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    CHAPTER 10   

 Methods for Virus Recovery in Water                     
     Kristen     E.     Gibson       and     Mark     A.     Borchardt    

1.           INTRODUCTION 

 Research involving the recovery of viruses from various water sources can be 
traced back to the 1950s when scientists were eager to better understand the 
occurrence and transmission of disease-causing viruses in water; most signifi -
cant viruses at the time were poliovirus and hepatitis virus. LoGrippo and 
Berger ( 1952 ) utilized ion- exchange resins to concentrate poliovirus, and 
shortly thereafter Kelly ( 1953 ) demonstrated the use of these same resins for 
the concentration of coxsackie viruses from sewage samples. This seminal 
research led to development of the fi rst methods that relied on manipulation 
of virus surface charge for recovering viruses from large volumes of water. 
Virus adsorption to fi lter media followed by elution by a pH- adjusted solu-
tion (Wallis and Melnick  1967 ) became collectively known as VIRADEL 
( vir us  ad sorption  el ution) method. Shortly after VIRADEL methods were 
introduced, alternative methods to concentrate viruses based on size exclu-
sion (i.e. ultrafi ltration based on nominal molecular weight cut-off) were 
investigated. Belfort et al. ( 1975 ) concentrated viruses from 5 L of water using 
hollow fi ber membranes and from this initial report through the present day, 
numerous studies have shown hollow-fi ber ultrafi ltration is effective for the 
recovery of viruses from water (Fong and Lipp  2005 ; Gensberger and Kostić 
 2013 ; Hill et al.  2007 ). 

 At this point, two questions arise: (1) How are viruses in water related to 
viruses in food and (2) Why is it important? Simply stated, there is an inti-
mate connection between food safety and water quality as water is used at 
almost every node in the food production process. Moreover, viruses are the 
primary cause of foodborne disease outbreaks ( FBDO  ) in the United States 
and in most other high-income countries (EFSA BIOHAZ Panel  2011 ; 
Lopman et al.  2003 ; Scallan et al.  2011 ). From an epidemiological perspective, 
human noroviruses (HuNoVs) are the most signifi cant in foodborne trans-
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mission though other viruses of concern include hepatitis A virus (HAV), 
enteroviruses, and hepatitis E virus (HEV; Le Guyadar et al.  2008 ; Yugo and 
Meng  2013 ). 

 The most commonly reported connections between  water quality and food 
safety   are viruses in fresh produce and shellfi sh (i.e. bivalve mollusks such as 
oysters) (see Chaps.   6     and   7     in this book). For these foods, large volumes of 
water must be used during pre- and post-harvest processing. The ongoing con-
versation in shellfi sh production revolves around the relevance of using  fecal 
indicator bacteria   ( Escherichia coli ,  Enterococcus  spp.) as predictors of viral 
pathogen contamination when monitoring the quality of harvesting waters or 
shellfi sh meats (Richards et al.  2010 ). The issue arises because an indicator 
should correlate with the presence of pathogens; however, bacterial indicators 
have been repeatedly shown to correlate poorly with viruses (Field and 
Samadpour  2007 ).  Fresh produce   (i.e. fruits and vegetables) can become con-
taminated with waterborne bacteria and viruses during production via irriga-
tion water, preparing and spraying pesticides, preventing dehydration, or 
during produce washing or cooling. The proposed agricultural water standards 
in the US FDA’s proposed rule for produce safety rely on  E. coli  to indicate 
sanitary quality of water (USFDA  2014 ). Thus, the same limitations would 
apply regarding the often observed absence of a relationship between bacte-
rial indicators and human pathogenic viruses. 

  Human enteric viruses   may be introduced into the water environment 
through various routes including discharge of sewage-contaminated water 
into food production settings (i.e. oyster harvesting waters and surface water 
used for irrigation), land application of municipal biosolids, wastewater, or 
septage with subsequent runoff, and groundwater contaminated by infi ltrat-
ing surface water, faulty septic systems or leaking sanitary sewers (Gibson 
 2014 ). Overall, data are limited on virus occurrence in water used for food 
production even though the industry’s heavy reliance on water suggest it is a 
vehicle for dissemination of viruses in the food supply (Song et al.  2006 ; Stine 
et al.  2005 ). 

 There are several options for recovering viruses from water, although each 
method brings along its own set of challenges, primarily stemming from the 
low but signifi cant levels of  human enteric viruses   that may be present in envi-
ronmental water samples at sites located around the world (Dong et al.  2010 ; 
Gibson et al.  2012 ; Sinclair et al.  2009 ; World Health Organization  2009 ; Ye 
et al.  2012 ).  

2.     VIRUS RECOVERY METHODS 

 Wallis et al. ( 1979 ) originally prescribed the ideal method for virus recovery as 
being able to: (1) process large volumes (>100 L) of  various   types of water in 
the least amount of time; (2) consistently concentrate most types of viruses 
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present in water and wastewater, (3) be used easily and economically, and (4) 
recover viruses that are particle-associated or present in viral aggregates. In 
the subsections that follow, various methods are described for recovering and 
concentrating viruses from water. 

