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Abstract. A method is proposed to generate multi-objective optimiza-
tion problem instances from a corresponding single-objective instance.
The user of the method can specify the correlations between the gen-
erated the objectives. Different from existing instance generation meth-
ods the new method allows to keep certain properties of the original
single-objective instance. In particular, we consider optimization prob-
lems where the objective is defined by a matrix, e.g., a distance matrix
for the Traveling Salesperson problem (TSP) or a flow matrix for the
Quadratic Assignment problem. It is shown that the method creates
new distance matrices with specific correlations between each other and
also have the same average distance and variance of distances as the dis-
tance matrix of the original instance. This property is important, e.g.,
when the influence of correlations between the objectives on the behav-
ior of metaheuristics for the multi-objective TSP are investigated. Some
properties of the new method are shown theoretically. In an empirical
analysis the new method is compared with instance generation methods
from the literature.

Keywords: Multi-objective optimization · Problem instance genera-
tion · Traveling salesperson problem

1 Introduction

The empirical analysis of a metaheuristic or other types of algorithms for an
optimization problem is usually done on a set of (benchmark) test instances.
These have various property values to study how their properties influence the
optimization behavior. Considering the Traveling Salesperson Problem (TSP)
an increased standard deviation of the distances between the cities of a TSP
instance increases its difficulty for Ant Colony Optimization (ACO) [22].
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Other relevant properties that might influence the difficulty of a TSP instance
for an optimization algorithm are the distribution of the distances between the
cities, if the cities occur clustered or not, and the size of the convex hull of the
cities [16]. The state of such properties might also influence the best choice of
parameter values for a metaheuristic (e.g. shown in [19] for ACO).

For applications it is important to have real world test instances or at least
test instances that reflect the properties of real world instances. However, for
many optimization problems only a relatively small number of real world test
instances is available. In those cases it is difficult to find real world instances with
specific and varying properties and a method for generating problem instances
with such properties and similarities to given real world instances is helpful.

In this paper such a problem instance generation method for multi-objective
optimization problems (MOOPs) is proposed. An important and characteristic
property of MOOPs is if and how the objectives are correlated. Many real world
MOOP instances have inter-dependencies between their objectives that influence
the characteristics of their fitness landscape [25]. It was shown that correlations
between the objectives can influence the correlation between the Pareto optimal
solutions [13]. In general, it holds that objectives which are not positively corre-
lated lead to a diverse and large set of Pareto optimal solutions [9]. In contrast,
positively correlated objectives decrease the number of Pareto optimal solutions,
e.g. for NK-landscapes [23].

It has been demonstrated for various MOOPs that the correlations between
objectives can influence the performance of optimization algorithms. If some
objectives have a strong positive correlation, a dimensionality reduction can
have positive effects on the performance of a metaheuristic [1,5]. To this end,
groups of positively correlated objectives can often be aggregated into a single
objective [18]. Several studies have demonstrated the influence of the correlation
between objectives on the performance of metaheuristics, e.g. [4]. A co-influence
of the correlation between objectives, the dimension of the objective space, and
the degree of non-linearity on the size of the Pareto set was shown in [24].

Often, a multi-objective problem is an extension of a corresponding single-
objective problem. One example is the multi-objective TSP (MO-TSP) which is
to find a round trip through n given cities that minimizes the traveled distance
with respect to multiple n × n distance matrices. For the MO-TSP it has been
demonstrated that correlated objectives influence the optimization behavior of
population based ACO (P-ACO) algorithms [17]. Another example is the multi-
objective 0/1 Knapsack problem which is to find an assignment of a subset of
n items to k knapsacks, where each knapsack has a weight capacity limit and
the items have knapsack specific weights and profits that are defined by n × k
matrices, such that the total profit is maximized and the weights in the knap-
sacks satisfy the capacity constraints. The influence of correlated objectives on
evolutionary multi-objective algorithms for this problem has been investigated
in [6–8]. The performance of MOEA/D is severely degraded by an increase in the
number of objectives when they are strongly correlated [7]. Algorithms NSGA-II
and SPEA2, on the other hand, perform well on multi-objective problems with
strongly correlated objectives [6]. Also, the search behavior of the hypervolume-
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based SMS-EMOA algorithm is biased toward the region of the Pareto front
for duplicated (i.e. strongly correlated) objectives [8]. The last example is the
Quadratic Assignment Problem (QAP) where given are n facilities, n locations,
a flow matrix F = [fij ] where fij is the flow from facility i to j, and a dis-
tance matrix D = [dij ] where dij is the distance between locations i and j. The
problem is to find an assignment π of the facilities to the locations such that∑

