
Proper Protocol

Farhad Arbab1,2(B)

1 Formal Methods, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
farhad@cwi.nl

2 Leiden Institute for Advanced Computer Science,

Leiden University, Leiden, The Netherlands

Abstract. Treating interaction as an explicit first-class concept, com-
plete with its own composition operators, leads to a model of concurrency
that allows direct specification and manipulation of protocols as proper
mathematical objects. Reo [2,5,6,8] serves as a premier example of such
an interaction-centric model of concurrency.

In this paper, we peruse Reo and explain how its model of protocols
as encapsulated, reusable constructs facilitates their fulfilling of the more
prominent role slated for them in engineering of modular, verifiable, scal-
able concurrent software. We also explore clues enlaced with some recent
results of our ongoing work on compiling Reo protocol specifications into
efficient executable code, which sketch a promising perspective for future
work on high-level protocol specification languages.

1 Preamble

For the bulk of the time that Frank de Boer and I have been colleagues at
CWI and Leiden, my work has focused on concurrency, coordination, and Reo,
and Frank has been working on concurrency, object orientation, formal verifica-
tion, and many other topics. Nevertheless, Frank’s impact on Reo goes beyond
his direct contributions through formal collaborations on projects and his coau-
thorship of papers. Through discussions and by his interest and his questions,
Frank has helped me—as well as many of our colleagues—to focus and refine
our understanding, and even chart our course into new projects.

2 Introduction

Today’s low-cost multicore commodity hardware has made scalable parallel com-
puting platforms affordable. Offering many processor cores on the same chip,
cheap threading with fast communication and shared memory, these platforms
can potentially accommodate applications that requires massively concurrent
computing. Nevertheless, full utilization of the enormous potential offered by
such platforms in real-life applications seems to lag dramatically behind. The
striking gap between the potential massive concurrency offered by these plat-
forms and their practical uptake raises a perhaps heretical question: do we even

c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 65–87, 2016.
DOI: 10.1007/978-3-319-30734-3 7



66 F. Arbab

need such massively concurrent platforms? More specifically, what types of appli-
cations can actually benefit from such massively concurrent platforms, and by
how much?

A most emphatically positive answer to the first question may provide an
answer to the second by identifying an auspiciously significant class of important
applications that can benefit by a substantial factor. However, such a propitious
outcome of this inquiry, in turn, raises another question: if massively concurrent
systems have important practical applications and computing platforms do exist
to provide them, then what has hindered extensive uptake of these platforms to
accommodate those applications?

We argue that an emphatically positive answer to the first question is indeed
justified. A vast number of important problems can indeed use large-scale coarse
grain concurrency, at least in principle. However, conspicuously missing are
effective techniques for developing scalable concurrent software that turns the
raw computing power of massively concurrent multicore platforms into effective
applications that solve those problems.

The growing importance of applications that involve huge volumes of data
and peta-scale graphs of their inter-relations, make the need for programming
techniques to harness the massive concurrency offered by multicore platforms
ever more vivid. To find what has hindered extensive development of massively
concurrent applications we must look into the inadequacies of contemporary
programming constructs and models for concurrency. These inadequacies stem
from the fact that, ironically, concurrency protocols have not received the proper
attention that they deserve in the classical work on concurrency.

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [30], CCS [49], the π-calculus [50,53], further process algebras [11,16,23],
and the actor model [3] represent popular approaches to tackle the complexities
of constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-centric models of concurrency. All these
models provide constructs for the direct specification of things that interact,
rather than a direct specification of interaction (protocols). Consequently, in
these formalisms (a protocol that specifies an intended) interaction becomes a
derived or secondary concept whose properties can be studied only indirectly,
as the side-effects of the (intended or coincidental) couplings or clashes of the
actions whose compositions comprise a model.

Our work on Reo shows that one can formally treat interaction as an
explicit first-class concept, complete with its own composition operators. Several
significant advantages ensue from such an interaction-centric model of concur-
rency. Treating protocols as proper mathematical objects expressed as encapsu-
lated syntactic constructs, explicitly separates them from computation code of
applications, which simplifies software development by adhering to the princi-
ple of separation of concerns. Separation of protocols from computation allows



Proper Protocol 67

formal verification and analysis of protocols in isolation from any application
code. As concrete encapsulated formal constructs, one can reuse such formally
verified protocols, verbatim—perhaps out of a library—in different applications.
Moreover, one can directly compose simpler (verified) protocols into arbitrarily
more complex protocols, which allows compositional verification of the resulting
more complex protocols. Finally, although it may superficially seem counter-
intuitive, an interaction-centric model of concurrency, such as Reo, opens up a
vast field of opportunities to refine information-rich, high-level models of pro-
tocols into efficient executable code whose performance can compete with and
even beat that of carefully hand-crafted code.

3 The Bounty of Concurrency

The extent to which a solution to a problem can benefit from concurrency
depends on the amount of concurrency inherent in that problem. The famous
computer architect Gene Amdahl1, had quantified this message in what has
become known as Amdahl’s law [4].

Amdahl’s Law. An application consists of an inherently sequential part and a
potentially concurrent part. Let a designate the time that it takes to execute the
sequential part on a single processor, and b the time that it takes to execute the
potentially concurrent part on a single processor. Thus the total execution time
of this application on a single processor is T (1) = a + b. Generously ignoring
all overhead, throwing n processors at this application can speed up only its
potentially concurrent part by a factor of n. Thus, the total execution time of this
application on an n-processor machine is T (n) = a+b/n. Therefore, the speedup
that we can expect from running this application on an n-processor machine
compared to running it on a single processor is bound by SAmdahl(n) = T (1)

T (n) .
Define α = a/(a+b) and we obtain Amdahl’s law expressing the upper-bound for
the speedup of an application running on n processors compared to its execution
time on a single processor, in terms of its inherently sequential fraction, α:

SAmdahl(n, α) =
1

α + 1−α
n

(1)

Figure 1(a) shows the graph of speedup (on logarithmic scale) according to
Amdahl’s law as a function of number of processors, for a range of α values
from 0.01 to 0.9. This graph puts a discouraging damper on the enthusiasm
about the speedup of applications on parallel machines. If 50 % of an application
is inherently sequential, its execution on a 2-processor machine speeds up by a
factor of 1.33 and this “linear” speedup tapers off quickly to 1.66 on a 5-processor
machine, improving to nearly 2 only on a 100-processor machine. If only 10 % of
an application is inherently sequential, its execution improves almost linearly by
1 While this paper was under review, Gene Amdahl [16 November 1922 – 10 November

2015] passed away.



