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Abstract. The concept of roles is a promising approach to cope with
context dependency and adaptivity of modern software systems. While
roles have been investigated in conceptual modeling, programming lan-
guages and multi-agent systems, they have been given little consideration
within component-based systems.

In this paper, we propose a hierarchical role-based approach for mod-
eling relationships and collaborations between components. In particu-
lar, we consider the channel-based, exogenous coordination language Reo
and discuss possible realizations of roles and related concepts. The static
requirements on the binding of roles are modeled by rule sets expressed
in many-sorted second-order logic and annotations on the Reo networks
for role binding, context and collaborations, while Reo connectors are
used to model the coordination of runtime role playing. The ideas pre-
sented in this paper may serve as a basis for the formalization and formal
analysis of role-based software systems.

1 Introduction

Separation of concerns [19] is a well-established and accepted principle which
appears in many modeling languages for computer systems. For instance, exoge-
nous coordination languages such as Reo [2] aim at a clear separation of com-
putational aspects and coordination (for a survey on coordination languages,
cf. [38]). Within Reo, components encapsulate the operational behavior at the
interface level and capture the computational aspects. For coordinating the com-
ponents exogenously, a network of channels is used, which allows for any kind of
synchronous and asynchronous communication. A further prominent example for
separation of concerns is the distinction between entities and their relationships
that is used, e.g., within the entity-relationship model for modeling relational
databases. Entities and relationships are naturally complemented by the con-
cept of roles [43]. Roles are often considered as placeholders in relationships and
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E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 122–139, 2016.
DOI: 10.1007/978-3-319-30734-3 10



Modeling Role-Based Systems with Exogenous Coordination 123

collaborations that are filled, i.e., played, by entities [41]. In this sense, roles are
an abstraction of the expected behavior of the role player. They can be dynam-
ically acquired and dropped by the role player, depending on the context and
the relationships between their respective role players. Consider the example
of a soccer player who participates in a local team and has the fortune to be
also a player of the national team. In one team, he may play as a defender,
while in the other team he plays as a midfielder. The respective role he acquires
thus depends on the team he currently plays in, i.e., its local or national con-
text. The team describes a collaboration by the roles of the team’s players and
additionally defines the relationships between the players through their roles as
well. This justifies viewing roles as intermediaries between entities and relation-
ships. Moreover, it promotes a further separation of concerns: roles encapsulate
the varying aspects and behaviors of role players in different contexts. Therefore,
roles improve the maintainability and extensibility of context-dependent systems
with dynamically emerging collaborations between entities.

Although roles are intuitive and commonly understood, there is no generally
accepted definition of roles [45]. Guarino and Welty stated in [23] that roles
are such entities for which the ontological characterizations of anti-rigidity and
dependence hold. Rigidity denotes that a property holds for an entity at all times
and independently from the context, e.g., the property of being a person is rigid
as it holds until the entity ceases to exist. The dual term anti-rigidity denotes
properties that can cease to hold. For instance, a person can be a customer,
but can also stop being a customer without ceasing to be a person. The second
ontological notion of dependence describes entities whose existence depends on
another entity, e.g., a customer is dependent on a vendor. Additionally, both cus-
tomer and vendor depend on context, i.e., the exchange of money and goods. In
the area of multi-agent systems and agent coordination, roles are widely regarded
as an abstraction of behavior and are associated with a set of requirements,
capabilities and obligations [13]. An agent must satisfy requirements in order to
play a certain role and engages in collaborations with other agents according
to its obligations. In object-oriented modeling and programming languages, the
only commonly accepted trait of roles is that they can be played by unrelated
objects [36,43]. For surveys about how roles can be further characterized, we
refer to [36,43,45].

