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Abstract. The notion of subtyping has gained an important role both in
theoretical and applicative domains: in lambda and concurrent calculi as
well as in object-oriented programming languages. The soundness and
the completeness, together referred to as the preciseness of subtyping,
can be considered from two different points of view: denotational and
operational. The former preciseness is based on the denotation of a type,
which is a mathematical object describing the meaning of the type in
accordance with the denotations of other expressions from the language.
The latter preciseness has been recently developed with respect to type
safety, i.e. the safe replacement of a term of a smaller type when a term
of a bigger type is expected.

The present paper shows that standard proofs of operational pre-
ciseness imply denotational preciseness and gives an overview on this
subject.

1 Introduction

A subtyping relation is a pre-order (reflexive and transitive relation) on types
that validates the principle: if σ is a subtype of τ (notation σ ≤ τ), then a term
of type σ may be provided whenever a term of type τ is needed; see Pierce [35]
(Chap. 15) and Harper [20] (Chap. 23).
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In this paper we will discuss key properties of subtyping, i.e. denotational
and operational preciseness. We will introduce these notions in the next two
paragraphs.

Denotational Preciseness. A usual approach to preciseness of subtyping for
a calculus is to consider the interpretation of a type σ (notation [[σ]]) to be a
set that describes the meaning of the type in accordance with the denotations
of the terms of the calculus, in general a subset of the domain of a model of the
calculus.

A subtyping relation is denotationally sound when σ ≤ τ implies [[σ]] ⊆ [[τ ]]
and denotationally complete when [[σ]] ⊆ [[τ ]] implies σ ≤ τ .
A subtyping relation is denotationally precise if it is both denotationally
sound and denotationally complete.

This well-established powerful technique is applied to the pure λ-calculus with
arrow and intersection types by Barendregt et al. [4], to a call-by-value λ-calculus
with arrow, intersection and union types by van Bakel et al. [2] and by Ishihara
and Kurata [25], to a wide class of calculi with arrow, union and pair types
by Vouillon [38], and to a concurrent λ-calculus by Dezani and Ghilezan [15].
More recently denotational preciseness was studied for binary sessions [11] and
synchronous multiparty sessions [16].

Operational Preciseness. Operational soundness is just the key principle men-
tioned at the beginning of this section: if σ ≤ τ , then a term of type σ may be
provided whenever a term of type τ is needed. As a simple example nat ≤ real
and a natural number can always play the role of a real number. Operational
completeness requires that, if σ �≤ τ , then there are

– a context expecting a term of type τ and
– a term of type σ

such that this context filled with this term behaves badly. As a simple example
nat �≤ bool, the negation ¬ requires a boolean argument and the term ¬5 is
stuck.

To define formally operational soundness and completeness we need a boolean
predicate bad on terms, standard typing judgements Γ � M : σ (where Γ is a
mapping from variables to types and M is a term) and evaluation contexts C.

A subtyping relation is operationally sound when σ ≤ τ implies that if (for
some ρ) x : τ � C[x] : ρ and � M : σ, then bad(C[M ]) is false, for all
C and M .
A subtyping relation is operationally complete when σ �≤ τ implies that
x : τ � C[x] : ρ and � M : σ and bad(C[M ]), for some ρ, C and M .
A subtyping relation is operationally precise if it is both operationally sound
and operationally complete.

Operational soundness immediately follows from the subject reduction theo-
rem, when the subtyping is used in a subsumption rule. A general methodology
to prove operational completeness is the following one:
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– [Step 1] Characterise the negation of the subtyping relation by inductive
rules.

– [Step 2] For each type σ define a characteristic context Cσ, which behaves
well when filled with terms of type σ.

– [Step 3] For each type σ define a characteristic term Mσ, which has only
the types greater than or equal to σ.

– [Step 4] Show that if σ �≤ τ , then bad(Cτ [Mσ]).

These four steps are the guideline of the proofs in the literature, as we will
illustrate in this paper.

Background and Related Work. Ligatti et al. [27] first define operational
preciseness of subtyping and apply it to subtyping iso-recursive types. They con-
sider a typed λ-calculus enriched with naturals, reals, pair and case construc-
tors/destructors, and roll/unroll. The predicate bad(M) holds when M reduces
to a stuck term, i.e. to an irreducible term which is not a value. They propose
new algorithmic rules for subtyping iso-recursive types and show that they are
operationally precise.

Dezani and Ghilezan [15] adapt the ideas of Ligatti et al. [27] to the setting of
the concurrent λ-calculus with intersection and union types of [14]. For the oper-
ational preciseness they take the view that evaluation of well-typed terms always
terminates. This means that the predicate bad coincides with non termination.
In this calculus applicative contexts are enough. Notably, soundness and com-
pleteness are made more operational by asking that some applications converge
instead of being typable. To sum up, the definition of operational preciseness
becomes:

A subtyping ≤ is operationally precise when σ ≤ τ if and only if there are no
closed terms M,N such that ML converges for all closed terms L of type τ
and N has type σ and MN diverges.

