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Preface

Combinatorial optimization is the discipline of decision-making dealing with discrete
alternatives. The field is at the interface between discrete mathematics, computing
science, operational research, and recently also machine learning, and it includes a
diversity of algorithms and hybrid methods. Stochastic local search (metaheuristics),
evolutionary, and other nature-inspired algorithms are a family of methods able to
provide robust, high-quality solutions to problems of a realistic size in reasonable time.
These methods are also relatively simple to design and implement, and offer high
flexibility. Many challenging applications in science, industry, and commerce can be
formulated as optimization problems. A growing number of them have been suc-
cessfully solved using the sort of computational methods mentioned, which are the
main content of these proceedings.

EvoCOP was held for the first time in 2001, as the first workshop specifically
devoted to evolutionary computation in combinatorial optimization. In 2004 it became
a conference, and since then it has run annually. This volume contains the proceedings
of EvoCOP 2016, the 16th European Conference on Evolutionary Computation in
Combinatorial Optimization, which was held in Porto, Portugal, from 30 March to
1 April 2016. EvoCOP is one of the four events of Evostar 2016. The other three are
EuroGP (19th European Conference on Genetic Programming), EvoOMUSART (5th
International Conference on Evolutionary and Biologically Inspired Music, Sound, Art
and Design), and EvoApplications (19th European Conference on the Applications of
Evolutionary Computation, formerly known as EvoWorkshops).

Previous EvoCOP proceedings were published by Springer in the series Lecture
Notes in Computer Science (LNCS Volumes 2037, 2279, 2611, 3004, 3448, 3906,
4446, 4972, 5482, 6022, 6622, 7245, 7832, 8600, 9026). The table on the next page
reports the statistics for each conference.

This year, 17 out of 44 papers were accepted after our rigorous double-blind process,
resulting in a 38.6 % acceptance rate. We would like to thank the quality and timeliness
of our Program Committee members’ work, especially since this year’s time frame was
tighter than usual. Decisions considered both the reviewers, report and evaluation of the
program chairs. The 17 accepted papers covered methodology, applications, and the-
oretical studies. The methods included evolutionary and memetic algorithms, variable
neighborhood search, particle swarm optimization, hyperheuristics, matheuristics, and
other adaptive approaches. Applications included both traditional domains, such as
graph coloring, vehicle routing, the longest common subsequence problem, the quad-
ratic assignment problem, and new(er) domains such as the traveling thief problem, Web
service location, and finding short addition chains. The theoretical studies involved
fitness landscape analysis, local search and recombination operator analysis, and the big
valley search space hypothesis. The consideration of multiple objectives, dynamic, and
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EvoCOP  Submitted  Accepted  Acceptance (%)

2016 44 17 38.6
2015 46 19 413
2014 42 20 47.6
2013 50 23 46.0
2012 48 22 45.8
2011 42 22 524
2010 69 24 34.8
2009 53 21 39.6
2008 69 24 34.8
2007 81 21 259
2006 77 24 31.2
2005 66 24 36.4
2004 86 23 26.7
2003 39 19 48.7
2002 32 18 56.3
2001 31 23 74.2

noisy environments was also present in a number of articles. This makes the EvoCOP
proceedings an important source for current research trends in combinatorial
optimization.

We would like to express our appreciation to the various persons and institutions
making this a successful event. First, we thank the local organization team led by
Penousal Machado and Ernesto Costa from the University of Coimbra. We extend our
acknowledgments to Pablo Garcia-Sanchez from the University of Granada for the
excellent website and publicity material. We thank Marc Schoenauer from Inria Paris
for his continued assistance in providing MyReview conference management system.
Thanks are also due to Jennifer Willies and the Institute for Informatics and Digital
Innovation at Edinburgh Napier University, UK, for administrative support and event
coordination. Finally, we want to thank the Camara Municipal do Porto and Turismo
do Porto for their support, and the prominent keynote speakers, Richard Forsyth and
Kenneth Sorensen.

Special thanks also to Christian Blum, Carlos Cotta, Peter Cowling, Jens Gottlieb,
Jin-Kao Hao, Jano van Hemert, Peter Merz, Martin Middendorf, Gabriela Ochoa, and
Giinther R. Raidl for their hard work and dedication at past editions of EvoCOP,
making this one of the reference international events in evolutionary computation and
metaheuristics.

March 2016 Francisco Chicano
Bin Hu
Pablo Garcia-Sanchez
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A Hybrid Constructive Mat-heuristic Algorithm
for the Heterogeneous Vehicle Routing Problem
with Simultaneous Pick-up and Delivery

Baris Kececi!®), Fulya Altiparmak?, and Imdat Kara

! Department of Industrial Engineering, Baskent University, Ankara, Turkey
bkececi@baskent.edu.tr, ikara@baskent.edu.tr
2 Department of Industrial Engineering, Gazi University, Ankara, Turkey
fulyaal@gazi.edu.tr

Abstract. In this paper, a variant of Vehicle Routing Problem, called
Heterogeneous Vehicle Routing Problem with Simultaneous Pick-up and
Delivery (HVRPSPD), is considered. The HVRPSPD can be defined as
determining the routes and vehicle types on each route in such a way
that the pickup and delivery demands of each customer must be per-
formed with same vehicle, while minimizing the total cost. We propose
a mathematical model for the problem and some valid inequalities for
the model. Since the HVRPSPD is an NP-hard problem, the proposed
mathematical model can be used to find the optimal solution for the
small-size problems. Therefore we propose a hybrid mat-heuristic app-
roach based on the formulation and Local Search to solve medium and
large-size HVRPSPDs. A series of experiments is performed to evaluate
the performance of proposed algorithm. Computational results show that
hybrid mat-heuristic is computationally efficient to find good quality of
initial solutions.

Keywords: Heterogeneous Vehicle Routing Problem - Simultaneous
Pick-up and Delivery + Hybrid mat-heuristic - Local search

1 Introduction

The Vehicle Routing Problem (VRP), which has a major importance in the
field of transportation, distribution and logistics, was first defined and modelled
by Dantzig and Ramser [1] towards the end of 1950s. After the Dantzig and
Ramser’s study, various models and algorithms have been proposed in the liter-
ature to obtain exact and approximate solutions for different types of VRP [2,3].
The interest to the VRP is because it is one of the most important problems
in the operational level logistics and also it is in the class of NP-hard prob-
lems. The VRP can be defined as the problem of determining the minimum cost
routes, in which the vehicles in a fleet should follow, in order to satisfy customer
requirements under some operational restrictions. There are various types of
the VRP according to the considered operational constraints in the literature.

© Springer International Publishing Switzerland 2016
F. Chicano et al. (Eds.): EvoCOP 2016, LNCS 9595, pp. 1-17, 2016.
DOI: 10.1007/978-3-319-30698-8_1



2 B. Kececi et al.

One of the variants is the Heterogeneous VRP (HVRP) and the other is the
VRP with Simultaneous Pick-up and Delivery (VRPSPD).

In the classical VRP, vehicles in a fleet are considered identical, in other
words homogeneous. However, in real life logistics, the vehicles in a fleet may
have different properties such as fixed cost (purchasing or rental) of the vehicles,
unit variable (transportation) cost between any two customers, vehicle capaci-
ties, etc. Besides, according to the customer and/or freight needs, different type
of vehicles may be required. That is why to reduce the cost of logistics, the
identification of distribution routes as well as the selection of vehicle fleet (i.e.
how many vehicle should be bought/rent of each type and which type of vehicle
should follow which route) are gaining importance for the companies. This situ-
ation particularly requires the consideration of the strategic investment decision
in the absence of a current vehicle fleet. There are basically two types of HVRP
examined in the literature. The first one, which has unlimited number of vehicles
of each type was, first proposed by Golden et al. [4]. In this problem the optimal
fleet of vehicles is determined. This problem was originally named in several
ways in different studies such as, “The Fleet Size and Mix VRP” by Golden
et al. [4]; “The Vehicle Fleet Mix” by Salhi and Rand [5]; “The Fleet Size and
Composition VRP” by Gheysens et al. [6]. The second basic type of HVRP was
first studied by Taillard [7] and there is limited number of vehicles of each type
in a fleet. This case is more realistic and was named in several different ways
such as, “The VRP with a Heterogeneous Fleet of Vehicles” by Taillard [7]; “The
Heterogeneous Fixed Fleet VRP” by Tarantilis et al. [8]. In addition, it is pos-
sible to classify the HVRPs depending on whether the fixed and transportation
costs are considered or not and whether the fleet size is limited or not etc.
Baldacci et al. [9] give a classification for this problem. We refer the interested
readers to the paper of Hoff et al. [10] for an extensive review about this problem
and its variants.

Another basic assumption in the classical VRP is that the customers either
demand or supply goods. Hence, the vehicles are considered either distribute
or collect goods on a route. In the VRPSPD, each customer demands and sup-
plies certain amount of goods at the same time. In case of the customers both
demand and supply goods, major economic benefits can be obtained when both
activities are performed by a vehicle on the same route rather than by vehicles
on different routes. The applications of the VRPSPD can be encountered in the
distribution system of grocery store chains, blood banks, etc. Reverse logistics
is also another area in which the planning of vehicle routes takes the form of
VRPSPD. Companies are facing more often with the management of reverse flow
of the products, work in process and/or raw materials. Also there are increasing
environmental and social responsibilities and some legal obligations that make
the Reverse Logistics Management attractive and mandatory for the compa-
nies in addition to its economic return. Particularly on the environmental and
economic issues such as collection, disposal and assessment of waste, recycling,
reprocessing, re-manufacturing and evaluation of used products; the applications
of Reverse Logistics force the companies to use their distribution and logistics
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network in a most efficient way. We refer the interested readers to the papers
of Berbeglia et al. [11] and Parragh et al. [12] for extensive review about this
problem and its variants.

The need for new scientific challenges and an industrial demand for more
powerful and versatile routing tools has shifted the focus of VRP research to
more complex, general, and larger size variants [10]. Because of the increasing
importance of the HVRP and VRPSPD in practical and in scientific researches,
in this paper we consider a variant of the VRP called the HVRP with simultane-
ous pickup and delivery (HVRPSPD). The HVRPSPD includes more real-world
aspects of routing problems than the classical VRP by taking into account the
heterogeneous vehicle fleet and the simultaneous distribution and collection of
goods. Despite the fact that the HVRP and VRPSPD are two important prob-
lems in the literature and practice, the HVRPSPD has received little attention
from researchers so far. Rieck and Zimmermann [13] address a variant of the VRP
faced by less-than-truckload carriers in Europe. The problem includes heteroge-
neous vehicles, time windows, simultaneous delivery and pick-up at customer
locations, and multiple uses of vehicles. They present a vehicle routing model
that integrates the real-life VRP and the assignment problem of vehicles to load-
ing bays at the depot. They propose a savings-based solution heuristic combines
a multi-start and a local search procedure. Cetin and Gencer [14] consider the
VRPSPD with time windows constraints and heterogeneous fleet. They propose
a mixed integer programming formulation for the problem based on the model
developed by Dethloff [15] for the VRPSPD. Rios-Mercado et al. [16] consider
a real-life distribution problem in a company which produces bottled products
in Mexico. The problem is minimizing the fixed costs and routing costs while
including many complex sub-problems such as; how the trailers should be loaded,
which vehicle should pull which trailer, which route should be followed by each
vehicle and etc. The problem can be classified as multi-depot, multi-commodity
HVRPSPD with time windows. These types of problems are named as Rich VRP
that includes many real life features. The problem is modelled as a mixed integer
programming formulation and solved by a heuristic algorithm based on GRASP.
The performance of algorithm is investigated on the test problems randomly
generated with the datums obtained from the company. Furthermore, the solu-
tion obtained by the proposed algorithm is compared with the current solution
that the company has already been using.

In this paper, we propose a mixed integer programming (MIP) formulation,
which is arc-based formulation, for the HVRPSPD. We define some valid inequal-
ities to tighten the MIP formulation in order to increase the solution speed of the
formulation. Since the problem is in the class of NP-hard problems, the proposed
formulation can be used to obtain optimal solutions for small-sized problems.
Hence, we propose a mat-heuristic approach based on the MIP formulation and
Local Search (LS) [17] algorithm (called MatH-LS) to solve the medium and
large-size HVRPSPDs. We investigate the performance of the MatH-LS on a set
of instances derived from the literature and compare it with the proposed arc-
based MIP formulation in terms of the solution quality and computation time.
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The paper is organized as follows: The problem definition with proposed model
and valid inequalities are given in Sect. 2. The detailed description of the MatH-
LS algorithm is given in Sect. 3. Section 4 reports the computational results and
conclusion follows in Sect. 5.