Towards modeling and designing role-based systems, several approaches have
been proposed in the literature. In the Agent-Group-Role (AGR) meta-model for
organizations in multi-agent systems [21,22], related agents play roles in groups.
The group manager, which is a special role, coordinates role acquisition and
removal of other actors. The role-oriented programming environment ROPE [11]
uses a coordination language derived from Petri nets. The BRAIN proposal sup-
ports the analysis, design and implementation of role-based agent systems [14].
Within this approach, the notion of agent evolution as a central concept is intro-
duced [12]. In the Actor-Role-Coordinator (ARC) approach, an agent system is
divided in three distinct layers consisting of agents, roles and coordinators [42].
Roles are used as an abstraction of agent behavior and coordinate a group of
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agents by means of message manipulation. Fasli presented a multi-modal logic
framework based on the BDI paradigm (beliefs, desires, intentions) [20]. For a
survey of role-based agent interaction models, see [13]. An operational model
for role-based systems following the so-called Helena approach was presented
in [24], where components play roles in groups to collaborate towards a goal.
Their formal model combines relational and context-dependent roles and allows
the application of model-checking techniques to reason about, e.g., reachability
of the collaboration goal.

In this paper, we adopt the notion of roles that is commonly found in concep-
tual modeling (cf., e.g., [43]). Particularly, we rely on the meta-model for roles by
Kühn et al. [35]. There, the concept of compartments is introduced, which cap-
tures both the collaborative and context-dependent nature of roles. Many role-
based approaches consider either the collaborative or context-dependent aspect
of roles, but not their combination [36,43]. As roles constitute intermediaries
between entities and their relationships, and can be played by their assigned
role players depending on their contexts, the coordination of roles is a central
point when modeling role-based systems. Thus, it is rather natural to employ
specialized coordination languages to describe role playing. However, coordina-
tion languages with roles and contexts have been given little consideration in
the literature. For instance, [44] compared Reo with the ARC model and the
Russian Reflective Dolls (RRD) approaches but focuses mainly on the expres-
sivity of coordination languages, rather than on role-based systems.

The major goal of this paper is to provide first steps towards a theory of
role-based exogenous coordination principles. For this, we rely on the channel-
based coordination language Reo and show how to embed role-specific concepts.
While previous work on role-based coordination mainly deals with monolithic
approaches annotating role-playing agents, our framework is compositional and
introduces roles components that might have their own behavior and are linked
to their players via networks of channels that orchestrate the role-playing mech-
anisms. Role components can be bound to atomic components and compart-
ments. Atomic components are standing for basic objects without incorporating
role-based behaviors. Compartments are formalized by sets of role components,
capable to formalize relationships or collaborations. By a set of rules expressed
with logical formulas, we define static constraints on possible role bindings. We
show that (as compartments describe sets of roles) many-sorted second-order
logic provides an appropriate formalism with useful applications. Based on the
logical characterization of role binding, the actual binding is modeled using coor-
dination glue code in the form of Reo connectors to connect role players with
role components and perform exogenous coordination to guarantee correct role
playing. By annotating the modeled Reo network with compartments and role
bindings, an organizational view of the system is induced.

The embedding of our formalism in Reo allows the application of the full
machinery that has been developed for Reo also in the scope of role-based sys-
tems. In particular, the formal semantics for Reo [4,10,15,26] facilitate formal
analysis and verification. Izadi et al. [25] introduced model checking techniques
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for Reo networks using compositional reduction and abstraction techniques.
In [16], Clarke presented a temporal logic and model-checking techniques for
Reo networks with dynamic reconfigurations. The tool Vereofy [7,8] enables the
verification of Reo connectors by means of model checking. Pourvatan et al. [39]
provided an analysis technique based on symbolic executions of Reo networks.
Kokash et al. [32,33] developed mappings from semantic formalisms for Reo to
the process algebraic specification language of mCRL2 to enable data flow analy-
sis in Reo networks. Proença and Clarke [40] presented data abstraction tech-
niques for Reo networks. To reason about quantitative properties, Reo networks
have been extended with timing constraints [5] and stochastic annotations [6,37].
These existing formalisms and tools for formal analysis and verification provide
a well-grounded foundation that allow reasoning about role-based properties.

