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Abstract. Meta-heuristics and hybrid heuristic approaches have been
successfully applied to Periodic Vehicle Routing Problems (PVRPs).
However, to be competitive, these methods require careful design of spe-
cific search strategies for each problem. By contrast, hyperheuristics use
the performance of low level heuristics to automatically select and tai-
lor search strategies. Hyperheuristics have been successfully applied to
problem domains such as timetabling and production scheduling. In this
study, we present a comprehensive analysis of hyperheuristic approaches
to solving PVRPs. The performance of hyperheuristics is compared to
published performance of state-of-the-art meta-heuristics.
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1 Introduction

Most (meta-)heuristic approaches applied to new search problem domains need
expert input in design. To automatize the process, hyperheuristics provide a
problem-independent approach that automatically applies an appropriate search
strategy, by calling low level heuristics (LLHs) at each decision point [1]. Whilst
various hyperheuristics have been tested for a range of optimization problems
(e.g. [1–4]), none has yet addressed PVRPs.

Hyperheuristic approaches operate at a management level, consisting of selec-
tion and acceptance stages. The LLH(s) to test at each search stage may be deter-
ministically or probabilistically selected. In more advanced selection strategies,
hyperheuristics can learn from the performance of previous selections; perfor-
mance is usually evaluated using problem-independent measures such as change
in the solution quality or elapsed CPU time. Acceptance determines whether
to replace the current solution with the one yielded by the selected LLH(s).
A large variety of acceptance strategies, such as only improved (OI) (e.g. [1])
and simulated annealing (e.g. [5]), have been tested in literature. Theoretically,
a hyperheuristic should adapt to any hard computational search problem, and
provides a mechanism for studying the strengths and weaknesses of LLHs for a
specific problem.
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In this paper, we provide a comprehensive analysis on three types of hyper-
heuristics and apply them to benchmark and real-world PVRP instances with
different characteristics. We also use the hyperheuristics to explore the strengths
and weaknesses of LLHs designed for PVRPs. Section 2, briefly introduces PVRP
and (meta-)heuristic solvers from literature. We then review LLHs designed for
PVRP in Sect. 3. Section 4 presents the hyperheuristics. Sections 5 and 6 present
the experimental design and analysis of the experiments respectively.

2 Periodic Routing Problem

PVRPs [6–9] provide a well-researched mathematical model for real-world prob-
lems such as inventory servicing, periodic maintenance, and on-site service plan-
ning. A PVRP comprises K vehicles which can be used to service the demands
of N customers over M days. Each PVRP has constraints that must be met by
legal solutions: vehicles start and end their journey at a depot; no more than
K routes are built each day; vehicle capacity restrictions are respected; each
customer request is serviced in one time slot by one vehicle; only one service
pattern is chosen for each customer. A feasible visit pattern, λi ∈ Λi, for a cus-
tomer i, is a pattern that meets all constraints and provides the level of servicing
required for customer i. For example, a customer might require two service visits
per week, on either Monday and Thursday or Tuesday and Friday, giving two
feasible patterns. The PVRP objective is to design a set of daily routes, com-
prising feasible patterns for each customer, that minimizes the total travelling
cost and satisfies the PVRP constraints.

2.1 Existing (Meta-)heuristic Solvers for PVRP

Heuristic approaches to PVRP developed since the 1970s [6,10–13] generate
solutions by determining customer-day patterns that group geographically close
customers. In 1995, Chao et al. [7] introduced a record-to-record meta-heuristic
that outperformed the earlier heuristics approaches. Subsequent meta-heuristics
approaches, including tabu search [8], scatter search [14] and variable neigh-
bourhood search (VNS) [5], have all produced new best solutions for benchmark
problems. Hybrid heuristics now present very competitive results: Gulczynski
et al. [9] use integer programming-based improvement heuristics combined with
routing-based local searches; Vidal et al. [15] propose a hybrid genetic algorithm
that combines local search and sophisticated population management strategies
to guide the search – an approach shown to perform better than all the above
algorithms. Cordeau and Maischberger [16] combine tabu search and iterated
local search to give a competitive, broad exploration of the search space.