2 Problem Definition

The HVRPSPD can be defined mathematically as in the following. Let G =
(N, A) be a complete directed graph where N = {0, ..., n} is the set of nodes and
A={(i,5) 14,5 € N,i # j} is the set of arcs, respectively. 0 indicates the depot
node while the remaining are the customer nodes in N. The fleet is composed
by b different types of vehicles, with B = {1, ...,b}. For each k € B there are T},
available vehicles, each with capacity Q) and fixed cost fi. Each arc (i,5) € A
s associated a non-negative cost c;; = 0;l;; where [;; is the distance between
the nodes (4, j) with l;; = lj;, for each ¢,j € N triangular inequality holds (i.e.
lij + ljr > lix) and @y is the dependent (variable) cost per distance unit of
vehicle k € B. Each customer i € N has delivery (d;) and pickup (p;) demands,
with 0 < d;,p; < Qk,Vk € B and dy = pg = 0. The problem consists in finding
the minimum cost feasible routes and determining the type of vehicle on each
route such that only one type of vehicle must be used on each route and each
customer must be visited by exactly one type of vehicle, each route must begin
and end at the depot and the total load on vehicles must not exceed the vehicle
capacity.

2.1 Proposed Model

Based on the above definitions, the decision variables of the proposed MIP for-
mulation are given as follows: x;j, = 1 iff a vehicle of type k ravels directly
from node ¢ to node j; z;; = the total remaining delivery load of vehicle just
after it gives the delivery demand of node 4, if the vehicle travels directly on
arc (1, 7), otherwise 0; ¢;; = the total load picked up by vehicle, if the vehicle
travels directly on arc (i,7), after it takes the pickup demand of node i, just
after leaving the node i, otherwise 0; y; = the number of vehicle type k used
in the fleet; m = the number of routes in the solution. The proposed arc-based
MIP formulation (ABF) is as follows:

minimize z = Z Z Z Cij Tk + Z Y (1)

iEN jEN,i#j kEB keB

Y. Dz <m (2)

jeN\{0} keB

Z Z Tior <M (3)

ieN\{0} keB

subject to;
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> wie =195 € N\ {0} (4)

iEN,i#j keB
> wige= Y xnVie N\{0},VkeB (5)
JENi#j JEN i
Zij i < Quair, Vi, j € Nyi# j (6)
keB
Z Z5i — Z Zij = d“VZ eEN (7)
JENi#] JENi#]
D djwigr < 2y < Y (Qu— di)win, Vi, j € Nyi#j (8)
keB kEB
o otij— Y tji=pi,Vie N\{0} 9)
JEN i#] JEN i
Zpixijk <t < Z(Qk —Dj)Tijk, Vi, € N,i #j (10)
keB keB
zio=0,Vie N \ {0} (11)
to; = 0,Vj € N\ {0} (12)
Z Y <M (13)
keB
yr < Ty, Vk € B (14)
Z Tojk = Yk, Vk € B (15)
jeN\{o}
yr > 0 and integer, Vk € B (16)
m >0 (17)
Zij,ti; > 0,Vi,5 € N (18)
Tijk E{O,l},Vi,jEN,Vk‘EB (19)

In ABF, the objective function (1) minimizes the total transportation cost
and the total vehicle utilization cost. The constraints (2) and (3) satisfy at most
m vehicles leave and return back to the depot, respectively. The constraint (4)
yields that any node is visited by exactly one type of vehicle and with the con-
straint (5) it is guaranteed that the same type of vehicle enters and leaves at
any node. The constraint (6) prevents the vehicle capacity to be exceeded on
any node in a feasible solution. Furthermore, it enforces the auxiliary variables
to be zero in case they are not in the solution. The constraint (7) ensures that
the auxiliary variables, related with the delivery load, take decreasing values on
a feasible vehicle tour and similarly the constraint (9) ensures that the auxiliary
variables, related with the pick-up load, take increasing values on a feasible vehi-
cle tour. Equations (7) and (9) avoid the sub-tours together. The constraints (8)
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and (10) are bounding constraints of delivery and pickup loads, respectively.
They strengthen the model and give tighter formulation. The equalities (11)
and (12) initially give zero value to the related variables since a vehicle starts
and ends its tour with empty load, respectively. The constraint (13) provides
that the total number of vehicles of each type must be equal to at most m in
the fleet. The constraint (14) restricts that the number of vehicle of each type
in the fleet must be less than or equal to the available number of vehicle of each
type. Finally, the constraint (15) ensures that the number of arcs leaving the
depot of vehicle type k, should be equal to the number of vehicles of type & in
the fleet. The constraints (16), (17), (18) and (19) are the non-negativity and
integrality constraints. The ABF has O (n2) number of 0-1 integer and continues
decision variables, O (b) number of integer decision variables and O (n?) number
of constraints.

2.2 Valid Inequalities for the Model

The valid inequalities are the constraints, which are added to the mixed integer
mathematical models to tighten their linear programming relaxations. Those
inequalities yield all integer feasible solutions; besides, cut some of the relaxed
solutions and exclude them from the relaxed solution space. Thus, stronger lower
bounds can be obtained by valid inequalities for a problem and this may decrease
the solution time of the models. In this study we dwell on three polynomial sized
valid inequalities (look at (20) - (24)) to strengthen the ABF.

The first of these is a special case of sub-tour elimination constraints proposed
for TSP by Dantzig et al. [18]. In this form of constraints, instead of whole
exponential number of sub-tour elimination constraints, only the two-element
subsets of constraints are used. The valid inequality (20), which is adapted for
HVRPSPD, eliminates only the sub-tours between two customer nodes in any
feasible solution.

Z (ijr + zjin) < 1,Vi,5 € N\ {0},i < (20)
keB

Another inequality is a covering type inequality, which has been examined
in Yaman [19]. In this study the inequalities of the form aza > ag + apb are
used where a,, ap and «q are all non-negative values and the Chvatal-Gomory
procedure is applied to obtain the valid inequalities. So in our formulation, as
described in Yaman [19], we use the inequalities (21),(22) for both delivery and
pickup demands, where @ > 0. Yaman [19] chooses @ to be Q1, @Q2,...,Qp and
their greatest common divisor as well, and so we do.

D 1Qk/Qlyk > [(D di)/Q (21)

keB i€EN

> 1Qk/Qlye = [ pi)/Q] (22)

keB €N
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Let j € N\ {0} is any customer visited on a route by the vehicle type k € B.
Then the remaining capacity of the vehicle type k should be big enough to get the
load remaining after the delivery and pickup operations done for the customer j.
To satisfy this relation, the inequality Qr — (2i; + ti;) > p; — d; must be yield.
In other words the conditional relation of (23) must be satisfied iff ;;, = 1 for
each customer j € N \ {0}.

Qr =Y (25 +tiy) >pj — d; (23)
iEN
Hence the last inequality, which is a linearisation of the above conditional
relation, is valid and can be added to the MIP formulation as shown in (24).

Do (g ti) i —di <Dy Quaign, Vi € N\ {0} (24)

€N i€EN kEB

3 Proposed Hybrid Mat-heuristic Algorithm

Last few decades have been witnessed the use of model-based heuristics (mat-
heuristics) on the solution of combinatorial optimization problems besides the
use of heuristic and meta-heuristic. In spite of the development in the computer
technologies and in the exact solutions algorithms; however the heuristic and
meta-heuristic approaches still keep its importance to find good quality solutions
in reasonable time. The existence of powerful software creates new opportunities
in the design of heuristic and meta-heuristic algorithms. Hence, a new algorithm
class is born, which combines the heuristic and meta-heuristic approaches with
mixed integer programming strategies and software infrastructure.

Mathematical model based algorithms, as it is stated in the name, interac-
tively cooperate together with the heuristic (metaheuristic) and mathematical
programming techniques. The most important feature of this type of heuristics is
the use of information from the mathematical formulation of the problem, within
some part of the algorithm [20-24]. Generally the mathematical programming
tools are used in some part of the solution procedure. Maniezzo et al. [25] pub-
lish a book in consequence with the last workshop about this field of work. The
book constitutes of the studies done by the mathematical model based heuristic
approaches and their probable usage areas.

In this study we propose a mathematical model-based hybrid heuristic app-
roach to solve the HVRPSPD instances. The heuristic constitutes three phases.
The first one is the clustering phase, the second one is the local search phase
and the last one is the routing phase. In the clustering phase, the group of cus-
tomers within each tour is obtained iteratively and the vehicle type on the tour
is determined as well. The proposed ABF is used with some modifications in the
clustering phase. The main idea in the clustering phase is to solve the relatively
and reasonably small part (sub problem) of the original problem at each itera-
tion. The sub problems can be optimally solved by any exact solution approach.
At the end of each iteration, according to the exact solution of sub problem,
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certain number of decision variables is fixed and a new sub problem is built by
adding same number of decision variables. The iterations continue until all the
decision variables are fixed. Similar approach is studied by Dondo et al. [26] for
the multi-depot HVRP with time windows. The main differences of this study
from Dondo et als are the use of mathematical formulation in the clustering
phase and the identification of vehicle type on each tour. Consequently the local
search phase searches better tours by the help of some neighbourhood search
structures. And last the routing phase gives the best order of customers in each
tour. Again the proposed ABF but with one vehicle version is used in the routing
phase.

3.1 Clustering Phase

In this phase, the cluster of customers on each tour is obtained iteratively and
at the end of the iterations the vehicle type on a tour is determined. To be
able to build the cluster of customers, one must find m distinct paths at each
iteration where each path begins at any node (customer and/or depot) and ends
at the depot node. Therefore, the sub problem that has to be solved at each
iteration is a Multi-depot Open HVRPSPD (MDOHVRPSPD). The first node
visited just after the beginning node on a path is kept as the beginning node of
the next iteration. At the end of the iterations, the beginning nodes kept for a
path corresponds to the set of customers assigned to the tour.

Modified arc-based formulation (MABF) is used to solve the sub-problem
within each iteration. The most significant modification on the formulation is
done by rewriting the assignment constraint (2) as one vehicle must leave each
of the m different nodes (either a customer node or a depot node), rather than
m vehicles must leave the depot node. Additionally the following sets and para-
meters are defined for the MABF:

D is the depots set and N’ is the candidate customers set where D C N, N’ C
N and DN N’ = ¢. P, R and S sets are defined with the Boolean operations.
P=NUD,R={0}UN"and S = RUD. The nodes in D have cumulative
delivery demand df, and pickup demand p}. At the current iteration after the
depot set is regenerated with the first visited nodes in the previous iteration; d;
and p} are updated with respect to the preceding nodes. The MABEF is as follows
with the sets given above and with previously defined parameters and decision

variables:
minimize 2’ = Z Z Z CijTijk + Z 1k (25)
i€S jES,i#j kEB keB
subject to (13),(14),(16) and;

SN wmpp=1VieD (26)

JERKEB

Z Z inijF Z ZIOijm (27)

i€D jER,i#j keB JEN' kEB
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Z Z Tiok <M (28)

i€P keB
oD wp=1vYjeN (29)
i€S,i#j kEB
> wgr= Y i Vie N \VkeB (30)
JER.i#] jESiA]
Zij +ti; <Y Quwijr, Vi € S,Vj € Ryi# j (31)
keB
Z Zji — Z zij = d;, Vi € N’ (32)
JESi#] JER,i#]

Z djxijn < 25 < Z(Qk —di)zik, Vi€ S, j € Ri# j,di «— di Vie D (33)
keB keB

Z tij— Z tjizpi,VZ'EN/ (34)
JER,iI#] JESiF#]

> piwir <ti; <> (Qr —pj)zin, Vi € 8,5 € Ryi # j,p; «— p} Vi€ D (35)
keB keB

Zi0 = O,Vl epP (36)
Sty =plVie {0}UD (37)
JERi#]
> zijr=uyVkEB (38)
i€{0}UD

m > O,Zij,tij >0,Vi,5 € S and Tijk € {0, 1} ,Vi,j € S,Vk € B (39)

The significant changes in the MABF with respect to the ABF are done
by rewriting the constraints (2) and (12) of ABF. The constraints (26) and
(27) of MABF substitute the constraint (2) of ABF; and the constraint (37) of
MABEF substitutes the constraint (12) of ABF. The changes in the remaining
constraints are only on their definition sets; neither on their meanings nor on
their functionalities. In MABF, the constraint (26) satisfies only one type of
vehicle leaves each depot node in the depots set. According to the constraint
(27), the total number of leaving vehicles from depots set D plus the depot
{0} must not exceed m. In the constraints (33) and (35) the cumulative pickup
and delivery demands p} and dj are used instead of p; and d; for the nodes in
depots set D. In any iteration, on each path, the total amount of pickup demands
through the nodes in the depots set must be known so far. The constraint (12)
sets the total pickup demand of the preceding nodes, as the pickup demand of
the nodes in the depots set. The MABF allows to trans-pass from the nodes in
{0} U D to any node in R at any iteration. Because the depots set D is empty
in the first iteration, to avoid self-pass from the node {0} to depot {0}, the
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constraint (40) below must be used only in the first iteration of the algorithm.
The constraint (40) is then omitted in the consequent iterations.

