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Abstract. In this paper we present the application of a recently
proposed, general, algorithm for combinatorial optimization to the
repetition-free longest common subsequence problem. The applied algo-
rithm, which is labelled Construct, Merge, Solve & Adapt, gener-
ates sub-instances based on merging the solution components found in
randomly constructed solutions. These sub-instances are subsequently
solved by means of an exact solver. Moreover, the considered sub-
instances are dynamically changing due to adding new solution com-
ponents at each iteration, and removing existing solution components on
the basis of indicators about their usefulness. The results of applying this
algorithm to the repetition-free longest common subsequence problem
show that the algorithm generally outperforms competing approaches
from the literature. Moreover, they show that the algorithm is competi-
tive with CPLEX for small and medium size problem instances, whereas
it outperforms CPLEX for larger problem instances.

Keywords: Hybrid algorithm · Combining metaheuristics with ILP
solvers · Repetition-free longest common subsequence problem

1 Introduction

The problem that is often encountered when applying exact solvers to combina-
torial optimization problems is that they are not applicable to problem instances
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of realistic sizes. However, for smaller problem instances, exact solvers are often
surprisingly efficient. This is because the operations research community has
invested a lot of time, effort and expertise into the development of exact solvers.
Prime examples are general-purpose mathematical programming solvers such as
CPLEX and Gurobi. Therefore, recent research efforts have focused on ways in
which efficient exact solvers can be used within heuristic frameworks even in the
context of large problem instances. One of the most recent examples of these
research efforts is an algorithm labelled Construct, Merge, Solve & Adapt
(CMSA) [1,2]. This algorithm works as follows. At each iteration, solutions to
the tackled problem instance are generated in a probabilistic way. The solution
components found in these solutions are then added to a sub-instance of the
original problem instance. Subsequently, an exact solver such as, for example,
CPLEX is used to solve the sub-instance to optimality. Moreover, the algorithm
is equipped with a mechanism for deleting seemingly useless solution components
from the sub-instance. This is done such that the sub-instance has a moderate
size and can be solved rather quickly to optimality.

In this work we apply the CMSA algorithm to the so-called repetition-free
longest common subsequence problem [3]. This problem, which is NP-hard, is
a special case of the well-known longest common subsequence problem. The
repetition-free longest common subsequence problem seems to be well-suited
for being solved with CMSA, because the standard integer linear programming
(ILP) model for the problem can only be solved to optimality in the context
of rather small problem instance. Both the number of variables and constraints
in this model (which is outlined later in Sect. 2) are exponential in the input
parameters of the problem. The obtained results show that, indeed, the applica-
tion of CMSA obtains state-of-the-art results, especially in the context of large
problem instances.

The remaining part of the paper is organized as follows. In Sect. 2 we provide a
technical description of the repetition-free longest common subsequence problem.
Moreover, we describe the standard ILP model for this problem. Next, in Sect. 3,
the application of CMSA to the tackled problem is outlined. Finally, Sect. 4
provides an extensive experimental evaluation and Sect. 5 offers a discussion and
an outlook to future work.

2 Repetition-Free Longest Common Subsequence
Problem

The longest common subsequence (LCS) problem is a string problem with
numerous applications, for example, in computational biology [4–6]. A prob-
lem instance (S,Σ) consists of a set S = {s1, s2, . . . , sn} of n input strings over
a finite alphabet Σ. The goal consists in finding the longest possible subsequence
of all strings in S. A string t is a subsequence of a string s, if t can be produced
from s by deleting zero or more characters. For example, dga can be produced
from adagtta by deleting the first two occurrences of letter a and the two occur-
rences of letter t. Apart from applications in computational biology, the LCS
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problem finds applications, for example, in data compression and file compari-
son [7,8]. Moreover, note that the LCS problem was shown to be NP-hard [9]
for an arbitrary number n of input strings.

