
Array Abstraction with Symbolic Pivots

Reiner Hähnle(B), Nathan Wasser, and Richard Bubel

Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

{haehnle,wasser,bubel}@cs.tu-darmstadt.de

Abstract. We present a novel approach to automatically generate
invariants for loops manipulating arrays. The intention is to achieve
formal verification of programs over arrays without the need for user-
specified loop invariants. Many loops iterate and manipulate collections.
Finding useful, i.e., sufficiently precise invariants for those loops is a chal-
lenging task, in particular, if the iteration order is complex. Our approach
partitions an array and provides an abstraction for each of these parti-
tions. Symbolic pivot elements are used to compute the partitions. In
addition we integrate a faithful and precise program logic for sequential
(Java) programs with abstract interpretation using an extensible multi-
layered framework to compute array invariants. The presented approach
has been implemented. Results of experiments are reported.

Keywords: Loop invariant generation · Program verification · Abstract
interpretation · Array abstraction

1 Introduction

This paper is dedicated to Frank S. de Boer on the occasion of his 60th birthday.
I met Frank in ca. 2006 during a phase in my research where I had become unhappy
with the progress in formal verification of concurrent software. I was looking for
partners who would be willing to co-develop a formal concurrent modeling language
amenable to scalable formal specification and verification. At that time Frank and
Einar B. Johnsen had been working on the distributed modeling framework Creol
and we decided to team up. From this contact eventually the EU project HATS
evolved where we developed the cloud-aware, concurrent OO modeling language
ABS as well as the ongoing EU project Envisage where we look at SLAs. Looking
back on ten years of intense collaboration, joint publications, and countless bottles
of good wine enjoyed together, I can say: it was a great ride and I am looking forward
to continue it! I learned a lot from Frank: he is a true generalist with a vast and
deep knowledge in formal methods, his energy and creativity are contagious (and,
occasionally, exasperating) and, most importantly, there is always fun to be had!
Thank you, Frank, for these years together and let’s have a toast to many more to
come! — RH.

The work has been funded by the DFG priority program 1496 Reliably Secure
Software Systems.

c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 104–121, 2016.
DOI: 10.1007/978-3-319-30734-3 9

Array Abstraction with Symbolic Pivots 105

Deductive program analysis and verification must determine a trade-off
between the complexity of the properties they ascertain, the precision of the analy-
sis, i.e., the percentage of issued false warnings, and the degree of automation.

Improving automation for medium to complex properties by maintaining an
acceptable degree of precision requires addressing one of the sources for inter-
action (or otherwise loss of precision). One kind of interaction derives from the
elimination of quantifiers, another one is the provision of program annotations
such as method contracts, loop invariants or assertions that serve as hints for
the underlying theorem prover. Providing useful annotations, in particular, loop
invariants is a time-consuming and difficult task, which requires experience in
writing formal specifications on the part of the user. This hinders wide-spread
adoption of formal verification in industry.

Here we focus on the automatic generation of loop invariants. We improve
upon previous work [1] of some of the co-authors in which a theoretical framework
was developed that integrates deductive reasoning and abstract interpretation.
We extend this by a novel approach for automatic generation of invariants for
loops that manipulate arrays. This loop invariant generation works by parti-
tioning arrays automatically using a new concept to which we refer as symbolic
pivots. A symbolic pivot expresses the symbolic value of a term (in particular
an array index) at the end of every loop iteration. When these symbolic pivots
have certain properties we can generate highly precise partitions. The content of
array partitions is represented as an abstract value which describes the value of
the partition’s elements. An important feature is that the degree of abstraction,
that is, the precision is adaptive.

Further, we integrate a faithful and precise program logic for sequential (Java)
programs with abstract interpretation using an extensible multi-layered frame-
work to compute array invariants. The presented approach has also been imple-
mented as a proof of concept based on the KeY verification system [2].

2 Background

2.1 Program Logic

We introduce our program logic and calculus, and explain our integration of
value-based abstraction based on previous work [1] by some of the authors.

We stress that our implementation works for nearly full sequential Java [2],
but for readability we restrict ourselves here to a fragment with integer arrays
as the only kind of objects. The program logic presented below extends the logic
in [1] by an explicit heap model and array types.

Syntax. We work with a first order dynamic logic which is closely related to
Java Card DL [2]. Its signature is a collection of the symbols that can be used
to construct formulas:

Definition 1 (Signature). A signature Σ is a tuple ((T ,�),P,F ,PV ,V) con-
sisting of a set of types T together with a type hierarchy �, predicates P, func-
tions F , program variables PV and logical variables V. Types contain at least �,

106 R. Hähnle et al.

Heap, LocSet, int and int[] with � being the top element and the other types
ordered directly below �.

Our logic consists of terms Trm (write TrmT for terms of type T), formu-
las For , programs Prog and updates Upd . Besides some extensions we elaborate
on below, terms and formulas are defined as in standard first-order logic. Impor-
tantly, there is a difference between logical variables and program variables: both
are terms, but logical variables must not occur in programs and can be bound by
a quantifier. On the other hand, program variables can occur in programs, but
cannot be bound by a quantifier. Syntactically, program variables are flexible
function constants, whose value can be changed by executing a program.

Updates are discussed in [2] and can be viewed as generalized explicit substi-
tutions. The grammar of updates is: U :: = (U ‖U) | x := t where x ∈ PV and
t is a term of the same type or subtype as x. Updates can be applied to terms
and formulas: given a term t then {U}t is also a term (analogous for formulas).
The only other non-standard operator for terms and formulas in our logic is the
conditional term: let ϕ be a formula and ξ1, ξ2 are both terms of compatible type
or are both formulas, then if (ϕ) then (ξ1) else (ξ2) is also a term or formula.

There is a modality called box [·]· which takes a program as first parame-
ter and a formula as second parameter. Intuitively the meaning of [p]φ is that
if program p terminates without throwing an exception then in its final state
the formula φ holds (our programs are deterministic). Thus the box modality
expresses partial correctness. The formula φ → [p]ψ has the exact same meaning
as the Hoare triple {φ} p {ψ}. In contrast to Hoare logic, dynamic logic allows
nested modalities. The grammar for programs is:

p :: = x = t | x[t] = t | p; p | skip | if (φ) {p} else {p} | while (φ) {p}

where x ∈ PV, t, ϕ are terms/formulas. Syntactically valid programs are well-
typed and do not contain logic variables, quantifiers or modalities.

