consider what compactifications are produced by various choices of a
family Q. If (X ,T ) is a locally compact Hausdorff space, we will follow Constan-
tinescu and Cornea [12], and assume that every continuous function with compact
support mapping X into [0,1] is in the family Q. These functions will have an ex-
tension that takes the value 0 at the remainder points of the compactification. With
these functions, and possibly more, it follows from Theorem 9.9.6 that the space
X will be an open subset of the Q-compactification. For more general completely
regular spaces, we will assume that Q has members sufficient to separate points and
closed subsets of X .

Definition 9.9.6. The Alexandroff one-point compactification of a locally com-
pact space adjoins a single point for which the open neighborhoods consist of com-
plements of compact sets. It is the Q-compactification, where Q is the family of
continuous, real-valued functions with compact support.

Definition 9.9.7. The Stone-Čech compactification βX of a completely regular
space (X ,T ) is the Q-compactification where Q consists of all bounded, contin-
uous, real-valued function on X .
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Remark 9.9.2. As noted, if (X ,T ) is a dense subspace of a compact Hausdorff space
Y , then Y is a Q-compactification of X for some family Q. An appropriate family
Q contains sufficient functions to separate points and closed subsets of X . Also as
noted, a Q-compactification of (X ,T ) can be constructed by embedding (X ,T ) as
a homeomorphic image in a product of compact intervals with Q acting as the index
set. The bigger the family Q, the bigger the corresponding product. For a family Q1

that contains a family Q0, the projection from the larger product to the product for
the smaller index set yields a continuous map from the Q1-compactification onto
the Q0-compactification that leaves the image of X essentially fixed. In this sense,
the Stone-Čech compactification of a completely regular space (X ,T ) is the largest
compactification of X .

Example 9.9.1. The Stone-Čech compactification βN of the natural numbers is an
example of a compact space containing a sequence with a cluster point but no con-
vergent subsequence. The set of natural numbers itself forms an example of such a
sequence. If 〈ni : i ∈ N〉 were a strictly increasing subsequence of N converging to
a limit point x, then the restriction of every bounded function f on N to 〈ni : i ∈ N〉
would have to have a limit at x, since f has a continuous extension to βN. On the
other hand, if f (ni) = (−1)i, no such limit can exist.

Remark 9.9.3. For a different construction of the remainder set and an extension
of Q-compactifications, see [27]. For an alternative to the embedding construction,
see [21].

9.10 Ascoli-Arzelá Theorem

In this section, we work with a family F consisting of functions from a Hausdorff
space (X ,T ) into a metric space (Y,ρ).

Definition 9.10.1. The family F is equicontinuous at x ∈ X if for any ε > 0, there
is an open neighborhood Uε of x that works in terms of continuity at x for every
f ∈F , that is,

∀y ∈Uε , ∀ f ∈F , ρ( f (y), f (x))< ε .

The family F is equicontinuous on X if it is equicontinuous at each x ∈ X .

Note that if F is equicontinuous on X , then each f ∈ F is continuous on X ,
and any subfamily of F is equicontinuous on X . We assume that for each x ∈ X ,
the set { f (x) : f ∈F} is contained in a closed subset Yx ⊆ Y , so F is a subset of
the product space Π = Πx∈XYx. Let F denote the closure, also called the pointwise
closure, of F in Π . That is, g is in the closure of F if for any ε > 0 and any finite
number of points x1, · · · ,xn in X , there is an f ∈ F with ρ( f (xi),g(xi)) < ε for
1≤ i≤ n.

Proposition 9.10.1. If F is equicontinuous on X, then the pointwise closure F is
also equicontinuous on X.
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Proof. Exercise 9.32(A).

Definition 9.10.2. The topology of uniform convergence on compact sets, also
called the ucc topology, on a family F is generated by a local filter base Bg at
each g ∈F that is determined as follows: Fix a compact subset K of the domain X
and an ε > 0. The corresponding element U ∈Bg consists of all h ∈F such that
ρ(g(x),h(x))< ε for all x ∈ K.

By Problem 9.33 the ucc-local filter base is an open base for each g∈F . The ucc
topology is like the topology of pointwise convergence. For the ucc topology, the
collection of compact sets that are finite point sets in the domain is replaced with the
collection of all compact subsets of the domain. It follows that there are more ucc
neighborhoods of a point than product neighborhoods. That is, the product topology
is weaker than the ucc topology.

Ordinarily, weaker topologies produce larger closures since there are fewer con-
ditions for a point to be a point of closure. For an equicontinuous family, however,
we now show that the pointwise closure of a set is not just a superset of the ucc
closure, it equals the ucc closure. Recall that we are assuming our family F is a
subset of the product Π = Πx∈XYx.

Proposition 9.10.2. If F is equicontinuous on X, then the product topology for
Π = Πx∈XYx when restricted to F equals the topology of uniform convergence on
compact subsets of X.

Proof. Fix g ∈F . Since finite subsets of X are compact, any basic product neigh-
borhood of g restricted to F is itself a basic ucc neighborhood restricted to F . Fix
ε > 0 and a compact subset K of X ; let O be the corresponding ε ,K-ucc neigh-
borhood of g. That is, h ∈ O if supx∈K ρ(h(x),g(x)) < ε . For each x ∈ K, let Wx

be an open neighborhood of x in X such that for every y ∈Wx and every h ∈ F ,
ρ(h(y),h(x)) < ε/3. Find a finite subcover Wx1 , · · · ,Wxn of K. Let V be the prod-
uct neighborhood of g consisting of all functions h for which ρ(h(xi),g(xi))< ε/3,
1≤ i≤ n. We now show that V ∩F ⊆ O∩F . Fix h ∈V ∩F and any y ∈ K. Since
y ∈Wi for some i,

ρ(h(y),g(y))≤ ρ(h(y),h(xi))+ρ(h(xi),g(xi))+ρ(g(xi),g(y))< ε .

That is, V ∩F is contained in the ε ,K-ucc neighborhood O of g. It follows that the
product topology and the ucc topology are the same when restricted to F .

Corollary 9.10.1. Assume F is equicontinuous on X, and let F be the product
topology closure of F . Fix A⊆F . The product topology closure of A in F equals
the closure with respect to the topology of uniform convergence on compact sets
of X.

Proof. The result follows from the fact that the product topology and the ucc topol-
ogy are the same when restricted to F since F is equicontinuous.
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Theorem 9.10.1 (Ascoli-Arzelá). Let F be an equicontinuous family of functions
from a separable Hausdorff space X into a metric space Y . Assume that for each
x ∈ X, the values { f (x) : f ∈F} are contained in a compact subset Yx ⊆ Y . Then
any sequence 〈 fn : n ∈ N〉 in F has a subsequence that converges uniformly on
compact subsets of X to a continuous function g.

Proof. Let D = {x1, x2, · · ·} be a countable dense subset of X . Fix 〈gn : n ∈ N〉
in F . Choose a subsequence

〈

g1
m

〉

that converges at x1. Given
〈

gk
m

〉

, choose a
subsequence

〈

gk+1
m

〉

that converges at xk+1. The diagonal sequence 〈gm
m : m ∈ N〉

converges at all points of D. Let 〈 fn : n ∈ N〉 be that subsequence. We next show
that for every x ∈ X , 〈 fn(x)〉 is a Cauchy sequence, and therefore a convergent se-
quence. Fix x ∈ X and ε > 0. Choose a neighborhood W of x such that for all z ∈W
and all h ∈F , ρ(h(z),h(x))< ε/3. Fix an xi ∈D∩W . There is an n0 ∈N such that
for all n, m≥ n0, ρ( fn(xi), fm(xi))< ε/3, whence

ρ( fn(x), fm(x))≤ ρ( fn(x), fn(xi))+ρ( fn(xi), fm(xi))+ρ( fm(xi), fm(x))< ε .

It follows that fn converges pointwise (and therefore uniformly on compact sets) to a
function g in the product topology closure F ⊆Πx∈XYx. Since F is equicontinuous,
g is continuous.

Example 9.10.1. In the context of complex function theory, let F be the family of
holomorphic (i.e., analytic) mappings of the open unit disk Δ := {z ∈ C : |z|< 1}
into a closed disk of radius M centered at 0. Given any point z0 ∈ Δ , there is a circle
Cr of radius r with center z0 contained in Δ . By a formula due to Cauchy, if f ∈F ,
then for any point z1 with |z1− z0|< r/2,

f (z1) =
1

2πi

∮

Cr

f (w)
w− z1

dw,

where the integral path is in the counterclockwise direction. For any w ∈ Cr,
|w− z1| ≥ r

2 , whence

| f (z1)− f (z0)| ≤
∣

∣

∣

∣

∣

∣

1
2πi

∮

Cr

f (w)
w− z1

dw− 1
2πi

∮

Cr

f (w)
w− z0

dw

∣

∣

∣

∣

∣

∣

≤ 2πr
2π

·max
w∈Cr

∣

∣

∣

∣

1
w− z1

− 1
w− z0

∣

∣

∣

∣

·M

≤ r ·max
w∈Cr

∣

∣

∣

∣

z1− z0

(w− z1)(w− z0)

∣

∣

∣

∣

·M

≤ r · 2
r
· 1

r
· |z1− z0| ·M =

2
r
· |z1− z0| ·M.

It follows that F is equicontinuous at z0. By the Ascoli-Arzelà theorem, any se-
quence 〈 fn : n ∈ N〉 in F has a subsequence converging uniformly on compact
subsets of Δ to a function f . By a theorem due to Cauchy, the integral of each fn
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around a triangular path contained in Δ is 0, so the same is true of the uniform limit
f . By a theorem of Morera, f ∈ F . That is, a uniformly bounded family of ana-
lytic functions on Δ is stable with respect to the operation of taking ucc limits of
sequences.

9.11 Stone-Weierstrass Theorem

We want to establish a general result that has as a corollary the following theorem
of Weierstrass: Every continuous function on a closed and bounded set X in R

n can
be uniformly approximated on X by polynomials in the variables corresponding to
the coordinates. (An example of such a polynomial defined on R

2 is x2 + xy+ y5.)
For the general case, we will work with a compact Hausdorff space (X ,T ). We

let C(X) denote the space of all continuous real-valued functions on X . Now (X ,T )
is a normal space, so by Urysohn’s Lemma 9.8.2, for any pair of distinct points x
and y in X , there is an f ∈ C(X) that takes different values at x and y. We say the
family C(X) separates the points of X . The space C(X) is not only a vector space
with scalars in R, it is an algebra. That is, given f , g ∈C(X), the pointwise product
f ·g is also in C(X). The space C(X) is a normed linear space with the norm given
by ‖ f‖= maxx∈X | f (x)|. When we speak of the closure of a set in C(X) we will be
speaking of the closure with respect to this norm and call it the uniform closure.
We will show that the uniform closure of any subalgebra that contains the constant
functions and separates points of X is all of C(X).

The space C(X) is also a real vector lattice. That is, it is a vector space with
scalars in R, and if f and g are in C(X), so are f ∧g (the pointwise minimum) and
f ∨ g (the pointwise maximum.) Note that | f | = ( f ∨ 0) + (− f ∨ 0). Conversely,
given the absolute value function, we have

f ∨g = (1/2)[ f +g+ | f −g|], f ∧g = (1/2)[ f +g−| f −g|].

We show first that the uniform closure of any vector sublattice of C(X) is all of C(X)
if it separates points and contains the constant functions.

9.11.1 Vector Lattices

Fix a nonempty vector lattice L of continuous real-valued functions on X . We as-
sume that L separates points and contains the constants.

Lemma 9.11.1. Given a, b ∈ R and x, y ∈ X with x �= y, there is an f ∈ L with
f (x) = a and f (y) = b.
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Proof. Fix g ∈ L with g(x) �= g(y). Set

f =
a−b

g(x)−g(y)
·g+ b ·g(x)−a ·g(y)

g(x)−g(y)
.

Then

f (x) =
a−b

g(x)−g(y)
·g(x)+ b ·g(x)−a ·g(y)

g(x)−g(y)

=
ag(x)−bg(x)+bg(x)−ag(y)

g(x)−g(y)
= a.

f (y) =
a−b

g(x)−g(y)
·g(y)+ b ·g(x)−a ·g(y)

g(x)−g(y)

=
ag(y)−bg(y)+bg(x)−ag(y)

g(x)−g(y)
= b.

Lemma 9.11.2. Fix a, b ∈ R with a≤ b. Given a nonempty closed set F ⊂ X and a
point p /∈ F, there is an f ∈ L with a≤ f ≤ b such that f (p) = a and f ≡ b on F.

Proof. For each x∈ F , find an fx ∈ L with fx(p) = a and fx(x) = b+1. Let Ox be an
open neighborhood of x on which fx > b. Take a finite subcover {Oxi : i = 1 · · ·k}
of this collection of open sets. Let f = fx1 ∨ . . .∨ fxk . Then f ∈ L, f (p) = a, and
f |F > b. Replace f with a∨ f ∧b.

Theorem 9.11.1 (Lattice form of Stone-Weierstrass). Given any continuous, real-
valued function h on X and any ε > 0, there is a function g ∈ L with h≤ g≤ h+ ε
uniformly on X. Therefore, C(X) is the uniform closure of L.

Proof. Let M = maxX h. Let L′ = { f ∈ L : h≤ f}. Since the constant function M is
in L′, L′ is a nonempty lattice. Fix x∈ X and ε > 0. Choose an open neighborhood O
of x so that h(x)< h(x)+ ε on O. There is a function f ∈ L with h+ ε ≤ f ≤M+1
on X , f (x) = h(x)+ ε , and f (y)≡M+1 on X \O. It follows that f ∈ L′. Since ε is
arbitrary, h(x) = inf f∈L′ f (x). Moreover, this is true for every x ∈ X .

Now for each x ∈ X , find an open neighborhood Ox of x and a function gx ∈ L′
such that gx(x) < h(x) + ε/3, |gx(x)− gx(y)| < ε/3, and |h(x)− h(y)| < ε/3 for
every y∈Ox. Fix a finite subcovering of the Ox’s, and note the corresponding points
x1, · · · ,xn. Let g = gx1 ∧gx2 ∧·· ·∧gxn . Then g∈ L′. For each y∈ X , y∈Oxi for some
i, so

h(y)≤ g(y)≤ gxi(y)< gxi(xi)+ ε/3 < h(xi)+2ε/3 < h(y)+ ε .

9.11.2 Algebras

We now show that if A is a subalgebra of C(X), and A separates points and contains
the constant functions, then the uniform closure A is a uniformly closed sublattice
of C(X), and hence equals C(X).
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Proposition 9.11.1. If A is a subalgebra of C(X), then so is the uniform closure A .

Proof. Exercise 9.34(A).

Lemma 9.11.3. Given ε > 0, there is a polynomial P in one variable on the real
line such that the constant term P(0) = 0 and for all s ∈ [−1,1], |P(s)−|s||< ε .

Proof. Let δ = ε/4. If z is a point in the open disk |z| < 1+ δ 2 in the complex
plane, then 1+δ 2− z is a point in the open disk of radius 1+δ 2 centered at 1+δ 2.
We use the branch of the complex square root defined on the complement of the
negative real axis that maps 1 to 1. Now (1+δ 2− z)1/2 has a complex power series
about 0 that converges on closed disks centered at 0 of radius R for 1 < R < 1+δ 2.
Therefore, the real-valued series for (1+δ 2− t)1/2 about t = 0 converges uniformly
on [−1,1] and in particular on [0,1]. Choose a partial expansion QN(t)=Σ N

n=0cntn so
that for all t ∈ [0,1], |(1+δ 2− t)1/2−QN(t)|< δ . Replace t with 1−s2, s∈ [−1,1],
and set Pc(s) := QN(1−s2). This is a polynomial in s on the interval [−1,1], and for
all s ∈ [−1,1],

∣

∣Pc(s)− (s2 +δ 2)1/2
∣

∣< δ .
Using the same branch of the square root, for all s∈ [−1,1] we have the inequality

|s|(s2 +δ 2)1/2 > s2, so

[(s2 +δ 2)1/2−|s|]2 = 2s2 +δ 2−2|s|(s2 +δ 2)1/2 < δ 2,

whence
∣

∣(s2 +δ 2)1/2−|s|∣∣< δ . It now follows that for all s ∈ [−1,1],

|Pc(s)−|s|| ≤ |Pc(s)− (s2 +δ 2)1/2|+ |(s2 +δ 2)1/2−|s||< 2δ .

Moreover, the constant term is Pc(0), and |Pc(0)| < 2δ . The desired polynomial is
P := Pc−Pc(0).

Proposition 9.11.2. A uniformly closed subalgebra A of C(X) is a lattice.

Proof. Given f ∈A and ε > 0, let P be the polynomial of the Lemma corresponding
to ε . Now f/‖ f‖ ∈A , and so P( f/‖ f‖) ∈A . Moreover,

∣

∣

∣

∣

P

(

f
‖ f‖
)

−
( | f |
‖ f‖
)∣

∣

∣

∣

< ε .

Since ε is arbitrary and A is uniformly closed, | f |/‖ f‖ ∈ A , whence | f | ∈ A .
Since f ∨ g = (1/2)[ f + g+ | f − g|], and f ∧ g = (1/2)[ f + g− | f − g|], A is a
lattice.

Theorem 9.11.2 (Stone-Weierstrass). Let A be an algebra of continuous real-
valued functions on X that separates points of X and contains the constant functions.
Then A is dense in C(X). That is, the uniform closure A equals C(X).

Proof. The uniform closure of A is an algebra A that is also a lattice; it separates
points and contains the constant functions. By Theorem 9.11.1, A = C(X).
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Corollary 9.11.1. Every continuous function on a closed and bounded set X in R
n

can be uniformly approximated on X by a polynomial in the variables corresponding
to the coordinates.

Example 9.11.1. Consider the family of continuous real-valued functions of period
2π on R. We may think of these as functions on a circle T of circumference 2π , so
the domain is compact. The functions {sin x, cos x} separate points of T. It follows
from Theorem 9.11.2 that the uniform closure of the smallest algebra A containing
the functions 1, sin x, and cos x is all of C(T). Now

eimx = cos(mx)+ i sin(mx) = [eix]m = [cos x+ i sin x]m,

and both the real and imaginary parts of [cos x+ i sin x]m are in A . Therefore, it
follows that finite sums of the form

a0 +Σ N
n=1(an cos nx+bn sin nx)

are also in A . We now only need to show that the collection B consisting of all
such sums forms an algebra. Since B ⊆ A , we will then know that B = A . To
show that B is an algebra, we note that we can add two sums in B and we again
have an element of B. We can multiply such a sum by a constant and again have an
element of B. The product of two sums in B is a sum with terms of the form

α(cos nx)(cos mx) β (cos nx)(sin mx) γ(sin nx)(sin mx).

Since
(cos nx)(cos mx) = (1/2)[cos(n+m)x+ cos(n−m)x]

(cos nx)(sin mx) = (1/2)[sin(n+m)x− sin(n−m)x]

(sin nx)(sin mx) = (1/2)[cos(n−m)x− cos(n+m)x],

and cos(−nx) = cos(nx), while sin(−nx) = −sin(nx), all of these terms are in B.
Therefore, B is an algebra in C(T) that contains the constants and separates points,
so the uniform closure of B is C(T).

Example 9.11.2. Let X ×Y be a product of compact Hausdorff spaces. By The-
orem 9.9.2, such a product is compact. Let F consist of functions of the form
g(x) ·h(y), where g is a continuous function (perhaps constant) on X and h is a con-
tinuous function (perhaps constant) on Y . The functions in F separate the points of
X ×Y , so the polynomials in finite numbers of elements of F are uniformly dense
in C(X×Y ). A typical such polynomial has the form ∑n

i=1 gi(x)hi(y).

9.12 Problems

Problem 9.1. a) Let V be a vector space of continuous functions on the complex
plane C; the scalar field is either R or C. For each f ∈ V , let B f be given by a
nonempty compact set K ⊂ C and an ε > 0. The collection
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B f :=

{

g ∈V : max
z∈K

|g(z)− f (z)|< ε
}

.

Show that B f is an open base at f . (The assignment f → B f generates the
topology of uniform convergence on compact sets on V .)

b) What is the relationship between the open base f →B f described in Part a, and
the base described in Example 9.1.1?

Problem 9.2. a) Fix n ∈ N. A closed dyadic cube in R
n is a set of the form

[

a1

2m ,
a1 +1

2m

]

×·· ·×
[

an

2m ,
an +1

2m

]

for integers m,a1, . . . ,an. Given a point x ∈R
n, show that the collection of closed

dyadic cubes in R
n containing x forms a local filter base at x.

b) Prove that

T1 := {
∞
⋃

i=1

Qi : Qi =∅ or Qi is a closed dyadic cube in R
n for each i}.

forms a topology on R
n.

c) Is it true that

T2 := {finite (possibly empty) unions of closed dyadic cubes}

forms a topology on R
n?

Problem 9.3. Show that for a separable metric space (X ,d), the open balls of radius
1/n, n ∈ N, centered at points of a dense subset of X form a base for the topology.

Problem 9.4. Prove Proposition 9.2.3.

Problem 9.5. Prove Proposition 9.2.4.

Problem 9.6. Prove Theorem 9.2.1.

Problem 9.7. Prove Proposition 9.2.6.

Problem 9.8. Prove Corollary 9.5.3.

Problem 9.9 (A). Let Y be the set of ordinal numbers strictly smaller than the first
uncountable ordinal Ω . Let S be a countable subset of Y . For example, S may be
the range of a sequence in Y . Show that S has an upper bound that is in the set Y .
It then follows, since Y is well-ordered, that there is a least upper bound of S in Y .
That upper bound is a point of closure of S.

Problem 9.10 (A). Prove Theorem 9.6.2.
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Problem 9.11. Suppose (X ,T ) is a topological space, and {Aγ : γ ∈ I } is an in-
dexed family of connected subsets of X such that the index set I is well-ordered,
and for each β ∈ I and some α < β in I , Aα ∩Aβ �= ∅. Show that the union
∪γ∈IAγ is connected.

Problem 9.12. A locally pathwise connected space is one, such as Rn, having an
open base x →Bx at each point consisting of pathwise connected sets. Show that
if O is an open, connected, and locally pathwise connected subset of a topological
space, then O is pathwise connected.

Problem 9.13 (A). Show that the set A in Example 9.6.2 is not pathwise connected.

Problem 9.14. Show that total boundedness is preserved by any uniformly continu-
ous map from one metric space to another.

Problem 9.15. a) What is the collection of all continuous real-valued functions on
a nonempty set X supplied with the trivial topology?

b) What is the collection of all continuous real-valued functions on a nonempty set
X supplied with the discrete topology?

Problem 9.16. Show that if (X ,T ) is a compact Hausdorff space, then with any
strictly stronger topology, the space is not compact.

Problem 9.17. Let (X ,T ) be a Hausdorff space, and let p be a point in X for which
there is a sequence 〈On : n ∈ N〉 of open sets with p ∈ On+1 ⊆ On for each n, and
∩nOn = {p}. Let Lp be a local filter base for p. That is, if U is open and p∈U , then
for some S ∈Lp, p ∈ S ⊆U . Therefore, for each n ∈ N, there is an Sn ∈Lp with
p ∈ Sn ⊆On. Show that each Sn contains an open set. Hint: Suppose S1 contains no
open set. We may assume Sn ⊆ S1 for each n. Therefore, for each n ∈ N, there is a
point xn ∈ On�S1. Let A = {xn : n ∈ N}. Show that X�A is open. Show that A is
not closed.

Problem 9.18. Give a proof that a compact subset of a metric space (X ,d) is closed
by showing that if x∈ A�A, then there is an open cover of A with no finite subcover.

Problem 9.19. Show that any continuous, one-to-one, function f with compact do-
main K in a Hausdorff space (X ,T ) and range f [K] in a Hausdorff space (Y,S ) is
a homeomorphism. That is, the inverse function f−1 : f [K] → K is continuous.

Problem 9.20. Show that the set of ordinal numbers less than or equal to the first
uncountable ordinal Ω supplied with the order topology is compact. See Exam-
ple 9.4.1 and Problem 9.9.

Problem 9.21. Given a collection S of subsets of a nonempty set X , show that the
intersection of all topologies (including the discrete topology) containing S is a
topology on X .

Problem 9.22. Show that a topological space for which every singleton set is closed
is a regular space if and only if for any point x ∈ X and any open set U with x ∈U ,
there is an open set V with x ∈V ⊆V ⊆U .
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Problem 9.23. Show that the function f constructed in the proof of Theorem 9.8.2
is continuous with f : X → [0,1], and f restricted to A≡ 0 and f restricted to B≡ 1.

Problem 9.24. Show that any topology on a countable set X has the Lindelöf prop-
erty (Definition 9.8.3.)

Problem 9.25. Prove Proposition 9.9.2.

Problem 9.26. Show that a net
〈

hγ : γ ∈ D
〉

converges in a product space Πα∈I Xα
if and only if for each index α , the net

〈

hγ(α) : γ ∈ D
〉

converges in Xα .

Problem 9.27. Prove Theorem 9.9.1 for a finite product of closed and bounded in-
tervals.

Problem 9.28. Let D be a countable set, and for each x∈D, let Yx be a compact met-
ric space. Show that any sequence fn in the product space Πx∈DYx has a subsequence
that converges in the product topology.

Problem 9.29. Let (X ,T ) be dense subspace of a compact Hausdorff space (Y,S ).
That is, T is the relative S-topology on X . Show that any T -compact subset of X
is S -compact and S -closed in Y .

Problem 9.30 (A). Prove Theorem 9.9.6.

Problem 9.31. Show that the function h defined in the proof of Proposition 9.9.4 is
continuous on X .

Problem 9.32 (A). Prove Proposition 9.10.1.

Problem 9.33. Show that the ucc-local filter base is an open base for each member
g in a family of functions from a Hausdorff space to a metric space.

Problem 9.34 (A). Prove Proposition 9.11.1.

Problem 9.35. Show that polynomials form a dense subset of the continuous real-
valued functions on [0,1] with the relative topology generated by the L∞-norm.

Problem 9.36 (A). Let A be an algebra of continuous real-valued functions on a
compact Hausdorff space X , and assume that A separates points of X . Do not as-
sume that A contains constant functions. Show that the uniform closure A of A is
either C(X) or { f ∈C(X) : f (p) = 0} for a unique point p ∈ X .

Problem 9.37. Show that convergence Lebesgue almost everywhere on the unit in-
terval [0,1] is not defined in terms of a topology.

Problem 9.38. Let X be the Euclidean plane with the topology generated at each
point except the origin by the usual metric balls centered at the point. Let the local
filter base L0 at the origin consists of sets Sn, where for each n ∈ N, Sn is the union
of the open interval (−1/n,1/n) on the x-axis and the open interval (−1/n,1/n) on
the y-axis. How does this example relate to Proposition 9.9.1? Explain.



Chapter 10
Measure Construction

10.1 Measures from Outer Measures

Like measures on the real line, one can construct a general measure from an
outer measure. We do not, however, construct an outer measure from an integra-
tor; instead, we assume that we start with an outer measure that has the necessary
properties.

Recall that an algebra in a set X is a collection of subsets of X ; the collection
contains X itself and is stable with respect to the operations of taking complements
and finite unions. It is therefore stable with respect to the operation of taking finite
intersections. A σ -algebra in X is an algebra that is stable with respect to the opera-
tion of taking countable unions, and therefore, countable intersections. As before, ˜E
and �E both denote the complement of a set E. A measure is complete if subsets of
sets of measure 0 are measurable. Also recall that the power set of X is the collection
of all subsets of X .

Definition 10.1.1. An outer measure μ∗ on a set X is a nonnegative, extended-real
valued set function defined on the power set of X such that

i) μ∗ (∅) = 0,
ii) μ∗ is monotone increasing, i.e., the bigger the set, the bigger the value of μ∗,

and
iii) μ∗ is countably subadditive, i.e., μ∗(∪i∈NAi)≤ Σi∈N μ∗ (Ai).

Definition 10.1.2 (Carathéodory). A set E is called measurable with respect to an
outer measure μ∗ on a set X if for each A⊆ X ,

μ∗ (A) = μ∗(A∩E)+μ∗(A∩ ˜E).

Remark 10.1.1. As for the real line, a set E ⊆ X is measurable if for those sets A⊆ X
with μ∗ (A)<+∞, μ∗ (A)≥ μ∗(A∩E)+μ∗(A∩ ˜E).
Theorem 10.1.1. The class B of μ∗-measurable sets is a σ -algebra, and μ∗
restricted to B is a complete measure.
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Proof. Clearly, ∅ ∈B, and if E ∈B, so is ˜E. Fix E1 and E2 in B and A⊆ X with
μ∗ (A)<+∞. Then by subadditivity,

μ∗ (A) = μ∗(A∩E2)+μ∗(A∩ ˜E2)

= μ∗(A∩E2)+μ∗(A∩ ˜E2∩E1)+μ∗(A∩ ˜E2∩ ˜E1)

≥ μ∗ (A∩ [E1∪E2])+μ∗(A∩ ˜E2∩ ˜E1)

= μ∗(A∩ [E1∪E2])+μ∗(A∩�[E1∪E2]).

It follows that B is an algebra. Moreover, if E1∩E2 =∅, then [E1∪E2]∩E1 = E1

and [E1∪E2]∩ ˜E1 = E2, so

μ∗(E1∪E2) = μ∗ ([E1∪E2]∩E1)+μ∗
(

[E1∪E2]∩ ˜E1

)

= μ∗(E1)+μ∗(E2).

This shows that, μ∗ restricted to B is finitely additive.
Now let E = ∪∞

i=1Ei be a countable union of sets in B. Since B is an algebra,
we may assume that the sets Ei are pairwise disjoint. We now show that E ∈B and
μ∗ (E) = Σ ∞

i=1μ∗ (Ei). For each n ∈ N, let Gn = ∪n
i=1Ei, and let A be a subset of X .

Then

μ∗ (A) = μ∗(A∩Gn)+μ∗(A∩ ˜Gn)≥ μ∗(A∩Gn)+μ∗(A∩ ˜E)
= μ∗(A∩E1)+μ∗(A∩ (Gn \E1))+μ∗(A∩ ˜E) = · · ·
= Σ n

i=1μ∗(A∩Ei)+μ∗(A∩ ˜E).

Therefore, by subadditivity,

μ∗ (A)≥ Σ ∞
i=1μ∗(A∩Ei)+μ∗(A∩ ˜E)≥ μ∗(A∩E)+μ∗(A∩ ˜E),

It follows that E is measurable, whence B is a σ -algebra. Replacing A with E and
using subadditivity, we have μ∗ (E) = Σ ∞

i=1μ∗(Ei). That is, μ∗ restricted to B is
σ -additive. If S ⊆ X and μ∗ (S) = 0, then it is immediate that S ∈ B, so μ∗ is a
complete measure when restricted to B.

10.2 The Carathéodory Extension Theorem

In this section, we show that measures on algebras of sets (Definition 10.2.1) can
be extended to measures on σ -algebras. In general, topologies are not part of the
structure of an algebra of sets. Recall that the intersection of all σ -algebras contain-
ing a collection C of subsets of X is the smallest σ -algebra in X containing C ; it is
denoted by σ (C ).



10.2 The Carathéodory Extension Theorem 181

Definition 10.2.1. A nonnegative, extended-real valued set function μ on an algebra
A is called a measure on A if μ (∅) = 0 and for any pairwise disjoint seq-
uence 〈An : n ∈ N〉 in A for which the union is also in A , we have μ(∪n∈NAn) =
Σn∈Nμ (An). We say μ is σ -additive on A .

Remark 10.2.1. Clearly, σ -additivity is necessary for μ to be extendable to a
σ -additive set function on a larger collection. Using an outer measure, we now show
that it is also a sufficient condition. The proof is presented in several steps.

Theorem 10.2.1 (Carathéodory Extension Theorem). If μ is a measure on an
algebra A of subsets of a set X, then μ has a σ -additive extension to the completion
of the smallest σ -algebra σ (A ) containing A . If X is a finite or countably infinite
union of sets from A having finite μ-measure, then the extension of μ from A to
σ (A ) is unique.

Definition 10.2.2. Given a measure μ on A , for each set E ⊆ X , let C (E) denote
the family of all sequences in A that cover E. That is, a sequence 〈An : n ∈ N〉 is a
member of C (E) if and only if for each n ∈ N, An ∈ A , and ∪n∈NAn ⊇ E. We set
μ∗ (E) = inf〈An〉∈C (E) (Σ ∞

n=1μ (An)).

Proposition 10.2.1. The set function μ∗ is an outer measure. If E ∈ A , then
μE = μ∗E.

Proof. First we fix E ∈A and show that μ (E) = μ∗ (E). The sequence 〈An〉 where
A1 = E and An = ∅ for n > 1 covers E, so μ∗ (E) ≤ μ (E). On the other hand, if
〈An〉 is a sequence from A that covers E, then we may replace A1 with B1 = E∩A1,
and for n > 1, replace An with Bn = (E ∩An) \⋃n−1

i=1 Bi, which is in A . Moreover,
μ (Bn)≤ μ (An) and E =

⋃∞
n=1 Bn, so by the σ -additivity of μ on A ,

μ (E) =
∞

∑
n=1

μ (Bn)≤
∞

∑
n=1

μ (An) .

It follows that μ∗ (E) = μ (E).
Clearly, μ∗ is a nonnegative, monotone increasing set function defined on all

subsets of X . Since ∅ ∈A , μ∗ (∅) = μ (∅) = 0. We need to show that μ∗ is count-
ably subadditive; that is, if E ⊆ ⋃∞

n=1 En, then μ∗ (E) ≤ ∑∞
n=1 μ∗ (En). This is clear

if any of the terms in the sum is infinite. Assuming each is finite, we fix ε > 0, and
for each n ∈ N, we choose a sequence 〈An

i : i ∈ N〉 in A that covers En such that
∑∞

i=1 μ (An
i )≤ μ∗ (En)+

ε
2n . Since the countable collection {An

i : i,n ∈N} covers E,
we have

μ∗ (E)≤
∞

∑
n=1

∞

∑
i=1

μ (An
i )≤

(

∞

∑
n=1

μ∗ (En)

)

+ ε .