Outline: After a short primer on the exogenous coordination language Reo in
Sects. 2 and 3 presents our framework for modeling role-based systems in Reo.
There, we start with the building blocks to model roles, then illustrate role play-
ing of atomic components and compartments and end with the formal framework
on role binding. In Sect. 4, we discuss the application of formal analysis tech-
niques and further research raised by our new framework.

2 A Short Primer on Reo Networks

We provide here a brief, high-level overview of the main concepts of Reo as
well as the graphical representations we use in this paper for depicting Reo net-
works. For further details we refer to [2,10]. A Reo network, also called Reo
circuit, is built from components, channels and nodes. In general, components
serve to encapsulate operational behavior and can interact with the rest of the
network via one or more interface ports (depicted as ◦). Keeping to the spirit
of exogenous coordination, with the coordination glue code between the com-
ponents being formed by the Reo network, components generally do not know
and need not be concerned about the environment in which they are used. Var-
ious semantics for Reo networks have been considered in the literature (see,
e.g., [4,10,15,26]). On an intuitive level, it makes sense to think in terms of
tokens that can be created, propagated, duplicated and consumed by the vari-
ous parts of the network and that might optionally carry additional information
(data). Channels in Reo have two channel ends and provide a rich variety of
ways in which the activity at their incoming and outgoing ends can be related.
Numerous channel types are predefined and the user may additionally provide
customized channel semantics as needed. One of the most basic channels is the
synchronous channel , which atomically propagates a token from its incom-
ing end to its outgoing end. In contrast, the FIFO1 channel can consume
a token at its incoming end, store it in a single buffer cell, and can then prop-
agate the token (and its data) later on via its outgoing end. Channels do not
have to be unidirectional. For example, the synchronous drain channel has
two incoming ends and may only consume tokens at both ends simultaneously.
In contrast, the asynchronous drain can only consume a token at exactly
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one of its ends at the same time. Another important channel is, e.g., the filter
channel, whose behavior depends on the concrete data attached to a token. In
case that the data matches the corresponding filter condition, the filter channel
behaves as a synchronous channel and blocks otherwise. All these channels can
serve as the basic building blocks for ensuring synchronicity and asynchronicity
between different parts of the Reo network. The channel ends can connect to the
interface ports of components as well as to Reo nodes, which serve to coordi-
nate the flow of tokens between the connected channel ends. The standard Reo
node (depicted as •) exhibits a merger-replicator semantics for passing tokens
from the connected channel ends: Simultaneously, on the input side, it will non-
deterministically choose exactly one of the available tokens (merge semantics).
On the output side, it will propagate the token to all connected channel ends
(replication semantics), duplicating as necessary. Crucially, a token can only be
passed on if all the channel ends connected on the output side of the node are
willing to consume the token simultaneously. This behavior allows for the elegant
synchronization of an arbitrary number of connected channel ends. A variant of
the standard node is the router node (depicted as ⊗), which retains the merger
semantics on the input side but, in each step, propagates the token to exactly
one of the connected channel ends on the output side.

From these basic ingredients, Reo networks representing a wide variety of
interaction and coordination patterns can be built. A Reo network that provides
such coordination is called a connector. This clear separation of computation
inside components and coordination between components allows the construc-
tion of systems from reusable and easily exchangeable components and connec-
tors. However, as the number of components of the system grows, Reo networks
become increasingly complex. The ability to hierarchically encapsulate Reo net-
works into new components that can be used as building blocks on higher levels
enables convenient separation of concerns and eases the design process of Reo
networks. For this, the internal behavior of the Reo network is hidden from a
higher-level Reo network perspective and interface ports are defined to allow for
coordination of the new constructed component using a hiding mechanism.

Constraint automata [10] provide a compositional operational semantics for
Reo, which enables standard verification techniques developed for labeled tran-
sition systems (see, e.g., [7,8,30,31,33]). This includes verification both of the
coordination patterns in a network and – whenever automata-based specifica-
tions of the components’ behavior are available – of the whole system.