3 Low Level Heuristics for the PVRP

A hyperheuristic has a repository of LLHs that operate directly on the solution
space, and should provide good coverage of the solution space.
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3.1 Constructive Heuristics

To construct a valid PVRP initial solution, most PVRP solvers first assign cus-
tomers to days, then build a solution of a vehicle routing problem (VRP) for
each day. For assignment, Cordeau et al. [8,16], Hemmelmayr et al. [5] and
Vidal et al. [15] randomly select a feasible customer-day pattern for each cus-
tomer; Chao et al. [7] and Gulczynski et al. [9] minimize the maximum demand
serviced each day; Christofides and Beasley [6] minimize the daily total dis-
tance from each customer to the depot. To construct daily routes, the Clarke
and Wright algorithm (CW) [17] and GENI insertion heuristic [18] are generally
applied. Our hyperheuristics use the same approach as [5]: random assignment
followed by a CW routes construction process for each day.

3.2 Perturbation Operators

From an initial solution, a hyperheuristic manages the application of perturba-
tion operators to either daily routes or customer patterns. Application may be
first improvement (FI) – seeking to improve the current solution, or mutation
(shaking) to derive a similar, but new solution from the current solution.

Route Related Operators. There are a number of common operators used to
modify single and multiple routes in PVRP (see VRP local search library [19]).

1. 2Opt: replace two edges from a route with two new edges (e.g. [7,9,15])
2. 3Opt: replace three edges from a route with three new edges (e.g. [5]).
3. Or-opt: remove a string of two to four nodes and insert it into a new position,

either in the same route (e.g. [14]) or in a different route (e.g. [15]).
4. One point move (1PM): relocate a point to a new position, either in the same

route or in a different route (e.g. [7,9]).
5. Two points swap (2PS): swap two points, either in the same route or between

different routes (e.g. [9]).
6. Relocate: relocate a string of points from one route to another (e.g. [5,15]).
7. Cross: swap two chains of points between two routes. ([5,14]).

Route-based perturbation is typically applied as FI, embedded in an itera-
tive local search (ILS) [7,9,14,15]; however, they can also be used as mutation
operators: Hemmelmayr [5] uses “Relocate” and “Cross”, for this purpose.

Pattern Related Operators. All these operators assign different valid pat-
terns for selected customers. A customer with a new pattern is removed from
their current routes and re-inserted to their new lowest-cost position on each
day in the new pattern, meaning that we always get a complete PVRP solution.

1. Random pattern reassign (Pa RR): randomly assign a new feasible visit pat-
tern to n customers drawn at random. A tabu mechanism prevents a customer
from being subject to reassignment again in the short term.
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2. Score based reassign (Pa SR): chooses n random customers, for each i ∈ n,
assign the pattern λi with the highest score, Q(λi). Q(λi) is updated after any
pattern related operator use; if no improvement is found, Q(λi) =

√
Q(λi).

3. Pattern reassign FI (Pa FIR): for each customer i, successively test each
feasible pattern, the first improvement found is executed.

4. Two points pattern swap (Pa 2SW): swaps the visit patterns of two customers
i and j which have the same available patterns, Λi = Λj and λi �= λj .

Mixed Operators. To improve flexibility, mixed operators support moves
between days, and potentially modify both routes structure and customer pat-
terns. Chao et al. [7] propose an operator that removes the current routing of
a customer’s current pattern, and inserts into a different set of routes, with or
without changing the customer’s current pattern. For our LLH repository, we
design two mixed operators that operate on chains; all customers moved must
have the same available patterns, and only customers with a single visit per
pattern are used.

1. Relocate with Pattern (MRPa): relocate a chain of points from one route to
another route in the same day or a different day.

