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Abstract. Real-World problems usually consist of several different
small sub-problems interacting with each other. These interactions pro-
mote a relation of interdependence, where the quality of a solution to one
sub-problem influences the quality of another partial solution. The Trav-
eling Thief Problem (TTP) is a recent benchmark that results from the
combination of the Traveling Salesman Problem (TSP) and the Knap-
sack Problem (KP). Thus far, existing approaches solve the TTP by fix-
ing one of the components, usually the TSP, and then tackling the KP.
We follow in a different direction and propose an Evolutionary Algorithm
that addresses both sub-problems at the same time. Experimental results
show that solving the TTP as whole creates conditions for discovering
solutions with enhanced quality, and that fixing one of the components
might compromise the overall results.

Keywords: Evolutionary algorithms · Combinatorial problems · Trav-
eling thief problem

1 Introduction

Heuristic problem solving, e.g., based on Evolutionary Algorithms (EA), is a
successful approach for solving problems for which an analytical solution does
not exist, or, when it does, it is computationally intractable. To assess the perfor-
mance of heuristic-based EAs, researchers usually rely on benchmark problems
combined with a sound statistical analysis. Choosing good benchmarks is thus
critical, and, over time, discussing which ones should be used has gained rele-
vance in the EA community [13].

Many real world problems comprise a non-linear combination of several sub-
problems. The existing interactions between partial solutions impact the quality
of the global solution, thus complicating the task of optimization algorithms.
Unfortunately, benchmarks adopted by EA researchers tend to ignore this ques-
tion and the impact of non-linear interactions between problem components is
usually outside the discussion of algorithmic effectiveness. The Traveling Thief
Problem (TTP) is a recent benchmark [2] that considers the interdependence
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between two well known problems: the Traveling Salesman Problem (TSP) and
the Knapsack Problem (KP). The underlying idea behind the TTP is to maxi-
mize the profit of a thief that is traveling through a certain number cities stealing
items. The thief uses a knapsack with a limited capacity and pays a rent for it,
that depends on the time needed to visit all the cities. The interdependence of
the TTP emerges from the fact that the speed of the thief depends (non-linearly)
on the weight of the items picked so far.

There are a few heuristic approaches to tackle the TTP [3,5,11]. However,
most of them seek for solutions by fixing one of the components, while solving
the other. The typical approach is to initially set the shortest TSP route for the
cities comprising the problem and then solve the remaining KP component. By
doing this, a bias towards solutions with small tour lengths is clearly created.
Also, it is not guaranteed that the best solutions for the TTP can be found, as
large portions of the search space are ignored. The interactions between the two
sub-problems ensue that there is a tradeoff between the distance the thief travels
and the value that he is able to gather. Since the weights of the items affect the
speed of the thief, it is likely that the thief should sometimes slightly increase
the tour length, providing that is allows him to pick an heavy, but valuable, item
near the end of the tour.

In this paper we present an evolutionary unbiased approach for the TTP, that
seeks for complete solutions by simultaneously considering the two sub-problems
and the existing interdependence between them. In concrete we rely on an EA
where each individual has a tour and a packing plan (items that should be picked
at each city). The variation operators modify both components, and a packing
heuristic helps creating good packing plans for each individual. The performance
of the approach is tested in some TTP benchmarks instances proposed in [11].
Experimental results confirm that it is important to simultaneously take into
account both components of the problem.

The remainder of the paper is organized as follows: in Sect. 2 we describe the
TTP, whereas Sect. 3 reviews some recent approaches to solve the this problem.
Section 4 details our approach to the problem. In Sect. 5 we present and detail the
experimental results obtained. Finally, in Sect. 6 we gather the main conclusions
and point towards future work.

