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          Hemophilia A 

  Hemophilia A is   a X-linked disorder due to congenital defi -
ciency of factor VIII (FVIII). The frequency of Hemophilia 
is estimated to be approximately 1/5000 male births across 
ethnic group. The degree of bleeding severity with rare 
exception is directly related to patient’s baseline FVIII level 
and can range from mild to life-threatening [ 3 ]. Although 
Hemophilia A affects mostly male, in rare occasion the dis-
ease can manifest in female via chromosome lionization [ 4 –
 6 ]. In addition, approximately 30 % of Kemophilia A can 
present as de-novo mutation. Therefore, diagnosis of 
Hemophilia A should be considered even in the absence of a 
strong family history [ 7 – 9 ].  

    Factor VIII Protein 

 Unlike most other  plasma   coagulation proteins, which are 
produced by hepatocytes, FVIII is mainly produced by liver 
endothelial cells [ 10 ,  11 ]. This is likely the reason for ele-
vated FVIII even under liver failure. 

 Factor VIII protein is produced as a six-domain protein, 
A1-A2-B-A3-C1-C2 [ 12 – 14 ]. In the Golgi compartment, 
FVIII is cleaved within the B domain to form the mature 
FVIII heterodimer that consists of the 200 kDa A1-A2-B 
heavy chain and the 80 kDa A3-C1-C2 light chain [ 15 ]. 
Once FVIII is released into circulation, it binds to von 
Willebrand factor (VWF) which serves to increase FVIII 
survival and regulate FVIII activity. Upon activation by 
thrombin, FVIIIa serves as a co- factor for Factor IXa in the 

activation of factor X to factor Xa and ultimately generation 
of thrombin [ 15 – 18 ]. Hemophilia A has been linked to a 
variety of well-known molecular mutations including inver-
sions, large deletion, frameshift,    nonsense, and missense 
defects [ 19 ,  20 ]. The severity of the disease can often be 
predicted by the site and type of mutation in the FVIII gene 
[ 21 – 24 ].  

    Diagnosis of Hemophilia A 

 The diagnosis of  Hemophilia   A begins in recognizing the 
X-linked inheritance pattern of an unexplained and isolated 
prolongation of PTT that is corrected in mixing study [ 25 ]. 
Subsequent laboratory workup should then identify a FVIII 
defi ciency. However, it is important to note that an initial 
fi nding of an isolated prolonged PTT with mixing study cor-
rection does not immediately imply Hemophilia A [ 26 ]. 
Other PTT pathway factor defi ciencies such as Factor IX 
(FIX) and Factor XI (FXI) defi ciencies or even non- clinically 
signifi cant Factor XII defi ciencies will present with the same 
initial laboratory fi nding [ 27 ]. Therefore, it is important to 
order FIX and FXI along with FVIII to rule out other poten-
tial congenital bleeding disorders. Specifi cally important is 
to consider the von Willebrand disease (VWD), when con-
sidering the diagnosis of Hemophilia A, as carrier defect 
(Type 2N) or defi ciency (Type 1 and 3) of VWF will result in 
decrease of FVIII. The diagnosis of these specifi c VWD will 
be discussed later in this chapter. 

 Severity of  Hemophilia A is   directly related to the degree 
of defi ciency of FVIII activity as measured by one-stage 
assay, Mild Hemophilia is defi ned by FVIII activity between 
5 snd 40 %, moderate disease is activity 1–5 %, while severe 
Hemophilia is below 1 %. Although FVIII activity via one- 
stage assay in general can predict bleeding phenotype, in 
very rare situation, there can be discrepant clinical bleeding 
symptoms with FVIII activity via one-stage assay. In such 
scenario, a two-stage FVIII assay may be used to better 
defi ne patient’s disease [ 28 ,  29 ].  
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    Hemophilia B 

 Like Hemophilia A,  Hemophilia B is also   a X-linked bleed-
ing disorder affecting around 1 in 25,000 male births. In 
Hemophilia B, factor IX (FIX) is defi cient which results in 
lifelong bleeding symptoms. The severity of bleeding is 
directly related to the degree of FIX defi ciency. 
Approximately, one third of all cases arise from spontaneous 
mutation [ 30 ]. Therefore, like Hemophilia A, a lack of fam-
ily history does not exclude the diagnosis.  