2. Cross with Pattern (MCPa): swap two chains of points between two routes
within the same day or between days.

3.3 Reinitialization

If the current solution has not been improved for a certain number of iterations,
we assume the search is stuck in a local optimum that cannot be escaped by a
small mutation. A reinitialization mechanism, Algorithm 1, is applied. The new
solution is made feasible by repeatedly removing the customer with the greatest
load requirement from any route in the candidate solution that violates duration
or load constraints, and re-inserting in a route where the constraints are met.

Algorithm 1. Reinitialisation
Define:
De: xbest is the best found solution so far
De: prandom is the probability of generating a random initial solution
Reinitialisation(xbest, prandom)
if random(seed) < prandom then

random assignment and CW daily routes construction (Sect. 3.1).
else

Destroy w% of the longest routes in xbest.
For each customer in destroyed routes, randomly reassign feasible visit pattern.
Insert each customer greedily to cheapest position in each day of assigned pattern.

end if
Return the new (re)constructed solution x.
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4 Hyperheuristics

We consider three types of hyperheuristics: simple hyperheuristics, learning
based hyperheuristics and VNS based methods.

4.1 Simple Hyperheuristics

Simple hyperheuristics [1] have basic LLH selection mechanisms such as simple
random (SR), random descent (RD), random permutation, random permutation
descent, and greedy. Acceptance strategies, such as all moves or only improving
(OI) were originally tested on a sales summit problem [1]. Here, we implement SR
and RD combined with OI acceptance, designated SROI and RDOI, respectively.

SR randomly selects a LLH, based on a uniform distribution. RD randomly
selects a LLH and applies it repeatedly until there is no further improvement
in the solution. OI accepts a new solution only if it is better than the current
solution, evaluated by fitness.

4.2 Learning Based Hyperheuristics

Learning based hyperheuristics adapt the LLH trial set according to the histor-
ical performance of each LLH. In each iteration, a favourable LLH is applied,
based on predefined rules: in our implementation, the LLH from the trial set
that produces the most improved solution is applied. Three well known learning
based selection mechanisms are tested: binary exponential back off (BEBO) [3],
reinforcement learning (RL) [20] and a ranked choice function (CF) [1].

BEBO. [3] uses a tabu based learning mechanism. The tabu tenure, tabui,
changes dynamically, such that a LLH that performs poorly is disabled for a
number of iterations (which increases exponentially if the LLH subsequently
perform poorly). Each iteration only LLHs i with tabui = 0 are selected to
form the trial set, T .

RL. [20] uses positive reinforcement to reward good LLH choices and neg-
ative reinforcement to penalise bad LLH choices. The utility value of each
LLH is dynamically updated based on its performance, and the w% of LLHs
with the highest utility form the trial set, T , for the next iteration. We apply
hyperheuristic RL methods identified by Nareyek [20]. For each LLHi ∈ T ,
utilityi =

√
utilityi. After testing, the best performing LLHbest ∈ T that

improves the solution is rewarded by setting utilityi = utility2
i + 1.

CF. [1] provides a different utility adoption scheme. In each iteration, the utility
of each LLHi ∈ T is updated based on a linear function that considers the
LLH’s performance (evaluated by fitness change and execution time), the ability
of the LLH in collaboration (evaluated by successively applied pairs of LLHs),
and the elapsed time since the LLH was last called.
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4.3 General Variable Neighbourhood Search (GVNS) with Learning

GVNS [21,22] differs from the hyperheuristics above in its more intensive use
of local search (LS): the selected LLH is applied repeatedly rather than for one
iteration only. Shaking is another critical component for GVNS, meaning that
when no further improvement is found using LS, mutation operators are applied
to facilitate the search to jump out of a local optimum.