The program skip should have no effect. We write if (ϕ) {p} as an abbre-
viation for if (ϕ) {p} else { skip }.

Semantics. Terms, formulas and programs are evaluated with respect to a first
order structure.

Definition 2 (First Order Structure, Variable Assignment). Let D be a
non-empty domain of elements. A first order structure M = (D, I, s) consists of

1. an interpretation I which assigns each
– T ∈ T a non-empty domain DT ⊆ D s.t. ∀S ∈ T . S � T → DS ⊆ DT

– f : T1 × . . . × Tn → T ∈ F a function I(f) : DT1 × . . . × DTn → DT

– p : T1 × . . . × Tn ∈ P a relation I(p) ⊆ DT1 × . . . × DTn

2. a state s : PV → D assigning each program variable v ∈ PV of type T a value
s(v) ∈ DT . We denote the set of all states by States.

Array Abstraction with Symbolic Pivots 107

We fix the interpretation of some types and symbols: I(int) = Z, I(�) = D and
the arithmetic operations +,−, /,%, . . . as well as the comparators <,>,≤,≥,

.=
are interpreted according to their standard semantics.

In addition we need the notion of a variable assignment β : V → D which
assigns each logical variable to an element of its domain.

Definition 3 (Evaluation). Given a first order structure (D, I, s) and a vari-
able assignment β, we evaluate terms t (of type T) to a value valD,I,s,β(t) ∈ DT ,
formulas ϕ to a truth value valD,I,s,β(ϕ) ∈ {tt ,ff }, updates U to a function
valD,I,s,β(U) : S → S, and programs p to a set of states valD,I,s,β(p) ∈ 2S with
valD,I,s,β(p) being either empty or a singleton set.

A formula ϕ is called valid iff valD,I,s,β(ϕ) = tt for all non-empty domains
D, all interpretations I, all states s and all variable assignments β.

The evaluation of terms and formulas without programs and updates is
almost identical to standard first-order logic and omitted for brevity. The eval-
uation of an elementary update with respect to a first order structure (D, I, s)
and variable assignment β is defined as follows:

valD,I,s,β(x := t)(s′) =
{

s′(y), y �= x
valD,I,s,β(t), otherwise

The evaluation of a parallel update valD,I,s,β(x1 := t1 ‖ x2 := t2) maps a state
s′ to a state s′′ such that s′′ coincides with s′ except for the program variables
x1, x2 which are assigned the values of the terms ti in parallel. In case of a clash
between two sub-updates (i.e., when xi = xj for i �= j), the rightmost update
“wins” and overwrites the effect of the other. The meaning of a term {U}t and
of a formula {U}ϕ is that the result state of the update U should be used for
evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may terminate in when
started in s. We only consider deterministic programs, so this set is always either
empty (if the program does not terminate) or it consists of exactly one state.1

The semantics of a program formula [p]ϕ is that ϕ should hold in all result states
of the program p, which corresponds to partial correctness of p relative to ϕ.

Heap Model. The only heap objects we support in our programs (for this paper—
implemented are all Java reference types) are integer typed arrays. We use an
explicit heap model similar to [3]. Heaps are modelled as elements of type Heap,
with two functions store : Heap × int[] × int × int → Heap to store values on
the heap and select : Heap× int[]× int → int to retrieve values from the heap.

For instance, store(h, a, i, 3) returns a new heap which is identical to heap h
except for the i-th element of array a which is assigned the value 3. To retrieve
the value of an array element b[j] we write select(h, b, j). There is a special

1 While programs themselves are deterministic, we can introduce at least some non-
determinism through the symbolic input values, which while having a single value
in each model leave open which model is under consideration.

108 R. Hähnle et al.

program variable heap which refers to the heap accessed by programs. We abbre-
viate select(heap, a, i) with a[i]. To ease quantification over array indices, we use
∀x ∈ [l..r).φ as abbreviation for ∀x.((l ≤ x ∧ x < r) → φ)). Further, we write
∀x ∈ arr.φ for ∀x ∈ [0..arr .length).φ, where arr .length denotes how many
elements the array arr contains.

Closely related to heaps are location sets which are defined as terms of type
LocSet. Semantically, an element of LocSet describes a set of program locations.
A program location is a pair (a, i) with valD,I,s,β(a) ∈ Dint[], valD,I,s,β(i) ∈ Z

which represents the memory location of the array element a[i]. Syntactically,
location sets can be constructed by functions over the usual set operations. We
use some convenience functions and write a[l..r] to represent syntactically the
locations of the array elements a[l] (inclusive) to a[r] (exclusive). Further, we
write a[∗] for a[0..a.length].

Calculus. We use a sequent calculus to prove that a formula is valid. Sequents
are tuples Γ ⇒ Δ with Γ (the antecedent) and Δ (the succedent) being finite
sets of formulas. The meaning valD,I,s,β(Γ ⇒ Δ) of a sequent is the same as
that of the formula valD,I,s,β(

∧
Γ −>

∨
Δ). A sequent calculus rule is given by

the rule schema,
seq1 . . . seqn

seq

where seq1, . . . , seqn (the premisses of the rule) and seq (the conclusion of the
rule) are sequents. A rule is sound iff the conclusion’s validity follows from the
validity of all premisses.

A sequent proof is a tree where each node is annotated with a sequent. The
root node is annotated with the sequent to be proven valid. A rule is applied by
matching its conclusion with a sequent of a leaf node and attaching the premisses
as its children. If a branch of the tree ends in a leaf that is trivially true, the
branch is called closed. A proof is closed if all its leaves are closed.