3 Modeling Roles and Relationships in Reo

We introduce the concept of roles in the exogenous coordination language Reo
to provide a methodology for constructing component-based systems. The Reo
components we consider can be arbitrary Reo networks with interface ports aris-
ing, e.g., from hiding internal behaviors. On top of the Reo components used in
the Reo network to model the system, also the role-based view on the network
is organized in a hierarchical fashion. However, in contrast to the hiding opera-
tor applied to Reo networks to constitute components, we annotate role-specific
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information to the components itself, providing a role-based modeling hierarchy
orthogonal to the component-based modeling hierarchy of the Reo coordination
language. The basic building blocks of this hierarchy are atomic components,
role components and compartments. Atomic components stand for basic enti-
ties or agents which do not contain any role-specific behaviors, e.g., a person, a
computer participating in a network, or a daemon run by an operating system.
Role components encapsulate role-specific behaviors which enhance capabilities
of entities, e.g., a soccer player role which can be played by a person, a server
role which can be played by a computer within a network, or a scheduling role
enhancing a daemon functionality. Compartments are built by collections of
roles, i.e., by annotating sets of role components. They model relationships, col-
laborations and contexts of entities playing certain roles. For instance, following
the examples mentioned above for atomic components and role components, a
soccer team defines the context some soccer players are playing in, a file transfer
compartment models the protocol to exchange data between servers and clients,
or a desktop compartment coordinates the execution of daemons on desktop
computers (which differs from the daemon coordination on server platforms).
Compartments itself may serve as entities which also can play roles. Thus, the
annotation of Reo components as atomic or the annotation of sets of role com-
ponents as compartments, which both can be bound to roles, forms a role-based
hierarchy of the Reo network. Obviously, the binding process of roles goes along
with the modeling of the role-based system and should follow certain rules. For
instance, a male person would in general not be bound to a daughter or mother
role. We express such constraints within logical formulas in many-sorted second-
order logic over possible annotations to the role-based Reo network.

In the following, we describe our approach for modeling role-based Reo net-
works in detail. For this, we follow the steps usually undertaken while modeling a
role-based system within our framework. First, we introduce the building blocks
of role components and how they are bound to (atomic) components. Then, we
describe the role hierarchy established through compartments and their roles.
Although the logical formulas for the rules of role binding on atomic components
and compartments are usually fixed at the beginning of the modeling process
(and possibly refined slightly during the construction of the Reo network), we
introduce the formal framework for these rules at the end of this section. The
reason for choosing this order is twofold. On the one hand, we would like to
stepwise introduce the ingredients required to model role-based Reo networks
in the order which forms the modeling hierarchy. For the formal framework of
constraints on role bindings, however, all these ingredients have to be assumed
as given. On the other hand, the formal framework for role-binding constraints
does not require a Reo network with role-based annotations and can be used for
more general purposes, not relying on Reo as coordination language. Thus, we
describe the role-binding constraints separately from the Reo network modeling.

3.1 Representation of Roles

Components differ conceptually from both agents and objects. We con-
sider the notion of components as an abstraction of behavior with a well
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defined interface [1]. Indeed, a component can represent both an agent or an
object or even sets thereof. Adopting the notion of roles as sets of requirements
and obligations, roles could be modeled directly in the component-based frame-
work of Reo by incorporating all role behaviors in Reo components. However, this
approach leads to monolithic components that combine both their own and their
roles’ behavior. Hence, following this approach, there is no direct separation of
concerns between behaviors of agents and objects and their capabilities enacted
by the specific roles they play. Thus, modeling agents requires the knowledge
of all roles and their behavior beforehand, which is in contrast to a composi-
tional modeling approach. We thus propose a different approach where roles are
considered as first-class entities that are represented and implemented by com-
ponents. This approach has several important implications. Since a role instance
is effectively a component, it can have its own state and behavior. Therefore,
the role-specific behavior is encapsulated and not distributed over numerous
components. Furthermore, this means a role can be played by several unrelated
components. In our framework, a role adapts a component to a specific context,
enabling the component to collaborate with other components in the same con-
text. For example, a role component can implement a special communication
protocol. The idea of adapting components by role-playing fits into the exoge-
nous coordination model of Reo, because a component does not need to “know”
the roles it plays. Furthermore, this approach eases reasoning about role-based
systems as basic behaviors from agents and behaviors arising by role playing are
separated and can be distinguished already during the modeling process.