Z Z Tiok = 0 (40)

i€D keB

The details of the algorithm used in the clustering phase are summarized in
the following. Let F; be the i*" cluster of the customers where i = 1,2, ..., m;
N* be the unvisited customers set; N’ be the candidate customers set. At the
beginning of the iterations, set m = 1, Fy = {} and D = {0}. The customers
of the original problem (N) are transferred to N* (N* «— N). The customers
in N* are ordered farthest to nearest according to their total distance to the
nodes {0} U D and then the first o customers of N* is transferred to N’. The
MABEF is then built and solved optimally by a MIP solver for the current sub-
problem. The first 5 customer(s) visited just after the node(s) in {0} U D is(are)
determined. Each of these customers is then assigned to one F; for Vi =1, ..., m.
According to the solution of MABF the number of customer clusters, m needs
to be increased by one in case of a new path (which starts from the depot node
{0}) is exist. Moreover, these customers substitute the current nodes in D or be
added to D in case of a new path is exist in the solution of sub-problem. The
nodes in the updated D are copied and kept in order in F; for Vi = 1,2,...,m.
The cumulative pickup (p}) and delivery (d;) demands of the nodes in D are
updated. At last, these customers are taken away from the sets of N, N* and an
iteration of the algorithm is completed. In the next iteration, the nodes (with the
smallest total distance to the nodes in {0} U D) from the set N* are transferred
to the set N’. The MABF for the next sub-problem is then built and optimally
solved. The iterations continue until the set N* becomes empty. At the end of
the iterations, F; for Vi = 1,2,...,m give the tours for the HVRPSPD. With
the last sub-problem solved in the last iteration the vehicle type on each tour
(kf,Vi=1,...,m) is already determined.

3.2 Local Search Phase

At the end of the clustering phase the vehicle tours and the vehicle types on
each tour are determined. In consequence of the clustering phase, a simple local
search is applied to find whether there are better tours in terms of the objective
function value. To be able to utilize a local search we use a matrix representation
for the solutions of HVRPSPD. In this matrix, each row corresponds to a tour
of vehicle where the first element in the row shows the vehicle type and the
remaining indicate the customers to be visited sequentially in the tour.

In the local search phase we use three inter-route moving strategies to search
the neighbours of a current solution. These are; (1) shift(1,0) : A customer i
from route ry is transferred to route ro; (2) shift(2,0) : Two adjacent customers
¢ and j from route r; are transferred to route ro; (3) k — shift : A subset of
consecutive customers from a route r; is transferred to the end of a route 9.
All neighbourhood structures implements the best improvement strategy when
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searching a solution space by a moving strategy to select a neighbour of the
current solution. Moreover, it accepts only the feasible moves, which do not
violate the maximum load constraints.

At each iteration of the local search phase, the algorithm simply chooses one
of the three moving strategies randomly. Then if the objective function of the
new solution is better than the current one, it accepts the new solution as the
current solution. The search phase continues until there is not any improvement
in the objective function through the |N’| successive iterations.

3.3 Routing Phase

The routing phase gives the best order of customers within each cluster inde-
pendent of each other. In this phase each tour is considered as a one vehicle
HVRPSPD and the optimal solution is obtained by solving its MIP formulation.
The ABF is transformed to a one vehicle HVRPSPD (1HVRPSPD) by setting;
N =1,B = {k*} and m = 1 where I is the set of nodes that includes the depot
node {0} and the customer nodes in the current tour; and k* is the vehicle type
that is assigned to the tour.

The Pseudo Code showing overall steps of the MatH-LS algorithm of all
phases is given below.

algorithm MatH-LS ()
initiate (m:=1,F:={},D:={0},N*:={},N :={},N:={},0,8);
read (the problem data);
set (N*«— N);
repeat //*Clustering phasex//
sort (N*, nearest to farthest to the nodes in {0}UD);
copy (first o nodes from N* to N');
set (N* «— N*—N");
build (the MABF with the parameters of nodes in N');
solve (the MABF for the sub-problem);
determine (the first [ nodes visited just after
the nodes in {0}UD);
if (a new path exists in the solution)
set (m:=m+1);
endif
copy (the determined nodes to DeptoCusFirst{},);
update (F; «— DeptoCusFirst{}, for Vi=1,..,m);
update (dj:=d; +d;; i€ {0}UD, j€ DeptoCusFirst;) ;
update (pj:=p; +pi; i€{0}UD, j€ DeptoCusFirst;) ;
set (D «— DeptoCusFirst) ;
set (N’ «— N’ — DeptoCusFirst) ;
set (N* «— N* — DeptoCusFirst) ;
until (N*={});
do //*Local search phasex//
set (NList:={shift(1,0),shift(2,0),k — shift});
choose (a random move € NList) ;
find (the best neighbourhood of current solution);
if (Obj(best neigh.sol.) < 0Obj(current sol.))
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set (current sol:=best neigh.sol.);

endif
while (# of iters.without improve.in obj.func. < |N'|);
for i=1 to m //*Routing phasex*//

set (N+—1I,B« {k*}, m:=1);

build (LHVRPSPD for the i'" tour);

solve (model for the 1HVRPSPD);

set (the new order of customers in the tour);
next
report (the solution and its objective function);
end.

4 Computational Results

In order to investigate the performance of MatH-LS, the results of the algorithm
are compared with the upper bounds obtained by the MIP formulation on a
set of test instances. Since there does not exist any benchmark problems for
HVRPSPD, two problem sets for the HVRP are used to generate HVRPSPD
test instances. The first HVRP test set was derived by Taillard [7] from the
VRP test problems of Golden et al. [4]. This set includes 4 instances with 50
customers, 2 instances with 75 customers and 2 instances with 100 customers.
The second HVRP test set was derived by Liu and Shen [27] from the Solomons
[28] VRP test problems. This set consists of 18 instances with 100 customers.
A HVRPSPD test instances can be easily obtained from a HVRP instance by
using a demand separation approach.

In this study, we utilize two demand separation approaches to generate the
delivery and pickup demands of customers in each HVRPSPD test instance. The
first strategy was proposed by Salhi and Nagy [29]. In the first approach a ratio
r; = min{x;/y;,y;/x;} is calculated and the original demands were split into
the pickup and delivery demands according to this ratio. For example, let ¢; be
the original demand of the customer . Then the delivery demand is d; = r;q;
and the pickup demand p; = (1 —r;)q;. We call this type of problems as Type X.
Similarly, another problem type that is briefly referred to as Type Y is obtained
by shifting each demand of the customer to the next one’s demand. In this study,
we also proposed another demand separation approach. This approach splits the
original demands into the pickup and delivery demands according to the Golden
Ratio. In mathematics two quantities are in the Golden Ratio if the ratio of the
sum of the quantities to the larger quantity is equal to the ratio of the larger
quantity to the smaller one. For instance when we divide a line segment |AB]|
into two parts according to the Golden Ratio, this segment should be divided by
a point of C' such that the ratio of the bigger part |CB| to the smaller part |AC|
is equal to the ratio of the whole line segment |AB| to the bigger part |CB|;
i.e. |[CB|/|AC| = |AB|/|CB| = ¢. ¢ is an irrational number like 7 or e and it
is equal to 1 +1/5/2 in fractional and is equal to 1.6180339887... in decimal as
well. According to these definitions, the original demand ¢; of the customer i is
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split in to the pickup and delivery demands as d; = [2¢;/(1 +/5)],pi = q; — d;
in case i is odd and as p; = [2¢;/(1 +V/5)],d; = ¢; — p; in case i is even. We
call this type of problems as Type W and similarly Type Z of problems are
generated with shifting each demand of the customer to the next customer as
it is explained previously. As a result, 520 (5 x 4 x 26) small and medium-sized
instances are generated by using the first 20, 25, 30, 35 and 40 customers of the
problems in each problem set which are generated by using 26 (8+18) original
HVRP test problems and 4 different separation procedures (X, Y, W, and Z).

The OPL language and CPLEX 12.6 solver engine are used in coding and
solving the MIP formulations, respectively. The proposed MatH-LS algorithm
interacting with the CPLEX Concert Technology is coded in C++ programming
language in Visual Studio 2010 compiler and all experiments are performed on a
computer with Intel Core 15 750 CPU @2,67 @2,67 GHz processor and 2 GB RAM.

The valid inequalities (20), (21), (22) and (24) are adapted for the MABF to
strengthen the MABF and used to be able to solve as big sub-problem as possible.
Based on our preliminary experiments, we take the cardinality of sub-problem
o = 10 and keep the first § = 1 nodes visited just after the node(s) in {0} UD at
each iteration. Each test instance is run 5 times by the proposed algorithm with
different random seeds and the computation time of MIP formulation is limited
with 2 CPU hours.

In the comparison of MatH-LS and the ABF, following performance measures
are used: percentage gap and computation time. The percentage gap is calcu-
lated as 100—[(U B — LB)/LB] where LB is the LP relaxation bound of the ABF
obtained within two hours and U B is the optimal/best solution obtained by the
ABF within two hours / the proposed MatH-LS. Table 1 presents the computa-
tional results for the MatH-LS and the ABF on HVRPSPD instances obtained
by using two demand separation approaches. In the table, the first two columns
show the number of customers in a HVRPSPD instance and the demand sep-
aration strategy, respectively. Subsequent five columns show the average value
of percentage gap, the minimum percentage gap, the maximum percentage gap,
the number of problems solved optimally and the average computation time with
the MatH-LS, respectively. Finally, the last four columns stand for the average
percentage gap of upper bound obtained by ABF, the minimum percentage gap,
the maximum percentage gap and the average computation time of ABF. As
seen from the Table 1, the proposed algorithm obtains good quality solutions
within a very short computational time. The average computation time of the
MatH-LS is 48.57 s while the ABF needs 5700s on average to solve HVRPSPD
instances. The average computation time of the MatH-LS changes between 12.33
and 138.17s. The average percentage gap of the MatH-LS is 22.81 %, while this
value is 116.68 % for the MIP formulation. The performance of the ABF quickly
degenerates for the instances bigger than 30 customers. The MatH-LS algorithm
optimally solves the 78 of 198 instances, which are optimally solved by MIP
formulation. Also, it improves upper bounds obtained by MIP formulation for
242 instances. These results show that the MatH-LS is superior to the MIP
formulation.
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Table 1. Computational results of the proposed MatH-LS algorithm

n Type | MatH-LS ABF

Gap(%) Opt | Cpu(s.) | Gap(%) Cpu(s.)
Avg. | Min. | Max. Avg. Min. Max.