All first-order calculus rules are standard, so we explain only selected sequent
calculus rules which deal with formulas involving programs. Given a suitable
strategy for rule selection, the sequent calculus implements a symbolic inter-
preter. For example, the assignment rule for a program variable is as follows:

assignment
Γ ⇒ {U}{x := t}[r]ϕ,Δ

Γ ⇒ {U}[x = t; r]ϕ,Δ

The assignment rule for an array location adds constraints to the value the
index can have, as if this value were not within the valid range for the array,
an ArrayIndexOutOfBoundsException would be thrown, in which case we have
nothing more to prove, as ϕ need only be shown for programs terminating with-
out throwing exceptions.

assignmentarray
Γ, i ≥ 0, i < a.length ⇒ {U}{heap := store(heap, a, i, t)}[r]ϕ,Δ

Γ ⇒ {U}[a[i] = t; r]ϕ,Δ

Array Abstraction with Symbolic Pivots 109

The assignment rules move an assignment into an update. Updates accumulate in
front of modalities during symbolic execution of the program. Once the program
has been symbolically executed, the update is applied to the formula behind
the modality, thereby computing its weakest precondition. Symbolic execution
of conditional statements split the proof into two branches:

ifElse
Γ, {U}g ⇒ {U}[p1; r]ϕ,Δ Γ, {U} ! g ⇒ {U}[p2; r]ϕ,Δ

Γ ⇒ {U}[if (g) {p1} else {p2}; r]ϕ,Δ

For a loop, the simplest approach is to unwind it. However, loop unwinding works
only if the number of loop iterations has a concrete bound.

loopUnwind
Γ, {U}g ⇒ {U}[p; while (g) {p}; r]ϕ,Δ Γ, {U} ! g ⇒ {U}[r]ϕ,Δ

Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ

For unbounded loops we can use, for example, a loop invariant rule. To apply the
loop invariant rule a loop specification consisting of a formula (the loop invariant)
Inv and an assignable (modifies) clause mod is needed. The first premiss (initial
case) ensures that the loop invariant Inv is valid before entering the loop. The
second premiss (preserves case) ensures that Inv is preserved by an arbitrary
loop iteration, while for the third premiss (use case), we have to show that after
executing the remaining program, the desired postcondition ϕ holds.

loopInvariant

Γ ⇒ {U}Inv ,Δ initial
Γ, {U}{Vmod}(g ∧ Inv) ⇒ {U}{Vmod}[p]Inv ,Δ preserves
Γ, {U}{Vmod}(¬g ∧ Inv) ⇒ {U}{Vmod}[r]ϕ,Δ use case

Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ

In contrast to standard loop invariants, we keep the context (Γ,Δ) in the second
and third premiss, following [2]. This is sound, because we use an anonymizing
update Vmod = (Vvars

mod ‖ Vheap
mod) which is constructed as follows: Let x1, . . . , xm

be the program variables and a1[t1], . . . , an[tn] be the array locations occurring
on the left-hand sides of assignments in the loop body p. For each i ∈ {1..n}
let li, ri : int be chosen such that valD,I,s,β(ti) at the program point ai[ti] = t;
is always between valD,I,s,β(li) (inclusive) and valD,I,s,β(ri) (exclusive). Then
ai[li..ri] are terms of type LocSet describing all array locations of ai which might
be changed by the loop. The anonymizing updates are:

Vvars
mod := {x1 := c1 ‖ . . . ‖ xm := cm}

Vheap
mod := {heap := anon(. . . anon(heap, a1[l1..r1], anonH1), . . . , an[ln..rn], anonHn)}

where the ci are fresh constants of the same type as xi and anonH i are fresh
constants of type Heap. The function anon(h1, locset, h2) takes two heaps h1, h2
and a location set locset and returns a heap that is equal to h1 except for the
locations mentioned in locset whose values are set to the values of these locations
in h2. Informally, the anonymizing updates assign all program variables that

110 R. Hähnle et al.

might be changed by p and all locations enumerated in mod an unknown value
about which only the information provided by the invariant Inv is available.

Updates can be simplified and applied to terms and formulas using the set
of (schematic) rewrite rules given in [2,4].

2.2 Integrating Abstraction

We summarize from [1] how to integrate abstraction into our program logic. This
integration provides the technical foundation for generating loop invariants.

Definition 4 (Abstract Domain). Let D be a concrete domain (e.g., of a
first-order structure). An abstract domain A is a countable lattice with partial
order � and join operator � and without infinite ascending chains.2 It is con-
nected to D with an abstraction function α : 2D → A and a concretization
function γ : A → 2D which form a Galois connection [5].

Instead of extending our program logic by abstract elements, we use a differ-
ent approach to refer to the element of an abstract domain:

Definition 5 (γα,N-symbols). Given an abstract domain A = {α1, α2, . . .}.
For each abstract element αi ∈ A there are infinitely many constant symbols
γαi,j ∈ F , j ∈ N with I(γαi,j) ∈ γ(αi), as well as a unary predicate χαi

where
I(χαi

) is the characteristic predicate of set γ(αi).

In the definition above the interpretation I of a symbol γαi,j is restricted
to one of the concrete domain elements represented by αi, but it is not fixed.
This is important for the following notion of weakening: with respect to the
symbols occurring in a given (partial) proof P and a set of formulas C, we
call an update U ′ (P,C)-weaker than an update U if U ′ describes at least all
state transitions that are also allowed by U . Formally, given a fixed D, then U
is weaker than U ′ iff for any first order structure M = (D, I, s, β) there is a
first order structure M ′ = (D, I ′, s, β) with I and I ′ being two interpretations
coinciding on all symbols used so far in P and in C and if for both structures
valM (C) = tt and valM ′(C) = tt holds, then for all program variables v the
equation valM ({U}v) = valM ′({U ′}v) must hold.

Example 1. Consider the abstract sign domain for integers:

�

∅

≤ ≥

0neg pos

γ(�) = ZZ γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0} γ(neg) = {i ∈ ZZ | i < 0}

γ(pos) = {i ∈ ZZ | i > 0} γ(0) = {0}
γ(∅) = {}

2 The limitation to only finite ascending chains ensures termination of our approach
without the need to introduce widening operators. An extension to infinite chains
with widening would be easily realizable, but so far was unnecessary.