In this work we consider a restricted version of the LCS problem, the so-called
repetition-free longest common subsequence (RFLCS) problem. Given exactly
two input strings x and y over a finite alphabet Σ, the goal is to find a longest
common subsequence with the additional restriction that no letter may appear
more than once. This problem was introduced in [3] as a comparison measure
for two sequences of biological origin. In the same paper, the authors proposed
three heuristics for solving this problem. Other algorithms from the literature
for solving the RFLCS problem include a Beam-ACO approach [10] and an
evolutionary algorithm [11]. Among these techniques, the Beam-ACO approach
can be regarded as the current state-of-the-art method.

The RFLCS problem can be stated in terms of an integer linear program
(ILP) in the following way. First, let us denote the length of x by lx and the
length of y by ly. Furthermore, the positions in x and y are numbered from 1
to lx, respectively from 1 to ly. The letter at position i of x is denoted by x[i],
and the letter at position j of y is denoted by y[j]. The set Z of binary variables
that is required for the ILP model is composed as follows. For each combination
of i = 1, . . . , lx and j = 1, . . . , ly such that x[i] = y[j], set Z contains a binary
variable zi,j . Moreover, we say that two variables zi,j and zk,l are in conflict, if
and only if either i < k and j > l or i > k and j < l. Finally, for each letter
a ∈ Σ, set Za ⊂ Z contains all variables zi,j such that x[i] = y[j] = a. The
RFLCS problem can then be rephrased as the problem of selecting a maximal
number of non-conflicting variables from Z provided that, among all variables
representing a letter a ∈ Σ, at most one variable is chosen. Given these notations,
the ILP is stated as follows.

max
∑

zi,j∈Z

zi,j

subject to:
∑

zi,j∈Za

zi,j ≤ 1 for a ∈ Σ

zi,j + zk,l ≤ 1 for all zi,j and zk,l being in conflict
zi,j ∈ {0, 1} for zi,j ∈ Z

(1)

(2)

(3)
(4)

Hereby, constraints (2) ensure that each letter from the alphabet is chosen at
most once, and constraints (3) ensure that selected variables are not in conflict.

3 Application of CMSA to the RFLCS Problem

The application of CMSA to the RFLCS problem is pseudo-coded in Algorithm1.
Note that, in the context of this algorithm, solutions to the problem and sub-
instances are both subsets of the complete set Z of variables. If a solution S



Construct, Merge, Solve and Adapt 49

Algorithm 1. CMSA for the RFLCS problem
1: input: strings x and y over alphabet Σ, values for parameters na and agemax

2: Sbsf := null, Zsub := ∅
3: age[zi,j ] := 0 for all zi,j ∈ Z
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: S := ProbabilisticSolutionConstruction(Z)
7: for all zi,j ∈ S and zi,j /∈ Zsub do
8: age[zi,j ] := 0
9: Zsub := Zsub ∪ {zi,j}
10: end for
11: end for
12: S′

opt := ApplyILPSolver(Zsub)
13: if |S′

opt| > |Sbsf | then Sbsf := S′
opt

14: Adapt(Zsub, S′
opt, agemax)

15: end while
16: output: Sbsf

contains a variable zi,j , this means that this variable must be given value one in
order to produce the corresponding solution. The main loop of CMSA is executed
while the CPU time limit is not reached. It consists of the following actions. First,
the best-so-far solution Sbsf is initialized to null, and the restricted problem
instance (Zsub) to the empty set. Then, at each iteration a number of na solutions
is probabilistically constructed in function ProbabilisticSolutionConstruction(Z)
in line 6 of Algorithm 1. The variables contained in these solutions are added
to Zsub. The age of a newly added variable zi,j (age[zi,j ]) is set to 0. After the
construction of na solutions, an ILP solver is applied to find the best solution
S′
opt in the sub-instance Zsub (see function ApplyILPSolver(Zsub) in line 12 of

Algorithm 1). In case S′
opt is better than the current best-so-far solution Sbsf ,

solution S′
opt is stored as the new best-so-far solution (line 13). Next, sub-instance

Zsub is adapted, based on solution S′
opt and on the age values of the variables.