20 X 5.38| 0.00| 27.58 |8 16.53 0.28 0.00 3.74 | 1449.59
Y 5.49| 0.00| 21.67 |7 13.60 0.28 0.00 5.02 | 1450.67
w 4.38 | 0.00| 18.67 |12 13.24 0.38 0.00 9.76 | 749.21
Z 5.23| 0.00| 19.45 |11 12.33 0.37 0.00 5.79 | 1203.81
Avg | (Sum)| 512 0.00] 21.84](38)| 13.93 | 0.33 0.00 6.08 |1213.32
25 X 9.35| 0.00| 29.85|5 18.48 8.70 0.00 |167.45 | 4018.89
Y 8.87| 0.00| 27.90 |7 17.52 7.63 0.00 |159.98 | 3719.02
w 7.21| 0.00| 32.39|7 16.74 5.98 0.00 |104.33 | 3049.56
Z 9.69| 0.00| 30.31|7 15.25 7.64 0.00 |148.72 | 3358.76
Avg| (Sum) | 8.78| 0.00| 30.11|(26) | 17.00 7.49 0.00 | 145.12 | 3536.56
30 X 13.06 | 0.00| 36.22 |1 21.95 13.39 0.00 76.44 | 6529.80
Y 12.95| 0.00| 37.77|2 28.12 23.84 0.00 | 135.80 | 5945.95
w 11.11 | 0.00| 28.50 |5 22.58 30.33 0.00 |267.74 |5398.19
Z 11.56 | 0.00| 41.41 |4 18.93 28.03 0.00 |267.79 | 5858.95
Avg | (Sum) | 12.17 | 0.00| 35.97|(12) | 22.89 | 23.90 0.00 |186.94 |5933.22
35 X 26.08 | 0.06 | 193.74 | 1 32.78 35.27 0.00 |261.75 | 7076.00
Y 16.14 | 1.12| 41.21|0 31.31 37.78 0.00 |259.06 |7167.35
w 14.92| 0.19| 34.35|0 25.42 26.74 0.00 | 258.78 |5721.41
Z 13.69 | 0.00| 35.03|1 26.26 43.00 0.00 |259.24 | 6727.05
Avg| (Sum) | 17.71| 0.34| 76.08 | (2) 28.94 35.70 0.00 |259.71 | 6672.95
40 X 27.66 | 1.27|184.91|0 41.16 50.27 4.13 | 404.00 | 7203.54
Y 19.28 | 1.49| 50.42 |0 46.15 48.84 1.34 | 417.09 | 7202.97
w 15.68 | 1.23| 33.49|0 28.66 44.95 0.00 |244.86 | 6683.07
Z 11.87| 0.52| 33.30|0 28.79 42.65 0.00 |395.48 |5981.91
Avg | (Sum) | 18.62 | 1.13| 75.53 | (0) 36.19 46.67 1.37 |365.36 | 6767.87
50 X 16.12 | 5.49| 21.00|0 42.90 54.41 17.24 | 147.34 | 7203.89
Y 18.06 | 5.51| 29.12 |0 109.39 63.47 6.47 | 156.65 | 7202.92
w 18.82 | 5.68| 24.95|0 83.16 58.68 15.89 | 156.50 | 7202.10
Z 18.31| 6.77| 27.69 |0 62.63 59.97 20.45 | 148.29 | 7204.40
Avg | (Sum) | 17.83 | 5.86 | 25.69 | (0) 74.52 59.13 15.01 |152.20 | 7203.33
75 X 36.52 | 34.59 | 38.45|0 125.75 | 400.00% | 400.00“ | 400.00* | 7200.00
Y 35.67 | 35.23 | 36.11 |0 138.17 | 400.00¢ | 400.00% | 400.00* | 7200.00
w 33.2233.02| 3342 |0 107.77 | 400.00% | 400.00* | 400.00% | 7200.00
Z 35.35|32.14| 38550 76.05 | 250.72 |101.44 |400.00° | 7200.03
Avg | (Sum) | 35.19 | 33.74 | 36.63 | (0) |111.94 |362.68 |325.36 |400.00% | 7200.01
100 | X 84.35|10.21 | 316.36 | 0 91.12 | 400.00¢ | 400.00% | 400.00% | 7200.00
Y 50.12 | 14.37 | 125.41 | 0 95.21 |389.13 | 182.66 |400.00° | 7200.07
w 63.05 | 12.21 | 267.92 | 0 70.62 | 412.24 97.33 | 772.16 | 7200.04
Z 70.63 | 10.73 | 351.02 | 0 75.60 | 388.77 |175.36 |400.00% | 7200.01
Avg | (Sum) | 67.04 | 11.88 | 265.18 | (0) 83.14 |397.54 |213.84 |493.04 | 7200.03
Avg | (Sum) | 22.81| 6.62| 70.88/|(78) | 4857 |116.68 | 69.45 |251.06 |5715.91

“This is intentionally given since no UB can be obtained in any instance.
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5 Conclusion

In this study, we consider the heterogeneous vehicle routing problem with simul-
taneous pickup and delivery, HVRPSPD. We propose an arc based MIP formu-
lation and a hybrid mat-heuristic approach to solve the problem. The proposed
approach, which constitutes three phases, is based on the MIP formulation and
the LS, called MatH-LS. In the MatH-LS, the model based part is used as a con-
structive structure especially in the clustering phase. The LS part is intended to
improve the solution, which is obtained by the model based part, just before the
routing phase. With the model based part in the MatH-LS it is easy to construct
a feasible solution in terms of the heterogeneous vehicle capacity restrictions
without implementing additional feasibility check and repair procedures/mech-
anisms. We analyse the performance of proposed algorithm in comparison with
the MIP formulation on a set of instances adapted from the literature. Com-
putational results indicate that the good quality solutions (23% in average)
are obtained in a reasonable computation time (approximately 49s). Because
of the strict page limitation it is not possible to put further detailed compu-
tational results especially in comparison with some other solution approaches.
Nevertheless, previous experimentations show that when the simple constructive
heuristics used instead of the model based part, the solution quality becomes
41 % in average with the use of Nearest Neighbour Algorithm. Further more, the
proposed algorithm can be used to obtain an initial solution for any exact algo-
rithm (i.e. branch and bound, branch and cut, column generation) to shorten
the optimization process of exact algorithm.
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Abstract. A method is proposed to generate multi-objective optimiza-
tion problem instances from a corresponding single-objective instance.
The user of the method can specify the correlations between the gen-
erated the objectives. Different from existing instance generation meth-
ods the new method allows to keep certain properties of the original
single-objective instance. In particular, we consider optimization prob-
lems where the objective is defined by a matrix, e.g., a distance matrix
for the Traveling Salesperson problem (TSP) or a flow matrix for the
Quadratic Assignment problem. It is shown that the method creates
new distance matrices with specific correlations between each other and
also have the same average distance and variance of distances as the dis-
tance matrix of the original instance. This property is important, e.g.,
when the influence of correlations between the objectives on the behav-
ior of metaheuristics for the multi-objective TSP are investigated. Some
properties of the new method are shown theoretically. In an empirical
analysis the new method is compared with instance generation methods
from the literature.

Keywords: Multi-objective optimization + Problem instance genera-
tion - Traveling salesperson problem

1 Introduction

The empirical analysis of a metaheuristic or other types of algorithms for an
optimization problem is usually done on a set of (benchmark) test instances.
These have various property values to study how their properties influence the
optimization behavior. Considering the Traveling Salesperson Problem (TSP)
an increased standard deviation of the distances between the cities of a TSP
instance increases its difficulty for Ant Colony Optimization (ACO) [22].
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Other relevant properties that might influence the difficulty of a TSP instance
for an optimization algorithm are the distribution of the distances between the
cities, if the cities occur clustered or not, and the size of the convex hull of the
cities [16]. The state of such properties might also influence the best choice of
parameter values for a metaheuristic (e.g. shown in [19] for ACO).

For applications it is important to have real world test instances or at least
test instances that reflect the properties of real world instances. However, for
many optimization problems only a relatively small number of real world test
instances is available. In those cases it is difficult to find real world instances with
specific and varying properties and a method for generating problem instances
with such properties and similarities to given real world instances is helpful.

In this paper such a problem instance generation method for multi-objective
optimization problems (MOOPs) is proposed. An important and characteristic
property of MOOPs is if and how the objectives are correlated. Many real world
MOOP instances have inter-dependencies between their objectives that influence
the characteristics of their fitness landscape [25]. It was shown that correlations
between the objectives can influence the correlation between the Pareto optimal
solutions [13]. In general, it holds that objectives which are not positively corre-
lated lead to a diverse and large set of Pareto optimal solutions [9]. In contrast,
positively correlated objectives decrease the number of Pareto optimal solutions,
e.g. for NK-landscapes [23].

It has been demonstrated for various MOOPs that the correlations between
objectives can influence the performance of optimization algorithms. If some
objectives have a strong positive correlation, a dimensionality reduction can
have positive effects on the performance of a metaheuristic [1,5]. To this end,
groups of positively correlated objectives can often be aggregated into a single
objective [18]. Several studies have demonstrated the influence of the correlation
between objectives on the performance of metaheuristics, e.g. [4]. A co-influence
of the correlation between objectives, the dimension of the objective space, and
the degree of non-linearity on the size of the Pareto set was shown in [24].

Often, a multi-objective problem is an extension of a corresponding single-
objective problem. One example is the multi-objective TSP (MO-TSP) which is
to find a round trip through n given cities that minimizes the traveled distance
with respect to multiple n x n distance matrices. For the MO-TSP it has been
demonstrated that correlated objectives influence the optimization behavior of
population based ACO (P-ACO) algorithms [17]. Another example is the multi-
objective 0/1 Knapsack problem which is to find an assignment of a subset of
n items to k knapsacks, where each knapsack has a weight capacity limit and
the items have knapsack specific weights and profits that are defined by n x k
matrices, such that the total profit is maximized and the weights in the knap-
sacks satisfy the capacity constraints. The influence of correlated objectives on
evolutionary multi-objective algorithms for this problem has been investigated
in [6-8]. The performance of MOEA /D is severely degraded by an increase in the
number of objectives when they are strongly correlated [7]. Algorithms NSGA-II
and SPEA2, on the other hand, perform well on multi-objective problems with
strongly correlated objectives [6]. Also, the search behavior of the hypervolume-
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based SMS-EMOA algorithm is biased toward the region of the Pareto front
for duplicated (i.e. strongly correlated) objectives [8]. The last example is the
Quadratic Assignment Problem (QAP) where given are n facilities, n locations,
a flow matrix F' = [f;;] where f;; is the flow from facility ¢ to j, and a dis-
tance matrix D = [d;;] where d;; is the distance between locations i and j. The
problem is to find an assignment 7 of the facilities to the locations such that
Ziﬂ.e[lm] fijdr(iyr(j) is minimized. The multi-objective QAP considers multi-
ple flows, where each flow defines one objective. It was shown in [20] that the
performance of local search operators (which are a central component of many
metaheuristic algorithms) for the multi-objective QAP are strongly influenced
by the strength of the correlation between the objectives. ACO algorithms for
multi-objective QAPs perform better with ‘less aggressive’ search strategies (e.g.
with iteration-best pheromone update instead of best-so-far pheromone update)
when the objectives have a strong positive correlation [14]. On instances with
weak or negative correlation between the objectives this does not hold.

As shown by the above examples, various combinatorial MOOP instances
are defined mainly by a set of matrices where each objective is represented by
one matrix. In the examples there is one distance matrix for each objective
of the multi-objective TSP, one flow matrix for each objective of the multi-
objective QAP, and one profit matrix for each objective of the multi-objective
0/1 Knapsack problem. In all these cases, the values of the objective functions
depend directly on the values of the matrix. Moreover, correlations between the
matrices result in a correlation between the respective objectives.

The discussion shows that it would be very helpful for analyzing the opti-
mization behavior of metaheuristics for MOOPs to have the following type of
methods for generating MOOP instances. Starting from a given real world single-
objective problem instance a method generates new MOOP instances such that:

1. the correlation between the objectives of a MOOP instance can be controlled
by the user and

2. some important properties of the single-objective problem instance also hold
for a newly generated MOOP instances.

In this paper such an instance generation method for MOOPSs where each objec-
tive is defined by a matrix is presented. In particular, the method generates new
matrices from a given matrix such that the following two properties hold: (i) the cor-
relation between the generated matrices (and the given matrix) can be controlled
by the user and (ii) the mean value and the variance of the values of each generated
matrix are equal to the corresponding values for the given matrix. Thus, the pre-
sented instance generation method is suitable to generate correlated cost matrices
for different MOOPs. The new method improves a method that we have presented
in [17] which can generate correlated matrices from a given matrix such that prop-
erty (i) is guaranteed (to a certain extend) whereas property (ii) does not hold.

In the following section related work is described. Our new instance genera-
tion method and its properties are described in Sect. 3. Experimental results for
the new instance generation method when applied to the TSP are presented in
Sect. 4. Conclusions are given in Sect. 5.
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2 Related Work

Two common approaches to generate instances of combinatorial MOOPs are to
generate (usually uniformly distributed) random cost matrices (e.g. [10]) and
to combine single-objective test instances of the same size (as done, e.g. in [9]
by combining instances of the TSPLIB [21]). The latter approach creates test
instances with a potentially larger practical relevance, but the number of gener-
atable instances is very limited. Both approaches are certainly a useful practice
but do not allow to control the correlation between the objectives. The creation
of correlated objective functions by using different linear combinations of two
random single objective functions using two parameters «, 5 € (—1,1) has been
suggested in [7,8] and applied to the multi-objective 0/1 Knapsack problem.
The practical relevance of this approach is limited due to the use of strict linear
(cor)relations. Related problems also occur in multi objectivization approaches
which try to avoid local optima by adding objectives to single objective problems
such that the global optimum is not affected. Typically subproblems are used
as additional objectives, e.g. [11] suggested to use the length of a sub-tour as
second objective for the TSP. Also for MOOPs subproblems could define large
sets of objectives, but the correlation can not be controlled easily.