Define: kmax = |LLHMU |, the
number of mutation operators
GVNS(x, LLHMU , LLHFI , tmax)

while t < tmax do
k = 1
while k < kmax do
x′ = shaking(x, LLHk

MU )
x′′ = VND(x′, LLHFI)
If x′′ is better than x then
x = x′′ and k = 1
Otherwise k = k + 1

end while
end while

AlgorithAlgorithm 2. General VNS AlgorithAlgorithm 3. General VNSr

GVNSr(x, LLHMU , LLHFI ,
tmax)
while t < tmax do

randomly choose LLHk
MU from

LLHMU

x′ = shaking(x, LLHk
MU )

x′′ = VND(x′, LLHFI)
If x′′ is better than x then
x = x′′

end while

GVNS is a parameter-free approach; LLH selection uses a pre-ordered LLH
set [5]. Our experiments need to test a large number of LLHs, which is very
CPU-intensive. We propose variations to the GVNS: Algorithms 2 and 3 with,
respectively, fixed order and random selection strategies to manage the selection
of mutation operators (LLHMU ). The first stage of GVNS takes a candidate
solution, x, and shakes it by applying one mutation operator (from LLHMU ).
The second stage of GVNS calls a variable neighbourhood descent algorithm,
VND, which applies FI operators (LLHFI) to the shaken solution. VNS is run
over a fixed time, t < tmax.

Algorithm 4 describes the VND procedure called in Algorithms 2 and 3. The
VND manages selection of FI operators using either random ordering or one of
three RL-based LLH orderings: ascending, descending, and top w%. Although
utility is calculated in all cases, it is not used in random ordering selection.

5 Experimental Design

We design experiments that allow us to analyse the performance of hyperheuris-
tics from different angles. We use data (benchmark and real) with different
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Algorithm 4. VND(x, LLHFI)
Choose subset LLH ′

FI ⊆ LLHFI based on the LLH selection approach used.
Define: kmax = |LLH ′

FI |, the number of local search operators to be tested.
k = 1
while k < kmax do

x′ = ILS(x, LLHk
FI), where ILS applies the selected FI operator,

LLHk
FI , repeatedly until no further improvement occurs. In each iteration

of ILS, utilityk =
√
utilityk; if LLHk

FI makes an improvement, then
utilityk = utility2

k + 1.
If x′ is better than x then x = x′ and k = 1
Otherwise k = k + 1

end while

spatial characteristics. We also compare the performance of hyperheuristics with
that of meta-heuristics applied to the benchmark problems.

The experiments are designed to replicate benchmark conditions from [15].
In particular, the search is always terminated after the fixed amount of CPU
time stated in [15]. To check the suitability of this time limit for scalability
experiments (Sect. 6.3), we ran preliminary experiments using twice the CPU
time. We found no significant change in the quality of solutions, suggesting that
a performance plateau is attained, and the chosen CPU time is appropriate.

All experiments are implemented in C� and executed on a cluster composed
of 8 Windows computers, each with Intel Xeon E3-1230 CPU.

LLH Repository Settings. The operators introduced in Sect. 3 are classi-
fied according to whether we use them for mutation and/or FI, Table 1. Route
related operators are parametrized by route ID, day, length of chain and number
of points changed in one move; this makes it possible for an intelligent hyper-
heuristic to select a LLH specifically related to each sub-problem (e.g. daily

Table 1. LLH Repository used in our PVRP hyperheuristics

Type Operators

Route related: mutation 2 points swap (2PS), Relocate, Cross

Route related: FI 2Opt, 3Opt, 2PS, Relocate, Cross

Pattern related: mutation Random pattern reassign (Pa RR),

Score based reassign (Pa SR),

Two points pattern swap (Pa 2SW)

Pattern related: FI Pattern reassign first improvement (Pa FIR),

Two points pattern swap (Pa 2SW)

Mixed: FI Relocate with pattern (MRPa),

Cross with pattern (MCPa)
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VRP or single route optimization). Pattern related operators reassign the pat-
terns of n customers; we consider n = 1, 2, . . . , 6 in our experiments. Because of
the structure of LLH parameter design, our LLH repository contains 70 to 110
LLHs, depending on the problem instance.

Algorithm Frameworks. To test LLH management strategies, we use three
hyperheuristic frameworks, Fig. 1. The only difference between the first two
frameworks is the strategy used to organize different types of LLHs (mutation
and FI). Both the simple hyperheuristics and learning based hyperheuristics
(Sect. 4) can be applied in frameworks 1 and 2. The third framework supports a
VNS-based method (Sect. 4.3). Compared to framework 2, it replaces the second
stage (a single selection) with an ILS over a subset of the LLH repository.