The main result of this paper is the operational preciseness of the subtyping
induced by the standard set theoretic interpretation of arrow, intersection and
union types.

Chen et al. [11] first give a general formulation of preciseness for session
calculi, where processes are typed by sets of pairs (channels, session types) [22].
The session types prescribe how the channels can be used for communications.
The calculus of processes includes an error process and bad(P ) holds when process
P reduces to error. The typing judgements for closed processes are of the form
� P �{a : T}, assuring that the process P has a single free channel a whose type
is T . The judgement � C[a : T ] � ∅ means that filling the hole of C with any
process P typed by a : T produces a well-typed closed process. We get:
A subtyping ≤ is precise when, for all session types T and S:

T � S ⇐⇒
(

there do not exist C and P such that:
� C[a : S] � ∅ and � P � {a : T} and C[P ] −→∗ error

)
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When the only-if direction (⇒) of this formula holds, we say that the subtyp-
ing is sound; when the if direction (⇐) holds, we say that the subtyping is
complete. The first result of [11] is that the well-known session subtyping, the
branching-selection subtyping [13], is sound and complete for the synchronous
dyadic calculus. Next, the authors show that in the asynchronous calculus, this
subtyping is incomplete for type-safety: that is, there exist session types T and
S such that T can safely be considered as a subtype of S, but T ≤ S is not
derivable by the subtyping. They propose an asynchronous subtyping system
(inspired by [32]) which is sound and complete for the asynchronous dyadic cal-
culus. The method gives a general guidance to design rigorous channel-based
subtypings respecting desired safety properties.

Dezani et al. [16] consider the synchronous version [26] of the multiparty
session calculus in [12,23]. For the operational preciseness they take the view
that well-typed sessions never get stuck. Therefore the predicate bad is true for
processes which cannot reduce, but contain pending communications. The pre-
ciseness of the branching-selection subtyping [13] is shown using a novel notion
of characteristic global type.

A framework which is closely related to the above described works is semantic
subtyping. In semantic subtyping, each type is interpreted as the set of values
having that type and subtyping is subset inclusion between type interpreta-
tions [10]. This gives a precise subtyping as soon as the calculus allows to dis-
tinguish operationally values of different types.

Semantic subtyping was first proposed by Castagna and Benzaken through
the development of the CDuce project [17]. CDuce is a modern XML-oriented
functional language. Distinctive features of CDuce are a powerful pattern match-
ing, first class functions, over-loaded functions, a very rich type system (with
arrow, sequence, pair, record, intersection, union, difference type constructs),
precise type inference for patterns and error localisation, and a natural inter-
pretation of types as sets of values. It is enriched also with some important
implementation aspects: in particular, a dispatch algorithm that demonstrates
how static type information can be used to obtain very efficient compilation
schemas.

Semantic subtyping has been also studied in [8] for a π-calculus with a pat-
terned input and in [9] for a session calculus with internal and external choices
and typed input. Types are built using a rich set of type constructors including
union, intersection and negation: they extend IO-types in [8] and session types
in [9]. Semantic subtyping is precise for the calculi of [8,9,17], thanks to the
type case constructor in [17], and to the blocking of inputs for values of “wrong”
types in [8,9].

Bonsangue et al. [6] recently have developed an elegant coalgebraic founda-
tion for coinductive types, which gives a sound and complete characterisation of
semantic subtyping in terms of inclusion of maximal traces.

Outline. Sections 2 and 3 deal with typed extensions of λ-calculus, and dis-
cuss preciseness of iso-recursive and intersection/union types, respectively. Ses-
sion calculi are considered in Sects. 4 and 5. Section 4 is devoted to synchronous
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and asynchronous binary types, Sect. 5 instead to synchronous multiparty types.
Section 6 shows how the existence of characteristic terms as defined in [Step 3]
implies denotational preciseness. Section 7 concludes with some directions for
further work.

2 Iso-Recursive Types

In [27] the authors consider a typed λ-calculus enriched with naturals, reals, pair
and case constructors/destructors, and roll/unroll. The syntax of types, terms
and values of this calculus (dubbed L→μ

+×) is given in Fig. 1.

σ ::= nat | real |σ → τ |σ ×τ |σ +τ | μ t.σ | t
M ::= n | r | succ(M) | neg(M) | fun f (x :σ ) : τ = M | MM | x | (M,M) | M.fst | M.snd |

inlσ (M) | inrσ (M) | caseM of inl x ⇒ M1 else inr y ⇒ M2 | roll(M) | unroll(M)

V ::= n | r | fun f (x :σ ) : τ = M | (V,V ) | inlσ (V ) | inrσ (V ) | roll(V )

Fig. 1. Types, terms and values of L→μ
+× .

