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30.1         Historical Use of Metal Complexes 
Against Trypanosomatids 

   Trypanosomatids   are protozoan parasites that cause various diseases in human, such 
as leishmaniasis, Chagas disease, and sleeping sickness. According to World Health 
Organization (WHO), trypanosomiasis and leishmaniasis are the most challenging 
among the neglected tropical diseases [ 1 ,  2 ]. 

 At the beginning of the last century, Paul Ehrlich, considered the father of mod-
ern chemotherapy, discovered the anti-trypanosomal arsenic-based drug, atoxyl, for 
treatment of sleeping sickness [ 3 ]. However, atoxyl caused side effects, mainly 
blindness. In 1934, Ernst Friedheim, in the search for a safer drug, designed and 
developed melarsoprol which saved three millions of lives in the 1940s [ 4 ]. This 
 arsenical drug   is still in use for sleeping sickness, but is limited to cases of advanced 
infections with  Trypanosoma brucei gambiense  and  rhodesiense . More recently, 
trivalent arsenicals in the form of As 2 O 3  started to be used clinically in the treatment 
of acute promyelocytic leukemia [ 5 ]. 

  Antimony-based drugs   have also a long history of use in the treatment of infec-
tious diseases. The importance of antimony in the early medicine is well- documented 
due to the debate created around their utilization in this period [ 6 ]. The fi rst anti-
mony compounds prepared for medicinal applications were introduced in the six-
teenth and seventeenth centuries, with emphasis on antimony(III) potassium tartrate 
(tartar emetic). Tartar emetic was fi rst obtained placing sour wine in glasses of anti-
mony metal and its use was prescribed for many diseases, especially the lung dis-
eases. During the late nineteenth century, tartar emetic was used for fever and 
pneumonia and its use declined slowly until the beginning of twentieth century. 

 At the beginning of the last century, the Brazilian physician Gaspar Vianna, pio-
neer researcher in the treatment of leishmaniasis, reported the effi cacy of tartar 
emetic for clinical treatment of muco-cutaneous leishmaniasis [ 7 ]. In India, 
Brahmachari discovered in 1912 the organoantimonial compound urea stibamine, 
the fi rst effective drug against visceral leishmaniasis, and was a nominee for the 
Nobel Prize in 1929 for this fi nding [ 8 ]. 

 From the 1940s, these antimonials were substituted by the less toxic pentavalent 
antimony (Sb(V)) complexes, meglumine antimoniate and sodium stibogluconate 
(Fig.  30.1 ), in the therapeutics of leishmaniases. Typically, these Sb(V) drugs are 
given at 20 mg of Sb/kg per day intramuscularly or intravenously for 20–30 days 
[ 9 ]. Even though pentavalent antimonials are still the fi rst-line drugs against all 
forms of leishmaniasis in most developing countries, their mechanism of action is 
still not fully understood and their use in the clinical setting is limited by their side 
effects and the emergence of resistance to antimony [ 9 ].

   Recent advances in understanding the molecular and cellular biology of  leish-
maniasis   as well as the cellular accumulation pathways, mechanisms of resistance, 
and target identifi cation allow a more systematic rationale-based approach for 
development of new anti-parasitic drugs [ 10 – 12 ]. In this context, complexes with 
other metals including gold showed promising pharmacological activities. 

C. Demicheli et al.



671

 Most of the progress regarding drug development and mechanism of action was 
achieved using cell and animal models of leishmaniasis [ 13 ]. The in vitro models 
include extracellular log-phase leishmania promastigotes and established axenic 
leishmania amastigotes and the intracellular amastigotes in primary mouse perito-
neal macrophages or monocyte transformed macrophages as host cells. The in vivo 
models use mostly inbred strains of mice infected with leishmania species causing 
either cutaneous or visceral leishmaniasis. 

 Interestingly, in the case of these metal-based compounds, evidence was obtained 
that those exert their antiparasitic action by causing oxidative stress. This chapter 
will describe in details the current knowledge on their mechanism of action, with 
emphasis on antimonial drugs and gold complexes for leishmaniasis .  