i,j∈[1:n] fijdπ(i)π(j) is minimized. The multi-objective QAP considers multi-
ple flows, where each flow defines one objective. It was shown in [20] that the
performance of local search operators (which are a central component of many
metaheuristic algorithms) for the multi-objective QAP are strongly influenced
by the strength of the correlation between the objectives. ACO algorithms for
multi-objective QAPs perform better with ‘less aggressive’ search strategies (e.g.
with iteration-best pheromone update instead of best-so-far pheromone update)
when the objectives have a strong positive correlation [14]. On instances with
weak or negative correlation between the objectives this does not hold.

As shown by the above examples, various combinatorial MOOP instances
are defined mainly by a set of matrices where each objective is represented by
one matrix. In the examples there is one distance matrix for each objective
of the multi-objective TSP, one flow matrix for each objective of the multi-
objective QAP, and one profit matrix for each objective of the multi-objective
0/1 Knapsack problem. In all these cases, the values of the objective functions
depend directly on the values of the matrix. Moreover, correlations between the
matrices result in a correlation between the respective objectives.

The discussion shows that it would be very helpful for analyzing the opti-
mization behavior of metaheuristics for MOOPs to have the following type of
methods for generating MOOP instances. Starting from a given real world single-
objective problem instance a method generates new MOOP instances such that:

1. the correlation between the objectives of a MOOP instance can be controlled
by the user and

2. some important properties of the single-objective problem instance also hold
for a newly generated MOOP instances.

In this paper such an instance generationmethod forMOOPswhere each objec-
tive is defined by a matrix is presented. In particular, the method generates new
matrices fromagivenmatrix such that the following twoproperties hold: (i) the cor-
relation between the generated matrices (and the given matrix) can be controlled
by the user and (ii) the mean value and the variance of the values of each generated
matrix are equal to the corresponding values for the given matrix. Thus, the pre-
sented instance generation method is suitable to generate correlated cost matrices
for different MOOPs. The new method improves a method that we have presented
in [17] which can generate correlated matrices from a given matrix such that prop-
erty (i) is guaranteed (to a certain extend) whereas property (ii) does not hold.

In the following section related work is described. Our new instance genera-
tion method and its properties are described in Sect. 3. Experimental results for
the new instance generation method when applied to the TSP are presented in
Sect. 4. Conclusions are given in Sect. 5.



A Property Preserving Method for Extending a Single-Objective Problem 21

2 Related Work

Two common approaches to generate instances of combinatorial MOOPs are to
generate (usually uniformly distributed) random cost matrices (e.g. [10]) and
to combine single-objective test instances of the same size (as done, e.g. in [9]
by combining instances of the TSPLIB [21]). The latter approach creates test
instances with a potentially larger practical relevance, but the number of gener-
atable instances is very limited. Both approaches are certainly a useful practice
but do not allow to control the correlation between the objectives. The creation
of correlated objective functions by using different linear combinations of two
random single objective functions using two parameters α, β ∈ (−1, 1) has been
suggested in [7,8] and applied to the multi-objective 0/1 Knapsack problem.
The practical relevance of this approach is limited due to the use of strict linear
(cor)relations. Related problems also occur in multi objectivization approaches
which try to avoid local optima by adding objectives to single objective problems
such that the global optimum is not affected. Typically subproblems are used
as additional objectives, e.g. [11] suggested to use the length of a sub-tour as
second objective for the TSP. Also for MOOPs subproblems could define large
sets of objectives, but the correlation can not be controlled easily.

The first problem instance generator for MOOPs with correlated objectives
was proposed for the multi-objective QAP with k flow matrices that define the
different objectives [2,13]. Entries of the flow matrices are defined by a (expo-
nential) function of a random variable. For the first matrix a uniformly random
variable X is used and for jth matrix, j ∈ [2 : k], some entries are generated
using a random variable Xj that is correlated with X and the remaining with
an independent random variable X ′

j . The correlation and the random fraction of
the matrix is set with parameters. Several authors have used the QAP generator
to study the influence of correlation – mostly for bi-objective problems – on the
optimization behavior of metaheuristics and local search operators [4,14,20].