    Factor IX Protein 

 FIX protein is a 57 kDa multi- domain   protein produced in 
the liver by hepatocyte. FIX is a vitamin K-dependent pro-
tein, requiring gamma-carboxyglutamation to be fully func-
tional. FIX can be activated into FIXa via the intrinsic 
pathway by FXIa or the extrinsic pathway by tissue factor 
and FVIIa [ 31 ]. FIXa in the presence of calcium, FVIIIa, and 
phospholipids in turn activates FX into FXa and ultimately 
thrombin. Hemophilia B has been linked to a number of 
mutations, especially frameshift, missense, or nonsense 
mutations within the CpG dinucleotide mutation hotspot. 
Large and short deletions and insertions complete the genetic 
mutation profi le for Hemophilia B [ 30 ]. 

    Diagnosis 

 A defi ciency in FIX may indicate  vitamin   K defi ciency instead 
of Hemophilia B, especially in neonates [ 32 ]. Since FVII is 
also a vitamin K-dependent factor, an isolated prolonged PTT 
without prolongation of PT makes Hemophilia B likely as 
half-life of FVII is shorter than FIX. Like FVIII in Hemophilia 
A, severity of Hemophilia B is directly related to the degree of 
defi ciency of FIX activity. Mild Hemophilia B is defi ned  by   
FIX activity between 5 and 40 %, moderate disease is activity 
1–5 %, while severe Hemophilia B is below 1 %.   

    Congenital von Willebrand Disease 

 VWD remains the most  common   congenital bleeding dis-
ease worldwide across all ethnic groups. Unlike Hemophilia, 
VWD is an autosomal disorder; therefore it affects both 
sexes equally and this inheritance pattern helps to distin-
guish it from Hemophilia A. Bleeding characteristics and 
severity are greatly affected by its subtypes and can range 
from joint and muscle bleeding (Type 3) to menorrhagia to 
mild oral and mucosal bleeding [ 33 ,  34 ]. Due to the varia-

tion of clinical presentation, a complete and accurate 
 laboratory workup is important for the subtyping of VWD 
[ 35 ]. The laboratory workup for VWD will be discussed in 
detail in Chapter XX.  

    von Willebrand Factor 

 Unlike most other coagulation proteins, VWF is not pro-
duced by the liver which also helps to explain elevated 
FVIII and increased thrombotic risk in  the   setting of liver 
dysfunction. VWF is produced by both megakarocytes and 
endothelial cells (Fig.  7.1 ) as a 2813 amino acid long pre-
propeptide (Fig.  7.2 ) in the endoplasmic reticulum, which is 
then dimerized into 800kD dimers. These dimers are then 
polymerized into mature VWF multimers up to 20,000kD in 
length and VWF propeptide dimmers (VWF:pp) are cleaved 
from the mature multimers as they travel through the golgi. 
Finally, both the mature VWF and VWF:pp are packaged 
and stored in Weibel–Palade body of endothelial cells or 
alpha granules of platelets. Upon activation, mature VWF 
and VWD:pp are released from storage into circulation; 
once released, VWF multimers are cleaved at specifi c site in 
the A2 domain into multimers of variable sizes by a metal-
loprotease, ADAMTS13 [ 36 – 38 ]. Under normal physiolog-
ical condition, VWF exists as large, intermediate and low 
molecular weight  multimers   in a balanced distribution. 
However, when this normal size distribution is disturbed, it 
will result in disease conditions such as thrombotic throm-
bocytopenic purpura when there is ultra large multimers 
[ 39 ] or bleeding when there is absence or decrease in large 
multimers [ 40 ].

    Circulating VWF plays an important role in both primary 
and secondary hemostasis. In primary hemostasis, VWF 
serves to support platelet  adhesion   to the site of vascular 
injury via binding to sub-endothelial collagen and to glyco-
protein Ib-V-X complex (GPIb) on platelet surface. This 
interaction is important in recruiting and activating platelets 
at site of vascular injury [ 41 ]. In terms of secondary hemo-
stasis, VWF serves as a carrier protein for FVIII, which both 
protects FVIII from proteolysis and localizes FVIII to plate-
let surface [ 42 ,  43 ].  

    von Willebrand Disease 

 As discussed previously, VWD can present with widely dif-
ferent bleeding phenotypes depending on the underlying 
pathophysiology.    In general, VWD (Table  7.1 ) can be 
broadly divided into two types of VWF defects, quantitative 
(type 1 and type 3) and qualitative (type 2). It is important to 
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  Fig. 7.1    demonstrates the production of VWF multimers in endo-
thelial cells. Matured  VWF   and propeptide are stored within 
Weibel-Palade bodies ready for release upon activations. From 
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distinguish the various subtypes of VWD via an algorithmic 
laboratory approach, as it can greatly impact the  management 
of the patient. Various laboratory workups and algorithm is 
found in details in Chapter **.