3.2 Role Binding and Role Playing

To describe the concept of role binding and role playing incorporated into our
framework, we first consider the basic case where both the role player and the
role itself are modeled by Reo components. Before an atomic component can play
certain roles, the roles must be bound to the component. The binding is real-
ized by creating a Reo connector between the role components and the atomic
component. This binding connector serves two tasks: It enables the atomic com-
ponent to play the bound roles, and it realizes the coordination between the role
components and the atomic component.

Every role comes with a set of capabilities and requirements. The capabil-
ities gained by playing a role are encapsulated in the role component. A role
component may provide additional ports, which equips the atomic component
with additional means for communication. Obviously, a role component can only
be bound to certain atomic components. These requirements are reflected in the
set of ports the atomic component must provide and the set of rules specified in
second-order logic over role names which we define in the last part of this section.

For the construction of the role binding connector, the full Reo framework can
be employed. Thus, the binding connector may be arbitrarily complex and can
implement various means of interaction and coordination between the atomic
component and its role components. In the following illustrations, we depict
atomic components as standard Reo components and role components with
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rounded corners. Role binding is indicated by a dotted area around one atomic
component and its bound roles.

Depending on how a role adapts an atomic component, different connectors
may be appropriate. If a role component only adds additional behaviors, a con-
nection realized by a standard Reo node is sufficient, as shown in Fig. 1 (a).
Here, the output of the component C and role component R is merged, but R
can neither modify nor block the output of C (assuming fairness). In the oppo-
site case, the role binding removes or suppresses certain behavior of the atomic
component. Here, the role component acts as a filter that only lets pass certain
output data. This functionality can be realized by the connector shown in (b).
The synchronous drain channel forces the synchronization between C and R for
every outgoing message. Thus, if R refuses to synchronize, C cannot complete its
send operation. Since the synchronous drain consumes both incoming messages,
R the role component cannot add behavior by forging additional output data.
In the most general case, a bound role component may suppress or modify any
output of the atomic component and can create output data on its own as well.
This is realized by the connector shown in (c), where all output data of C flows
through R.

Obviously, the binding pattern shown in (c) subsumes both (a) and (b),
making them to seem redundant. However, the fact that the role component
in (a) cannot modify or suppress output data is apparent in the binding con-
nector, while in (c) one would have to examine the implementation of the role
component to establish the same guarantee. Thus, by using behavior-restricting
binding connectors, certain guarantees can be established without taking the
components’ concrete implementations into account. This also illustrates the
compositional modeling approach for role-based systems where the coordination
between roles is visible from the glue code between the role components and the
playing atomic component.

While in Fig. 1(a) to (c) only one role is bound, a binding connector may also
bind more than one role component to an atomic component, as exemplified in
Fig. 1(d). Furthermore, the binding can introduce additional interface ports. The
Reo networks N1 and N2 between the atomic component and the role components
coordinate the role playing. Depending on the desired behavior, different connec-
tors may be used in place of N1 and N2. For example, placing a router node (⊗)
between C and R1,R2, · · · ,Rn ensures that only exactly one role can be played
at any given time. Contrarily, by using a standard Reo node (•) for N1 all bound
roles must be played at the same time. The network N2 determines the output
behavior. For instance, if a standard Reo node is used, the output of exactly one
role component is selected nondeterministically and sent to all output ports. Cer-
tainly, more complex connectors may be used for N2, such as a connector that
merges the output data of the role components by creating tuples.