(a) Framework 1 (b) Framework 2 (c) Framework 3

Fig. 1. Hyperheuristic frameworks (the first two are modified from [23])

5.1 Problem Instance

Our data comprises 42 benchmark problems (summarised by [5]) and six
instances from a real-world periodic maintenance problem1. We classify the prob-
lems according to their spatial characteristics (Fig. 2). Table 2 summarises each
class. The six real-world instances are all street type. The big random bench-
mark problems have both a larger number of customers and greater clustering
of data points than the small random class.

1 The real-world data and associated best-performance results (Sect. 6) can be found
at https://www-users.cs.york.ac.uk/∼yujiec/.

https://www-users.cs.york.ac.uk/~yujiec/
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(a) street style
(real world exam-
ple)

(b) Small random
(from benchmark
p02 [6])

(c) Big random
(from benchmark
pr05 [8])

(d) Symmetrical
(From benchmark
p32 [7])

Fig. 2. Examples of four types of spatial distributions in the PVRP instance set.

Table 2. PVRP instances. n is number of customers; m is number of vehicles; t is
length of planning period in days. Benchmark labelling is from [5].

Class n m t Average visit Number of problem

frequency instances

Street style 240–324 3–5 6 1.6-2.1 6

Small random 50–100 1–6 2–10 1–2.1 10 (benchmark p01-p10)

Big random 48–417 2–12 4–7 1.1–3 13 (benchmark p11-p13,

pr01-pr10)

Symmetrical 20–184 2–9 4–6 1.8-2 19 (benchmark p14-p32)

6 Experimental Results and Analysis

6.1 Random Vs Learning Based Selection Strategies

A hyperheuristic needs an efficient selection strategy, because it is impractical
to apply all LLHs exhaustively. The first experiment compares the SR selection
strategy to the learning based strategies, RL, CF and BEBO. The experiment
uses framework 1 (Fig. 1a) and OI acceptance. For RL and CF, we test using
both the best 30% and the best 80% of LLHs in each iteration (See Sect. 4.2).

Each selection strategy is run 20 times on each instance of each of the four
classes of problem, to give the percentage differences to the best-found bench-
mark route length of each instance. We then average the results for each class
of problems.

The results in Table 3 show that, whilst acceptable, none of our solutions
matches the best-found benchmark solution. Learning based selection strategies
consistently out-perform SR LLH selection, with BEBO performing best. For
both RL and CF, the limited CPU time makes it difficult for the hyperheuristics
to produce competitive results for w = 80. In subsequent experiments we only
use the best 30 % of LLHs.
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Table 3. The average percentage difference to the best found solution over all instances
in each group, for simple random (SR) and learning based hyperheuristics, using frame-
work 1 and OI acceptance.

SR RL(30 %) CF(30%) RL(80 %) CF(80 %) BEBO

Street style +8.90 +5.36 +6.08 +6.47 +6.64 +4.90

Small random +4.67 +2.12 +2.28 +2.15 +2.33 +2.06

Big random +4.32 +4.14 +4.32 +4.28 +4.35 +4.13

Symmetrical +2.74 +1.46 +1.56 +1.55 +1.53 +1.50

6.2 Impact of Algorithm Framework

Having shown that learning based selection strategies can manage a large number
of LLHs in a simple hyperheuristic framework, we now consider the different
hyperheuristic frameworks.

In framework 1, the OI acceptance rule means that mutation LLHs are
unlikely to be favoured. In framework 2, a mutation operator is randomly
selected, and is applied as long as it generates valid solutions, then FI LLHs
are selected using a learning based strategy, as above. Framework 2 is similar to
framework 1 when we use the all-move-accept rule, but, whereas framework 1
evaluates the mutation and FI operators together, framework 2 allows separate
consideration.