The first problem instance generator for MOOPs with correlated objectives
was proposed for the multi-objective QAP with k flow matrices that define the
different objectives [2,13]. Entries of the flow matrices are defined by a (expo-
nential) function of a random variable. For the first matrix a uniformly random
variable X is used and for jth matrix, j € [2 : k|, some entries are generated
using a random variable X; that is correlated with X and the remaining with
an independent random variable X ]' The correlation and the random fraction of
the matrix is set with parameters. Several authors have used the QAP generator
to study the influence of correlation — mostly for bi-objective problems — on the
optimization behavior of metaheuristics and local search operators [4,14,20].

The generation of instances of the multi-objective TSP with correlated objec-
tives was covered by [12]. For each pair of cities (i, ) k distance values dp (4, j),
h € [2: k] were created with

dp(i,j) = - dp-1(i,j) + (1 — a) - rand (1)

where the values d; (4, j) are chosen uniformly at random from [0, 1], a € [—1, 1]
is a “correlation parameter”, and rand is a uniform random number from [0, 1].
Let us observe here, that (1) has the following potential problems: (i) since the
distance values can become > 1 for a < 0 even for distance values from [0, 1] for
the original matrix it might lead to an uneven influence of different objectives
on the behavior of metaheuristics, (ii) the distance values are randomized to a
different extent for o and —a.

All methods mentioned above generate problem instances that have an inho-
mogeneous correlation structure, i.e. different strengths of pairwise correlations
occur between the objectives. In the method of [2,13] each of the objectives
2 to k has a defined (possibly identical) correlation with the first objective.
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But the correlation between pairs of the objectives 2 to k might be different.
In the method from [12] each objective h, h € [2 : k] has a defined correlation
with objective h — 1. But there are many different pairwise correlations between
objectives i and j with |i—j| > 2. Also, for each of the problem instances created
by the methods of [7] different pairwise correlations occur.

A simple method to create multi-objective TSP test instances with a homoge-
neous correlation structure was presented in [17]. The method solves some of the
possible disadvantages of [12] by using the following equation that differentiates
between the cases of positive and negative correlation:

dn(i, ) = a -d(i,7) +(1— a)-rand for 0<a<1 @)
BTV Z\ al - (1= d(6, §) +(1 = |a]) - rand for —1 < a < 0.

The authors suggested to use normalized real world instances for the original
matrix, e.g. from the TSPLIB. The homogeneity is achieved by creating all k
objectives on the same original distance matrix which is then discarded. It was
shown that the Pearson correlation coefficient of the pairs of matrices depends
on the parameter o and the variance of the original distance matrix.

A method to design MOOP instances where the correlation between the
objectives is defined by a correlation matrix has been presented in [23]. In par-
ticular, NK-landscapes have been investigated, but according to [23] the method
can also be applied more generally to other MOOPs. For their empirical inves-
tigations the same correlation strength was used for each pair of objectives.

A topic that is related to the generation of MOOP instances is the generation
of test instances for dynamic optimization problems. These problems are often
single-objective problems, but the objective function changes over time. Here
it is interesting to study how the strength of the modification of the objective
function, e.g. measured by the correlation between the new function and the old
function, influences the optimization behavior of metaheuristics. For the dynamic
TSP it has been suggested to create the dynamics by renaming a subset of the
cities [15]. The size of the renamed subset influences the extent of the change.

3 Method

In the following we present our method to generate a multi-objective TSP
instance from a given distance matrix such that the generated distance matrices
are expected to (i) correlated to each other (and to the original matrix) in a
user defined way and (ii) have the similar statistical properties as the original
matrix, in particular, they have the same expected mean value and variance.

From now, we consider only distance matrices D = (d;;) that are symmetric,
i.e.d;j = d;; and where all diagonal values are zero, i.e. d;; = 0,for,j € [1: n]. Let
D be such a distance matrix. Then, d = 2/(n? —n) ZKJ- d;; is the mean value of all
elements in the upper triangular submatrix and s = 2/(n? —n—1) > iy (dij— d)?
is the sample variance of all elements in the upper triangular submatrix.
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The instance generation method uses matrix D to create k symmetric dis-
tance matrices Dy, ..., Dy that define the k objectives of a multi-objective TSP
instance. Using the parameters ¢ € [1 : k] and a € [0,1] to determine the cor-
relation structure the method creates a set of distance matrices {D,..., Dy}
such that each matrix D; with ¢ € [1 : ¢] is positively correlated with D and
each matrix in D; with ¢ € [¢ + 1 : k| is negatively correlated with D. For
Dt €{Dy,...,Dy,} or D~ € {Dgy41,..., Dy} the method works as follows:

Step 1: Two random symmetric distance matrices R; and Rg are created by
randomly sampling with uniform probability and with replacement from
the elements within D. In order to create a symmetric matrix with
all diagonal values being zero only values in the corresponding upper
triangular matrices are considered and the values in the other half are
set accordingly.

Step 2: Matrix DV (respectively D7) is created by:

Dt =a D+ (1 —-a)Ry + /2a(1 — a)(Ry — d) (3)

D™ = a(2d — D) + (1 — )Ry + v/2a(1 — a)(R2 — d). (4)
Note that different randomized matrices R, R need to be used for each D;,
iel:kl.

Similar to the methods proposed in [12,17], see also (1) and (2), the first (resp.
second) summand in (3) and (4) represent the non-random influence (resp. the
random influence) which is controlled by . The main differences are (i) that the
random influence by R; is realized via sampling from D (which has the effect
that the mean is preserved) and (ii) that a third summand is added (which has
the effect that the variance is preserved). Furthermore, the mean d of D is used
for determining the influencing of the non-random component in (4).

Observe, that the newly generated matrices can contain negative distance
values. Therefore, we propose to add the absolute value of the smallest negative
value that is contained in the generated matrices (let this value be dyun) to
all (nondiagonal) values in all distance matrices. Adding d,,;, does not change
the correlation and variance and it increases the mean value for all matrices by
exactly dn- Hence after such an operation, all matrices are still expected to
share the same variance and mean value. In case zero values are undesired a
larger constant value can be added, e.g. the sum d,,;, and the minimum of the
original matrix which would yield a matrix with the same minimum.

For the following theoretical results we specify the method in terms of ran-
dom variables. Analogous to the creation of the matrices a set of random variables
{Xi,..., Xk} can be created such that each Xt € {Xy,..., X,} is positively cor-
related with X and each X~ € {X,11,..., Xx} is negatively correlated with X.
For a given random variable X and independent random variables 77, Z5 that have
the same distribution as X we define

Xt =q X+ (1-a)Z1+2a(l —a)(Zz — E[X]) (5)
X" =aREX]-X)+(1-a)Z1 +2a(1 — a)(Z> — E[X]). (6)
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The relation to our method is as follows. The distance values in the upper tri-
angular submatrix of D can be considered to represent the distribution of a
random variable X with E[X] = d and V[X] = s. By sampling R; and Ry
from D with replacement the corresponding random variables Z;, Z are inde-
pendent to X and from the same distribution as X. Correlation between two
random variables X and Y is measured in this paper by the correlation coeffi-
cient p(X,Y) = o(X,Y)//V[X]|V[Y] where 0(X,Y) = E[XY] — E[X]E[Y] is
the covariance. The following theorem shows how X+ and X~ are related to X.

Theorem 1. For random variables X and X~ as given in (5) and (6), respec-
tively, it holds that: (i) B[X] = E[XT] = E[X ], (i) V[X]|=V[XT]=V[X7],
and (i) p( X+, X) =a and p(X—, X) = —a.

Proof. By definition E[Z;] = E[X] and V[Z;] = V[X], i € {1,2}. Due to space
limitations the proof is shown only for p(X™, X). For ease of readability set
B = /2a(l — a). Since Z1, Z, and X are independent random variables it
holds that

E[XX~] - E[X]E[X~] E[XX"]- E[X]?

p(X,Xi) - V[X]V[X_} - E[XQ] — E[X]Q
_ E[X (aEX] - X)+ (1 - )21 + B(Z2 — E[X]))] — E[X]?
X? _EX]?
_ a(2E[X)? - E[X?)) + (1 — a)E[X]? — E[X]? o
E[X?] - E[X]? ’

The theorem shows that the generated distance matrices are expected to
(i) maintain basic characteristics (mean and variance) of a specific initial single
objective benchmark instance and (ii) have all the same strength of correla-
tion (potentially with different sign) to the given matrix. Mean and variance
of a distance matrix are certainly not the only properties that characterize a
TSP instance, however, they are basic properties that are well defined, easily
computable, and (potentially) have a strong influence on the behavior of opti-
mization algorithms. The correlation between the generated matrices is covered
by the following theorem.

Theorem 2. For random wvariables X+, YT and X~,Y ™~ that are gener-
ated according to (5) and (6), respectively, it holds that: (i) p(X+T, Y1) =
pX~Y ") =0 and (ii) p(X T, X ) = p(X~, XT) = —a”.

Proof. Note, that for each random variable different random variables Z;, i €
N* are used. These do not appear explicitly in the proof since E[Z;] = E[X].
Because E[Z; — E[X]] = 0 we omit all terms involving the last summands of (5) and
(6), respectively. For readability we abbreviate 2E[X] — X with X. Due to space
limitations cases p(X+,Y ™) and p(X*,Y ™) are omitted. The following holds
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EX*X"]-BX"EX"] _ EX'X"]-E[X]

T x) =
p(XT,X7) = VIXHV[X ] E[X?] — E[X]?
_ a?E[XX]+a(l — a)EX|(E[X] + E[X]) + (1 — a)*E[X]? — B[X]?
- E[X?] - E[X]?
_ &?(2E[X]? — E[X?]) + 2a(1 — o)E[X]? + (1 — a)’E[X]? — E[X]?
B E[X?] - E[X]?
_PEXP-EX) .
E[X?] - E[X]? '

The theorem shows that for the partition {X1,..., X} and {Xg41,..., Xi}
it holds that two random variables from the same set are positively correlated and
two random variables from different sets are negatively correlated. By choosing
q = k the special case of homogeneous correlations, which was advocated in [17],
is covered. Clearly, also the iterated application of the procedure as suggested
in [12] is possible. The corresponding correlations are as follows.

Theorem 3. Let X0 := X and X% be the result of applying (5) on X i1,
Then p(X, X %) = o' holds.

Proof. Theorem 1 implies F[X ] = E[X] and V[X ] = V[X]. We set 7; =
(1 —a)Zsi—1 4+ v/2a(1 — a)(Zy; — E[X]). Then

E[XXi| — E[X]E[X{] E[XX]— E[X]?

P = VIX[VIX]  B[X-EXP
E[X (af...a(aX + ) +viz1) ... +71)] — E[X]Z
o E[X?] — E[X]?
E [X(o/X 30, a’“—lvk)} - E[X]?
- E[X?] — E[X]2
_ AB[XY+ E[X ¥, oF ] - E[X]?
N E[X?] — E[X]?
_ Q'E[X?] + 3, o E[X ) - BIX]?
- E[X?] - E[X]?
_ Q'E[XY 4+ 3, 0 (1 - ) B[X Zap] — E[X]?
E[X?] — E[X]?
_ o'E[X?+ (1-a)E[X]? - E[X]?
- E[X?] — E[X]?
_ 'E[X?| - o'BX]?
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Theorem 3 also holds analogously if (6) is applied in some or all recursive steps
(instead of (5)), however, with a sign switch for each such step.
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Fig. 1. Violin plot and boxplot of the distance values of six TSPLIB instances (top
row) and of the distance matrices that are generated with the new method from these
instances with different o € {0.1,0.5,0.9} using (3) and (4), the latter indicated by
negative values of a.

4 Empirical Analysis

To visualize and complement our theoretical results we performed a series of
experiments. For the experiments we used all 85 benchmark instances from the
TSPLIB that have at most 7400 cities. A more detailed analysis has been done
for the following six of these instances which have been chosen to represent
different types of distributions of the distance values that can be found within
the instances in the TSPLIB (see topmost row in Fig. 1):

(i) Instances gr202 and a280 represent a negatively skewed distance distribu-
tion. For gr202 the number of city pairs decreases almost linearly with an
increasing distances, whereas, for a280 this relation is more irregular.