The generation of instances of the multi-objective TSP with correlated objec-
tives was covered by [12]. For each pair of cities (i, j) k distance values dh(i, j),
h ∈ [2 : k] were created with

dh(i, j) = α · dh−1(i, j) + (1 − α) · rand (1)

where the values d1(i, j) are chosen uniformly at random from [0, 1], α ∈ [−1, 1]
is a “correlation parameter”, and rand is a uniform random number from [0, 1].
Let us observe here, that (1) has the following potential problems: (i) since the
distance values can become > 1 for α < 0 even for distance values from [0, 1] for
the original matrix it might lead to an uneven influence of different objectives
on the behavior of metaheuristics, (ii) the distance values are randomized to a
different extent for α and −α.

All methods mentioned above generate problem instances that have an inho-
mogeneous correlation structure, i.e. different strengths of pairwise correlations
occur between the objectives. In the method of [2,13] each of the objectives
2 to k has a defined (possibly identical) correlation with the first objective.
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But the correlation between pairs of the objectives 2 to k might be different.
In the method from [12] each objective h, h ∈ [2 : k] has a defined correlation
with objective h− 1. But there are many different pairwise correlations between
objectives i and j with |i−j| ≥ 2. Also, for each of the problem instances created
by the methods of [7] different pairwise correlations occur.

A simple method to create multi-objective TSP test instances with a homoge-
neous correlation structure was presented in [17]. The method solves some of the
possible disadvantages of [12] by using the following equation that differentiates
between the cases of positive and negative correlation:

dh(i, j) =
{

α · d(i, j) +(1 − α ) · rand for 0 ≤ α ≤ 1
|α| · (1 − d(i, j)) +(1 − |α|) · rand for − 1 ≤ α < 0.

(2)

The authors suggested to use normalized real world instances for the original
matrix, e.g. from the TSPLIB. The homogeneity is achieved by creating all k
objectives on the same original distance matrix which is then discarded. It was
shown that the Pearson correlation coefficient of the pairs of matrices depends
on the parameter α and the variance of the original distance matrix.

A method to design MOOP instances where the correlation between the
objectives is defined by a correlation matrix has been presented in [23]. In par-
ticular, NK-landscapes have been investigated, but according to [23] the method
can also be applied more generally to other MOOPs. For their empirical inves-
tigations the same correlation strength was used for each pair of objectives.

A topic that is related to the generation of MOOP instances is the generation
of test instances for dynamic optimization problems. These problems are often
single-objective problems, but the objective function changes over time. Here
it is interesting to study how the strength of the modification of the objective
function, e.g. measured by the correlation between the new function and the old
function, influences the optimization behavior of metaheuristics. For the dynamic
TSP it has been suggested to create the dynamics by renaming a subset of the
cities [15]. The size of the renamed subset influences the extent of the change.

3 Method

In the following we present our method to generate a multi-objective TSP
instance from a given distance matrix such that the generated distance matrices
are expected to (i) correlated to each other (and to the original matrix) in a
user defined way and (ii) have the similar statistical properties as the original
matrix, in particular, they have the same expected mean value and variance.

From now, we consider only distance matrices D = (dij) that are symmetric,
i.e. dij = dji and where all diagonal values are zero, i.e. dii = 0, for i, j ∈ [1 : n]. Let
D be such a distance matrix. Then, d̄ = 2/(n2−n)

∑
i<j dij is the mean value of all

elements in the upper triangular submatrix and s2 = 2/(n2−n−1)
∑

i�=j(dij −d̄)2

is the sample variance of all elements in the upper triangular submatrix.
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The instance generation method uses matrix D to create k symmetric dis-
tance matrices D1, . . . , Dk that define the k objectives of a multi-objective TSP
instance. Using the parameters q ∈ [1 : k] and α ∈ [0, 1] to determine the cor-
relation structure the method creates a set of distance matrices {D1, . . . , Dk}
such that each matrix Di with i ∈ [1 : q] is positively correlated with D and
each matrix in Di with i ∈ [q + 1 : k] is negatively correlated with D. For
D+ ∈ {D1, . . . , Dq} or D− ∈ {Dq+1, . . . , Dk} the method works as follows:

Step 1: Two random symmetric distance matrices R1 and R2 are created by
randomly sampling with uniform probability and with replacement from
the elements within D. In order to create a symmetric matrix with
all diagonal values being zero only values in the corresponding upper
triangular matrices are considered and the values in the other half are
set accordingly.