2.1.     VIRADEL 
 The fi rst generation of VIRADEL methods was based on adsorption of 
viruses to  electronegative   (EN) membrane fi lters (Sobsey et al.  1973 ). 
However, because viruses have a net negative charge on their capsid surface 
at neutral pH, to facilitate virus adsorption to the negatively-charged fi lters, 
EN-based methods require cumbersome chemical modifi cation of the water 
sample including acidifi cation or addition of multivalent cations (Sobsey and 
Jones  1979 ). Shortly thereafter, Sobsey and Jones ( 1979 ) suggested that mem-
brane fi lters with a more positive charge at the pH of natural waters and tap 
water (pH 5–9) would be more advantageous for virus recovery compared to 
EN-based methods. This initial investigation of  electropositive   (EP)-based 
membrane fi lter methods by Sobsey and Jones ( 1979 ) demonstrated a marked 
increase in virus recovery from tap water (e.g., <5 % recovery with EN fi lter 
vs. 64 % recovery with EP fi lter) and served as the basis for developing the 
standard method for virus recovery and concentration from large volumes of 
water (USEPA  2001 ). 

 Wallis et al. ( 1979 ) identifi ed several factors infl uencing the adsorption of 
viruses to fi lter  surfaces  : fi lter surface charge and surface area resulting from 
the composition and design of the fi lter membrane; fl ow rate during sampling 
(i.e. high fl ow rate equates to less viruses adsorbed); ratio of pore diameter to 
virus diameter; pH; multivalent cations; and the presence of proteinaceous 
substances competing with viruses for adsorption. Filter surface charge plays a 
signifi cant role in virus adsorption as demonstrated by the difference in viral 
recovery between EN- and EP-based methods. In addition, virus adsorption 
capacity decreases with decreasing fi lter surface area because there are a fi nite 
number of adsorption sites per unit area (Wallis et al.  1979 ). However, addi-
tions of acids (for pH manipulation) and salts (multivalent cations) can greatly 
increase fi lter adsorption capacity regardless of fi lter surface area; therefore, 
the virus adsorption capacity of fi lters is really never exceeded (Wallis et al. 
 1979 ). The impact of multivalent cations on fi lter charge is one of the primary 
reasons why EN-based methods outperform EP-based methods for the recov-
ery of viruses from marine waters (Katayama et al.  2002 ; Lukasik et al.  2000 ). 
Overall, the net charge of the fi lter is one of the primary determining factors in 
virus adsorption. 

 Present day, researchers still use  both   EN- and EP-based methods for 
recovery of viruses from water though far more emphasis has been placed on 
EP-based methods. Table  10.1  summarizes the VIRADEL methods that are 
most commonly utilized for recovery of viruses, and Table  10.2  provides repre-
sentative recovery effi ciencies for each VIRADEL method by water type. For 
 the   EP-based methods, beef extract—glycine solutions at an alkaline pH is 

Methods for Virus Recovery in Water



280

most often used for virus elution from the fi lter membrane (Table  10.1 ). 
However, other eluents have previously been used including 5× nutrient broth 
(Hill et al.  1974 ), tryptose phosphate broth (Farrah et al.  1976 ), and amino 
acids—arginine and lysine (Farrah and Bitton  1978 ). The type of eluent is 
important to note as organic and inorganic compounds in beef extract solu-
tions are known to inhibit reverse transcription (RT) for cDNA synthesis from 
viral RNA as well as PCR amplifi cation (Abbaszadegan et al.  1993 ). This is 
important because many waterborne viruses are not readily culturable requir-
ing downstream detection methods that rely on RT and PCR technologies.

    After fi ltration  with   EN-based methods the fi lter is rinsed with a dilute acid 
followed by elution with alkaline buffer (pH > 9.0) containing either high salt 
concentration and surfactant (Hamza et al.  2009 ) or proteinaceous substances 
such as skimmed milk (Wyn-Jones et al.  2011 ). De Keuckelaere et al. ( 2013 ) 
compared four methods, two EN-based, one EP-based, and one using tangen-
tial fl ow fi ltration for recovery of fi ve types of human enteric viruses from four 
irrigation water sources and processing water from a fresh cut lettuce process-
ing plant. The investigators concluded the EN-based method including virus 
elution with high salt concentration buffer provided the highest virus recover-
ies across the range of water types tested. However, De Keuckelaere et al. 
( 2013 ) reported much lower recovery effi ciency for three of the four methods 
evaluated as compared to previously published reports. 

 A  novel fi lter-less method   was reported by Calgua et al. ( 2008 ) where 
5–10 L volumes of seawater or freshwater amended with artifi cial sea salts are 
fl occulated with 1 % (w/v) skimmed milk solution at pH 3.5. Samples are 
stirred for 8 h, the fl oc is allowed to settle for another 8 h, and then centri-
fuged. Mean virus recoveries from freshwater were in the range of 40–50 % 
(Calgua et al.  2013 ). The EN-based methods and skimmed milk method may 
be considered advantageous when compared to EP-based methods and ultra-
fi ltration based on the volume of water needed. For instance, only 2–10 L 
(Fong et al.  2005 ; Lee and Kim  2008 ; Hamza et al.  2011 ) of a given water sam-
ple can be concentrated to detect viruses in the former methods; however, 
given the same water sample, hundreds of liters may need to be concentrated 
by EP-based and ultrafi ltration to detect the viruses present. Simultaneous 
concentration of PCR inhibitors and particulates during large volume fi ltra-
tion is speculated to offset the benefi ts of concentrating more viruses 
(Albinana-Gimenez et al.  2009 ; De Keuckelaere et al.  2013 ), but why small 
sample volumes appear to provide the same limits of virus detection has not 
been systematically investigated.  Confounder effects  , such as correlation 
between the method selected for sampling and virus concentrations in the 
waters being sampled, or between sampling method and the use of nested 
PCR for virus detection, are possible considerations. 