To illustrate the binding of role components to an atomic component in more
detail, we turn to our first running example that shows a concrete implementa-
tion of the pattern presented in Fig. 1(d).
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Fig. 1. Patterns for binding role components to an atomic component

Example 1. Figure 2 depicts a wine vending machine. The role components
“white” and “red” add the capability to serve white wine and red wine, respec-
tively. This is modeled by a pattern similar to Fig. 1(d) with two roles. For a for-
mal semantics of the depicted Reo network, a compatible formalism to describe
its components is required. In Fig. 3 we show two constraint automata [10], one
capturing the operational behavior of the vending machine (without wine serving
capabilities) and one for each wine role component. These constraint automata
combined with the depicted Reo network directly yield the formal semantics for
the vending machine, i.e., a constraint automaton modeling the whole behavior of
the wine vending machine. Without any role playing, the wine vending machine
dispenses drinks directly when it received the payment. After binding the white
and red-wine role, the respective wine is only dispensed after the selection port
is activated through exogenous coordination.

Until now, we only considered role binding which is a prerequisite for role
playing. In our approach, a role is actively played if the behavior of its role
component is observable, i.e., whenever one or more of its ports are active.
Clearly, not all possible combinations of active roles are useful or valid. In our
example of a wine vending machine, which is able to serve both red and white
wine, it should not occur that both roles are played at the same time, i.e.,
eventually serving ros? wine. Thus, a binding connector not only connects an
atomic components and its role components, but also coordinates role playing.
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Fig. 2. Role binding connector of a wine vending machine

Fig. 3. Constraint automata for the vending machine and one wine role

In our wine vending machine, the merger semantics of the Reo node (on the
right) ensures that only one role component can be active at the same time.

3.3 Role Relationships and Compartments

Roles often depend on one or more counter-roles [23]. Consider again Example 1
of a wine vending machine. Surely, a vending machine is only useful if there are
customers that buy the goods it offers. Thus, both the white and red roles are
dependent on a white wine customer and a red wine customer, respectively. While
the previous section dealt with the relationship of role components and their role
player, this section focuses on the relationships between role components.

Similar to role binding, role relationships are realized by Reo connectors
between role components. The purpose of a role relationship connector is the
coordination of role components, i.e., it influences and controls role playing. For
instance, the connector depicted in Fig. 4 ensures that the vending machine plays
the white role whenever the person plays the white wine customer role. As for
role binding connectors, the coordination realized by the relationship connector
can be arbitrarily complex. In our example, the connector has two purposes.
First, it serves as a sequencer that allows for selecting wine only after money
has been paid, modeled by the upper FIFO1 channels ( depicts a filled
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Fig. 4. Relationship connector in the wine transaction compartment

FIFO1 channel). Second, it disallows simultaneous selection of white and red
wine, ensured by the router node in the center (depicted as ⊗).

Roles not only depend on relationships with other roles, but also on a con-
text. Clearly, a person playing the white wine customer role cannot buy wine
from a soda vending machine. Only in connection with a white wine role in a
wine transaction context the white wine customer role can be played. We adopt
the notion of compartments [36] as a representation of context and the collab-
oration of its roles. Compartments contain sets of role components and their
role relationship connectors, depicted by a dashed rectangle surrounding their
contained role components (see Fig. 4).

An important aspect of the wine transaction compartment is the payment.
The customer may choose to pay using a credit card or paying cash. But then,
the transaction itself plays the role of a money transfer in a bank compartment.
Thus, not only atomic components, but also compartments themselves can play
roles. Since compartments are sub-networks that may have external ports, the
role binding approach presented in Sect. 3.2 can be applied to compartments
as well.

As every role component is part of a compartment and every compartment
can play roles itself, our modeling approach is hierarchical. Starting from atomic
components as basic building blocks, role binding can be nested arbitrarily deep.
Returning to our running example, the bank compartment itself may play the
role of a borrower of another bank. Again, this bank can also play the role of a
borrower of yet another bank, and so on.
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3.4 Role-Based Reo Networks and Role-Binding Constraints

To formalize Reo networks modeling role-based systems, we use the concept
of types. Types abstract away actual operational behavior and coordination to
encapsulate the role-based view on parts of the Reo network. Every role com-
ponent, atomic component or compartment as they appear during the modeling
process illustrated in the last sections will be assigned a type. For what follows,
let A be the set of atomic component types, R the set of role component types,
and C the set of compartment types. During the modeling process of role-based
Reo networks, the types are usually known beforehand.