Step 2: Matrix D+ (respectively D−) is created by:

D+ = α D + (1 − α)R1 +
√

2α(1 − α)(R2 − d) (3)

D− = α(2d − D) + (1 − α)R1 +
√

2α(1 − α)(R2 − d). (4)

Note that different randomized matrices R1, R2 need to be used for each Di,
i ∈ [1 : k].

Similar to the methods proposed in [12,17], see also (1) and (2), the first (resp.
second) summand in (3) and (4) represent the non-random influence (resp. the
random influence) which is controlled by α. The main differences are (i) that the
random influence by R1 is realized via sampling from D (which has the effect
that the mean is preserved) and (ii) that a third summand is added (which has
the effect that the variance is preserved). Furthermore, the mean d̄ of D is used
for determining the influencing of the non-random component in (4).

Observe, that the newly generated matrices can contain negative distance
values. Therefore, we propose to add the absolute value of the smallest negative
value that is contained in the generated matrices (let this value be dmin) to
all (nondiagonal) values in all distance matrices. Adding dmin does not change
the correlation and variance and it increases the mean value for all matrices by
exactly dmin. Hence after such an operation, all matrices are still expected to
share the same variance and mean value. In case zero values are undesired a
larger constant value can be added, e.g. the sum dmin and the minimum of the
original matrix which would yield a matrix with the same minimum.

For the following theoretical results we specify the method in terms of ran-
dom variables. Analogous to the creation of the matrices a set of random variables
{X1, . . . , Xk} can be created such that each X+ ∈ {X1, . . . , Xq} is positively cor-
related with X and each X− ∈ {Xq+1, . . . , Xk} is negatively correlated with X.
For a given random variable X and independent random variables Z1, Z2 that have
the same distribution as X we define

X+ = α X + (1 − α)Z1 +
√

2α(1 − α)(Z2 − E[X]) (5)

X− = α(2E[X] − X) + (1 − α)Z1 +
√

2α(1 − α)(Z2 − E[X]). (6)
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The relation to our method is as follows. The distance values in the upper tri-
angular submatrix of D can be considered to represent the distribution of a
random variable X with E[X] = d̄ and V [X] = s2. By sampling R1 and R2

from D with replacement the corresponding random variables Z1, Z2 are inde-
pendent to X and from the same distribution as X. Correlation between two
random variables X and Y is measured in this paper by the correlation coeffi-
cient ρ(X,Y ) = σ(X,Y )/

√
V [X]V [Y ] where σ(X,Y ) = E[XY ] − E[X]E[Y ] is

the covariance. The following theorem shows how X+ and X− are related to X.

Theorem 1. For random variables X+ and X− as given in (5) and (6), respec-
tively, it holds that: (i) E[X] = E[X+] = E[X−], (ii) V [X] = V [X+] = V [X−],
and (iii) ρ(X+,X) = α and ρ(X−,X) = −α.

Proof. By definition E[Zi] = E[X] and V [Zi] = V [X], i ∈ {1, 2}. Due to space
limitations the proof is shown only for ρ(X+,X). For ease of readability set
β :=

√
2α(1 − α). Since Z1, Z2, and X are independent random variables it

holds that

ρ(X,X−) =
E[XX−] − E[X]E[X−]

√
V [X]V [X−]

=
E[XX−] − E[X]2

E[X2] − E[X]2

=
E [X (α(2E[X] − X) + (1 − α)Z1 + β(Z2 − E[X]))] − E[X]2

X2 − E[X]2

=
α(2E[X]2 − E[X2]) + (1 − α)E[X]2 − E[X]2

E[X2] − E[X]2
= −α.

The theorem shows that the generated distance matrices are expected to
(i) maintain basic characteristics (mean and variance) of a specific initial single
objective benchmark instance and (ii) have all the same strength of correla-
tion (potentially with different sign) to the given matrix. Mean and variance
of a distance matrix are certainly not the only properties that characterize a
TSP instance, however, they are basic properties that are well defined, easily
computable, and (potentially) have a strong influence on the behavior of opti-
mization algorithms. The correlation between the generated matrices is covered
by the following theorem.