The operational semantics of L→μ
+× is call-by-value. The operator succ reduces

only when the argument is a natural and unroll is the left inverse of roll. The
remaining reduction rules are standard.

The most interesting subtyping rule tells that μt.σ is a subtype of μt.τ if
we can derive from μt.σ ≤ μt.τ that their unfolded versions are in the subtype
relation. More precisely:

Σ,μt.σ ≤ μt.τ � σ[μt.σ/t] ≤ τ [μt.τ/t]
Σ � μt.σ ≤ μt.τ

where Σ is a set of subtyping judgments. The type system is as expected, in
particular roll and unroll correspond to fold and unfold of recursive types.

The core of the completeness proof is the construction of characteristic con-
texts and terms for closed types, as discussed in the Introduction. This construc-
tion is delicate since some types (for example μt.t) are not inhabited. The type
inhabitation is decidable and every non inhabited type is subtype of all types.
Figure 2 shows some of the characteristic contexts and terms for the types of [27].
Notice that in that paper they are used in the proof without grouping them in
a unique definition. We omit the case of the sum type being similar to that of
the product type. Also, the characteristic contexts and terms for recursive types
are missing, since they are quite tricky depending on the external constructor
obtained by unfolding the types.

For example nat → nat �≤ real → nat. The characteristic context of real → nat
is Cnat[[ ]Mreal] = succ([ ]2.5). The characteristic term of nat → nat is

fun f(x : nat) : nat = (fun g(y : nat) : nat = Mnat)(Cnat[x]),



160 M. Dezani-Ciancaglini et al.

typeσ characteristic contextCσ characteristic term Mσ

succnat [ ] 5

negreal [ ] 2.5

τ1 → τ2 Cτ2 [[ ]Mτ1 ] fun f (x : τ1) : τ2 = M

τ1 ×τ2 (Cτ1 [[ ].fst],Cτ2 [[ ].snd]) (Mτ1 ,Mτ2)

Fig. 2. Characteristic contexts and terms, where M = (fun g(y : τ) : τ2 = Mτ2)(Cτ1 [x])
and τ is the type of Cτ1 [x] when x has type τ1.

i.e.
fun f(x : nat) : nat = (fun g(y : nat) : nat = 5)(succ x).

The term Creal→nat[Mnat→nat] is then

succ((fun f(x : nat) : nat = (fun g(y : nat) : nat = 5)(succ x))2.5).

This term reduces to

succ((fun g(y : nat) : nat = 5)(succ 2.5))

which is stuck, since succ 2.5 is stuck.
The main result of [27] is:

Theorem 1. The subtyping of L→μ
+× is operationally precise.

3 Intersection and Union Types

In this section, we present and discuss the results from [15] on denotational and
operational preciseness of the subtyping relation in the setting of the concurrent
λ-calculus with intersection and union types (dubbed λ⊕‖) introduced in [14].
The syntax of types, terms, values, and total values of this calculus is given in
Fig. 3. The only atomic type is the universal type ω. There are both call-by-
name variables (ranged over by x) and call-by-value variables (ranged over by
v). The constructor ⊕ is the non-deterministic choice and the constructor ‖ is
the parallel operator.

σ ::=ω |σ →σ |σ ∧σ |σ ∨σ
M ::= x | v | (λ x.M) | (λ v.M) | (MM) | (M⊕M) | (M‖M)

V ::= v |λ x.M |λ v.M |V‖M | M‖V
W ::= v |λ x.M |λ v.M |W‖W

Fig. 3. Types, terms, values, and total values of λ⊕‖.
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The reduction relation formalises the behaviour of a machine which evaluates
in a synchronous way parallel compositions, until a value is produced. Partial val-
ues, i.e. values which are not total, can be further evaluated, and this is essential
for applications of a call-by-value abstraction (rule (βv‖)). The reduction rules
which enable this behaviour are the following

(μv)
N −→ N ′ N �∈ Val

(λv.M)N −→ (λv.M)N ′ (βv‖)
V −→ V ′ V ∈ Val

(λv.M)V −→ M [V/v]‖(λv.M)V ′

According to [14] a term is convergent if all reduction paths reach values.
The type system with intersection and union types is dually reflecting the

conjunctive and disjunctive operational semantics of ‖ and ⊕. The subtyping
relation on Type, the set of all types, is the smallest pre-order such that

1. 〈Type,≤〉 is a distributive lattice, where ∧ is the meet, ∨ is the join, ω
is the top;

2. the arrow satisfies
(a) σ → ω ≤ ω → ω;
(b) (σ → ρ) ∧ (σ → τ) ≤ σ → ρ ∧ τ ;
(c) σ ≥ σ′, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′.