Array Abstraction with Symbolic Pivots 111

Let P be a partial sequent proof with γ≤,3 not occurring in P . Then update
i := γ≤,3 is (P, ∅)-weaker than update i := −5 or update i := c with a constant
c (occurring in P) provided χ≤(c) holds.

The weakenUpdate rule from [1] integrates abstraction into our calculus:

weakenUpdate
Γ, {U}(x̄ .= c̄) ⇒ ∃γ̄.{U ′}(x̄ .= c̄),Δ Γ ⇒ {U ′}ϕ,Δ

Γ ⇒ {U}ϕ,Δ

where x̄ are all program variables occurring as left-hand sides in U and c̄ are fresh
skolem constants. The formula ∃γ̄.ψ is a shortcut for ∃ȳ.(χā(ȳ)∧ψ[γ̄/ȳ]), where
ȳ = (y1, . . . , ym) is a list of fresh first order variables of the same length as γ̄, and
where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all occurrences
of a symbol in γ̄ with its counterpart in ȳ. Performing value-based abstraction
thus becomes replacement of an update by a weaker update. In particular, we
do not perform abstraction on the program, but on the symbolic state.

3 Loop Invariant Generation for Arrays

We refine the value-based abstraction approach from the previous section for
dealing with arrays. Rather than introducing a dedicated abstract domain for
arrays (e.g., abstracting an array to its length), we extend the abstract domain
of the array elements to a range within the array. Given an index set (range) R,
an abstract domain A for array elements can be extended to an abstract domain
AR for arrays by copying the structure of A and renaming each αi to αR,i. The
αR,i are such that γαR,i,j ∈ {arr ∈ Dint[] | ∀k ∈ R.χαi

(arr[k])}.

Example 2. Extending the sign domain for integers gives for each range R ⊆ IN:

�R

∅R

≤R ≥R

0RnegR posR

γ(�R) = Dint[]

γ(≤R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≤ 0}
γ(≥R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≥ 0}

γ(negR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] < 0}
γ(posR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] > 0}

γ(0R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] .= 0}
γ(∅R) = {}

Fixing R = {0, 2}, we have γ(≥{0,2}) = {arr ∈ Dint[] | arr[0] ≥ 0 ∧ arr[2] ≥ 0}.
Importantly, the array length itself is irrelevant, provided arr[0] and arr[2] have
the required values. Therefore the arrays (we deviate from Java’s array literal
syntax for clarity) [0, 3, 6, 9] and [5,−5, 0] are both elements of γ(≥{0,2}).

Of particular interest are the ranges containing (at least) all elements modi-
fied within a loop. One such range is [0..arr.length). This range can always be
taken as a fallback option if no more precise range can be found.

112 R. Hähnle et al.

3.1 Loop Invariant Rule with Value and Array Abstraction

We present the rule invariantUpdate, which splits the loop invariant of the rule
loopInvariant into an abstract update U ′ and an invariant Inv . While U ′ abstracts
only the non-heap values, Inv can contain invariants about arrays on the heap.

invariantUpdate
Γ, {U}(x̄

.
= c̄) ⇒ ∃γ̄.{U ′}(x̄

.
= c̄), Δ

Γ, old
.
= {U}heap ⇒ {U}Inv , Δ

Γ, old
.
= {U}heap, {U ′

mod}(g ∧ Inv), {U ′
mod}[p](x̄

.
= c̄) ⇒ ∃γ̄.{U ′

mod}(x̄
.
= c̄), Δ

Γ, old
.
= {U}heap, {U ′

mod}(g ∧ Inv) ⇒ {U ′
mod}[p]Inv , Δ

Γ, old
.
= {U}heap, {U ′

mod}(¬g ∧ Inv) ⇒ {U ′
mod}[r]ϕ, Δ

Γ ⇒ {U}[while (g) {p}; r]ϕ, Δ

The first premiss is identical to the left premiss of weakenUpdate, introducing
a suitable abstraction U ′ of U . The symbols x̄, c̄, γ̄ and ∃γ̄ϕ are also defined as in
the weakenUpdate rule. From U ′ we obtain U ′

mod := (U ′ ‖ Vheap
mod) by anonymizing

the heap locations that might be changed in the loop body as explained in
Sect. 2.1. Anonymization of local variables Vvars

mod is not required, as it is already
part of U ′. More precisely, U ′ can contain updates x := γαi,j which combine the
anonymization of Vvars

mod with an invariant based on the abstract domain.
The identifier old is a fresh constant and used in the invariant Inv to refer

to the heap before loop execution. Inv contains invariants related to the heap.
Intuitively U ′

mod and Inv together express all states in which the program could
be before or after any iteration of the loop. The first two premisses together
ensure that the abstract update U ′

mod and the invariant Inv are a valid weakening
of the original update U . The following two premisses ensure that U ′

mod and
Inv actually constitute a loop invariant: for any given interpretation of U ′

mod

satisfying Inv executing the loop body results in an abstract state no weaker
than U ′

mod in which Inv remains valid. The last premiss is the use case, where
the desired postcondition ϕ must be established based on the state after exiting
the loop and after execution of the remaining program.

Listing 1.1. Example

i = 0; j = 0;

while(i < a.length) {

if (a[j] > 0) j++;

b[i] = j;

c[2*i] = 0;

i++;

}

Given the program p in Listing 1.1, we can apply
the assignment rule twice to Γ ⇒ {U}[p]ϕ,Δ which
leads to Γ ⇒ {U ‖ i := 0 ‖ j := 0}[while...]ϕ,Δ.
Now invariantUpdate can be applied with the values in
Fig. 1: the update U ′ is equal to the original update U
except for the values of i and j which can both be any
non-negative number. The arrays b and c have (par-
tial) ranges anonymized, while a is not anonymized as
it is not changed by the loop. The invariants in Inv express that (a) a contains
positive values at all positions prior to the current value of j, (b) the anonymized
values3 in b are all non-negative, and (c) the anonymized values in c are equal
to 0 or to their original values, if the loop has not (yet) modified them.

3 Note choosing the range [0..i) for the array b is sound even when i ≥ b.length, as
an uncaught ArrayIndexOutOfBoundsException is treated as non-termination.