This is done in function Adapt(Zsub, S′
opt, agemax) in line 14 as follows. First,

the age of each variable in Zsub is increased by one, and, subsequently, the age
of each variable in S′

opt ⊆ Zsub is re-initialized to zero. Finally, those solution
components from Zsub whose age has reached the maximum component age
(agemax) are deleted from Zsub. The motivation behind the aging mechanism
is that variables which never appear in an optimal solution of Zsub should be
removed from Zsub after a while, because they simply slow down the ILP solver.
On the other side, components which appear in optimal solutions seem to be
useful and should therefore remain in Zsub.

In the following we will describe in detail the remaining component of the
algorithm: the probabilistic construction of solutions in function ProbabilisticSo-
lutionConstruction(Z). Such a solution construction starts with an empty solution
S = ∅, and the first step consists in generating the set of variables that serve
as options to be added to S. More specifically, the initial set C is generated in
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order to contain for each letter a ∈ Σ the variable zi,j ∈ Za (if any) such that
i < k and j < l, ∀zk,l ∈ Za. Moreover, options zi,j ∈ C are given a weight
value w(zi,j) := i

lx
+ j

ly
, which is a known greedy function for longest common

subsequence problems. At each construction step, exactly one variable is chosen
from C and added to S. For doing so, first, a value r is chosen uniformly at ran-
dom from [0, 1]. In case r ≤ drate, where drate is a parameter of the algorithm,
the variable zi,j ∈ C with the smallest weight value is deterministically chosen.
Otherwise, a candidate list L ⊆ C of size min{lsize, |C|} containing the options
with the lowest weight values is generated and exactly one variable zi,j ∈ L is
then chosen uniformly at random and added to S. Note that lsize is another
parameter of the solution construction process. Finally, the set of options C for
the next construction step is generated. This is done such that C only contains
variables that represent letters that are not already represented by one of the
variables in S. Moreover, being zi,j the last variable that was added to S, C
contains for each non-represented letter a ∈ Σ the variable zr,s ∈ Za (if any)
with the lowest weight value w(zr,s) calculated as w(zr,s) := r−i

lx−i + s−j
ly−j . The

construction of a complete (valid) solution is finished when the set of options is
empty.

4 Experimental Evaluation

We implemented the proposed algorithm in ANSI C++ using GCC 4.7.3, with-
out the use of any external libraries. The ILP models, both the ones of the
original RFLCS instances and the ones of sub-instances within CMSA, were
solved with IBM ILOG CPLEX v12.1 in one-threaded mode. The experimental
evaluation has been performed on a cluster of PCs with Intel(R) Xeon(R) CPU
5670 CPUs of 12 nuclei of 2933 MHz and at least 40 Gigabytes of RAM. In the
following we first describe the set of benchmark instances that we generated to
test the CMSA algorithm. Then, we describe the tuning experiments that were
performed in order to determine a proper setting for the parameters. Finally, an
exhaustive experimental evaluation is presented.

4.1 Problem Instances

Two sets of problem instances were adopted from [10]. These sets were generated
with the same procedure as described in [3]. The first set (henceforth called Set1)
consists for each combination of input sequence length n ∈ {32, 64, 128, 256, 512}
and alphabet size |Σ| ∈ {n/8, n/4, 3n/8, n/2, 5n/8, 3n/4, 7n/8} of exactly 10
problem instances. The second set of instances (henceforth called Set2) is gen-
erated on the basis of alphabet sizes |Σ| ∈ {4, 8, 16, 32, 64} and the maximal
repetition of each letter rep ∈ {3, 4, 5, 6, 7, 8} in each input string. For each
combination of |Σ| and rep this instance set consists of 10 randomly generated
problem instances. In addition, we generated an extension of Set2 consisting of
larger problem instances. More specifically, we generated for each combination
of |Σ| ∈ {128, 256} and rep ∈ {3, 4, 5, 6, 7, 8} ten problem instances. All the
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results to be shown in the forthcoming sections are averages over the 10 problem
instances of each type.