 The EP-based fi ltration method described by Sobsey and Jones ( 1979 ) 
served as the basis for USEPA to prescribe using the positively-charged 
1MDS fi lter for virus concentration from water for the Information Collection 
Rule (USEPA  2001 ). Although effective (Table  10.2 ), the  1MDS method   has 
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been criticized for being cost prohibitive for routine monitoring purposes—
each fi lter cartridge costs approximately $200–300 (Cashdollar and Wymer 
 2013 ). In 2010, USEPA published Method 1615, a revised method for detect-
ing enteroviruses and noroviruses in water that permits virus concentration 
by the positively charged NanoCeram ®  fi lter, which cost roughly 20 % ($40–
60) of the cost of the 1MDS fi lter and is equally as effective for these two 
viruses (Fout et al.  2010 ). The Nanoceram fi lter does not appear to be as effec-
tive for concentrating adenoviruses (Gibbons et al.  2010 ; Ikner et al.  2011 ; 
Pang et al.  2012 ; McMinn  2013 ). 

  Glass wool fi ltration   is another effective EP-based method (Table  10.1 ). 
Oiled sodocalcic glass wool is washed in series with 1 N HCl, distilled water, 
1 N NaOH, and a fi nal wash with distilled water until a neutral pH is achieved. 
The washed glass wool can be stored in sterile phosphate buffered saline for 
up to 1 week at 4 °C. Filters are made by packing washed glass wool tightly 
into column housings with size and fi ttings appropriate for the virus sampling 
plan at hand (Vilagines et al.  1993 ; Millen et al.  2012 ). Filter construction con-
fi gurations are highly fl exible for specifi c projects and can be used to fi lter 
large volumes of water (Gibson et al.  2012 ; Lambertini et al.  2008 ; Vilagines 
et al.  1997 ). Similar to other EP-based fi lter cartridges, glass wool requires the 
use of an alkaline eluent such as a beef extract—glycine solution. Glass wool 
fi lters are a fraction of the cost—$4.40 per fi lter (not including labor)—of 
NanoCeram ®  and 1MDS fi lters (Lambertini et al.  2008 ) and are demonstrated 
to achieve similar virus recovery effi ciencies (Table  10.2 ). The primary disad-
vantage of glass wool fi lters is that they are not commercially available, lend-
ing to the perception that hand-packing in the laboratory may lead  to 
  fi lter- to- fi lter variability in virus recovery effi ciency (Cashdollar and Wymer 
 2013 ). Even then, the United Kingdom Environment Agency utilizes the glass 
wool fi ltration technique in standard methods for the recovery and concen-
tration of viruses in groundwater (Environment Agency  2000 ). 

      Table 10.2    Virus recovery effi ciencies for VIRADEL fi ltration methods by water 
type a,b    

 % Recovery c  

 Surface water  Groundwater  Tap water  Seawater  Wastewater 

 1MDS  36–100  62–72  33–67  40–53  14–61 
 NanoCeram ®   38–65  86  14–84  <3–>96  ND 
 Glass wool  5–72  8–56  28–98  15–99  52–62 
 HA-membrane  15–67  ND  3–80  3–53  ND 

   ND  not done 
  a References listed in Table   9.1     apply here as well 
  b Viruses tested include; adenoviruses (type 2, 40,41), human astroviruse GI, coxsackie 
virus B5, echoviruses (type 1, 7, 18), Hepatitis A virus, MS2 bacteriphage, murine noro-
virus, human norovirus (GI and GII), phi X174 bacteriophage, polioviruses (LSc, 
Mahoney, Sabin strains), human rotavirus 
  c Recovery percentages listed are based on primary concentration followed by detec-
tion of viruses by either culture-based or molecular-based methods  
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 As described in  USEPA Method   1615, the basic setup and  steps   for recov-
ering viruses from tap water using an EP-based cartridge fi ltration method 
are shown in Figs.  10.1  and  10.2 , respectively. Overall, when using EP fi lters 
such as NanoCeram ® , 1MDS, or glass wool, the steps taken to recover viruses 
from a given water sample will depend on the need to neutralize chlorine 
residual disinfectant, adjust pH to the optimal level for virus adsorption, and 
add a pre-fi lter for highly turbid samples.