Array Abstraction with Symbolic Pivots 113

Fig. 1. Values for invariantUpdate

Algorithm 1. Generating an abstract update and invariant fixpoint
input : the sequent seq
output: the fixpoint U ′ with valid Vheap

mod and Inv , as (U ′
m, Inv)

1 U ′
m ← U ;

2 while true do
3 /* seq is of the form: Γ ⇒ {U ′

m}[while (g) {p}; r]ϕ, Δ */

4 U∗ ← U ′
m; Inv ← Γ∪!Δ;

5 seq ← (Γ, {U ′
m}g ⇒ {U ′

m}[p;while(g){p};r]ϕ, Δ);
6 perform symbolic execution on seq;
7 /* all branches either closed or loop entry reached again */

8 foreach open branch with Γi ⇒ {Ui}[while (g) {p}; r]ϕ, Δi do
9 (Inv , U∗) ← (Inv , U∗) �̇ (Γi∪!Δi, Ui); // see Definition 6 for �̇

10 end
11 if U ′

m is (P,Inv)-weaker than U∗ then
12 return (U ′

m, Inv);
13 end
14 U ′

m ← U∗; Γ ← Γ ∪ {U ′
m}Inv ;

15 seq ← (Γ ⇒ {U ′
m}[while (g) {p}; r]ϕ, Δ);

16 end

3.2 Computation of the Abstract Update and Invariants

We generate the values of U ′, Vheap
mod and Inv as required by invariantUpdate

automatically in a side proof, by symbolic execution of single loop iterations until
a fixpoint is found. For each value change of a variable during the execution of a
loop iteration the abstract update U ′ will set this variable to a value at least as
weak as its value both before and after loop execution. We generate Vheap

mod and Inv
by examining each array modification4 and anonymizing the entire range within
the array (expressed in Vheap

mod) while adding a partial invariant to the set Inv .
Once a fixpoint for U ′ is reached, we can refine Vheap

mod and Inv by performing in
essence a second fixpoint iteration, this time anonymizing possibly smaller ranges
and potentially adding more invariants. We explain this now step by step.

4 Later we also examine each array access (read or write) in if-conditions to gain
invariants such as ∀k ∈ [0..j). χ>(select(heap, a, k)) in the example above.

114 R. Hähnle et al.

Algorithm 2. Concrete update join �̇upd

input : ((C1, U1), (C2, U2))
output: the weaker constraint/update pair (Cres , Ures)

1 (Ures ‖ heap := h′) ← (C1, U1) �abs (C2, U2) ; // heap update h′ ignored

2 (Cres , h) ← (C1, {U1}heap) �̂ (C2, {U2}heap) ; // see Definition 7 for �̂
3 Ures ← (Ures ‖ heap := h);
4 return (Cres , Ures)

The first step is to generate U ′ (with valid but imprecise Vheap
mod and Inv). For

this we use Algorithm 1 with input seq = (Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ),
the conclusion of invariantUpdate.

The algorithm requires to compute the join �̇ of pairs of invariants and updates.
In [1] a concrete implementation for joining updates (C1,U1) �abs (C2,U2) with

�abs : (2For × Upd) × (2For × Upd) → Upd

was computed as follows: For each update x := v in U1 or U2 the generated
update is x := v, if {U1}x

.= {U2}x under C1, C2 respectively. Otherwise it is
x := γαi,j for some αi where C1 ⇒ χαi

({U1}x) and C2 ⇒ χαi
({U2}x) are valid.

For a simple heap abstraction this returns (for some n ∈ IN) heap := γ�,n for
any non-identical heaps. As we wish to join the heaps meaningfully, which leads
to the generation of constraints, our update join operation has the signature

�̇ : (2For × Upd) × (2For × Upd) → (2For × Upd).

Definition 6 (Joining Updates). Any operation �̇ satisfying the following
properties is an update join operation: Let U1, U2 be arbitrary updates in a
proof P and let C1, C2 be formula sets representing constraints on the update
values. Then for (C,U) = (C1,U1) �̇ (C2,U2) the following holds for i ∈ {1, 2}:
(a) U is (P, Ci)-weaker than Ui, (b) Ci ⇒ {Ui}

∧
C, and (c) �̇ is associative

and commutative up to first-order reasoning.

Let C1,U1 and C2,U2 be constraint/update pairs. (C1,U1) �̇upd (C2,U2)
computes the update Ures and the set of heap restrictions Cres as shown in
Algorithm 2. Intuitively, if all the restrictions in Cres are satisfied by the heap
under update Ures then Ures is the lattice join of U1 and U2.

Lemma 1. �̇upd is an update join operator.
The proof is in the appendix of the extended technical report [6].

Definition 7 (Joining Heaps). Any operator with the signature

�̂ : (2For × TrmHeap) × (2For × TrmHeap) → (2For × TrmHeap)

is a heap join operator if it satisfies the properties: Let h1, h2 be arbitrary
heaps in a proof P, C1, C2 be formula sets representing constraints on the heaps

Array Abstraction with Symbolic Pivots 115

(and possibly also on other update values) and let U be an arbitrary update.
Then for (C, h) = (C1, h1) �̂ (C2, h2) the following holds for i ∈ {1, 2}: (a)
(U ‖ heap := h) is (P, Ci)-weaker than (U ‖ heap := hi), (b) Ci ⇒ {U ‖ heap :=
hi}

∧
C, and (c) �̂ is associative and commutative up to first-order reasoning.

We define the set of normal form heaps HNF ⊂ TrmHeap to be those heap terms
that extend heap with an arbitrary number of preceding stores or anonymiza-
tions. For a heap term h ∈ HNF we define

writes(h) :=

{
∅ if h = heap

{h} ∪ writes(h′) if h = store(h′, a, idx, v) or h = anon(h′, a[l..r], h′′)

A concrete implementation �̂heap of �̂ is given as follows: We reduce the sig-
nature to �̂heap : (2For × HNF) × (2For × HNF) → (2For × HNF). This ensures
that all heaps we examine are based on heap and is a valid assumption when
taking the program rules into account, as these maintain this normal form.
As both heaps are in normal form, they must share a common subheap (at
least heap). The largest common subheap of h1, h2 is defined as lcs(h1, h2)
and all writes performed on this subheap can be given as writes lcs(h1, h2) :=
writes(h1) ∪ writes(h2) \ (writes(h1) ∩ writes(h2)). Algorithm 3 shows how the
join of heaps (C1, h1) �̂heap (C2, h2) is calculated.