Theorem 2. For random variables X+, Y + and X−, Y − that are gener-
ated according to (5) and (6), respectively, it holds that: (i) ρ(X+, Y +) =
ρ(X−, Y −) = α2 and (ii) ρ(X+,X−) = ρ(X−,X+) = −α2.

Proof. Note, that for each random variable different random variables Zi, i ∈
N

+ are used. These do not appear explicitly in the proof since E[Zi] = E[X].
Because E[Zi−E[X]] = 0 we omit all terms involving the last summands of (5) and
(6), respectively. For readability we abbreviate 2E[X] − X with X̂. Due to space
limitations cases ρ(X+, Y +) and ρ(X+, Y +) are omitted. The following holds
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ρ(X+, X−) =
E[X+X−] − E[X+]E[X−]

√
V [X+]V [X−]

=
E[X+X−] − E[X]2

E[X2] − E[X]2

=
α2E[XX̂] + α(1 − α)E[X](E[X] + E[X̂]) + (1 − α)2E[X]2 − E[X]2

E[X2] − E[X]2

=
α2(2E[X]2 − E[X2]) + 2α(1 − α)E[X]2 + (1 − α)2E[X]2 − E[X]2

E[X2] − E[X]2

=
α2(E[X]2 − E[X2])

E[X2] − E[X]2
= −α2.

The theorem shows that for the partition {X1, . . . , Xq} and {Xq+1, . . . , Xk}
it holds that two random variables from the same set are positively correlated and
two random variables from different sets are negatively correlated. By choosing
q = k the special case of homogeneous correlations, which was advocated in [17],
is covered. Clearly, also the iterated application of the procedure as suggested
in [12] is possible. The corresponding correlations are as follows.

Theorem 3. Let X+0 := X and X+i be the result of applying (5) on X+i−1.
Then ρ(X,X+i) = αi holds.

Proof. Theorem 1 implies E[X+i] = E[X] and V [X+i] = V [X]. We set γi =
(1 − α)Z2i−1 +

√
2α(1 − α)(Z2i − E[X]). Then

ρ(X,Xi) =
E[XXi] − E[X]E[Xi]

√
V [X]V [Xi]

=
E[XXi] − E[X]2

E[X2] − E[X]2

=
E [X (α(. . . α(αX + γi) + γi−1) . . . + γ1)] − E[X]2

E[X2] − E[X]2

=
E

[
X(αiX +

∑i
k=1 αk−1γk)

]
− E[X]2

E[X2] − E[X]2

=
αiE[X2] + E[X

∑i
k=1 αk−1γk] − E[X]2

E[X2] − E[X]2

=
αiE[X2] +

∑i
k=1 αk−1E[Xγk] − E[X]2

E[X2] − E[X]2

=
αiE[X2] +

∑i
k=1 αk−1(1 − α)E[XZ2k−1] − E[X]2

E[X2] − E[X]2

=
αiE[X2] + (1 − αi)E[X]2 − E[X]2

E[X2] − E[X]2

=
αiE[X2] − αiE[X]2

E[X2] − E[X]2
= αi.

Theorem 3 also holds analogously if (6) is applied in some or all recursive steps
(instead of (5)), however, with a sign switch for each such step.
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Fig. 1. Violin plot and boxplot of the distance values of six TSPLIB instances (top
row) and of the distance matrices that are generated with the new method from these
instances with different α ∈ {0.1, 0.5, 0.9} using (3) and (4), the latter indicated by
negative values of α.

4 Empirical Analysis

To visualize and complement our theoretical results we performed a series of
experiments. For the experiments we used all 85 benchmark instances from the
TSPLIB that have at most 7400 cities. A more detailed analysis has been done
for the following six of these instances which have been chosen to represent
different types of distributions of the distance values that can be found within
the instances in the TSPLIB (see topmost row in Fig. 1):

(i) Instances gr202 and a280 represent a negatively skewed distance distribu-
tion. For gr202 the number of city pairs decreases almost linearly with an
increasing distances, whereas, for a280 this relation is more irregular.

(ii) Instance ch150 represents a distance distribution with a single peak that is
similar to a normal distribution (it is only slightly negatively skewed).

(iii) Instances pr152, tsp225, and pr264 represent distance distributions that
have more than one pronounced peak. Instance pr264 and pr152 have a
non-symmetric distribution with two, respectively three, peaks of different
height. Instance tsp225 has two peaks but is more symmetrical and the
peaks are less pronounced.