       Type 1 VWD 

 Type 1 VWD account for  the   majority of VWD (80 %). It is a 
quantitative defect defi ned as either VWF antigen (VWF:Ag) 
or VWF activity (VWF:Act) between 1 and 30 % without any 
observable VWF function defects that VWF activity to antigen 
ratio (VWF:Act/Ag) should be >0.5–0.7 [ 44 ]. In addition, 
VWF multimer analysis (VWF:MA) should show a normal 
size distribution with decreased intensity. Mechanism for type 
1 VWD is due to decreased synthesis of VWF; however, type 1 
variants (type 1C and type 1 Vicenza)  have   been shown to have 
increased clearance and decreased VWF half-life. It is impor-
tant to rule out such type 1 variants as desmopressin treatment 
will not be an effective treatment as the therapy yield only 
short-lasting effect [ 45 ]. In both type 1C VWD and type 1 
Vicenza, desmopressin challenge is expected to show good 1 h 
post-administration response with a decreased 4 h post-admin-
istration response [ 46 ]. Compared to other type 1 VWD, VWF 
propeptide to antigen ratio (VWF:pp/Ag) is increased, which is 
the defi ning characteristic of these type 1 variants [ 47 ]. It is 
important to note that FVIII in type 1 VWD is proportionally 
decreased as VWF is a carrier protein for FVIII, thus VWD 
workup should be performed in initial diagnosis of Hemophilia 
A. Furthermore, Hemophilia A can coexist with other subtypes 
of VWD. Lastly, laboratory diagnosis of VWD is proven chal-
lenging as VWF is an acute phase protein. Since the level can 
be increased several folds from baseline, a one- time normal 
VWF:Ag and VWF:Act cannot defi nitively rule out type 1 
VWD [ 48 ]. Furthermore, FVIII is not  an   effective marker for 
acute phase as its level is directly affected by VWF:Ag level. 
Concurrent fi brinogen level or C reactive protein level may be 
used as potential acute phase markers, but neither of them has 
been universally validated. Until a better marker can be estab-
lished, the most effective method to distinguish acute phase 
from baseline study remains to be repeat testing.  

    Low VWF 

 It is important to discuss “Low VWF” in the  discussion   of 
quantitative type 1 and type 3 VWD. As normal VWF:Ag 
and VWF:Act level is usually defi ned as >50 % and type 1 
VWD is <30 %, the gray-zone area between 30-50 % can be 
diffi cult to defi ne [ 44 ]. This “in-between” VWF:Ag and 
VWF:Act can fall within type 1 VWD in European region as 
type 1 VWD is defi ned as <45 % [ 49 ]. However, in the United 
States,  type   1 VWD is strictly reserved for patient with 
VWF:Ag or VWF:Act <30 % without functional defects. 
Hence, individuals with repeat VWF level between 30 and 
50 % should be considered as having “low VWF” and not 
VWD. Of note, blood group O individuals are more likely to 
have “low VWF’ than other blood groups [ 50 ], which may 
be related to post-translational modifi cation [ 51 ]. Individuals 
with “low VWF” should be made aware of increased risk for 
bleeding, but should not be considered as having true VWD.  

    Type 3 VWD 

 Type 3 VWD accounts for  less   than 1 % of VWD. It is a 
severe quantitative defect defi ned as absence (<1 %) of both 
VWF:Ag and VWF:Act [ 44 ]. As FVIII level can fall within 
moderate Hemophilia A range, it is important to rule out 
type 3 VWD.  

    Type 2A VWD 

 Type 2A VWD accounts  for   approximately 10 % of all 
VWD. It is characterized by the absence of both high and 
intermediate molecular weight VWF secondary to decreased 
synthesis or increased proteolysis by ADAMTS13 [ 44 ]. 
Therefore, laboratory workup demonstrates a qualitative 
defect of decreased VWF:Act but relatively normal VWF:Ag, 
which results in decreased VWF:Act/Ag ratio at <0.5–0.7. 
Of note, unlike type 2B VWD, mild thrombocytopenia is not 
an expected fi nding. Type 2A VWD is often considered as a 
diagnosis of exclusion.  