4.2 Tuning of CMSA

There are several parameters involved in Cmsa for which well-working values
must be found: (na) the number of solution constructions per iteration, (agemax)
the maximum allowed age of solution components, (drate) the determinism rate,
(lsize) the candidate list size, and (tmax) the maximum time in seconds allowed
for CPLEX per application to a sub-instance. The last parameter is necessary,
because even when applied to reduced problem instances, CPLEX might still
need too much computation time for solving such sub-instances to optimality.
In any case, CPLEX always returns the best feasible solution found within the
given computation time.

We decided to make use of the automatic configuration tool irace[12] for the
tuning of the five parameters. In fact, irace was applied to tune Cmsa sepa-
rately for each alphabet size, which—after initial experiments—seems to have
more influence on the behavior of the algorithm than the length of the input
strings. In the context of Set1 we randomly generated two tuning instances for
each combination of string length and alphabet size, whereas for Set2 (and its
extension) we randomly generated two tuning instances for each combination of
alphabet size and number of repetitions.

The tuning process for each alphabet size was given a budget of 200 runs of
Cmsa, where each run was given a computation time limit of lx/10 CPU seconds
for instances of Set1 (remember that for instances of Set1 it holds that lx = ly)
and (|Σ|∗reps)/10 CPU seconds for instances of Set2 and its extension. Finally,
the following parameter value ranges were chosen concerning the five parameters
of Cmsa:

– na ∈ {10, 30, 50}
– agemax ∈ {1, 5, 10, inf}, where inf means that solution components are never

removed from Zsub.
– drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}, where a value of 0.0 means that the selection

of the next variable to be added to the partial solution under construction is
always done randomly from the candidate list, while a value of 0.9 means that
solution constructions are nearly deterministic.

– lsize ∈ {3, 5, 10}
– tmax ∈ {0.5, 1.0, 5.0} (in seconds) for instances of Set1 and Set2, and tmax ∈

{1.0, 10.0, 100.0} for the instances of the extension of Set2.

The tuning runs with iraceproduced the configurations of Cmsa as shown in
Table 1.

4.3 Experimental Results

Three algorithms were included in the comparison. Beam-ACO is currently a
state-of-the-art method for the RFLCS problem [10], CPLEX refers to the appli-
cation of CPLEX to the complete problem instances, and CMSA is the algorithm
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Table 1. Results of tuning CMSA with irace.

(a) Tuning results for the seven alphabet
sizes of Set1.

|Σ| na agemax drate lsize tmax

0n/8 30 5 0.7 5 0.5
0n/4 10 1 0.7 10 1.0
3n/8 30 1 0.3 10 5.0
0n/2 50 1 0.3 3 5.0
5n/8 30 5 0.7 10 5.0
3n/4 30 5 0.5 5 5.0
7n/8 30 5 0.0 10 5.0

(b) Tuning results for the seven alphabet
sizes of Set2 and its extension.

|Σ| na agemax drate lsize tmax

4 10 inf 0.9 10 1.0
8 10 10 0.9 5 0.5
16 50 inf 0.7 3 0.5
32 50 inf 0.5 10 5.0
64 10 10 0.5 5 1.0
128 30 1 0.5 5 10.0
256 10 1 0.7 3 10.0

proposed in this work. The results of Beam-ACO for the instances of Set1 and
Set2 were taken from [10], where Beam-ACO was applied once to each problem
instance with a computation time limit of 5 CPU seconds per run, a beam width
of 10, and a determinism rate of 0.9. Note that the low computation time limit
of 5 CPU seconds was adopted in [10], because Beam-ACO always produced its
best results during the first seconds of a run. For the application to the larger
problem instances that were generated as an extension of Set2 Beam-ACO was
applied with the same parameter values for beam with and determinism rate,
but with the same computation time limit as CMSA. In particular, CMSA was
applied to each problem instance with a computation time limit of lx/10 CPU
seconds for instances of Set1 (remember that for instances of Set1 it holds that
lx = ly) and (|Σ| ∗ reps)/10 CPU seconds for instances of Set2 and its exten-
sion. The stand-alone application of CPLEX to each problem instances was given
more computation time, namely, 600 CPU seconds for each run, regardless of
the instance/alphabet size. Moreover, a memory limit of 2 GB were used for each
application of CPLEX.