(ii) Instance ch150 represents a distance distribution with a single peak that is
similar to a normal distribution (it is only slightly negatively skewed).

(iii) Instances prl52, tsp225, and pr264 represent distance distributions that
have more than one pronounced peak. Instance pr264 and prl152 have a
non-symmetric distribution with two, respectively three, peaks of different
height. Instance tsp225 has two peaks but is more symmetrical and the
peaks are less pronounced.
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Fig. 2. Distribution of relative mean value (top) and relative standard deviation (mid-
dle) of generated matrix with respect to the corresponding value of the original TSPLIB
instance over all 85 test instances; also shown is the distribution of the correlation
between the generated matrix with the original TSPLIB instance divided by « (bot-
tom for all 85 test instances; shown are the results for the new method; shown are the
values for positively (left column) and negatively (right column); a € {0.1,0.5,0.9}.

Note that for the results that involve a comparison with the results of the meth-
ods of [12,17], i.e. (1) and (2), the distance matrices have been normalized.

The result of applying the instance generation method on the selected 85
TSPLIB instances is shown in Fig.2. For each of the TSPLIB instances and
combinations of a € {0.1,0.5,0.9} and ¢ € {0,1} one new matrix was gener-
ated, i.e. kK = 1. The shown distributions of the relative mean values and the
relative standard deviations shows that the generated matrices have (with small
random fluctuations) the same mean value and the same standard deviation as
the corresponding original TSPLIB instances. Note, that the scale of the hori-
zontal axis is logarithmic to base 2 such that 0 corresponds to the fact that the
values of the new matrix and the old matrix are equal. The figure also shows
that the correlation between the new matrix and the original TSPLIB matrix
equals a (with minor random influence). This confirms our theoretical results
for the mean, variance, and correlation.

Figure 3 shows the corresponding results when the method of [17], i.e. (2) is
applied. The results show a potential disadvantage of this method. The distribu-
tion of the distance values in the matrices that is generated with this method is
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Fig. 3. Distribution of relative mean value (top) and relative standard deviation (mid-
dle) relative correlation (bottom) for the 85 test instances from the TSPLIB; shown
are the results for the method of [12]; see caption of Fig. 2.

very different compared to the distribution of the values of the original matrices.
Their mean values for smaller o approach 0.5 which is the expected value of the
random part from (2). Thus, the lower the correlation parameter « is set, the
higher the similarity of the resulting distribution to a uniform distribution from
0 to 1. Since most TSPLIB instances have a normalized mean below 0.5 this
behavior results in an increase of the mean value for positive correlations and a
decrease for negative correlations.

Equation (2) has a notable influence on the standard deviation of the dis-
tances in the generated matrices which depends on the values chosen for a. The
standard deviation is on average lower for o € {0.5,0.9} and higher for o = 0.1
compared to the original TSPLIB matrix. Moreover, the resulting correlations
are virtually never equal to o and they vary strongly, in particular for smaller c.
This has been predicted by [17] where it was shown that the observed correlation
depends on the variance of the original TSPLIB instance.

As shown, our instance generation method is able to maintain the mean value
and variance of the distance distribution of the original matrix. But clearly, other
statistical measures might not be preserved by the method. For instance, the
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Fig. 4. Correlation p(i,j) between all pairs of rows ¢ and j of six TSPLIB distance
matrices ; black: p = 1, white: p = —1.

median value of the distance distribution might change in the newly generated
matrices. This is illustrated in the boxplots in Fig. 1 and can be seen in particular
for the asymmetrically clustered instance pr264. With correlation values closer
to zero, bulges in the distribution are flattened out. Obviously, this is an effect
of the increased random influence on the values in the newly generated matrices.
Note, that our instance generation method produces negative distance values,
particularly for negative correlations. Since negative distance or cost values could
be unrealistic (or impossible) in some application we suggest to deal with them
in such cases by a post processing step as described in Sect. 3.

In the following we consider the correlations between the different rows of
the distance matrix. More exactly, for an n x n matrix M = [m,;] the correlation
between rows i and j - denoted by p(i,7) - is computed over all pairs of values
(min, mjp) for all b € [1: n]\{¢, j}. Note, that the values in row ¢ of the distance
matrix are the distances from city 7 to all other cities. Hence, for a Euclidean TSP
instance two cities which are very close to each other have similar distances to all
other cities and thus have a high positive correlation between their corresponding
rows in the distance matrix. Figure4 shows the correlations p(i,j) for all pairs
of rows i and j for each of the six test matrices. Off course, care has to be taken
when interpreting the figure because a renumbering of the cities would lead to a
reordering of the rows and columns. However, the different characteristics of the
six TSPLIB instances can be seen. Instances tsp225, pr264, and prl52 show a
clustering of the cities into two (tsp225, pr264) or three (pr152) clusters. Instance
gr202 (and to a much lesser extend also instance a280) shows a gradient away
from the antidiagonal from positive to negative correlations. Only instance ch150
does not show a clear structure within the correlation plot.
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Fig. 5. Correlation p(i, j) for all pairs of rows ¢ and j: gr202 (left) and matrices gener-
ated from gr202 (middle: a = 0.9, right: @ = 0.7); black: p = 1, white: p = —1.

ch150 2500 £5p225 o [
600 2000+ 0.20.40.60.81.0
400 1500~
1000-
200 5001
0 0
8007 pr152 4000+ pr264
600 3000-
400 2000-
200 1000-
0 0-
1500+ 81202 3000. 2280
1000 2000-
500 1000-

—-1.0-0.8-0.6-0.4-0.2 0.0 02 04 0.6 08 1.0 -1.0-0.8-0.6-0.4-0.2 0.0 02 04 0.6 0.8 1.0

Fig. 6. Distribution of correlations p(i,j) between each two rows ¢ and j of matrices
generated with o € {0.2,0.4,0.6,0.8,1.0} for six instances of the TSPLIB; a = 1.0
corresponds to the original TSPLIB instance.

In Fig.5 the correlations between rows in the original TSPLIB matrix and
the matrices generated with a € {0.7,0.9} are shown for gr202. Only results
for positively correlated matrices are shown because the results for negative
correlation are similar. The general structure of the original matrix is still visible
in the generated matrices. Clearly, the random influence introduces considerable
noise and reduces the correlation between the rows. This effect is stronger for
smaller a.

Indeed, in Fig.6 it can be seen that the row correlations approach zero for
increased random influence, i.e. smaller a. For 0 < a < 1 the distribution of the
row correlations is a mixture of the original TSPLIB instance distribution and
the distribution of correlation coefficients of a random sample with correlation
zero. The latter distribution was described by Fisher in [3].

Our instance generation method can also provide problem instances where the
objectives exhibit different correlations. This can be achieved, for example, by a
recursive application of the method. Clearly, each recursive application decreases
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the correlation to the original matrix. Other instance generation methods also pro-
vide such an option [12,17]. However, a potential disadvantage of these methods is
that they change the mean and standard deviation of the generated matrices and
therefore important characteristics of the corresponding optimization problems.
This effect becomes stronger the more iterations are applied, such that the derived
matrices are very different from the original benchmark matrices. This is shown in
Fig. 7 where all three methods (i.e. the method from [12] using (1), the method
from [17] using (2), and the newly proposed method using (3) and (4)) are com-
pared. It can be seen that for the methods from [12,17] the mean value approaches
0.5 and either increases the standard deviation vastly [12] or reduces it [17]. When
we compare the results for positive and negative correlations the compared meth-
ods behave asymmetrically. In contrast our method maintains the mean value and
standard deviation of the original matrix for positively as well as for negatively for
correlated matrices (up to small random influences).

5 Conclusion

We have proposed a new method to generate multi-objective optimization prob-
lem instances from a corresponding single-objective instance. The method pro-
vides the option to choose specific correlations between the objectives, while
maintaining important characteristics of the original single-objective instance.
In particular, the proposed method can be applied to optimization problems
were the objective is defined by a matrix. Examples are the Traveling Salesper-
son problem (TSP) which uses a distance matrix and the Quadratic Assignment
problem which uses a flow matrix. It was shown that the new method provides
the option to choose specific correlations between the generated objectives, while
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maintaining the mean value and variance of the given single-objective problem
instance. This is not guaranteed by existing instance generation methods that
have been proposed in the literature. However, maintaining mean value and
variance can be important since these characteristics been shown to be of great
influence on the difficulty of TSP instances [22]. Our method was analyzed the-
oretically and it was experimentally compared for the TSP to other instance
generation methods from the literature.

It should be noted the application of the proposed instance generation
method to problems other than the TSP but where each objective is controlled by
a matrix, e.g. the QAP and the multi objective 0/1 Knapsack problem, requires
some minor problem specific modifications. For example, the independent gen-
eration of both triangular matrices for the flow matrices of the QAP and the
generation of all element of the profit matrices of the Knapsack problem.
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Abstract. Real-World problems usually consist of several different
small sub-problems interacting with each other. These interactions pro-
mote a relation of interdependence, where the quality of a solution to one
sub-problem influences the quality of another partial solution. The Trav-
eling Thief Problem (TTP) is a recent benchmark that results from the
combination of the Traveling Salesman Problem (TSP) and the Knap-
sack Problem (KP). Thus far, existing approaches solve the TTP by fix-
ing one of the components, usually the TSP, and then tackling the KP.
We follow in a different direction and propose an Evolutionary Algorithm
that addresses both sub-problems at the same time. Experimental results
show that solving the TTP as whole creates conditions for discovering
solutions with enhanced quality, and that fixing one of the components
might compromise the overall results.

Keywords: Evolutionary algorithms - Combinatorial problems + Trav-
eling thief problem

1 Introduction

Heuristic problem solving, e.g., based on Evolutionary Algorithms (EA), is a
successful approach for solving problems for which an analytical solution does
not exist, or, when it does, it is computationally intractable. To assess the perfor-
mance of heuristic-based EAs, researchers usually rely on benchmark problems
combined with a sound statistical analysis. Choosing good benchmarks is thus
critical, and, over time, discussing which ones should be used has gained rele-
vance in the EA community [13].

Many real world problems comprise a non-linear combination of several sub-
problems. The existing interactions between partial solutions impact the quality
of the global solution, thus complicating the task of optimization algorithms.
Unfortunately, benchmarks adopted by EA researchers tend to ignore this ques-
tion and the impact of non-linear interactions between problem components is
usually outside the discussion of algorithmic effectiveness. The Traveling Thief
Problem (TTP) is a recent benchmark [2] that considers the interdependence
© Springer International Publishing Switzerland 2016
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between two well known problems: the Traveling Salesman Problem (TSP) and
the Knapsack Problem (KP). The underlying idea behind the TTP is to maxi-
mize the profit of a thief that is traveling through a certain number cities stealing
items. The thief uses a knapsack with a limited capacity and pays a rent for it,
that depends on the time needed to visit all the cities. The interdependence of
the TTP emerges from the fact that the speed of the thief depends (non-linearly)
on the weight of the items picked so far.

There are a few heuristic approaches to tackle the TTP [3,5,11]. However,
most of them seek for solutions by fixing one of the components, while solving
the other. The typical approach is to initially set the shortest TSP route for the
cities comprising the problem and then solve the remaining KP component. By
doing this, a bias towards solutions with small tour lengths is clearly created.
Also, it is not guaranteed that the best solutions for the TTP can be found, as
large portions of the search space are ignored. The interactions between the two
sub-problems ensue that there is a tradeoff between the distance the thief travels
and the value that he is able to gather. Since the weights of the items affect the
speed of the thief, it is likely that the thief should sometimes slightly increase
the tour length, providing that is allows him to pick an heavy, but valuable, item
near the end of the tour.

In this paper we present an evolutionary unbiased approach for the TTP, that
seeks for complete solutions by simultaneously considering the two sub-problems
and the existing interdependence between them. In concrete we rely on an EA
where each individual has a tour and a packing plan (items that should be picked
at each city). The variation operators modify both components, and a packing
heuristic helps creating good packing plans for each individual. The performance
of the approach is tested in some TTP benchmarks instances proposed in [11].
Experimental results confirm that it is important to simultaneously take into
account both components of the problem.

The remainder of the paper is organized as follows: in Sect. 2 we describe the
TTP, whereas Sect. 3 reviews some recent approaches to solve the this problem.
Section 4 details our approach to the problem. In Sect. 5 we present and detail the
experimental results obtained. Finally, in Sect. 6 we gather the main conclusions
and point towards future work.