2.2.         Hollow Fiber Ultrafi ltration 
 Hollow fi ber ultrafi ltration (HFUF) for virus concentration and recovery 
from water was initially investigated by Belfort et al. ( 1975 ). There was a 
renewed interest in this method a decade ago for its potential to concentrate 
not only viruses but also other classes of microorganisms. Ultrafi ltration 
methods rely on size exclusion for virus concentration rather than adsorption 
and hence diffi culties associated with adsorbing viruses to various fi lter media 
are avoided. Ultrafi lters are rated by  molecular weight cut-off   (MWCO) 
ranging from 1 to 300 kilodaltons (kDa), corresponding to a nominal pore size 
between 5 and 35 nm (Pall Corporation  2015 ). There are many different 
shapes of ultrafi lter membranes available including spiral-wound, fl at sheets, 
fl at discs, and hollow fi bers; the latter is the most commonly used shape for 
waterborne virus concentration. The shape of the fi lter impacts the membrane 
surface area available for fi ltration. Most hollow fi ber membrane fi lters used 
for recovery of viruses range from 1.3 to 2.5 m 2  (Table  10.2 ). Ultrafi ltration 
membranes are constructed from a variety of polymers such as polysulfone, 
polyacrylonitrile, and cellulose triacetate and can be used in two different 
modes; tangential (cross) fl ow (TF) and direct (dead-end) fl ow (DE). 

  Fig. 10.1    Basic setup for recovery of viruses from water using electropositive (EP)-
based methods. An injector module is used for dechlorination if disinfectant present in 
the water source and/or for pH adjustment. A 10-μm polypropylene prefi lter may be 
required if the water sample turbidity is elevated.       
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 In  TF fi ltration  , a portion of the water (i.e. “feed” water) recirculates back 
to a central reservoir while the remaining portion passes through the mem-
brane. The feed water is continuously recirculated until only a concentrate 
remains. Conversely, direct fl ow fi ltration pushes water through the mem-
brane without recirculation, thus increasing the likelihood of membrane foul-

[Adapted from Fout et al. (2010) and Francy et al. (2013)]

Optional:
dechlorinationa

Optional:
pH adjustb

Optional:
Pre-filterc

Water Sampled

120 to 4,280 L
Permeate/
Filtrate

waste

Filter eluate
with viruses
≤1,000 mL

Filter flow rate
4 to 10 L/min

Elute viruses with
1.5% beef extract, pH 9.0

Organic flocculation:
pH adjust eluate to

3.5 ± 0.1 for precipitation

Sample 
concentrate 
with viruses

≤30mL 

Optional:
Secondary 

concentratione

Sample 
analysis

PEG precipitation

  Figure 10.2    Virus Adsorption—Elution (VIRADEL) fi ltration method procedure.  a If 
the water sample has a disinfectant present based on measured chlorine residual, then 
it must be dechlorinated with 2 % sodium thiosulfate using the optional injector mod-
ule (Fig.  10.1 ) prior to fi ltration.  b If the water sample has a pH >9.0 or >8.0 for 
NanoCeram ®  and 1MDS Zetapor ®  fi lter cartridges, respectively, then the pH must be 
adjusted with 0.12 M HCl until it measures 6.5–7.5.  c  If the water sample turbidity is 
>20 NTU or >50 NTU for NanoCeram ®  and 1MDS Zetapor ®  fi lter cartridges, respec-
tively, then a 10-μm polypropylene prefi lter cartridge should be added prior to fi ltra-
tion but after dechlorination and pH adjustment.  d The volume of water fi ltered 
depends on the water source and fl ow rate (Fout et al.  2010 )  e Various secondary con-
centration steps may be applied as described in Sect.  2.3  of this Chapter.       
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ing, or the loss of membrane permeability that occurs due to accumulation of 
aquatic substances on or inside the membrane (Huang et al.  2008 ). During 
TF-HFUF, an applied pressure serves to force a portion of the feed water 
through the membrane to the fi ltrate side while viruses are concentrated in 
the  retentate  as opposed to being fi ltered out (Fig.  10.3 ). In TF, the retained 
components do not build up at the surface of the membrane but instead are 
swept along by the cross directional fl ow, dramatically reducing fouling and 
decreasing the tendency for microbes to adhere to the fi lter surfaces (Huang 
et al.  2008 ; Morales-Morales et al.  2003 ).

   In  DE fi ltration  , water is not recirculated but fl ows directly through the 
fi lter, retaining viruses and other particulates greater in size than the 
MWCO. Ultrafi lters are attached directly to a pressurized water source (e.g. 
drinking water distribution system), or in unpressurized systems (e.g. irriga-
tion canal), a peristaltic pump is used. Input pressure less than 20 lb/in 2  is 
recommended (Mull and Hill  2012 ; Smith and Hill  2009 ). Dead-end HFUF 
may be advantageous in fi eld settings where set-up  of   TF-HFUF equipment 
can be cumbersome and fi lter clogging is not problematic as in low turbidity 
water. 

 Belfort et al. ( 1975 , 1983, 1985) initially investigated ultrafi ltration for 
recovery of viruses in water in the mid-1970s to 1980s and interest was 
renewed in the 1990s with the potential ultrafi ltration afforded for recovering 
multiple classes of  microorganisms   (pathogenic viruses, bacteria, and proto-
zoa) with a single sampling method. Kfi r et al. ( 1995 ) fi rst demonstrated the 
simultaneous recovery of viruses and protozoa from 10 L water samples using 
50 kDa MWCO ultrafi ltration disc membranes. Moreover, the study showed 
that UF provided higher, more consistent recovery of enteric viruses (e.g., 
63–100 % with an average of 82 %) when compared to traditional VIRADEL 
methods. 