2 The Traveling Thief Problem

The TTP is a recent benchmark that was created to mimic the interdependence
between problems that occur in real-world applications [2]. It is defined as fol-
lows: consider a set of cities N = 1, ..., n and a set of items M = 1, ...,m, which
are distributed among the cities. The distance dij , with i, j ∈ N is known. Each
city i, except the first one, has a subset of items Mi = 1, ...,mi. Each item k
placed in the city i is described by its profit pik and weight wik. The thief departs
from the first city, visits each city exactly once, and returns to the starting point.
Any item may be collected at any city, as long as the total weight of the items
in the knapsack do not exceed its capacity W . Additionally the thief has to pay
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a rent R for the use of the knapsack for each time unit. When the thief does not
have any item in the knapsack it can travel at maximum speed, υmax, whilst
when the knapsack is full it travels at a minimum speed υmin. The goal is to find
a tour and a packing plan that results in the maximum profit for the thief. Let
yik be a binary variable that is 1 if the item k is picked at city i. The objective
function for a given tour Π = (x1, ...xn, x1), xi ∈ N and a given packing plan
P = (y21, ..., ynmi

) is:

Z(Π,P ) =
n∑

i=1

mi∑

k=1

pikyik − R ∗ (
dxnx1

υmax − νWxn

+
n−1∑

i=1

dxixi+1

υmax − νWxi

)

s.t.
n∑

i=1

mi∑

k=1

wikyik ≤ W

(1)

where ν = υmax−υmin

W , and Wxi is the total weight of collected items that the
thief has at city i. The first term of the equation represents the total profit of
all picked items, whilst the second term is the total cost of the thief’s trip.

Consider the example with 4 cities and corresponding distances depicted
in Fig. 1, which was adapted from [11]. Every city, with the exception of the
first one, has a set of available items that the thief might choose to pack. As
an example, city 2 was two items: I21 : {profit21 = 20, weight21 = 2} and
I22 : {profit22 = 30, weight22 = 3}. Specifying that the renting rate R = 1,
υmax = 1, υmin = 0.1, and that the maximum capacity of the of the sack is
W = 3 completely defines the instance.

A possible solution for this instances defines a tour Π : (1, 2, 4, 3, 1) and a
packing plan P : (I21 = 0, I22 = 0, I31 = 0, I32 = 1, I33 = 1, I41 = 0). In this
solution, the thief starts in city 1 and moves to cities 2 and 4 without any items.
It then moves to city 3, and, at this moment, the cost of the solution is 15
(5+6+4). In city 3, the thief picks up the items I32 and I33, which gives a total
profit of 80. When returning to city 1 to complete the tour, the knapsack has a
weight of 2, thus reducing the velocity of the thief, corresponding to a traveling
cost of 15. All in all, the final fitness value is Z(Π,P ) = 80 − 15 − 15 = 50.

3 Review of the Literature

The TTP problem is a benchmark to study the interdependence between dif-
ferent sub-problems and it was proposed by Bonyadi et al. in [2]. In concrete,
the TTP results from the combination of the TSP and KP. The authors propose
a method to create instances of the TTP, so that researchers can compare the
results of different approaches. Additionally, the work shows a simple experiment,
which studies how the two problems are connected. In concrete they created a
simple instance of the TTP, and separately solved the TSP and KP parts to
optimality. Then the best solutions found for each sub-problem are combined,
and it is shown that this combination does not correspond to the best solution
for the TTP.
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Fig. 1. Example of a TTP instance with 4 cities and 6 items. Adapted from [11]

Later, Polyakovskiy et al. in [11] proposes an ensemble of benchmark
instances and heuristic methods to tackle the TTP problem. Regarding the
instances, they considered the TSPLIB1 [12] dataset as a starting point. For
the KP part of the TTP they created several sets of items following the rec-
ommendations of [8]. To generate the TTP instances they considered different
combinations of the TSPLIB instances with the KP dataset2. Although the cre-
ation of a comprehensive dataset was the main goal of the work, it also suggests
some simple heuristics to solve the TTP problem. Although the heuristics con-
sider the two sub-problems independently. Firstly they solve the TSP problem
to obtain a good tour, disregarding the KP part of the problem. Once a good
tour is found, it is kept fixed for the remaining part of the optimization. Then
a local search algorithm is used to create a packing plan that achieves a good
objective value for the TTP. This work was extended by Faulkner et al. [5] and
a set of new heuristics were proposed. However the underlying idea is the same:
find a good solution for one of the components and then fix it. Although, fixing
one of the components of the TTP and neglecting the dependence that exist
between the two sub-problems, might prevent the discovery of best solution for
the problem.