Definition 1. A role-based Reo network is a tuple (N , Catom, Crole,Δ, β,
typeatom, typerole, typecprt) where

– N is a Reo network over a set C of components,
– the set Catom of atomic components and the set Crole of role components are

disjoint subsets of C,
– Δ ⊆ 2Crole is the set of compartments,
– β : Crole → Catom ∪ Δ is a total function binding roles to atomic components

or compartments,
– typeatom : Catom → A, typerole : Crole → R and typecprt : Δ → C anno-

tate atomic components, role components and compartments with their type,
respectively.

In Example 1 we did not distinguish between types and their instances resulting
in the role-based Reo network. Thus, the types can be assumed to agree with
the instance names in this case. To illustrate how types are incorporated in role-
based Reo networks, we chose an example from the soccer domain, which will
serve as the running example for the rest of this section.

Example 2. Let A = {person}, R = {keeper, defender,midfielder, attacker}, and
C = {SoccerTeam,Tournament} be types. Figure 5 depicts a part of a role-based
Reo network, where the type assignment to some instance is done by captions
of the form “instance : type”. Frank as a person is capable of playing the role
of a defender in both, his local and the national team. Whereas in the local
team he plays with number 16 (as an instance of a player in the team), he
has the role of number 7 in the national team. Edwin, as the second person we
consider, can play the role of the keeper in the national team. Besides other
players not depicted in Fig. 5, Frank and Edwin can take part in a world cup
competition within the national team, modeled by a competitor role of the team
instantiated as the second team in group B. We omitted the actual coordination
networks as they concern only the role playing and do not appear within the
annotations for role-based Reo networks. For instance, it can be assumed that
the coordination network between Frank and its two defender roles models that
he cannot play both roles simultaneously. Furthermore, the cloud in the national
team compartment depicted in Fig. 5 stands for a coordination network and could
also include state, e.g., that the color of the national team is orange.
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Fig. 5. Role-based Reo network of a soccer tournament

It is clear that a role-based Reo network should follow rules which guarantee
consistency of the model according to the domain described. In the soccer domain
for instance, it is nonsensical that a team attempts to play the role “keeper” in a
competition. We express such rules which have to be obeyed for role-based Reo
networks with formulas in many-sorted second-order logics (SOL). The sorts
we distinguish here are the ones of role players (denoted RolePlayer) and role
instances (denoted RoleInst). Atomic components and compartments are of sort
RolePlayer , whereas role components are of the sort RoleInst . Role instances
are assigned to role players by β of sort RoleInst → RolePlayer . First-order
variables range over atomic components and role components. For each atomic
component type and role component type we identify its name with a predicate
of arity one, evaluating to true if it is interpreted over an instance of that type.
Similarly, a predicate for each compartment type is true if interpreted over a
second-order variable containing all the role components of a compartment of
that type. Set predicates (such as ∈ and ⊆) evaluate to false when applied on
atomic components as role player instance. We call a set of sentences F over the
described SOL a role rule set and say that a role-based Reo network is valid if
the network is a model for all sentences in F.

A common restriction on role binding (see, e.g., [24,35]) is the requirement
that every role instance is part of at most one compartment. We do not enforce
this restriction in our framework, e.g., to allow for modeling a father-son relation
as a compartment contained in a family-relation compartment. However, this rule
can be included into our role rule set as an SOL sentence

∀RoleInst x,RolePlayer Y,Z. x ∈ Y ∩Z ⇒ Y =Z

Turning to our running example from the soccer domain, the rule that at least
one keeper has to play in every soccer team can be expressed by the SOL sentence

∀RolePlayer T. SoccerTeam(T ) ⇒ ∃RoleInst k. keeper(k) ∧ k ∈ T
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The restriction that every keeper role has to be played by a person is also useful:

∀RoleInst k. keeper(k) ⇒ person(β(k))

It is easy to see that the role-based Reo network depicted in Fig. 5 is valid when
the role rule set contains exactly the rules above. Usually, one fixes a role rule set
according to the chosen domain and then models a valid role-based Reo network
as described in the last two sections.