Since ε is an arbitrary positive number, subadditivity of μ∗ is established.

Proposition 10.2.2. Each E ∈A is μ∗-measurable.
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Proof. Fix E ∈A . Fix a set S⊆X of finite outer measure, and fix an ε > 0. Choose a
sequence 〈Fn : n ∈ N〉 from A that covers S with total measure less than μ∗ (S)+ε .
Since E is in A , for each n ∈ N, μ (Fn) = μ(Fn∩E)+μ(Fn∩ ˜E). Therefore,

μ∗ (S)+ ε >
∞

∑
n=1

μ(Fn) =
∞

∑
n=1

μ(Fn∩E)+
∞

∑
n=1

μ(Fn∩ ˜E)

≥ μ∗(S∩E)+μ∗(S∩ ˜E).

Since ε is an arbitrary positive number, it follows that E is μ∗-measurable.

We write μ for the restriction of μ∗ to the σ -algebra B consisting of
μ∗-measurable sets. This gives the desired extension of μ . We call a set E ∈B with
μ (E) = 0 a null set. We will write Aσ for the family of countable unions of sets
in A , and Aσδ for countable intersections of sets in the family Aσ . We have now
established the following result: The class B of μ∗-measurable sets is a σ -algebra
containing A , and μ∗ restricted to B is a complete measure.

Proposition 10.2.3. The outer measure μ∗ derived from a measure μ on an algebra
A has the property that for any set E ⊆ X and any ε > 0, there is an Aσ -set A⊇ E
such that μ (A)≤ μ∗ (E)+ ε , and there is an Aσδ -set B⊇ E with μ (B) = μ∗ (E).

Proof. If μ∗ (E) = +∞, let A = B = X . Otherwise, let A be the union of sets from
A that cover E with total measure less than μ∗ (E)+ ε , and then let B be the inter-
section of such Aσ -sets for each value ε = 1/n.

Corollary 10.2.1. If E ∈B has finite measure, then E equals an Aσδ -set from which
a null set in B has been removed.

Corollary 10.2.2. The extension of a measure μ on an algebra A to σ(A ) is
unique if X is the finite or countably infinite union of sets in A of finite measure.

Proof. Assume first that μ (X) < +∞. Any Aσ -set that is not in A is the union
of a pairwise disjoint countably infinite sequence of sets in A , so the extension of
μ from A to Aσ is unique. Let ˜μ be any other measure extending μ from A to
σ(A ). We must have ˜μ = μ on Aσ . Fix A in σ(A ) and ε > 0. There is a B ∈Aσ
with B⊇ A and μ (B)≤ μ (A)+ε , whence ˜μ (A)≤ ˜μ (B) = μ (B)≤ μ (A)+ε . Since
this is true for any ε > 0, ˜μ (A)≤ μ (A). Since A is arbitrary in σ(A ), we also have
˜μ (B�A)≤ μ (B�A)< ε . On the other hand,

μ (A)≤ μ (B) = ˜μ (B) = ˜μ (A)+ ˜μ (B�A)< ˜μ (A)+ ε .

Since ε is an arbitrary positive number, μ (A)≤ ˜μ (A), whence μ (A) = ˜μ (A). That
is, ˜μ = μ on σ(A ).

Now assume that X = ∪∞
i=1Xi, where each Xi is in A and has finite μ-measure.

We may also assume the sets Xi are pairwise disjoint. In this case, if ˜μ is another
measure extending μ to σ(A ), then we have shown that for each i ∈ N and B ∈
σ(A ), ˜μ (B∩Xi) = μ (B∩Xi). It follows that ˜μ = μ on σ(A ).
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Example 10.2.1. Let X consist of the rational numbers in (0,1], and let A be the
algebra formed by disjoint unions of intervals (a,b]∩ X . Let μ(∅) = 0, and for
all other sets E ∈ A , let μ(E) = +∞. The extension of μ to σ(A ) is not unique
(Problem 10.1).

10.3 Lebesgue Measure on Euclidean Space

Lebesgue measure on Euclidean space generalizes area for the plane and volume for
3-space. Just as for the line, it can be generated by an outer measure. First we need
some basic properties of an n-dimensional Euclidean space R

n. We assume that a
coordinate system has been fixed. We use |x− y| to denote the Euclidean distance
from a point x to a point y in R

n. This is a metric on R
n, and so metric notions

apply. The topology on R
n is the metric topology with a local open base at each

point consisting of open balls centered at the point.
A point x ∈ R

n is called rational if its coordinates are rational. Every open set
O ⊆ R

n equals the union of the open balls contained in O having rational centers
and rational radii. Therefore, the topology satisfies the second axiom of countability,
and by Proposition 9.8.1, any collection of open sets has a finite or countably infinite
subcollection with the same union. Therefore, to show that a subset is compact, it
is enough to show that every countably infinite covering by open sets has a finite
subcovering. By Theorem 9.7.5, a set is compact if and only if it has the Bolzano-
Weierstrass property. By the Heine-Borel Theorem 9.7.7, a set is compact if and
only if it is closed and bounded.

If X is the x-y plane, then the product of finite closed intervals, one in each of
the coordinate axes, is a finite rectangle with its boundary. The product of finite
open intervals in the coordinate axes is a finite rectangle without its boundary. In
3-space the analogous products form rectangular parallelepipeds with and without a
boundary. In general, we have the following property for such a product; the proof
is Exercise 10.2.

Proposition 10.3.1. If P is the product of finite open intervals, one in each of the
coordinate axes of Rn, then P is an open set. If P is the product of finite closed
intervals in the coordinate axes of Rn, then P is a closed and bounded, and therefore
compact, set.

We next define Lebesgue outer measure λ ∗n on n-dimensional Euclidean space Rn

and the corresponding Lebesgue measure. Given a product P of finite open intervals
or finite closed intervals in the coordinate axes, we let V (P) denote the product of
the length of those intervals. If the intervals are open, we will call P a general open
rectangle, and V (P) the volume of P. For n = 2, V (P) is the area of a rectangle
without boundary. For n = 3, V (P) is the volume of a rectangular parallelepiped
without boundary.

Given a set A ⊆ X , we let C (A) denote the family of all collections of such
general open rectangles that cover A. That is, I is a member of C (A) if and only
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if I is a set of general open rectangles in X , and the union of the elements of I
contains the set A. By ∑P∈I V (P) we mean the unordered sum of the volumes of
the sets in I . Recall that this is the supremum of the sums obtained by adding
the volumes of finite subsets of I . If I is an uncountable collection, then by the
Lindelöf property, a finite or countably infinite subfamily of I also covers A and
has a sum of volumes that is no greater than the sum for the whole family. Therefore,
in applying the following definition, we usually consider just finite and countably
infinite families of general open rectangles that cover A. Every enumeration of a
countably infinite family of general open rectangles will produce the same sum of
volumes, which is the usual limit of partial sums.

Definition 10.3.1 (Lebesgue outer measure). For each subset A⊆R
n, the Lebesgue

outer measure, λ ∗n (A), is obtained as follows:

λ ∗n (A) = inf
I∈C (A)

(

∑
P∈I

V (P)

)

.

Proposition 10.3.2. For a general open rectangle P, the outer measure λ ∗n (P) =
V (P). For each A ⊆ R

n, λ ∗n (A) ≥ 0, λ ∗n (∅) = 0, λ ∗n (Rn) = +∞, and if A ⊆ B ⊆
R

n, then λ ∗n (A) ≤ λ ∗n (B). Moreover, λ ∗n is countably subadditive, that is, for any
sequence 〈Ei : i ∈ N〉 in R

n, λ ∗n (∪i∈NEi)≤ Σi∈N λ ∗n (Ei). Therefore, λ ∗n is indeed an
outer measure.

Proof. Since P covers itself, λ ∗n (P) ≤ V (P). Let R be any closed general rect-
angle with R ⊂ P. We show next that V (R) ≤ λ ∗n (R). It will then follow that
V (P) ≤ λ ∗n (P), whence V (P) = λ ∗n (P). Since R is compact, we need only show
that if {Pi : i = 1, · · · ,m} is a finite covering of R by general open rectangles, then
V (R) ≤ ∑m

i=1 V (Pi). That proof is Exercise 10.4(A). The rest is clear except for
countable subadditivity, that is, if E ⊆ ⋃∞

i=1 Ei, then λ ∗n (E) ≤ ∑∞
i=1 λ ∗n (Ei). This

is clear if any of the terms in the sum is infinite. Assuming each is finite, we fix
ε > 0, and for each i ∈ N, we choose a covering of Ei by general open rectangles
such that the sum of their volumes is less than λ ∗n (Ei) +

ε
2i . The total volume of

all of the covering general open rectangles, which together cover E, is less than
(∑∞

i=1 λ ∗n (Ei))+ ε . Since ε is arbitrary, subadditivity is established.

Proposition 10.3.3. Given A ⊆ R
n and ε > 0, there is an open set O with A ⊆ O

and λ ∗n (O) ≤ λ ∗n (A)+ ε . Moreover, there is a countable intersection of open sets
S⊇ A with λ ∗n (S) = λ ∗n (A).

Proof. Exercise 10.5.

Definition 10.3.2. To obtain Lebesgue measure on R
n, restrict λ ∗n to the σ -algebra

of λ ∗n -measurable sets. The restriction is a complete, countable additive measure
extending the volume of general rectangles. The family of λ ∗n -measurable sets is
called the Lebesgue measurable sets, and the restriction of λ ∗n is called Lebesgue
measure on R

n.



10.4 Product Measures 185

10.4 Product Measures

We have extended Lebesgue measure to R
n, but we have not yet discussed integra-

tion, in particular, iterated integrals. For that discussion, given in a general context,
we consider just two complete measure spaces (X ,A ,μ) and (Y,B,ν). The exten-
sion to 3 or more spaces will be clear.

Definition 10.4.1. A measurable rectangle in X×Y is the product A×B of a mea-
surable set A in X with a measurable set B in Y . The collection of measurable rect-
angles is denoted by R. For each A×B ∈R, we set γ(A×B) = μ (A) · ν (B). We
let Q be the collection of finite unions of disjoint measurable rectangles, and we
extend γ to Q by summing its values on the rectangles forming any member of Q.

Proposition 10.4.1. The family Q is an algebra of subsets of X ×Y , and γ is well-
defined on Q. In fact, γ is a measure on Q.

Proof. The proof that Q is an algebra of subsets of X×Y is Exercise 10.10. To show
that γ is well-defined and even a measure on Q, we fix a finite or countably infinite
disjoint collection {(Ai×Bi)} of measurable rectangles with union a measurable
rectangle A×B, and we show that γ(A×B) = Σ γ(Ai×Bi). Fix x ∈ A. For all y ∈ B,
there is a unique i with (x,y) ∈ Ai×Bi. Therefore, B is the disjoint union of sets Bi

such that x is in the corresponding Ai. For those sets Bi, we have

Σiν (Bi) = Σi (ν (Bi) · χAi(x)) = ν (B) .

Therefore, for x ∈ A, Σi (ν (Bi) · χAi(x)) = ν (B) · χA(x), and if x /∈ A, the equation
still holds. Now by the Monotone Convergence Theorem,

Σγ(Ai×Bi) = Σi

∫

(ν (Bi) · χAi)dμ =
∫

Σi (ν (Bi) · χAi(x))dμ

=
∫

(ν (B) ·χA)dμ = ν (B) ·μ (A) = γ(A×B).

Since γ is a measure on the algebra Q, by Theorem 10.2.1 there is an extension
to a σ -additive measure on the completion of the σ -algebra σ(Q).

Definition 10.4.2. We denote the collection of measurable sets in the completion of
σ(Q) by S , and we write μ×ν for the extension of γ to S . The measure μ×ν is
called a product measure.

Proposition 10.4.2. If μ and ν are both finite (or σ -finite), then μ × ν is finite
(or σ -finite).

Proof. Exercise 10.11.

Example 10.4.1. As an application of the construction of product measures, one
can construct two-dimensional Lebesgue measure and then higher-dimensional
Lebesgue measure by starting with Lebesgue measure on the real line.
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We will need cross sections to describe the structure of product measurable sets.
We use the following notation: Ex := {y∈Y : (x,y)∈ E}, Ey := {x∈ X : (x,y)∈ E}.
Recall that ˜E and �E both denote the complement of a set E.

Proposition 10.4.3. Given a set E ⊆ X ×Y , the value χEx(y) = χE(x,y),
(

�E
)

x =

�(Ex), and for any collection of sets {Eα}, (∪Eα)x = ∪α(Eα)x.

Proof. To see that
(

�E
)

x = �(Ex), note the following:

y ∈ (�E
)

x ⇔ (x,y) ∈ �E ⇔ (x,y) /∈ E ⇔ y /∈ Ex ⇔ y ∈ �(Ex) .

The rest is clear.

Lemma 10.4.1. If E ∈ Rσδ , then for every x ∈ X, Ex ∈ B and for every y ∈ Y ,
Ey ∈A .

Proof. The result is trivial if E ∈R. If E = ∪iEi where each Ei ∈R, then for every
x ∈ X and every y ∈ Y ,

χEx(y) = χE(x,y) = sup
i

χEi(x,y) = sup
i

χ(Ei)x(y).

It follows that χEx is a measurable function of y, whence Ex ∈B. If now we assume
that E = ∩iEi where each Ei ∈Rσ , then for every x ∈ X and every y ∈ Y ,

χEx(y) = χE(x,y) = inf
i

χEi(x,y) = inf
i

χ(Ei)x(y).

It follows that χEx is a measurable function of y, whence Ex ∈B. The proof that for
every y ∈ Y , Ey ∈A is similar.

If we are dealing with the product of finite or σ -finite measure spaces, then the
product is also at least σ -finite. It then follows from Proposition 10.2.3 and its corol-
laries that every measurable set having finite measure is an Rσδ set minus a null set.
Moreover, every measurable set is a countable union of Rσδ sets of finite measure
where a null set has been removed from each. The next two lemmas establish prop-
erties of Rσδ sets of finite measure and null sets.

Lemma 10.4.2. Let E be a set in Rσδ with (μ×ν)(E)<+∞. Then x→ ν (Ex) is a
measurable function of x, and

∫

ν (Ex)dμ = (μ×ν)(E). A similar statement holds
when the roles of x and y are reversed.

Proof. The result is trivial if E ∈R. Any finite union of measurable rectangles can
be written as a finite disjoint union. Therefore, given E ∈Rσ , we may assume it is
a pairwise disjoint union of measurable rectangles Ei. Hence, the measurability of
x→ ν (Ex) is clear. Moreover, for each x ∈ X , ν (Ex) = Σiν ((Ei)x), and so
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∫

ν (Ex)dμ = Σi

∫

ν ((Ei)x)dμ = Σi (μ×ν)(Ei) = (μ×ν)(E).

Now let E be a set in Rσδ for which the product measure is finite. Note that by the
construction of the product measure, there is a sequence of measurable rectangles Ai

such that E ⊆ ∪iAi and (μ×ν)(E)≤ Σi (μ×ν)(Ai)≤ (μ×ν)(E)+1. Let E1 =
∪Ai ∈Rσ . We now find Rσ sets En so that the sequence En is decreasing and E =
∩En; we use the following method: Given an Rσ set F = ∪iAi and a second Rσ set
G =∪ jB j, each Ai∩B j ∈R, and so we can form the Rσ set ∪i∪ j (Ai∩B j)⊆ F∩G.
Starting with E1 and continuing in this way, we may assume that the sequence En

from Rσ is decreasing, and since E ∈Rσδ , we may assume that E =∩nEn. Now for
each x ∈ X , Ex = ∩n(En)x. Therefore, ν(En)x is a decreasing sequence of integrable
functions on X , and ν (Ex) = limn ν(En)x for each x ∈ X . It follows that ν (Ex) is a
measurable function of x, and by the Lebesgue dominated convergence theorem and
properties of measures,

∫

ν (Ex)dμ = lim
n
(μ×ν)(En) = (μ×ν)(E).

Lemma 10.4.3. Let E be a set for which (μ×ν)(E) = 0. Then for μ-almost all
x ∈ X, Ex ∈B and ν (Ex) = 0. A similar statement is true for ν-almost all y ∈ Y .

Proof. There is an Rσδ set F ⊇ E such that 0 = (μ×ν)(F) =
∫

ν (Fx)dμ . Since
Ex ⊆ Fx and for μ-almost all x ∈ X , ν (Fx) = 0, it follows from the completeness of
ν that for μ-almost all x ∈ X , Ex ∈B and ν (Ex)≤ ν (Fx) = 0.

Proposition 10.4.4. Let E be a set of finite product measure. Then for μ-almost
all x ∈ X, Ex ∈B and x → ν (Ex) defines a measurable function of x on X when
the value is set equal to 0 where ν (Ex) is not defined. Moreover,

∫

ν (Ex)dμ =
(μ×ν)(E). A similar statement holds for ν-almost all y ∈ Y .

Proof. There is an Rσδ set F ⊇ E with (μ×ν)(F \E) = 0. The result is true for F
and for F \E, so it is true for E. That is, for μ-almost all x ∈ X , Ex is a measurable
subset of Y and ν (Ex) = ν (Fx). The rest is clear.

Theorem 10.4.1 (Fubini). Let (X ,A ,μ) and (Y,B,ν) be two complete measure
spaces, and let f be an integrable function on X×Y . Then

a) for μ-almost all x ∈ X, the function y → f (x,y) is an integrable function on Y ;
b) for ν-almost all y ∈ Y , the function x → f (x,y) is an integrable function on X;
c) the function x → ∫Y f (x,y)ν(dy) is an integrable function on X;
d) the function y → ∫X f (x,y)μ(dx) is an integrable function on Y ; and

∫

X

(

∫

Y
f dν
)

dμ =
∫

X×Y
f d (μ×ν) =

∫

Y

(

∫

X
f dμ
)

dν .

Proof. The collection of functions on X×Y for which the theorem is true is a vector
subspace of the space of integrable functions on X ×Y . That subspace contains
the space of simple functions that vanish off of sets of finite measure. We need,
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therefore, only prove the result for a nonnegative function f . By symmetry, we need
only establish Properties a and c and the first equality between the iterated integral
and
∫

X×Y f d (μ×ν). Given a nonnegative integrable function f on X ×Y , there is
an increasing sequence of simple, nonnegative functions ϕn with limit f . Since f is
integrable, each ϕn is integrable, and so must vanish off of a set of finite measure. For
μ-almost all x∈X , each function ϕn(x, ·) is measurable on Y . For such an x, f (x, ·) is
measurable on Y . Now, consider the function on X taking the value

∫

Y f (x,y)ν(dy)
when the integral is defined, and the value 0 when the integral is not defined. By
the Monotone Convergence Theorem,

∫

Y f (x,y)ν(dy) = limn
∫

Y ϕn(x,y)ν(dy) for
μ-almost all x, so the function x → ∫Y f (x,y)ν(dy) is measurable. Again by the
Monotone Convergence Theorem,

∫

X
(
∫

Y
f dν)dμ = lim

n

∫

X
(
∫

Y
ϕndν)dμ

= lim
n

∫

X×Y
ϕnd (μ×ν) =

∫

X×Y
f d (μ×ν)<+∞.

It follows that x → ∫Y f (x,y)ν(dy) is a μ-integrable function on X , so Property c
holds. Therefore, for μ-almost all x ∈ X ,

∫

Y f (x,y)ν(dy) is finite, so Property a
holds. We also have established the first equality between the iterated integral and
∫

X×Y f d (μ×ν).

The finiteness condition that we needed to go from characteristic functions of
sets of finite product measure to the general case is obtained in the Fubini theorem
via the assumption that f is integrable. Here is another way to go from characteristic
functions to the general case.

Theorem 10.4.2 (Tonelli). Let (X ,A ,μ) and (Y,B,ν) be two complete σ -finite
measure spaces, and let f be a nonnegative measurable function on X ×Y . Then

a) for μ-almost all x ∈ X, the function y → f (x,y) is a measurable function on Y ;
b) for ν-almost all y ∈ Y , the function x → f (x,y) is a measurable function on X;
c) the function x → ∫Y f (x,y)ν(dy) is a measurable function on X;
d) the function y → ∫X f (x,y)μ(dx) is a measurable function on Y ; and

∫

X

(

∫

Y
f dν
)

dμ =
∫

X×Y
f d (μ×ν) =

∫

Y

(

∫

X
f dμ
)

dν .

Proof. With the assumption of σ -finiteness, we can take an increasing sequence of
simple functions ϕn converging up to a measurable, nonnegative f on X×Y so that
each ϕn vanishes off of a set of finite measure. The proof is the same as for the
Fubini theorem, except the result is now stated for nonnegative functions, so the
space for which the result holds is stable under addition and multiplication only by
nonnegative scalars.
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10.5 Other Integrals

There are other approaches to integration that may interest the reader. For example,
recall that a real vector lattice on a set X is a vector space of functions L with
scalars in R such that if f and g are in L so are f ∧ g (the pointwise minimum)
and f ∨g (the pointwise maximum.) Note that | f |= ( f ∨0)+(− f ∨0). Conversely,
given the absolute value function, we have

f ∨g = (1/2)[ f +g+ | f −g|], f ∧g = (1/2)[ f +g−| f −g|].

Definition 10.5.1. A positive linear functional I on L is a linear map of L into R

taking nonnegative functions to nonnegative values. In particular, it is increasing in
the sense that if f ≤ g, then I ( f ) is less than or equal to I(g). Let I be such a positive
linear functional with the additional property that if 〈ϕn : n ∈ N〉 is a decreasing
sequence in L with limit 0 at each point of X , then I(ϕn)↘ 0. The corresponding
Daniell integral is the extension of I to a larger vector lattice.

Example 10.5.1. Let L be the family of continuous functions with compact support
on R, and let I be the Riemann integral on L . The corresponding Daniell integral
is the Lebesgue integral on R.

Example 10.5.2. Let A be an algebra of subsets of a set X , and let μ be a finite,
σ -additive measure on (X ,A ). Let L be the family of simple, measurable functions
on X , and let I be the corresponding integral with respect to μ . The Daniell integral is
the integral with respect to the σ -additive extension of μ to the σ -algebra generated
by A . See Theorem 10.2.1.

Another example, in [32], gives an alternate approach to the integral for the
measure theory described in the Appendix on Infinitesimal Analysis and Measure
Theory. For the general construction of the Daniell integral, see [45].

There is a large body of literature on the Henstock–Kurzweil integral. That int-
egral uses sums like those for the Riemann integral, but the size of an interval in
which the integrand is evaluated at a point t depends on the value of the integrand
at t. The corresponding integral is a version of the Lebesgue integral. For the con-
nection with “points of approximate continuity”, see [33].

10.6 Problems

Problem 10.1. Let X consist of the rational numbers in (0,1], and let A be the
algebra formed by disjoint unions of intervals (a,b]∩X . Let μ(∅) = 0, and for all
other sets E ∈ A , let μ(E) = +∞. Show that the extension of μ to σ(A ) is not
unique. Hint: For each x ∈ X , {x} ∈ σ(A ).

Problem 10.2. Prove Proposition 10.3.1.
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Problem 10.3. There are topological spaces so disconnected that there is a base for
the topology consisting of clopen sets. Clopen sets are sets that are simultaneously
both open and closed. Let X be such a space.

a) Show that the collection A of clopen sets in X is an algebra in X .
b) Show that if X with the topology generated by clopen sets is compact, then any

finitely additive measure on the algebra A of clopen sets can be extended to a
countably additive measure on the completion of the smallest σ -algebra contain-
ing A .

Problem 10.4 (A). In R
n, let R be a general closed rectangle, and let the collection

{Pi : i = 1, · · · ,m} be a finite covering of R by general open rectangles. Show that
V (R)≤ ∑m

i=1 V (Pi).

Problem 10.5. Prove Proposition 10.3.3.

Problem 10.6. Fix nonempty sets A and B⊆ R
n such that

d(A,B) := inf{|x− y| : x ∈ A,y ∈ B}= a > 0.

Show that Lebesgue outer measure λ ∗(A∪B) = λ ∗(A)+λ ∗(B).

Problem 10.7. Show that Lebesgue outer measure on R
n is translation invariant.

Problem 10.8. The family of Borel sets in R
n is the smallest σ -algebra containing

the open subsets of Rn. Extend Proposition 2.4.2 and Corollaries 2.5.1 and 2.5.2
of Theorem 2.5.1, as they apply to Lebesgue measure on R, to Lebesgue measure
on R

n.

Problem 10.9. A measure defined on the family of Borel sets is called a Borel
measure. A Borel measure μ on R

n is called a doubling measure if there exists
a constant C such that for every open ball B(x,r), μ(B(x,2r))≤Cμ(B(x,r)). Let μ
and η be two doubling Borel measures on R. Prove that the Borel measure μ×η is
a doubling measure on R

2. Hint:

[x− r/2,x+ r/2]× [y− r/2,y+ r/2] ⊆ B((x,y),r)

B((x,y),2r) ⊆ [x−2r,x+2r]× [y−2r,y+2r].

Problem 10.10. Fix two measure spaces (X ,A ,μ) and (Y,B,ν). Let Q be the col-
lection of finite unions of disjoint measurable rectangles. Show that Q is an algebra
of subsets of X×Y .

Problem 10.11. Prove Proposition 10.4.2.



Chapter 11
Banach Spaces

11.1 Banach Spaces

In this chapter, we continue developing properties of normed linear spaces, and in
particular, Banach spaces, i.e., spaces that are complete with respect to the met-
ric generated by the norm. We have already considered the important examples of
Hilbert spaces and Lp spaces. Further aspects of the latter will be developed in this
chapter. The field of scalars for our work is either the set of real numbers R or com-
plex numbers C. These fields are examples of normed linear spaces; the absolute
value function is the norm for R, and the modulus is the norm for C.

A linear subspace of a normed space is often called a linear manifold. Linear in-
dependence and dimension are the usual notions defined for all vector spaces. (See,
for example, Definition 8.5.1.) A finite-dimensional linear manifold in a normed
space is always closed with respect to the topology generated by the norm. (See
Problem 11.2(A).)

Definition 11.1.1. Equivalent norms on a normed space are norms that generate
the same topology.

Remark 11.1.1. Two norms are equivalent if each norm multiplied by an appropriate
constant dominates the other. To see this, we note that open neighborhoods of a point
are translates of open neighborhoods of 0. Therefore, we need only have an open ball
about 0 in terms of each one of the norms contain an open ball about 0 in terms of the
other norm. Recall that for a normed space X and all x, y in X , |‖x‖−‖y‖| ≤ ‖x−y‖,
whence x → ‖x‖ is a uniformly continuous map from X into R

+.

Definition 11.1.2. A map from one vector space into another preserving addition
and scalar multiplication is called a linear map or linear transformation.

Recall that linear functionals on a normed linear space are linear maps into the
scalar field. Properties of such functionals, such as Theorem 7.5.1, hold for more
general maps.

© Springer International Publishing Switzerland 2016
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Definition 11.1.3. A linear transformation T from one normed linear space X to
another is bounded if the following quantity is finite:

‖T‖ := sup
x∈X ,x �=0

‖T (x)‖
‖x‖ = sup

‖x‖=1
‖T (x)‖= sup

‖x‖≤1
‖T (x)‖.

The nonnegative real number ‖T‖ is called the norm of the linear transformation.

Theorem 11.1.1. If a linear transformation T is continuous at any point of a normed
vector space X (not necessarily complete), then it is bounded. If T is bounded, then
it is uniformly continuous on all of X.

Proof. If there is an open ball B(x,δ ) about x that maps into a ball B(T (x),ε) about
T (x), then the translate

B(x,δ )− x = {y : y = z− x, z ∈ B(x,δ )}

is the open ball B(0,δ ), and

T [B(0,δ )]⊆ B(T (x),ε)−T (x) = B(0,ε).

It follows that if T is continuous at x, then it is continuous at 0. Moreover, T is
bounded since ‖x‖< δ if and only if

∥

∥
2
δ x
∥

∥< 2, so

sup
‖x‖≤1

‖T (x)‖ ≤ sup
‖x‖<2

‖T (x)‖ ≤ 2
δ
· sup

x∈B(0,δ )
‖T (x)‖ ≤ 2ε

δ
.

The uniform continuity follows from the Lipschitz inequality that for all x and y in
X , ‖T (x)−T (y)‖ ≤ ‖T‖ · ‖x− y‖.
Definition 11.1.4. The space of bounded linear functionals on X is called the dual
space or conjugate space of X . It is denoted by X∗.
Theorem 11.1.2. The space B of bounded linear maps from a normed space X
into a Banach space Y forms a Banach space. The norm of each bounded linear
transformation T is the nonnegative real number ‖T‖.
Proof. The set B forms a vector space where addition and scalar multiplication are
the usual pointwise operations for functions from one vector space into another. To
show that ‖ · ‖ is a norm on B, we note that ‖T‖ = 0 if and only if T = 0. For any
scalar α ,

‖αT‖= sup
‖x‖=1

‖αT (x)‖= |α| sup
‖x‖=1

‖T (x)‖= |α| · ‖T‖.

Given A, B ∈B, we have

‖A+B‖ = sup
‖x‖=1

‖A(x)+B(x)‖ ≤ sup
‖x‖=1

(‖A(x)‖+‖B(x)‖)

≤ sup
‖x‖=1

‖A(x)‖+ sup
‖x‖=1

‖B(x)‖= ‖A‖+‖B‖.
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It only remains to show that B is complete. Let 〈An : n ∈ N〉 be a Cauchy sequence
in B. Then for all x ∈ X , 〈An(x)〉 is a Cauchy sequence in Y since for all n, m in N,
‖An(x)−Am(x)‖ ≤ ‖An−Am‖‖x‖. Let A(x) denote the limit. Since A is the point-
wise limit of linear maps, it too is linear. For example, the sequence 〈An(x)+An(y)〉
has limit A(x)+A(y) and also A(x+ y), and so these two limits are equal. To show
that A is a bounded linear map, we find an N ∈ N so that for n≥ N, we have

|‖An‖−‖AN‖| ≤ ‖An−AN‖ ≤ 1.

It follows that for all x ∈ X with ‖x‖ ≤ 1, and for all n ≥ N, ‖An (x)‖ ≤ ‖AN‖+ 1.
Since ‖ ·‖ is continuous on Y , ‖A(x)‖ ≤ ‖AN‖+1 for all x with ‖x‖ ≤ 1, whence A
is bounded. To show that An → A, with respect to the norm ‖ ·‖ on B, we fix ε > 0,
and choose N ∈N so that for n, m≥ N, ‖An−Am‖< ε . For any x with ‖x‖ ≤ 1, and
for any n≥ N,

‖An (x)−A(x)‖= lim
m
‖An (x)−Am (x)‖ ≤ lim

m
‖An−Am‖ ≤ ε ,

whence ‖An−A‖ ≤ ε .

Corollary 11.1.1. The dual space X∗ of a normed space X is a Banach space. The
norm of each bounded linear functional F is ‖F‖ := sup‖x‖≤1 |F(x)|.
Theorem 11.1.3. A linear functional f on a normed space X is bounded if and only
if its kernel K := {x ∈ X : f (x) = 0} is closed in X.

Proof. Exercise 11.3(A).

11.2 Return to Classical Normed Spaces

We work with a measure space (X ,B,μ). We don’t assume μ is complete; f = g
almost everywhere means that we have equality outside of a μ-null set. Two func-
tions are equivalent if they are equal almost everywhere. We use notation such as f
for both the function f and the equivalence class it represents. If the scalar field is
R, then | f | denotes the absolute value of f . If the scalar field is C, then | f | denotes
the modulus of f . For 1 ≤ p < ∞, the space Lp(μ) consists of those equivalence
classes of measurable functions f such that

∫ | f |p dμ is finite. For each f ∈ Lp(μ),
‖ f‖p := [

∫

(| f |)p]1/p. For p = ∞, ‖ f‖∞ denotes the essential supremum of | f |. The
space L∞(μ) consists of those equivalence classes of measurable functions f for
which ‖ f‖∞ is finite.

For 1 ≤ p ≤ ∞, Lp(μ) (also denoted by just Lp) is a linear space with re-
spect to the scalar field. Real values p and q greater than 1 satisfying the equal-
ity 1/p+ 1/q = 1 are called conjugate exponents. The values p = 1 and q = ∞
are also paired in the theory. For 1 ≤ p ≤ ∞, the map f → ‖ f‖p is a norm on Lp,
and Lp is complete with respect to the metric generated by its norm; that is, it is a
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Banach space. When the measure space is N with counting measure, we write �p

instead of Lp. For example, �∞ is the space of bounded sequences. The reader can
show in Problem 7.43(A) that if f is a function in every Lp for 1 ≤ p ≤ ∞, then
limp→∞ ‖ f‖p = ‖ f‖∞.

We recall now the inequalities of Hölder and Minkowski, and add a condition for
equality in Minkowski’s Inequality.

Lemma 11.2.1. For real-valued and complex-valued functions f and g, | f +g| =
| f |+ |g| on a set E if and only if where the product is not 0, the ratio is positive.

Proof. Exercise 11.4.

Theorem 11.2.1 (Hölder’s Inequality). Assume either that p and q are real num-
bers larger than 1 with 1/p+ 1/q = 1 or that p = 1 and q = ∞. In either case,
if f ∈ Lp and g ∈ Lq, then f · g ∈ L1 and ‖ f g‖1 ≤ ‖ f‖p · ‖g‖q. The inequality is
equality if the right side is 0. Otherwise, for p = 1, equality holds if and only if
|g(x)|= ‖g‖∞ for almost all x such that f (x) �= 0, while for p > 1, equality holds if
and only if there are positive constants s and t such that s · | f |p = t · |g|q a.e.

Proof. Presented in Theorem 7.4.1.