68 F. Arbab

Fig. 1. Amdahl’s and Gustafson’s laws

adding up to 5 processors, but this improvement tapers off to a speedup of only
5.26 with 10 processors, 6.89 with 20, and 9.17 with 100 processors. Even with
an infinite number of processors, this application speeds up by only a depressing
factor of 10! For an application 99 % of which is inherently concurrent, nearly-
linear speed up lasts only up to about a dozen processors; 20 processors yield a
16.80 speedup, which tapers off to only 50.25 with 100 processors.

Amdahl’s law is in fact not as depressing as it may seem, because it simply
states an obvious fact: that there is just so much juice that you can extract out
of an orange, no matter how long and hard you press it (even if we ignore the
overhead of the juice that gets trapped and goes to waste in the pulp). An appli-
cation that spends only 10 % of its time executing its inherently sequential part
has no more than a ten-fold juice of speedup to extract, even if you press it by the
computational force of an infinite number of processors. In practice, you may be
happy with a 9-fold speedup of this application on a 100-processor machine, or
settle for a 5-fold speedup with only 10 processors, and let the remaining speedup
juice go to waste with the pulp, because obtaining this remaining speedup is sim-
ply not worth the cost of its extraction.

Is this the best we can hope to reap from the bounty bestowed by massively
concurrent hardware?

Gustafson’s Law. Amdahl’s law gives a bound for how much juice we can extract
from a specific individual orange, i.e., how much faster we can run an application
that solves a fixed-size problem on a multiprocessor machine. Amdahl’s law,
however, does not limit our ability to quench our thirst for more orange juice:
we can simply juice bigger (amounts of) oranges!

A very important class of applications in concurrency involves solving prob-
lems whose sizes can increase arbitrarily. What matters in these applications
is not so much speeding up the solution of a specific instance of such a prob-
lem (e.g., mining graphs of a given size) on a multiprocessor machine. We may
already be content (if not happy) with the execution speed of this solution on a
k-processor machine. The purpose of employing more than k processors in such
applications is to solve larger-sized instances of the same problem (e.g., mining



Proper Protocol 69

proportionally larger graphs) in still reasonable time. Bigger-size problems, thus,
provide arbitrarily bigger (amounts of) oranges to juice!

Gustafson revisited Amdahl’s law to accommodate precisely this class of
applications [26], which we call scalable. Let Tk(n) denote the execution time of
a scalable problem of size n on a k processor machine. A scalable application
also contains an inherently sequential part, whose execution on a single processor
takes a time units. The potentially concurrent part of such an application has
a repetitive structure that scales directly with the size of the problem. Let b be
the sequential execution time of the potentially concurrent part of this applica-
tion, solving the size-1 instance of the problem. The total execution time of the
application for the size-1 instance of the problem on a single processor, then, is
T1(1) = a + b, and the execution time of a size-n instance of the problem on a
single processor machine is T1(n) = a + n × b.

With more processors, we can parallelize the potentially concurrent part
of solving a larger instance of the problem. Thus, ignoring all overhead, the
execution time of a size-n instance of the problem on an n-processor machine is
Tn(n) = a + b, which means Tn(n) = T1(1). Defining α = a/(a + b), as before,
we get Gustafson’s law for speedup:

SGustafson(n, α) = n − α × (n − 1) (2)

Figure 1(b) shows the graph of speedup for scalable problems according to
Gustafson’s law as a function of number of processors, for a range of α values
from 0.01 to 0.9. It seems that at least for scalable problems, Gustafson’s law
rescues usefulness of concurrency from the grim grip of Amdahl’s law.

Superficially, the two graphs in Fig. 1 seem to contradict each other: for every
value of α, Fig. 1(a) establishes a strict asymptotic limit less than n for speedup,
whereas Fig. 1(b) shows that speedup increases linearly in n, without bounds, at
an α-dependent slope. In fact, far from contradicting Amdahl’s law, Gustafson’s
law complements it. For scalable applications, as we increase n, we change the
application by increasing the size of the problem that it solves and thereby
increase the amount of concurrent juice that it contains. As a result, the ratio of
the inherently sequential part of the application to its total execution time on a
single processor shrinks, and the application moves up the rungs of the ladder
of α curves in Fig. 1(a).

Let δ(n) = a/(a + n × b) designate the fraction of the inherently sequential
part of a scalable application of size n. Rewriting δ(n) in terms of α, we get:

δ(n) =
α

α + (1 − α) × n
(3)

Equation 3 shows that for a fixed α, as n grows, δ(n) diminishes, endowing more
concurrency juice to the application, which moves the application up the ladder
of the curves in the graph of Amdah’s law in Fig. 1(a). In fact, substituting δ(n)
for α in Eq. 1, Amdahl’s law yields SAmdahl(n, δ(n)) = 1, which shows that for
scalable problems, as we increase the number of processors from n to n + k
to match the increase of the problem size from n to n + k, the quantity δ(n)



70 F. Arbab

diminishes exactly such that we obtain no “real speedup” gain by Amdahl’s law:
all extra concurrency provided by the additional k processors goes to solving the
k-size larger problem. This observation suggests that perhaps more usefully, we
can think of Gustafson’s law not so much as a measure of speedup, but rather a
measure of scalability of a scalable application.

Communication Overhead. Both Amdahl’s and Gustafson’s laws mean to express
upper bounds, and thus they ignore all overhead. Obviously, the interaction pro-
tocol that enables communications among concurrent chunks of the application
greatly influences this overhead. To account for protocol overhead, we revise
Gustafson’s equation for the execution time of a size-n scalable problem on an
n-processor machine as Tn(n) = a + b + c where c is the extra time that the
application takes to complete because of protocol overhead.

For n > 1, every parallel computation fragment executes a number of com-
munication operations. The extra delays required to complete these operations
collectively comprise c = f(n), which means speedup of a scalable application is:

S(n, α) =
n − α × (n − 1)

1 + f(n)
T1(1)

(4)

For any application, α and T1(1) are constants. The nominator in Eq. 4 is linear
in n. The effectiveness of the speedup (or, scalability) of an application, then
crucially depends on the nature of its protocol overhead function f(n). A good
linear protocol yields only a constant speedup (i.e., no scalability), and even a
quadratic f(n) quickly dampens scalability by 1/n as n increases.

So, where exactly in a concurrent application can we find its communication
protocol that has such a significant impact on its performance and scalability?