30.2     Importance of Redox Systems in the Host–Leishmania 
Parasite Relationship 

    The  protozoan    leishmania parasite   has a  relatively   simple life cycle with two prin-
cipal stages: the fl agellated mobile promastigote living in the gut of the sandfl y 
vector and the intracellular amastigote within phagolysosomal vesicles of the verte-
brate host macrophage. After recognition of  Leishmania  spp., macrophages are acti-
vated, triggering phagocytosis and various cellular processes to destroy the parasite. 
These cellular processes include production of phagolysosomal degradation 
enzymes, oxidative burst generation, and nitric oxide (NO) production. The oxida-
tive burst provoked by the enzyme NADPH oxidase is a result of the increase in 
oxygen consumption as a consequence of the phagocytosis process. After macro-
phage activation, increased concentrations of various cytokines such as IFN-γ and 
TNF-α enhance NADPH oxidase activity and subsequently production of reactive 
oxygen species (ROS), such as superoxide radical. The production of superoxide 

  Fig. 30.1    Structural formula proposed for meglumine antimoniate ( a ) and stibogluconate ( b ). 
Adapted from Frézard et al. [ 9 ]       

 

30 Redox-Active Metal Complexes in Trypanosomatids



672

radical leads to the spontaneous or enzymatic formation of hydrogen peroxide, 
hydroxyl radical, hypochlorite, and peroxynitrite. The increased NO and 
NO-metabolite levels in activated macrophages are the result of inducible nitric 
oxide synthase (iNOS) activation. Parasite persistence within the macrophages is 
determined by a balance between the ability of the immune response to suffi ciently 
activate  Leishmania -infected macrophages and the ability of the parasite to resist 
cytotoxic mechanisms of macrophage activation [ 14 ]. 

 Although  Leishmania  species are susceptible in vitro to exogenous superoxide 
radical, hydrogen peroxide, nitric oxide, and peroxynitrite, they manage to survive 
the endogenous oxidative burst during phagocytosis and the subsequent elevated 
nitric oxide production in the macrophage. The parasite adopts various defense 
mechanisms against oxidative stress: the lipophosphoglycan membrane decreases 
superoxide radical production by inhibiting NADPH oxidase assembly and the par-
asite also protects itself through antioxidant enzymes [ 15 ]. Among the various para-
site defense mechanisms against host attack, thiol metabolism appears as a fi rst-line 
defense. One major system involved in the redox homeostasis in trypanosomatids is 
the trypanothione (T(SH) 2 )/trypanothione reductase (TR)system. The (T(SH) 2 )/TR 
system, which keeps T(SH) 2  under the reduced state, replaces the nearly ubiquitous 
glutathione/GR system, protects trypanosomatids from oxidative damage, and 
delivers the reducing equivalents for DNA synthesis [ 16 ]. 

 It has been reported that T(SH) 2  is capable of reducing NO (generated by the host 
cell) and iron into harmless stable dinitrosyl iron complex with 600 time greater 
affi nity than mammalian glutathione (GSH) reductase system [ 17 ]. This is the 
mechanism by which the parasite protects itself from such lethal environment   .  

30.3     Pentavalent Antimonial Drugs Against Leishmaniasis 

  The metabolism  and   mechanism of action of pentavalent antimonials against leish-
mania parasites are not fully understood [ 9 ]. However, the data available so far 
converge towards the central role of redox processes. 

30.3.1     Drug Activation Though Metal Reduction 

  It is  generally   assumed that Sb(V) behaves as a prodrug, undergoing reduction 
within the organism into the more toxic and active trivalent form. This model is sup-
ported by several reports that Sb(V) is reduced into Sb(III) in the vertebrate host and 
that reduction could also happen in the parasite [ 18 – 22 ]. However, the exact micro-
environment where the reduction occurs is still unclear. 

 Leishmania promastigote forms are insensitive to Sb(V). On the other hand, 
amastigote-like cultured parasites are sensitive to pentavalent antimonials, suggest-
ing the occurrence of intracellular Sb(V) reduction in this life-cycle stage [ 23 ]. 
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However, in the latter case, thiol availability from the culture medium and low pH 
as well as high temperature may also be determinant factors in Sb(V) to Sb(III) 
reduction and consequently high sensitivity to Sb(V) [ 24 ,  25 ]. 

 The higher sensitivity of intramacrophagic amastigotes to Sb(V) compared to 
axenic amastigote-like favors the hypothesis of host-associated Sb(V) to Sb(III) 
reduction [ 23 ]. 