Notice that the standard axiom (σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ [2,25] is
unsound for λ⊕‖, as proven in [14].

Regarding operational preciseness, divergent terms are the ones that are not
convergent and the predicate bad coincides with divergence. Closed convergent
and divergent terms are completely characterised by the types ω → ω and ω,
respectively [14].

As said in the Introduction, it is enough to consider applicative context, that
we call test tems. Figure 4 gives test and characteristic terms, where I = λx.x
and Ω = (λx.xx)(λx.xx). For example Mω→ω = λx.Ω and Nω→ω = λv.I.
More interestingly M(ω→ω)→ω→ω = λx.((λv.I)x)(λy.Ω) applied to a term
returns λy.Ω only if the term reduces to a value. Similarly N(ω→ω)→ω→ω =
λv.(λv′.I)(v(λx.Ω)) applied to a term which reduces to a value, first applies this
term to λx.Ω, and then reduces to I only if the result of this application reduces
to a value too.

The key property of test terms is:

if M is a closed term, then NσM converges if and only if M has type σ.

As a consequence σ �≤ τ implies the divergence of NτMσ, i.e. bad(NτMσ).
The denotational preciseness of this subtyping is obtained for the standard

set-theoretic interpretation of arrow, intersection and union types. The key tool
is the existence of characteristic terms, as shown in Sect. 6.

To sum up, the main result in [15] is:

Theorem 2 (Denotational and Operational Preciseness).

1. The subtyping of the λ⊕‖-calculus is operationally precise.
2. The subtyping of the λ⊕‖-calculus is denotationally precise.
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typeσ test term Nσ characteristic term Mσ

ω λ x.I Ω

τ1 → τ2 λ v.Nτ2(vMτ1) λ x.(Nτ1x)Mτ2

τ1 ∧τ2 λ x.(Nτ1 x⊕Nτ2 x) Mτ1‖Mτ2

τ1 ∨τ2 λ v.(Nτ1 v‖Nτ2 v) where τ1 ∨τ2 �= ω Mτ1 ⊕Mτ2

Fig. 4. Test and characteristic terms.

4 Binary Session Types

This section presents results from [11] stating that the well-known branching-
selection subtyping (defined in Fig. 7) is precise for the synchronous session cal-
culus. As it happens that this subtyping is incomplete for type-safety for the
asynchronous session calculus, the authors propose an asynchronous subtyping
relation and prove that it is precise for the asynchronous session calculus.

4.1 Synchronous Session Calculus

A binary session is a series of interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing com-
munication protocols. The syntax of the synchronous session calculus is given
in Fig. 5. The input process

∑
i∈I

u?li(xi).Pi waits on channel u for a label li and

a channel to replace xi inside Pi (i ∈ I). The output process sends on chan-
nel u the label l and the channel u′. The process def D in P is a recursive
agent and X〈ũ〉 is a recursive variable. The process (νab)P is a restriction which
binds two channels, a and b in P, making them co-channels, i.e. allowing them
to communicate.

P ::= 0 || X〈u〉 || ∑
i∈I

u?li(xi).Pi || u!l〈u′〉.P || P⊕P || P |P || def D in P || (ν ab)P || error

u ::= a || x D ::= X(x) = P

Fig. 5. Syntax of synchronous processes.

Operational semantics is given by a reduction relation between the synchro-
nous processes. The main rule is

[r-com-sync]

k ∈ I

(νab)(a!lk〈c〉.P |
∑
i∈I

b?li(xi).Qi) −→ (νab)(P | Qk{c/xk})
.
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sessiontype T characteristic process P(u,T )

end 0
t Xt〈u〉

&i∈I?li(Si).Ti ∑i∈I u?li(x).(P(u,Ti) |P(x,Si))⊕
i∈I !li〈Si〉.Ti ⊕

i∈I(ν ab)(u!li〈a〉.P(u,Ti) |P(b,Si))
μ t.S def Xt(x) = P(x,S) in Xt〈u〉

Fig. 6. Types and characteristic synchronous processes.

[SUB-END]
end � end

[SUB-BRA]
∀i ∈ I : Si � S′

i Ti � T ′
i

&i∈I∪J?li(Si).Ti � &i∈I?li(S′
i).T

′
i

=============================

[SUB-SEL]
∀i ∈ I : S′

i � Si Ti � T ′
i⊕

i∈I
!li〈Si〉.Ti �

⊕
i∈I∪J

!li〈S′
i〉.T ′

i

==========================

Fig. 7. Synchronous subtyping.

It describes the communication between an output (a!lk〈c〉.P ) and an input
(
∑

i∈I b?li(xi).Qi) at two co-channels a and b, where the label lk is selected and
channel c replaces xk into the k-th input branch (Qk). Other rules are standard.