4 Where’s Waldo?

In a modern well-structured program, we can easily locate a segment of code
that implements some computation function, e.g., FourierTransform, or a com-
putation construct such as the abstract data type stack. These implementa-
tions, of course, use concrete algorithms and data structures. For instance, the
implementation of stack may use a linked list data structure. Because they
are so easy to locate, if desired, we can readily replace the implementation
code for FourierTransform or stack with the piece of code for some alternative
implementation of these computation constructs. For instance, we can easily
replace the linked-list implementation of stack with an array implementation of
stack to improve the performance of an application. If the application software
is indeed well-structured (e.g., stack is implemented as a class in an object-
oriented language), this implementation code swapping will be completely invis-
ible to the rest of the software, regardless of how often or intensively it uses
various incarnations of stack. A more efficient implementation of an abstract
data type or a computation function simply improves the overall performance of



Proper Protocol 71

the application, without requiring any modification to the rest of the software.
Moreover, to scale up a well-structured program using a stack of size k to one
that needs a stack of size 2k, all we need to do is change the value assigned to
some identifier from k to 2k.

Programming language constructs and abstractions, along with techniques
for their efficient compilation, have dramatically advanced in the last half-
century, to the extent that we can now program at the level of (parametric)
types, classes, objects, mathematical functions, monads, or Horn clauses, when
appropriate, and obtain executable code whose performance competes with—
indeed often beats—that of code written by even better-than-average program-
mers in some low-level language. It is precisely these advances that, among other
things, make it easy to carry out the above mentioned software modifications so
painlessly.

Protocols constitute no less significant a concept in concurrent applications
than functions, types, and other computational constructs, and variants of con-
crete implementations of protocols have an least equally significant impact on the
performance of a concurrent application. Moreover, as we saw in Sect. 3, protocol
(overhead) plays a crucial role in the scale-up of scalable problems. Given the
significance of protocols and the long history of concurrency, one would expect—
rather naively—to find in modern software high-level protocol constructs (as
counterparts to constructs for types, classes, etc.), that make, e.g., scaling up a
two-producer-one-consumer protocol to a k-producer-one-consumer protocol as
easy as changing the value assigned to some identifier in its implementation code
from 2 to k. Or—even more naively—that to change one implementation of a
two-producer-one-consumer protocol with another, all that should be necessary
is to swap the two pieces of code for their respective implementations, without
any change to the rest of the software. Perplexingly, neither of these software
modifications is so painless today!

Programming constructs and models for concurrency have essentially stag-
nated in the past half-century. Algorithmic skeletons [25] represent an attempt
to facilitate development of better structured concurrent programs by offer-
ing encapsulated protocol skeletons that programmers can flesh out to suit the
specifics of their applications. Several skeleton libraries exist. However, although
useful in practice when a problem readily fits the design patterns of available
skeletons, algorithmic skeletons have not given rise to a formal model of encap-
sulated, composable protocols analogous to types, objects, and classes. Trans-
actional memory [29,47,54] represents another attempt to simplify concurrent
programming by providing transaction as a syntactic construct for high-level
mutual exclusion. Although a transaction can qualify as a protocol, transactions
often necessarily contain application specific computation code, which makes
them impure (non-reusable). Moreover, treating every protocol as a transaction
can lead to over-sequentialization, and this model does not provide adequate
means to derive more complex (than single transaction) protocols through struc-
tural composition of other protocols (transactions). In contrast to advances in
abstractions and constructs for sequential programming, no real abstract proto-
col constructs have evolved. Processes, threads, locks, semaphores, contrivances



72 F. Arbab

for mutual exclusion, monitors, rendezvous, etc., of roughly 50 years ago com-
prise all programming constructs we have to express protocols in our modern
software.

The pervasive integration of computing and interaction in so many aspects
of our lives today has vastly expanded the number of applications that require
scalable complex protocols. Meanwhile, advances in processor, memory, and com-
munication hardware have made leaps and bounds in the past 50 years to provide
suitable hardware to accommodate these applications. Software technology must
develop code that transforms the raw power of available hardware into concurrent
applications that embody those required scalable complex protocols. Stagnation
of programming constructs and models for concurrency has created a stifling
bottleneck in development of these applications. Between the two expanding
domains of necessity and possibility, software engineers are left stranded to fend
for themselves, armed with nothing more than the same 50-year-old cumber-
some concurrency constructs, and their own wits. In this sense, our arsenal of
50-year-old concurrency programming constructs is dramatically less adequate
for our software engineering needs of today than it was 50 years ago.

Finding what constituted a stack (just as an example) in a typical “well-
structured” Fortran IV or PL/I code of early 1970’s required as much time and
mental effort as finding Waldo2—and it was far less entertaining. The mere act
of locating what constitutes a protocol in a typical well-structured concurrent
application of today often requires substantially more time, effort, and expertise
than was required to find a stack in a Frotran IV or PL/I application of the
1970’s; and replacing the implementation of this protocol or scaling it up often
cascades numerous prohibitively intrusive intricate changes throughout the entire
software.

5 Interaction-Centric Concurrency

Traditional action-centric models for concurrent programming embed within the
sequential programming paradigm a befitting selection of primitives such as
locks, semaphores, monitors, send/receive, message passing, rendezvous, etc., for
programmers to manifest an interaction protocol contingent on the control flows
of disparate sequential threads, that run under an implied nondeterminism on the
order of their execution. This dispersion of interaction-inducing actions makes
protocols nebulous, intangible, and ephemeral, which explains why even identi-
fying the constructs that constitute a protocol in an application programmed in
such models often becomes a non-trivial challenge.

The dataflow paradigm provides an alternative perspective on concurrent
programming. It liberates the manifestation of interaction protocols from the
control flows of sequential threads, expressing them instead as concrete graphs
that make the nondeterminism of their execution explicitly evident. The clas-
sical works on dataflow programming pioneered by Kahn [45,46], Dennis [22],
2 In Martin Handford’s 1980’s popular books of double-page illustrations, that chal-

lenged readers to locate a certain Waldo character “hidden” in plain sight in a crowd.



Proper Protocol 73

and Arvind [9] serve as inspiring early examples of interaction-centric models
of concurrency: abstracting away the semantic content of computation nodes
in such a dataflow graph leaves a structure behind that explicitly represents a
concrete interaction protocol. One can easily compose protocols by splicing their
graphs together. Because the edges in these specific dataflow graphs represent
FIFO communication links, these protocols cannot directly express synchrony.
The need for synchrony in concurrency, especially in real-time and embedded
systems, led to the development of synchronous languages [15,17,21,24], where
edges represent synchronous communication. Ptolemy [19,48] allows hierarchical
composition of graphs each representing a synchronous or asynchronous interac-
tion among actors, to model heterogeneous systems.