4 Conclusions and Future Work

We presented an approach on how the exogenous coordination language Reo can
be used to model role-based systems. For this, we introduced a formal frame-
work to express static requirements on the binding of roles to their role play-
ers, based on atomic component types, role component types and compartment
types over which rules in many-sorted SOL are stated. In role-based Reo net-
works, instances of atomic component types and role component types corre-
spond to concrete Reo components, whereas instances of compartment types
include role components and a coordination network between them. Within our
approach, the purpose of Reo is to model the coordination between roles and
their players (e.g., to guarantee operational requirements on role playing) and
between the roles in compartments. The latter also allows the coordination of
the collaboration of roles taking place in compartments, an important feature of
compartments not apparent within the “contexts” a role appears in. Obviously,
modeling the coordination of roles remains a highly sophisticated task within
our framework, where several conformance requirements are only given implic-
itly. For instance, although a soccer player can have a role in the local as well as
the national team, he should not play both roles simultaneously. Thus, formal
analysis of the operational behavior and the role playing over time is desirable
to guarantee correctness of the role-base system model.

Formal Semantics and Analysis for Role-Based Reo Networks. There has been
extensive research on formal semantics for Reo [26]. When the components as
the building blocks of role-based Reo networks (e.g., atomic components or role
components) are modeled using Reo compatible formalisms, we directly obtain
a formal operational semantics, e.g., in terms of a constraint automaton. Such
operational semantics captures all the modeled role-based behaviors and fulfills
the static constraints on role binding provided by our framework. By introducing,
e.g., additional port labels for ports which define whether a role is active or
not, we can rely on standard analysis techniques to check conformance of role
playing requirements. For instance, model-checking tools such as Vereofy [8] or
mCRL2 [32,33] can then be used to check run-time requirements on role-based
Reo networks. Such tools would allow for checking invariants on simultaneous
role playing, e.g., whether roles are only played together with their counter-roles
or whether in a soccer team at least seven but at most eleven players are acting.
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Future Work. Several directions on how our approach can be extended are left
for further work. On the modeling side, our framework currently supports only
static role models without dynamic binding and unbinding. For this, research
on rewriting operations already applied to Reo networks in [34] could be used
in combination with methods ensuring that the role-based Reo network remains
valid according to role rule sets. Concerning constraints on temporal aspects,
the notion of role rule sets could be extended with temporal logic formulas, for
which, however, a semantics on an operational model of Reo networks has to be
developed in more detail. Also, an extension of role rule sets containing (contex-
tualized) description logics [27] could be imagined. On the formal analysis side,
algorithms to check many-sorted SOL requirements on role binding for role-based
Reo networks could be investigated. Reasoning about the role rule sets itself, e.g.,
checking whether some rules are contradictory, requires specialized algorithms,
possibly only applicable onto fragments of the logics we presented. An open field
is also to incorporate annotations into the operational semantics of role-based
Reo networks to reason about compatibility [17,18], e.g., whether the behavior
of a player matches the roles’ requirements and vice versa. In this spirit, also
the formalization of collaboration goals [24] expressed for each compartment and
their reachability during runtime could be investigated. Another aspect within
our framework is controller synthesis [28–31] with respect to temporal require-
ments, e.g., as stated above. As usual, the coordination between components in
component-based system modeling is the most difficult part. Thus, the model-
ing process of role-based Reo networks could heavily benefit from synthesized
controllers serving as coordinating connectors between players and their bound
roles, e.g., by synthesizing the Reo glue code [3,9].
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