The synchronous session calculus includes an error process and bad(P ) holds
when process P reduces to error. There are four kinds of processes which generate
error: a session with mismatch between corresponding output and input labels, a
session where one of two co-channels is missing, a session where two co-channels
are both subjects of outputs, and a session where two co-channels are both
subjects of inputs.

The syntax of synchronous session types is given in Fig. 6. As usual session
duality [22] plays an important rôle for session types. The function T , defined
below, yields the dual of the session type T .

&i∈I?li(Si).Ti =
⊕

i∈I !li〈Si〉.Ti

⊕
i∈I !li〈Si〉.Ti = &i∈I?li(Si).Ti

t = t μt.T = μt.T end = end

The type system is the standard one for session calculi, see e.g. [13]. The
subtyping relation is given in Fig. 7, where the double line in rules indicates that
the rules are interpreted coinductively [35] (Chap. 21). The type system enjoys
the property of subject reduction, which implies operational soundness of the
synchronous subtyping.

It can be verified that the relation ��, presented in Fig. 8, is the negation of
the synchronous subtyping.

The characteristic process offering communication T on identifier u for the
synchronous calculus, denoted by P(u, T ), is given in Fig. 6.

For type S and channel b, the characteristic context is defined as

CS,b = [ ] | P(b, S).
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[N-END R]
T �= end

end �� T

[N-END L]
T �= end

T �� end

[N-BRASEL]
&
i∈I

?li(Si).Ti �� ⊕
j∈J

!l′j〈S′
j〉.T ′

j

[N-SELBRA-SYNC]⊕
j∈J

!l′j〈S′
j〉.T ′

j �� &
i∈I

?li(Si).Ti

[N-LABEL BRA]
∃ j ∈ J ∀i ∈ I : li �= l′j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S′
j).T

′
j

[N-LABEL SEL]
∃i ∈ I ∀ j ∈ J : li �= l′j⊕

i∈I
!li〈Si〉.Ti �� ⊕

j∈J
!l′j〈S′

j〉.T ′
j

[N-EXCH BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Si �� S′

j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S′
j).T

′
j

[N-EXCH SEL]
∃i ∈ I ∃ j ∈ J : li = l′j S′

j �� Si⊕
i∈I

!li〈Si〉.Ti �� ⊕
j∈J

!l′j〈S′
j〉.T ′

j

[N-CONT BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Ti �� T ′

j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S′
j).T

′
j

[N-CONT SEL]
∃i ∈ I ∃ j ∈ J : li = l′j Ti �� T ′

j⊕
i∈I

!li〈Si〉.Ti �� ⊕
j∈J

!l′j〈S′
j〉.T ′

j

Fig. 8. Negation of synchronous subtyping.

Finally, it can be proven that T �� S implies

bad((νab)CS,b[P(a, T )]) = bad((νab)(P(a, T ) | P(b, S))).

For example (omitting 0 and final end) let T =!l1(end).?l2(end) and S =
?l2(end).!l1(end), then T �≤ S. By definition

P(a, T ) = (νc1d1)(a!l1〈c1〉.P(a, ?l2(end)) | P(d1, end))
= (νc1d1)(a!l1〈c1〉.a?l2(x).(P(a, end) | P(x, end)))
= (νc1d1)(a!l1〈c1〉.a?l2(x))

We get S =!l2(end).?l1(end) and

P(b, S) = (νc2d2)(b!l2〈c2〉.P(b, ?l1(end)) | P(d2, end))
= (νc2d2)(b!l2〈c2〉.b?l1(y).(P(b, end) | P(y, end)))
= (νc2d2)(b!l2〈c2〉.b?l1(y))

Then

(νab)CS,b[P(a, T )] = (νab)(P(a, T ) | P(b, S))
= (νab)((νc1d1)(a!l1〈c1〉.a?l2(x)) | (νc2d2)(b!l2〈c2〉.b?l1(y)))

and this last process reduces to error, since the two co-channels are both subjects
of outputs.

In [11], the main result for synchronous subtyping is:

Theorem 3 (Preciseness for Synchronous Session Calculus). The syn-
chronous subtyping relation is operationally precise for the synchronous session
calculus.

4.2 Asynchronous Session Calculus

The asynchronous session calculus is obtained from the rules for the synchronous
ones by extending the synchronous calculus of Fig. 5 with queues:
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[N-LABEL-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∀ j ∈ Jn0 : l

n0
j �= li0⊕

i∈I !li〈Si〉.Ti �� A [
⊕

j∈Jn !l
n
j 〈Snj 〉.Tn

j ]n∈N

[N-EXCH-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : l

n0
j0

= li0 Sn0j0 �� Si0⊕
i∈I !li〈Si〉.Ti �� A [

⊕
j∈Jn !l

n
j 〈Snj 〉.Tn

j ]n∈N

[N-CONT-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : l

n0
j0

= li0 Ti0 �� A [Tn
j0 ]

n∈N
⊕

i∈I !li〈Si〉.Ti �� A [
⊕

j∈Jn !l
n
j 〈Snj 〉.Tn

j ]n∈N

[N-BRA-ASYNC]
& �∈ T

T �� &i∈I?li(Si).Ti

[N-SEL-ASYNC]⊕ �∈ T⊕
i∈I !li〈Si〉.Ti

Fig. 9. Negation of asynchronous subtyping.