Theorem 11.2.2 (Minkowski’s Inequality). If f and g are in Lp, then so is f + g
and ‖ f +g‖p ≤‖ f‖p+‖g‖p. Assume that neither ‖ f‖p nor ‖g‖p is 0. Then we have
equality for p = 1 if and only if | f (x)+g(x)| = | f (x)|+ |g(x)| for almost all x. We
have equality for 1 < p < ∞ if and only if g = γ · f a.e. for some γ > 0. We have
equality for p = ∞ if and only if for each ε > 0 there is a set E of strictly positive
measure such that the following holds almost everywhere on E: | f (x)+g(x)| ≥
| f (x)|+ |g(x)|− ε , | f (x)| ≥ ‖ f‖∞− ε , and |g(x)| ≥ ‖g‖∞− ε .

Proof. The inequality is established in Theorem 7.4.2; we repeat the proof here for
the case 1 < p < ∞. We assume that neither ‖ f‖p nor ‖g‖p is 0. Equality for the
case p = 1 is Exercise 11.5. Suppose 1 < p < ∞ and g = γ · f a.e. for some γ > 0.
Then we have equality since

(

∫

| f +g|p
)1/p

=

(

∫

|(1+ γ) f |p
)1/p

= (1+ γ)
(

∫

| f |p
)1/p

= ‖ f‖p +‖g‖p .

On the other hand,
∫

| f +g|p ≤
∫

(

| f +g|p−1 · | f |
)

+
∫

(

| f +g|p−1 · |g|
)

.

Equality holds here if and only if | f + g| = | f |+ |g| a.e. We employ Hölder’s In-
equality with 1

p +
1
q = 1 so pq−q = p.

∫

(

| f +g|p−1 · | f |
)

≤ ‖ f‖p ·
(

∫

| f +g|p
)1/q

= ‖ f‖p · ‖ f +g‖p/q
p ,
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with equality implying the existence of constants s > 0 and t > 0 such that

s · | f |p = t · | f +g|p a.e.

Similarly,

∫

(

| f +g|p−1 · |g|
)

≤ ‖g‖p ·
(

∫

| f +g|p
)1/q

= ‖g‖p · ‖ f +g‖p/q
p ,

with equality implying the existence of constants u > 0 and v > 0 such that

u · |g|p = v · | f +g|p a.e.

Now we have
∫

| f +g|p ≤ ‖ f‖p · ‖ f +g‖p/q
p +‖g‖p · ‖ f +g‖p/q

p .

Since 1
p +

1
q = 1, p = 1+ p

q , so p− p
q = 1. Therefore,

‖ f +g‖p = ‖ f +g‖p−p/q
p ≤ ‖ f‖p +‖g‖p .

This again establishes the inequality for the case 1 < p < ∞. If we have equality,
then | f +g|= | f |+ |g| a.e., and

s · | f |p = t · | f +g|p = v · t
v
· | f +g|p = u · t

v
· |g|p a.e.,

so for some γ > 0, |g|= γ · | f | a.e. Therefore, outside of a null set, f = 0 if and only
if g = 0, and by Lemma 11.2.1, where neither is 0, the ratio is positive. It follows
that almost everywhere, g = γ · f .

Finally, suppose p = ∞. Let f and g be representative functions for their equiv-
alence classes. For each ε > 0, let Fε := {| f (x)| ≥ ‖ f‖∞− ε}, and let Gε :=
{|g(x)| ≥ ‖g‖∞− ε}. If for each ε > 0 there is a set Eε ⊆ Fε ∩Gε with strictly posi-
tive measure such that | f +g| ≥ | f |+ |g|− ε on Eε , then

‖ f +g‖∞ ≥ ‖( f +g) · χEε‖∞ ≥ inf
x∈Eε

| f (x)+g(x)|
≥ inf

x∈Eε
(| f (x)|+ |g(x)|)− ε ≥ ‖ f‖∞ +‖g‖∞−3ε .

Since ε is arbitrary, ‖ f + g‖∞ ≥ ‖ f‖∞ + ‖g‖∞. We must then have equality, and so
the condition of the theorem is sufficient for equality.

Suppose the condition fails for some ε > 0. For x ∈ X�(Fε ∩Gε), | f (x)| <
‖ f‖∞− ε or |g(x)|< ‖g‖∞− ε or both, in which case

| f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ ‖ f‖∞ +‖g‖∞− ε a.e.
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Let A be the set of all x ∈ Fε ∩Gε such that | f (x)+g(x)| ≥ | f (x)|+ |g(x)|−ε . Since
the condition fails for ε , A has measure 0. For x ∈ (Fε ∩Gε)�A,

| f (x)+g(x)|< | f (x)|+ |g(x)|− ε ≤ ‖ f‖∞ +‖g‖∞− ε a.e.

It follows that the condition of the theorem is necessary for equality.

Remark 11.2.1. If f and g are real-valued functions, the condition that for every
ε > 0, | f (x)+g(x)| ≥ | f (x)|+ |g(x)| − ε on E is the condition that f (x) and g(x)
have the same sign at all points of E.

11.3 Dual Space of Lp

For the rest of this chapter, we assume that the scalar field is just R. As a corol-
lary of Theorem 11.1.2, we have seen that the dual space X∗ of a normed space
X is a Banach space, with norm of each bounded linear functional F equal to
sup‖x‖≤1 ‖F(x)‖. It is convenient to have a more concrete representation for the dual
space of an Lp space in terms of a space that is isometrically isomorphic to the dual
space. Two normed linear spaces are called isometrically isomorphic when there is
a linear bijection between them such that the norm of a point equals the norm of its
image.

Recall that as an immediate consequence of Hölder’s Inequality, we noted that
for conjugate pairs p and q, and also for p = 1 and q = ∞, when g ∈ Lq, the map
f → ∫ f ·g is a bounded linear functional Fg on Lp with

∥

∥Fg
∥

∥≤ ‖g‖q. As promised,
we now refine that result. If p = 1, the measure should be σ -finite, as we show with
the following example.

Example 11.3.1. Suppose X = {3,5}, with μ({3}) = 1 and μ({5}) = +∞. Then μ
is not σ -finite. Any L1 function must take the value 0 at 5. If g(3) = 1 and g(5) =
2, then g ∈ L∞, and g has L∞-norm 2. The functional Fg, however, has norm 1.
Moreover, we can change the value of g at 5 and still represent the same functional
on L1.

Proposition 11.3.1. Assume that μ is a σ -finite measure on (X ,B), and let p = 1.
If g ∈ L∞(μ), then the mapping f → ∫ f ·g dμ defines a bounded linear functional
Fg on L1(μ) with

∥

∥Fg
∥

∥= ‖g‖∞.

Proof. By Hölder’s Inequality,
∣

∣Fg( f )
∣

∣ ≤ ∫ | f g| ≤ ‖ f‖1 · ‖g‖∞, so Fg is bounded
with

∥

∥Fg
∥

∥ ≤ ‖g‖∞. To show the reverse inequality, we may assume that ‖g‖∞ �= 0.
Let g be a representative of its equivalence class. Fix ε with 0 < ε < ‖g‖∞. Since
the space X can be decomposed into a countable number of measurable sets of finite
measure, there is a measurable set A of finite, strictly positive measure such that
|g(x)| ≥ ‖g‖∞− ε for all x ∈ A. Set f (x) := 1

μ(A) · (g(x)/ |g(x)|) · χA. Then ‖ f‖1 =

1 and
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∣

∣Fg( f )
∣

∣=
∫

f ·g =
1

μ(A)
·
∫

A
|g| ≥ ‖g‖∞− ε .

Since ε is arbitrary in its range,
∥

∥Fg
∥

∥= ‖g‖∞.

Proposition 11.3.2. Assume that μ is any measure on (X ,B), and fix p and q in
R
+ with 1/p+ 1/q = 1. If g ∈ Lq(μ), then the mapping f → ∫ f · g dμ defines a

bounded linear functional Fg on Lp(μ) with
∥

∥Fg
∥

∥= ‖g‖q.

Proof. By Hölder’s Inequality,
∣

∣Fg( f )
∣

∣ ≤ ∫ | f g| ≤ ‖ f‖p · ‖g‖q, so Fg is bounded
with

∥

∥Fg
∥

∥≤ ‖g‖q. Assume that ‖g‖q �= 0, and let g be a representative of its equiva-

lence class. Set f (x) := |g(x)|q/p ·(g(x)/ |g(x)|) for all x∈ {g �= 0}, and set f (x) = 0
otherwise. Since q/p+1 = q(1/p+1/q) = q,

| f |p = |g|q = |g|q/p+1 = |g|q/p · |g|= f ·g.

Since g ∈ Lq, it follows that, f ∈ Lp and ‖ f‖p = (
∫ |g|q)1/p = ‖g‖q/p

q . Moreover,

∣

∣Fg( f )
∣

∣=
∫

f g =
∫

|g|q/p+1 = ‖g‖q
q = ‖g‖(q/p+1)

q = ‖ f‖p · ‖g‖q .

Theorem 11.3.1. Let (X ,B,μ) be a measure space, and fix p with 1 ≤ p < ∞. For
p = 1, assume that μ is σ -finite, and set q = ∞. For p > 1, fix q with 1/p+1/q = 1.
If F is a bounded linear functional on Lp, then there is a unique g ∈ Lq such that
F = Fg. Therefore, the map g → Fg is an isometric isomorphism of Lq onto the dual
space, (Lp)∗, of Lp.

Proof. To establish uniqueness, suppose Fg = Fh on Lp. Let g and h be repre-
sentatives of their equivalence classes. If p = 1, let Z = X . If p > 1, set Z =
{|g|> 0}∪{|h|> 0}. In either case, Z =∪ jZ j, where j ranges over a finite or count-
ably infinite set, and each Z j has finite μ-measure. Given j, and given n ∈ N, set
E := {g≥ h+1/n}∩Z j. Then χE ∈ Lp, and

Fg(χE) =
∫

E
gdμ ≥

∫

E
hdμ +

1
n

μ(E) = Fg(χE)+
1
n

μ(E).

Since Fg(χE) is finite, μ(E) = 0, and this is true for each j and each n∈N. It follows
that g≤ h μ-a.e. on X . Similarly, h≤ g μ-a.e. on X , so h = g μ-a.e. on X .

Now we assume that μ is a finite measure on (X ,B). Fix a bounded linear func-
tional F on Lp(μ). Set ν(E) = F(χE) for each measurable set E. Since F is linear,
ν(∅) = F(0) = 0, and for disjoint measurable sets A and B,

ν(A∪B) = F(χA + χB) = F(χA)+F(χB) = ν(A)+ν(B).

Suppose 〈Ei〉 is a pairwise disjoint sequence of measurable sets with union A, and
Ak is the union of the first k of the sets Ei. Then as k→ ∞,
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∥

∥χA− χAk

∥

∥

p =

(

∫

A\Ak

1pdμ
)1/p

= (μ(A\Ak))
1/p → 0.

Since F is continuous, it follows that as k→ ∞,

k

∑
i=1

ν(Ei) = ν(Ak) = F(χAk)→ F(χA) = ν(A) = ν (∪∞
i=1Ei) .

Therefore, ν is a signed measure on X . By assumption, μ(X) is finite, so χX is
integrable, whence ν is a finite, signed measure on X . Moreover, for any measurable
set A, in particular for a positive set or a negative set,

|ν(A)|= |F(χA)| ≤ ‖χA‖p ‖F‖=
(

∫

A
1pdμ

)1/p

‖F‖= (μ(A))1/p ‖F‖ .

Therefore, if μ(A) = 0, then A is a null set for ν .
Let ν = ν+− ν− be the Jordan decomposition for ν . Recall that ν+⊥ν− and

|ν | := ν++ν−. We have seen that |ν |<< μ . Let g be the Radon-Nikodým deriva-
tive of ν with respect to μ , so g = dν+

dμ − dν−
dμ . It now follows that g is integrable, and

for each simple function ϕ , F(ϕ) =
∫

ϕ ·g dμ . Let g be a real-valued representative
of its a.e. equivalence class.

For the case p = 1, fix ε > 0. Set A := {g > ‖F‖+ ε}, B := {g < −‖F‖− ε}.
Then

(‖F‖+ ε) ·μ(A) ≤
∫

A
g dμ = |F (χA)| ≤ ‖F‖ · ‖χA‖1 = ‖F‖ ·μ(A),

(−‖F‖− ε) ·μ(B) ≥
∫

B
g dμ = F (χB)

≥ −|F (χB)| ≥ −‖F‖ · ‖χB‖1 =−‖F‖ ·μ(B).

It follows that μ(A) = 0 and μ(B) = 0. Since ε > 0 is arbitrary, |g| ≤ ‖F‖ μ-a.e.,
whence g ∈ L∞.

For the case p > 1, set En := {0 < |g| ≤ n}, and let h = χEn · |g|q /g, so |h| =
χEn · |g|q−1. Now 1/p+1/q = 1, so q+ p = pq, and q = pq− p. Therefore, |h|p =
|g|q · χEn . Moreover, h is bounded, and since h ·g = χEn · |g|q,

∫

En

|g|q dμ =
∫

X
h ·gdμ = F(h)≤ ‖F‖ · ‖h‖p = ‖F‖ ·

(

∫

En

|g|q dμ
)1/p

,

whence
(

∫

En

|g|q dμ
)1−1/p

=

(

∫

En

|g|q dμ
)1/q

≤ ‖F‖ .

Using the Monotone Convergence Theorem, if follows that g ∈ Lq.
Since g ∈ Lq, by Propositions 11.3.1 and 11.3.2, the mapping f → Fg ( f ) =

∫

X f ·
g dμ is a continuous linear functional on Lp. By Problem 7.41(A), simple functions
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form a dense subset of Lp. Given f ∈ Lp, let 〈ϕn〉 be a sequence of simple functions
with ‖ϕn− f‖p → 0. By the continuity of the functionals Fg and F ,

∫

X
f ·g dμ = Fg ( f ) = lim

n→∞
Fg (ϕn) = lim

n

∫

X
ϕn ·g dμ = lim

n
F(ϕn) = F( f ).

This proves the result for a finite measure space.
Now assume that μ is σ -finite. Let Xn be an increasing sequence of sets of finite

measure with union X . Let χn denote the characteristic function of Xn. For each n, fix
gn vanishing off of Xn such that if f ∈ Lp and f vanishes off of Xn, then F( f ) =

∫

X f ·
gndμ . The functions gn are unique up to sets of measure 0, and so we may assume
that for m < n, gn ·χm = gm. This determines a function g on all of X with

∫

X |g|q ≤
‖F‖q since this is true for gn on Xn for each n. If f ∈ Lp, then ‖ f − f · χn‖p

p =
∫

X\Xn
| f |p dμ→ 0 by the Lebesgue Dominated Convergence Theorem. Therefore, f ·

χn → f in Lp. By Hölder’s Inequality, | f g| is integrable, and of course, it dominates
| f ·g ·χn|. Since F is continuous on Lp,

F( f ) = lim
n

F ( f · χn) = lim
n

∫

f ·g · χndμ =
∫

X
f ·gdμ .

Now assume that μ is not σ -finite and fix p with 1 < p < ∞. For each set E of
σ -finite measure, we can find a function gE that vanishes off of E and represents F
with respect to all Lp functions that vanish off of E. We must have

∫

X |gE |q ≤ ‖F‖q.
Let M be the supremum of the values

∫

X |gE |q. There is a set H of σ -finite measure
such that g := gH gives the value M. We may assume that g = gE when E ⊂ H.
Moreover, by the definition of M, for any set A of σ -finite measure, gA = 0 μ-a.e.
on A\H. If f ∈ Lp, then f vanishes off of a set A of σ -finite measure, so

F( f ) =
∫

X
f ·gA dμ =

∫

H∩A
f ·gAdμ =

∫

H∩A
f ·gdμ =

∫

X
f ·gdμ .

This completes the proof.

11.4 Hahn-Banach Theorem

We next take up an important condition that enables a linear functional to be appro-
priately extended beyond its original domain.

Definition 11.4.1. A real-valued function p on a vector space X is subadditive if for
every x and y in X , p(x+ y) ≤ p(x)+ p(y). It is positive homogeneous if for every
α ≥ 0 and every x in X , p(αx) = α p(x).

Example 11.4.1. A norm on a linear space X is both subadditive and positive homo-
geneous.

Theorem 11.4.1 (Hahn-Banach). Suppose X is a vector space, and let p be a real-
valued, subadditive, positive homogeneous function defined on X. Let S be a vector
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subspace of X, and let f be a real-valued linear functional defined on S with f ≤ p
on S. Then there is a linear functional G defined on X such that G≤ p on X and the
restriction of G to S is equal to f .

Proof. If S = X , we are done. Let y ∈ X be a point not in S, and set Y equal to the
vector space generated by S and y. Elements of Y have the form s+αy for s ∈ S and
α ∈ R. We now show that the result holds for X = Y . Given s1 and s2 in S, since

f (s1)+ f (s2) = f (s1 + s2)≤ p(s1 + s2)≤ p(s1− y)+ p(s2 + y),

so
−p(s1− y)+ f (s1)≤ p(s2 + y)− f (s2).

Let Iy be the closed, nonempty interval given by

Iy :=

[

sup
s∈S

(−p(s− y)+ f (s)) , inf
s∈S

(p(s+ y)− f (s))

]

.

Fix a value h(y) ∈ Iy. Given s+αy in Y , set

h(s+αy) := f (s)+αh(y).

If α = 0, h(s+αy) = f (s)≤ p(s) = p(s+αy). If α > 0, then by the choice of h(y),

h(s+αy) = f (s)+αh(y) = α[ f (s/α)+h(y)]

≤ α[ f (s/α)+(p(s/α + y)− f (s/α))] = p(s+αy).

If α =−β < 0, then by the choice of h(y),

h(s+αy) = f (s)+αh(y) = β [ f (s/β )−h(y)]

≤ β [ f (s/β )+(p(s/β − y)− f (s/β ))] = p(s−βy) = p(s+αy).

This means we can find a linear extension of f to Y so that f is dominated by p.
There is a partial ordering on all linear extensions of f that are dominated by p.

For such extensions g and h, the ordering sets g h if the domain of g is contained in
the domain of h and h = g on the domain of g. By the Hausdorff Maximal Principle
(see the appendix on the Axiom of Choice), there is a maximal family F of these
extensions of f such that the restriction of the ordering  to F is a linear ordering.
Let Z be the union of the domains of the extensions that are in F . Given each
z ∈ Z, set G(z) = g(z) for any g ∈F such that g(z) is defined. By definition of the
ordering  on F , the function G is well-defined. Given z, w ∈ Z and α and β in
R, there is a g ∈F such that g(z) is defined, and there is an h ∈F such that h(w)
is defined. Suppose h  g. Then g(w) is defined, αz+βw ∈ Z, and g(αz+βw) =
αg(z)+βg(w). A similar conclusion holds for h if g h. It follows that Z is a linear
space and G is linear on Z; moreover, G ≤ p on Z. If there were a point w ∈ X�Z,
we could extend G to the space generated by Z and w as before, and then add the
extension to F . Since F is maximal on which the ordering  is a linear ordering,
no such w can exist, that is, Z = X .

We follow with some applications of the theorem for a normed linear space X .
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Lemma 11.4.1. If F is a linear functional on a normed space X, then F(x) ≤ ‖x‖
for all x ∈ X if and only if ‖F‖ ≤ 1.

Proof. Exercise 11.8(A).

Proposition 11.4.1. Given a normed linear space X �= {0}, for each w �= 0 in X,
there exists an F in X∗ with ‖F‖= 1 such that F(w) = ‖w‖.
Proof. Fix w �= 0 in X . Let S be the subspace generated by w. For each α ∈ R,
set f (αw) := α‖w‖. This is a linear map on S, and since α‖w‖ ≤ ‖αw‖, the hy-
potheses of the Hahn-Banach theorem are satisfied with p equal to the norm on X .
Let F be the extension of f from S to X such that for each x ∈ X , F(x) ≤ ‖x‖. By
Lemma 11.4.1, ‖F‖ ≤ 1, and since F(w) = f (w) = ‖w‖, we have |F(w)|/‖w‖= 1,
so ‖F‖= 1.

Proposition 11.4.2. Suppose X is a normed linear space and S is a subspace such
that the closure S �= X. Fix y ∈ X \ S, and let δ = infs∈S ‖y− s‖. Then there is an
F ∈ X∗ such that F(s) = 0 for all s ∈ S, ‖F‖ ≤ 1, and F(y) = δ .

Proof. On the subspace spanned by S and y, let f (αy+ s) = αδ for all α ∈ R and
s ∈ S. Then f is linear, f (s) = 0 for all s ∈ S, and f (y) = δ . For α �= 0 and s ∈ S,

f (αy+ s) = αδ ≤ |α| · ‖y− (−s/α)‖= ‖αy+ s‖,

so in general, f ≤ ‖ ·‖ on the subspace spanned by S and y. Extend f to F on all of
X with F ≤ ‖ ·‖. By Lemma 11.4.1, ‖F‖ ≤ 1.

Proposition 11.4.3. For Lebesgue measure λ on R, the dual space of L∞[0,1] is not
L1[0,1].

Proof. Let C[0,1] denote the space of real-valued continuous functions on [0,1]
supplied with the norm inherited as a subspace of L∞[0,1]. Let g( f ) be the linear
functional given by g( f ) = f (1) for each f ∈C[0,1]. With p equal to the norm on
L∞[0,1], the hypotheses of the Hahn-Banach theorem are satisfied. Extend g to a
bounded linear functional G defined on all of L∞[0,1]. If h ∈ L1[0,1], then for each
n ∈ N, setting fn : x → xn ∈C[0,1], h · fn ∈ L1[0,1], G( fn) = 1, but limn fn(x) = 0
a.e. It follows from the Lebesgue Dominated Convergence Theorem that

1 = lim
n

G( fn) �= lim
n

∫

h · fn = 0.

Remark 11.4.1. As we shall show when we consider the dual space of C[0,1], the
functional g on C[0,1] is represented by a measure, in this case unit mass at 1. With
additional tools, one can show that the functional G on L∞ is represented by a finitely
additive measure.
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11.5 Imbedding Into a Second Dual

Definition 11.5.1. Let X be a Banach space, and let X∗ be the dual space of X . The
dual space X∗∗ of X∗ is called the second dual of X .

Theorem 11.5.1. There is a natural isometric isomorphism ϕ mapping a Banach
space X into X∗∗. It is defined for each x ∈ X and f ∈ X∗ by setting ϕ(x)( f ) = f (x).
It follows that ϕ [X ] is a closed linear subspace of X∗∗.
Proof. We may assume X contains nonzero elements. Fix any x and y in X , f and g
in X∗, and α and β in R. Then

ϕ(x)(α f +βg) = (α f +βg)(x) = α f (x)+βg(x) = αϕ(x)( f )+βϕ(x)(g).
ϕ (αx+βy)( f ) = f (αx+βy) = α f (x)+β f (y)

= αϕ(x)( f )+βϕ(y)( f ) = (αϕ(x)+βϕ(y))( f ).

Therefore, the mapping x → ϕ(x) is linear on X , and for each x ∈ X , the mapping
ϕ(x) is linear on X∗. As a functional on X∗,

‖ϕ(x)‖= sup
f∈X∗,‖ f‖=1

|ϕ(x)( f )|= sup
f∈X∗,‖ f‖=1

| f (x)| ≤ ‖x‖ .

To show that the inequality is actually equality, we note that by Proposition 11.4.1,
for each x �= 0 in X , there is an f ∈ X∗ with ‖ f‖ = 1 and f (x) = ‖x‖. Therefore,
for each x ∈ X , including x = 0, ‖ϕ(x)‖ = ‖x‖; that is, ϕ is a linear isometry into
X∗∗. To show that ϕ [X ] is closed, let 〈ϕ (xn)〉 be a sequence in ϕ [X ] converging to
an element y ∈ X∗∗. The corresponding sequence 〈xn〉 is a Cauchy sequence in the
Banach space X converging to some x. Since ϕ is an isometry, it is continuous, so
ϕ (xn) has two limits; they are ϕ (x) and y. Therefore so y = ϕ (x). It follows that
ϕ [X ] is closed in X∗∗.
Definition 11.5.2. A Banach space X is reflexive if the natural isomorphism ϕ map-
ping X into X∗∗ is a surjection.

Example 11.5.1. Examples of reflexive spaces are the Lp spaces for 1 < p < ∞.
Since X∗∗ is complete, a reflexive space X has to be a Banach space. For Lebesgue
measure on [0,1], it follows from Proposition 11.4.3 that L1[0,1] is not reflexive.

Proposition 11.5.1. A Banach space X is reflexive if and only if its dual space X∗ is
reflexive.

Proof. Exercise 11.9(A).

11.6 Properties of Banach Spaces

Theorem 11.6.1 (Uniform Boundedness Principle). Let X be a Banach Space, and
let F be a family of bounded linear mappings from X to a normed space Y . Suppose
that for every x ∈ X, there is a constant Mx such that ‖T x‖ ≤Mx for every T ∈F .
Then there is a constant M with ‖T‖ ≤M for all T ∈F .
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Proof. We may assume X �= {0}. For every T ∈F , the map x → ‖T x‖ is a con-
tinuous, real-valued function on X . By the general uniform boundedness princi-
ple 7.2.3, which is a consequence of the Baire Category Theorem, there is an open
Ball B(y,r)⊂ X and a constant K such that ‖T x‖ ≤K, for all T ∈F and x ∈ B(y,r).
For every point z in the open ball B(0,r) and each T ∈F ,

‖T z‖= ‖T (z+ y)−T (y)‖ ≤ ‖T (z+ y)‖+‖T (y)‖ ≤ K +My.

For points x with ‖x‖= 1, (r/2)x ∈ B(0,r), so

‖T x‖= (2/r)‖T ((r/2)x)‖ ≤ (2/r)[K +My].

Corollary 11.6.1. Let X be a Banach Space, and let T be the pointwise limit of a
sequence 〈Tn : n ∈ N〉 of bounded linear maps from X into a normed linear space Y .
Then T is a bounded linear map from X into Y .

Proof. We have already seen in Theorem 11.1.2 that the pointwise limit of linear
maps is linear. To show that the pointwise limit is bounded, we can use the Uniform
Boundedness Principle as follows: For each x ∈ X , Tn(x) converges, so ‖Tn(x)‖ is
bounded. Therefore, there is a constant M such that for all n, ‖Tn‖ ≤ M, whence
‖Tn(x)‖ ≤M for all x with ‖x‖ = 1. Since the norm is a continuous function on Y ,
‖T (x)‖ ≤M for all x with ‖x‖= 1, and so ‖T‖ ≤M.

Definition 11.6.1. A mapping from a topological space X onto a topological space
Y is called open if the direct image of an open subset of X is open in Y .

Remark 11.6.1. We have seen that a mapping f from X onto Y is continuous if the
inverse image of each open set in Y is open in X . A continuous, open bijection is
a homeomorphism. For the following results, it is important that the mappings are
surjections.

Lemma 11.6.1. Assume that X and Y are Banach spaces, and let T be a continuous
linear map from X onto Y . Then for any δ > 0, the image T [B(0,δ )] contains an
open ball about 0 in Y .

Proof. For each n∈N∪{0}, let Sn = B(0,1/2n) in X . By scaling, X =∪k∈NkS1, and
since T is a surjection, Y = ∪k∈NkT [S1]. By the Baire Category Theorem, since Y
is complete, kT [S1] contains an open ball for some k ∈N. Using scaling, this means
that T [S1] contains an open ball BY (p,η) in Y . In particular, the center p is in T [S1].
Therefore, T [S1]− p contains the open ball BY (0,η) in Y . Given any y ∈ BY (0,η),
the point y is the limit of a sequence T (xn)−T (zn) = T (xn−zn) where 〈xn〉 and 〈zn〉
are sequences in S1 with zn → p. But for each n, ‖xn− zn‖ ≤ ‖xn‖+‖zn‖< 1. Since
y ∈ T [S0], we have shown that T [S0]⊇ BY (0,η).

We now show, without taking a closure, that T [S0]⊇BY (0,η/2). It will follow by
scaling that for any δ > 0 and any n with 1/2n < δ , T [Sn]⊇ BY (0,η/2n+1). Fix y ∈
BY (0,η/2). Since T [S1]⊇ BY (0,η/2), there is a point x1 ∈ S1 with ‖y−T (x1)‖<
η/4. Since T [S2]⊇ BY (0,η/4), there is a point x2 ∈ S2 with ‖(y−T (x1))−T (x2)‖
< η/8. In this way, we choose a sequence 〈xn〉 in X with ‖xn‖< 1/2n such that
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∥

∥

∥

∥

∥

y−
n

∑
k=1

T (xk)

∥

∥

∥

∥

∥

<
η

2n+1 .

Now the series formed by the xn’s is absolutely convergent, and the sum x is in S0.
Since T is continuous,

T (x) = T

(

∞

∑
k=1

xk

)

=
∞

∑
k=1

T (xk) = y.

This shows that T [S0]⊇ BY (0,η/2).

Theorem 11.6.2 (Open Mapping). A continuous linear mapping T from one Ba-
nach space X onto another Banach space Y maps open sets onto open sets. Thus, if
the mapping is a bijection, so the inverse exists, that inverse is continuous.

Proof. Let O be open in X , and fix y ∈ T [O] and x ∈ O with T (x) = y. Since O is
open, there is an open ball centered at x, B(x,δ ) ⊆ O. Now B(x,δ )− x = B(0,δ ),
and by Lemma 11.6.1, T [B(0,δ )]⊇ BY (0,γ) in Y for some γ > 0. Therefore,

T [O]⊇ T [B(x,δ )] = T [B(0,δ )+ x]⊇ B(0,γ)+ y = B(y,γ).

It follows that T [O] is open in Y .

Example 11.6.1. The projection map from the plane into the plane that sends each
point (x,y) to the point (x,0) is bounded and linear. It is not, however, an open map
from R

2 to R
2.

Proposition 11.6.1. Let X be a linear space with two norms ‖·‖ and ‖|·|‖, for both
of which X is complete. Assume that for some constant C, ‖·‖ ≤ C‖|·|‖. Then the
same is true with the roles of the two norms reversed, so they are equivalent.

Proof. The identity map from (X ,‖|·|‖) to (X ,‖·‖) is a continuous surjection, so the
inverse, which is also the identity map, is continuous, and therefore bounded.

Here is a formalization of the idea that a function is continuous if the graph has
no breaks.

Theorem 11.6.3 (Closed Graph). Let T be a linear mapping from a Banach space
X into a Banach space Y , and assume that the graph of T is a closed set. That is, if
xn → x in X and T (xn)→ y in Y , then y = T (x). It then follows that T is bounded.

Proof. For each x ∈ X , set ‖|x|‖= ‖x‖+‖T (x)‖. By Problem 11.11, this is a norm
on X for which X is complete. Of course, ‖·‖ ≤ 1 · ‖|·|‖ on X , so by Proposi-
tion 11.6.1, there is a constant C such that ‖|·|‖ ≤ C‖·‖. Therefore, if ‖x‖ = 1,
then ‖T (x)‖ ≤ ‖|x|‖ ≤C, so T is bounded.



11.7 Weak and Weak∗ Topologies 205

Example 11.6.2. The following is an application of the Closed Graph Theorem: Let
(Ω ,A ,P) be a probability space. Let X be a Banach space and Y := X∗. Let ϕ
be the natural isometric isomorphism of X into X∗∗. Given x ∈ X and y ∈ Y , let
ϕ(x)(y) be denoted by 〈x,y〉. A function f from (Ω ,A ,P) to Y is said to be Gelfand
P-integrable if for each x ∈ X , the real-valued function 〈x, f (·)〉 is integrable on
(Ω ,A ,P). It follows from the Closed Graph Theorem that there is a unique element
y ∈ Y such that 〈x,y〉 = ∫Ω 〈x, f (ω)〉 dP for all x ∈ X ; that element y is called the
Gelfand integral. It is a special case of the Gelfand-Pettis integral.

11.7 Weak and Weak∗ Topologies

A weak topology on a topological space is formed from a family of continuous
functions on the space. It is the weakest topology making the functions in the family
continuous.

Definition 11.7.1. The strong topology on a normed space X is the metric topology
generated by the norm. The weak topology on X is the weakest topology making
the functions in the dual space X∗ continuous on X . The weak∗ topology, also called
the vague topology, is the weakest topology on X∗ for which the functions ϕ(x),
x ∈ X , are continuous on X∗. Here ϕ is the natural isometric isomorphism of X
into X∗∗.

A typical weak neighborhood of a point x ∈ X is given by a finite number of
functionals f1, · · · , fn in X∗ and an ε > 0. It is the set of all points z ∈ X such
that | fi(x)− fi(z)|< ε for 1≤ i≤ n. A typical weak∗ neighborhood of a functional
f ∈ X∗ is given by a finite number of points x1, · · · ,xn in X and an ε > 0. It is the set
of all functionals g ∈ X∗ such that |ϕ(xi)(g)−ϕ(xi)( f )| = |g(xi)− f (xi)| < ε for
1≤ i≤ n. Recall that weakening a topology increases the corresponding closure of
sets.

Proposition 11.7.1. A linear subspace S of a normed space X is weakly closed if
and only if it is strongly closed.

Proof. If S is already weakly closed, it is strongly closed since a strong closure
point is a weak closure point. That is, if ‖xn− x‖ → 0 in X , then for any f ∈ X∗,
‖ f (xn)− f (x)‖ → 0. Assume S is strongly closed and y /∈ S. Then the distance be-
tween y and S is δ > 0. By Proposition 11.4.2, which is an application of the Hahn-
Banach theorem, there is a continuous linear functional f taking the value 0 on S
such that f takes the value δ at y. Since f helps determine the weak neighborhoods
in X , y is not in the weak closure of S.

Example 11.7.1. For an example of a weak∗ topology, let X be the space C(K) con-
sisting of continuous real-valued functions on a compact set K. We will see later
in this chapter that X∗ is isometrically isomorphic to the space of signed “regular”
Borel measures on K. A weak∗ neighborhood of such a measure μ is given by an
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ε > 0 and a finite set {g1, · · · ,gn} ⊆ C(K). A signed measure ν is in this neigh-
borhood if for 1≤ i≤ n, |∫K gidμ− ∫K gidν |< ε . Convergence of measures in this
topology is often called weak convergence of measures; from the functional anal-
ysis point of view, however, it should be called weak∗ convergence.