 Additional studies by Morales-Morales et al. ( 2003 ) and Hill et al. ( 2005 ) 
switched the focus to hollow fi ber ultrafi lters operated in tangential fl ow for 

= virus particle

= filtrate with particles sized less than MWCO

Water Feed Flow
Hollow Fiber 
Membranes

Filtrate Flow

RetentateFeed

Filtrate
HFUF Cartridge

  Figure 10.3    Diagram of tangential fl ow ultrafi ltration using a hollow fi ber membrane 
cartridge fi lter.  HFUF  hollow fi ber ultrafi ltration.       
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the recovery and concentration of viruses in water. In Morales-Morales et al. 
( 2003 ), two different hollow fi ber ultrafi lters with 50 kDa MWCOs were 
evaluated to recover microorganisms in 2 and 10 L water samples (tap water, 
groundwater, and surface water). Reported recoveries for  PP7 and T1 bacte-
riophage   were 31–74 % for 10 L surface water samples (Morales-Morales 
et al.  2003 ). Similarly, Hill et al. ( 2005 ) described a TF-HFUF method for the 
simultaneous recovery of microbes in tap water using commercially available 
dialysis fi lters with hollow fi ber membranes (Table  10.3 ). The  process   was 
optimized through addition of (1) sample amendments such as sodium poly-
phosphate (NaPP); (2) an alternative membrane blocking procedure (e.g., 
NaPP solution as opposed to calf serum as described in Morales- Morales 
et al. ( 2003 )); and (3) a backwashing step with a solution containing Tween 
80 (Hill et al.  2005 ). Polyphosphates increase the negative surface charge of 
microbes suspended in water, creating surface charge repulsion. Tween 80 
serves as a surfactant for reducing hydrophobic interactions between the fi l-
ter surface and microbes, reducing adsorption of microbes to the hollow fi ber 
membrane surface. Average recovery effi ciencies for viruses using the opti-
mized TF-HFUF method were 91 and 49 % for MS2 bacteriophage and 
echovirus 1, respectively (Hill et al.  2005 ).

   Shortly thereafter, Hill et al. ( 2007 ) published another study on the concen-
tration of viruses from 100 L samples of tap water. This study is the foundation 
for the development and optimization of additional  TF-HFUF methods   for 
concentration of viruses from 100 L water samples (Polaczyk et al.  2008 ; Hill 
et al.  2009 ; Francy et al.  2009 ; Gibson and Schwab  2011 ; Rhodes et al.  2011 ; Liu 
et al.  2012 ; Wu et al.  2013 ). Based on these studies, the basic steps for recover-
ing viruses and other classes of microbes from water using HFUF are shown in 
Fig.  10.4 , and the confi guration for TF-HFUF is shown in Fig.  10.5a .

     DE-HFUF methods   gained attention due to the relative ease of fi eld 
deployment compared to the TF-HFUF setup requirements. Olzewski et al. 
( 2005 ) initially compared DE-HFUF to tangential fl ow ultrafi lter cassettes 
(i.e. not hollow fi ber dialyzers) and demonstrated similar recovery effi cien-
cies (>65 %). However, high turbidity samples caused membrane fouling (or 
clogging) of the DE-HFUF (Olzewski et al.  2005 ). Smith and Hill ( 2009 ) dem-
onstrated the recovery of diverse microbes including viruses from 100 L tap 
water and from mock surface water samples (i.e. tap water spiked with sur-
face water to obtain a turbidity of 5 NTU) using DE-HFUF. The reported 
recovery effi ciencies using DE-HFUF were similar to TF-HFUF (Table  10.4 ), 
making DE-HFUF an acceptable option for fi eld-based sampling efforts. 
Additionally, Smith and Hill ( 2009 ) determined that Asahi Kasei REXEED 
25S ultrafi lters were better suited for use in DE-HFUF set-ups based on their 
hydraulic performance (i.e. ability to maintain an acceptable permeate fl ow 
rate at consistent, low system pressures) as compared to Exeltra Plus 210, 
F200NR, and REXEED 21S fi lters (Table  10.3 ).

   Mull and Hill ( 2012 ) also investigated DE-HFUF for recovery of viruses 
from medium (approx. 50 NTU) to high (approx. 100 NTU) turbidity surface 
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Optional:
Block UF a

Water Sample
100 L

Permeate/
Filtrate

waste

Filter concentrate
with viruses
≤ 500 mL

Flow rate
1.7 ±0.2 L/min

Optional:
Secondary 

concentrationd

Optional:
Elution/Back 
flush Stepc

Optional:
Amend Sampleb

Sample 
analysis

[Adapted from Francyet al. (2013)]