P :: = . . . | ab� h h:: = ∅ | l〈a〉 | h · h.

A queue ab� h is used by channel a to enqueue messages in h and by channel b
to dequeue messages from h.

Reduction rules for asynchronous processes are obtained from the rules for the
synchronous processes by replacing [r-com-sync] with the following two rules:

[r-send-async]
ab�h | a!l〈c〉.P −→ ab�h · l〈c〉 | P

[r-receive-async]
k ∈ I

ab� lk〈c〉 · h |∑i∈I b?li(xi).Pi −→ ab�h | Pk{c/xk}

In presence of queues, reduction to error includes deadlocks, that are sessions
with inputs waiting to dequeue messages from queues that will stay empty, and
orphan messages, that are messages in queues that will never be received.

To define asynchronous subtyping, the notion of asynchronous context is
introduced, that is a sequence of branchings containing indexed holes:

A :: = [ ]n | &i∈I?li(Si).Ai.

The asynchronous subtyping relation is obtained by extending synchronous sub-
typing relation by the rule:

[sub-perm-async]

∀i ∈ I ∀n ∈ N : Sn
i � Si Ti � A [Tn

i ]n∈N & ∈ A & ∈ Ti⊕
i∈I !li〈Si〉.Ti � A [

⊕
i∈I∪Jn

!li〈Sn
i 〉.Tn

i ]n∈N
=============================================================.

Using this rule we get for example !l1(end).?l2(end) ≤?l2(end).!l1(end), which
does not hold in the synchronous subtyping, as shown in previous subsection.

The negation rules of asynchronous subtyping are the rules of Fig. 8 excluding
rule [n-selbra-sync], extended by the rules of Fig. 9.

The characteristic process offering communication T on identifier u for the
asynchronous calculus, denoted by P(u, T ), is defined as in Fig. 6, but for the
case of T being

⊕
i∈I !li〈Si〉.Ti, which becomes:

⊕
i∈I

(νab)(u!li〈a〉.P(u, Ti) | P(b, Si) | ba� ∅ | ab� ∅).
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For type S and channel b, the characteristic context is defined as

CS,b = [ ] | P(b, S) | ba� ∅ | ab� ∅.

For T �� S, we can prove that there are T ′ � T and S′ ≥ S such that

bad((νab)(CS′,b[P(a, T ′]) = bad((νab)(P(a, T ′) | P(b, S′) | ba� ∅ | ab� ∅)).

Notice that S′ ≥ S if and only if S′ � S.
For example let T =!l1(end)⊕!l2(end) and S =!l1(end), then T �≤ S. By

definition

P(a, T ) = (νc1d1)(a!l1〈c1〉.P(a, end) | P(d1, end) | d1c1 � ∅ | c1d1 � ∅)⊕
(νc2d2)(a!l2〈c2〉.P(a, end) | P(d2, end) | d2c2 � ∅ | c2d2 � ∅)

= (νc1d1)(a!l1〈c1〉 | d1c1 � ∅ | c1d1 � ∅)⊕
(νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅).

We also get S =?l1(end) and

P(b, S) = b?l1(y).(P(b, end) | P(y, end)) = b?l1(y).

Then

(νab)CS,b[P(a, T )] = (νab)(P(a, T ) | P(b, S) | ba� ∅ | ab� ∅)
= (νab)((νc1d1)(a!l1〈c1〉 | d1c1 � ∅ | c1d1 � ∅)⊕

(νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅) |
b?l1(y) | ba� ∅ | ab� ∅)

−→ (νab)((νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅) |
b?l1(y) | ba� ∅ | ab� ∅)

−→ (νab)(νc2d2)(d2c2 � ∅ | c2d2 � ∅ |
b?l1(y) | ba� ∅ | ab� l2〈c2〉)

−→ error

where the reduction to error is due to the mismatch between the input label l1
and the label l2 of the message.

In [11], the main result for asynchronous subtyping is:

Theorem 4 (Preciseness for Asynchronous Subtyping). The asynchro-
nous subtyping relation is operationally precise for the asynchronous session
calculus.

5 Multiparty Session Types

In [16] the authors show operational and denotational preciseness of the subtyp-
ing introduced in [13] for a simplification of the synchronous multiparty session
calculus in [26]. The calculus is obtained by eliminating both shared channels
for session initiations and session channels for communications inside sessions.
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P ::= 0 || X || p?�(x).P || p!�(e).P || P+P || if e then P else P || μX .P

::= p�P || |

Fig. 10. Processes and multiparty sessions.