One reason the weak∗ topology is important is that a sequence of probability
measures always has a weak∗ cluster point. Here is the general result stated for the
closed unit ball in X∗. By Problem 11.12, scaling and translation are continuous
operations in the weak∗ topology, so the following result is actually valid for any
closed ball in X∗.

Theorem 11.7.1 (Alaoglu). The closed unit ball S∗ := { f ∈ X∗ : ‖ f‖ ≤ 1} in the
dual X∗ of a normed linear space X is a compact subset of X∗ when supplied with
the weak∗ topology.

Proof. For each x ∈ X , let Ix be the closed interval [−‖x‖,‖x‖]. If f ∈ S∗, then for
each x ∈ X , f (x) ∈ Ix. Recall that the product Πx∈X Ix is the set of functions on the
set X , treated as an index set, with each function taking a value at x in Ix. Since the
functions need not be linear functionals, the containment S∗ ⊂Πx∈X Ix is proper. By
the Tychonoff Product Theorem 9.9.2, the product space is compact in the product
topology. Moreover, the weak∗ topology on S∗ is the restriction to S∗ of the product
topology. That is, a typical weak∗ neighborhood of a functional f ∈ S∗ is given by
a finite number of points x1, · · · ,xn in X and an ε > 0. It is the set of all functionals
g∈ S∗ such that |g(xi)− f (xi)|< ε for 1≤ i≤ n. If S∗ is closed in the product space,
then it is compact. Therefore, we only have to show that if h ∈ S∗, then h ∈ S∗.
Given α ∈ R and x and y in X , there is for every ε > 0 a function f ∈ S∗ such that
|h(z)− f (z)|< ε for z ∈ {x,y,x+ y,αx} ⊂ X . It follows that

|h(x)+h(y)−h(x+ y)| = |h(x)+h(y)−h(x+ y)− ( f (x)+ f (y)− f (x+ y)) |
≤ |h(x)− f (x)|+ |h(y)− f (y)|+ |h(x+ y)− f (x+ y)|
< 3ε

|h(αx)−αh(x)| = |h(αx)−αh(x)− ( f (αx)−α f (x))|
≤ |h(αx)− f (αx)|+ |αh(x)−α f (x)|
< ε + |α|ε .

Since ε is arbitrary in R
+, h is a linear mapping. Moreover, if ‖x‖= 1, then |h(x)| ≤

|h(x)− f (x)|+ | f (x)| ≤ ε +1. Since ε is arbitrary, h ∈ S∗.

11.8 Functionals on Continuous Functions

An important space for many aspects of analysis is the space of continuous real-
valued functions with compact support; that is, each function vanishes off of a com-
pact set. A linear functional on such a space is positive if it yields a nonnegative
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value for nonnegative functions. Viewed as a space of measures, these functionals
play a central role in many applications. Throughout this section, X is a compact,
or at least locally compact, Hausdorff space. Recall that a space is locally compact
if every point x ∈ X is contained in an open set U with compact closure in X . It
follows that if V is an open neighborhood of x and V ⊆U , then V is also compact.
Also recall that the collection of Borel sets in a topological space is the smallest
σ -algebra containing the open sets.

Definition 11.8.1. The space of continuous real-valued functions with compact sup-
port on X is denoted by Cc. The notation K ≺ f means that f ∈Cc, K is a compact
subset of X , 0 ≤ f ≤ 1 on X , and f (x) = 1 at every x ∈ K. The notation f ≺ V
means that f ∈ Cc, V is an open set containing the compact support of f , and
0≤ f ≤ 1 on X .

Remark 11.8.1. The combined notation K ≺ f ≺ V means that χK ≤ f ≤ χV and
f has compact support contained in V . We establish next a version of Urysohn’s
Lemma 9.8.2 for a locally compact Hausdorff space. That result says that if K is
compact and V ⊇ K is open, then there is an f ∈Cc with K ≺ f ≺V . First, we need
to extend a “regularity” property to compact sets that are not just points. In doing
so, we keep in mind the fact that X may be a disconnected space such as N.

Proposition 11.8.1. Let K be compact and U an open subset of X with K ⊆U. There
is an open set V with compact closure V such that K ⊆V ⊆V ⊆U.

Proof. For each point x ∈ K, there is an open set Wx such that W x ⊆U , and W x is
compact. To see this, fix x ∈ K ⊆U . There is an open set O such that x ∈ O and O
is compact. Replace O with O∩U ; the closure is still compact. If O ⊆U , we are
done; otherwise, note that, O \O is compact. For each y ∈ O \O, there is a pair of
disjoint open sets Sy and Ty with y ∈ Sy and x ∈ Ty. Cover O\O with a finite number
of the sets Sy. The desired set Wx is the intersection of the corresponding sets Ty,
since W x ⊆U . Now the sets Wx cover K; take a finite subcover. The union of the
open sets for this subcover is the desired set V .

Proposition 11.8.2 (Urysohn). Let X be a locally compact Hausdorff space. Let K
be compact and U an open subset of X with K ⊆U. There is a continuous function
f with K ≺ f ≺U.

Proof. By Proposition 11.8.1, there is an open set V with compact closure V such
that K ⊆V ⊆V ⊆U . By Proposition 9.8.2, V is a normal subspace of X . It follows
from Urysohn’s Lemma 9.8.2 that there is a continuous function f defined on V
taking values in [0,1] such that f (x) = 1 for all x∈K, and f (x) = 0 for all x∈V�V .
Set f (x) = 0 for all x ∈ X�V . If y ∈ V�V , then for any ε > 0, there is an open
neighborhood W of y in X such that 0 ≤ f (x) < ε for all x ∈W ∩V , and therefore,
for all x ∈W . It follows that f is continuous on X .

Engraved on money of the United States is the Latin “E Pluribus Unum”,
meaning “from many one.” The following result is the reverse.
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Theorem 11.8.1 (Partition of Unity). Let V1, · · · ,Vn be a finite open covering of a
compact set K ⊆ X. For each i, 1≤ i≤ n, there is an hi ≺Vi such that for all x ∈ K,
h = Σihi(x) = 1, and 0≤ h≤ 1.

Proof. For each x ∈ K, choose an i with x ∈ Vi and an open neighborhood Wx of x
with compact closure contained in Vi. Choose a finite subcovering Wx1 , · · · ,Wxm of
K. For each i, 1≤ i≤ n, let Hi be the union of the closures of those Wx j ’s that have
compact closures contained in Vi, and fix a gi ∈Cc with Hi ≺ gi ≺Vi. Let

h1 = g1, h2 = (1−g1)g2, · · · , hn = (1−g1)(1−g2) · · ·(1−gn−1)gn.

For each i, hi ≤ gi, hi ∈Cc, and hi ≺Vi. It follows by induction that for each k ≤ n,

h1 +h2 + · · ·+hk = 1− (1−g1)(1−g2) · · ·(1−gk).

That is, h1 = 1− (1−g1). If the formula holds for k < n, then

h1 +h2 + · · ·+hk +hk+1 = [1− (1−g1)(1−g2) · · ·(1−gk)]

+[(1−g1)(1−g2) · · ·(1−gk)gk+1]

= 1+[(1−g1)(1−g2) · · ·(1−gk)] (gk+1−1)

= 1− (1−g1)(1−g2) · · ·(1−gk)(1−gk+1).

Letting k = n, we see that for all x ∈ K, at least one of the values gi(x) is 1, so
h1 + h2 + · · ·+ hn = 1 on K. Moreover, the sum for k = n is positive and nowhere
greater than 1.

Definition 11.8.2. A positive linear functional on Cc is a linear map of Cc into R

taking nonnegative functions to nonnegative values. In particular, it is increasing in
the sense that if f ≤ g, then the value at f is less than or equal to the value at g.

Definition 11.8.3. A Radon measure on X is a complete measure μ defined for sets
in a σ -algebra B containing the Borel sets such that the following conditions hold:

a) for every compact set K ⊆ X , μ (K)<+∞;
b) (outer regularity) for every E ∈B, μ (E) = inf{μ (V ) : E ⊆V , V open};
c) (restricted inner regularity) for every open set O, μ (O) = sup{μ (K) : K ⊆ O, K

compact}, and
for every set E ∈B with μ (E)<+∞, μ (E) = sup{μ (K) : K ⊆ E, K compact}.

Theorem 11.8.2 (Riesz Representation Theorem for Cc). Let X be a locally com-
pact (perhaps compact) Hausdorff space, and let Cc denote the space of continuous
real-valued functions on X with compact support. Let Λ be a positive linear func-
tional on Cc. There is a σ -algebra B containing the Borel sets and a unique Radon
measure μ on (X ,B) such that μ represents Λ in the sense that for all f ∈ Cc,
Λ ( f ) =

∫

f dμ .

We present the proof in several parts, much of which is derived from [46].
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Proposition 11.8.3. A Radon measure that represents Λ is unique.

Proof. Let μ and ν be two measures that satisfy the properties of the theorem. Fix a
compact set K, an ε > 0, and an open set V ⊇ K with ν (V )< ν (K)+ ε . Fix f with
K ≺ f ≺V . Then

μ (K) =
∫

χK dμ ≤
∫

f dμ = Λ ( f ) =
∫

f dν ≤
∫

χV dν = ν (V )< ν (K)+ ε .

Since ε is arbitrary μ (K)≤ ν (K), and by symmetry, ν(K)≤ μ (K), whence we have
equality. It follows from Properties b and c that for every open set O, μ (O) = ν (O),
and so for every set E ∈B, μ (E) = ν (E).

Definition 11.8.4. For each open set V , set μ(V ) := sup{Λ f : f ≺ V}. For each
subset A of X , set μ∗(A) := inf{μ(V ) : A⊆V, V open}.
Proposition 11.8.4. The set function μ∗ is an outer measure on X. For every open
set O⊆ X, μ∗(O) = μ(O).

Proof. If O is an open set, then O is the smallest open set containing O, so μ∗(O) =
μ(O). Since the empty set is both compact and open, the function identically equal
to 0 has compact support. Since Λ (0) = 0, it follows that μ∗(∅) = 0. Clearly, μ∗ is
monotone increasing, that is, if A ⊆ B, then μ∗ (A) ≤ μ∗ (B). It is only left to show
that μ∗ is countably subadditive.

First we show that μ is countably subadditive on any finite collection of open
sets, and for that we need only consider two open sets V1 and V2. Fix g ≺ V1 ∪V2.
Employ Theorem 11.8.1 to find h1 ≺ V1 and h2 ≺ V2 so that h1 + h2 = 1 on the
support of g. Now g = gh1 + gh2, and gh1 ≺ V1, while gh2 ≺ V2. It follows that
Λ (g) =Λ (gh1)+Λ (gh2)≤ μ (V1)+μ (V2), whence μ(V1∪V2)≤ μ (V1)+μ (V2).

Let 〈Ei〉 be a finite or countably infinite sequence of subsets of X . We must show
that μ(∪iEi)≤ Σiμ (Ei). We may assume that μ (Ei)<+∞ for each i. Fix ε > 0 and
open sets Vi ⊇ Ei such that μ (Vi) < μ∗ (Ei)+ ε/2i. Let V = ∪Vi; then, ∪iEi ⊆ V .
Fix f ≺ V . Since f has compact support, there is an n ∈ N with f ≺ V1 ∪ ·· · ∪Vn.
Therefore,

Λ ( f )≤ μ(V1∪·· ·∪Vn)≤ Σ n
i=1μ (Vi)≤ Σ ∞

i=1μ∗ (Ei)+ ε .

Since f is arbitrary with f ≺V ,

μ∗(∪iEi)≤ μ(V )≤ Σ ∞
i=1μ (Ei)+ ε .

Since ε is arbitrary, we are done.

Proposition 11.8.5. For each compact set K,

μ∗ (K) = inf{Λ ( f ) : K ≺ f}<+∞.
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For each open set V ,

μ (V ) = sup{μ∗ (K) : K ⊆V,K compact}.

Proof. Let K be compact; we may assume K �= ∅. Fix f ∈Cc with K ≺ f , and fix
α with 0 < α < 1. Let Vα = { f > α}. Then K ⊆ Vα . Moreover, if g ≺ Vα , then
g≤ 1

α f . Therefore,

μ∗ (K)≤ μ (Vα) = sup{Λ (g) : g≺Vα} ≤ 1
α

Λ ( f )<+∞.

Letting α → 1, we see that μ∗ (K) ≤ Λ ( f ). Now suppose V is any open set with
K⊆V . Given f ∈Cc with K≺ f ≺V , we now have μ∗ (K)≤Λ ( f )≤ μ (V ), whence
μ∗ (K) = inf{Λ ( f ) : K ≺ f}.

Finally, let V be any open subset of X . Fix f ≺ V , and let K be the support of
f . Let W be an arbitrary open set with K ⊆W . We may assume that W ⊆ V . Now
f ≺W , so Λ f ≤ μ (W ). It follows that Λ ( f )≤ μ∗ (K)≤ μ (V ). Since f is arbitrary
with f ≺V ,

μ (V ) = sup{Λ ( f ) : f ≺V}= sup{μ∗ (K) : K ⊆V,K compact}.

Definition 11.8.5. We set A equal to the collection of all E ⊆ X for which μ∗(E)<
+∞ and μ∗(E) = sup{μ∗(K) : K ⊆ E, K compact}. We write μ for μ∗ on A .

Remark 11.8.2. The collection A contains every open set V with μ (V )<+∞. Since
a compact set K is its largest compact subset, the collection A contains every com-
pact set K. The set function μ is both outer regular and inner regular on A .

Proposition 11.8.6. If 〈Ei〉 is a finite or countably infinite disjoint sequence of sets
in A , and E = ∪iEi, then μ (E) = Σiμ (Ei), and E ∈A if μ (E)<+∞.

Proof. First we prove the result for a finite family of pairwise disjoint compact
sets. We need only do so for two disjoint compact sets K1 and K2. Fix f1 and f2

with K1 ≺ f1 ≺ X \K2, K2 ≺ f2 ≺ X \K1, and f2 ≤ 1− f1. Fix ε > 0 and g with
K1∪K2 ≺ g and Λ (g)≤ μ(K1∪K2)+ ε . Now,

μ (K1)+μ (K2)≤Λ ( f1 ·g)+Λ ( f2 ·g)=Λ (( f1 + f2) ·g)≤Λ (g)≤ μ(K1∪K2)+ε .

Since ε is arbitrary and μ is subadditive on A , μ(K1∪K2) = μ (K1)+μ (K2).
For the general result, we note that we may form an infinite sequence from a finite

one by filling in with empty sets. If μ (E) =+∞, we are done. Assume μ (E)<+∞,
and fix ε > 0 and compact sets Hi ⊆ Ei with μ (Hi)> μ (Ei)−ε/2i. For each n ∈N,
let Kn = ∪n

i=1Hi. Then

μ (E)≥ μ (Kn) = Σ n
i=1μ (Hi)≥ Σ n

i=1μ (Ei)− ε .

Since n and ε are arbitrary and μ is subadditive,

μ (E) = Σ ∞
i=1μ (Ei) = lim

n→∞
Σ n

i=1μ (Ei) = lim
n→∞

μ (Kn) .

It follows that E ∈A .
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Proposition 11.8.7. A set E is in A if and only if for each ε > 0, there is a compact
set K and an open set V with K ⊆ E ⊆V and μ(V \K)< ε .

Proof. Fix E ∈A . For any ε > 0, there is a compact set K and an open set V with
K ⊆ E ⊆ V such that μ (V )− ε/2 < μ (E) < μ (K)+ ε/2. Since V \K is an open
set of finite measure, V \K ∈A , and so by Proposition 11.8.6, μ (K)+μ(V \K) =
μ (V )< μ (K)+ ε , whence μ(V \K)< ε .

Now fix E ⊆ X such that for any ε > 0 there is a compact set K and an open set V
with K ⊆E ⊆V and μ(V \K)< ε . Again, V \K ∈A and μ(V \K)+μ (K) = μ (V ).
Therefore,

μ (K)≤ μ∗ (E)≤ μ (V )< μ (K)+ ε .

Since ε is arbitrary, E ∈A .

Proposition 11.8.8. If A ∈A and B ∈A , then A\B, A∪B, and A∩B are in A .

Proof. Given ε > 0, fix compact sets H, K and open sets U , V such that

H ⊆ A⊆U , K ⊆ B⊆V , μ(U \H)< ε/2, and μ(V \K)< ε/2.

Then
H \V ⊆ A\B⊆U \K ⊆ (U \H)∪ (H \V )∪ (V \K).

Since H \V is a compact subset of A\B with

μ(H \V )≤ μ(A\B)≤ μ(H \V )+ ε ,

A\B∈A . By Proposition 11.8.6, A∪B= (A\B)∪B∈A . Since A∩B=A\(A\B),
A∩B ∈A .

Definition 11.8.6. We set B equal to the collection of all sets E ⊆ X such that for
any compact set K ⊆ X , E ∩K ∈A .

Proposition 11.8.9. The collection A = {E ∈B : μ (E)<+∞}.
Proof. If E ∈ A , then by Proposition 11.8.8, for any compact set K ⊆ X , E ∩K ∈
A , whence E ∈B. Now fix E ∈B with μ (E) < +∞. Fix ε > 0 and an open set
V ⊇ E with μ (V ) < +∞. Fix a compact set K ⊆ V with μ(V \K) < ε/2. Since
E ∩K ∈ A , there is a compact set H ⊆ E ∩K ⊆ E with μ(E ∩K) < μ (H)+ ε/2.
Now, E ⊆ (E ∩K)∪ (V \K), so μ (E)≤ μ (H)+ ε . Therefore, E ∈A .

Proposition 11.8.10. The collection B is a σ -algebra containing the Borel sets.

Proof. Fix an arbitrary compact set K in X . Given E ∈B, by definition E∩K ∈A ,
so (X \E)∩K = K \ (E ∩K) ∈ A . It follows that X \E ∈ B. Given a sequence
〈En〉 in B with E = ∪∞

i=1Ei, define Bn ∈A using induction by setting B1 = E1∩K,
and for every n > 1, set Bn = (En ∩K) \∪n−1

i=1 Bi. Then E ∩K = ∪∞
n=1Bn ∈ A , so

E ∈B. Therefore, B is a σ -algebra. If C is closed in X , then C∩K is compact, so
C∩K ∈A , whence C ∈B. It follows that the σ -algebra B contains the Borel sets.
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Corollary 11.8.1. For every set E ∈B with μ (E)<+∞, μ (E) = sup{μ (K) : K ⊆
E, K compact}. Such an E equals a Borel set, in fact, a countable union of compact
sets, to which a set of μ-measure 0 is adjoined.

Proposition 11.8.11. The set function μ is a complete, outer-regular measure on B.

Proof. Let 〈Ei〉 be a countable disjoint sequence of sets in B, and let E = ∪iEi.
If μ (E) = +∞, countable additivity follows from the countable subadditivity of μ .
If μ (E) < +∞, then since E and each Ei belong to A , countable additivity fol-
lows from Proposition 11.8.6. By definition, μ is outer regular in the sense that the
value for any set is the infimum of the values of open supersets. Also, if E ⊂ X and
μ(E) = 0, then E ∈A and E ∈B. Therefore, the restriction of μ to B is a complete
measure.

Here is the final step.

Proposition 11.8.12. For every f ∈Cc, Λ ( f ) =
∫

f dμ .

Proof. Let f be arbitrary in Cc. By showing that Λ ( f )≤ ∫ f dμ , it will follow that
Λ(− f )≤−∫ f dμ , whence Λ ( f ) =

∫

f dμ . Let K be the support of f , and let [a,b]
be a finite interval containing the range of f . Fix ε > 0 and a finite set of points

y0 < a < y1 < · · ·< yn = b

with yi− yi−1 < ε for each i. Let Ei = {x ∈ K : yi−1 < f (x) ≤ yi} for 1 ≤ i ≤ n.
This gives a finite, pairwise disjoint, Borel measurable partition of K. For each i,
choose an open set Vi ⊇ Ei such that μ (Vi)< μ (Ei)+ ε/n and f (x)< yi + ε for all
x ∈ Vi. Using Theorem 11.8.1, we fix hi ≺ Vi for each i so that Σihi(x) = 1 for all
x∈K and 0≤ Σihi ≤ 1. Now f = Σihi f , and μ (K)≤Λ(Σihi) = ΣiΛ (hi). Moreover,
Σ n

i=1μ (Ei) = μ (K), hi f ≤ (yi + ε)hi for each i, and yi− ε < f (x) for all x ∈ Ei.
Therefore,

Λ ( f ) = Σ n
i=1Λ(hi f )

≤ Σ n
i=1(yi + ε)Λ (hi) = Σ n

i=1(|a|+ yi + ε)Λ (hi)−|a|Σ n
i=1Λ (hi)

≤ Σ n
i=1(|a|+ yi + ε)[μ (Vi)]−|a|Λ (Σ n

i=1hi)

≤ Σ n
i=1(|a|+ yi + ε)[μ (Ei)+

ε
n
]−|a|μ (K)

= Σ n
i=1(yi + ε)μ (Ei)+

ε
n

Σ n
i=1(|a|+ yi + ε)

= Σ n
i=1(yi− ε)μ (Ei)+2εμ (K)+

ε
n

Σ n
i=1(|a|+ yi + ε)

≤
∫

f dμ + ε [2μ (K)+ |a|+ |b|+ ε ].

Since ε is arbitrary, the result follows.
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Example 11.8.1. We define a distance ρ on the plane R
2 as follows: For points

(x1,y1) and (x2,y2) with x1 = x2, the distance is |y2− y1|. For points (x1,y1) and
(x2,y2) with x1 �= x2, the distance is |y2 − y1|+ 1. It is left to the reader (Prob-
lem 11.14) to show that ρ is indeed a metric on R

2, and the space
(

R
2,ρ
)

is locally
compact. Given f ∈ Cc(X), there is a finite set A f of x’s such that for all x /∈ A f ,
f (x,y) = 0 for all values of y. This follows from the fact that a covering of the sup-
port of f by open balls of radius 1/2 is a covering by vertical intervals. A finite
subcover can contain only a finite number of such intervals. For each f ∈Cc(X), set

Λ f = ∑
x∈A f

∫ +∞

−∞
f (x,y)dy.

Let μ be the measure associated with Λ given by the Riesz Representation Theo-
rem 11.8.2. On any vertical line, the measure μ is generated by the integrator that
is increasing length, and is therefore Lebesgue measure. Since any open subset con-
taining the interval [0,1] on the real line will contain an uncountable number of
open vertical intervals having positive length, the measure of [0,1] will be infinite.
Any subset of [0,1] that is compact in the topology generated by the metric ρ will
contain only a finite number of points. The μ-measure of any point, and therefore
of any finite set, is 0.

Remark 11.8.3. At this point, since we want a Borel measure to represent Λ , we
have assumed outer regularity. Therefore, [0,1] has infinite measure. If, instead, we
assume inner regularity for all measurable sets, then the interval [0,1] has measure
0. The choice does not change the measure on the Baire sets, i.e., the smallest σ -
algebra making the functions in Cc(X) measurable. The Baire sets form the smallest
σ -algebra containing the compact Gδ sets. We have chosen to work with Radon
measures rather than restrict our measures to the Baire sets as is done in some of the
literature. For more details, see [45].

Definition 11.8.7. A Borel measure is regular if it is both inner and outer regular.
That is, the measure of any measurable set is the supremum of the measures of
compact sets it contains and the infimum of the measures of open sets containing it.
A set is σ -compact if it is a countable union of compact sets.

Recall that a measure on a space X is σ -finite if X is a countable union of sets of
finite measure. Example 11.8.1 raises the question as to when Borel measures are
automatically regular. We give now a sufficient condition for σ -finite measures.

Proposition 11.8.13. Suppose X is a second countable, locally compact Hausdorff
space. Then every open set is σ -compact.

Proof. Let F be a countable base for the topology on X . Let U be an open subset of
X . By Proposition 11.8.1, every x ∈U is contained in an open set Vx with x ∈ Vx ⊂
V x ⊂U such that V x is compact. We may assume, by taking a subset if necessary,
that Vx ∈F . Therefore, the union of such compact sets V x ⊂U with Vx ∈F is all
of U , since no x ∈U can be outside the union. Moreover, since F is countable there
can be no more than a countable number of such sets V x.
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Theorem 11.8.3. Suppose X is a second countable, locally compact Hausdorff
space. Then every Borel measure that takes finite values on compact sets is σ -finite
and regular.

Proof. Let ν be such a measure. Let Λ be the functional on Cc it generates by
integration, and let μ be the Radon measure representing Λ in the sense of Theo-
rem 11.8.2. By Proposition 11.8.13, X is σ -compact, and therefore μ is σ -finite. We
know that μ is outer regular. It follows from Problem 11.15 that μ is inner regular.
We need to show μ = ν . Let U be a nonempty open subset of X . For each f ∈Cc

with U " f , ν(U) ≥ ∫ f dν = Λ ( f ), so ν(U) ≥ μ(U). Let Kn be an increasing se-
quence of compact sets with union equal to U , and let 〈 fn〉 be a sequence in Cc with
Kn ≺ fn ≺U for each n. Then

ν(U)≥ μ(U)≥ sup
∫

fndμ = supΛ ( fn) = sup
∫

fndν ≥ supν(Kn) = ν(U).

Thus, ν and μ agree on open sets. Now let K be a compact set, and let U be an open
set containing K with μ(U) <+∞. Since

μ(U \K)+μ(K) = μ(U) = ν(U) = ν(U \K)+ν(K),

μ(K) = ν(K). Therefore, ν and μ agree on compact sets. Since X is σ -compact,
we need only show that μ and ν agree on Borel subsets of compact sets. But these
sets can be approximated in terms of μ from the inside by compact sets and from
the outside by open sets. Therefore, μ = ν .

Definition 11.8.8. For a compact Hausdorff space X , we let C(X) denote the space
of continuous real-valued functions on X . There is a norm on C(X), called the sup-
norm. It is given by f → ‖ f‖= supx∈X | f (x)|.
Proposition 11.8.14. If X is a compact Hausdorff space, then a positive linear func-
tional F on C(X) is bounded, and therefore continuous.

Proof. If for f ∈C(X), the sup-norm ‖ f‖ ≤ 1, then

|F( f )|= ∣∣F( f+)−F( f−)
∣

∣≤ F( f+)+F( f−) = F(| f |)≤ F(1).

For a locally compact space that is not compact, positivity of a linear functional
does not imply continuity with respect to bounded, continuous real-valued functions
supplied with the sup-norm topology.

Example 11.8.2. Let μ be the measure on the natural numbers N such that μ({n}) =
n for each n ∈ N. The integral with respect to μ is a positive linear functional on
Cc(N), i.e., the sequences that vanish after a finite number of entries. The sequence
〈

1
n χ{n} : n ∈ N

〉

in Cc(N) tends to 0 in the sup-norm, but the integral
∫ 1

n χ{n}dμ = 1
for each n.
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Example 11.8.3. Let Λ be given by the Riemann integral on Cc(R). Then Λ is a pos-
itive linear functional, and the representing measure is Lebesgue measure. For each
n ∈ N, fix fn with [−n,n] ≺ fn ≺ (−n− 1,n+ 1). The sup-norms of the sequence
〈

1
n fn : n ∈ N

〉

have limit 0, but for each n, Λ( 1
n fn)≥ 2.

For the rest of this section, we assume that X is a compact Hausdorff space. We
have seen that a positive linear functional on C(X) is bounded. We now show that a
bounded linear functional is the difference of two positive linear functionals. Recall
that for a compact space, a measure μ satisfying the conditions of Theorem 11.8.2
is finite and regular. Again we work with Radon measures, i.e., finite, complete,
regular Borel measures, rather than restricting our measures to the Baire sets.

Example 11.8.4. Let A be an uncountable set with the discrete topology, i.e., each
point of A forms an open set. Let X be the one-point compactification. That is,
X =A∪{p}where open neighborhoods of p are the complements of finite subsets of
X . Each continuous function f on X is constant off of some countable set. Mapping
f to that constant value is a positive linear functional Λ . Unit mass at p is the Radon
measure that represents Λ , but {p} is not a Baire set. That is, it is not in the smallest
σ -algebra containing the compact Gδ -sets.

Theorem 11.8.4. Let X be a compact Hausdorff space. Let F be a bounded linear
functional on C(X). There are two unique, positive linear functionals F+ and F−
with representing Radon measures μ+ and μ−, respectively, such that F =F+−F−.
That is, for μ := μ+ − μ− and for each f ∈ C(X), F( f ) =

∫

f dμ . Moreover,
(μ+,μ−) is the Jordan decomposition of μ . The σ -algebra of measurable sets is
the completion of the Borel sets with respect to the total variation |μ | = μ++ μ−.
The signed measure μ is the only regular (therefore finite) signed measure that rep-
resents F on that σ -algebra, and ‖F‖= |μ |(X).

Proof. For each nonnegative f ∈ C(X), set P( f ) := {ϕ ∈C(X), 0≤ ϕ ≤ f}.
Clearly, f ∈ P( f ), but F may not be a positive functional. Therefore,

F+( f ) := sup
ϕ∈P( f )

F(ϕ)≥ F( f ).

On the other hand, for each ϕ ∈ P( f ), |F(ϕ)| ≤ ‖ f‖ · ‖F‖, so 0 ≤ F+( f ) < +∞.
Also, F+ is positive and homogeneous; that is, for each constant c ≥ 0 and each
continuous f , F+(c f ) = cF+( f ). Let f and g be two nonnegative continuous func-
tions. If ϕ ∈ P( f ) and ψ ∈ P(g), then 0 ≤ ϕ +ψ ≤ f + g, and so F(ϕ)+F(ψ) ≤
F+( f + g). It follows that F+( f )+F+(g) ≤ F+( f + g). To reverse the inequality,
we note that if ψ ∈ P( f + g), then ψ ≤ (ψ ∧ f )+ g, and so 0 ≤ ψ − (ψ ∧ f ) ≤ g.
Therefore,

F(ψ) = F(ψ ∧ f )+F(ψ− (ψ ∧ f ))≤ F+( f )+F+(g).

It follows that F+( f + g) ≤ F+( f )+F+(g), and so we have equality. That is, F+

preserves addition for nonnegative continuous functions.
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Now if f is an arbitrary continuous function on X and f ≥ −a− b for positive
constants a and b, then

F+( f +a+b) = F+( f +a)+F+(b) = F+( f +b)+F+(a)

F+( f +a)−F+(a) = F+( f +b)−F+(b).

We can therefore set F+( f ) = F+( f + a)−F+(a), and this is independent of the
choice of a with f ≥−a. Note that this extension does not change the definition of
F+ for nonnegative continuous functions. Now for any continuous f and g on X ,
if f ≥−a and g≥−b for nonnegative constants a and b, then

F+( f +g) = F+( f +g+a+b)−F+(a+b)

= F+( f +a)−F+(a)+F+(g+b)−F+(b) = F+( f )+F+(g).

That is, F+ preserves addition for all continuous functions on X . Moreover, F+(0)=
F+(0)+F+(0), so F+(0) = 0. Also, for any continuous f , F+( f )+F+(− f ) = 0,
whence F+(− f ) =−F+( f ). If c and a are positive and f ≥−a, then c f ≥−ca, so

F+(c f ) := F+(c f + ca)−F+(ca) = cF+( f +a)− cF+(a) = cF+( f ).

Moreover, F+((−c) f ) = −F+(c f ) = −cF+( f ). It follows that F+ is a positive
linear functional on C(X).

By Theorem 11.8.2, F+ is represented by a unique Radon measure μ+. Set F− :=
F+−F . For a continuous f ≥ 0, F+( f ) ≥ F( f ), so F− is also a positive linear
functional on C(X), and it is represented by a unique Radon measure μ−. Clearly,
F = F+−F−. Let μ := μ+−μ−. Then for each f ∈C(X), F( f ) =

∫

f dμ .
Let ν be another finite, signed, regular measure defined at least on the Borel sets

such that for each f ∈ C(X), F( f ) =
∫

f dν . Let (ν+,ν−) be the Jordan decom-
position of ν . We want to show that ν+ = μ+ and ν− = μ−. It will follow that if
F = G+−G− is another decomposition of F with corresponding measures ν+ and
ν− forming the Jordan decomposition of ν , then F+ = G+ and F− = G−.

We show first that for any continuous f ≥ 0, F+( f ) =
∫

f dν+. We may assume
that ‖ f‖= 1. Now since ν+ is a nonnegative measure,

F+( f ) = sup
ϕ∈P( f )

F(ϕ) = sup
ϕ∈P( f )

∫

ϕdν ≤ sup
ϕ∈P( f )

∫

ϕdν+ =
∫

f dν+.

To show that the reverse inequality holds for the same f , we choose a Hahn de-
composition. Recall that this is a pair of disjoint measurable sets A and B so
that X = A∪B, and ν+(B) = ν−(A) = 0. Given ε > 0, we choose compact sets
K and H contained in A and B, respectively, so that ν+(K) > ν+(A)− ε/2 and
ν−(H)> ν−(B)− ε/2. Choose ψ with K ≺ ψ ≺ X \H. Then
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∫

X
f dν+ =

∫

A
f dν ≤

∫

K
f dν + ε/2 =

∫

K
f ·ψdν + ε/2

≤
∫

A
f ·ψdν + ε/2 =

∫

A
f ·ψdν + ε/2+

∫

B\H
f ·ψdν−

∫

B\H
f ·ψdν

≤
∫

X
f ·ψdν + ε/2+ν−(B\H)≤

∫

X
f ·ψdν + ε ≤ F+( f )+ ε .

It follows that ν+ represents F+ on the nonnegative continuous functions, and there-
fore on all of the continuous functions. Since the measure representing F+ is unique,
ν+ = μ+, and it follows that ν− = μ−. This shows the uniqueness of μ , and the fact
that (μ+,μ−) is the Jordan decomposition of μ .