In the world of sequential programs, with the formal semantics of a function
as a black-box that transforms its input to its output, the semantic equivalence of
two functions is a congruence, i.e., given two equivalent functions, one can always
replace the other. In the world of concurrent programs, such semantic equivalence
is not a congruence, i.e., given two concurrent computation units whose func-
tions are equivalent, one cannot always replace the other [18]. This observation,
known as the Brock-Ackerman anomaly, shows that interaction requires a more
expressive formal semantics enriched by a notion of time, to discern differences
between otherwise equivalent units of computation that arise out of alternative
orders of their execution. Some dataflow models suffer from this anomaly, and
some avoid it by imposing restrictions.

Such earlier work as above has inspired our notion of interaction-centric con-
currency, and our work on Reo builds upon and extends this work. More recent
work on BIP [10,14], multiparty session types [20,32], Scribble [31,55], and
Pabble [51,52] represent other examples of interaction-centric models that to
various degrees of expressiveness and generality make protocols concrete central
objects of discourse.

Treating interaction as a full-fledged first-class concept requires a model that
offers (1) an explicit, direct, concrete representation of interaction among actors,
independent of their (communication) actions; (2) a set of primitive interactions;
and (3) composition operators to combine (primitive) interactions into more
complex interactions. A most primitive interaction specifies a relation between
two communication actions, e.g., a send and a receive. For instance, such a
relation may state that the two actions must happen synchronously, or that
one (e.g., the read) must necessarily happen strictly some time after the other
has completed. This specification is oblivious to the actor entities that perform
such communication operations; all that matters is that the specified relation
holds on the timing and the contents of the data exchanged by those operations.
Such specifications quite naturally accede a formal representation as constraints,
which come equipped with relational composition that allows constructing more
complex constraints out of simpler ones.

Protocols as Connectors. Concretely, we regard a protocol simply as a constraint,
which declaratively specifies what must hold in terms of a relation, disregard-
ing how it can hold. Expressed as constraints, pure protocols become first-class,



74 F. Arbab

tangible, reusable encapsulated constructs in their own right. As concrete soft-
ware constructs, such protocols can manifest as architecturally meaningful con-
nectors that portrayed graphically, resemble a generalization of dataflow graphs
where nodes have fixed semantics but each edge represents an arbitrary interac-
tion relation.

Components. In an interaction-centric model of concurrency, a computational
process (or thread), or component is written in any conventional programming
language, such as C, C++, Java, etc. The only means of communication of a
component with its outside world is through blocking I/O operations that it may
perform exclusively on its own ports. Inter-component communication is possible
only by mediation of connectors, which implement interaction protocols, outside
of the components.

If i is an input port of a component, C, there are only two operations
that C can perform on i: (1) blocking input get(i, v) waits indefinitely or
until it succeeds to obtain a value through i and assigns it to variable v; or
(2) input with time-out get(i, v, t) behaves similarly, except that it unblocks
and returns false if the specified time-out t expires before it obtains a value to
assign to v. Analogously, if o is an output port of a component, there are only two
operations that the component can perform on o: (1) blocking output put(o, v)
waits indefinitely or until it succeeds to dispense the value in variable v through
o; or (2) output with time-out put(o, v, t) behaves similarly, except that it
unblocks and returns false if the specified time-out t expires before it dispenses
the value in v.

6 Overview of Reo

We have used the interaction-as-constraint perspective described above to for-
malize an interaction-centric model of concurrency wherein every interaction
protocol is a constraint obtained as a (relational) composition of a small set
of simple binary constraints. This model serves as the formal foundation of a
domain-specific language (DSL), called Reo [2,5–8], for programming concur-
rency protocols that manifest as connectors. Complex connectors in Reo are
constructed as a network of primitive binary connectors, called channels.

We summarize only the main concepts in Reo here. Further details about Reo
and its semantics can be found in cited references. Tool support for Reo consists
of a set of Eclipse plug-ins that together comprise the Extensible Coordination
Tools (ECT) visual programming environment [1].

Channels. A channel is a medium of communication that consists of two ends
and a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for



Proper Protocol 75

Fig. 2. A typical set of Reo channels

loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

A very small set of channels, each with very simple behavior, suffices to
construct useful Reo connectors with significantly complex behavior. Figure 2
shows a common set of primitive channels often used to build Reo connectors.
Readers can find intuitive and formal definitions of the behavior of these channels
in various Reo literature, e.g. [7].

Nodes. Complex connectors are constructed by composing simpler ones by join-
ing channel ends together in nodes. A Reo node is a logical place where channel
ends coincide and coordinate their dataflows as prescribed by the type of the
node. Figure 3 shows the three possible node types in Reo. A node is either
source, sink, or mixed, depending on whether all its coincident channel ends
consist of source ends, sink ends, or a combination of the two. Unlike channels,
Reo defines a fixed semantics for (i.e., the constraints on the dataflow through)
its nodes.

Fig. 3. Reo nodes

The source and sink nodes of a con-
nector are collectively called its boundary
nodes. Boundary nodes define the interface
of a connector. Components attach to the
boundary nodes of a connector and inter-

act anonymously via the get and put operations mentioned in Sect. 5 with each
other through this interface.

Semantics. Reo allows arbitrary user-defined channels as primitives; arbitrary
mix of synchrony and asynchrony; and relational constraints between input and
output. This makes Reo more expressive than, e.g., dataflow models, Kahn net-
works, synchronous languages, stream processing languages, workflow models,
and Petri nets. On the other hand, it makes the semantics of Reo quite non-
trivial. Various models for the formal semantics of Reo have been developed
(most, variants that fall within a small number of main families), each to serve
some specific purpose, e.g., animation, verification, and code generation; a com-
prehensive overview of these semantic models appears elsewhere [34].

7 Examples

Consider a simple concurrent application with two producers, which we desig-
nate as Green and Red, and one consumer. We want the consumer to repeatedly



76 F. Arbab

obtain and display the data made available by the Green and the Red produc-
ers, alternately. In spite of its apparent conciseness, the last sentence does not
precisely specify a single concrete protocol. In this section, we present a num-
ber of protocols to implement different versions of the alternating producers
and consumer example. These examples illustrate that using Reo it is trivial to
(1) change the protocol of an application, without altering any of its processes,
or (2) scale the specification of a protocol to accommodate k > 2 producers.

Fig. 4. Alternators

The connector in Fig. 4(a) is an alternator that
imposes an ordering on the flow of the data from its
input nodes A and B to its output node C. Subsequent
take operations at C obtain the data items written to
A,B,A,B, ... The connector in Fig. 4(b) is obtained by
replicating the one in Fig. 4(a). It delivers the data items
obtained from A1, A2, and A3, through C, in that order.