S ::= nat || int || bool

G ::= p → q : {�i(Si).Gi}i∈I || μ t.G || t || end

T ::=
∧
i∈I p?�i(Si).Ti || ∨

i∈I q!�i(Si).Ti || μ t.T || t || end

Fig. 11. Sorts, global types and multiparty session types.

A multiparty session is a series of interactions between a fixed number of
participants, possibly with branching and recursion, and serves as a unit of
abstraction for describing communication protocols. The syntax of processes and
multiparty sessions is given in Fig. 10. The values are natural numbers n, integers
i, and boolean values true and false. The expressions e are variables or values or
expressions built from expressions by applying the operators succ, neg,¬,⊕, or
the relation > . The input process p?�(x).P waits for an expression with label �
from participant p and the output process q!�(e).Q sends the value of expression
e with label � to participant q. The external choice P +Q offers to choose either
P or Q. The process μX.P is a recursive process. An equi-recursive view is taken,
not distinguishing between a process μX.P and its unfolding P{μX.P/X}. If
p � P is well typed (see typing rules in [16]), then participant p does not occur
in process P , since we do not allow self-communications.

The computational rules of multiparty sessions are closed with respect to the
structural congruence (defined as expected) and reduction contexts (empty and
parallel composition). Here we recall only the main rule [r-comm] which states
that participant q sends the value v choosing label �j to participant p which
offers inputs on all labels �i with i ∈ I.

[r-comm]

j ∈ I e ↓ v

p �
∑
i∈I

q?�i(x).Pi | q � p!�j(e).Q −→ p � Pj{v/x} | q � Q

The value v of expression e (notation e ↓ v) is as expected, see [16]. The successor
operation succ is defined only on natural numbers, the negation neg is defined
on integers (and then also on natural numbers), and ¬ is defined only on boolean
values. The internal choice e1 ⊕ e2 evaluates either to the value of e1 or to the
value of e2.

In order to define the operational preciseness of subtyping it is crucial to
formalise when a multiparty session contains communications that will never be
executed.
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[SUB-END]
end � end

[SUB-IN]
∀i ∈ I : S′

i ≤: Si Ti � T′
i∧

i∈I∪J
p?�i(Si).Ti �

∧
i∈I

p?�i(S′
i).T

′
i

==============================

[SUB-OUT]
∀i ∈ I : Si ≤: S′

i Ti � T′
i∨

i∈I
p!�i(Si).Ti �

∨
i∈I∪J

p!�i(S′
i).T

′
i

=============================

Fig. 12. Subtyping of multiparty session types.

[NSUB-ENDL]
T �= end

T �� end

[NSUB-ENDR]
T �= end

end �� T

[NSUB-DIFF-PART]
p �= q †,‡ ∈ {?, !}

p† �1(S1).T1 �� q‡ �2(S2).T2

[NSUB-OUT-IN]
p!�1(S1).T1 �� p?�2(S2).T2

[NSUB-IN-OUT]
p?�1(S1).T1 �� p!�2(S2).T2

[NSUB-IN-IN]
�1 �= �2 or S2 �≤: S1 or T1 �� T2

p?�1(S1).T1 �� p?�2(S2).T2

[NSUB-OUT-OUT]
�1 �= �2 or S1 �≤: S2 or T1 �� T2

p!�1(S1).T1 �� p!�2(S2).T2

[NSUB-INTR]
T �� T1 or T �� T2

T �� T1 ∧T2

[NSUB-UNIL]
T1 �� T or T2 �� T

T1 ∨T2 �� T

[NSUB-INTL-UNIR]
∀i ∈ I ∀ j ∈ J Ti �� T′

j∧
i∈I

Ti ��
∨
j∈J

T′
j

Fig. 13. Negation of subtyping of multiparty session types.

Definition 1. A multiparty session M is stuck if M �≡ p � 0 and there is no
multiparty session M ′ such that M −→ M ′. A multiparty session M gets stuck,
notation stuck(M ), if it reduces to a stuck multiparty session.

A stuck multiparty session is a bad multiparty session, i.e. bad(M ) = stuck(M ).
The type system is the simplification of that in [26] due to the new formula-

tion of the calculus. Figure 11 contains syntax of sorts, global types and session
types.

Global types describe the whole conversation scenarios of multiparty ses-
sions. Session types correspond to projections of global types on the individual
participants.

Subsorting ≤: on sorts is the minimal reflexive and transitive closure of the
relation induced by the rule: nat ≤: int. Subtyping � on session types takes into
account the contra-variance of inputs, the covariance of outputs, and the stan-
dard rules for intersection and union. Figure 12 gives the coinductive subtyping
rules.