   Table 7.1    Various  VWD   subtypes and their expected laboratory fi ndings   

 Condition  VWF:Act  VWF:Ag  FVIII  VWF:Act/Ag  VWF:MA 

 Type 1  <30  <30  L to N  >0.7  Normal but light 

 Type 2A  <30  <30–200  L to N  <0.7  Missing large 
multimer  Type 2B/PT-VWD  <30  <30–200  L to N  <0.7 

 Type 2M  <30  <30–200  L to N  <0.7  Normal 

 Type 2N  30–200  30–200  Signifi cantly lower  >0.7  Normal 

 Type 3  <3  <3  <10  –  – 

 “Low VWF”  30–50  30–50  Normal  >0.7  Normal 

 Normal  50–200  50–200  Normal  >0.7  Normal 
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    Type 2B VWD 

  Type 2B VWD accounts   for approximately 3-5 % of all 
VWD. Although its laboratory fi nding is similar to type 2A 
VWD with decreased VWF:Act/Ag ratio and loss of high 
molecular weight multimer, the mechanism for disease is 
entirely different [ 44 ]. Type 2B VWD is due to gain of func-
tion mutation in the platelet GPIb binding to A1 domain of 
the VWF protein, which results in increased and spontane-
ous binding of VWF to platelets without shear stress [ 52 ]. 
This abnormal interaction results in loss of both high molec-
ular weight VWF and platelets, which explains the 
 pathognomonic fi ndings of thrombocytopenia in  type 2B 
VWD. This   gain of function mutation makes desmopressin a 
contraindication for type 2B VWD as it may result in throm-
botic complications. Therefore, it is important to distinguish 
type 2B from other type 2 VWD; ristocetin-induced platelet 
aggregation study (RIPA) is only abnormal in gain-of-func-
tion VWD which includes Type 2B VWD.  

    Pseudo-VWD/Platelet-type VWD 

 As in type 2B VWD,  the   pathogenesis of platelet-type VWD 
(PT-VWD) is due to abnormal spontaneous interaction 
between platelet GPIb and VWF [ 44 ]. However, in contrast 
to type 2B VWD, the gain of function mutation is in the 
platelet GPIb receptor [ 53 ]. Overall, initial laboratory 
workup is indistinguishable from type 2B VWD, including 
decreased VWF:Act/Ag, loss of high molecular VWF, 
thrombocytopenia, and even abnormal RIPA. Specialized 
laboratory test, 2B binding assay can be used to differentiate 
PT-VWD from type 2B VWD. As in type 2B VWD, desom-
pressin is contraindicated for treatment of PT-VWD.  

    Type 2M VWD 

  Type 2M VWD accounts   for only 1–2 % of VWD. The ini-
tial laboratory workup, similar to type 2A, 2B or PT-VWD, 
showed decreased VWF:Act/Ag [ 44 ]. Like type 2B VWD, 
pathogenesis for type 2M VWD also lies in the A1 domain 
of VWF, but it is a loss-of-function mutation where the 
interaction between platelet GPIb receptor and VWF is 
decreased [ 54 ]. Therefore, multimer analysis for type 2M 
VWD is normal and does not demonstrate loss of high or 
intermediate molecular weight VWF. It is the presence of 
normal multimer distribution with decreased VWF:Act/Ag 
that makes up the defi ning laboratory characteristic of type 
2M VWD.  

    Type 2N VWD 

 Type 2N VWD is  qualitative   VWF disorder that accounts for 
1–2 % of all VWD [ 44 ]. However, its functional defect lies 
not in VWF function as a coagulation protein, but its FVIII 
carrier function. Mutations within the D’ and D3 domain of 
VWF molecule render the binding of VWF to FVIII defec-
tive [ 55 ]. As the coagulation function of VWF is unaffected, 
the VWF laboratory workup is unremarkable at fi rst glance; 
normal VWF:Ag, VWF:Act, VWF:Act/Ag, and even normal 
multimer analysis. However, FVIII activity can be decreased 
to as low as 5–15 %, making 2N VWD sometimes diffi cult to 
differentiate from Hemophilia A. The inheritance pattern of 
2N VWD is autosomal in contrast to X-linked in Hemophilia 
A. FVIII binding assay (Discuss in Chapter **) can  be   used 
to distinguish type 2N VWD from Hemophilia A. It is impor-
tant to note that like other VWD subtypes, 2N VWD can 
coexist in patients with Hemophilia A. Therefore, concurrent 
2N VWD should always be considered and ruled out as it can 
affect patient’s response to recombinant FVIII infusion.  