We can compose a version of our alternating produc-
ers and consumer example by attaching the output ports of the Green and Red
producers to nodes A and B of the connector in Fig. 4(a), respectively, and the
input port of the consumer to its node C. The protocols of the connectors in
Fig. 4 synchronize their producers in each round. Whether or not this is a desir-
able property, of course, depends on the application. Our original specification
of this example allows this protocol, as well as many other alternatives.

Fig. 5. Variants of alternating producers protocol

We can obtain new versions of our alternating producers and consumer exam-
ple by attaching the ports of our producers and consumer to nodes A, B, and C
of every connector in Fig. 5. All connectors in this figure share the same skele-
ton structure, based on a two-node version of a sequencer connector. Detailed
description of the sequencer and these connectors is beyond the scope of this
paper. What matters for our discussion is that there are at least these other 8



Proper Protocol 77

different concrete protocols each of which with its own properties, that can serve
as a suitable solution for an alternating producers and consumer application. We
can easily parameterize any of these connectors to scale up the number of their
producers.

Fig. 6. Mix and match

Applications with many producers may
indeed require somewhat different treatment
of the output of some of their producers.
It is trivial to mix-and-match the neces-
sary interaction (sub-)protocols in Fig. 5, to
tailor-make such a protocol, e.g., as in the
example in Fig. 6. Such mix-and-match is
generally unthinkable when protocols are
expressed in terms of action-centric constructs
of traditional models of concurrency.

8 Compilation

The examples in Sect. 7 exhibit the advantages of an interaction-centric model
of concurrency that regards protocols as constraints. A high-level language like
Reo that supports this form of protocol specification offers clear software engi-
neering advantages (e.g., programmability, maintainability, verbatim-reusability,
verifiability, etc.). However, as in constraint programming, it seems far less obvi-
ous that protocol specifications expressed in such a high-level language can be
compiled into efficient and scalable executable code.

Recent results of our on-going work suggest that in time, sufficiently smart
compilers for high-level protocol languages can generate executable code with
better performance than hand-crafted code produced by programmers written in
contemporary general-purpose languages with constructs of traditional models
of concurrency. Superficially, our promising results may seem surprising and this
claim, outlandish. Most of our results have already appeared in the literature [33,
35–43] and comprise the bulk of the work by Jongmans in his recently submitted
PhD thesis [44]. Without getting into the technical details of how we obtained
these results or the challenges that remain ahead, in this section, we summarize
some of our results, and in the next section, describe a perspective on concurrent
programming that “anticipates” our promising results and justifies the optimism
of our claim.

Our compiler uses the constraint automata semantics of Reo [12]. It maps
every node and every channel in a Reo connector to its corresponding constraint
automaton. This yields a set of “small” automata that collectively represent the
connector’s semantics. The compiler then translates this set of small automata
into Java/C and merges the code so generated with the Java/C code that invoke
the components. An external compiler for Java/C subsequently translates the full
code base into a binary. Our Reo compiler currently applies a set of high-level
optimization techniques on the intermediate constraint automata it produces.
Some basic optimization methods identify groups of loosely- and tightly-coupled



78 F. Arbab

small automata in order to improve scalability and strike a balance between
low latency (sequentiality) and high throughput (parallelism) in the resulting
executable code.

Fig. 7. Performance (Color
figure online)

For some protocols, these optimizations already
allow our compiler to generate code that can com-
pete with code written by a competent program-
mer [39]. Figure 7 shows one of our most promis-
ing results. It shows the performance of three
implementations of a k-producers-single-consumer
protocol, for k ∈ {

2i | 2 ≤ i ≤ 9
}
: one naive

hand-written implementation in C (blue, solid
line), one hand-crafted optimized implementation
in C (yellow, dashed line), and one implementation
expressed in Reo and compiled into C (red, dotted
line). In every round of this protocol, every producer
sends one datum to the consumer. Once the con-
sumer has received a datum from every producer,
in any order, it sends an acknowledgment to the
producers, thereby signaling that the consumer is
ready for the next round. To measure just the performance of the protocol, we
did not give the producers and the consumers real computational tasks (i.e., the
producers sent only dummy data).

Fig. 8. Comparing hand-crafted (dashed) and Reo compiler generated (solid) protocol
code: (a) thousands of CPU-cycles per protocol iteration vs. number of producers;
(b) relative performance vs. number of producers.

In fact, this version of our compiler generates code that runs on the Proto
Runtime Toolkit (PRT) [27,28]. PRT offers a run-time system for C code and
a set of APIs. On its start-up, the PRT run-time system seizes control of the
available cores from the operating system, thereby gaining full responsibility
for scheduling instructions onto those cores. Software engineers use these cores
through an API for managing PRT threads and a separate API for imposing cus-
tom scheduling policies. PRT-aware C code invokes the former API to instantiate
units of parallelism, which the PRT run-time system subsequently schedules onto



Proper Protocol 79

cores, without interference by the operating system. Bypassing the operating
system (and its rather heavy-weight scheduler) in this way, contributes to bet-
ter performance. However, programming efficiently, directly at the level of PRT
requires special skills. The PRT back-end of our Reo compiler shields program-
mers from PRT and its details, but reaps the benefits of improved performance
that it provides, through a PRT API custom-made for Reo.

Figure 8 shows at a finer scale the performance and speedup of our Reo
compiler generated code with that of a carefully optimized hand-written code
using p-threads in C, for the above mentioned k-producers-single-consumer pro-
tocol. Figure 8(a) shows performance (in thousands of CPU-cycles per iteration
of protocol, averaged over 10 runs) of the compiler generated (solid line) and the
hand-crafted (dashed line) code as a function of the number of producers in this
application. Figure 8(b) shows speedup of the compiler generated relative to the
hand-crafted code as a function of number of producers.

These results show that already our current compilation technology is capable
of generating code that can compete with—and in this case even outperform—
carefully hand-crafted code. Surely, our technology is not yet mature enough
to always achieve such positive results. The PhD thesis of Jongmans [44] dis-
cusses a number of formally sound high-level automata optimization techniques
and contains extensive comparisons of our Reo compiler technology using the
NAS Parallel Benchmarks [13]. His results demonstrate practical utility of ver-
batim reuse of protocols. They also show that in 37 % of cases our Reo compiler
generated code is no worse than 10 % slower than the reference hand-crafted
code of these benchmarks. In another 38 % of cases, our Reo compiler gener-
ated code is faster than their reference hand-crafted code. In the remaining
25 % of the cases, our Reo compiler generated code is between 10 % and 40 %
slower. Some of these cases may improve by one or more of the many other high-
level optimization techniques that we have not investigated yet. Nevertheless,
these results offer preliminary evidence that programming concurrency proto-
cols using high-level, interaction-centric constructs and abstractions can result in
equally good—or better—performance as compared to hand-crafted code using
conventional action-centric models of concurrency. Superficially, these results
seem counter-intuitive. In the next section, we explain why, in fact, they are not.