It is clear that ‖F‖ ≤ ‖F+‖+‖F−‖= ∫ 1dμ++
∫

1dμ− = |μ |(X). To establish
the inequality in the other direction, we fix ϕ ∈ P(1). Then |2ϕ−1| ≤ 1. Therefore,
‖F‖ ≥ F(2ϕ−1) = 2F(ϕ)−F(1). Taking the supremum over all such ϕ , we have

‖F‖ ≥ 2F+(1)−F(1) = F+(1)+F−(1) = |μ |(X).

Corollary 11.8.2 (Riesz Representation for C(X)). The dual space of C(X) can
be represented by the space of finite, signed, regular Borel measures on X with the
norm defined by the total variation evaluated at X.

As indicated in Example 11.7.1, the following corollary is a consequence of the
Alaoglu Theorem 11.7.1.

Corollary 11.8.3. Let X be a compact Hausdorff space. The space of regular, Borel
probability measures μ on X, that is, with μ(X) = 1, is compact in the weak∗ topol-
ogy, i.e., the topology generated by C(X).

Example 11.8.5. Harmonic functions on the unit disk in the complex plane are
real-valued, continuous functions such that the Laplacian Δh = ∂ 2h

∂x2 +
∂ 2h
∂y2 = 0. Let

Dr denote the open disk {z∈C : |z|< r}, and let D=D1. Let Cr be the circle {z∈C :
|z|= r}, and let C =C1. Let P(z,x) be the Poisson Kernel (|z|2−|x|2)/|z− x|2, and
let x0 denote the origin. Let the space H 1 consist of all positive harmonic functions
on D taking the value 1 at x0. It is well-known that every continuous function on
C has a harmonic extension on D, but that not every harmonic function on D is
obtained in this way. On the other hand, for each h ∈H 1, there is a probability
measure νh on C such that for each x ∈ D,

h(x) =
∫

C
P(z,x)νh(dz).

Each h ∈ H 1 when restricted to a circle Cr, 0 < r < 1, produces a continu-
ous function there. Let λr be uniform probability measure on Cr. It is essentially
normalized Lebesgue measure with total mass 1 defined on Cr. For any x ∈ Dr,
h(x) =

∫

Cr
P(z,x)h(z)λr(dz). Given h ∈ H 1, the measures h · λr, 0 < r < 1, are

probability measures on the closed unit disk. The space of such measures is com-
pact in the weak∗ topology, and these measures have a weak∗ limit νh (also called a
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weak limit) as the radius r tends to 1. If x ∈ Ds, then for |z|> s, the Poisson Kernel
P(z,x) is a continuous function of z out to and including at points of C. Therefore νh,
which is the weak∗ limit of h ·λr continues to integrate against the Poisson Kernel
to produce the value of h at x.

Remark 11.8.4. Using the space of continuous functions with compact support as
“test functions”, we have obtained a great deal of information about spaces of mea-
sures as functionals. By requiring more structure for the test functions, that is, by
reducing the space of test functions, we enlarge the space of functionals. Function-
als in an appropriate setting on the space of infinitely differentiable functions with
compact support form the space of distributions, also called generalized functions.
A test function vanishes off of a compact set. Therefore, integration by parts is used
in one dimension to define the action of the “derivative” of a distribution with a test
function. That action is the negative of the action of the distribution itself against the
derivative of the test function. Since derivation has a meaning in higher dimensions
as well, distributions play an important role in the theory of ordinary and partial
differential equations.

11.9 Problems

Problem 11.1. Show that the following norms on R
2 are equivalent.

a) The �1-norm: ‖(x,y)‖= |x|+ |y|.
b) The �2-norm: ‖(x,y)‖=

√

x2 + y2.
c) The �∞-norm: ‖(x,y)‖= max{|x| , |y|}.
Problem 11.2 (A). . Show that a finite-dimensional linear subspace of a normed
linear space X must be a closed subspace of X with respect to the topology generated
by the norm.

Problem 11.3 (A). . Show that a linear functional f on a normed space X is bounded
if and only if its kernel K := {x ∈ X : f (x) = 0} is closed in X .

Problem 11.4. Prove Lemma 11.2.1.

Problem 11.5. Show that for a measure space (X ,B,μ) and L1 functions f and
g of strictly positive norm, ‖ f +g‖1 = ‖ f‖1 + ‖g‖1 if and only if | f (x)+g(x)| =
| f (x)|+ |g(x)| for almost all x.

Problem 11.6. The space c consisting of convergent real-valued sequences is a sub-
space of �∞(N).

a) Show that c is a Banach space. Hint: A closed subset of a complete space is
complete.

b) Show that the space c0 consisting of sequences in c that converge to 0 is a Banach
space.
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Problem 11.7. Using Lebesgue measure λ , define G : L1(R) → R by

G( f ) =
∞

∑
n=1

1
n

∫

[n−1,n]
f dλ .

Show that G defines a bounded linear functional on L1(R) and find the norm of G.
Then find g ∈ L∞(R) such that G = Fg as in Theorem 11.3.1.

Problem 11.8 (A). Prove Lemma 11.4.1.

Problem 11.9 (A). Show that a Banach space X is reflexive if and only if its dual
space X∗ is reflexive.

Problem 11.10. Let S be a linear subspace of the space C[0,1] of continuous real-
valued functions on [0,1]. Assume that S is closed with respect to the L2-norm using
Lebesgue measure. Show that for some constant K and all f ∈ S, ‖ f‖∞ ≤ K ‖ f‖2.

Problem 11.11. Let T be a linear mapping from a Banach space X into a Banach
space Y , and assume the graph of T is a closed set. For each x ∈ X , set ‖|x|‖ =
‖x‖+‖T (x)‖. Show that this is a norm on X for which X is complete.

Problem 11.12. Let X be a normed linear space. Show that for any α ∈ R and any
g in the dual space X∗, the operations f → α f and f → f +g are continuous on X∗
when X∗ is supplied with the weak∗ topology.

Problem 11.13 (A). Let X be a Banach space, and let A be a weakly compact subset
of X . That is, A is a subset of X compact in the topology generated by X∗. Use the
canonical injection ϕ of X into the second dual X∗∗ to show that there is an M ≥ 0
in R such that ‖x‖ ≤M for all x ∈ A.

Problem 11.14. Show that the function ρ in Example 11.8.1 is a metric on R
2, and

(

R
2,ρ
)

is locally compact.

Problem 11.15. Show that a Radon measure on a σ -compact, locally compact
Hausdorff space is regular.

Problem 11.16 (A). Let X be a compact Hausdorff space, and let F = { fα : α ∈I }
be a family of continuous real-valued functions on X . Suppose there is a correspond-
ing family {cα : α ∈ I } of constants such that for each finite set {α1, · · · ,αn} of
indices, there is a signed Radon measure ν with total variation |ν |(X)≤ 1, such that
∫

fαi dν = cαi for 1≤ i≤ n. Show that there is a measure ν that works this way for
all of the indices at the same time.



Appendix A
Appendix on the Axiom of Choice

We repeat the following definition from Chapter 1.

Definition A.1. A partial ordering on a nonempty set E is a relation ≤ on E such
that

1) ∀ a ∈ E, a≤ a, (reflexive property) and
2) ∀ a, b, c ∈ E, a≤ b and b≤ c⇒ a≤ c. (transitive property)

We sometimes write b≥ a for a≤ b.
We call a partial ordering antisymmetric if

3) ∀ a, b ∈ E, a≤ b and b≤ a⇒ a = b.
For an antisymmetric ordering we write a < b for a≤ b but a �= b.
A partial ordering ≤ is called a total ordering if

4) ∀ a, b ∈ E, either a≤ b or b≤ a.
A total ordering ≤ is called a linear ordering if it is antisymmetric.

Recall that for a set E with a partial ordering ≤, a maximal element of E is an
element z such that for each y ∈ E, y need not be related to z, but if y ≥ z, then we
also have y≤ z. For an antisymmetric ordering, this means that y = z.

As noted in Chapter 1, the Axiom of Choice states that if {Sα : α ∈ I } is a
nonempty collection of nonempty sets, then there is a function T : I → ⋃α∈I Sα
such that for every α ∈ I , T (α) ∈ Sα . If the sets are disjoint, we may think of a
parliament. Recall the example given by Bertrand Russell in terms of pairs of shoes
and pairs of socks: Given a finite or even countably infinite set of pairs of shoes, one
can always pick one shoe from each pair, e.g., the left shoe. Given a finite collection
of pairs of socks, one can pick one sock from each pair, but what happens with
an infinite collection of pairs of socks? The Axiom of Choice says there is a set
consisting of exactly one sock from each pair.

We start with a result which, as we shall show, is equivalent to the Axiom of
Choice. It is a modification of results and proofs in [17]. We will call a nonempty
family C of subsets of a set S a chain if for any A and B ∈ C either A⊆ B or B⊆ A.
We will let ∪C denote the union of the sets in a chain C .
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Theorem A.1 (Hausdorff Maximal Principle for Linear Orderings). Let ≤ be
a partial ordering on a nonempty set E. Let F0 be a nonempty subset of E that is
linearly ordered with respect to ≤. There is a maximal (with respect to ⊆ ) subset
F ⊆ E such that F0 ⊆ F and ≤ is a linear ordering on F.

Proof. We let F be the family of all F ⊆ E such that the restriction of the ordering
≤ to F is a linear ordering and F ⊇ F0. Let T (∅) = F0, and for each F ∈F , let
T (F) be an element of F that strictly contains F if there is one, and otherwise let
T (F) = F . Here we have used the Axiom of Choice to define T . We want to show
that there is an F ∈F with T (F) = F . By the definition of T , this F is a maximal
linear ordered subset of E containing F0.

Now, the union of the sets in a chain C consisting of members of F is again
in F . To see this, let x and y be members of this union. We have x ∈ A ∈ C , and
y ∈ B ∈ C , and either A ⊆ B or B ⊆ A. Suppose the first. Then both x and y are in
B, so since ≤ is a linear ordering on B, either x≤ y or y≤ x; if both then x = y. The
same is true if B⊆ A.

Let W be the collection of all chains C consisting of members of F such that
for each F ∈ C with F � F0, ∪{A ∈ C : A � F} ∈ C , and for each F ∈ C such that
F �= ∪{A ∈ C : A � F}, F = T (∪{A ∈ C : A � F}). This means that T uses the
Axiom of Choice to supply the next step in the containment after the union. Note
that the singleton {F0} is in W .

Given C ∈W , we say that a chain D is an initial chain of C if D ∈W , each
F ∈D is a member of the chain C , and if A ∈ C and A⊂ F , then A ∈D . The union
G of a nonempty family of initial chains of C is an initial chain of C . To see this,
note that F0 is in G , and each member of G is a member of C . Moreover, if A and
B are members of G , then as elements of the chain C , either A⊆ B or B⊆ A. Also,
each A ∈ G is an element of an initial chain D ∈ W , so if B ∈ C and B ⊂ A, then
B ∈D . It follows that G ∈W .

If C and D are chains in W , then either C is an initial chain of D or D is an
initial chain of C . To see this, let G be the union of all chains in W that are both
initial chains of C and initial chains of D . The singleton {F0} is such a chain. As
before, G ∈W , and G is the largest initial chain of both C and D . Suppose C �= G .
Let F = ∪G . If F /∈ G , let G ′ = G∪{F}. If F ∈ G , let G ′ = G∪{T (F)}. Then
G ′ ∈ W , and G ′ is strictly larger than G initial chain of C . Similarly, if D �= G ,
then G ′ is strictly larger than G initial chain of D . Since we cannot have both, either
G = C or G =D , or both.

Now let G be the union of all chains in W . Then G ∈W . To see this, note that
the singleton {F0} is in G . If A and B are in G , then A ∈ C ∈W , and B ∈ D ∈W .
If C is an initial chain of D , then both A and B are in D , so either A ⊆ B or B ⊆
A. Similarly, if D is an initial chain of C , then both A and B are in C , so either
A ⊆ B or B ⊆ A. Therefore, G is a chain. If F ∈ G , then F ∈ C for some C ∈
W . Therefore, if F �= F0, ∪{A ∈ C : A � F} ∈ C ⊆ G . If F �= ∪{A ∈ C : A � F},
then F = T (∪{A ∈ C : A � F}). Since G ∈W and G is the union of all chains in
W , ∪G ∈ G . Since G∪{T (∪G )} must equal G , ∪G is a maximal linearly ordered
subset of E containing F0.
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Remark A.1. A similar proof, left to the reader, establishes the Hausdorff Maximal
Principle for total orderings.

Theorem A.2. The following principles are equivalent:

1) Axiom of Choice.
2) Hausdorff Maximal Principle for Linear Orderings.
3) Zorn’s Lemma: Let ≤ be a partial ordering on a nonempty set E. If every

linearly ordered subset of E has an upper bound in E, then there is a maximal
element with respect to ≤ contained in E.

4) Well-Ordering Principle: Every set can be ordered with a well-ordering.

Proof. 1)⇒ 2): This is Theorem A.1.
2) ⇒ 3): By the assumption, we can find a maximum (under containment) lin-

early ordered subset F of E. Let z be an upper bound of F . We will show that z is a
maximal element of E. Consider any y such that z ≤ y. We must show that we also
have y ≤ z; they do not have to be equal. Now since z is an upper bound of F , for
each x ∈ F , x ≤ z ≤ y. So F ∪{y} is totally ordered with respect to ≤. Since F is a
maximal linearly ordered set in E, it must also be true that for some x ∈ F , y ≤ x,
whence, y≤ z.

3)⇒ 4): Given a nonempty set E, consider subsets F of E with a well-orderings
≤F . Let F be the set of all such pairs (F,≤F). (A given set may appear more than
once but with different orderings. In this sense, the subscript on the ordering is a
bit misleading.) We can put an antisymmetric, partial ordering  on F by setting
(F,≤F) (G,≤G) when

i) F ⊆ G,
ii) ≤G=≤F on F×F , [i.e., if x, z ∈ F , then x≤F z, if and only if x≤G z], and

iii) for every pair (x,y) with x ∈ F and y ∈ G\F , x≤G y.

We wish to show that  is, in fact, an antisymmetric, partial ordering on F .
Clearly, for each element (F,≤F) in F , (F,≤F) (F,≤F) [(iii) is vacuously satis-
fied]. Moreover, (F,≤F) (G,≤G) and (G,≤G) (H,≤H)⇒ (F,≤F) (H,≤H).
To see this, we note that Properties i and ii are clear, so we only check (iii). If
y ∈ H \F and x ∈ F , then for the case y ∈ H \G, we have x ≤H y since x ∈ G. If
y∈G\F , then we have x≤G y, so x≤H y by (ii). To see that is antisymmetric, we
assume that we have both (F,≤F) (G,≤G) and (G,≤G) (F,≤F). By (i), F = G.
By (ii), ≤G= ≤F .

Fix a subset G = {(Fα ,≤F)} of F , linearly ordered with respect to  . We set
G = ∪α Fα , and we define an ordering on G by setting x ≤G y if x ≤Fα y for some
α . By (ii), this ordering is well-defined. Moreover, it is a linear ordering. To see
this, we note first that for each x ∈ G, there is an α with x ∈ Fα so x≤Fα x, whence
x ≤G x. If x ≤G y and y ≤G z, then for some α , x, y, and z all belong to Fα . By (ii),
it follows that x≤Fα y and y≤Fα z, so x≤Fα z, whence x≤G z. If x, y are in G, then
again for some α , x and y belong to Fα , so either x≤Fα y or y≤Fα x, whence either
x≤G y or y≤G x; if both, x = y.

To show that ≤G is a well-ordering of G, we consider a subset A ⊆ G with an
element x ∈ A. Then x ∈ Fα for some α , and by (iii), every element of A∩Fα is
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smaller than every element of A \Fα with respect to ≤G. Let a be the first element
of A∩Fα . Since each element of A\Fα is larger than a, a is the first element of A.

It now follows that (G,≤G) is an upper bound of G . By Zorn’s Lemma, there is a
maximum element (H,≤H) in F . We need only show that H = E. If not, then there
is a z ∈ E \H. We then consider the set K = H∪{z} and set x≤K y if either x, y ∈H
and x≤H y or if x ∈H and y = z. Now (H,≤H) (K,≤K), so by the maximality of
(H,≤H), (H,≤H) = (K,≤K). This is a contradiction since H �= K.

4) ⇒ 1): Given a nonempty family of nonempty sets Aα , well-order ∪α Aα . For
each α , let f (α) be the first element in Aα .

Remark A.2. Suppose ≤ is a partial ordering on a nonempty set E. To apply Zorn’s
Lemma, it is only necessary to find an upper bound for each linearly ordered subset.
By looking at the set of points (x,y) in the plane with 0≤ y≤ 1 and (x1,y1)≤ (x2,y2)
if and only if x1 = x2 and y1 ≤ y2, it is clear that one cannot hope to get a biggest
element. If the ordering ≤ is an antisymmetric partial ordering, then the Hausdorff
Maximal Principle for Total Orderings implies Zorn’s Lemma for≤. Recall that the
ordering in the proof 3)⇒ 4) is antisymmetric.

Example A.1. A filter F of subsets of a set X is a nonempty collection of subsets
such that ∅ /∈F , if A and B are in F , then A∩B∈F , and if A∈F and A⊆ B⊆ X ,
then B ∈F . An example is the Fréchet filter in N consisting of complements of
finite subsets of N. A filter base B of subsets of X is a collection of subsets such that
∅ /∈B, and if A and B are in B, then for some C∈B, C⊆A∩B. The filter generated
by a filter base is the set of all supersets of sets in the filterbase. An ultrafilter in
a set X is a filter of subsets of X such that no strictly larger collection of subsets
of X forms a filter. Given an ultrafilter U of subsets of X , each nonempty A ⊂ X
is either in U or X�A is in U , but not both. To see this, note that if B ∈ U and
A∩B = ∅, then B ⊆ X�A, so X�A ∈ U . If A∩B �= ∅ for each B ∈ U , then the
collection {A∩B : B ∈U } forms a filter base, and A is a superset of each element
A∩B. Since the generated filter must equal U , A ∈U .

Theorem A.3. Any filter F0 of subsets of X is contained in an ultrafilter U of
subsets of X.

Proof. Order the filters F of subsets of X by containment. Any containment chain
of filters containing F0 has an upper bound, namely the filter formed by the union.
By Zorn’s Lemma, there is a maximal filter, i.e., an ultrafilter containing F0.

Remark A.3. Given an ultrafilter U of subsets of X , the set function that assigns the
value 1 to each A ∈ U and the value 0 to X�A is a finitely additive measure on
the family of subsets of X . We may say a property is true almost everywhere on
X if it is true on an element of U . Using an ultrafilter such as one containing the
Fréchet filter in N, and calling two real-valued sequences equivalent if they are equal
almost everywhere, one forms an ordered field containing the real numbers and also
containing infinitesimal elements. See Appendix on Nonstandard Analysis.



Appendix B
Appendix on Limit and Covering Theorems

Many theorems in analysis and probability theory produce a Radon-Nikodým
derivative as a limit. In this appendix we show that the desired result is established
once one shows that the limit is 0 where the input is 0. A major consequence is
a simple proof of the Lebesgue Differentiation Theorem for measures. That result
needs a covering theorem, and that is the other focus of this appendix.

Covering theorems are used to show that a set E where a desired property fails
has measure zero. One begins by covering each point x in E with a special kind of
Borel set. For many covering theorems, the covering sets are closed balls B(x,r)
with center x and radius r > 0. Given a Borel measure μ , the covering theorem
produces a constant C that depends on the space and perhaps on the measure. It
also produces a disjoint collection {Ai} of covering sets so that the outer measure
μ∗(E) ≤ C · Σiμ(Ai). The result is used in working with maximal functions, and
measure derivatives.

Theorem 5.2.1 is the optimal covering theorem for the real line. The best known
covering theorem for both the real line and higher dimensions is that of Vitali. (See,
for example, [9].) That result is applicable for balls and measures, like Lebesgue
measure, that increase at a known rate as the radius of the ball is increased. For
finite-dimensional normed vector spaces, however, there are better, more general
results. These are presented in this appendix.

B.1 A General Limit Theorem

We will give the results of this section in terms of filters, filter bases, and the corre-
sponding limits. The results, due to Jürgen Bliedtner and the author, are taken from
[9]. Recall the following definitions.

Definition B.1.1. A collection F of subsets of a set X is a filter base if it does not
contain the empty set and the intersection of any finite subcollection of F contains
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a set in F . A metric space valued function f converges to a limit L along a filter
base F if for any ε > 0, there is a set A ∈ F such that for all x ∈ A, the metric
ρ( f (x),L)< ε .

In what follows, (X ,B) is a measurable space and M is the set of all nonnegative
finite measures on (X ,B). We use the notation μE for the restriction of a measure
μ to a measurable set E; i.e., μE(A) = μ(A∩E). We let R+ denote the nonnegative
real numbers, N the natural numbers, and �E the complement of a set E in X . If μ
and η are measures, we write μ ≤ η if μ(A)≤ η(A) for each A ∈B.

We work with a nonzero measure σ ∈M, called a reference measure. The theo-
rem here is stated for all of M, but it is also true for subclasses such as all multiples
of σ by an Lp(σ) density for some fixed p, 1 ≤ p ≤ ∞. Our theorem is given in
terms of a class F of linear functionals mapping M into R

+ with F(σ)> 0 for each
F ∈F . Moreover, each F ∈F has the property that if μ ≤ η , then F(μ)≤ F(η).
We associate with every x ∈ X , a filter base F (x) on F .

Example B.1.1. In a bounded open set S in R
n, we can let F be the set of functionals

determined by balls, with σ a regular Borel measure giving nonzero weight to balls
in S. That is, each F ∈F is given by a ball B in the sense that for each Borel measure
μ , F(μ) = μ(B). The filter F (x) can consist of sets of balls, with a typical element
of F (x) being all balls of radius at most R with center x. The limit theorem we are
about to establish will then, together with a covering theorem, yield the Lebesgue
Differentiation Theorem discussed below. A simple version, Theorem 5.4.1, was
presented in Chapter 5.

Example B.1.2. Recall Example 11.8.5. Harmonic functions on the unit disk D
in the complex plane are real-valued, continuous functions such that the Lapla-
cian Δh = ∂ 2h

∂x2 + ∂ 2h
∂y2 = 0. Let P(z,x) be the Poisson Kernel (|z|2− |x|2)/|z− x|2.

For each finite measure μ on the boundary of the unit disk D, we can extend μ
inside the disk with a harmonic function hμ using the Poisson Kernel. For each
y ∈ D, we let Fy(μ) = hμ(y). Now we have various boundary limit theorems at
points x of the boundary that go by the names “Fatou”, “Ratio Fatou”, “non-
tangential”, and “fine”. For example, when σ is a reference measure on the bound-
ary, limr→1+ hμ(rx)/hσ (rx) = dμ/dσ(x) for σ -a.e. x on the boundary. There are
fatter sets of points that can be used to replace segments of the line from 0 to x.
These give better limit theorems.

In what follows, we write lim
F,F (x)

F(μ)/F(σ) = a if for each ε > 0 there is a

set S ∈ F (x) such that for all F ∈ S , |F(μ)/F(σ)− a| < ε . Also, we write
dμ/dσ for the Radon-Nikodým derivative of the absolutely continuous part of μ
with respect to σ .

Theorem B.1.1. The following are equivalent:

(1) For all μ ∈M, lim
F,F (x)

F(μ)
F(σ) =

dμ
dσ (x) for σ -a.e. x ∈ X .
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(2) Given E ∈B with σ(E)> 0, and ν ∈M with ν(E) = 0, we have

lim
F,F (x)

F(ν)
F(σ)

= 0 for σ -a.e. x ∈ E.

(3) Given E ∈B with σ(E)> 0, and ν ∈M with ν(E) = 0, for σ -a.e. x ∈ E there
is a set S ∈F (x) with F(ν)/F(σ)≤ 1 for all F ∈S , whence

limsup
F,F (x)

F(ν)
F(σ)

≤ 1 for σ -a.e. x ∈ E.

Proof. (1 ⇒ 3) Assume 1 holds, and fix E ∈ B with σ(E) > 0 and ν ∈ M with

ν(E) = 0. Then lim
F,F (x)

F(ν)
F(σ) =

dν
dσ (x) = 0 for σ -a.e. x ∈ E. For each such point x,

there is a set S ∈F (x) with F(ν)/F(σ)≤ 1 for all F ∈S .

(3 ⇒ 2) Fix E ∈ B with σ(E) > 0, ν ∈ M with ν(E) = 0, and k ∈ N. Since
kν(E) = 0, it follows from 3 that for σ -a.e. x ∈ E there is a set S ∈F (x) such that
for all F ∈S , F(kν)/F(σ) ≤ 1, whence F(ν)/F(σ) ≤ 1/k. Since this is true for
each k ∈ N,

lim
F,F (x)

F(ν)
F(σ)

= 0 for σ -a.e. x ∈ E.

(2⇒ 1) By assumption, 1 holds for any measure that is singular with respect to σ .
Therefore, given a finite, nonnegative, integrable function h on X , we must show that
for some measurable set A with σ(A) = 0 and for all x ∈ X \A, lim

F,F (x)

F(hσ)
F(σ) = h(x).

Choose an n∈N, and partition R
+ into intervals of length 1/4n. Let E be the inverse

image with respect to h of one of the intervals [r, r+ 1/4n]. If σ(E) = 0, adjoin E
to A. Assume σ(E)> 0. Now for any x ∈ E and any F ∈F , we have

|F(hσ)−h(x) ·F(σ)|
≤ |F(hσ)− r ·F(σ)|+ |r ·F(σ)−h(x) ·F(σ)|
≤ |F(hσ�E)− r ·F(σ�E)|+ |F(hσE)− r ·F(σE)|+(h(x)− r)F(σ)

≤ F(hσ�E)+ r ·F(σ�E)+
1

4n
·F(σE)+

1
4n
·F(σ).

Dividing by F(σ), we have
∣

∣

∣

∣

F(hσ)

F(σ)
−h(x)

∣

∣

∣

∣

≤ F(hσ�E)

F(σ)
+ r · F(σ�E)

F(σ)
+

1
2n

.

By assumption, for σ -almost all x ∈ E,

lim
F,F (x)

F(hσ�E)

F(σ)
= 0, and lim

F,F (x)
r · F(σ�E)

F(σ)
= 0.
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Therefore, for σ -a.e. x ∈ E, there is a set Sn(x) ∈F (x) such that |F(hσ)/F(σ)−
h(x)|< 1/n for all F ∈Sn(x). We obtain the desired result by putting all of the sets
of measure 0 together for the sets E corresponding to the partition, and repeating
the operation for each n ∈ N.

Example B.1.3. For measure differentiation on R
n with respect to closed balls

B(x,r) and a finite reference measure σ , one wants to show that for all finite Borel
measures μ ,

lim
r→0+

μ(B(x,r))
σ(B(x,r))

=
dμ
dσ

(x) σ -a.e

where dμ/dσ is the Radon-Nikodým derivative of the absolutely continuous part
of μ with respect to σ . The above limit Theorem B.1.1 is employed in [9] (and with
an application in [10]), to show that this result is established when the conditions
of the theorem hold. For that proof here, fix a Borel set E in the support of σ and
a finite Borel measure ν with ν(E) = 0. Let F be the set of points x ∈ E such that
ν(B(x,r)) ≥ σ(B(x,r)) for a sequence of values r with limit 0. Here is the proof
using a covering theorem that the outer measure σ ∗(F) = 0:

Fix ε > 0 and a nonempty compact set K ⊆R
n \E with ν(Rn \K)< ε/C, where

C is the covering theorem constant. By assumption, for each x ∈ F , there is an
rx > 0 such that B(x,rx) ⊆ R

n \K, and σ (B(x,rx)) ≤ ν (B(x,rx)). For the disjoint
subcollection {Bn} of balls given by the covering theorem,

σ∗(F) ≤ C ·Σnσ(Bn)≤C ·Σnν(Bn)

≤ C ·ν(Rn \K)< ε .

B.2 Besicovitch and Morse Covering Theorems

Let (X ,‖·‖) be a normed vector space of dimension d < ∞ over the real numbers
R. The covering theorems of Besicovitch [8] and of Morse [38] hold for arbitrary
Borel measures on X . These theorems have two parts. The first part uses transfinite
induction, and the second part uses geometric reasoning to find an upper bound κ for
the number of covering sets that can form what we shall now define as a τ-satellite
configuration.

Definition B.2.1. Fix τ > 1. Let {Si : 1≤ i≤ n} be an ordered collection of subsets
of X with each Si having finite diameter Δ(Si) and containing a point ai in its interior,
int(Si). We say that the ordered collection of sets Si is in τ-satellite configuration
with respect to the ordered set of points ai if: (i) For all i ≤ n, Si ∩ Sn �= ∅ and (ii)
For all pairs i < j ≤ n, a j /∈ int(Si) and Δ(S j)< τ ·Δ(Si).

Remark B.2.1. We will use the geometry of X to show that for classes of sets, even
beyond convex sets, and for 1 < τ ≤ 2, there is an upper bound κ to the value
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of n. This upper bound will also hold for manifolds and a τ-satellite configuration
isometric to one in X . Therefore the following theorem can be extended to metric
spaces somewhat more general than a normed linear space X .

Theorem B.2.1. Let A be an arbitrary nonempty subset of X. With each point a∈ A,
associate a set S(a) containing a in its interior so that the diameters of the sets S(a)
have a finite upper bound. Fix τ with 1 < τ ≤ 2, and suppose that there can be no
more than κ < ∞ sets from the collection {S(a) : a ∈ A} forming a τ-satellite con-
figuration in X. Then for some m≤ κ , there are pairwise disjoint subsets A1, . . . ,Am

of A such that A⊆ ∪m
j=1∪a∈A j int(S (a)) and for each j, 1≤ j ≤ m, the elements of

the collection {S(a) : a ∈ A j} are pairwise disjoint.

Proof. We give both an informal and a formal description of the steps of the proof.
[Informal: Since one can’t necessarily choose an S(a) with maximal diameter,

we choose one with essentially the maximal diameter. That is, τ times the diameter
is bigger than all the other diameters. After that, at any stage, choose a point not in
the interior of any set chosen before with the corresponding set having essentially
the largest diameter among the competing sets. Stop when A is covered.]

[Formal: Put a well-ordering on A. By moving the first element of A to the
last position, we may assume that A has a terminating element in the ordering. Let
I = A with its well-ordering. We will use I as an index set. Each nonempty subset
B of A is well-ordered as a subset of I . Let T (B) be the first point b ∈ B with
τ ·Δ(S(b))> supa∈B Δ(S(a)). Form a one-to-one correspondence between an initial
segment of I and a subcollection of A as follows: Set B1 = A and a1 = T (B1).
Having chosen aα for α < β in I , let Bβ = A \∪α<β int(S(aα)). If Bβ �= ∅, set
aβ = T (Bβ ). There exists a first γ ∈I for which Bγ =∅.]

[Informal and Formal: This gives a well-ordering ≺ on a subset Ac of A such
that A⊆ ∪a∈Ac int(S(a)) and for a≺ b in Ac, we have b /∈ int(S(a)) and Δ(S(b))<
τ ·Δ(S(a)).]

[Informal: Choosing the first element a(1) of Ac, and then choose the next el-
ement in the ordering ≺ for which the set S(a) does not intersect S(a(1)), etc. In
this way, we find a maximal subset A1 of Ac for which the corresponding sets S(a)
are pairwise disjoint. Start again with Ac \A1, etc. This gives a sequence of sets
A1,A2 · · · .]

[Formal: Given any nonempty subset B of Ac, form a one-to-one correspondence
between an initial segment of I and a subset V (B) of B as follows. Set B1 = B, and
let a(1) be the first element (with respect to ≺) of B1. Having chosen a(α) for
α < β , let

Bβ = {b ∈ B : ∀α < β in I , S(b)∩S(a(α)) =∅}.
If Bβ �=∅, let a(β ) equal the first element (with respect to ≺) of Bβ . There exists a
first η ∈I for which Bη =∅. Let V (B) = {a(α) : α < η}.

Now for i≥ 1 in N, form sets Ai ⊆ Ac as follows. Set A1 =V (Ac). Having chosen
Ai for i < n in N, let Bn = Ac \∪n−1

i=1 Ai. Stop if Bn =∅. Otherwise, set An =V (Bn).]
[Informal and Formal: Note that for any b ∈ Ac with b /∈ ∪n−1

i=1 Ai and each i
between 1 and n−1, there is a first (with respect to≺) ai ∈Ai with S(ai)∩S(b) �=∅;
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clearly, ai ≺ b in Ac. It now follows that the set {S(a1), . . . ,S(an−1),S(b)} is in τ-
satellite configuration with respect to the set {a1, . . . ,an−1,b}when each set is given
the ordering inherited from I . Therefore, n cannot be larger than κ , i.e., for some
m≤ κ , A⊆ ∪m

j=1∪a∈A j int(S (a)).]

Corollary B.2.1. For any finite Borel measure μ on X, there is a j with 1 ≤ j ≤ m
such that

μ∗(A)≤ κ · ∑
a∈A j

μ(int(S (a))).

Proof. Take the first j ≤ m that maximizes the sum Σa∈A j μ(int(S (a))).

Remark B.2.2. If we replace κ with 2κ , we may even take a finite subcollection of
the collection

{

S(a) : a ∈ A j
}

.

For the Besicovitch Covering Theorem, each set S(a) is a closed ball B(a,r).
Note that the open balls cover A and the closed balls form the disjoint families. For
the Morse Covering Theorem, the sets S(a) are more general than balls. There is
a constant λ ≥ 1, so that for each a ∈ A,

a ∈ B(a,r)⊆ S(a)⊆ B(a,λ · r).

Moreover, S(a) must be “starlike” with respect to each point in B(a,r). That is, for
each point x in S(a) and each point y in B(a,r), the line segment joining these two
points is also in S(a). Again, the interiors of the sets given by the Morse theorem
cover A.