  Thiols   have been reported as potential reducing agents in this conversion [ 24 , 
 26 ]. Reduction of Sb(V) to Sb(III) was found to occur spontaneously in the pres-
ence of the following thiols: (1) GSH, which is the main thiol in the cytosol of mam-
malian cells; (2) cysteine (Cys) and cysteinyl-glycine (Cys-Gly) found predominantly 
within lysosomes; and (3) the bis(glutathione)-spermidine conjugate T(SH) 2 , which 
is the main thiol within the parasite [ 27 ]. 

 The observations that Cys, Cys-Gly, and T(SH) 2  are more effective reducing 
agents than GSH and that this reaction is favored in acidic pH [ 18 ] led to the hypoth-
esis that Sb(V) may be reduced in vivo by T(SH) 2  within leishmania parasites and 
by Cys or Cys-Gly within the acidic compartments of mammalian cells. Both pro-
mastigotes and intracellular amastigotes maintain intracellular pH values close to 
neutral (~7) even in the presence of extracellular acidic pH (~4–5). This observation 
reinforces the hypothesis that thiol-mediated Sb(V) to Sb(III) reduction takes place 
preferentially in the host cell. 

 Other studies have suggested the participation of a parasite-specifi c enzymes in 
the process of reduction of Sb(V) to Sb(III) [ 28 ,  29 ]. However, these parasite- 
specifi c enzymes are expressed in both life-cycle stages and therefore it is diffi cult 
to accommodate the different toxicity of pentavalent antimony toward promasti-
gotes and amastigotes. 

 Recently, the pentavalent antimonial drug meglumine antimoniate was found to 
contain up to 30 % of Sb(III), indicating that the mode of action of this drug could 
be mediated by this residual amount of Sb(III) [ 30 ]. Additionally, the availability of 
Sb(III) increased at low pH values, suggesting that this drug may act as molecular 
carrier releasing the active Sb(OH) 3  form specifi cally in the acidic intracellular 
compartment where leishmania parasite resides.   

30.3.2     Antimony-Induced Redox Imbalance 

  Sb(III) is classifi ed as  a   borderline metal ion within Pearson’s hard-soft acid-base 
theory and has a high affi nity towards nitrogen- and sulfhydryl-containing ligands. 
The anti-leishmanial mechanisms of Sb(III) are probably related to its interaction with 
sulfhydryl-containing biomolecules, including thiols, peptides, proteins, and enzymes. 

 Thus, Sb(III) was found to form stable complex with the major intracellular 
thiols, GSH and T(SH) 2 , in the form of a 1:3 and 1:1 Sb-thiol complexes, respectively 
[ 24 ,  26 ,  31 ]. Once Sb(III) is in the cell and conjugated to T(SH) 2 , the complex can 
be sequestered inside a vacuole or extruded by ATP-binding cassette (ABC) trans-
porters [ 32 ,  33 ]. 
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 It has been reported that Sb(III) interferes with the thiol metabolism, not only by 
inducing effl ux of intracellular T(SH) 2  and GSH from intact leishmania cells, but 
also by inhibiting TR through specifi c interaction with the redox-active catalytic site 
[ 34 ], resulting in lower [T(SH) 2 ]/[[T(S) 2 ] ratio [ 35 ]. Both actions synergistically 
contribute to lowering the parasite-neutralizing capacity of reactive species coming 
from the host. It is worth noting that similar effects in thiol metabolism were 
observed with Sb(V) on axenic amastigotes in these studies. Now, it is also clearly 
established that Sb(III) triggered apoptotic cell death associated with ROS [ 36 ]. 

 Whether the oxidative stress resulting from metal interference in thiol metabolism 
is suffi cient to promote cell death or additional event involving metal interaction with 
other molecular target(s) takes place still has to be determined. In that sense, recent 
studies have identifi ed zinc-fi nger protein as potential target of Sb(III) [ 37 ,  38 ]. The 
zinc fi nger domain is characterized by the coordination of a zinc atom by several 
amino acid residues, including cysteine and histidine. Zinc fi nger proteins sharing the 
CCHC motif have been identifi ed in trypanosomatids and are likely to be involved in 
DNA replication, structure, and repair [ 39 ]. On the other hand, CCCH zinc fi nger 
domains, which are found mainly in RNA-binding proteins with regulatory functions 
at all stages of mRNA metabolism [ 40 ], are suspected to play a crucial role in the 
biology of kinetoplastid protozoa, because of the unusual emphasis on post-tran-
scriptional control of gene expression in this group of organisms [ 41 ]. Interestingly, 
Sb(III) promotes Zn(II) ejection more effectively from CCCH zinc fi nger peptides 
than CCHC peptides [ 38 ], suggesting that the action of antimonial drugs could be 
related mainly to interaction of Sb(III) with CCCH zinc fi nger proteins. 