Fig. 9. Action-centric vs. interaction-centric protocol programming



80 F. Arbab

9 Mind the Gap

Figure 9(a) shows three levels of abstraction of the protocol of a concurrent
program. At the application level a protocol primarily expresses what it needs
to accomplish, which essentially has a declarative nature. As an implementation
in a conventional action-centric model of concurrency in a modern programming
language, this protocol, for instance, turns into imperatives that control the
scheduling of threads. Obviously, these imperatives must be refined into finer-
grained imperatives of machine instructions before the application can actually
execute on some hardware.

Figure 9(a), thus, shows that two transformations must take place before a
specification of what a protocol needs to accomplish can actually run on some
hardware: (1) translation by the programmer from the specification of what
into the imperatives of how, e.g., expressed using the API of some threading
library, and (2) translation by the compiler (of a conventional language) from
the resulting threading API calls into executable machine instructions.

The distance between a pair of levels of abstraction in this figure suggests the
complexity of abstraction/refinement transformation between them. One can, for
instance, use the ratio of the number of lines of “code” that it takes to specify
a protocol at each level of abstraction, and the mutual interdependence of these
lines as a crude measure for this complexity. For example, the translation of an
API call by the compiler of a conventional programming language into executable
code may produce many lines of low-level code, but each such translation is quite
straight-forward and the lines of code that result from two API calls essentially
do not depend on each other (any more than the original two API calls did). As
such, for instance, a C compiler contributes relatively little to the refinement into
executable code of the protocol part of an application that is already expressed
in terms of some threading API calls, as compared with the complexity of the
refinement that the programmer performs, in order to transform the application-
level specification of the protocol into precisely those specific threading API calls.

Programming of concurrency protocols is notoriously difficult precisely
because the gap between the two levels of abstraction that specify what a proto-
col must accomplish and the imperatives that state how, represents a chasm of
complexity. Programmers must navigate through this chasm essentially on their
own, to produce correct imperative code. Additionally, programmers must also
strive to manually make their correct code efficient too. And to reap the benefits
of Gustafson’s law, increasingly, programmers must also ensure that their correct,
efficient code is scalable as well. These requirements make the manual transla-
tion of what a protocol must accomplish into how to do so imperatively, a very
tall order that often frazzles even expert programmers. Because this translation
substantially takes place in the mind of a programmer, even when it succeeds,
it leaves no formal trace of its steps in the resulting code, from which a tool can
subsequently reconstruct this translation or its inverse. Thus, the intention con-
tained in what a protocol must achieve and the information about its translation
into how its implementation does so are irrecoverably lost.



Proper Protocol 81

Imagine for a moment that instead of concurrency protocols we deal with
our more familiar sequential programs, and consider an example of sorting an
array of integers. A programmer may take this requirement (sort an array of
integers) and produce a correct piece of code, written in a sequential language
X. Assume that this code in fact implements a bubble-sort algorithm, perhaps
because the programmer does not know any better sort algorithms. A compiler
for X can do its best to generate optimized code for this program. However, can
such a compiler look at all assignment, if-then-else, and for-loop constructs in
its input, to divine from this jumble of source code that its programmer really
intended to sort this array, and thus “compile” the bubble-sort algorithm that it
finds in its input into the machine code for a quick-sort algorithm? Even if this
transformation were theoretically possible, would it be desirable for a compiler
to do so? After all, perhaps our programmer did actually know better and had a
very good reason—unknowable to the compiler—to want a bubble-sort algorithm
in this application.

Back to our concurrency protocol in Fig. 9(a), the fact that the program-
mer manually endeavors to translate what a protocol must accomplish into how
to do so utilizing the low-level imperatives of an action-centric model, leaves
relatively little wiggle room for the compiler to do significantly meaningful opti-
mization of the protocol : following our sort analogy, above, it can optimize the
implementation of each imperative, but it cannot compile its input imperatives
of a “bubble-sort protocol” into the machine code for a “quick-sort” alternative
protocol. Doing so requires a compiler to trace back the irrecoverable mental
translation steps that the programmer took to produce its source code in the
opposite direction, to divine the application level intention of the protocol; some-
thing of questionable desirability, even if theoretically possible.

Figure 9(b) shows the three levels of abstraction of the protocol of a concur-
rent program using an interaction-centric model of concurrency, such as Reo.
The declarative, compositional constraint-programming style of protocol speci-
fication in Reo shrinks the gap between what a protocol must accomplish and
its formal specification. As our examples demonstrate, this smaller gap makes it
easier for a programmer to construct modular, verifiable, reusable, and scalable
protocol specifications by composition. The programmer can now merely specify
what (i.e., “sort”) formally, instead of over-specifying how (i.e., “bubble-sort”),
imperatively.3 Shrinking the first gap also leaves much larger room in the sec-
ond gap for a compiler to perform meaningful protocol optimization. In spite of
its infancy, our compiler technology for Reo already demonstrates the practical
feasibility of such meaningful optimization in our current results.

The specific version of the Reo compiler used in the benchmarks depicted in
Figs. 7 and 8, generates C code that uses the API provided by the PRT system
mentioned in Sect. 8. Thus, although this version of our Reo compiler does not
generate object code that directly runs on the bare hardware, it indirectly does
so assisted by the C compiler and the PRT run-time. We ignore this technical

3 Of course, by adding extra “redundant” constraints, a programmer can also “specify”
a bubble-sort, when and if desired.



82 F. Arbab

detail in Fig. 9(b), because whether “compiler” in this figure designates a single
Reo compiler or consists of a chain of automated tools does not change the
point of our current discussion. However, for clarity, the dashed line in Fig. 9(b)
shows the actual target level of abstraction of the concurrency constructs used
in the C code generated by the version of our Reo compiler used in the above
benchmarks: the PRT API. With respect to the other main levels of abstraction
in this figure, PRT sits below the operating system, closer to the hardware,
and offers concurrency constructs at a lower level of abstraction than that of
operating system supported threading and scheduling facilities.