B.3 The Best Constant and Proof of Besicovitch’s Theorem

Now, for 1 < τ ≤ 2, we let κ(τ) denote the maximum number of closed balls that
can form a τ-satellite configuration in the space X . Z. Füredi and the author showed
in [19] that for values of τ close to 1, κ(τ) is a packing constant K; it is the best
constant for the Besicovitch theorem in terms of all known proofs. An upper bound
for K is 5d where d is the dimension of X .

Fix a τ-satellite configuration. Recall that later centers are not in the interior of
earlier balls. Take the last ball in the collection out of the ordering, translate, and
scale, so that it becomes the ball B(0,1). We then have for the remaining indices
1≤ i≤ n and corresponding balls B(ci,ri):

1) B(ci,ri)∩B(0,1) �=∅,
2) for 1≤ i < j ≤ n,

∥

∥ci− c j
∥

∥≥ ri > r j/τ , and
3) ‖ci‖= ‖ci−0‖ ≥ ri > 1/τ .

In what follows, we will also consider this configuration for τ = 1, but then with
the strict inequalities > replaced by ≥. To begin, we let K be the packing constant
equal to the maximum number of points that can be put into the closed ball B(0,2)
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when one of the points is at 0 and the distance between distinct points is at least 1.
Given such a packing of points in B(0,2), by centering a ball of radius 1 about each
of the points, one obtains a set of balls satisfying Conditions 1–3 for τ = 1, and so
κ(1) ≥ K. It is easy to see that κ(τ) is an increasing function of τ . We will show
that for τ sufficiently close to 1,

κ(τ) = K, whence, K = κ(1) = κ(τ).

First, a diagonalization argument shows that for some δ > 0, K is also the maxi-
mum when the distance 1 is replaced by 1−δ . That is, if an additional point can be
placed in B(0,2) for τ = 1− 1

n for large n ∈ N, then in the limit, an additional point
can be placed in B(0,2) for τ = 1. Fix τ with 1≤ τ < 1+δ/4. Since δ < 1, τ < 5

4 .
Fix a set of balls satisfying Conditions 1–3. Set b0 = 0. Given 1≤ i≤ n, if ‖ci‖ ≤ 2,
we set bi = ci; if ‖ci‖ > 2, we replace ci with bi = (2/‖ci‖)ci. That is, in the latter
case we project ci onto the surface of the ball B(0,2). We now need only show that
the distance between pairs of distinct points bi and b j is at least 1− δ . This proof
consists of three cases.

I) ‖ci‖ ≤ 2 and ‖c j‖ ≤ 2. By Conditions 2 and 3, ‖bi−b j‖ = ‖ci− c j‖ ≥ 1/τ ,
and 1−1/τ ≤ τ−1 < δ , so 1/τ > 1−δ .

II) ‖ci‖ ≤ 2 and ‖c j‖ > 2. Since B(c j,r j)∩B(0,1) �= ∅, B(b j,1) ⊆ B(c j,r j). If
j < i, then ‖ci− c j‖ ≥ r j, so ‖bi−b j‖ ≥ 1, and we are done. The alternative
is that i < j, so ‖ci−c j‖ ≥ ri ≥ r j/τ . By Condition 3, ri ≤ ‖ci‖= ‖bi‖ ≤ 2, so
r j ≤ τ · ri ≤ 2 · τ . Since τ < 5/4,

r j− r j/τ ≤ 2τ(1−1/τ)≤ 2τ(τ−1)< 2τ · δ
4
< δ ,

so r j−δ < r j/τ ≤ ‖ci− c j‖. By Condition 1,

‖bi−b j‖= ‖ci−b j‖ ≥ ‖ci− c j‖−‖c j−b j‖ ≥ (r j−δ )− (r j−1) = 1−δ .

III) ‖ci‖ ≥ ‖c j‖> 2. Set s = ‖c j‖ and x = (s/‖ci‖) · ci. Now,

‖ci− c j‖ ≤ ‖ci−x‖+‖x− c j‖= ‖ci‖−‖c j‖+‖x− c j‖,

so we have the “Bow and Arrow” Inequality

‖x− c j‖ ≥ ‖c j‖+‖ci− c j‖−‖ci‖.

By Condition 1, ‖ci‖ ≤ ri +1, so

‖bi−b j‖= ‖2
s
·x− 2

s
· c j‖= 2

s
‖x− c j‖ ≥ 2

s
(s−1+‖ci− c j‖− ri) .

If ‖ci− c j‖− ri ≥ 0, then since 2/s < 1,

‖bi−b j‖ ≥ 2
s
(s−1)> 2−1 = 1
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If ‖ci−c j‖< ri, then j < i. By Condition 3, s≥ r j. By Condition 2, ‖ci−c j‖ ≥
r j > ri/τ , so

ri−‖ci− c j‖ ≤ ri− r j < r j(τ−1)≤ s(τ−1).

Since 1≤ τ < 1+δ/4 and 2
s < 1,

‖bi−b j‖ ≥ 2
s
[s−1− (ri−‖ci− c j‖)]≥ 2

s
[s−1− τs+ s] = 4− 2

s
−2τ

> 3−2τ > 3−2·(1+δ/4) = 1−δ/2.

Independent of the work with Füredi in [19], John Sullivan [50] obtained a sim-
ilar bound for the case of Euclidean spaces. Reifenberg [43] and Bateman-Erdős
[6] showed that for disks in the plane with the Euclidean norm, κ(1) = K = 19. In
general, for any norm, K ≤ 5d where d is the dimension of X . For the �∞ norm on
R

d , K = 5d .

B.4 Proof of Morse Covering Theorem

Recall that there is a constant λ ≥ 1 used to define the sets in the Morse Covering
Theorem. One associates a set S with each a∈A, so that for some r > 0, a∈B(a,r)⊆
S⊆ B(a,λ · r), and S is starlike with respect to each point in B(a,r). If λ = 1, this is
the Besicovitch result. The “starlike” condition means that for each y ∈ B(a,r) and
each x ∈ S, the line segment αy+(1−α)x, 0≤ α ≤ 1, is contained in S. The proof
we now give from [34] of the Morse theorem modifies arguments in [38] and [9].

Proposition B.4.1. If ‖y−a‖ < r, i.e., if y is in the interior of B(a,r), and x is in
the closure, cl(S), of S, then every point of the form αy+(1−α)x, 0 < α ≤ 1, is in
the interior of S.

Proof. Fix ρ > 0 so that B(y,ρ)⊂ B(a,r), and fix α with 0 < α < 1. Assume first
that x∈ S, and translate so that x = 0. Then αy∈ S. Moreover, the ball B(αy,αρ)⊆
S since

‖αy− z‖ ≤ αρ ⇒ ∥∥y− 1
α z
∥

∥≤ ρ ⇒ 1
α z ∈ B(a,r)

⇒ z = α
(

1
α z
)

+(1−α)0 ∈ S.

Now for the case that x ∈ cl(S), choose a point w ∈ S so that 1−α
α ‖x−w‖< ρ . The

result follows from the previous case since

αy+(1−α)x = α
(

y+ 1−α
α (x−w)

)

+(1−α)w.
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For each γ ≥ 1, we will let N(γ) be an upper bound for the number of points that
can be packed into the closed ball B(0,1) when the distance between distinct points
is at least 1/γ and one point is at 0. We will write NS(γ) for the similar constant
when all points are on the surface of B(0,1). Given nonzero points b and c in X , we

set V (b,c) :=
∥

∥

∥

b
‖b‖ − c

‖c‖
∥

∥

∥.

We now fix τ with 1 < τ ≤ 2, and we fix λ > 1. We fix {Si : 1 ≤ i ≤ n} in τ-
satellite configuration with respect to an ordered set of points {ai : 1 ≤ i ≤ n}. For
each i, we fix a positive ri so that B(ai,ri) ⊆ Si ⊆ B(ai,λ ri) and Si is starlike with
respect to every y ∈ B(ai,ri). We also translate so that an = 0, and we set r = rn and
S = Sn. We must find an upper bound for n.

Proposition B.4.2. Suppose there are two constants C0≥ 1 and C1≥ 1 such that if ai

and a j are centers with the properties that C0r < ‖ai‖≤‖a j‖ and V (ai,a j)≤ 1/C1,
then ai must be in the interior of S j. It then follows that

n≤ N(2λC0)+N(8λ 2) NS(C1).

Proof. We give both an informal and a formal description of the steps of the proof.
[Informal and Formal: For 1≤ i < j ≤ n, we have

‖ai−a j‖ ≥ ri ≥ Δ(Si)/(2λ )≥ Δ(S)/(4λ )≥ r/(2λ ).

Scaling by 1/(C0r), one sees that there can be at most N(2λC0) indices i for which
‖ai‖ ≤C0r. We only have to show, therefore, that there are at most N(8λ 2) NS(C1)
indices in the set J := { j < n : C0r < ‖a j‖}.]

[Formal: Suppose i �= j are members of J with ai ∈ int(S j). Then i < j and

a j ∈ B(ai,Δ(S j))⊆ B(ai,2Δ(Si))⊆ B(ai,4λ ri).

Moreover, ‖a j− ai‖ ≥ ri ≥ ri/(2λ ). If also j < k in J, and ai ∈ int(Sk), then ak ∈
B(ai,4λ ri) and

‖ak−a j‖ ≥ r j ≥ Δ(S j)/(2λ )≥ ‖a j−ai‖/(2λ )≥ ri/(2λ ).

Scaling by 1/(4λ ri), it follows that for each i ∈ J, the cardinality Card{ j ∈ J : ai ∈
int(S j)} ≤ N(8λ 2).

Now construct J′ ⊆ J by induction as follows. Set J1 = J. At the kth step for
k ≥ 1, if Jk is empty, stop. Otherwise, choose the first ik ∈ Jk so that for all j ∈ Jk,
‖aik‖ ≤ ‖a j‖. Put ik in J′. Form the set Jk+1 by discarding from Jk the index ik and
all other indices j such that aik ∈ int(S j).]

[Informal: Choose the first element i of J with minimal norm. Move that ele-
ment from J to J′, and throw away all other elements j of J for which the chosen
center ai is in the interior of S j. You have thrown away at most N(8λ 2)−1 elements.
Now repeat with what is left of J until J is exhausted.]

[Informal and Formal: Now, if i �= j in J′, V (ai,a j)> 1/C1. Therefore, Card(J′)≤
NS(C1), and so Card(J)≤ N(8λ 2) NS(C1).]
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Theorem B.4.1. The constants C0 = 32λ 2 and C1 = 16λ work, whence

n≤ N(64λ 3)+N(8λ 2)NS(16λ ).

Proof. Suppose i and j are indices such that 32λ 2r < ‖ai‖ ≤ ‖a j‖ and V (ai,a j) ≤
1/(16λ ). By Proposition B.4.2, we only have to show that ai must be in the interior
of S j. To simplify notation, let b = ai and c = a j. Fix x ∈ S∩S j. Since ‖x‖ ≤ λ r <
32λ 2r < ‖b‖, x �= b. Let s = ‖c‖/‖b‖ and t = 1/s. Set y = (1− s)x+ sb. Then
b = (1− t)x+ ty. To show that b ∈ int(S j), we only have to show that ‖y− c‖< r j.
Now 16λΔ(S) ≤ 32λ 2r < ‖b‖, whence ‖x‖ ≤ Δ(S) ≤ min(‖b‖/(16λ ), 2Δ(S j)).
Therefore, since |1− s|= s−1 < s,

‖y− c‖=
∥

∥

∥(1− s)x+‖c‖
(

b
‖b‖ − c

‖c‖
)∥

∥

∥

< s‖x‖+‖c‖/(16λ )
≤ s‖b‖/(16λ )+‖c‖/(16λ ) = ‖c‖/(8λ )
≤ (‖c−x‖+‖x‖)/(8λ )
< Δ(S j)/(2λ )≤ r j.



Appendix C
Appendix on Infinitesimal Analysis
and Measure Theory

C.1 Basic Nonstandard Analysis

In this section, we present a brief introduction to nonstandard analysis, including the
extension of the real numbers with infinitely large and infinitely small numbers. We
will conclude with the application to measure theory. A more extensive introduction
as well as a large body of applications can be found in [35] as well as [15], [49],
and [1].

One thinks of a standard mathematical model as a world that exists in some sense.
For example, we think of the real numbers as having an existence independent of
what we may know about them. Theorems in an appropriate formal language form
correct statements about such a model. It is important to recognize the distinction
between the names of objects in a standard model along with statements using such
names in a formal language, and the objects themselves. For example, the number
five has many names such as 5 in base ten, 101 in binary, and V in Roman numer-
als. The reason to emphasize this distinction is that for each standard mathematical
model there are other mathematical objects, called nonstandard models, for which
all the names and theorems for the standard model have a meaning and are correct
for each nonstandard model. Informally, if we fix a nonstandard model, what we
have are two worlds, the standard and the nonstandard, and the theorems about the
first are also correct statements about the second. The foundation for the application
of this fact to analysis, called nonstandard analysis, is due to Abraham Robinson
[44]. His nonstandard models for the real number system contain infinitely large
and infinitely small positive numbers together with all of the numbers in the origi-
nal real number system.

One way to explain Robinson’s result is to invoke a theorem of Kurt Gödel.
Take a name not used for anything in the standard number system – for example,
George. To the theorems about the standard real number system add new statements:
“George is bigger than 1”, “George is bigger than 2”, etc. Add one such statement
for each natural number. The standard number system is not a model for the collec-
tion of theorems augmented by these statements about George. There is no number
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simultaneously bigger than 1,2,3, etc. The standard number system is, however, a
model for any finite subset of the augmented collection of statements. To see this,
fix a finite subset of the augmented collection. Find the biggest number named in
these statements, and let George be the name of a number that is even bigger. Since
every finite subset of our augmented collection of statements has a model, it fol-
lows from a result of Gödel that the entire augmented collection of statements has a
model. That is, there is a number system for which all the theorems about the real
numbers hold, but there is a number in that system, call it George, that is bigger than
1,2,3, etc. George’s reciprocal, 1 divided by George, is then a positive infinitesimal
number.

Another approach to understanding Robinson’s result is to construct a simple
number system ∗

R with infinitesimals using sequences of real numbers and a free
ultrafilter U on the natural numbers. We consider this next.

C.2 A Simple Extension of the Real Numbers

Recall the definition of a filter and ultrafilter in Example A.1.

Definition C.2.1. A free ultrafilter on N is a collection U consisting of subsets of
N such that

1) ∅ /∈U ,
2) A ∈U & B ∈U => A∩B ∈U ,
3) A ∈U & A⊆ B => B ∈U ,
4) A⊂ N & A /∈U => N\A ∈U , and
5) S a finite subset of N=> N\S ∈U .

Remark C.2.1. The ultrafilter U is generated by the Fréchet filter of Example A.1.
The existence of such ultrafilters is established in Theorem A.3. The word “free”
refers to Property 5. If U is a free ultrafilter on N, and A1, A2,· · · , Am are disjoint
subsets of N with union equal to N, then one and only one of the sets Ai is in U .
Without Property 5, one could fix an m ∈ N, and let U consist of all subsets of N
containing m. A free ultrafilter however corresponds to a finitely additive measure
on the power set of N taking either the value 0 or 1 on each set, and taking the value
1 on complements of finite sets.

For the rest of this section, we will work with a fixed free ultrafilter U on N. We
will say that a property holds almost everywhere, abbreviated a.e., if for some U ∈
U , the property holds for all elements n ∈U . For example, the sequence xn = 1/n
is less than 1/3 a.e. since by (5), the complement of the set {1,2,3} must be in U .

Notice that by (4), a property either holds a.e. or its negation holds a.e. It is this
consequence of using an ultrafilter that will allow us to transfer properties valid
for R to a number system built from sequences. That is, whatever we say about a
sequence will either be true a.e. or false a.e. In what follows, we will use the notation
〈ri〉 to denote the sequence mapping i ∈ N to ri.
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Definition C.2.2. A sequence 〈ri〉 is equivalent to a sequence 〈si〉, and we write
〈ri〉 ≡ 〈si〉, when ri = si a.e. That is, when {i ∈ N : ri = si} is in U .

Definition C.2.3. We write [< ri >] for the equivalence class containing the se-
quence 〈ri〉, and we say that 〈ri〉 represents [< ri >]. We use ∗R to denote the collec-
tion of equivalence classes in the set of real-valued sequences. The set ∗R is called
the set of nonstandard real numbers or hyperreal numbers. Its formation using U
is called an ultrapower construction.

Definition C.2.4. Given real-valued sequences < ri > and < si >, we set

[ < ri >]+ [< si >] = [< ri + si >],

[ < ri >] · [< si >] = [< ri · si >],

|[< ri >]|= [< |ri|>]

[< ri >]< [< si >] if ri < si a.e.

Proposition C.2.1. The operations + and ·, the mapping given by [< ri >] →
|[< ri >]|, and the ordering < are independent of the choice of representing se-
quences.

Proof. Left to the reader.

Note that the set of real numbers R (these are also called the standard numbers)
is imbedded in the set of nonstandard real numbers ∗R. The imbedding is accom-
plished with the map that takes each c ∈ R first to the constant sequence < c >
and then to the element [< c >] ∈ ∗R. For example, 5 is mapped to the equivalence
class [< 5 >] containing the constant sequence < 5 >. We write ∗c for [< c >], but
we will later drop the star. Similarly, each n-tuple 〈c1,c2, · · · ,cn〉 of real numbers is
mapped to the n-tuple 〈∗c1,

∗c2, · · · , ∗cn〉 of nonstandard real numbers. The opera-
tions + and · on ∗R are extensions of the operations + and · on R. That is, one gets
equivalent results working with either a pair of real numbers or the corresponding
imbedded pair in ∗R. In a similar sense, the mapping [< ri >]→ |[< ri >]| extends
the absolute value function from R to ∗R, and the ordering < extends the ordering <
from R to ∗R. The set ∗R forms an ordered field extension of R with the equivalence
classes containing the constant sequences 0 and 1 acting as the additive identity and
the multiplicative identity, respectively.

The purpose of extending R to ∗R is to obtain a number system with infinitesimal
numbers such as [< 1/i >]. The reciprocals of such numbers will be infinitely large
in absolute value. We measure this quality of magnitude in terms of standard natural
numbers, i.e., natural numbers in the imbedded set R.

Definition C.2.5. For any r ∈ ∗R,

1) r is infinite or unlimited (positive or negative) if |r|> n for every standard n∈N;
2) r is finite or limited if |r|< n for some standard n ∈ N; and
3) r is infinitesimal if |r|< 1/n for every standard n ∈ N.
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Note that 0 is the only standard infinitesimal. The equivalence class [< 1/i >] is
infinitesimal and [< i >] is a positive, unlimited number in ∗R.

Example C.2.1. To show that there are infinitely many elements in ∗
R greater than

ω := [< 1,2, · · · ,n, · · ·>], we note that for each m∈N, mω = [<m,2m, · · · ,mn, · · ·>
] > ω . It follows that there are infinitely many elements in ∗

R greater than 0 but
strictly smaller than γ := [< 1,1/2, · · · ,1/n, · · ·>].

Now we can define the extensions to ∗R of relations, such as functions, that are
defined on R. The extensions are called ∗-transforms. A unary relation is a set.

Definition C.2.6. The ∗-transform of an n-ary relation P on R is the n-ary rela-
tion ∗P on ∗R, where

〈

[< r1
i >], · · · , [< rn

i >]
〉 ∈ ∗P if and only if

{

i ∈ N :
〈

r1
i , · · · ,

rn
i 〉 ∈ P} is a set in the ultrafilter U , that is, for almost every i ∈ N, one has
〈

r1
i , · · · ,rn

i

〉 ∈ P.

Proposition C.2.2. If P is an n-ary relation, then ∗P extends P. That is, if 〈a1, · · · ,
an〉 ∈ P, then 〈∗a1, · · · , ∗an〉 ∈ ∗P.

Example C.2.2. The extension of the unit interval ∗[0,1] contains all nonstandard
reals between 0 and 1.

Remark C.2.2. Note that when we say ∗1/2 ∈ ∗[0,1] we mean the ith entry of the
constant sequence 〈1/2i〉 is in the ith entry of the sequence 〈[0,1]i〉 for all i in some
element U of U . This is not yet the true ∈-relation, but in the construction, we then
replace ∗[0,1] with the set of all elements in ∗R that satisfy this relation. Working up
the set-theoretic hierarchy, we then have the true ∈-relation. Not every set you see
can be obtained in this way. For example, if you try to get the set of standard natural
numbers in this way, you are forced to also have some unlimited natural numbers in
the set.

Proposition C.2.3. If f is a function of n variables, then ∗ f extends f , and ∗ f is
again a function. Moreover, if D is the domain of f , then ∗D is the domain of ∗ f .

Remark C.2.3. The construction of ∗R in terms of an ultrafilter U takes in account
not just the finite limit of a convergent sequence, but how that limit is approached in
terms of U . To get more properties, one works with a bigger index set than N.

C.3 The Transfer Principle

It is possible to work with ∗
R using the above construction with a larger index set

to establish all needed properties. A shortcut, however, makes it a much more use-
ful number system. A parallel can be found in the construction of the real numbers
themselves. Recall that one can form the set of real numbers as the set of equiva-
lence classes of Cauchy sequences of rational numbers. Essentially, R consists of all
limits of Cauchy sequences of rational numbers. While it would be possible to work
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with the real numbers just in terms of this construction, such an approach would
severely limit their utility. In practice, one works with the real number system using
its properties. As is true for the real numbers, it is best here to put aside the con-
struction of ∗R as a collection of equivalence classes of real-valued sequences, and
work instead with the corresponding properties. The basic fact needed to establish
these properties is the Transfer Principle.

The Transfer Principle asserts, essentially, that any property that is correct when
formally stated for R, or R together with another structure such as a Banach space,
is also valid for ∗R and the extension of the other structure, when the names in the
statement are replaced with the names of the corresponding transferred objects. The
∗-transform of a formal sentence is the same sentence with the names replaced with
the names of the corresponding ∗-transformed objects. Here is that principle.

Theorem C.3.1 (Transfer Principle). If a sentence in a formal language is a true
statement about a standard structure, then its ∗-transform when properly interpreted
is a true statement about the nonstandard extension of that structure.

Corollary C.3.1 (Downward Transfer Principle). If the ∗-transform of a sentence
is a true statement about the nonstandard extension of a structure, then the original
sentence is a true statement about the standard structure.

Proof. If Φ is the sentence about the standard structure, and ¬Φ is a true statement
about that structure, then the ∗-transform of ¬Φ would have to be a true statement
about the nonstandard extension of that structure.

What is meant by saying “when properly interpreted”? Briefly, when we say “all”
subsets of a given set, we can’t formally specify what we mean. Even for the set of
natural numbers, the idea of all subsets cannot be formalized. Ordinary language, for
example, can only describe at most countably many subsets of the natural numbers.
This inability to formalize the notion of “all subsets” means that when interpreting
theorems in the nonstandard structure, we can cheat. We don’t interpret the word
“all” to really mean “all”. We work instead with what are called internal sets, and
interpret “all sets” to mean all internal sets.

If A is a set in the standard model, then ∗A, called the nonstandard extension of
A, is the set in the nonstandard model with the same name and formal properties as
A. Nonstandard extensions of standard sets and sets that are elements of nonstan-
dard extensions of standard sets are internal sets. Any object that can be described
using only the names of known internal objects is also internal. An object that is not
internal is called external.

Important for applications is the fact that the set of natural numbers N =
{1,2,3, · · ·} has been extended along with the real numbers. The theorem that says
that every positive real number is within distance one of a natural number is still
valid for the extended number system. Therefore, we now have infinitely large nat-
ural numbers. We use ∗

N to denote the extended system of natural numbers, and
∗
N∞ to denote the new members of that system, all of which are larger than any
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ordinary natural number. The set ∗N∞ is clearly external, since every nonempty, in-
ternal subset of ∗N must have a first element. If ∗N∞ were internal, then subtracting
1 from a first element of ∗N∞ would yield the last ordinary natural number. Since
∗
N∞ is external, it follows that the set of ordinary natural numbers is also exter-

nal since ∗N∞ can be described as the complement of that set in ∗
N. We have seen

with the ultrapower construction that we cannot form a set in the nonstandard model
consisting just of standard natural numbers. An important principle is the following
consequence of the fact that the break between N and ∗N∞ is external.

Proposition C.3.1 (Spill-over Principle). If 〈An : n ∈ ∗
N〉 is an internal sequence

(i.e., an internal function with domain ∗
N) and an internal property P (i.e., stated

in terms of internal objects) holds for all standard n ∈ N, then that property holds
for all n ∈ ∗

N up to some ω ∈ ∗
N∞. If an internal property holds for all ω ∈ ∗

N∞
smaller than some ω0 ∈ ∗

N∞, then that property holds for all n ∈ N greater than
some n0 ∈ N.

C.4 Using the Transfer Principle

We now use the transfer principle to develop a fuller picture of ∗R. In applying
the transfer principle, we shall refer to an object before taking its ∗-transform as
standard, and we shall refer to its ∗-transform as its nonstandard extension. From
now on, we will write a for both a standard element a ∈ R and the corresponding
nonstandard extension in ∗R; we think of the set R as being imbedded in ∗R. We will
also write equality and set membership as well as the arithmetic operations and the
ordering relations using the same notation for the originals and their ∗-transforms.

Along with the Transfer Principle, a consequence of the construction of ∗R is the
fact that ∗R contains nonzero infinitesimal elements as well as their multiplicative
inverses, which are unlimited elements of ∗R. Listing the properties of R that make
it an ordered field, one notes that they are simply stated in terms of addition +,
multiplication ·, and the strictly positive elements R+ of R. Moreover,−x is notation
for (−1) · x.

Theorem C.4.1. The number system (∗R,+, ·,<) is an ordered field extension of
the ordered field (R,+, ·,<).

Proof. By the Transfer Principle, each property of (R,+, ·,<) holds for ∗R when
stated in terms of the nonstandard extensions of R, R+ and the operations + and ·.
Proposition C.4.1. If f is a function of n variables on R, then ∗ f is a function of n
variables on ∗R; it is an extension of f with ∗(dom f ) = dom(∗ f ) and ∗(range f ) =
range(∗ f ).

Proposition C.4.2. For subsets of R and sets in R
n, i.e., n-ary relations, we have

the following, where �A denotes the complement of a set A as appropriate in R, Rn

or their nonstandard extensions.
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i) ∗∅=∅.
ii) ∗(A∪B) = ∗A∪∗B, ∗(A∩B) = ∗A∩∗B, �(∗A) = ∗(�A).

iii) For Ai, i ∈ I, a family of subsets of Rn, n = 1,2, · · ·

∪i∈I
∗Ai ⊆ ∗(∪i∈IAi), and ∩i∈I

∗Ai ⊇ ∗(∩i∈IAi).

Proof. i) Since χ∅ is identically 0, so is ∗χ∅.
ii) This can be proved using characteristic functions since

χ(A∩B) = χA · χB, χ(A∪B) = χA + χB− χA · χB, χ�A = 1− χA.

iii) For n = 1 and each j ∈ I, we transfer the sentences

(∀x ∈ R)[x ∈ A j ⇒ x ∈ ∪i∈IAi]

(∀x ∈ R)[x ∈ ∩i∈IAi ⇒ x ∈ A j].

The proof for n > 1 is similar.

Recall that for a given ρ ∈ ∗R, we say that ρ is unlimited or infinite if |ρ | > n
for all standard n ∈ N, ρ is limited or finite if |ρ | < n for some standard n ∈ N,
and ρ is infinitesimal if |ρ |< 1/n for all standard n ∈ N. The number 0 is the only
real infinitesimal. It follows easily from the Transfer Principle that a number ρ ∈ ∗R
is positive and unlimited if and only if 1/ρ is strictly positive and infinitesimal,
while ρ ∈ ∗

R is negative and unlimited if and only if 1/ρ is strictly negative and
infinitesimal.

Definition C.4.1. The set of infinitesimal elements in ∗R is called the monad of 0;
it is denoted by m(0).

Example C.4.1. The set
⋃∞

n=1
n∈N

∗[−n,n] is the set of limited numbers in ∗
R, while

∗
(

⋃∞
n=1
n∈N

[−n,n]

)

is all of ∗R. The set
⋂∞

n=1
n∈N

∗ (−1
n , 1

n

)

=m(0), but ∗
(

⋂∞
n=1
n∈N

(−1
n , 1

n

)

)

is just the singleton set {0}.
Proposition C.4.3. Let B be a subset of Rn. Then ∗B∩Rn = B.

Proof. We give the proof for n = 1. If r is a real number not in B, then the sentence
r /∈ B holds for B and thus for the extension of B.

C.5 Properties of ∗R

Theorem C.5.1. The following properties hold for ∗R:

i) Finite sums, differences, and products of limited numbers are limited.
ii) Finite sums, differences, and products of infinitesimal numbers are infinitesimal.
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iii) The infinitesimal numbers form an ideal in the ring of limited numbers; i.e., the
product of a limited and an infinitesimal number is infinitesimal.

iv) The limited numbers form vector spaces over R, and the infinitesimal numbers
form vector spaces over R.

Proof. If |ρ | < n, and |τ | < m for n, m ∈ N, then n+m+ n ·m bounds the sum,
difference, and product of ρ and τ . Fix ρ and τ infinitesimal, and fix α limited in
∗
R. Given any n ∈ N, |ρ |< 1/(2n) and |τ |< 1/(2n), so |ρ + τ |< 1/n. There is an

m ∈ N such that |α|< m. Since |ρ |< 1/(m ·n), |α ·ρ |< m/(m ·n) = 1/n. The rest
is left to the reader.

Definition C.5.1. We say that x and y are infinitely close if x− y is infinitesimal.
Here we write x # y. If x− y is limited, we write x ∼ y. (Both # and ∼ are equiv-
alence relations.) The equivalence class for # containing x is called the monad of
x and written m(x). That is, m(x) = {y ∈ ∗

R : y # x}. The equivalence class for ∼
containing x is called the galaxy of x and written G(x).

Remark C.5.1. The monad of 0, m(0), is the set of infinitesimals. Moreover, for all
x ∈ ∗R, m(x) = x+m(0). The galaxy of 0, G(0) is the set of limited elements of ∗R.
It is also denoted by Fin(∗R). For each x ∈ ∗R, G(x) = x+G(0).

We usually “center” monads at standard real numbers, and speak of the monad
of r for r ∈ R. The next result uses the property that any nonempty subset of R that
has an upper bound has a least upper bound. In fact, the next result can be shown to
be equivalent to this property.

Theorem C.5.2. Every limited ρ ∈ ∗R is in the monad of a unique r ∈ R.

Proof. Fix a limited ρ ∈ ∗R, and set A := {s ∈ R : s≤ ρ}. Since A has an ordinary
integer as an upper bound, we may let r be its least real upper bound. Now ρ # r,
for if not, then for some n ∈ N, 1/n ≤ |r−ρ |. In this case, either r < ρ , and then
r+1/n is still in A, so r is not an upper bound of A or on the other hand r > ρ , and
then r− 1/n is an upper bound of A, and so r is not the least upper bound of A. It
follows that, r # ρ . If we also have s ∈ R and s # ρ , then r− s # 0. Since 0 is the
only infinitesimal in R, s = r.

Definition C.5.2. If ρ is finite, then the unique real number r with ρ # r is called
the standard part of ρ . We write r = st(ρ) or r = ◦ρ . The mapping st : G(0)→ R

is called the standard part map.

Remark C.5.2. The reader should note that the standard part map is quite important
in applications.

Theorem C.5.3. The standard part of a sum, difference, product, or quotient of two
limited numbers is, respectively, the sum, difference, product, or quotient of the stan-
dard parts of those numbers, with the exception that a denominator must not be
infinitesimal. If ρ ≤ τ , then ◦ρ ≤ ◦τ .
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Proof. Fix limited numbers r+ ε and s+ δ , where r and s are real numbers, and ε
and δ are infinitesimal (possibly 0). Then

(r+ ε)± (s+δ ) = (r± s)+(ε±δ )# r± s,

(r+ ε) · (s+δ ) = (r · s)+(r ·δ )+ ε · (s+δ )# r · s.
To establish the rule for quotients, we assume that r > 0, and we note that for some
n,m ∈ N, 1

n < r2− 1
m , and of course 1

m > |r · ε | # 0, so 1
n < r2 + ε · r, whence n >

1
r2+ε ·r > 0. This shows that 1

r2+ε ·r is limited. Now we have

1
r
− 1

r+ ε
=

ε
r2 + r · ε # 0.

The proof for r < 0 is similar, and the rest follows from the product rule. If (r+ε)≤
(s+δ ) , then r ≤ s+(δ − ε)< s+1/n for any n ∈ N. It follows that r ≤ s.

C.6 The Nonstandard Natural Numbers and Hyperfinite Sets

Recall that we write ∗N∞ to denote the set of unlimited elements of ∗N. The only
limited elements of ∗N are the standard natural numbers, so ∗

N∞ = ∗
N \N. If A

is an infinite subset of N, then ∗A contains arbitrarily large unlimited elements. In
particular, ∗A∩∗N∞ is not empty.

Definition C.6.1. The set ∗N is called the set of nonstandard natural numbers.
The extension of the integers ∗Z is called the set of nonstandard integers. (It is
formed from ∗

N in the same way that Z is formed from N.)

Remark C.6.1. We note the following:

1) If A = {a1, · · · ,an} is a finite set in R, then ∗A = A. This follows because one can
list the elements of A.

2) Not every subset of ∗R is the extension of a standard one. For example, N cannot
be the extension of a finite subset A of N, since if A is finite, then ∗A = A. On the
other hand, if A is an infinite subset of N, then ∗A contains unlimited elements.

Definition C.6.2. A hyperfinite set is a set in internal one-to-one correspondence
with an initial segment of ∗N.