2 The Traveling Thief Problem

The TTP is a recent benchmark that was created to mimic the interdependence
between problems that occur in real-world applications [2]. It is defined as fol-
lows: consider a set of cities N = 1,...,n and a set of items M =1, ..., m, which
are distributed among the cities. The distance d;;, with i, j € N is known. Each
city i, except the first one, has a subset of items M; = 1,...,m;. Each item k
placed in the city 4 is described by its profit p;; and weight w;. The thief departs
from the first city, visits each city exactly once, and returns to the starting point.
Any item may be collected at any city, as long as the total weight of the items
in the knapsack do not exceed its capacity W. Additionally the thief has to pay
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a rent R for the use of the knapsack for each time unit. When the thief does not
have any item in the knapsack it can travel at maximum speed, Uy,q., Whilst
when the knapsack is full it travels at a minimum speed v,,,;,,. The goal is to find
a tour and a packing plan that results in the maximum profit for the thief. Let
y;k be a binary variable that is 1 if the item k is picked at city ¢. The objective
function for a given tour IT = (x1,...2,,21),2; € N and a given packing plan

P = (y217 '~-7ynm,i) iS:

n—1
d
R donz, _ TEilidl
; ;plkylk (Umam —vW,, * ; Umaz — VWz)
- (1)
n  m;
s.t. Zzwikyik <Ww

i=1 k=1

where v = Ymerzomin -and W, is the total weight of collected items that the
thief has at city 7. The first term of the equation represents the total profit of
all picked items, whilst the second term is the total cost of the thief’s trip.

Consider the example with 4 cities and corresponding distances depicted
in Fig. 1, which was adapted from [11]. Every city, with the exception of the
first one, has a set of available items that the thief might choose to pack. As
an example, city 2 was two items: Isy : {profitsy = 20,weights; = 2} and
Iss : {profitas = 30,weightes = 3}. Specifying that the renting rate R = 1,
Umaz = 1, Umin = 0.1, and that the maximum capacity of the of the sack is
W = 3 completely defines the instance.

A possible solution for this instances defines a tour IT : (1,2,4,3,1) and a
packing plan P : (121 = 0,]22 = 0,]31 = 0,[32 = 1,[33 = 1,]41 = 0) In this
solution, the thief starts in city 1 and moves to cities 2 and 4 without any items.
It then moves to city 3, and, at this moment, the cost of the solution is 15
(5+6-+4). In city 3, the thief picks up the items Iso and I33, which gives a total
profit of 80. When returning to city 1 to complete the tour, the knapsack has a
weight of 2, thus reducing the velocity of the thief, corresponding to a traveling
cost of 15. All in all, the final fitness value is Z(II, P) = 80 — 15 — 15 = 50.

3 Review of the Literature

The TTP problem is a benchmark to study the interdependence between dif-
ferent sub-problems and it was proposed by Bonyadi et al. in [2]. In concrete,
the TTP results from the combination of the TSP and KP. The authors propose
a method to create instances of the TTP, so that researchers can compare the
results of different approaches. Additionally, the work shows a simple experiment,
which studies how the two problems are connected. In concrete they created a
simple instance of the TTP, and separately solved the TSP and KP parts to
optimality. Then the best solutions found for each sub-problem are combined,
and it is shown that this combination does not correspond to the best solution
for the TTP.
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Fig. 1. Example of a TTP instance with 4 cities and 6 items. Adapted from [11]

Later, Polyakovskiy et al. in [11] proposes an ensemble of benchmark
instances and heuristic methods to tackle the TTP problem. Regarding the
instances, they considered the TSPLIB! [12] dataset as a starting point. For
the KP part of the TTP they created several sets of items following the rec-
ommendations of [8]. To generate the TTP instances they considered different
combinations of the TSPLIB instances with the KP dataset?. Although the cre-
ation of a comprehensive dataset was the main goal of the work, it also suggests
some simple heuristics to solve the TTP problem. Although the heuristics con-
sider the two sub-problems independently. Firstly they solve the TSP problem
to obtain a good tour, disregarding the KP part of the problem. Once a good
tour is found, it is kept fixed for the remaining part of the optimization. Then
a local search algorithm is used to create a packing plan that achieves a good
objective value for the TTP. This work was extended by Faulkner et al. [5] and
a set of new heuristics were proposed. However the underlying idea is the same:
find a good solution for one of the components and then fix it. Although, fixing
one of the components of the TTP and neglecting the dependence that exist
between the two sub-problems, might prevent the discovery of best solution for
the problem.

The work of Mei et al. [9] focus on solving large TTP instances with low
resource consuming heuristics. They analyze the computational complexity of
several different algorithms, and propose a new two-stage local search procedure
to create packing plans. The main idea of the algorithm is to first prioritize the
insertion of items. Then, as more items are added they check how the addition
of a item worsen the thief’s speed. They compute some thresholds to decide
whether it is worth to add item or not. They incorporate the proposed heuristic
into a memetic algorithm, where several initial tour solutions are generated and
optimized by the Lin-Kerninghan heuristic (LK) [1]. The algorithm iteratively
combines the different solutions to create new packing plans. The approach was

! http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95//.
2 The TTP instances are available at:
http://cs.adelaide.edu.au/~optlog/ CEC2014COMP _InstancesNew/.
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applied to different instances of the TTP, and they show that it was able to
outperform previous heuristics when used to solve large instances.

The work presented in [3] puts forward two methods to solve the TTP prob-
lem. The first is called Density-based Heuristic (DH). The DH starts by using the
LK heuristic to create a tour as short as possible for the TSP. Then it computes
the profit that the thief would get if only one item was picked, after completing
the tour. They do this for all available items. After it iteratively adds the items
to the packing plan. An item is only packed if it does not worsen the overall
profit of the TTP.

The second method attempts to solve the TTP by decomposing it in two sub-
problems and trying two solve them in parallel. Each component communicates
with each other, and from time to time the algorithm tries to combine the
solutions of the sub-problems to create an overall approximated solution for
the TTP.

4 Evolutionary Approach

The approaches presented in the previous section are the state-of-art for the
TTP problem. Despite their relative success there is margin for progress, mostly
because they fix one of the TTP’s sub-problems. Our approach tries to overcome
this by tackling both sub-problems at the same time. For each new tour generated
by the optimization algorithm, the packing plan is rearranged.

Our proposal relies on an Evolutionary Algorithm (EA) to search for good
solutions for the TTP. The underlying idea behind EA is the simulation of evo-
lution by natural selection of a population of artificial individuals via application
of selection, variation operators, and reproduction. These components are guided
by a fitness function that evaluates each individual, measuring the quality of the
solution it represents. In our approach each individual is composed by a tour
and by a packing plan. The tour is a permutation of integers that represents the
order in which each city should be visited by the thief. Note that each tour starts
and ends in the first city of the instance (city 0). The packing plan is a binary
string, that indicates if an item should be picked at a certain city. Fig. 2 shows
a simple example of a solution for a TTP instance with 5 cities and 2 items per
city.

The EA starts by randomly generating a population of tours for the TTP.
Then, for each generated tour, we rely on the packing heuristic described in
[11] to create a valid packing plan for the specific tour of the individual. The

Tour 0 1 4 2 3 0

Packing Plan

Fig. 2. Example of an EA individual for a TTP instance with 5 cities and 2 items per
city
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heuristic calculates a score that estimates how profitable an item is, according
to a certain tour. Consider that an item I, can be picked at a city z;, and that
dy, and i, are the total traveling distance and the total traveling time with
I, being carried until the end of the tour, respectively. The score of each item
is computed has follows:

scoreyk = Pak — R*tyk (2)

where p
oy = —— (3)
Umax — VWg,k

The score,,), is the total profit that the thief would obtain if only the item
I, is picked during the whole tour. Using this we iteratively select the items
that have the highest score. We stop when there are no more items to add, or
the knapsack is full. Then each solution is evaluated using the objective function
defined by in Eq. 1.

After being evaluated, each solution is improved by a straightforward local
search procedure (Algorithm 1), which tries to refine the packing plan over a
limited number of iterations. In this procedure we randomly select an item in
the current plan and flip its status: if the item is in the knapsack it is removed,
else it is added. If this flip results in a better solution to the problem, we keep
the new packing plan, else, it is discard. We repeat this until an improvement is
found or the maximum number of flips is reached.

Tournament selection chooses the individuals that undergo reproduction. We
rely on two variation operators to create new solutions, by modifying existing
ones. The first is an adaptation of the Partially Mapped Crossover (PMX) [6].
The second is the Inversion mutation operator for permutations [4]. The recombi-
nation operator creates offspring by exchanging the information about the tours
as well as the items that the thief picked at each city. When switching cities in
the tour, the operators also move the items that were picked at that city (Fig. 3).

Lo T + T 4T 2 T 8 T 0 | mytation 0 [ 8 [ 2 [ 4 T 1 [ 0
[oJof1TofofJol1T1] - [1T1foJof1Jofofo]
41 H2 lar a2 a1l T3y 32 I31 g2 lo1 lp la1 lao W1 h2

Fig. 3. Example of the application of the mutation operation

It is known that the PMX operator alone is not particularly effective, partially
because it does not transmit common edges between the parents to the offspring.
However using it together with inversion mutation yielded better results than
using, for instance, edge recombination. This is in accordance with the observa-
tions made by [7]: using inversion mutation (2-opt) in solutions that have been
already improved by other methods can result in poorer overall results than
using inversion mutation on worst solutions.

Having a new tour, the packing plan is corrected/improved to take into
account the new routes that the thief has to travel. We rely again on the packing
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heuristic described above to select the most promising items and/or to remove
the items that are in excess. Subsequently the new solutions are evaluated, and
the packing plan undergoes a new iteration of the local search. Algorithm 2
outlines the proposal described.

Algorithm 1. Local Search

function LOCALIMPROVEMENT (ind)
tempInd «— ind
10
while ¢ < MaximumLocalImprovementlterations do
posTolnvert «— randomlInteger(0,length(tempInd.packingPlan))
if tempInd.packingPlan]posTolnvert] = 1 then
tempInd.packing Plan[posTolnvert] «— 0
else
templInd.packingPlan[posTolnvert] — 1
end if
evaluate templnd using Eq. 1
if tempInd.Fitness > ind.Fitness then
ind «— tempInd
return ind
end if
end while
return ind
end function

5 Experiments

In this section we report the results attained by our approach, and compare
it with an implementation of the DH heuristic described in [3]. We conducted
the experimental study using instances with a number of cities ranging from
51 to 100. Each instance is composed by a group of cities, a set of items, the
maximum (V) and minimum (V) velocity at which the thief can travel,
the maximum capacity W of the knapsack, the renting ratio R, and the number
of items available per city. In the instances considered every city (except the
first) has the same number of items, which are either 1 or 3 items. For this study
we selected instances whose items have their profit strongly correlated to their
weight. The higher the correlation between weight and profit, the more time
consuming is the KP to solve [8,10].

The experimental parameters for the EA are described in Tablel. The
algorithm is composed by 100 individuals that are evolved for 2.5 * 10° func-
tion evaluations. Contrary to previous approaches to this problem, we use the
number of evaluations instead of time as stop criterion, as this simplifies the
reproducibility of results. We performed 30 independent runs of the EA on each
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Algorithm 2. Evolutionary Algorithm for the TTP

1: create population Pop randomly

2: evaluations «— 0

3: for all ind € Pop do

4 ind.PackingPlan «— packingHeuristic(ind.Tour)

5: evaluate ind using Eq. 1

6 ind «— localImprovement(ind)

7: end for

8: while evaluations < maximumNumber Evaluations do

9: Parents < parentSelection(Pop)

10: Of fspring «— AdaptedPM X (RecombinationRate, Parents)

11: Of fspring — InversionMutation(MutationRate, O f f spring)
12: for all ind € Of fspring do

13: ind.PackingPlan «— packingHeuristic(ind.Tour)

14: evaluate ind using Eq. 1

15: ind «— localImprovement(ind)

16: end for

17: Pop «— selectSurvivors(Pop, Of fspring)
18: end while

19: return best Solution discovered

instance considered in this study. We do not present a statistical analysis com-
paring the results of the EA and the DH heuristic, since for this second method
we only have access to the best solutions found.