Lemma 2. The concrete implementation �̂heap is a heap join operator on the
reduced signature (2For × HNF) × (2For × HNF) → (2For × HNF).

The proof is in the appendix of the extended technical report [6].

Example 3. With the precondition P = ∀n ∈ b. select(heap, b, n) .= −1 and
the program in Listing 1.1, we demonstrate the first steps of Algorithm 1 with
seq = P ⇒ {i := 0 ‖ j := 0}[while...]ϕ: After initialization Inv = {P} and
U∗ = (i := 0 ‖ j := 0). At line 8 of Algorithm 1 we have two open branches:

P, {U∗}g,¬(select(heap, a, 0) > 0) ⇒
{i := 1 ‖ j := 0 ‖ heap := store(store(heap, b, 0, 0), c, 0, 0)}[while...]ϕ (1)

P, {U∗}g, select(heap, a, 0) > 0 ⇒
{i := 1 ‖ j := 1 ‖ heap := store(store(heap, b, 0, 1), c, 0, 0)}[while...]ϕ (2)

Algorithm 3. Concrete heap join �̂heap

input : ((C1, h1), (C2, h2))
output: the weaker constraint/heap pair (Cres, hres)

1 hres ← lcs(h1, h2); Cres ← ∅; W ← writes lcs(h1, h2);
2 foreach anon(h, a[l..r], anonHeap) or store(h, a, idx, v) ∈ W do
3 hres ← anon(hres, a[∗], anonHeap′);
4 i1, i2 ← the indices of the smallest αij such that

Cj ⇒ ∀k ∈ a. χαij
(select(hj , a, k));

5 Cres ← Cres ∪ {∀k ∈ a. χαi1�αi2
(select(heap, a, k))}

6 end

116 R. Hähnle et al.

We can use Algorithm 2 to compute the update join of the original ({P},U∗)
with ({P, {U∗}g,¬(select(heap, a, 0) > 0)}, i := 1 ‖ j := 0 ‖ heap := h1)
provided by (1), where h1 = store(store(heap, b, 0, 0), c, 0, 0). This produces
(Cres, i := γ≥,1 ‖ j := 0 ‖ heap := hres), where (Cres, hres) is a heap join
of ({P}, heap) and ({P, {U∗}g,¬(select(heap, a, 0) > 0)}, h1). Algorithm 3 can
compute the latter as follows: the largest common subheap is h′ = heap, so we
have W = {store(store(heap, b, 0, 0), c, 0, 0), store(heap, b, 0, 0)}, therefore:

Cres = {∀m ∈ b. χ≤(select(heap, b,m)), ∀n ∈ c. χ�(select(heap, c, n))}
hres = anon(anon(heap, b[∗], anonH1), c[∗], anonH2)

At line 9 of Algorithm 1 we have U∗ = (i := γ≥,1 ‖ j := 0 ‖ heap := hres)
and Inv = Cres. Now the algorithm joins updates with the second open branch,
checks if a fixpoint has been found (it has not) and enters the next iteration.

4 Symbolic Pivots

Algorithm 1 computes an abstract update U ′ expressing the state of all non-
heap program variables before and after each loop iteration and, in particular,
before entering the loop. It also computes Vheap

mod and Inv , which give information
about the state of the heap before and after each loop iteration. However, as a
consequence of the definition of heap joins in Algorithm 3, this information is
rather weak as it assumes any update to an array element could cause a change
at any index. To remedy this situation we refine U ′. The main idea is to keep
track of the ranges within a given array where a modification has been made
and where it has not been modified. The boundary indices of such ranges are
often called pivot in array algorithms. To obtain invariants that are valid in any
state before and after a loop iteration, obviously, these pivots must be symbolic.

Listing 1.2. Inferring
Modified Array Elements

int i = 0;

int j = 5;

while (j < a.length) {

i = j + 1;

d[i] = j;

j = i + 1;

i = 0;

}

We start with an example that illustrates the
difficulties of computing symbolic pivots. Consider
Listing 1.2. A näıve approach to recording pivots
would be to consider just the array modification state-
ment, here “d[i] = j;”, and infer that the modifica-
tions to d occur at the index given by the value of i.
But this is completely wrong here. Variable i has the
constant value 0 at the beginning of each iteration,
while the array modifications occur at indices based
on the value of j. This is problematic to detect for
analyses based on control flow graphs, but easy for our value-sensitive approach.
The reason is that the update created during a loop iteration of the example
immediately shows that the value of i is unchanged.

The problem remains that while we know, for example, that in the first iter-
ation of the loop the array element d[6] is set to 5, we cannot infer why that
particular index was chosen. But we need to know this to generate valid invari-
ants. McMillan [7] points out this problem while analyzing multiple, successive

Array Abstraction with Symbolic Pivots 117

iterations of a loop and then attempts to infer why array elements at specific
indices were modified. Our approach allows a more uniform analysis: first we cal-
culate an over-approximation of the modified ranges, resulting in γ-terms which
are integer abstractions that constitute correct boundaries of array ranges. Based
on these γ-terms we then execute symbolically one iteration of the loop whereby
we keep track of modifications to array elements.

Example 4. Running Algorithm 1 on the loop in Listing 1.2 results in the follow-
ing updates for non-heap variables: (i := 0 ‖ j := γ>,1) Symbolic execution of a
loop iteration started with γ>,1 as the value of j leads to the following update:

i := 0 ‖ j := γ>,1 + 2 ‖ heap := store(heap, d, γ>,1 + 1, γ>,1)

Value γ>,1 was the initial value of j, so we can conclude that the array elements
are modified at the value of j + 1 in each iteration.