A Property Preserving Method for Extending a Single-Objective Problem 27

Fig. 2. Distribution of relative mean value (top) and relative standard deviation (mid-
dle) of generated matrix with respect to the corresponding value of the original TSPLIB
instance over all 85 test instances; also shown is the distribution of the correlation
between the generated matrix with the original TSPLIB instance divided by α (bot-
tom for all 85 test instances; shown are the results for the new method; shown are the
values for positively (left column) and negatively (right column); α ∈ {0.1, 0.5, 0.9}.

Note that for the results that involve a comparison with the results of the meth-
ods of [12,17], i.e. (1) and (2), the distance matrices have been normalized.

The result of applying the instance generation method on the selected 85
TSPLIB instances is shown in Fig. 2. For each of the TSPLIB instances and
combinations of α ∈ {0.1, 0.5, 0.9} and q ∈ {0, 1} one new matrix was gener-
ated, i.e. k = 1. The shown distributions of the relative mean values and the
relative standard deviations shows that the generated matrices have (with small
random fluctuations) the same mean value and the same standard deviation as
the corresponding original TSPLIB instances. Note, that the scale of the hori-
zontal axis is logarithmic to base 2 such that 0 corresponds to the fact that the
values of the new matrix and the old matrix are equal. The figure also shows
that the correlation between the new matrix and the original TSPLIB matrix
equals α (with minor random influence). This confirms our theoretical results
for the mean, variance, and correlation.

Figure 3 shows the corresponding results when the method of [17], i.e. (2) is
applied. The results show a potential disadvantage of this method. The distribu-
tion of the distance values in the matrices that is generated with this method is
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Fig. 3. Distribution of relative mean value (top) and relative standard deviation (mid-
dle) relative correlation (bottom) for the 85 test instances from the TSPLIB; shown
are the results for the method of [12]; see caption of Fig. 2.

very different compared to the distribution of the values of the original matrices.
Their mean values for smaller α approach 0.5 which is the expected value of the
random part from (2). Thus, the lower the correlation parameter α is set, the
higher the similarity of the resulting distribution to a uniform distribution from
0 to 1. Since most TSPLIB instances have a normalized mean below 0.5 this
behavior results in an increase of the mean value for positive correlations and a
decrease for negative correlations.

Equation (2) has a notable influence on the standard deviation of the dis-
tances in the generated matrices which depends on the values chosen for α. The
standard deviation is on average lower for α ∈ {0.5, 0.9} and higher for α = 0.1
compared to the original TSPLIB matrix. Moreover, the resulting correlations
are virtually never equal to α and they vary strongly, in particular for smaller α.
This has been predicted by [17] where it was shown that the observed correlation
depends on the variance of the original TSPLIB instance.

As shown, our instance generation method is able to maintain the mean value
and variance of the distance distribution of the original matrix. But clearly, other
statistical measures might not be preserved by the method. For instance, the
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Fig. 4. Correlation ρ(i, j) between all pairs of rows i and j of six TSPLIB distance
matrices ; black: ρ = 1, white: ρ = −1.

median value of the distance distribution might change in the newly generated
matrices. This is illustrated in the boxplots in Fig. 1 and can be seen in particular
for the asymmetrically clustered instance pr264. With correlation values closer
to zero, bulges in the distribution are flattened out. Obviously, this is an effect
of the increased random influence on the values in the newly generated matrices.
Note, that our instance generation method produces negative distance values,
particularly for negative correlations. Since negative distance or cost values could
be unrealistic (or impossible) in some application we suggest to deal with them
in such cases by a post processing step as described in Sect. 3.