The work of Mei et al. [9] focus on solving large TTP instances with low
resource consuming heuristics. They analyze the computational complexity of
several different algorithms, and propose a new two-stage local search procedure
to create packing plans. The main idea of the algorithm is to first prioritize the
insertion of items. Then, as more items are added they check how the addition
of a item worsen the thief’s speed. They compute some thresholds to decide
whether it is worth to add item or not. They incorporate the proposed heuristic
into a memetic algorithm, where several initial tour solutions are generated and
optimized by the Lin-Kerninghan heuristic (LK) [1]. The algorithm iteratively
combines the different solutions to create new packing plans. The approach was

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
2 The TTP instances are available at:

http://cs.adelaide.edu.au/∼optlog/CEC2014COMP InstancesNew/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://cs.adelaide.edu.au/~optlog/CEC2014COMP_InstancesNew/
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applied to different instances of the TTP, and they show that it was able to
outperform previous heuristics when used to solve large instances.

The work presented in [3] puts forward two methods to solve the TTP prob-
lem. The first is called Density-based Heuristic (DH). The DH starts by using the
LK heuristic to create a tour as short as possible for the TSP. Then it computes
the profit that the thief would get if only one item was picked, after completing
the tour. They do this for all available items. After it iteratively adds the items
to the packing plan. An item is only packed if it does not worsen the overall
profit of the TTP.

The second method attempts to solve the TTP by decomposing it in two sub-
problems and trying two solve them in parallel. Each component communicates
with each other, and from time to time the algorithm tries to combine the
solutions of the sub-problems to create an overall approximated solution for
the TTP.

4 Evolutionary Approach

The approaches presented in the previous section are the state-of-art for the
TTP problem. Despite their relative success there is margin for progress, mostly
because they fix one of the TTP’s sub-problems. Our approach tries to overcome
this by tackling both sub-problems at the same time. For each new tour generated
by the optimization algorithm, the packing plan is rearranged.

Our proposal relies on an Evolutionary Algorithm (EA) to search for good
solutions for the TTP. The underlying idea behind EA is the simulation of evo-
lution by natural selection of a population of artificial individuals via application
of selection, variation operators, and reproduction. These components are guided
by a fitness function that evaluates each individual, measuring the quality of the
solution it represents. In our approach each individual is composed by a tour
and by a packing plan. The tour is a permutation of integers that represents the
order in which each city should be visited by the thief. Note that each tour starts
and ends in the first city of the instance (city 0). The packing plan is a binary
string, that indicates if an item should be picked at a certain city. Fig. 2 shows
a simple example of a solution for a TTP instance with 5 cities and 2 items per
city.

The EA starts by randomly generating a population of tours for the TTP.
Then, for each generated tour, we rely on the packing heuristic described in
[11] to create a valid packing plan for the specific tour of the individual. The

Fig. 2. Example of an EA individual for a TTP instance with 5 cities and 2 items per
city
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heuristic calculates a score that estimates how profitable an item is, according
to a certain tour. Consider that an item Ixik can be picked at a city xi, and that
dxi

and txik are the total traveling distance and the total traveling time with
Ixik being carried until the end of the tour, respectively. The score of each item
is computed has follows:

scorexik = pxik − R ∗ txik (2)

where
txik =

dxi

υmax − νwxik
(3)

The scorexik is the total profit that the thief would obtain if only the item
Ixik is picked during the whole tour. Using this we iteratively select the items
that have the highest score. We stop when there are no more items to add, or
the knapsack is full. Then each solution is evaluated using the objective function
defined by in Eq. 1.