Now we describe how this can be made to work in the general case. Consider
the sequent Γ ⇒ {U}[while(g){p}; r]ϕ,Δ and the update U ′ computed by
Algorithm 1. Then an update U ′′ which maps all variables but heap just as
U ′ does and maps heap as the original U did remains weaker than U , as U ′ is
weaker than U . Applying Algorithm 1 to sequent Γ ⇒ U ′′[while(g){p}; r]ϕ,Δ
we obtain open subgoals of the form Γi ⇒ {Ui}[while (g) {p}; r]ϕ,Δi. Aside
from the values for heap, U ′ is weaker than Ui, as U ′ is a fixpoint. We therefore do
not have to join any non-heap variables when computing (U∗, Inv), as fixpoints
for those are already calculated and will not change.

When joining constraint/heap pairs we distinguish between three types of
writes (see Sect. 3.2): (a) anonymizations, which are kept, as well as any invari-
ants generated for them occurring in the constraints, (b) stores to concrete
indices, for which we create a store to the index either of the explicit value
(if equal in both heaps) or of a fresh γi,j of appropriate type, and (c) stores to
variable indices, which we turn into symbolic pivots (and, hence, stronger invari-
ants) as follows. Given a store(h, a, idx, v) to a variable index, idx is expressible
as a function index(γi0,j0 , . . . , γin,jn). These γix,jx can be linked to program vari-
ables in the update U ′, which contains updates pvx := γix,jx . We can therefore
represent idx as a function sp(. . . pvx . . .) and call it a symbolic pivot.

Example 5. Continuing Example 4, d is modified at index index(γ>,1) = γ>,1+1.
As γ>,1 was the value of j, the symbolic pivot is sp(j) = j + 1.

The final step is to exploit the shape of symbolic pivots to derive certain kinds
of inductive invariants. For this we need two abbreviations. Formula P (W) is
defined for a fixed update U , array a, and symbolic pivot sp as: P (W) := ∀k ∈
[{U}sp..{W}sp). {W}χαj

(select(heap, a, k)). Then P (U) is trivially valid, as we
are quantifying over an empty set. Likewise, it is easy to show that the instance
Q(U) of the following formula Q(W) is valid:

∀k �∈ [{U}sp..{W}sp). select({W}heap, {W}a, k) .= select({U}heap, {W}a, k)

118 R. Hähnle et al.

Therefore, anonymizing an array a with anon(h, a[∗], anonHeap) and adding
invariants P (U∗) and Q(U∗) for the contiguous range [{U}sp..{U∗}sp) is induc-
tively sound if P (U ′) ⇒ P (Ui) and Q(U ′) ⇒ Q(Ui) hold. The same is true for
the range [{U∗}sp..{U}sp), hence w.l.o.g. in the sequel {U∗}sp ≥ {U}sp.

Definition 8 (Iteration Affine). Given a sequent Γ ⇒ {U}[p]ϕ,Δ where p

starts with while, a term t is called iteration affine, if there exists step ∈ ZZ
such that for any n ∈ IN, if we unwind and symbolically execute the loop n
times, for each subgoal with sequent Γi ⇒ {Ui}[p]ϕ,Δi there is some v, such
that Γi∪!Δi ⇒ {Ui}t

.= v and Γ∪!Δ ⇒ {U}t + n ∗ step
.= v.

From iteration affine symbolic pivots we can directly construct inductive
invariants over array ranges as follows. First, after unwinding a loop body once
we posit a symbolic pivot sp as iteration affine using step := ({U ′}sp)−({U}sp),
where U ′ is the program state after executing the loop body. Then simply add
the constraint n ≥ 0 ∧ ({U}sp) + n ∗ step

.= v for a fresh n in further fixpoint
iterations and ensure that ({U ′}sp) .= v + step holds. If this is not the case, then
sp is not iteration affine and we remove the constraint in following fixpoint itera-
tions. Otherwise, once a fixpoint is found we know the exact array elements that
may be modified, as sp is iteration affine. To express an affine range as a location
set is difficult. To avoid it, we anonymize the entire array and create the follow-
ing invariants for the modified and unmodified partitions (using the symbols of
Definition 8) where M := (k ≥ {U}sp ∧ k < sp ∧ (k − {U}sp)%step

.= 0):

∀k ∈ arr . M → χ(arr [k]) (3)
∀k ∈ arr . ¬M → arr [k] .= select({U}heap, arr , k) (4)

Example 6. This symbolic pivot j+1 from Example 5 is iteration affine, express-
ible as 6 + it ∗ 2 for the it-th iteration, based on the initial value of j + 1 being
6 and each successive value for j + 1 being two more than the last value. We
therefore store in variable old the value of heap before the loop, anonymize all
elements of d and add the invariants:

∀k ∈ d. (k ≥ 6 ∧ k < j + 1 ∧ (k − 6)%2 .= 0) → χ>(d[k])
∀k ∈ d. (k < 6 ∨ k ≥ j + 1 ∨ (k − 6)%2 �= 0) → d[k] .= select(old, d, k)

Besides array modifications, our approach can also add invariants based on
read-only array accesses that influence control flow. The steps involved are simi-
lar: (i) calculate the symbolic pivot, (ii) determine whether it is iteration affine,
and (iii) generate an invariant with a contiguous or affine range. However, as no
anonymization takes place for an unmodified array, no invariant of the form (4)
is generated.

Our approach automatically produces all invariants in Fig. 1: affine invariants
for array c and contiguous invariants for array b and the unmodified array a.

5 Implementation

The presented approach has been implemented as a proof-of-concept (available
at http://www.key-project.org/symbolic-pivots/) and integrated into a variant

http://www.key-project.org/symbolic-pivots/

Array Abstraction with Symbolic Pivots 119

Table 1. Experimental results.

Method LocSets modified Automatically generated array invariants

arrayInit a[0..i] ∀j1 ∈ [0..i). a[j1]
.
= 0)

arrayMax - ∀j7 ∈ [0..i). a[j7] ≤ maxa

arraySplit b[0..j] , c[0..k] ∀j5 ∈ [0..j). b[j5] > 0), ∀j6 ∈ [0..k). c[j6] ≤ 0)

firstNotNull - ∀j0 ∈ [0..i). a[j0]
.
= 0

sentinel - ∀j11 ∈ [0..i). a[j11] �= x
a Relational abstract domains are not directly possible in our approach, but
we can generate invariants containing terms such as χ≤(a[j7] − max), which is
equivalent to the relational invariant a[j7] ≤ max.

of the KeY verification system for Java, which focuses on checking programs
for secure information flow. In this context less strong invariants than for func-
tional verification are sufficient and the precision of the automatically generated
invariants is, therefore, good enough in many cases.