The numerical results are presented in Table 2 concerning Set1, Table 3 con-
cerning Set2, and Table 4 concerning the extension of Set2. Each table row
presents the results averaged over 10 problem instances of the same type. The
results of Beam-ACO and CMSA are provided in two columns each. The first
one (with heading result) provides the result of the corresponding algorithm
averaged over 10 problem instances, while the second column (with heading
time (s)) provides the average computation time necessary for finding the cor-
responding solutions. The same information is given for CPLEX. However, in
this case we also provide the average optimality gaps (in percent), that is, the
average gaps between the upper bounds and the values of the best solutions
when stopping a run.
The results allow to make the following observations:

– First of all, CPLEX is able to provide optimal solutions for all instances of
29 out of 35 instance types (that is, table rows) concerning Set1, and for all
instances of 27 out of 30 instance types concerning Set2. This means, on one
side, that the instances of these two benchmark sets are, in their majority,
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Table 2. Experimental results concerning the instances of Set1.

|Σ| n Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)

n/8

32 4.0 < 0.1 4.0 0.1 0.0 4.0 < 0.1
64 8.0 < 0.1 8.0 0.8 0.0 8.0 < 0.1

128 16.0 < 0.1 16.0 9.6 0.0 16.0 < 0.1
256 31.9 < 0.1 n.a. n.a. n.a. 31.8 0.1
512 62.3 1.8 n.a. n.a. n.a. 60.4 13.3

n/4

32 7.9 < 0.1 7.9 0.1 0.0 7.9 < 0.1
64 14.3 < 0.1 14.4 0.3 0.0 14.4 < 0.1

128 25.3 0.2 25.9 17.2 0.0 25.7 1.1
256 42.4 0.7 41.6 495.1 8.6 42.6 3.6
512 68.0 0.8 n.a. n.a. n.a. 68.7 7.1

3n/8

32 8.7 < 0.1 9.0 < 0.1 0.0 9.0 < 0.1
64 14.4 < 0.1 14.8 0.2 0.0 14.8 < 0.1

128 25.1 < 0.1 25.3 3.1 0.0 25.3 < 0.1
256 39.7 0.2 40.1 133.5 0.0 40.1 1.5
512 59.4 1.3 7.0 36.2 > 100.0 59.5 3.2

n/2

32 8.8 < 0.1 8.8 < 0.1 0.0 8.8 < 0.1
64 14.5 < 0.1 14.6 0.1 0.0 14.6 < 0.1

128 23.4 < 0.1 23.4 1.0 0.0 23.3 < 0.1
256 34.1 0.2 34.3 30.5 0.0 34.1 0.3
512 53.1 0.6 14.9 207.5 > 100.0 53.1 5.9

5n/8

32 7.9 < 0.1 7.9 < 0.1 0.0 7.9 < 0.1
64 13.7 < 0.1 13.7 < 0.1 0.0 13.7 < 0.1

128 21.1 < 0.1 21.1 0.5 0.0 21.1 < 0.1
256 31.1 0.2 31.2 10.4 0.0 31.2 1.6
512 47.8 0.3 47.9 308.3 0.0 47.8 2.9

3n/4

32 7.8 < 0.1 7.8 < 0.1 0.0 7.8 < 0.1
64 13.1 < 0.1 13.3 < 0.1 0.0 13.3 < 0.1

128 19.1 < 0.1 19.1 0.2 0.0 19.1 < 0.1
256 30.0 < 0.1 30.1 4.3 0.0 30.1 1.3
512 44.7 0.5 44.8 115.5 0.0 44.8 1.3

7n/8

32 7.6 < 0.1 7.6 < 0.1 0.0 7.6 < 0.1
64 12.2 < 0.1 12.2 < 0.1 0.0 12.2 < 0.1

128 18.5 < 0.1 18.5 0.2 0.0 18.5 < 0.1
256 27.2 < 0.1 27.2 2.2 0.0 27.1 0.1
512 40.7 0.3 40.9 59.4 0.0 40.8 4.3

not very difficult to be solved. On the other side, there seems to be a kind
of phase transition between instances that can be solved to optimality quite
easily, and instances that are difficult to be solved. In three out of six instance
types of Set1 which CPLEX cannot solve to optimality within the allocated
CPU time, the allocated memory is not sufficient, and for other two instance
types the average optimality gap is greater than 100%.
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Table 3. Experimental results concerning the instances of Set2.