After being evaluated, each solution is improved by a straightforward local
search procedure (Algorithm 1), which tries to refine the packing plan over a
limited number of iterations. In this procedure we randomly select an item in
the current plan and flip its status: if the item is in the knapsack it is removed,
else it is added. If this flip results in a better solution to the problem, we keep
the new packing plan, else, it is discard. We repeat this until an improvement is
found or the maximum number of flips is reached.

Tournament selection chooses the individuals that undergo reproduction. We
rely on two variation operators to create new solutions, by modifying existing
ones. The first is an adaptation of the Partially Mapped Crossover (PMX) [6].
The second is the Inversion mutation operator for permutations [4]. The recombi-
nation operator creates offspring by exchanging the information about the tours
as well as the items that the thief picked at each city. When switching cities in
the tour, the operators also move the items that were picked at that city (Fig. 3).

Fig. 3. Example of the application of the mutation operation

It is known that the PMX operator alone is not particularly effective, partially
because it does not transmit common edges between the parents to the offspring.
However using it together with inversion mutation yielded better results than
using, for instance, edge recombination. This is in accordance with the observa-
tions made by [7]: using inversion mutation (2-opt) in solutions that have been
already improved by other methods can result in poorer overall results than
using inversion mutation on worst solutions.

Having a new tour, the packing plan is corrected/improved to take into
account the new routes that the thief has to travel. We rely again on the packing
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heuristic described above to select the most promising items and/or to remove
the items that are in excess. Subsequently the new solutions are evaluated, and
the packing plan undergoes a new iteration of the local search. Algorithm 2
outlines the proposal described.

Algorithm 1. Local Search
function localImprovement(ind)

tempInd ← ind
i ← 0
while i < MaximumLocalImprovementIterations do

posToInvert ← randomInteger(0, length(tempInd.packingP lan))
if tempInd.packingP lan[posToInvert] = 1 then

tempInd.packingP lan[posToInvert] ← 0
else

tempInd.packingP lan[posToInvert] ← 1
end if
evaluate tempInd using Eq. 1
if tempInd.F itness > ind.F itness then

ind ← tempInd
return ind

end if
end while
return ind

end function

5 Experiments

In this section we report the results attained by our approach, and compare
it with an implementation of the DH heuristic described in [3]. We conducted
the experimental study using instances with a number of cities ranging from
51 to 100. Each instance is composed by a group of cities, a set of items, the
maximum (υmax) and minimum (υmin) velocity at which the thief can travel,
the maximum capacity W of the knapsack, the renting ratio R, and the number
of items available per city. In the instances considered every city (except the
first) has the same number of items, which are either 1 or 3 items. For this study
we selected instances whose items have their profit strongly correlated to their
weight. The higher the correlation between weight and profit, the more time
consuming is the KP to solve [8,10].

The experimental parameters for the EA are described in Table 1. The
algorithm is composed by 100 individuals that are evolved for 2.5 ∗ 105 func-
tion evaluations. Contrary to previous approaches to this problem, we use the
number of evaluations instead of time as stop criterion, as this simplifies the
reproducibility of results. We performed 30 independent runs of the EA on each
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Algorithm 2. Evolutionary Algorithm for the TTP
1: create population Pop randomly
2: evaluations ← 0
3: for all ind ∈ Pop do
4: ind.PackingP lan ← packingHeuristic(ind.Tour)
5: evaluate ind using Eq. 1
6: ind ← localImprovement(ind)
7: end for
8: while evaluations < maximumNumberEvaluations do
9: Parents ← parentSelection(Pop)

10: Offspring ← AdaptedPMX(RecombinationRate, Parents)
11: Offspring ← InversionMutation(MutationRate,Offspring)
12: for all ind ∈ Offspring do
13: ind.PackingP lan ← packingHeuristic(ind.Tour)
14: evaluate ind using Eq. 1
15: ind ← localImprovement(ind)
16: end for
17: Pop ← selectSurvivors(Pop,Offspring)
18: end while
19: return best Solution discovered

instance considered in this study. We do not present a statistical analysis com-
paring the results of the EA and the DH heuristic, since for this second method
we only have access to the best solutions found.