  Fig. 10.4    Hollow fi ber ultrafi ltration (HFUF) method steps.  UF  ultrafi lter.  a The ultra-
fi lter may be blocked to reduce the potential for virus adsorption to the membranes; 
however, the need for blocking may depend on the brand of ultrafi lter and water type 
(Liu et al.  2012 ). Blocking procedures may include (1) overnight incubation with 5 % 
calf serum (Hill et al.  2005 ); (2) recirculation of 500 ml 5 % calf serum for 5 min through 
the UF; (3) recirculation of 500 ml of blocking solution containing 0.055 % Tween 80, 
0.001 % Antifoam A, and 0.1 % NaPP through the ultrafi lter for 5 min (USEPA and 
CDC  2011 ); or (4) fi ltration of 1 L 0.1 % NaPP through the UF at 1.7 L/min with no 
back pressure (Hill et al.  2005 ).  b Sample may be amended with sodium polyphosphate 
(NaPP) to a fi nal concentration of 0.01 % prior to beginning fi ltration.  c Following fi l-
tration, the ultrafi lter can be eluted, or back fl ushed in the case of DE-HFUF, to cap-
ture any viruses that may be bound to the membrane. Elution buffers are recirculated 
within the TF-HFUF system and may include a solution containing 0.001 % Tween 80 
or a solution containing 0.01 % Tween 80, 0.01 % NaPP, or 0.0001 % Y-30 antifoam 
emulsion. On the other hand, backfl ushing buffers are pumped through the permeate/
fi ltrate port and may include solutions containing slightly higher concentrations of 
components found in the elution buffers used in TF-HFUF, such as 0.5 % Tween 80, 
0.01 % NaPP, and 0.001 % Y-30 antifoam emulsion.  d Various secondary concentration 
steps may be applied to the fi lter concentrate as described in Sect.  2.3  of this Chapter.       
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waters. There was a decrease in virus recovery with increasing turbidity levels; 
however, the recovery rates were still deemed acceptable (Table  10.4 ). Aside 
from differences in fi ltration confi gurations, DE-HFUF differs from TF-HFUF 
in the back fl ushing step. For DE-HFUF, an elution buffer is passed back 
through the permeate/ fi ltrate   port to recover viruses as opposed to recircula-
tion of an elution buffer as done in TF-HFUF.    The confi guration for DE-HFUF 
based on Smith and Hill ( 2009 ) is shown in Fig.  10.5b  and the basic steps are 
outlined in Fig.  10.4 .  

2.3.       Secondary Concentration 
   Even though HFUF and VIRADEL methods can concentrate viruses from 
water by 200- and >4000-fold, respectively, downstream methods for detec-
tion of viruses often require a  secondary concentration   and purifi cation step 
after the initial concentration step. This additional step is needed since organic 
compounds (mostly humic acids) and metallic ions are often adsorbed or con-
centrated along with the  vi  ruses during primary concentration. These com-
pounds can have inhibitory effects on downstream detection methods such as 
RT-PCR and real time qPCR. The methods most commonly used for  second-
ary concentration   and purifi cation can be roughly categorized into one of the 
following groups: fl occulation (organic or chemical), polymer-based hydroex-
traction, and centrifugal ultrafi ltration. 

 One common method for secondary concentration is organic fl occulation 
of the fi lter eluate (eluent + viruses) obtained during VIRADEL methods. 
This concept was originally proposed by Katzenelson et al. ( 1976 ) and involves 
the acidifi cation of the eluate to pH 3.5 to cause fl occulation of proteins, thus 
trapping any viruses present. The suspended fl oc is then centrifuged to a pel-
let followed by resuspension in 30 ml of sodium phosphate buffer.  Organic 
fl occulation   is the method currently prescribed by USEPA Method 1615 for 
the concentration and processing of waterborne viruses (Fout et al.  2010 ). 
Additional fl occulation methods include lanthanum- based chemical fl occula-
tion (Zhang et al.  2013 ) and celite (diatomaceous earth) concentration 
(Dahling and Wright  1986 ; Fout et al.  2003 ; McMinn et al.  2012 ,  2013 ). 

 Other effective methods for secondary concentration of viruses from 
water include  polyethylene glycol (PEG) hydroextraction   (Ramia and Sattar 
 1979 ; Lewis and Metcalf  1988 ; Schwab et al.  1996 ; Huang et al.  2000 ; 
Lambertini et al.  2008 ; Lee et al.  2011 ) and centrifugal ultrafi ltration devices 
(e.g., Centricon Plus-70) (Hill et al.  2007 ; Gibson and Schwab  2011 ; Ikner 
et al.  2011 ). Hydroextraction with PEG has been paired with both VIRADEL 
and HFUF primary concentration methods, whereas centrifugal fi ltration 
devices have primarily been used in conjunction with HFUF. As with the 
primary methods for recovery of viruses, all secondary concentration steps 
have both advantages and disadvantages including cost, reproducibility, and 
ease of use, etc  .   
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[Adapted from Hill et al. (2007) and USEPA & CDC, 2011]
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[Adapted from Smith & Hill, 2009]

b

  Fig. 10.5    Basic setup for recovery of viruses from water using hollow fi ber ultrafi ltra-
tion (HFUF). ( a ) Tangential fl ow HFUF (TF-HFUF) (b) Dead-end HFUF (DE-HFUF).       
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3.     METHOD SELECTION: WHAT IS IMPORTANT? 