The proof of operational soundness of subtyping follows from the subsump-
tion rule and the safety theorem of the type system.

The proof of operational completeness comes in four steps as stated in Intro-
duction.
The characterisation of the negation of the subtyping is given in Fig. 13.
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session type T characteristic process P(T)

end 0

t Xt

p?�(nat).T′ p?�(x).if succ(x) > 0 thenP(T′) elseP(T′)

p?�(int).T′ p?�(x).if neg(x) > 0 then P(T′) elseP(T′)

p?�(bool).T′ p?�(x).if ¬x thenP(T′) elseP(T′)

p!�(nat). pT !�(5).P(T′)

p!�(int).T′ p!�(−5).P(T′)

p!�(bool).T′ p!�(true).P(T′)

T1 ∧T2 P(T1)+P(T2)

T1 ∨T2 if true⊕ false thenP(T1) elseP(T2)

μ t.T′ μXt.P(T′)

Fig. 14. Characteristic processes.

The characteristic process P(T) of type T is defined in Fig. 14 by using the
operators succ, neg, and ¬ to check if the received values are of the right sort
and exploiting the correspondence between external choices and intersections,
conditionals and unions.

The authors define the characteristic global type G (T, p) of type T for partic-
ipant p, that describes the communications between p and all participants which
occur inT (notation pt{T}). Moreover, after each communication involving p and
some q ∈ pt{T}, participant q starts a cyclic communication involving all par-
ticipants in pt{T} both as receivers and senders. The characteristic context for
p �P(T) is built using the characteristic global type of type T for participant p.

We do not give here the definitions of characteristic global types and charac-
teristic contexts, we only show an example. Let T = p1!�1(nat).p2!�2(nat) and
T′ = p2!�2(nat).p1!�1(nat). Clearly T �≤ T′ and P(T) = p1!�1(5).p2!�2(5). The
characteristic context for p �P(T) is [ ] | p1 � p2?�2(x)... | p2 � p?�2(x)... and the
process

p � p1!�1(5).p2!�2(5) | p1 � p2?�2(x)... | p2 � p?�2(x)...

is stuck, since participant pwants to send a message to participant p1, who instead
is ready to receive a message from participant p2, who in turn expects a message
from participant p.

The main result of [16] is:

Theorem 5. The synchronous multiparty session subtyping is operationally
precise.

6 Characteristic Terms for Denotational Preciseness

It is standard [11,15,16,21] to interpret a type σ as the set of closed terms typed
by σ, i.e.

[[σ]] = {M | � M : σ}
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In this case denotational soundness immediately follows from the subsump-
tion rule. Moreover, the existence of characteristic terms as defined in [Step 3]
at page 3 implies denotational completeness. By definition characteristic terms
enjoy the following key property:

� Mσ : τ implies σ � τ.

We get denotational completeness, since if σ �� τ , then Mσ ∈ [[σ]], but Mσ �∈ [[τ ]].

Theorem 6 (Denotational Preciseness). The existence of characteristic
terms for a subtyping relation implies its denotational preciseness.

This theorem implies the denotational preciseness of the subtypings which
are shown to be operationally precise in previous sections. In particular the
denotational preciseness of L→μ

+× is new, since Ligatti et al. [27] only consider
operational preciseness.

7 Conclusion

The present paper discusses some recent results of preciseness for subtyping of
typed functional and concurrent calculi.

Operational completeness requires that all empty (i.e. not inhabited) types
are less than all inhabited types. This makes unfeasible an operationally com-
plete subtyping for the pure λ-calculus, both in the case of polymorphic types
[28] and of intersection and union types. In fact inhabitation is undecidable for
polymorphic types being equivalent to derivability in second order logic, while
[37] shows undecidability of inhabitation for intersection types, which implies
undecidability of inhabitation for intersection and union types.

An interesting open problem we plan to study is an extension of λ-calculus
enjoying operational preciseness for the decidable subtypings between polymor-
phic types discussed in [28,36].

The formulation of preciseness along with the proof methods and techniques
described in this paper could be useful to examine other subtypings and cal-
culi. Our future work includes the applications to higher-order processes [29–31],
polymorphic types [7,18,19], fair subtypings [33,34] and contract subtyping [3].
We plan to use the characteristic processes in typecheckers for session types.
More precisely, the error messages can show processes of given types when type
checking fails. One interesting problem is to find the necessary and sufficient
conditions to obtain completeness of the generic subtyping [24]. Such a charac-
terisation would give preciseness for the many type systems which are instances
of [24]. The notion of subtyping for session types is clearly connected with that
of type duality. Various definitions of dualities are compared in [5], and we plan
to investigate if completeness of subtyping can be used in finding the largest safe
duality.

A last question we plan to investigate is whether preciseness of subtyping is
meaningful for object-oriented calculi [1].
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