 Despite the strong evidence that Sb(III) mediates the antileishmanial action of 
pentavalent antimonials, some studies have suggested intrinsic pharmacological 
actions of Sb(V) [ 42 – 44 ]. 

 Demicheli and co-workers have reported the formation of a complex between 
adenine ribonucleoside and Sb(V). This was the fi rst report of a physiologically 
relevant biomolecule capable of forming stable complexes with Sb(V). Both 1:1 and 
1:2 Sb(V)-ribonucleoside complexes were evidenced [ 19 ,  42 ,  45 – 47 ]. The large 
NMR resonance changes for H2′signal suggested that –OH groups in the ribosome 
are the binding sites for Sb(V) probably via ring chelation at C2′ and C3′. 

  Stibogluconate   was found to be a potent inhibitor of protein tyrosine phosphatases, 
which leads to an increase in cytokine responses [ 44 ]. Another recent study revealed 
that this drug induced generation of ROS and NO via phosphoinositide 3-kinase and 
mitogen-activated protein kinase activation in  Leishmania donovani - infected macro-
phages [ 48 ,  49 ], indicating that Sb(V) can stimulate the innate arm of the immune 
system. Meglumine antimoniate was also reported to increase the phagocytic capacity 
of monocytes and neutrophils and enhance superoxide anion production by phago-
cytes, which represent the fi rst line of defense against the parasite [ 50 ]. 

 As summarized in Fig.  30.2 , these data taken altogether suggest that pentavalent 
antimonials affect the parasite viability through both Sb(III)-induced imbalance of 
thiol metabolism in parasite and Sb(V)-induced stimulation of macrophage micro-
bicidal activity .
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30.3.3        Redox Changes in Antimony-Resistant Parasites 

   Resistance of  leishmania   parasites to antimony has been  extensively   studied in both 
laboratory-selected resistant leishmania lines and fi eld isolates [ 51 ,  52 ,  53 ], allow-
ing important insights into the molecular and functional factors that modulate para-
site sensitivity to the drug. 

 Most antimony-resistance associated genes are involved in metabolic process 
related to oxidative stress, cell redox homeostasis, and thiol biosynthesis [ 54 ], 
which is not surprising considering the mode of action of antimonial drugs. 

 A change often encountered in both laboratory-selected and fi eld-isolated resis-
tant leishmania parasites is overexpression of rate-limiting enzymes of thiol biosyn-
thesis, such as ornithine decarboxylase and γ-glutamylcysteine synthetase, which 
causes an overproduction of intracellular thiols and extra protection against the 
 oxidative stress upon drug exposure [ 55 – 58 ]. The higher rate of thiol synthesis may 
also result in enhanced rates of effl ux through ABC transporters contributing to the 
resistance phenotype [ 33 ]. Overexpression of the multidrug resistance-associated 
protein A transporter responsible for sequestration of Sb-thiol conjugates in 
intracellular vesicles is another frequently observed change that contributes to the 
resistance phenotype in  Leishmania  [ 32 ]. Thiol depletion of these strains reestab-

  Fig. 30.2    Model for the mechanism of action of pentavalent antimonial drugs against leishmaniasis       
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lished their susceptibility to Sb [ 57 ], indicating that the increased T(SH) 2  levels are 
causing resistance. 

 Elevated levels of tryparedoxin and tryparedoxin peroxidase, key enzymes in 
hydroperoxide detoxifi cation, were also observed in antimonial resistant parasites 
resulting in an increased metabolism of peroxides   [ 59 ].  

30.3.4     Redox-Related Toxicity of Antimonial Drugs 

  Even though pentavalent  antimonials   are still the fi rst-line drugs in several countries 
against all forms of leishmaniasis, their use in the clinical setting has several 
limitations. 

  Antimony therapy   is often accompanied by local pain during intramuscular 
injection and by severe side effects that include cardiotoxicity, pancreatitis, hepato-
toxicity, and nephrotoxicity [ 9 ,  60 ]. 