 Despite differences in the details of elution and secondary concentration 
steps for various virus fi lters, the costs for reagents and disposables are about 
the same; approximately $5.00–10.00 per sample with the exception of sec-
ondary concentration by centrifugal UF devices which adds $30 or more per 
sample. Processing times, however, can differ greatly among the elution and 

    Table 10.4    Virus recovery effi ciencies a  for hollow fi ber ultrafi ltration methods by 
water type   

 Reference 
 Flow 
setup 

 Water 
type 

 Volume 
(L)  Virus type 

 % 
Recovery 

 Olszewski et al. 
(2005) 

 DE  G  100  PP7  70 

 T1  71 
 Poliovirus type 2  82 

 S  100  PP7  86 
 T1  70 
 Poliovirus type 2  69 

 Hill et al. ( 2007 )  TF  D  100  MS2  97 
 ϕX174  71 

 Smith and Hill 
( 2009 ) 

 DE  S b   100  MS2  73 

 Rhodes et al. ( 2011 )  TF c   D  100  Poliovirus type 2  104 
 MS2  99 

 Gibson and Schwab 
( 2011 ) 

 TF  D  100  Murine NoV type 
1 

 74 

 MS2  48 
 PRD1  57 

 S  100  Murine NoV type 
1 

 41 

 Poliovirus type 2  28 
 MS2  66 
 PRD1  62 

 Liu et al. ( 2012 )  TF  Reclaim  100  MS2  95 d  
 ϕX174  90 d  

 Mull and Hill ( 2012 )  DE  S e   100  MS2  66 
   DE  dead-end,  TF  tangential fl ow;  S  surface water,  G  groundwater,  D  drinking water, 
 Reclaim  treated, reclaimed wastewater;  NoV  norovirus 
  a Recovery percentages listed are based on primary concentration followed by detec-
tion of viruses by either culture-based or molecular-based methods 
  b Tap water amended with SW to achieve 5 NTU 
  c Results from low rate fi ltration (<1900 ml/min) are reported here 
  d Combined high and low seed recovery effi ciency 
  e Average over low (16 NTU), medium (46 NTU), and high (92 NTU) turbidity levels; 
however, recovery effi ciency did decrease with increasing turbidity  
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secondary concentration procedures and depend also on the laboratory 
equipment and personnel available for processing fi lters in batches. Time nec-
essary for clean-up and equipment sterilization must also be considered. 

 What, then, are the criteria for selecting a fi ltration method for  virus sam-
pling  ? Several criteria are important. (1) If in addition to viruses, concentrating 
bacteria and protozoa is required, ultrafi ltration and glass wool fi ltration are 
good choices because there is suffi cient evidence to indicate that these meth-
ods effectively concentrate a variety of microbial targets. (2) Sample fl ow rate 
can be important when there are many sample sites, long travel times between 
sites, and limited fi eld sampling personnel. The  Nanoceram ®  fi lter   at fl ow rate 
of 10 L/min is advantageous in that respect, requiring one third less time than 
DE-HFUF at 2.9 L/min. (3) For water samples with pH exceeding 7.5, if the 
standard approach of decreasing pH inline during sampling is not workable, 
glass wool fi ltration should be avoided. However, Nanoceram ®  fi lters are 
reported to be effective at pH values of up to pH 9.0. (4) Tangential fl ow ultra-
fi ltration is not always practical in fi eld settings, although the requirement for 
large sample volumes to be transported to the laboratory, might also be 
impractical. (5) DE-HFUF is prone to clogging and virus recovery has been 
shown to decrease with increases in turbidity. (6) Lastly, intangible factors such 
as experience and confi dence with equipment and technical procedures should 
be  considered   when making a decision on selection of virus fi lter. 

 Regardless of fi ltration method, recovery controls are essential to demon-
strate the chosen method does, in fact, concentrate the target microbes from 
the water being sampled. The general approach is to transport a  test water 
volume   (e.g., 10–20 L) to the laboratory, seed it with quantifi ed target, fi lter 
and process the water, quantify the target in the fi nal concentrate, and calcu-
late the percent of target recovered. Another approach, more representative 
of fi eld settings and typical for large sample volumes (hundreds of liters), is to 
fi lter the sample at the fi eld site with a target volume minus 10 L, transport the 
remaining 10 L back to the laboratory, seed it with the target microbes, and 
fi nish fi ltration with the same fi lter from the fi eld (Fout et al.  2010 ). A compan-
ion volume of unseeded test water should also be fi ltered in order to quantify 
indigenous target microbes present in the water. This quantity is then sub-
tracted from the numerator of the recovery calculation. 

 In addition, when recovery is measured by qPCR, a third companion vol-
ume of unseeded test water should be fi ltered and processed identically as the 
seeded test water. The target microbial seed is then added to the fi nal concen-
trate created from this third volume and quantifi ed by  qPCR  . This quantifi ed 
value is used as the denominator for calculating virus recovery. This step is 
crucial for accuracy because fi ltration and the downstream processing steps 
can affect qPCR inhibition or other water constituents that shift quantifi cation 
cycle (C q ) values (Borchardt et al.  2013 ). Lambertini et al. ( 2008 ) observed that 
inhibition during qPCR was detected in the beef extract eluent from the sam-
ple spiked with microbes processed by glass wool fi ltration; however, qPCR 
inhibition was not detected in the mock beef extract eluent spiked with 
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microbes indicating that constituents in the water concentrated during fi ltra-
tion contained inhibitors. In this instance,  qPCR   inhibition underestimated the 
quantity of microorganisms spiked in the water sample, resulting in an overes-
timate of virus recovery. Using six viruses, Calgua et al. ( 2013 ) demonstrated 
that percent recoveries varied depending on which step, and consequently 
which matrix, in the concentration process the viral seeds were quantifi ed. 