Remark C.6.2. Hyperfinite sets are important for many applications of nonstandard
analysis. A feature that has powerful applications is the fact that if A is an infinite
set in the standard structure, then there is a hyperfinite set S⊂ ∗A such that for each
a ∈ A, ∗a ∈ S.
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C.7 Sequences

A sequence is a function from N into R. Therefore, every sequence has an extension
that maps ∗

N into ∗
R. We write 〈sn〉 for the original sequence and 〈∗sn〉 for its

extension. Note that for all n ∈ N, ∗sn = sn. We write sn → L when a sequence 〈sn〉
has limit L. The results in this section are due to Robinson [44].

Theorem C.7.1. A sequence 〈sn〉 has limit L if and only if for every η ∈ ∗N∞, ∗sη #
L; that is, L = st(∗sη) for every η ∈ ∗N∞.

Proof. Assume sn → L. Given an ε > 0 in R, there is a k ∈N for which the sentence
(∀n ∈ N)[n ≥ k → |sn−L| < ε ] holds for R. It follows by transfer that ∀η ∈ ∗

N∞,
|∗sη −L|< ε . Since ε is arbitrary in R

+, |∗sη −L| # 0 ∀η ∈ ∗N∞. Now assume that
for all η ∈ ∗N∞, ∗sη # L. Given ε > 0, let A = {n ∈ N : |sn−L| ≥ ε}. Then A is a
finite subset of N since there are no unlimited elements in ∗A; that is, there is a finite
maximum in A.

Example C.7.1. The sequence 〈1/n : n ∈ N〉 becomes 〈1/n : n ∈ ∗N〉. For each un-
limited η , 1/η # 0, so 1/n→ 0.

Theorem C.7.2. Assume sn → L and tn →M. Then

i) sn + tn → L+M,
ii) sn · tn → L ·M, and

iii) sn/tn → L/M provided M �= 0.

Proof. Left to the reader.

Proposition C.7.1. A sequence 〈sn〉 is Cauchy if and only if for every η and γ in
∗
N∞, ∗sη # ∗sγ .

Proof. Left to the reader.

Theorem C.7.3. A real number L is a cluster point of a sequence 〈sn〉 if and only if
for some η ∈ ∗N∞, ∗sη # L.

Proof. Assume that L is a cluster point of 〈sn〉. There is a function ψ : R+×N→N

such that
(∀ε ∈ R

+)(∀k ∈ N)[ψ(ε ,k)≥ k∧ ∣∣sψ(ε ,k)−L
∣

∣< ε ].

By transfer, if ε is a positive infinitesimal and η ∈ ∗N∞, then λ = ∗ψ(ε ,η) ∈ ∗N∞
and ∗sλ # L. Conversely, if for some η ∈ ∗N∞, ∗sη # L, then given ε > 0 and k ∈N,
the sentence “∃n > k with |sn−L|< ε” is true in the nonstandard model, so it is true
in the standard model.

Example C.7.2. If sn = (−1)n(1− 1/n), then for any unlimited η , ∗sη # 1 if η is
even and ∗sη #−1 if η is odd.

Theorem C.7.4 (Bolzano-Weierstrass). Every bounded sequence has a limit point.

Proof. If 〈sn〉 is bounded and η ∈ ∗
N∞, then ∗sη is limited. Let L = st(∗sη). Now,

there is an unlimited element of ∗N, namely η , such that ∗sη # L.
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C.8 Open Sets in the Reals

Recall that the monad m(a) of a real number a ∈ R consists of the points infinitely
close to a in ∗

R. Many of the definitions and results of this section have obvious
generalizations to R

n.

Theorem C.8.1. Let A be a subset of R.

i) A is open if and only if for every a ∈ A, m(a) ⊂ ∗A. (That is, all points an in-
finitesimal distance away from a are still in ∗A.)

ii) A is closed if and only if for every a ∈ �A, m(a)∩∗A =∅.

Proof. Clearly, (ii) follows from (i). If A is open and a ∈ A, then for some δ > 0,
(∀x∈R)[|x−a|< δ ⇒ x∈ A] holds for R. If x∈ ∗R, and x∈m(a), then |x−a|< δ ,
so by transfer, x ∈ ∗A. If A is not open, then there is an a ∈ A and a sequence 〈sn〉
such that

(∀n ∈ N)[sn ∈ �A∧|sn−a|< 1/n].

By transfer, for η ∈ ∗
N∞, ∗sη # a and ∗sη ∈ ∗ (�A

)

= �(∗A), whence m(a) is not
contained in ∗A.

Theorem C.8.2. A point c is an accumulation point of A⊆ R if and only if there is
an x ∈ ∗A with x �= c but x# c.

Proof. Left to the reader.

Theorem C.8.3. The closure A of A⊆ R is the set {x ∈ R : m(x)∩∗A �=∅}.
Proof. Left to the reader.

C.9 Limits and Continuity

Theorem C.9.1. Suppose a is an accumulation point of A and f : A → R. Then
limx→a f (x) exists and equals L ∈ R if and only if for every x ∈ ∗A with x # a but
x �= a, ∗ f (x)# L.

Proof. Assume that limx→a f (x) = L. Fix ε > 0 in R. Then there is a δ > 0 such that

(∀x ∈ A)[0 < |x−a|< δ ⇒ | f (x)−L|< ε ]

holds for R. By transfer, if x ∈ (m(a)∩ ∗A) \ {a}, then | f (x)−L| < ε , and this is
true for any ε > 0 in R, whence f (x)# L.

Conversely, if for every x∈ ∗A with x# a but x �= a, ∗ f (x)# L, then given ε > 0 in
R, the sentence “∃δ > 0 such that if x ∈ A and 0 < |x−a|< δ , then | f (x)−L|< ε”
holds for the nonstandard model, just let δ be a positive infinitesimal, so the sentence
holds for the standard model.
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Theorem C.9.2. If limx→a f (x) = L and limx→a g(x) = M, then

i) limx→a ( f +g)(x) = L+M,
ii) limx→a ( f ·g)(x) = L ·M, and

iii) limx→a ( f / g)(x) = L/M if M �= 0.

Proof. Left to the reader.

Theorem C.9.3. If f is defined on A, then f is continuous at a ∈ A if and only if for
every x ∈ m(a)∩ ∗A, ∗ f (x) # f (a). That is, if and only if for Δx = x− a # 0, we
have Δy = ∗ f (x)− f (a)# 0.

Proof. Clear.

Example C.9.1. If f (x) = x2 and Δx = x−a# 0, then

Δy = (a+Δx)2−a2 = 2a ·Δx+Δx2 # 0.

Corollary C.9.1. The sum, product, and quotient of functions continuous at a are
functions continuous at a, provided that for the quotient, the denominator does
not vanish at a.

Theorem C.9.4. A function f is uniformly continuous on a set A⊆ R if and only if
for each x and y in ∗A with x# y, ∗ f (x)# ∗ f (y).

Proof. Assume f is uniformly continuous on A. Given ε > 0, there is a δ > 0 so
that

(∀x ∈ A)(∀y ∈ A)[|x− y|< δ ⇒ | f (x)− f (y)|< ε ].

Thus if x # y in ∗A, then |∗ f (x)−∗ f (y)| < ε . Since ε is arbitrary in R
+, we have

∗ f (x)# ∗ f (y).
Conversely, if for each x and y in ∗A with x # y, ∗ f (x) # ∗ f (y), then given

ε > 0 in R, the sentence “∃δ > 0 such that if x ∈ A and y ∈ A and |x− y| < δ ,
then | f (x)− f (y)| < ε” holds in the nonstandard model, just let δ be a positive
infinitesimal, so the sentence holds in the standard model.

Example C.9.2. The function f (x) = 1/x is continuous on (0,1), since for a ∈ (0,1)
and h# 0, 1/(a+h)# 1/a. However, f is not uniformly continuous on (0,1) since
for η ∈ ∗N∞, 1/η # 1/2η # 0, but ∗ f (1/η) = η and ∗ f (1/2η) = 2η .

C.10 Differentiation

Theorem C.10.1. Let f be defined on an interval [a, a+δ ) (or (a−δ ,a]) for some
positive δ . Then f has a right-hand (left-hand) derivative at a if for all strictly
positive (negative) h # 0, (∗ f (a+h)− f (a))/h is finite and has a standard part
independent of h. The right-hand (left-hand) derivative is that standard part. If the
left-hand and right-hand derivatives exist and are equal, then f has a derivative
at a.
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Proof. This follows immediately from the nonstandard criterion for a limit.

Example C.10.1. If f (x) = x2, then for any standard x and nonzero Δx # 0, Δy =
(x+Δx)2− x2 = 2x ·Δx+(Δx)2, so Δy/Δx = 2x+Δx# 2x.

Remark C.10.1. If f ′(c) exists for c ∈ [a,b], then when Δx# 0 and dy = f ′(c) ·Δx,

Δy = ∗ f (c+Δx)− f (c) = f ′(c) ·Δx+ ε ·Δx = dy+ ε ·Δx

where ε # 0. Since dy# 0, we have Δy# 0.

Theorem C.10.2 (Chain Rule). Let f : [α,β ] → [a,b] and g : [a,b] → R. If f ′(x)
exists for x ∈ [α,β ], while f (x) = y ∈ [a,b] and g′(y) exists, then (g◦ f )′ (x) exists
and equals f ′(x) ·g′(y).
Proof. Let z = g(y). If Δx# 0 but Δx �= 0, then Δy# 0, and

Δy = ∗ f (x+Δx)− f (x) = f ′(x) ·Δx+E(x,Δx) ·Δx,

where E(x,Δx)# 0. Moreover,

Δz = ∗g(y+Δy)−g(y) = g′(y) ·Δy+F(y,Δy) ·Δy,

where F(y,Δy)# 0 if Δy# 0 but Δy �= 0. In this case,

Δz
Δx

= g′(y) · ( f ′(x)+E(x,Δx)
)

+F(y,Δy) · ( f ′(x)+E(x,Δx)
)

= f ′(x) ·g′(y)+g′(y) ·E(x,Δx)+ f ′(x) ·F(y,Δy)+E(x,Δx) ·F(y,Δy)

# f ′(x) ·g′(y).

If Δx # 0 and Δx �= 0 but Δy = 0, then since one factor in a 0 product must be 0,
f ′(x)+E(x,Δx) = 0. In this case, whatever the value of F(y,Δy) may be,

Δz
Δx

= f ′(x) ·g′(y)+g′(y) ·E(x,Δx)+F(y,Δy) ·0# f ′(x) ·g′(y).

Remark C.10.2. For a standard proof of the chain rule, the functions E and F are
standard functions with appropriate limit 0. The same observation as given here
works for the case that Δy = 0.

C.11 Riemann Integration

Given a continuous function f on an interval [a,b], we follow Keisler [22] in form-
ing Riemann sums. Each Δx > 0 corresponds to a unique partition of [a,b] with
n subintervals, where n is the first integer such that a + nΔx ≥ b: The partition
endpoints are xi = a+ iΔx for 0 ≤ i ≤ n− 1, and xn = b. We let Δxi denote the
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length of the ith subinterval of the partition; of course, Δxi = Δx except for the
last subinterval which may be shorter than Δx. Always evaluating at the left, the
Riemann sum Sb

a( f ,Δx) = ∑n
i=1 f (xi−1)Δxi. Letting Mi = maxx∈[xi−1,xi] f (x) and

mi = minx∈[xi−1,xi] f (x), we set Eb
a ( f ,Δx) = max1≤i≤n(Mi−mi). Along with the Rie-

mann sum, we have the upper and lower sums

S
b
a( f ,Δx) =

n

∑
i=1

Mi Δxi and Sb
a( f ,Δx) =

n

∑
i=1

mi Δxi.

For a fixed f , these functions of a, b, and Δx can be extended to ∗R and the exten-
sions retain the inequality

Sb
a( f ,Δx)≤ Sb

a( f ,Δx)≤ S
b
a( f ,Δx).

Theorem C.11.1 (Maximum Change Theorem). If f is continuous on [a,b], then

lim
Δx→0

Eb
a ( f ,Δx) = 0.

The Maximum Change Theorem follows from, and indeed is equivalent to, the
uniform continuity of f on [a,b]. The theorem can be stated and used in an elemen-
tary course without introducing uniform continuity, and it can be established there
for functions with a bounded derivative. Easy corollaries are the following results.

Theorem C.11.2. Let f be a continuous function on [a,b]. If Δx is a positive in-

finitesimal, then ∗Sb
a( f ,Δx)# ∗Sb

a( f ,Δx)# ∗Sb
a( f ,Δx).

Corollary C.11.1. If f is continuous on [a,b], then f is Riemann integrable there,
and for any positive infinitesimal Δx,

∫ b
a f (x)dx = st[∗Sb

a( f ,Δx)].

Remark C.11.1. How does one determine in setting up the Riemann integral for
an application that the integrand has been correctly chosen? Why, for example, is
f (x)Δx a good approximation in calculating the area under the graph of f but Δx
a bad approximation for the graph’s length. An answer more general than bounding
the desired quantity with upper and lower Riemann sums uses infinitesimals. It is
Duhamel’s Principle, which states that the sum of the infinitesimal errors resulting
from the infinitesimal approximations should be infinitesimal.

To illuminate the method of nonstandard analysis, we have used examples from
analysis on the real line. The method of “internal set theory ”, initiated by Edward
Nelson [39], works just with the nonstandard model, recognizing some elements of
that model as being standard. A good recent development of that framework with
applications to higher dimension calculus can be found in Nader Vakil’s text [53].
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C.12 Metric and Topological Spaces

In applications, one often uses the following property of a nonstandard extension,
forming what is called an enlargement. That property, already noted, says that for
any standard set A in the standard structure, there is a hyperfinite set F with

{∗a : a ∈ A} ⊆ F ⊆ ∗A.

In a metric space, an open ball with center x and radius r > 0 is the set B(x,r) =
{y ∈ X : ρ(x,y) < r}. In a nonstandard extension of a metric space, we define the
monad of a point x ∈ X by setting

monad(x) = m(x) :=
⋂∗B(x,r) = {y ∈ ∗X : ∗ρ(x,y)# 0} ,

where the intersection is over all positive standard values of r. We use this monad
in the same way we use monads on the real line. For example, a standard set O is
called open if for each x ∈ O, m(x)⊂ ∗O.

There are settings where a metric will not capture the notion we want; we need
a topological space. As shown in the chapter on topological spaces, we can use an
open base at each point in a topological space in essentially the same way that we
use balls in a metric space. Assume in what follows that a space X and an open base
Bx at each point x in X are given.

Definition C.12.1. For each x ∈ X , the monad of x is

monad(x) = m(x) :=
⋂

U∈Bx

∗U.

As with balls in a metric space, we indicate that y ∈ m(x) by writing y # x. The
near-standard points of ∗X are the points in the monad of some standard point
of X .

Remark C.12.1. Since any finite intersection of elements of Bx contains another
element of Bx, there is a W ∈ ∗Bx with W ⊂m(x). In a metric space, one can set W
equal to a ball of infinitesimal radius.

Example C.12.1. For pointwise convergence on [0,1], the monad of a real-valued
function f consists of all internal ∗R-valued functions g on ∗[0,1] such that at each
standard x, g(x)# f (x).

Proposition C.12.1. A set O⊆ X is open if and only if for every x ∈ O,m(x)⊆ ∗O.

Proof. To see these are the same thing, we note first that for each U ∈Bx, m(x) ⊂
∗U . On the other hand, if m(x)⊆ ∗O, then there is a W ∈ ∗Bx with W ⊆m(x)⊆ ∗O,
and so “∃W ∈Bx with W ⊆ O” must also be true for the standard structure.

Theorem C.12.1 (Robinson). A set A⊆ X is compact if and only if for each y ∈ ∗A,
there is an x ∈ A with y ∈m(x). In particular, X is compact if and only if each point
of ∗X is near-standard.
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Proof. Assume A is compact but there is a y ∈ ∗A not in the monad of any x ∈ A.
Then each x∈A is contained in an open set Ox with y /∈ ∗Ox. The family {Ox : x∈A}
covers A and therefore has a finite subcover {O1, · · · ,On}. Now since A ⊆ ∪n

i=1Oi,
∗A⊆ ∪n

i=1
∗Oi. Since y /∈ ∗Oi, for 1≤ i≤ n, y /∈ ∗A, which is impossible.

Now assume that A is not compact, i.e., there is a collection U = {Oα : α ∈
A } of open sets such that no finite subcollection covers A. Let S be a hyperfinite
collection in ∗U with ∗Oα ∈S for each α ∈ A . Then there is a y ∈ ∗A such that
y /∈V for each V ∈S . This point y is not in the monad of any standard point since
for each x ∈ A, there is an α with x ∈ Oα but y /∈ ∗Oα since ∗Oα ∈ S , whence
y /∈ m(x).

The topology of pointwise convergence on [0,1] can be generalized as noted in
the chapter on topological spaces. Instead of [0,1], we take an arbitrary index set I .
Instead of associating the real line with each α ∈ I , we let Xα be a topological
space. Now the point set Πα∈I Xα is the set of all functions f on I with f (α) ∈
Xα for each α ∈ I . The monad of such an element f consists of all internal g ∈
∗Πα∈I Xα with g(α) # f (α) for each standard α ∈ I . Such a g is a mapping on
∗I with g(β ) ∈ Xβ for each β ∈ ∗I , but the values of g at nonstandard indices
are not relevant in determining whether g is in the monad of f . Recall that the set
Πα∈I Xα with this topology is called a product space, and the topology is called the
product topology.

Theorem C.12.2 (Tychonoff). The product of compact spaces is compact.

Proof. If X = Πα∈I Xα and g ∈ ∗X , then for each standard α ∈ I , there is an
xα ∈ Xα with g(α)# xα . (The xα ’s are unique if the spaces Xα are Hausdorff.) The
element f ∈ X with f (α) = xα for each standard α ∈I is in X and g ∈ m( f ).

Theorem C.12.3. A map f from a set A contained in a metric space (X ,d) into a
metric space (Y,ρ) is uniformly continuous on A if and only if for every x, y ∈ ∗A,
with x# y, ∗ f (x)# ∗ f (y).

Proof. Assume that x# y⇒ ∗ f (x)# ∗ f (y). Pick ε > 0 in R. Then the sentence

(∃δ ∈ R
+)(∀x,y ∈ A)[d(x,y)< δ ⇒ ρ( f (x), f (y))< ε ]

holds for the extension and therefore for the original structure. The converse is sim-
ilar to the proof for R.

Theorem C.12.4. A continuous map f from a compact set A contained in a metric
space (X ,d) into a metric space (Y,ρ) is uniformly continuous on A.

Proof. Left to the reader.

If one takes the finite (i.e., limited) nonstandard rational numbers modulo the
infinitesimal ones, i.e., [∗Q∩Fin(∗R)]/[∗Q∩m(0)], one obtains the real numbers R.
A similar construction, applied to infinite-dimensional spaces, produces spaces that
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are new, called nonstandard hulls. The development of these new spaces was ini-
tiated by Luxemburg [37] and extended by Henson and Moore [20]. In many cases,
nonstandard hulls simplify the treatment of Banach space ultrapowers [14]. For
more information, see Manfred Wolff’s chapter in [35].

Definition C.12.2. Let �∞ denote the set of standard bounded sequences. A linear
map L : �∞ →R is called a Banach limit if for each σ ∈ �∞, L(σ) is a value between
the liminfσ and the limsupσ and L(σ) = L(T (σ)), where T (σ)(n) = σ(n+1).

Robinson’s nonstandard construction of a Banach limit picks η ∈ ∗N∞ and sets

Lη(σ) = st

(

1
η

η

∑
n=1

∗σ(n)

)

.

Here, Σ η
n=1 is the nonstandard extension, evaluated at η , of the usual summation

operator that sums a sequence from 1 to k.

C.13 Measure and Probability Theory

This section gives a brief overview of the construction initiated in [28] of standard
measure spaces on nonstandard models (now called “Loeb spaces” in the literature).
We will use the present day notation for the measure spaces considered here. The
principal device used in nonstandard measure theory is ℵ1-saturation. We will al-
ways assume now that we are working with an ℵ1-saturated structure containing
the nonstandard real numbers. What this means for the material in this section is
that any sequence from an internal set S indexed by the standard natural numbers is
just the beginning of an internal sequence in S indexed by the nonstandard natural
numbers.

Working in an ℵ1-saturated structure, we can construct a hyperfinite set Λ as the
set of elementary outcomes in a conceptual experiment in the “nonstandard world.”
For coin tossing, for example, Λ can be the set of internal sequences of−1’s and 1’s
of length η ∈ ∗N∞. Given such a hyperfinite Λ , we can let C consist of all internal
subsets of Λ . The collection C is an internal σ -algebra, but it is also an algebra in
the ordinary sense. Suppose P is an internal probability measure on (Λ ,C ). For the
coin tossing experiment, for example, each internal set A with internal cardinality
|A| would be given the probability P(A) = |A|/2η in ∗[0,1]. In the general case, we
can form a finitely additive real-valued measure ̂P on (Λ ,C ) with values in the real
interval [0,1] by setting ̂P(A) = st(P(A)). The question is, “Can we extend ̂P to a
countably additive measure on σ(C ), i.e., the σ -algebra generated by C ?” This is
the question we consider next.

We start with an arbitrary internal measure space (Λ ,C ,μ). The internal measure
μ does not have to take only limited values, but for simplicity, we will assume here
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that it does. When Λ is a hyperfinite set, one usually sets C equal to the collection of
all internal subsets of Λ , and μ is usually an internal probability measure. In general,
C is an internal σ -algebra as well as an algebra in the usual sense in Λ . Let ̂μ be
the finitely additive, real-valued measure on (Λ ,C ) defined at each A∈C by setting
̂μ(A) = st(μ(A)). Let σ(C ) denote the σ -algebra in the ordinary sense generated
by C . The collection σ(C ) is, in general, an external collection of subsets of Λ .
We can extend ̂μ to a measure μL defined on the measure completion Lμ(C ) of
σ(C ), and thus obtain a standard measure space (Λ ,Lμ(C ),μL) on Λ , by using the
Carathéodory Extension Theorem.

Here is where ℵ1-saturation is employed. If a sequence 〈Ai : i ∈ N〉, indexed by
the ordinary natural numbers, consists of pairwise disjoint elements of C , and the
union A is also in C , then the sequence can be internally extended to a sequence
indexed by ∗

N. For any unlimited η ∈ ∗
N, the union up to η contains A, so by

spillover, the union up to some standard n∈N equals A. This means that A is actually
a finite union since all but a finite number of the Ai’s are empty.

It now follows that ̂μ(A) = ∑i∈N ̂μ(Ai). By the Carathéodory Extension Theo-
rem 10.2.1, the finitely additive measure ̂μ has a σ -additive extension μL defined on
the completion Lμ(C ) of the σ -algebra σ(C ). Moreover, this extension is unique.
Now (Λ ,Lμ(C ),μL) is an ordinary finite measure space formed on the internal
set Λ .

Fix E in Lμ(C ). It is well-known that for any ε > 0 in R, there are sets A ∈
Cδ and B ∈ Cσ with A ⊆ E ⊆ B such that μL(B \A) < ε . By saturation, we may
assume that A and B are actually sets in C . To see this, suppose that 〈An : n ∈ N〉 is
a decreasing sequence in C with limit A. We may extend the sequence to an internal
decreasing sequence indexed by ∗

N, and choose an unlimited integer γ such that
μL(Aγ) = limn∈N μL(An). A similar proof works for B. We leave it as an exercise to
show that by saturation there is a set C∈C such that the symmetric difference E$C
is a null set in Lμ(C ). These set approximation properties characterize Lμ(C ) and
have had many important applications. They have also been used in the literature to
define Lμ(C ).

Given an ∗R-valued function f on Λ , we set ◦ f (x) = st( f (x)) if f (x) is limited in
∗
R. We set ◦ f (x) = +∞ if f (x) is positive and unlimited in ∗R, and we set ◦ f (x) =
−∞ if f (x) is negative and unlimited in ∗

R. It follows from the set approximation
properties that a function g : X → R∪ {+∞,−∞} is measurable with respect to
Lμ(C ) if and only if there is an internally C -measurable function f such that ◦ f =
g μL-a.e. The function f is called a lifting of g. If such an f takes only limited
values, then g is integrable, and by the set approximation properties

◦
∫

f dμ =
∫

◦ f dμL =
∫

g dμL. (C.13.1)

It follows from the definition of the standard integral that Equation C.13.1 also holds
when

∫

[| f |− (| f |∧η)] dμ # 0 ∀η ∈ ∗N∞ (C.13.2)
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Condition C.13.2 is a simple expression of the condition called S-integrability in the
literature. If we know, on the other hand, that g is integrable, then it is easy to see
that for a sufficiently small η ∈ ∗N∞, replacing f with the function f ·χ{| f |≤η} gives
an S-integrable lifting of g. That is, with this replacement, the internal integral of f
is limited and Equation C.13.1 holds.

Suppose ∗X is the nonstandard extension of a compact Hausdorff space X and
μ is a limited-valued, internal measure on the internal Baire sets C in ∗X . Then for
each Borel set B⊆ X , the set

B̃ = ∪{monad(y) : y ∈ B}

is in Lμ(C ). A Borel measure ν on X can be defined by setting ν(B) = μL(B̃) for
each Borel set B⊆ X . The measure ν restricted to the Baire sets is the standard part
of the internal measure μ with respect to the weak∗ topology on Baire measures. By
Robinson’s criterion for convergence and clustering, this correspondence between
ν and μ yields a nonstandard approach to the weak convergence of measures. See
[4] and [30]. In particular, one can obtain Lebesgue measure on an interval [a,b] as
follows: Start with internal counting measure on the left endpoints of a hyperfinite
interval partition of ∗[a,b], all intervals having the same size, and note that this is the
measure used to produce internal Riemann sums; the standard part of the internal
measure is Lebesgue measure.

When used in probability theory, the above general construction allows one to
tackle problems of continuous parameter stochastic processes using the combinato-
rial tools available for discrete parameter processes. Examples are the construction
of Poisson processes in [28] and Anderson’s representation of Brownian motion and
the Itô integral in [3]. The above construction has yielded new standard-analysis re-
sults by many researchers in areas such as probability theory, potential theory, num-
ber theory, mathematical economics, and mathematical physics. The reader may
consult [35, 1], and [48] for further background and many applications. Here are
six examples: Keisler’s [23] new existence theorem for stochastic differential equa-
tions, Perkins’ [40] award winning research (Rollo Davidson Prize in Probability
Theory) on the theory of local time, Arkeryd’s [5] results on gas kinetics, Cutland
and Ng’s work [13] on the Wiener sphere and Wiener measure, Renling Jin’s work
on number theory discussed in his chapter in [35], and Sun’s work in probability and
economics discussed in his contribution to [35]. Another application of the measure
theory, taken from [29] and [31], extends Example 11.8.5 to more general bound-
aries and potential theories. Of particular note is a description in [35] by Yeneng Sun
of his application in [51] of nonstandard measure theory and similar rich measure
theories to the formation of a long overdue (see [16]), rigorous foundation for deal-
ing with a continuum of independent random variables or traders in an economy.
We also note that Fields medalist Terence Tao has used nonstandard measures in his
recent multifaceted work [7] and [52].



Appendix D
Answers

Problem 1.8. i) For each E ∈ C , E ∈ {E,X \E,X ,∅}; the latter collection is the
σ -algebra generated by the one element set {E}. Therefore, C ⊆A ′. ii) If E ∈A ′,
then by definition, E ∈ σ(C0) for some countable C0 ⊆ C . Since X \E is also in
σ(C0), A ′ is stable under complementation. Of course, X and ∅ also belong to
σ(C0), so they are in A ′. iii) Let {An : n ∈ N} be a countable collection of sets
in A ′; each En is in σ(Cn) for some countable collection Cn ⊆ C . Now for each
m ∈N, Em ∈ σ(∪nCn), so ∪mEm ∈ σ(∪nCn). Since ∪nCn is countable, ∪mEm ∈A ′,
and we are done.

Problem 1.37. The function f is clearly an injection. It remains to prove it is
a surjection. Suppose there exists an x �∈ f [K]. Since f [K] is compact, it is closed,
and so there is an ε > 0 such that miny∈K |x− f (y)| ≥ ε . Again since K is compact,
the sequence of iterates 〈 f n(x)〉 has a convergent subsequence, say 〈 f ni(x)〉. Then
for i < j, we have | f ni(x)− f n j(x)|= |x− f n j−ni(x)| ≥ ε , contradicting the fact that
every convergent sequence in K is a Cauchy sequence. Thus f is a bijection.

Problem 1.40.

(a) We note that the complement of F is a countable disjoint union of open inter-
vals. On each one of those intervals that is finite in length, we extend with the
linear function (i.e., a function for which the graph is a straight line) determined
by the value of f at the endpoints. On an infinite interval, we extend with a con-
stant, namely the value at the endpoint. The extended function g is continuous
on R\F since linear functions are continuous, and any point in R\F is in one
of the open intervals forming R\F . Fix x ∈ F and ε > 0. Fix δ > 0 so that for
∀y∈ F ∩ (x−δ , x+δ ), | f (x)− f (y)|< ε . If ∃y∈ F ∩ (x,x+δ ), let δ1 = |x−y|.
In this case, for all points z ∈ [x, x+δ1], we have |g(z)−g(x)|< ε , since either
z ∈ F or z is in an open interval with endpoints in F ∩ [x,y]. Here we use the
fact that a linear function on an interval takes values between the values at the
ends of the interval. If (x,x+ δ )∩F = /0, then the interval (x,x+ δ ) is con-
tained in one of the intervals of the complement of F , and lim

y→x+
g(y) = f (x).

Therefore, we may still pick δ1 > 0 so that ∀z ∈ [x, x+ δ1], |g(z)−g(x)| < ε .
Similarly, we pick δ2 to work at the left side of x. The minimum of δ1 and δ2
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works for x and ε . Note that we have extended f to R without increasing its
supremum or decreasing its infimum.

(b) Let the open set be the real line with 0 removed. Let f (x) = 0 for x < 0 and
f (x) = 1 for x > 1.

Problem 1.41. We partition [a,b] using a δ = (b− a)/n that works for the uni-
form continuity of f in terms of ε/2. That is, we find a partition x0 = a < x1 <
· · · < xn = b so that the variation of f on any interval formed by the partition is
smaller than ε/2. It follows that the variation of the linear interpolation g on each
subinterval is smaller than ε/2. Therefore, if xi ≤ x≤ xi+1,

| f (x)−g(x)| ≤ | f (x)− f (xi)|+ | f (xi)−g(xi)|+ |g(xi)−g(x)|
< ε/2+0+ ε/2 = ε .

Problem 1.42.

(a) By Theorem 1.11.1, B = f (A) is compact. Thus, f : A → B and f−1 : B → A are
both continuous functions on compact sets. By Theorem 1.11.3, f and f−1 are
uniformly continuous.

(b) Let K = [0,∞) = B, and let f : K → B be the square root function. Then, f is a
homeomorphism with inverse f−1 : B → K defined by squaring. Moreover, f is
uniformly continuous while f−1 is not uniformly continuous.

(c) Let E = (−π/2,π/2), B=R, and f : E → B by f (x) = tanx. Then, f−1 : B → E
is uniformly continuous since it has bounded derivative while f is not uniformly
continuous.

Problem 1.43. For each x ∈ Pc and each n ∈ N, let Ix,n be an open interval cen-
tered at x such that if y ∈ Ix,n, then | f (y)− f (x)|< 1/n. Let On = ∪x∈PcIx,n, and let
S = ∩nOn. By definition, Pc ⊆ S. Let z ∈ S and fix ε > 0. Fix n such that 1/n < ε/2.
There is an Ix,n containing z. If y ∈ Ix,n, then | f (y)− f (z)| ≤ | f (y)− f (x)|+ | f (x)−
f (z)| < ε . Therefore, we may take δ such that (z− δ ,z+ δ ) ⊆ Ix,n, and this works
for z and ε . Thus, z is a point of continuity of f , so S = Pc.

Problem 1.44. Recall that a sequence converges if and only if it is Cauchy. Fix
n ∈ N. Given i, j in N, let An

i j =
{

x ∈ R :
∣

∣ fi(x)− f j(x)
∣

∣≤ 1/n
}

. Since R\An
i j =

{

x ∈ R :
∣

∣( fi− f j)(x)
∣

∣> 1/n
}

is an open set, An
i j is a closed set. Given k ∈ N, let

Fn
k = ∩i, j≥kAn

i, j. This is the closed set consisting of all points such that for all i,
j ≥ k,

∣

∣ fi(x)− f j(x)
∣

∣ ≤ 1/n. Let Fn = ∪kFn
k . This is the set of all points x such

that for some k ∈ N, x ∈ Fn
k ; it is an Fσ -set. Now C ⊆ ∩n∈NFn. Moreover, we have

equality since if x /∈C, then for some n ∈ N, x /∈ Fn.
Problem 2.4. For all A ⊆ R , for every r ∈ R , translation by r of a countable

covering of A by open intervals forms an open interval covering of A+ r. Since
the sum of the length of the intervals in the translated covering is the same as for
the original covering, we can only get a smaller infimum by looking at all possible
countable, open interval coverings of A+r. It follows that λ ∗(A+r)≤ λ ∗ (A). Since
A = (A+ r)+(−r), we also have λ ∗ (A)≤ λ ∗(A+ r), whence we have equality.

Problem 2.5. Fix a finite covering {Ik} of A by open intervals. Let P be the set
of points in [0,1] that are not covered. For each x ∈ P, the minimum distance to
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the intervals in the covering is 0; otherwise, a rational in A is not covered. Thus,
P is contained in the finite set of endpoints of the intervals forming the covering.
Of course, we may have P = ∅. Therefore, P is empty or at most a finite set, and
therefore has outer measure 0. It follows by subadditivity that

1 = λ ∗([0,1])≤ λ ∗(P)+λ ∗([0,1]\P) = λ ∗([0,1]\P)≤∑ l(Ik).