5.1 Results

A summary of the optimization results is presented in Table 2. The first column
identifies the instance, with the number indicating how many cities the thief has
to visit (e.g., eil51 has 51 cities). The second column (Items per City) shows the

Table 1. Parameter Settings

Parameter Value

Runs 30

Population Size 100

Evaluations 2.5 ∗ 105

Parent Selection Tournament with size 5

Replacement Generational

Recombination Operator Partially Mapped Crossover

Mutation Operator Inversion

Recombination Rate 0.9

Mutation Rate 0.1

Local Search Iterations #cities * #items
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Table 2. Results obtained using the Evolutionary Approach proposed in this work and
the DH heuristic

Algorithms

Instance Items Per City DH EA

Best MBF

eil51 1 2591.95 4706.54 4088.90 (± 309.95)

3 9163.66 10115.55 8247.07 (± 1067.26)

eil76 1 4264.13 5506.92 4502.23 (± 737.26)

3 10583.40 12040.77 8871.19 (± 1805.64)

kroA100 1 7095.97 6442.41 4392.21 (± 1035.68)

3 25923.00 22325.30 17989.43 (± 2757.97)

number of items that are available in each city. The remaining columns contain
the results obtained by the DH heuristics and by the EA proposed in this paper.
The outcomes of the EA include the fitness of the best solution found (column
Best) and the average and standard deviation of the best solutions found in the
30 runs (Mean Best Fitness - column MBF ).

An overview of the results reveals that the EA is able to find promising solu-
tions and is competitive with existing state-of-the-art approaches for the TTP.
In concrete, it discovered clearly better solutions than DH in 4 of the selected
instances. For the two larger instances (kroA100 with 1 and 3 items), it found
solutions whose quality is not worse than 9 % and 13 %, respectively. The diffi-
culties in the larger instances are not unexpected and are probably related to the
increasing size of the search space. The DH heuristic breaks the problems in two
independent components: it firstly finds an high quality tour and fixes it. Then it
tries to create the best packing plan that fits into that tour. By doing this, DH
narrows the search space to a region of solutions that are based on (near) opti-
mal tours. Although this simplifies the task of creating a packing plan, there is no
guarantee that the best solution for the compete problem is found. On the con-
trary, the EA is performing its search in the space of all possible TTP solutions.
Increasing the number of cities and/or the number of items results in larger search
spaces. Since the number of evaluations is kept fixed for all instances considered in
the study, it is likely that there is degradation in the performance of the algorithm,
since it does not have time to effectively sample the search space and discover the
region(s) where the promising solutions are.

The results from the last column of Table 2 show that the number of items avail-
able per city impact the variance of the results: for all considered instances, more
items lead to a higher standard deviation. This is another piece of evidence that
confirms the decreased performance of the EA when dealing with larger instances.

5.2 Solution Analysis

Our approach is based on the argument that solving one of the sub-problems
(namely the TSP) and then solving the other provides compromises the quality
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of the global solution and prevents a meaningful exploration of the search space.
Results presented in the previous section revealed that solving the TTP as a
whole is advantageous and creates conditions for the discovery of enhanced solu-
tions. Here we analyse some features of the solutions discovered by the EA to
gain a better insight into the optimization behavior of this approach. Specifi-
cally, we are interested in comparing the tour that provides the best fitness for
the TTP, with the best tour for the corresponding TSP problem. If they are
different, it supports the claim that non-linear components of an optimization
problem should not be solved independently.