 Although the mechanism involved in the toxicity of pentavalent antimonials is 
not fully elucidated, it is generally accepted that Sb(III), either present as residue in 
pentavalent antimonials [ 61 ] or produced in the tissues through reduction [ 19 ], may 
be responsible for their side effects and antileishmanial action. 

 Studies of the mechanism of  cytotoxicity   of the trivalent tartar emetic drug sug-
gest that Sb(III) compromises thiol homeostasis through depletion of intracellular 
glutathione and inhibition of glutathione reductase [ 22 ]. Then, Sb(III) enhances oxi-
dative stress and leads to apoptosis through increase of ROS [ 22 ,  62 – 64 ]. 

 Further evidence that pentavalent antimonials exert toxicity through induction of 
oxidative stress was obtained by Kato et al. [ 65 ], who demonstrated the protective 
effect of the antioxidant ascorbic acid during antimonial chemotherapy in a murine 
model of visceral leishmaniasis  .   

30.4     Gold Complexes Against Leishmaniasis 

    Auranofi n (Fig.  30.3 ) is  a   US Food and Drug Administration- approved   drug used 
 t  herapeutically for rheumatoid arthritis. It is the prototypical gold drug with remark-
able broad-spectrum medicinal properties, inspiring the development of other Au(I) 
and Au(III) compounds [ 66 ]. More recently, the awarding of orphan-drug status to 
auranofi n for the possible treatment of amebiasis (caused by  Entamoeba histolytica , 
an intestinal protozoan parasite) has signifi cant global health implications in devel-
oping countries [ 67 ]. Transcriptional profi ling and thioredoxin reductase assays sug-
gested that auranofi n targets the  E. histolytica  thioredoxin reductase, preventing the 
reduction of thioredoxin and enhancing sensitivity of trophozoites to ROS-mediated 
killing. Auranofi n also inhibits viral load in simian virus [ 68 ,  69 ]. In combination 
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with auranofi n, administration of buthionine sulfoximine, an inhibitor of glutathione 
synthesis, under a highly intensifi ed antiretroviral treatment was followed, after 
therapy suspension, by a signifi cant decrease of viral RNA and DNA in peripheral 
blood as compared to pre-therapy levels.

    Auranofi n   has also shown antiparasitic (malaria, leishmaniasis) activity, very 
likely arising from inhibition of parasitic enzymes involved in the control of the 
redox metabolism [ 11 ,  66 ]. The validation of TR as a key enzyme of  Leishmania 
infantum  polyamine-dependent redox metabolism and a target for antileishmanial 
drugs suggested that thiophilic agents besides Sb(III) could be effective enzyme 
inhibitors and potential antileishmanial agents. The X-ray crystal structure of the 
auranofi n–trypanothione reductase–NADPH complex resolved at 3.5 Å resolution 
showed gold bound to the two active site cysteine residues of TR [ 70 ]. The thio-
sugar moiety of auranofi n is located at the trypanothione binding site, suggesting 
that auranofi n may inhibit TR through a dual mechanism. Enzymatic assays revealed 
that auranofi n causes a pronounced enzyme inhibition and the drug kills the pro-
mastigote stage of  L. infantum  at micromolar concentrations. 

 An integrated in vitro and in vivo screening platform incorporating multiple 
leishmania life cycles and species probed a focused library of pharmaceutically 
active compounds for identifi cation and prioritization of  bona fi de  cytotoxic chemo-
types toward leishmania parasites. Auranofi n was confi rmed as a potent cytotoxic 
antileishmanial agent and inducer of apoptotic-like death in promastigotes. 
Signifi cantly, the antileishmanial activity of auranofi n transferred to cell-based 
amastigote assays as well as in vivo murine models [ 71 ]. 

  Auranofi n   may represent a prototype drug that can be used to identify signaling 
pathways within the parasite and host cell critical for parasite growth and survival. 
Indeed, a structurally diverse group of Au(I)/Au(III) compounds behave as highly 
effective inhibitors of  Leishmania infantum  TR, some being even more effective 
than antimonials [ 72 ]. Simultaneous consideration of TR inhibition and antiprolif-
erative potency has identifi ed appropriate candidates for further evaluation. The 
current results suggest a foundation for potential exploitation of gold-based com-
plexes as chemical tools or the basis of therapeutics for leishmaniasis   .     
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  Fig. 30.3    Structure of 
Auranofi n       
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