Fair Gain. A superficial reading of the “performance comparison” depicted in
Figs. 7 and 8 may seem to reveal as much about the effectiveness of our opti-
mization techniques, as it does about the competency of the C programmer
who produced the hand-crafted version of the protocol code of this application.
However, below this surface, lies a more crucial fundamental point that is inde-
pendent of the competency of any individual programmer, or the precise factor
by which our optimization techniques potentially can or currently do outperform
hand-crafted code that a programmer can (even hypothetically) produce.

Crucial to this benchmark is the fact that the task assigned to the pro-
grammer restricted him to use concurrency constructs available in contempo-
rary programming languages, such as Java or C (in this case p-threads). On
the other hand, our Reo compiler in this case bypasses this level of abstrac-
tion (and the coarser-grained, OS-level scheduling inefficiencies that it entails)
and generates code using finer-grained constructs below the OS-level and the
concurrency constructs that it supports. From this perspective, comparing the
performance of the two versions of the code is even unfair, because the state-
ment of the task assignment prevents the programmer from using lower-level
constructs to directly hand-craft code similar to (or perhaps better than) what
our Reo compiler produces. But precisely this unfairness constitutes the crux of
our argument in this section.

There are two conceivable ways to make such a comparison fair, i.e., pro-
duce code using constructs that are “fairly comparable” to the constructs
that our Reo compiler uses to produces its code: (1) develop tools that take
p-threads level code written by a programmer and produce more optimized code;
or (2) allow the programmer to directly code below the level of p-threads and OS.

Option 1 requires developing tools that can reconstruct the intentions behind
the p-threads constructs used to encode a protocol (fragment); i.e., divine
programmer’s intention of “sort” from an imperative “bubble-sort” implemen-
tation code. Generally, this is impossible because the information about the
mental transformation of what a protocol does into how it does it is irrecover-
ably lost. For instance, consider the piece of C code on the left. If its program-
mer intended just to assign the output of some function to every a[i], for
random inputs x, a compiler can parallelize the loop. However, if the program-
mer additionally intended the resulting array to have the same content, with
the same random seed, in different executions (e.g., to reproduce bugs), a com-
piler cannot parallelize the loop: in that case, the order of generating random



Proper Protocol 83

numbers matters. Observe that from this code alone, neither a compiler nor a
human can judiciously decide about loop parallelization; making such a decision
requires intention information irrecoverable from this code.

int x;

for (int i = 0; i < 10; i++) {

x = rand();

a[i] = some_function(x);

// without side effects

}

Option 2, i.e., removing the artificial
barrier of programming at the level of
p-threads, is certainly possible. However,
manually programming below p-threads
and OS-level sharply raises the level of

expertise required by a programmer to code directly at such a low level, and
dramatically increases the size and the complexity of the resulting code. Higher
competency requirements and increased size and complexity of the resulting
code, in turn, sharply reduce the number of individuals who qualify to perform
such programming assignments, and dramatically lower the likelihood of success
of those who undertake such daunting tasks. Besides, applications that directly
use constructs below p-threads or OS abstractions become highly brittle and
non-portable, as they rely on constructs that most likely do not exist verbatim
on other platforms, or even on a future upgrade of their original platforms. Of
course, the above drawbacks of producing programs at a level below p-threads
and OS abstractions become moot if instead of a human programmer, a compiler
performs this programming, starting with some high-level protocol specification.

While option 1, in principle, involves divining lost information, option 2 does
not involve theoretical impossibilities; the difficulties in option 2 are “merely”
technical and pragmatic. Our Reo compiler automates some of the technicali-
ties involved in bypassing conventional concurrency constructs, making it more
pragmatic to go from a high-level declarative specification of a what to a very
efficient how -implementation below the level of p-threads or OS.

10 Concluding Remarks

Protocols constitute the most challenging aspect of concurrent applications.
Specification of a protocol in action-centric models of concurrency invariably
obscures what the protocol must achieve, because they lack mechanisms to forbid
or even discourage dispersing constituent constructs of a protocol throughout an
application software. Such dispersion intertwines protocol constructs with other
data- and control-flow constructs of the application, which obfuscates the proto-
col, making it only an intangible by-product, implied by some sets of nebulous,
logically-related-but-physically-scattered communication actions.

An increasingly important class of concurrent applications demand analysis,
verification, reuse, composition, and scaling of protocols. Meeting the software
engineering challenges of these applications requires definition and manipulation
of protocols as proper mathematical objects, with composition and other oper-
ators to work with them. As a prime example of an interaction-centric model of
concurrency, Reo can meet these challenges. Specification of protocols as declar-
ative constraints in Reo makes them easier to manipulate and analyze directly,
and makes it possible to compose protocols, scale, and reuse them verbatim.



84 F. Arbab

The results of our ongoing work on compiling Reo suggest that, in addition
to software engineering advantages, a high-level protocol language, such as Reo,
can have advantages with respect to performance as well. Superficially, obtaining
executable code that outperforms hand-crafted code, from the compiler of such a
high-level protocol language seems counter-intuitive: one expects to pay the price
of easier specification at a higher-level of abstraction, plus the software engineer-
ing benefits that it entails, by accepting a heavy penalty in performance. The
perspective we described in this paper explains why avoiding such a performance
penalty seems possible: compilers for such high-level languages can use formal
information about what a protocol must achieve, to perform optimizations that
compilers for lower-level languages cannot apply, simply because manual trans-
formation by programmers irrecoverably loses such intention information.

References

1. Extensible Coordination Tools home page. http://reo.project.cwi.nl/cgibin/trac.
cgi/reo/wiki/Tools

2. Reo home page. http://reo.project.cwi.nl
3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge (1986)
4. Amdahl, G.M.: Validity of the single processor approach to achieving large scale

computing capabilities. In: American Federation of Information Processing Soci-
eties: Proceedings of the AFIPS 1967 Spring Joint Computer Conference, 18–20
April 1967, Atlantic City, New Jersey, USA. AFIPS Conference Proceedings, vol.
30, pp. 483–485. AFIPS/ACM/Thomson Book Company, Washington D.C. (1967)

5. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

6. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)

7. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000,
pp. 169–206. Springer, Heidelberg (2011)

8. Arbab, F., Mavaddat, F.: Coordination through channel composition. In: Arbab,
F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 22–39.
Springer, Heidelberg (2002)

9. Arvind, Gostelow, K.P., Plouffe, W.: Indeterminancy, monitors, and dataflow. In:
Rosen, S., Denning, P.J. (eds.) Proceedings of the Sixth Symposium on Operating
System Principles, SOSP 1977, Purdue University, West Lafayette, Indiana, USA,
16–18 November 1977, pp. 159–169. ACM (1977)

10. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014.
LNCS, vol. 8702, pp. 128–143. Springer, Heidelberg (2014)

11. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
New York (1990)

12. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

http://reo.project.cwi.nl/cgibin/trac.cgi/reo/wiki/Tools
http://reo.project.cwi.nl/cgibin/trac.cgi/reo/wiki/Tools
http://reo.project.cwi.nl


Proper Protocol 85

13. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum,
L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.: The NAS parallel benchmarks. IJHPCA
5(3), 63–73 (1991)

14. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proceedings of SEFM 2006, pp. 3–12. IEEE (2006)

15. Benveniste, A., Caspi, P., Le Guernic, P., Halbwachs, N.: Data-flow synchronous
languages. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 1–45. Springer, Heidelberg (1994)

16. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60, 109–137 (1984)

17. Berry, G.: Esterel and Jazz: two synchronous languages for circuit design. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, p. 1. Springer, Heidelberg
(1999)

18. Dean Brock, J., Ackerman, W.B.: Scenarios: a model of non-determinate computa-
tion. In: Dı́az, J., Ramos, I. (eds.) Formalization of Programming Concepts. LNCS,
vol. 107, pp. 252–259. Springer, Heidelberg (1981)

19. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4(2),
155–182 (1994)

20. Carbone, M., Yoshida, N., Honda, K.: Asynchronous session types: exceptions and
multiparty interactions. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM
2009. LNCS, vol. 5569, pp. 187–212. Springer, Heidelberg (2009)

21. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: a declarative language
for programming synchronous systems. In: Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages, Munich,
Germany, 21–23 January 1987, pp. 178–188. ACM Press (1987)

22. Dennis, J.B., Gao, G.R.: An efficient pipelined dataflow processor architecture. In:
Michael, G.A. (ed.) Proceedings Supercomputing 1988, Orlando, FL, USA, 12–17
November 1988, pp. 368–373. IEEE Computer Society (1988)

23. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, Heidelberg (1999)

24. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for syn-
chronous programming of real-time systems. In: Kahn, G. (ed.) Functional Pro-
gramming Languages and Computer Architecture. LNCS, vol. 274, pp. 257–277.
Springer, Heidelberg (1987)

25. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-
level structured parallel programming enablers. Softw. Pract. Exper. 40(12), 1135–
1160 (2010)

26. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

27. Halle, S.: A Study of Frameworks for Collectively Meeting the Productivity, Porta-
bility, and Adoptability Goals for Parallel Software. Ph.D. thesis, University of
California, Santa Cruz (2011)

28. Halle, S., Cohen, A.: A mutable hardware abstraction to replace threads. In:
Rajopadhye, S., Mills Strout, M. (eds.) LCPC 2011. LNCS, vol. 7146, pp. 185–
202. Springer, Heidelberg (2013)

29. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

30. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)



86 F. Arbab

31. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

32. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 273–284. ACM (2008)

33. Jongmans, S.-S., Arbab, F.: Global consensus through local synchronization: a
formal basis for partially-distributed coordination. Sci. Comput. Program. 115–
116, 199–224 (2016)

34. Jongmans, S.-S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

35. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 174–188. Springer,
Heidelberg (2013)

36. Jongmans, S.-S., Arbab, F.: Modularizing and specifying protocols among threads.
In: Proceedings of PLACES 2012. EPTCS, vol. 109, pp. 34–45. CoRR (2013)

37. Jongmans, S.-S., Arbab, F.: Toward sequentializing overparallelized protocol code.
In: Proceedings of ICE 2014, EPTCS, vol. 166, pp. 38–44. CoRR (2014)

38. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of inter-
action protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014)

39. Jongmans, S.-S., Halle, S., Arbab, F.: Reo: a dataflow inspired language for mul-
ticore. In: Proceedings of DFM 2013, pp. 42–50. IEEE (2014)

40. Jongmans, S.-S., Santini, F., Arbab, F.: Partially-distributed coordination with
Reo. In: Proceedings of PDP 2014, pp. 697–706. IEEE (2014)

41. Jongmans, S.-S., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Orches-
trating web services using Reo: from circuits and behaviors to automatically gen-
erated code. SOCA 8(4), 277–297 (2014)

42. Jongmans, S.-S.T.Q., Arbab, F.: Can high throughput atone for high latency in
compiler-generated protocol code? In: Dastani, M., Sirjani, M. (eds.) FSEN 2015.
LNCS, vol. 9392, pp. 238–258. Springer, Heidelberg (2015)

43. Jongmans, S.-S.T.Q., Santini, F., Arbab, F.: Partially distributed coordination
with Reo and constraint automata. SOCA 9(3–4), 311–339 (2015)

44. Jongmans, S.-S.T.Q.: Automata-Theoretic Protocol Programming: Parallel Com-
putation, Threads and Their Interaction, Optimized Compilation, [at a] High Level
of Abstraction. Ph.D. thesis, Leiden University (2015, submitted)

45. Kahn, G.: The semantics of a simple language for parallel programming. In:
Rosenfeld, J.L. (ed.) Information Processing, pp. 471–475. North Holland,
Amsterdam (1974)

46. Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In: IFIP
Congress, pp. 993–998 (1977)

47. Knight, T.: An architecture for mostly functional languages. In: Proceedings of
the 1986 ACM Conference on LISP and Functional Programming, LFP 1986,
pp. 105–112. ACM, New York (1986)

48. Liu, X., Xiong, Y., Lee, E.A.: The ptolemy II framework for visual languages. In:
2002 IEEE CS International Symposium on Human-Centric Computing Languages
and Environments (HCC 2001), 5–7 September 2001, Stresa, Italy, p. 50. IEEE
Computer Society (2001)

49. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)



Proper Protocol 87

50. Milner, R.: Elements of interaction - turing award lecture. Commun. ACM 36(1),
78–89 (1993)

51. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe MPI
code generation based on session types. In: Franke, B. (ed.) CC 2015. LNCS, vol.
9031, pp. 212–232. Springer, Heidelberg (2015)

52. Ng, N., Yoshida, N.: Pabble: parameterised scribble for parallel programming. In:
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2014, Torino, Italy, 12–14 February 2014, pp. 707–714.
IEEE Computer Society (2014)

53. Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, New York (2001)

54. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1995, pp. 204–213. ACM, New York (1995)

55. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Heidelberg (2014)


	Proper Protocol
	1 Preamble
	2 Introduction
	3 The Bounty of Concurrency
	4 Where's Waldo?
	5 Interaction-Centric Concurrency
	6 Overview of Reo
	7 Examples
	8 Compilation
	9 Mind the Gap
	10 Concluding Remarks
	References