    Acquired von Willebrand Syndrome 

  Acquired von Willebrand Syndrome (aVWS) is a   collection 
of acquired bleeding disorders (Table  7.2 ), secondary of loss 
of VWF quantitative or qualitative functions [ 56 ]. Dozens of 
diseases have been associated with aVWS; nonetheless, labo-
ratory fi ndings often mimic subtype of congenital VWD, 
especially type 2A VWD with decreased VWF:Act/Ag and 
loss of high to intermediate molecular weight VWF. The loss 
of high molecular weight VWF can be secondary to either 
pathological high shear stress as in aortic stenosis [ 57 ], pres-
ence of autoantibodies against VWF [ 58 ], or even direct 
absorption by tumor cells [ 59 ]. Less commonly, aVWS may 
result from decreased overall  VWF   production as opposed to 
selective loss of high molecular weight VWF as in the case of 
hypothyroidism [ 60 ]. Bleeding diathesis of aVWS may vary, 
but bleeding symptoms and VWF laboratory abnormalities 
usually resolve upon resolution of underlying disorders.

       Management of Hemophilia A, Hemophilia B, 
and von Willebrand Disease for Invasive 
Procedure, Surgery, and Pregnancy 

 The management of patients with Hemophilia A, B, and VWD 
can be complex; however, there have been established recom-
mended guidelines (Table  7.3 ) that can provide some impor-
tant standard of care guidance in managing these  patients 
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   Table 7.2    Shows the various disorders that have been reported to be  associated   with aVWS   

 Underlying disorders  Previous literature, ISTH-SSC and German registry 1968–2011 ( n  = 1292) 

  Cardiovascular    414    32  % 

 Aortic stenosis  201  16 % 

 Cardiac assist device  110  9 % 

 AV septal defects  21  2 % 

  Myeloproliferative    350    27  % 

 Essential thrombocythemia  212  16 % 

 Polycythemia vera  88  7 % 

 CML and myelofi brosis  64  5 % 

  Lymphoproliferative    321    25  % 

 MGUS  193  15 % 

 MM and WMg  80  6 % 

 NHL, HCL, and ALCL  28  2 % 

  Systemic diseases  (hepatitis C, cirrhosis, hypo-thyroid, 
hemoglobinopathies, uremia, diabetes) 

  87    7  % 

  Drugs  (valproate, hydroxystarch, etc.)   40    3  % 

  Neoplasia    32    2  % 

  Immune    21    2  % 

   Table 7.3    Published recommendations for peri-operative management of Hemophilia A, B, and VWD patients   

 Hemophilia A [ 61 ,  62 ]  Hemophilia B [ 61 ,  62 ]  von Willebrand disease [ 62 ] 

 Dental procedure  50–100 % 
prior + antifi brinolytic × 7–10 days 
post 

 50–100 % 
prior + antifi brinolytic × 7–10 days 
post 

 60 % prior 

 Surgery (minor)  80–100 % prior + >50 % × 5–7 days  80–100 % prior + >50 % × 5–7 days  60 % prior + >30 % × 2–4 days 

 Surgery (major)  80–100 % prior +  80–100 % prior +  100 % prior + >50 % × 5–10 
days  80–100 % × 1–3 days  80–100 % × 1–3 days 

 60–80 % × 4–6 days  60–80 % × 4–6 days 

 +40–60 % × 7–14 days  +40–60 % × 7–14 days 

 Delivery  >50 % prior [ 64 ] × 3–4 days [ 63 ]  >50 % prior [ 64 ] × 3–4 days [ 63 ]  80–100 % prior + >30–
50 % × 3–4 days, up to 2 weeks 
[ 63 ] 

  around time of procedures, surgeries, or deliveries. It is impor-
tant to note that  factor   concentrates should be used in place of 
plasma products as  replacement   of choice since the concentra-
tion is much higher and infectious risk is signifi cantly less. 
DDAVP may be used in patients with mild Hemophilia A, 
mild VWD, or Hemophilia A carrier in place of factor replace-
ments; however, a trial should be performed to ensure effec-
tiveness prior to use in surgerical settings. Antifi brinolytic 
may be used in conjunction with standard factor replacement 
[ 61 ]; however, this practice has not been well-standardized 
beyond dental procedure, but should be considered if risk is 
high or if replacement therapy alone is ineffective.
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