|Σ| n Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)

4

3 3.4 < 0.1 3.4 < 0.1 0.0 3.4 < 0.1
4 3.8 < 0.1 3.8 < 0.1 0.0 3.8 < 0.1
5 3.8 < 0.1 3.8 < 0.1 0.0 3.8 < 0.1
6 3.8 < 0.1 3.8 < 0.1 0.0 3.8 < 0.1
7 3.9 < 0.1 3.9 < 0.1 0.0 3.9 < 0.1
8 4.0 < 0.1 4.0 < 0.1 0.0 4.0 < 0.1

8

3 5.9 < 0.1 5.9 < 0.1 0.0 5.9 < 0.1
4 6.7 < 0.1 6.7 < 0.1 0.0 6.7 < 0.1
5 6.8 < 0.1 7.0 < 0.1 0.0 7.0 < 0.1
6 7.3 < 0.1 7.3 < 0.1 0.0 7.3 < 0.1
7 7.6 < 0.1 7.7 < 0.1 0.0 7.7 < 0.1
8 7.5 < 0.1 7.5 < 0.1 0.0 7.5 < 0.1

16

3 9.6 < 0.1 9.6 < 0.1 0.0 9.6 < 0.1
4 11.1 < 0.1 11.1 < 0.1 0.0 10.9 < 0.1
5 13.7 0.2 13.8 < 0.1 0.0 13.6 0.2
6 13.0 < 0.1 13.2 0.1 0.0 13.1 < 0.1
7 14.5 < 0.1 14.7 0.3 0.0 14.7 < 0.1
8 14.7 < 0.1 15.2 0.6 0.0 15.1 0.3

32

3 16.1 < 0.1 16.1 < 0.1 0.0 16.1 < 0.1
4 19.2 < 0.1 19.2 0.4 0.0 19.2 < 0.1
5 20.6 0.1 20.9 1.3 0.0 20.9 < 0.1
6 24.0 0.5 24.4 5.8 0.0 24.4 0.2
7 24.9 < 0.1 25.8 9.4 0.0 25.8 2.8
8 26.8 0.4 27.4 32.2 0.0 27.4 1.5

64

3 24.8 < 0.1 24.9 1.8 0.0 24.9 0.3
4 30.1 0.1 30.3 8.7 0.0 30.3 0.9
5 34.5 0.2 34.8 70.5 0.0 34.7 1.8
6 38.4 0.4 38.8 231.4 1.7 39.0 8.4
7 42.3 0.4 42.8 435.7 5.2 44.0 6.0
8 45.1 0.9 35.4 413.1 53.1 45.7 17.0

– Concerning Set1, both Beam-ACO and CMSA provide (near-)optimal solu-
tions and both outperform CPLEX once the average optimality gaps start to
increase. However, no clear trend about the superiority of CMSA over Beam-
ACO (or the other way around) is noticeable.

– Concerning Set2, the performance of Beam-ACO and CMSA is comparable
for instances of alphabet sizes |Σ| ∈ {4, 8, 16}, both providing (near-)optimal
solutions. However, starting from alphabet size |Σ| = 32, CMSA outperforms
Beam-ACO. This becomes even more clear in the case of the extension of
Set2, consisting of larger problem instances. In the context of these instances,
CMSA outperforms both CPLEX and Beam-ACO.
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Table 4. Experimental results for larger problem instances.

|Σ| n Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)

128

3 38.3 < 0.1 38.4 50.1 0.0 38.4 0.1
4 44.3 < 0.1 45.3 296.1 0.0 45.2 3.8
5 52.6 1.8 23.3 85.8 > 100.0 53.7 1.3
6 58.6 < 0.1 18.1 78.3 > 100.0 61.2 9.2
7 66.3 5.3 n.a. n.a. n.a. 68.7 26.0
8 73.7 6.9 n.a. n.a. n.a. 75.8 32.1