The comparison of the tours is performed as follows. We take the permutation
set that represent the best TSP tour for each instance and compute a set G1

with the number of transitions. A transition is a tuple (xi, xi+1), that indicates
a direct move from city xi to city xi+1. The same procedure is followed to create
the set G2 with all transitions from the best tour found by the EA. Finally we
created a set G3 = G1∩G2, containing all transitions that are shared between G1

and G2. Table 3 present the percentage of transitions that are different between
the best TSP tour and the best TTP tour found by the EA. The results show
that the TTP tours tend to be substantially different from the TSP tours. The
percentage of different transitions ranges from 31.4 % to 71.1 %. Moreover, in
all cases but one, the difference exceeds 50 %. These values indicate that the
tours are substantially different, and that fixing the tour might compromise the
discovery of effective solutions for the TTP.

Table 4 compares the distances of the best TTP tours with the optimal dis-
tance of the TSP tour. The column TSP Optimal Distance represents the best
known solution for the TSP, whereas column TTP Distance represents the dis-
tance of the tour associated with the best TTP solution. A brief perusal show
that the TTP tours are longer, suggesting that sometimes it is worth to delay the
pick of a valuable item that is in a particular city. This might result in slightly
longer tours, but in lower carrying cost.

The results presented in this section help to justify why it is important to
solve the TTP problem as a whole. Solving one of the sub-problems and then
solving the other compromises the interdependence between components, leading
to poorer global results. The study presented here is a first step towards a better

Table 3. Percentage of transitions that are different between the TSP best known tour
and the tour belonging to the best TTP solution found by the EA

Instance Items Per City #Different Edges (in %)

eil51 1 58.8

3 31.4

eil76 1 71.1

3 51.3

kroA100 1 69.0

3 52.0



44 N. Lourenço et al.

Table 4. Difference between the distance of the TSP tours and the TTP tours.

Instance TSP Optimal Distance Items Per City TTP Distance Absolute Difference (in %)

eil51 426 1 495 16.2

3 470 10.3

eil76 538 1 695 29.2

3 641 19.1

kroA100 21282 1 26691 25.4

3 24847 16.8

understanding of the non-linear interconnections occurring in the TTP. It still
has some limitations, as only a subset of instances were considered and the
analysis focuses just on the influence of relying in fixed TSP optimal tours.
A logical next step if to study the impact of fixing the set of items, while trying
to evolve a tour.

6 Conclusions and Future Work

In this paper we proposed an unbiased approach to the Traveling Thief Problem
(TTP). The TTP is a new benchmark that results form the combination of
two well-known problems, the Traveling Salesman Problem and the Knapsack
Problem. The benchmark is created in such a way that it promotes a relation of
interdependence between the two sub-problems. This means that the solution of
one sub-problem influences the quality of the solutions for the other sub-problem.
Based on this, solving one sub-problem alone, even to optimality, might result
in a inferior performance, when considering thew global optimization scenario.

Almost all of the existing approaches described in the literature solve the
TTP problem by fixing one of its sub-problems, thus creating a bias towards
some solutions. These approaches create a reasonably good TSP tour (most of
the times they use the optimal solution), fix it, and try to find the set of items
the give the maximum profit for that tour.

Our approach follows a different direction. We proposed an Evolutionary
Algorithm (EA) that solves the TTP as a whole. The EA evolves a population
of individual solutions, where each solution is a tour and a packing plan. During
the evolutionary process both components are modified, keeping the synergy
that exists between the sub-problems of the TTP. The results obtained confirm
the potential of the approach, as the EA was able to find good quality solutions
in most of the instances used. We also performed an analysis on the structure of
the best solutions found. Specifically, we compared the optimal TSP tours with
the tours proposed by the EA to the corresponding TTP problem and verified
that, in all but one case, they differ in more than 50 % of the transitions. This
is an important result for it shows that fixing one of the sub-problems might
compromise the discovery of global effective solutions.

More experiments are still needed to fully comprehend the relation between
the two problems. In the near future we will focus our efforts in understand-
ing how the distribution of items through the cities affects the quality of the
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results. Also, we intended to address the scalability issues, in order to solve larger
instances. Finally, we plan to develop alternative representations that create a
more symbiotic relationship between the two sub-problems.
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