The results in Table 4 show that framework 2 improves the performance of
both RL and CF hyperheuristics for all types of problem instances, and, BEBO
does not show obvious difference between framework 1 and 2.

Framework 3 uses the VNS-based algorithms; the main difference to frame-
work 2 lies in the use of ILS once a FI operator is selected. Five variants are
tested. The first two use GVNS (Algorithm 2), with VND using, respectively, ran-
domly ordered FI LLHs (VNS(R)) and the best 30 % of FI LLHs (VNS(30 %)).
Three variants use GVNSr (Algorithm 3), with random, ascending or descend-
ing FI LLH ordering determined using utility (respectively, VNSr(R), VNSr(A),
VNSr(D)). We compare performance with the above three framework 1 and

Table 4. The average percentage differences to the best found solutions over all
instances in each group, for learning based hyperheuristics using frameworks 1 and
2 (FW1, FW2)

Instances RL(30%) CF(30 %) BEBO

FW1 FW2 FW1 FW2 FW1 FW2

Street style +5.36 +5.26 +6.08 +5.54 +4.90 +5.31

Small random +2.19 +1.88 +2.28 +1.90 +2.06 +2.03

Big random +4.14 +3.93 +4.32 +3.88 +4.13 +4.12

Symmetrical +1.46 +1.45 +1.56 +1.54 +1.50 +1.56
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(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Fig. 3. Ranking of hyperheuristics for PVRPs. Higher rank is better.

three framework 2 strategies, plus random descent (RDOI) and simple random
(SROI) embedded in framework 1. We then rank the performance of the 12 com-
binations of framework and LLH selection strategy, awarding 16 points to the
best performing hyperheuristic, then 14, 12, 10, 8, 7, . . . 1, 0 points successively to
worse performing hyperheuristics.

Figure 3 shows a small difference in performance between frameworks 1 and 2.
Compared to the framework 3 results, they are both generally low-ranking for
all cases except the symmetrical benchmark problems. This shows the positive
impact of using ILS. Among framework 3, the five VNS-based algorithms show
similar ranking, except for big random, where VNS(R) is not highly ranked;
random selection of the shaking operator combined with random ordered FI
LLHs (VNSr(R)) is the most robust over all classes of problem.

6.3 Scalability

The PVRP is NP-hard [15]. One of its biggest challenges is the rate of growth in
complexity with problem size. In preliminary experiments, we determined that
the performance of algorithms on symmetrical and non-symmetrical problems is
very different. To test the scalability of our hyperheuristics, we first group the
problem instances into symmetrical and non-symmetrical problems and then
order them by the number of customers. Each method is runs 20 times.

Figure 4 shows that SROI has the worst scalability in both symmetrical and
non-symmetrical problems. For the other algorithms, there is little difference in
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Fig. 4. Performance of hyperheuristics tested on PVRP with various sizes

performance on problems with fewer than about 60 customers. VNS-based algo-
rithms are the most robust across non-symmetrical instances with 150 to 420
customers. However, performance decreases dramatically for VNS-based algo-
rithms applied to bigger problem instances in the symmetrical data set.

6.4 LLH Usage Analysis

Whilst hyperheuristics need little specialised design, the LLH repository does
need thought. In this experiment, we explore the usage of LLHs by the different
hyperheuristics. We use frameworks 2 and 3, which manage the mutation and
FI operators separately. The results focus on the 9 FI LLHs, since there is no
learning in mutation operator selection.

Figure 5 summarises average usage of FI LLHs for all learning based algo-
rithms using framework 2 (BeboFW2, RLFW2(30 %), CFFW2(30 %)) and all
VNS-based algorithms using framework 3 (VNS(R), VNS(30 %), VNSr(D),
VNSr(A), VNDr(R)). The stronger LLHs are favoured more in framework 3
than in framework 2. “Relocate with pattern” (MRPa) and “two points pattern
swap” (Pa 2SW) are the most applied LLHs by all hyperheuristics. Since we
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(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Fig. 5. FI LLHs usage for different types of problem. Results show the mean value of
percentage of each LLH are applied during the search, where 0.1 stands for 10 %. Error
bars show 95% confidence interval.