 Ideally, a recovery control would be performed for each sample, but that is 
impractical in terms of cost and time.  Water matrix type   (i.e., the combined 
attributes of turbidity, pH, dissolved organic matter, inorganic compounds, 
divalent cations, etc.) is an important determinant of recovery for both 
VIRADEL and HFUF methods (Hill et al.  2007 ; Lambertini et al.  2008 ; Mull 
and Hill  2012 ; Wu et al.  2013 ). Insofar as the waters to be sampled are known 
to vary in their matrices, for example by location, season, or aquifer type, the 
number of  recovery controls   can be planned to correspond with these various 
matrices. However, this number of recovery controls can be impractical as 
well and ultimately the number of controls is decided in the context of the 
sampling plan goals and whether potentially false- negative samples can be 
tolerated. At a minimum, several recovery controls should be performed dur-
ing the sampling period just to ensure the procedures in the laboratory are 
working, particularly if there is a change in reagents. For example, beef extract 
lots are reported to contribute to variation in virus recovery rates (Fout et al. 
 2010 ). Regardless of the number of recovery controls, these data should be 
reported along with the virus results for the unknown fi eld samples.  

4.     ADVANTAGES OF VIRUS SAMPLING 

  Human enteric viruses are  the   primary cause of foodborne disease outbreaks, 
and the food commodity most often implicated is fresh produce (i.e. leafy 
greens and berries) (Koopmans and Duizer  2004 ; Scallan et al.  2011 ). The 
common assumption is that fresh produce is contaminated with viruses at the 
point of preparation or service, instead of during production, harvest, and 
post-harvest steps (Berger et al.  2010 ; Hall et al.  2012 ). However, a limited 
number of studies are available on occurrence of viruses in agricultural water 
sources (van Zyl et al.  2006 ; Cheong et al.  2009 ; Kokkinos et al.  2012 ; Pachepsky 
et al.  2011 ). This knowledge gap stems, in part, from the regulatory emphasis 
of agricultural water standards that focus on the control and detection of bac-
teria, not viruses. In the US, the proposed rule for produce safety and stan-
dards for the sanitary quality of agricultural water sources is based on 
 Escherichia coli  density exceedance criteria established by the US EPA for 
recreational waters (USEPA  2012 ). These criteria were previously adopted by 
the California Leafy Greens Marketing Agreement (LGMA) and several 
other state produce safety programs (LGMA  2013 ; USFDA  2014 ). 

 The variety of agricultural water sources—groundwater wells, ponds, rivers, 
streams, irrigation ditches, municipal water, reclaimed (treated wastewater) 

Methods for Virus Recovery in Water



294

water, and irrigated liquid manure, combined with the diversity of potential 
fecal contamination sources, makes it diffi cult to rely on a single indicator, like 
 E. coli , to refl ect the fate, transport, and occurrence of all potential pathogens 
in agricultural water resources. Several criteria defi ne an effective indicator: 
(1) rapidly measurable, (2) representative of the pathogens of concern, and (3) 
fate and transport characteristics similar to pathogens (Brookes et al.  2005 ). 
Unfortunately,  E. coli  meets only one criterion, rapid measurement. Rarely is 
 E. coli  fully concordant with pathogenic virus levels (Payment and Franco 
 1993 ; Harwood et al.  2005 ; Payment and Locas  2011 ). An  E. coli  positive sam-
ple suggests the presence of fecal material and indirectly viruses. However, an 
 E. coli -negative sample does not necessarily mean viruses are absent. Sampling 
for viruses provides the defi nitive advantage of knowing whether viruses are 
present without the risk of making incorrect inferences based on  E. coli . 

 Virus sampling methods offer several other advantages for ensuring the 
sanitary quality of foods: (1) Methods capable of fi ltering large sample vol-
umes (e.g., 1000 L) can help account for any spatial and temporal variability 
of viruses in the water source; (2) Concentrated samples can be stored frozen 
and analyzed later if necessary; (3) Continuous sampling instead of grab sam-
pling is possible from low turbidity waters using cartridge fi lter methods like 
glass wool or hollow fi ber ultrafi lters; and (4) Some methods are effective in 
concentrating multiple classes of pathogens (e.g., protozoa, bacteria, and 
viruses) in one step.  

5.     SUMMARY AND CONCLUSIONS 

 Based on what has been presented here, it is clear that no single method may 
universally be recognized as superior or suitable for all monitoring scenarios 
or contamination events. The effi ciency, performance consistency, robustness, 
complexity of the method, and cost are all factors that must be considered 
when selecting the appropriate method. Additionally, regardless of the 
method, performance characteristics must be continuously monitored to 
ensure recovery effi ciency and consistency over time. Finally, there is evidence 
that applying sampling methods targeted for recovery of viruses and other 
microorganisms would be advantageous (i.e. when compared to traditional 
100 ml grab sample methods for detection of fecal indicator bacteria) in the 
assessment of the sanitary quality of agricultural water sources .     
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