Problem 2.22. If E ∈M , A⊆R , and r ∈R , then A∩(E+r) = [(A−r)∩E]+r.
Since x → x+ r is a bijection of R onto R , ˜E + r = �(E + r). We have previously
seen that for any set A⊆ R, λ ∗A = λ ∗(A− r). It now follows since E is measurable
that

λ ∗ (A) = λ ∗(A− r) = λ ∗([A− r]∩E)+m∗([A− r]∩ ˜E)
= λ ∗(([A− r]∩E)+ r)+λ ∗(([A− r]∩ ˜E)+ r)

= λ ∗(A∩ (E + r))+λ ∗(A∩ (˜E + r))

= λ ∗(A∩ (E + r))+λ ∗(A∩�(E + r)).

The result is not true for outer measures derived from arbitrary integrators F . For
example, a set contained in an interval on which F is constant will have outer mea-
sure 0, and therefore be measurable. Translation of the set can move the set to an
interval where the integrator is not constant. Then measurability is not automatic.

Problem 2.24. If A /∈M , then it must follow that m∗(A)> 0. Let

α = sup{m(F) : F closed, F ⊂ A} , β = inf{m(G) : G open, A⊂ G} .

If A is not measurable, we must have α < β . By removing an Fσ set from A, we
may assume that α = 0 and still β > 0. Of course, β = m∗(A) = m(S) for some Gδ
set S containing A. Also, m∗(S \A)> 0, since otherwise A = S∩�(S\A) would be
measurable. Therefore,

m∗(S∩A)+m∗(S∩ ˜A) = m∗(A)+m∗(S\A) = m(S)+m∗(S\A) �= m(S).

Problem 2.31. Let E be a Lebesgue measurable subset of the non-measurable
set P. Let 〈ri〉 be an enumeration of the rational numbers in [0,1) with r0 = 0. For
each i, let Ei = E +′ ri. Then since the Pi’s are disjoint, the subsets Ei are disjoint.
By invariance of Lebesgue measure with respect to translation using the operation
+′, λ (Ei) = λ (E). Therefore, for any n ∈ N ,

0≤ n ·λ (E)≤
∞

∑
i=1

λ (Ei) = λ (∪∞
i=1Ei)≤ λ ([0,1)) = 1.

It follows that λ (E) = 0.
Problem 2.32. Given the set A with λ ∗ (A)> 0,

A =
+∞
⋃

i=0

[(A∩ [−i−1,−i))∪ (A∩ [i, i+1))].



258 D Answers

It follows from subadditivity that there is an interval Ik = [k,k + 1) with integer
endpoints such that if Ak = A∩ Ik, then λ ∗(Ak) > 0. Since λ ∗(Ak − k) > 0, and
Ak − k ⊆ [0,1), we may assume that A ⊆ [0,1). (Once we have proved the result
for such an A, the general case then follows by translating a non-measurable E ⊆
Ak − k ⊆ [0,1) to E + k ⊆ Ak ⊆ A.) Let P be the non-measurable subset of [0,1)
constructed in Section 2.7, and let Pi be the corresponding sets P+′ ri formed using
rationals ri. Note that each set Pi is non-measurable. If for some integer i ≥ 0, A∩
Pi is measurable, then by Problem 2.31 and the invariance of Lebesgue measure
with respect to translation using the operation +′, λ (A∩Pi) = 0. Since 0 < λ (A)≤
∑λ ∗(A∩Pi), there is an integer i with λ ∗(A∩Pi) �= 0, whence A∩Pi /∈M .

Problem 2.34. The open set Oα of measure α < 1 that is removed to form the
generalized Cantor set is dense in [0,1], therefore every point of [0,1]�Oα is a
boundary point of Oα and that boundary has measure 1−α .

Problem 3.4. Suppose f is an extended-real valued, measurable function on A.
Recall that the set where f takes the value +∞ is measurable and the set where f
takes the value −∞ is measurable. If f is restricted to a measurable set B⊆ A where
f takes only one value in [−∞,+∞], then for any α ∈R, {x ∈ B : f (x)> α} is either
∅ or B, so f is measurable on B. If c = 0, c f is defined and equal to 0 exactly on the
measurable set where f is finite. If c > 0 in R, c f is measurable where f is finite by
the same argument as for the finite case. Moreover, c f = +∞ where f = +∞, and
c f =−∞ where f =−∞, so c f is measurable on A. A similar argument shows that
c f is measurable on A if c < 0 in R. If g is also a measurable, extended-real valued
function on A, then f ∧g and f ∨g are measurable on A by the same argument as for
the finite case. The measurability of f + g follows by arguments already given for
the measurable set where both functions are finite. The rest of the argument for f +g
follows from the fact that the sum is defined and equal to +∞ on the measurable set

[

f−1 [{+∞}]
⋂

g−1 [(−∞,+∞]]
]

⋃

[

g−1 [{+∞}]
⋂

f−1 [(−∞,+∞]]
]

,

and the sum is defined and equal to −∞ on the measurable set
[

f−1 [{−∞}]
⋂

g−1 [[−∞,+∞)]
]

⋃

[

g−1 [{−∞}]
⋂

f−1 [[−∞,+∞)]
]

.

The measurability of f ·g follows by arguments already given for the measurable
set where both functions are finite. The rest of the argument for f · g follows from
the fact that the product is defined and equal to +∞ on the measurable set

[

f−1 [{+∞}]
⋂

g−1 [(0,+∞]]
]

⋃

[

g−1 [{+∞}]
⋂

f−1 [(0,+∞]]
]

⋃

[

f−1 [{−∞}]
⋂

g−1 [[−∞,0)]
]

⋃

[

g−1 [{−∞}]
⋂

f−1 [[−∞,0)]
]

,

and the product is defined and equal to −∞ on the measurable set
[

f−1 [{−∞}]
⋂

g−1 [(0,+∞]]
]

⋃

[

g−1 [{−∞}]
⋂

f−1 [(0,+∞]]
]

.
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Problem 3.18. If we know that the function in the hint is measurable, then since
f is the pointwise limit as n → ∞, we know that f is measurable. Recall that the
defining property of an interval is that it is not empty, and if two points are in the set,
then every point between them is in the set. This means that for a strictly increasing
function or even an increasing function, the inverse image of an open interval is
either empty or an interval, and therefore Borel measurable.

Problem 4.3. Restricting f to A, the integral
∫

A f =
∫

A f +
∫

E\A 0 =
∫

E f · χA.
Problem 4.11. We are given that

∫

f+ = +∞, and f− and h are integrable.
It follows that

∫

f +
∫

h = +∞. We want to show that
∫

( f + h) = +∞. Now
( f +h)+ = ( f +h+−h−)+ ≥ ( f+− f−−h−)+. Since ( f +h)− ≤ ( f−+h−), and
( f−+h−) is integrable, it is sufficient to show that

∫

( f+− f−−h−) = +∞. This
follows from the fact that if f+ − f− − h− equaled an integrable function g, we
would have f+ = g+ f−+h−, which is integrable, but f+ is not integrable.

Problem 4.22. Fix a measurable set E, and let
〈

fnk

〉

be any subsequence of 〈 fn〉.
By Fatou’s Lemma

∫

R

f =
∫

E
f +
∫

R\E
f ≤ limk

∫

E
fnk + limk

∫

R\E
fnk

≤ limk

(

∫

E
fnk +

∫

R\E
fnk

)

=
∫

R

f .

Now
∫

E f ≤ limk
∫

E fnk and the same is true for R \E, but the sums of the left and
right side for E and R \E are equal and finite. It follows that

∫

E f = limk
∫

E fnk .
Since this is true for any subsequence,

∫

E fn exists and equals
∫

E f .
Problem 4.31. Let 〈In〉 be a sequence of finite closed subintervals on which the

proper Riemann integral of f exists (so f will be bounded on each In) with In ↗ I.
On each In,

∫

In f = R
∫

In f . Moreover, | f · χIn | ≤ | f |. Therefore, by the Lebesgue
Dominated Convergence Theorem,

R
∫

I
f = lim

n
R
∫

In
f = lim

n

∫

In
f =
∫

f .

Problem 4.32. Suppose
∫ | fn| →

∫ | f |. Now | fn− f | → 0 a.e., | fn− f | ≤ gn :=
| fn|+ | f |, gn → g := 2 | f | a.e., and we are assuming that

∫

gn →
∫

g. Therefore,
∫ | fn− f | → 0. On the other hand, if we know that

∫ | fn− f | → 0, then by the trian-
gle inequality,

0≤
∣

∣

∣

∣

∫

| fn|−
∫

| f |
∣

∣

∣

∣

≤
∫

|| fn|− | f || ≤
∫

| fn− f | → 0.

Problem 4.44. This is the Lebesgue Dominated Convergence Theorem with the
parameter n→∞ replaced with y↘ 0. In fact the Lebesgue Dominated Convergence
Theorem tells us that the result is true for any sequence yn ↘ 0, and so the result is
true for the more general limit process y↘ 0. Note that it is not enough to do this
for just one sequence such as yn = 1/n. You must work with an arbitrary sequence
yn converging to 0.
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Problem 5.12. Order the rational numbers in (0,1], and at the n’th rational qn

put the weight 2−n. Let F(0) = 0, and for x > 0, let F(x) denote the total of the
weights up to x plus 1 to get a jump of 1 at 0. That is, F(x) = 1+ Σ0<qn≤x2−n.
Then F is increasing and has jump 2−n at qn. To see that F is continuous at each
irrational number x, we fix ε > 0 and N ∈ N such that Σ ∞

n=N2−n < ε . Choose δ > 0
so that the interval [x−δ , x+δ ] contains no rational qk for k < N and is contained
in (0,1). Then F(x+ δ )−F(x− δ ) < ε , so ∀y with |x− y| < δ , |F(x)−F(y)| ≤
F(x+δ )−F(x−δ )< ε .

Problem 5.17. The only discontinuities of an increasing function are at the
jumps, and there are at most a countable number of these. (For example, there can
be at most (F(K)−F(−K)) ·n jumps of size 1/n.) There is no derivative at a jump.
Moreover, at a point x that is not a jump point for F , G(x) = F(x). Suppose x0 is a
point where a derivative F ′(x0) exists, and xn is a sequence of points where a jump
of F may or may not occur with xn ↘ x0. Since a countable set cannot form an open
interval, there is a sequence of non-jump points yn↘ x0 and a sequence of non-jump
points zn ↘ x0 with yn ≤ xn ≤ zn for each n. Then

F(yn)−F(x0)

yn− x0
·
(

yn− x0

xn− x0

)

≤ G(xn)−G(x0)

xn− x0
≤ F(zn)−F(x0)

zn− x0
·
(

zn− x0

xn− x0

)

.

We may choose each zn and yn close enough to xn so that 1− 1
n ≤
(

yn−x0
xn−x0

)

≤ 1, and

1≤
(

zn−x0
xn−x0

)

≤ 1+ 1
n . With this choice,

F(yn)−F(x0)

yn− x0
·
(

1− 1
n

)

≤ G(xn)−G(x0)

xn− x0
≤ F(zn)−F(x0)

zn− x0
·
(

1+
1
n

)

.

The first and last terms of the inequality both converge to F ′(x0), and so the same is
true of the middle sequence of ratios. A similar proof works for jump points xn↗ x0,
or we may apply the previous result to G(x) =−F(−x). The proof also shows that
F ′(x0) = G′(x0).

Problem 5.19. Assume g is increasing. Otherwise, work with −g. Also assume
that E ⊆ (0,1) since λ ({g(0),g(1)}) = 0. Fix ε > 0, and let δ > 0 corresponding
to ε in the definition of absolute continuity. Let O be an open set containing E
and contained in (0,1) with λ (O) < δ . The open set O is the union ∪∞

i=1(ai,bi) of
disjoint open intervals; of course, Σ ∞

i=1(bi− ai) < δ . Now g[E] is contained in the
union of the sets g[(ai,bi)]. These are intervals since g is monotone increasing and
continuous. Moreover, since δ corresponds to ε with respect to absolute continuity,
any finite union has measure < ε , so the countable union has measure ≤ ε . Thus
λ (g[E])≤ ε . Since ε is arbitrary, λ (g[E]) = 0.

Problem 5.21. Part a) is left to the reader. b) Assume f is absolutely continuous
and | f ′| ≤ B where it exists. Then for any interval [x,y],

| f (y)− f (x)|=
∣

∣

∣

∣

(

f (x)+
∫ y

x
f ′dλ
)

− f (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

x
f ′dλ
∣

∣

∣

∣

≤
∫ y

x

∣

∣ f ′
∣

∣dλ ≤B · |y− x| .
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Now assume f is an arbitrary real-valued function that satisfies a Lipschitz condi-
tion with constant M. Then f is absolutely continuous by Part a. Moreover, every
difference quotient f (y)− f (x)

y−x lies in the interval [−M,M], so the derivative also lies
in [−M,M] wherever it exists.

Note: Suppose F(x) =
∫ x

0 f (t)dλ where f ≥ 0 is increasing, continuous, and in-
tegrable on [0,1), but f is unbounded on [0,1). Then F is absolutely continuous but
F ′ = f is not bounded. We see that there is no hope of getting a Lipschitz condition
here since for any interval [x,x+Δx]⊆ [0,1), we have

F(x+Δx)−F(x)≥ f (x) ·Δx

Problem 7.16. Assume that E = ∪En, where for each n, the closure of En in X ,
En, contains no open subsets of X . Then A = ∪n(A∩En), and for each n, (A∩En)⊆
En and thus contains no open subsets of X .

Problem 7.20. In a metric space, a singleton set {x} is closed. If {x} is not
isolated, that is, if {x} is not open, then {x} is nowhere dense since it is already
closed and contains no open sets. A complete metric space X cannot be the countable
union of such singleton sets. One can also note that if 〈xn〉 is a sequence of non-
isolated points in a metric space, then

⋂

n (X \{xn}) is the countable intersection of
dense open sets.

Problem 7.35.

a) Assume fm→ f in L∞. For each n,m∈N, let Em
n := {| fm− f | ≥ 1/n}. If fm→ f

in L∞, then for each n, there is a kn ∈ N such that ∪m≥knEm
n is a set of measure

0. Therefore, E := ∪n ∪m≥kn Em
n is a set of measure 0, and fn converges to f

uniformly on the complement of E. Now assume that fn converges to f uni-
formly on the complement of a set E of measure 0. For any n ∈ N, there is a
kn such that for all m ≥ kn, | fm− f | ≤ 1/n on the complement of E, whence
‖ fm− f‖∞ ≤ 1/n for all m≥ kn.

b) Let 〈 fn〉 be a Cauchy sequence in L∞. For each n,m, j∈N, let E j
m,n = {| fm− fn| ≥

1/ j}. For each j, there is a k j such that ∪m,n≥k j E
j
m,n is a set of measure 0. There-

fore, E := ∪ j ∪m,n≥k j E j
m,n is a set of measure 0. For each x /∈ E, 〈 fn(x)〉 is

Cauchy. Let f (x) be the limit on the complement of E and 0 on E. By Part a,
we need to show that fn converges to f uniformly on X \E. For any j ∈N, there
is a k j ∈ N such that ∀n, m≥ k j and ∀x ∈ X \E, | fn(x)− fm(x)|< 1/ j, whence
| fn(x)− f (x)|< 2/ j. It follows that fn converges to f uniformly on X \E.

Problem 7.39. We need only show that c is closed with respect to the topology
given by the �∞-norm, since a closed subset of a complete space is complete. For
each n ∈ N, let i → fn(i) be a convergent sequence, so the sequence of sequences,
〈 fn : n ∈ N〉, is a sequence in c. Let f be a bounded sequence, i.e., in �∞(N), with
‖ fn− f‖∞ → 0. We will have shown that c is closed if we show that f ∈ c; that is,
that f is Cauchy. Fix ε > 0 and n ∈ N such that ‖ fn− f‖∞ < ε/3. Since for this n,
fn is Cauchy, there is a k such that for all i, j ≥ k, | fn(i)− fn( j)|< ε/3, whence

| f (i)− f ( j)| ≤ | f (i)− fn(i)|+ | fn(i)− fn( j)|+ | fn( j)− f ( j)|< ε .
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Problem 7.41. Working with just the real part of f , we may assume that f ≥ 0,
since if the result is true for f+ approximating from below with ϕ+ ≥ 0 and the
result is true for f− approximating from below with ϕ− ≥ 0, then in general,

‖ f −ϕ‖p =
∥

∥ f+−ϕ+− f−+ϕ−
∥

∥

p ≤
∥

∥ f+−ϕ+
∥

∥

p +
∥

∥ f−−ϕ−
∥

∥

p .

We may now take a sequence of simple functions ϕn increasing up to f . Since f p

is integrable, each ϕ p
n is integrable, so since each ϕn takes only a finite number of

values, each ϕn vanishes off of a set of finite measure. Since | f −ϕn|p → 0 at each
point where f is finite, that is, almost everywhere, and | f −ϕn|p ≤ | f |p, we have
by the Lebesgue Dominated Convergence Theorem

∫ | f −ϕn|p dμ → 0. We choose
N ∈ N so that for all n≥ N,

∫ | f −ϕn|p dμ < ε p.
Problem 7.43. First we show that ‖ f‖∞ ≤ liminfp→∞ ‖ f‖p. We may assume that

‖ f‖∞ > 0 (otherwise the inequality is trivial). For every strictly positive r < ‖ f‖∞,
the set Ar = {x∈ X : | f (x)|> r} has strictly positive but finite measure. For all finite
p≥ 1,

‖ f‖p =

(

∫

| f (x)|p
)1/p

≥
(

∫

(r ·χAr)
p
)1/p

= rμ(Ar)
1/p,

whence r ≤ liminfp→∞ ‖ f‖p. Since r ∈ (0,‖ f‖∞) is arbitrary, we conclude that
‖ f‖∞ ≤ liminfp→∞ ‖ f‖p. On the other hand,

‖ f‖p =

(

∫

| f (x)|p
)1/p

=

(

∫

| f (x)| · | f (x)|p−1
)1/p

≤
(

∫

| f (x)| · ‖ f‖p−1
∞

)1/p

=

(

∫

| f (x)|
)1/p

· ‖ f‖1−1/p
∞ = ‖ f‖1/p

1 ‖ f‖1−1/p
∞ .

Therefore, limsupp→∞ ‖ f‖p ≤ ‖ f‖∞, whence, limp→∞ ‖ f‖p = ‖ f‖∞.
Problem 7.47. By assumption, each open L∞-ball about f contains a contin-

uous function. That is, for each n ∈ N, there is a continuous function gn such
that ‖ f −gn‖∞ ≤ 1/n. At each x ∈ [0,1], the sequence 〈gn(x)〉 is a Cauchy se-
quence. To see this, fix x ∈ [0,1] and ε > 0. There is an n0 such that for all n > n0,
‖ f −gn‖∞ < ε/4. Since the g’s are continuous, for each n, m > n0, there is an open
interval U centered at x such that for all y ∈U ∩ [0,1], |gn(x)− gn(y)| < ε/4 and
|gm(x)− gm(y)| < ε/4. Let f0 denote a function representing the L∞-equivalence
class f . We may have to ignore the behavior of f0 on a set of measure 0 in U , but for
any other point y ∈U ∩ [0,1], we have | f0(y)−gn(y)|< ε/4 and | f0(y)−gm(y)|<
ε/4. Using such a point y as a “catalyst”, we have

|gn(x)−gm(x)| ≤ |gn(x)−gn(y)|+ |gn(y)− f0(y)|+ | f0(y)−gm(y)|+ |gm(y)−gm(x)|< ε.

Let h(x) = limn gn(x) for each x ∈ [0,1]. We have actually shown that the gn’s form
a uniform Cauchy sequence, so they converge to h uniformly. It follows that h is
continuous. Now, h = f0 except on a set of measure 0, namely the union over n of
the exceptional sets for the inequalities | f0−gn|< 1/n. Therefore, the equivalence
class containing f0 contains the continuous function h.
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Problem 8.16. The result follows from the fact that there are at most a finite
number of terms xα with ‖xα‖ greater or equal to 1/n for each n ∈ N. This follows,
since if it is not true for some n ∈N, then for ε = 1/(3n) and any finite sum ∑

xα∈F
xα

that is within 1/(3n) of the limit L, there will still be a term xβ , with β /∈ F and
∥

∥xβ
∥

∥ ≥ 1
n . When xβ is added to the old sum, the new sum will be farther than

1/(3n) from L. That is,
∥

∥

∥

∥

∥

L−
(

∑
xα∈F

xα + xβ

)∥

∥

∥

∥

∥

≥
∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

L− ∑
xα∈F

xα

∥

∥

∥

∥

∥

−∥∥xβ
∥

∥

∣

∣

∣

∣

∣

=
∥

∥xβ
∥

∥−
∥

∥

∥

∥

∥

L− ∑
xα∈F

xα

∥

∥

∥

∥

∥

≥ 1
n
− 1

3n
>

1
3n

.

Problem 9.9. By replacing each y ∈ S with the set of all ordinals less than or
equal to y and taking the union of this countable collection of countable sets, we
may assume that S is a countable initial segment of the ordinals. That is, if α ∈ S,
then every element of Y smaller than α is also in S. Now Y is uncountable, so Y �= S.
Every element of Y \ S must be an upper bound of S, and there is a first element
of Y \ S, which is the least upper bound of S. Note that there may be no greatest
element of S. For example, S may correspond to the set of natural numbers.

Problem 9.10. Suppose U , V formed a disconnection of the union. Since neither
U nor V can have empty intersection with the union, we may fix Aα and Aβ with
Aα ∩U �=∅ and Aβ ∩V �=∅. Since Aα is connected and contained in U∪V , the pair
U , V cannot be a disconnection of Aα . On the other hand, since U intersected with
the union is disjoint from V intersected with the union, (Aα ∩U)∩ (Aα ∩V ) = ∅.
Therefore, we must have Aα ∩V = ∅. That is, Aa ⊆ U . Similarly, Aβ ⊆ V . This
contradicts the assumption that Aa∩Aβ �=∅.

Problem 9.13. If we assume that A is pathwise connected, we can obtain a con-
tradiction to the fact that the unit interval has finite length. Here is a proof: Assume
there is a path f (t), 0 ≤ t ≤ 1, in the closure of the graph of sin(1/x) such that
f (0) = (1/π , 0) and f (1) is on the y-axis. Then f is a uniformly continuous func-
tion from [0,1] to R

2. In particular, there is a δ > 0 such that if 0 < a < b < 1,
and b− a < δ , then | f (b)− f (a)| < 1/4. For any point p in R

2, let Y (p) be the
y-coordinate. Let b1 = max{t ∈ [0,1] : Y ( f (t)) =−1/2} and let a1 = max{t < b1 :
Y (t) = 1/2}. Given a pair ai, bi, let bi+1 = max{t < ai : Y ( f (t)) = −1/2} and let
ai+1 = max{t < bi+1 : Y ( f (t)) = 1/2}. In this way, we obtain an infinite number of
disjoint intervals [ai, bi] in (0,1) with bi−ai ≥ δ for all i. This is a contradiction to
the fact that the unit interval has finite length.

Problem 9.30. Assume (X ,T ) is locally compact. Fix x ∈ X and a T -open
neighborhood U of x such that the T -closure U in X is compact with respect to
T . By Problem 9.29, U is compact, and therefore closed with respect to S . Now
U = X ∩V , where V is S -open. Moreover, V�U ⊆ Z�X , and V�U is S -open.
Since X is dense in Z, V�U =∅, so V =U . It follows that X is S -open in Z.
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Now assume that Z�X is S -closed. Fix x∈X . By Proposition 9.8.2, Z is normal,
so there are disjoint S -open sets U and V , with x∈U and Z�X ⊂V . It follows that
the S -closure of U is an S -compact subset of X , and it is therefore T -compact.

Problem 9.32. Fix ε > 0, x ∈ X , and a neighborhood U of x such that for any
y ∈U and any f ∈F , ρ( f (y), f (x)) < ε/3. Given g ∈F , we will show that for
all y ∈ U , ρ(g(y),g(x)) < ε . Given y ∈ U , since g ∈ F , there is an f ∈ F with
ρ( f (y),g(y))< ε/3 and ρ( f (x),g(x))< ε/3, whence

ρ(g(y),g(x))< ρ(g(y), f (y))+ρ( f (y), f (x))+ρ( f (x),g(x))< ε .

Thus, U works for x and ε in terms of the family F .
Problem 9.34. Since C(X) is a metric space with the metric obtained from the

uniform norm, a function is in the closure of A if and only if it is the uniform limit
of a sequence from A . Fix f , g ∈A and sequences 〈 fn〉 and 〈gn〉 in A with fn → f
and gn → g. Then fn +gn → f +g, fn ·gn → f ·g, and for any α ∈ R, α fn → α f .

Problem 9.36. First, assume there is a function f ∈ A that is nowhere equal to
0. The algebra generated by 1 and A consists of functions of the form α +h where
h ∈A and α ∈ R. Since this algebra is dense in C(X), there is a sequence hn in A
and a sequence of real numbers αn such that αn +hn → 1/ f . Multiplying by f , we
see that αn f +hn f → 1 since for each n, αn f +hn f ∈A , 1∈A , and so A =C(X).

If for each x ∈ X , there is an f ∈A with f (x) �= 0, then the nonnegative function
f 2 is in A , and a suitable finite sum of such functions is positive everywhere on X .
Therefore, if A �=C(X), there must be a unique (since A separates points) point p
such that f (p) = 0 for all f ∈A . Fix g ∈C(X) such that g(p) = 0. Then there is a
sequence 〈 fn +αn〉with fn ∈A and αn ∈R such that fn +αn converges uniformly
to g on X . Since fn(p) = 0 for each n and g(p) = 0, αn → 0. Therefore g ∈A .

Problem 10.4. Fix a closed and bounded interval [ak,bk] in the kth coordinate
axis of X for each k ≤ n so that R is the product of these closed intervals. Again,
{Pi : i = 1, · · · ,m} is a finite covering of R by general open rectangles. There is a
J ∈N such that if each of the intervals [ai,bi] is partitioned into J closed subintervals
of size (bi−ai)/J, then each product of each of the resulting closed subintervals is
contained in at least one of the Pk’s. To see this, assume no such J exists, and when
J = n, let xn be a vertex closest to the origin of one of the products of the closed
subintervals for which the result fails. By the Bolzano-Weierstrass Theorem, there is
a cluster point x0 of the sequence 〈xn : n ∈ N〉. One of the general open rectangles Pk0

contains x0. A subsequence
〈

xnk

〉

of the sequence 〈xn〉 converges to x0. For each k,
the other vertices of the closed product for which xnk is a vertex also converge to x0.
Therefore, for some n ∈ N, all of the vertices including xn of one of the products of
closed subintervals is in the open general rectangle Pk0 , contradicting the definition
of xn.

It now follows that there is a partition of R into a finite number of closed general
rectangles Q j, 1≤ j ≤ k, so that each Q j is contained in one of the open rectangles
Pi. The volume of each Pi is greater than or equal to the sum of the volumes of the
rectangles Q j that are contained in Pi. Therefore,

V (R) =
k

∑
j=1

V (Q j)≤
n

∑
i=1

V (Pi).
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Problem 11.2. This is clear for a one-dimensional subspace generated by x1 ∈ X ,
since when anx1 → x0, the coefficients an form a Cauchy sequence of scalars.
Assume that any (n−1)-dimensional manifold in X must be closed. Fix linearly
independent elements x1, · · · ,xn. By assumption, no xi is a limit of linear combina-
tions of the other xi’s, for if it were, the (n−1)-dimensional manifold spanned by
the others would not be closed. Let y be a limit point of a sequence yi = ∑n

j=1 α i
jx j.

We want to show that for each j, the sequence
〈

α i
j

〉

is bounded, since then, a

diagonalization argument allows us to assume that for each j, α i
j → α j ∈ R, and

then yi → ∑n
j=1 α jx j. Since we also have yi → y, y = ∑n

j=1 α jx j is in the span of
x1, · · · ,xn. Now assume that for some j, after reordering let it be n, and for some
subsequence of the original sequence yi, we have lim

∣

∣α i
n

∣

∣ = +∞. For that subse-

quence, yi =
(

∑n−1
j=1 α i

jx j

)

+α i
nxn, so xn =

(

1/α i
n

) ·yi + zi, where zi is in the span of

the other x j’s. Since yi → y, |yi| is a bounded sequence, whence
∣

∣

(

1/α i
n

) · yi
∣

∣→ 0.
This means that xn is in the closure of the span of the other x j’s violating our ass-
umption. Therefore, we are done.

Problem 11.3. We may assume that f �= 0. The kernel K is f−1[{0}]. By Theo-
rem 11.1.1, f is bounded if and only if it is continuous, and so the inverse image of
the closed set {0} is closed. Now we will assume that K is closed and show that f is
continuous at 0. It then follows by Theorem 11.1.1 that f is bounded. Fix x∈ X with
f (x) = 1. If f (y) �= 0, then f (( f (y) · x)− y) = 1 · f (y)− f (y) = 0, so f (y) ·x−y = k,
where k ∈ K. It follows that for each y ∈ X , there is a scalar α and a k ∈ K such that
αx+k = y. That is, there is only one dimension left after K. Now fix a sequence 〈zn〉
in X converging to 0. We must show that f (zn)→ 0. If | f (zn)|> 1, we may replace
zn with zn/ f (zn), so without loss of generality we may assume that | f (zn)| ≤ 1. For
each n, there is a scalar α and a kn ∈ K with αnx+kn = zn. Since f (x) = 1, for each
n, |αn| ≤ 1. Given any subsequence of the sequence 〈αn〉, we choose a further subse-
quence that converges to a scalar a. Since zn → 0, we then have kn →−ax. Since the
kernel is a closed subspace not containing x, a = 0, and so f (αnx+ kn) = αn → 0.
It follows that for the original sequence we have f (zn) = f (αnx+ kn)→ 0.

Problem 11.8. If ‖F‖≤ 1, then for all x∈X , |F(x)|/‖x‖≤ 1, so F(x)≤ |F(x)| ≤
‖x‖. On the other hand, if for all x ∈ X , F(x) ≤ ‖x‖, then for all x ∈ X , −F(x) =
F(−x)≤ ‖−x‖= ‖x‖, so−‖x‖ ≤ F(x)≤ ‖x‖, whence |F(x)| ≤ ‖x‖, and the result
follows.

Problem 11.9. We must show that the natural imbedding ˜ϕ of X∗ into the third
dual X∗∗∗ is a surjection if and only if the natural imbedding ϕ of X into X∗∗ is a
surjection. Given any F ∈ X∗∗∗, we consider the restriction of F to ϕ [X ], and define
an element fF ∈ X∗ at each x ∈ X by setting fF(x) := F(ϕ(x)). This is linear since
given a linear combination αx+βy in X ,

fF(αx+βy) = F(ϕ(αx+βy)) = αF(ϕ(x))+βF(ϕ(y)) = α fF(x)+β fF(y).

Moreover, for any x ∈ X with ‖x‖ ≤ 1, ‖ϕ(x)‖ ≤ 1, so

‖ fF(x)‖= ‖F(ϕ(x))‖ ≤ ‖F‖‖ϕ(x)‖ ≤ ‖F‖ ,
so fF is bounded.
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Assume that X is reflexive, that is, X∗∗ = ϕ[X ]. Given an arbitrary F ∈ X∗∗∗ we
want to show that F = ˜ϕ( fF); this will show that ˜ϕ is surjective. Given an arbitrary
g ∈ X∗∗, by assumption, g = ϕ(xg) for some element xg ∈ X . Therefore,

F(g) = F (ϕ(xg)) = fF(xg) = ϕ(xg)( fF) = g( fF) = ˜ϕ( fF)(g).

Since g is arbitrary in X∗∗, F = ˜ϕ( fF).
Suppose now that there is a g ∈ X∗∗ \ϕ[X ], that is, X is not reflexive. By Theo-

rem 11.5.1, ϕ[X ] is closed in X∗∗. By Proposition 11.4.2, we may fix F ∈ X∗∗∗ with
F(h) = 0 for all h ∈ ϕ[X ] and F(g) > 0. If we assume for the sake of reaching a
contradiction that X∗ is reflexive, then F = ˜ϕ( f0) for some f0 ∈ X∗. Now for all
x ∈ X ,

f0(x) = ϕ(x)( f0) = ˜ϕ( f0)(ϕ(x)) = F (ϕ(x)) = 0,

since ϕ(x) ∈ ϕ[X ]. That is, f0 is the 0 functional in X∗, whence F = ˜ϕ( f0) is the 0
functional in X∗∗∗. This contradicts the assumption that F(g)> 0.

Problem 11.13. As suggested, we may consider A as a subset of X∗∗ under the
canonical injection ϕ . That is, we will look at the set {ϕ(x) : x ∈ A}. Now ϕ is
an isometry, so we only have to find a common bound for the values of ‖ϕ(x)‖,
x ∈ A. By definition, each f ∈ X∗ is continuous with respect to the weak topology
on X . Since A is a compact set with respect to the weak topology, there is a constant
Mf such that for all x ∈ A, |ϕ(x)( f )|= | f (x)| ≤Mf . By the Uniform Boundedness
Principle 11.6.1, there is a constant M such that for all x ∈ A, ‖x‖= ‖ϕ(x)‖ ≤M.

Problem 11.16. By the Alaoglu Theorem 11.7.1, the unit ball of the dual space of
C(X) is compact in the weak∗ topology. We have a directed set consisting of all finite
subsets of the indices, directed by containment. For each finite set of indices S, there
is a measure νS that works. That is,

∫

fαi dνS = cαi for all i∈ S. This net has a cluster
point given by a Radon measure ν . Fix an index α . We want to show that

∫

fα dν =
cα . Let U be the weak∗ neighborhood of ν determined by fα and an ε > 0. That is,
U consists of all finite signed Radon measures μ such that |∫ fα dμ− ∫ fα dν | < ε .
Since our net is frequently in U , there is a finite set S containing α such that νS ∈U .
Since νS works for α ∈ S,

∫

fα dνS = cα , so |cα −
∫

fα dν |< ε . Since ε is arbitrary,
∫

fα dν = cα .
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