(a) Street style (b) Small random (c) Big random (d) Symmetrical

Fig. 6. Performance of RLFW2(30 %) and VNSr(R) using different subset of LLHs.
Error bars show 95% confident interval. The subset1 removes the most used LLH
(Pa 2SW) and all mutation operators except Pa RR

are using an OI strategy, this implies that they consistently produce improved
solutions.

The “Relocate” operator is preferred in symmetrical problems, but not in
other instances. The importance of this operator is emphasised by the big reduc-
tion in performance when the “relocate” operator is removed (Fig. 6d).

To further explore the contribution of specific LLHs in improving PVRP
solutions, we test the two best performing hyperheuristics for frameworks 2 and
3 (RLFW2(30 %) and VNSr(R)) with different subsets of the original LLHs. Each
method is run over all problem instances; results are the average of 20 runs.
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Fig. 7. Impact of removing Pa 2SW on four hyperheuristics over all problem instances.
Error bars show 95 % confidence intervals.

Figure 6 shows a change in performance after removal of the most-used FI
LLH (Pa 2SW) and all mutation operators except Pa RR (Subset 1): the per-
formance of RLFW2(30 %) and VNSr(R) decreases dramatically for the small
random and symmetrical problems. However, there is little difference for the big
random instances, and we even find a small improvement for VNSr(R) on street
style problems. One interpretation of this result is that the strongly-performing
FI LLHs, which are most effective in small and symmetric problems, tend to
become stuck in local optima in the street style and big random problems. Fur-
ther work is needed to understand why removing the “relocate” operator affects
performance on street style problems more than less-structured spatial distrib-
utions.

To explore the robustness of different hyperheuristics when we remove
the strongest LLH (Pa 2SW), we extend the LLH subset experiments to
SROI and RDOI. VNSr(R) shows the best robustness (Fig. 7). Comparing the
RLFW2(30 %) with VNSr(R) and SROI with RDOI, the algorithms with ILS
mechanisms are more robust than the algorithms without ILS.

6.5 Comparison Between Hyperheuristics and Other
Meta-Heuristics

This section compares the two best performing hyperheuristics from framework
2 and 3 (RLFW2(30 %) and VNSr(R)), to published meta-heuristics which have
been designed or tailored for PVRP, including (parallel) tabu search [8,16], scat-
ter search [14], VNS [5], record-to-record ILP [9] and hybrid Genetic Algorithm
(GA) [15]. No comparative data exists for our street style data set.

Benchmark research uses 32 instances collected from early work on PVRP
(the old data set). Cordeau [8] presents 10 additional PVRP instances (the new
data set). We present our results for these two groups, because some research
has not tested both groups. Table 5 reports the percentage difference in average
performance from the best found (summarised in [15]) over these two data sets.
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Table 5. Performance on PVRP benchmarks compared with meta-heuristics; tabu
search (CGL) [8], scatter search (ALP)[14], VNS (HDH)[5], record-to-record ILP
(GGW) [9], hybrid-GA (VCGLR)[15], parallel tabu search (CM) [16]

RLFW2(30%) VNSr(R) CGL ALP HDH GGW VCGLR CM

Avg. Avg. Avg. Avg. 1 run - Avg. - Avg. Avg.

20 run (best) 20 run (best) 10 run 10 run 10 run

Old data (%) 1.86 1.08 1.77 0.93 1.8 1.57 1.6 1.11 0.032 0.044

New data (%) 3.88 2.40 3.44 2.12 2.82 - 1.86 - 0.071 0.091

Our hyperheuristics achieve competitive results compared to the tabu search
[8], scatter search [14] and VNS [5] for the “old data” set. For the relatively
larger “new data” set, we achieve close to the best found solutions in most cases.
The hyperheuristic approaches are about 1 % worse than these problem-specific
algorithms, in terms of total route distance.