In addition to the array example in Listing 1.1 we created a small test suite
based on benchmarks given in related work [8,9] and display the resulting array
invariants produced by our approach in Table 1. The generation time is still quite
high, ranging from a few seconds to ten minutes. The relatively long runtime is
due to the current status of the implementation, which does not perform any
caching and is instrumented with debug statements. In addition, the implemen-
tation currently uses solely the internal proof producing theorem prover for the
invariant computation. Switching to an SMT solver for pure first-order steps
should increase speed significantly. One additional reason for long runtimes is
that in addition to the invariants generated for the array elements themselves,
we also generate some useful invariants only semi-related to the array elements,
such as the following for the arraySplit example (using Java notation for con-
ditional terms):

i ≤ a.length ∧ j =
i−1∑
q=0

(a[q] > 0 ? 1 : 0) ∧ k =
i−1∑
q=0

(a[q] > 0 ? 0 : 1).

6 Related Work

To find a fixpoint for non-heap variables we perform something akin to array
smashing [10] for any array modification in a loop. Our refinements based on
symbolic pivots later remedy much of the lost precision. In [11] invariants based
on linear loop-dependent scalars (i.e. variables which can be modified by a loop)
are computed. In [12] variables within a loop are specified according to a num-
ber of properties: increasing, dense, etc. There are similarities between iteration
affine variables and linear loop-dependent scalars as well as the variables deter-
mined in [12]. Our approach uses symbolic execution to determine iteration affine
terms, in particular in array indices, which do not have to coincide with iteration

120 R. Hähnle et al.

affine variables. Range predicates are used in [13] to express knowledge about
all elements of an array within a given range. These could be used to express
our affine range invariants about modified elements, however they are not strong
enough to express the affine range invariants about unmodified elements. In [14]
abstract domains need to be explicitly supplied for the array indices, offering
more possibilities than our approach. However, our notion of iteration affine
indices offers the equivalent of an infinite number of abstract domains for array
indices which do not need to be explicitly supplied. Their approach also does
not allow for additional information to be added about array elements without
overwriting old information. In contrast to CEGAR [15] which starts abstract
and refines the abstraction stepwise, we start with a fully precise modeling and
perform abstraction only on demand and confined to a part of the state. In [16]
arrays are modeled as (many) contiguous partitions, while we allow both con-
tiguous partitions as well as affine ranges. In [8] templates are used to introduce
quantified formulas from quantifier-free elements, while we allow the underly-
ing abstract domain to function as a “template.” In [9] modification of array
elements is modeled by abstracting the program: the array is replaced by mul-
tiple array slices containing abstract values. The text of the program is used
to influence which slices are generated. By abstracting only program states, we
can keep much higher precision. Further, our use of symbolic execution lets us
view the result of the loop body, rather than just the text, allowing two equiv-
alent loop bodies to be treated the same with our approach. In [17] foot-prints
are introduced which track what part of the program state can be changed by
a statement. Using these they can reason about recursive programs containing
unbounded arrays (modelled as total functions).

7 Conclusion and Future Work

We presented a novel approach to generate loop invariants for loops that perform
operations on arrays. It integrates smoothly into a framework which combines
deduction and abstract interpretation. As future work we intend to improve the
flexibility of the partitioning by supporting more shapes than affine ranges and
on improvements needed for the treatment of nested loops. We will also extend
our approach to the diamond modality 〈·〉·, which expresses total correctness. We
investigate several speed ups including avoidance of repeated symbolic execution
by reusing the symbolic execution tree of one general run, cache strategies for
joins and use of an SMT solver for pure first-order reasoning steps. We intend to
integrate our approach into the framework presented in [18] to avoid their need
for user specified loop invariants.

References

1. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution
with explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E.
(eds.) FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

Array Abstraction with Symbolic Pivots 121

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Weiß, B.: Deductive Verification of Object-Oriented Software – Dynamic Frames,
Dynamic Logic and Predicate Abstraction. Ph.D. thesis, KIT., January 2011

4. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for sta-
tic analysis of programs by construction or approximation of fixpoints. In: 4th
Symposium on Principles of Programming Languages (POPL), pp. 238–252. ACM
(1977)

6. Wasser, N., Bubel, R., Hähnle, R.: TR: array abstraction with symbolic piv-
ots. Technical report, Department of Computer Science, Technische Universität
Darmstadt, Germany, August 2015

7. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

8. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. SIGPLAN Not. 43(1), 235–246 (2008)

9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
SIGPLAN Not. 43(6), 339–348 (2008)

10. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002)

11. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

12. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

13. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

14. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Proceedings of the 38th Sym-
posium on Principles of Programming Languages, POPL 2011, pp. 105–118. ACM
(2011)

15. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855. Springer, Heidelberg (2000)

16. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. SIGPLAN Not. 40(1), 338–350 (2005)

17. de Boer, F.S., de Gouw, S.: Being and change: reasoning about invariance. In:
Meyer, R., Platzer, A., Wehrheim, H. (eds.) Olderog-Festschrift. LNCS, vol. 9360,
pp. 191–204. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23506-6 13

18. Hentschel, M., Käsdorf, S., Hähnle, R., Bubel, R.: An interactive verification tool
meets an IDE. In: Proceedings of the 11th International Conference on Integrated
Formal Methods, pp. 55–70 (2014)

http://dx.doi.org/10.1007/978-3-319-23506-6_13

	Array Abstraction with Symbolic Pivots
	1 Introduction
	2 Background
	2.1 Program Logic
	2.2 Integrating Abstraction

	3 Loop Invariant Generation for Arrays
	3.1 Loop Invariant Rule with Value and Array Abstraction
	3.2 Computation of the Abstract Update and Invariants

	4 Symbolic Pivots
	5 Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