256

3 53.6 < 0.1 7.10 102.2 > 100.0 53.6 0.7
4 66.8 0.9 0.10 143.2 > 100.0 67.0 12.1
5 79.4 0.6 n.a. n.a. n.a. 81.0 7.6
6 90.2 22.1 n.a. n.a. n.a. 92.1 35.0
7 99.4 16.5 n.a. n.a. n.a. 102.2 47.7
8 109.0 23.1 n.a. n.a. n.a. 111.3 62.7
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(a) Sub-instance size for instances of Set1.
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(b) Sub-instance size for instances of Set2and larger instances.

Fig. 1. Graphical presentation of the sizes of the sub-instances in percent with respect
to the size of the original problem instances.
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Finally, we studied the (average) size of the sub-instances that are generated
(and maintained) within CMSA in comparison to the size of the original problem
instances. These sub-instance sizes are provided in a graphical way in Fig. 1a for
instances of Set1, and in Fig. 1b for instances of Set2 and its extension. Note
that these graphics show the sub-instance sizes averaged over all instances of
the same alphabet size. In both cases, the x-axis ranges from small alphabet
size (left) to large alphabet sizes (right). Interestingly, when the alphabet size is
rather small, the tackled sub-instances in CMSA are rather large (up to ≈70 %
of the size of the original problem instances). With growing alphabet size, the
size of the tackled sub-instances decreases. This is more clearly visible in the
context of instances of Set1. However, this trend also becomes clear starting
from alphabet size 32 in the context of instances of Set2. The reason for this
trend is as follows. As CPLEX is very efficient for problem instances based on
rather small alphabet sizes, the parameter values of CMSA are chosen during
the tuning process of iracesuch that the sub-instance sizes become quite large.
On the contrary, with growing alphabet size, the parameter values chosen during
tuning lead to smaller sub-instances, simply because CPLEX is not so efficient
anymore when applied to sub-instances that are not much smaller than the
original problem instances.

5 Discussion and Future Work

CMSA is a new, general, algorithm for combinatorial optimization which is based
on a simple, but apparently successful, idea: the generation of sub-instances
based on merging the solution components found in randomly constructed solu-
tions, and their subsequent solution by means of an exact solver. Moreover, the
considered sub-instances are dynamically changing due to adding new solution
components at each iteration, and removing existing solution components on
the basis of indicators about their usefulness. In this work, the CMSA algorithm
has been applied to the repetition-free longest common subsequence problem.
The general picture of the results, in comparison to CPLEX, is similar to the
one observed in earlier applications of CMSA to the minimum common string
partition problem and a minimum weight arborescence problem in [1]. CMSA is
generally competitive with CPLEX for small to medium size problem instances,
whereas it outperforms CPLEX with growing problem instances size. In our
opinion, this algorithm is quite appealing, especially for the following reasons:

– CMSA can be applied to any problem for which a constructive heuristic and
an exact solver are known.

– In comparison to other metaheuristics, CMSA can generally be implemented
with few lines of code.

– When using an ILP solver for solving sub-instances, CMSA allows to make
use of the valuable operations research expertise that has gone into the devel-
opment of the ILP solver, without the need of being an expert in operations
research.
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Finally, note that the idea behind CMSA is similar, in some sense, to the basic
idea of large neighborhood search (LNS) [13]. However, while exact solvers in
LNS are used to search the best solution in a large neighborhood of the current
solution which is generally obtained by a partial destruction of the current solu-
tion, exact solvers in the context of CMSA are applied to sub-instances of the
original problem instances.

Concerning future work, we first plan to extend the conducted experimental
study to even larger problem instances. Second, we intent to study the incor-
poration of potentially valuable knowledge about, for example, the reduced
costs of variables, in order to develop a more sophisticated—and hopefully
more effective—mechanism for the removal of variables from the considered sub-
instances.
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