Compared to the hybrid-GA, which out performs all the other algorithms,
our hyperheuristics produce routes that are about 2 % longer on average. How-
ever, hyperheuristics do not require any knowledge directly from the solution
space and require minimal design effort, whereas the meta-heuristics need to be
designed and tailored for each problem.

7 Conclusion

Our analysis of hyperheuristics for PVRP shows that both learning selection
strategy and ILS have positive impacts on an algorithm’s performance and
enhance the scalability. ILS also improves the robustness of hyperheuristics when
a poor LLH set is given, because ILS concentrates on a neighbourhood structure
until it reaches a local optimum, whilst approaches without ILS have a wider,
but shallower, exploration within the search space.

Our hyperheuristics find solutions that are almost as good as those published
for meta-heuristics. Since all experiments have limited CPU time, it is possible
that this is due to the hyperheuristics’ additional overhead in applying search at
the LLH selection level. The hyperheuristics are more adaptable to new prob-
lems: our results show that hyperheuristics can efficiently manage a large LLH
set and automatically select appropriate LLHs.

The tested hyperheuristics show similar performance on real-world street
style problem instances and random instances, but the symmetrical benchmarks
tend to favour different strategies and LLHs. This suggests that symmetri-
cal instances are not a good indicator of algorithm performance for real-world
PVRP.

“Relocate with pattern” and “two points pattern swap” are the most applied
LLHs across all PVRP hyperheuristics: these LLHs make most improvements
during the search. However, experiments on LLH subsets show that a strong
LLH may lead to premature local optima; further work is needed on the effect
of structure in real-world problems, and on ways to measure “strong” LLHs.
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For PVRP, we show that hyperheuristics perform similarly to problem-
specific meta-heuristics, despite their working mechanism potentially increasing
the complexity of solving a specific problem within limited time. We are work-
ing on improving hyperheuristic efficiency, and investigating whether the positive
impact of learning based selection and ILS translates to other problem domains.
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viding data. This research is part of the LSCITS project funded by the EPSRC.
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4. Kalender, M., Kheiri, A., Özcan, E., Burke, E.K.: A greedy gradient-simulated
annealing selection hyper-heuristic. Soft Comput. 17(12), 2279–2292 (2013)

5. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. Eur. J. Oper. Res. 195(3), 791–802 (2009)

6. Christofides, N., Beasley, J.E.: The period routing problem. Networks 14(2), 237–
256 (1984)

7. Chao, I.M., Golden, B.L., Wasil, E.: An improved heuristic for the period vehicle
routing problem. Networks 26(6), 25–44 (1995)

8. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

9. Gulczynski, D., Golden, B., Wasil, E.: The period vehicle routing problem: new
heuristics and real-world variants. Transp. Res. Part E: Logistics Transp. Rev.
47(5), 648–668 (2011)

10. Beltrami, E., Bodin, L.: Networks and vehicle routing for municipal waste collec-
tion. Networks 4(1), 65–94 (1974)

11. Russell, R., Igo, W.: An assignment routing problem. Networks 9(1), 1–17 (1979)
12. Tan, C.C.R., Beasley, J.E.: A heuristic algorithm for the period vehicle routing

problem. J. Omega 12(5), 497–504 (1984)
13. Russell, R.A., Gribbin, D.: A multiphase approach to the period routing problem.

Networks 21(7), 747–765 (1991)
14. Alegre, J., Laguna, M., Pacheco, J.: Optimizing the periodic pick-up of raw mate-

rials for a manufacturer of auto parts. Eur. J. Oper. Res. 179(3), 736–746 (2007)
15. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic

algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3),
611–624 (2012)

16. Cordeau, J.F., Maischberger, M.: A parallel iterated tabu search heuristic for vehi-
cle routing problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)

17. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12, 568–582 (1964)



120 Y. Chen et al.

18. Gendreau, M., Hertz, A., Laporte, G.: New insertion and post optimization proce-
dures for the traveling salesman problem. Oper. Res. 40(6), 1086–1095 (1992)
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