In the following we consider the correlations between the different rows of
the distance matrix. More exactly, for an n×n matrix M = [mij ] the correlation
between rows i and j - denoted by ρ(i, j) - is computed over all pairs of values
(mih,mjh) for all h ∈ [1 : n]\{i, j}. Note, that the values in row i of the distance
matrix are the distances from city i to all other cities. Hence, for a Euclidean TSP
instance two cities which are very close to each other have similar distances to all
other cities and thus have a high positive correlation between their corresponding
rows in the distance matrix. Figure 4 shows the correlations ρ(i, j) for all pairs
of rows i and j for each of the six test matrices. Off course, care has to be taken
when interpreting the figure because a renumbering of the cities would lead to a
reordering of the rows and columns. However, the different characteristics of the
six TSPLIB instances can be seen. Instances tsp225, pr264, and pr152 show a
clustering of the cities into two (tsp225, pr264) or three (pr152) clusters. Instance
gr202 (and to a much lesser extend also instance a280) shows a gradient away
from the antidiagonal from positive to negative correlations. Only instance ch150
does not show a clear structure within the correlation plot.
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Fig. 5. Correlation ρ(i, j) for all pairs of rows i and j: gr202 (left) and matrices gener-
ated from gr202 (middle: α = 0.9, right: α = 0.7); black: ρ = 1, white: ρ = −1.

Fig. 6. Distribution of correlations ρ(i, j) between each two rows i and j of matrices
generated with α ∈ {0.2, 0.4, 0.6, 0.8, 1.0} for six instances of the TSPLIB; α = 1.0
corresponds to the original TSPLIB instance.

In Fig. 5 the correlations between rows in the original TSPLIB matrix and
the matrices generated with α ∈ {0.7, 0.9} are shown for gr202. Only results
for positively correlated matrices are shown because the results for negative
correlation are similar. The general structure of the original matrix is still visible
in the generated matrices. Clearly, the random influence introduces considerable
noise and reduces the correlation between the rows. This effect is stronger for
smaller α.

Indeed, in Fig. 6 it can be seen that the row correlations approach zero for
increased random influence, i.e. smaller α. For 0 < α < 1 the distribution of the
row correlations is a mixture of the original TSPLIB instance distribution and
the distribution of correlation coefficients of a random sample with correlation
zero. The latter distribution was described by Fisher in [3].

Our instance generation method can also provide problem instances where the
objectives exhibit different correlations. This can be achieved, for example, by a
recursive application of the method. Clearly, each recursive application decreases
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Fig. 7. Mean value and standard deviation (SD) of the distance matrices generated by
up to 30 recursive applications of (1), (2), (3) and (4), start matrix is the normalized
distance matrix of TSPLIB instance ch150; α ∈ {0.5, 0.9}; left: positive correlation;
right: negative correlation

the correlation to the original matrix. Other instance generation methods also pro-
vide such an option [12,17]. However, a potential disadvantage of these methods is
that they change the mean and standard deviation of the generated matrices and
therefore important characteristics of the corresponding optimization problems.
This effect becomes stronger the more iterations are applied, such that the derived
matrices are very different from the original benchmark matrices. This is shown in
Fig. 7 where all three methods (i.e. the method from [12] using (1), the method
from [17] using (2), and the newly proposed method using (3) and (4)) are com-
pared. It can be seen that for the methods from [12,17] the mean value approaches
0.5 and either increases the standard deviation vastly [12] or reduces it [17]. When
we compare the results for positive and negative correlations the compared meth-
ods behave asymmetrically. In contrast our method maintains the mean value and
standard deviation of the original matrix for positively as well as for negatively for
correlated matrices (up to small random influences).

5 Conclusion

We have proposed a new method to generate multi-objective optimization prob-
lem instances from a corresponding single-objective instance. The method pro-
vides the option to choose specific correlations between the objectives, while
maintaining important characteristics of the original single-objective instance.
In particular, the proposed method can be applied to optimization problems
were the objective is defined by a matrix. Examples are the Traveling Salesper-
son problem (TSP) which uses a distance matrix and the Quadratic Assignment
problem which uses a flow matrix. It was shown that the new method provides
the option to choose specific correlations between the generated objectives, while
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maintaining the mean value and variance of the given single-objective problem
instance. This is not guaranteed by existing instance generation methods that
have been proposed in the literature. However, maintaining mean value and
variance can be important since these characteristics been shown to be of great
influence on the difficulty of TSP instances [22]. Our method was analyzed the-
oretically and it was experimentally compared for the TSP to other instance
generation methods from the literature.

It should be noted the application of the proposed instance generation
method to problems other than the TSP but where each objective is controlled by
a matrix, e.g. the QAP and the multi objective 0/1 Knapsack problem, requires
some minor problem specific modifications. For example, the independent gen-
eration of both triangular matrices for the flow matrices of the QAP and the
generation of all element of the profit matrices of the Knapsack problem.
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