5.1 Results

A summary of the optimization results is presented in Table 2. The first column
identifies the instance, with the number indicating how many cities the thief has
to visit (e.g., eil51 has 51 cities). The second column (Items per City) shows the

Table 1. Parameter Settings

Parameter Value

Runs 30

Population Size 100

Evaluations 2.5%10°

Parent Selection Tournament with size 5
Replacement Generational

Recombination Operator | Partially Mapped Crossover

Mutation Operator Inversion
Recombination Rate 0.9
Mutation Rate 0.1

Local Search Iterations | #cities * #items
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Table 2. Results obtained using the Evolutionary Approach proposed in this work and
the DH heuristic

Algorithms
Instance | Items Per City | DH EA
Best MBF

eil51 1 2591.95 | 4706.54 | 4088.90 (£ 309.95)

3 9163.66 | 10115.55 | 8247.07 (£ 1067.26)
eil76 1 4264.13 | 5506.92 | 4502.23 (+ 737.26)

3 10583.40 |12040.77 | 8871.19 (£ 1805.64)
kroA100 | 1 7095.97 | 6442.41 |4392.21 (£ 1035.68)

3 25923.00 | 22325.30 | 17989.43 (& 2757.97)

number of items that are available in each city. The remaining columns contain
the results obtained by the DH heuristics and by the EA proposed in this paper.
The outcomes of the EA include the fitness of the best solution found (column
Best) and the average and standard deviation of the best solutions found in the
30 runs (Mean Best Fitness - column MBF).

An overview of the results reveals that the EA is able to find promising solu-
tions and is competitive with existing state-of-the-art approaches for the TTP.
In concrete, it discovered clearly better solutions than DH in 4 of the selected
instances. For the two larger instances (kroA100 with 1 and 3 items), it found
solutions whose quality is not worse than 9% and 13 %, respectively. The diffi-
culties in the larger instances are not unexpected and are probably related to the
increasing size of the search space. The DH heuristic breaks the problems in two
independent components: it firstly finds an high quality tour and fixes it. Then it
tries to create the best packing plan that fits into that tour. By doing this, DH
narrows the search space to a region of solutions that are based on (near) opti-
mal tours. Although this simplifies the task of creating a packing plan, there is no
guarantee that the best solution for the compete problem is found. On the con-
trary, the EA is performing its search in the space of all possible TTP solutions.
Increasing the number of cities and /or the number of items results in larger search
spaces. Since the number of evaluations is kept fixed for all instances considered in
the study, it is likely that there is degradation in the performance of the algorithm,
since it does not have time to effectively sample the search space and discover the
region(s) where the promising solutions are.

The results from the last column of Table 2 show that the number of items avail-
able per city impact the variance of the results: for all considered instances, more
items lead to a higher standard deviation. This is another piece of evidence that
confirms the decreased performance of the EA when dealing with larger instances.

5.2 Solution Analysis

Our approach is based on the argument that solving one of the sub-problems
(namely the T'SP) and then solving the other provides compromises the quality
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of the global solution and prevents a meaningful exploration of the search space.
Results presented in the previous section revealed that solving the TTP as a
whole is advantageous and creates conditions for the discovery of enhanced solu-
tions. Here we analyse some features of the solutions discovered by the EA to
gain a better insight into the optimization behavior of this approach. Specifi-
cally, we are interested in comparing the tour that provides the best fitness for
the TTP, with the best tour for the corresponding TSP problem. If they are
different, it supports the claim that non-linear components of an optimization
problem should not be solved independently.

The comparison of the tours is performed as follows. We take the permutation
set that represent the best TSP tour for each instance and compute a set G
with the number of transitions. A transition is a tuple (z;, z;11), that indicates
a direct move from city z; to city x;41. The same procedure is followed to create
the set Gy with all transitions from the best tour found by the EA. Finally we
created a set G3 = G1NGo, containing all transitions that are shared between G4
and Gs. Table 3 present the percentage of transitions that are different between
the best TSP tour and the best TTP tour found by the EA. The results show
that the TTP tours tend to be substantially different from the TSP tours. The
percentage of different transitions ranges from 31.4% to 71.1%. Moreover, in
all cases but one, the difference exceeds 50 %. These values indicate that the
tours are substantially different, and that fixing the tour might compromise the
discovery of effective solutions for the TTP.

Table 4 compares the distances of the best TTP tours with the optimal dis-
tance of the TSP tour. The column TSP Optimal Distance represents the best
known solution for the TSP, whereas column TTP Distance represents the dis-
tance of the tour associated with the best TTP solution. A brief perusal show
that the T'TP tours are longer, suggesting that sometimes it is worth to delay the
pick of a valuable item that is in a particular city. This might result in slightly
longer tours, but in lower carrying cost.

The results presented in this section help to justify why it is important to
solve the TTP problem as a whole. Solving one of the sub-problems and then
solving the other compromises the interdependence between components, leading
to poorer global results. The study presented here is a first step towards a better

Table 3. Percentage of transitions that are different between the TSP best known tour
and the tour belonging to the best TTP solution found by the EA

Instance | Items Per City | #Different Edges (in %)
eil51 1 58.8
3 314
€il76 1 71.1
3 51.3
kroA100 | 1 69.0
3 52.0
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Table 4. Difference between the distance of the TSP tours and the TTP tours.

Instance | TSP Optimal Distance | Items Per City | TTP Distance | Absolute Difference (in %)
eil51 426 1 495 16.2
3 470 10.3
€il76 538 1 695 29.2
3 641 19.1
kroA100 | 21282 1 26691 25.4
3 24847 16.8

understanding of the non-linear interconnections occurring in the TTP. It still
has some limitations, as only a subset of instances were considered and the
analysis focuses just on the influence of relying in fixed TSP optimal tours.
A logical next step if to study the impact of fixing the set of items, while trying
to evolve a tour.

6 Conclusions and Future Work

In this paper we proposed an unbiased approach to the Traveling Thief Problem
(TTP). The TTP is a new benchmark that results form the combination of
two well-known problems, the Traveling Salesman Problem and the Knapsack
Problem. The benchmark is created in such a way that it promotes a relation of
interdependence between the two sub-problems. This means that the solution of
one sub-problem influences the quality of the solutions for the other sub-problem.
Based on this, solving one sub-problem alone, even to optimality, might result
in a inferior performance, when considering thew global optimization scenario.

Almost all of the existing approaches described in the literature solve the
TTP problem by fixing one of its sub-problems, thus creating a bias towards
some solutions. These approaches create a reasonably good TSP tour (most of
the times they use the optimal solution), fix it, and try to find the set of items
the give the maximum profit for that tour.

Our approach follows a different direction. We proposed an Evolutionary
Algorithm (EA) that solves the TTP as a whole. The EA evolves a population
of individual solutions, where each solution is a tour and a packing plan. During
the evolutionary process both components are modified, keeping the synergy
that exists between the sub-problems of the TTP. The results obtained confirm
the potential of the approach, as the EA was able to find good quality solutions
in most of the instances used. We also performed an analysis on the structure of
the best solutions found. Specifically, we compared the optimal TSP tours with
the tours proposed by the EA to the corresponding TTP problem and verified
that, in all but one case, they differ in more than 50 % of the transitions. This
is an important result for it shows that fixing one of the sub-problems might
compromise the discovery of global effective solutions.

More experiments are still needed to fully comprehend the relation between
the two problems. In the near future we will focus our efforts in understand-
ing how the distribution of items through the cities affects the quality of the
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results. Also, we intended to address the scalability issues, in order to solve larger
instances. Finally, we plan to develop alternative representations that create a
more symbiotic relationship between the two sub-problems.
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Abstract. In this paper we present the application of a recently
proposed, general, algorithm for combinatorial optimization to the
repetition-free longest common subsequence problem. The applied algo-
rithm, which is labelled CONSTRUCT, MERGE, SOLVE & ADAPT, gener-
ates sub-instances based on merging the solution components found in
randomly constructed solutions. These sub-instances are subsequently
solved by means of an exact solver. Moreover, the considered sub-
instances are dynamically changing due to adding new solution com-
ponents at each iteration, and removing existing solution components on
the basis of indicators about their usefulness. The results of applying this
algorithm to the repetition-free longest common subsequence problem
show that the algorithm generally outperforms competing approaches
from the literature. Moreover, they show that the algorithm is competi-
tive with CPLEX for small and medium size problem instances, whereas
it outperforms CPLEX for larger problem instances.

Keywords: Hybrid algorithm - Combining metaheuristics with ILP
solvers * Repetition-free longest common subsequence problem

1 Introduction

The problem that is often encountered when applying exact solvers to combina-
torial optimization problems is that they are not applicable to problem instances
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of realistic sizes. However, for smaller problem instances, exact solvers are often
surprisingly efficient. This is because the operations research community has
invested a lot of time, effort and expertise into the development of exact solvers.
Prime examples are general-purpose mathematical programming solvers such as
CPLEX and Gurobi. Therefore, recent research efforts have focused on ways in
which efficient exact solvers can be used within heuristic frameworks even in the
context of large problem instances. One of the most recent examples of these
research efforts is an algorithm labelled CONSTRUCT, MERGE, SOLVE & ADAPT
(CMSA) [1,2]. This algorithm works as follows. At each iteration, solutions to
the tackled problem instance are generated in a probabilistic way. The solution
components found in these solutions are then added to a sub-instance of the
original problem instance. Subsequently, an exact solver such as, for example,
CPLEX is used to solve the sub-instance to optimality. Moreover, the algorithm
is equipped with a mechanism for deleting seemingly useless solution components
from the sub-instance. This is done such that the sub-instance has a moderate
size and can be solved rather quickly to optimality.

In this work we apply the CMSA algorithm to the so-called repetition-free
longest common subsequence problem [3]. This problem, which is NP-hard, is
a special case of the well-known longest common subsequence problem. The
repetition-free longest common subsequence problem seems to be well-suited
for being solved with CMSA, because the standard integer linear programming
(ILP) model for the problem can only be solved to optimality in the context
of rather small problem instance. Both the number of variables and constraints
in this model (which is outlined later in Sect.2) are exponential in the input
parameters of the problem. The obtained results show that, indeed, the applica-
tion of CMSA obtains state-of-the-art results, especially in the context of large
problem instances.

The remaining part of the paper is organized as follows. In Sect. 2 we provide a
technical description of the repetition-free longest common subsequence problem.
Moreover, we describe the standard ILP model for this problem. Next, in Sect. 3,
the application of CMSA to the tackled problem is outlined. Finally, Sect.4
provides an extensive experimental evaluation and Sect. 5 offers a discussion and
an outlook to future work.

2 Repetition-Free Longest Common Subsequence
Problem

The longest common subsequence (LCS) problem is a string problem with
numerous applications, for example, in computational biology [4-6]. A prob-
lem instance (S, X) consists of a set S = {s1, $2,...,5,} of n input strings over
a finite alphabet Y. The goal consists in finding the longest possible subsequence
of all strings in S. A string ¢ is a subsequence of a string s, if ¢ can be produced
from s by deleting zero or more characters. For example, dga can be produced
from adagtta by deleting the first two occurrences of letter ¢ and the two occur-
rences of letter ¢. Apart from applications in computational biology, the LCS
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problem finds applications, for example, in data compression and file compari-
son [7,8]. Moreover, note that the LCS problem was shown to be NP-hard [9]
for an arbitrary number n of input strings.

In this work we consider a restricted version of the LCS problem, the so-called
repetition-free longest common subsequence (RFLCS) problem. Given exactly
two input strings « and y over a finite alphabet X', the goal is to find a longest
common subsequence with the additional restriction that no letter may appear
more than once. This problem was introduced in [3] as a comparison measure
for two sequences of biological origin. In the same paper, the authors proposed
three heuristics for solving this problem. Other algorithms from the literature
for solving the RFLCS problem include a Beam-ACO approach [10] and an
evolutionary algorithm [11]. Among these techniques, the Beam-ACO approach
can be regarded as the current state-of-the-art method.

The RFLCS problem can be stated in terms of an integer linear program
(ILP) in the following way. First, let us denote the length of = by I, and the
length of y by l,. Furthermore, the positions in  and y are numbered from 1
to Iy, respectively from 1 to l,. The letter at position ¢ of x is denoted by x[i],
and the letter at position j of y is denoted by y[j]. The set Z of binary variables
that is required for the ILP model is composed as follows. For each combination
ofi =1,...,l; and j = 1,...,1, such that z[i] = y[j], set Z contains a binary
variable z; ;. Moreover, we say that two variables z; ; and zi,; are in conflict, if
and only if either ¢ < k and j > [ or ¢ > k and j < [. Finally, for each letter
a € X, set Z, C Z contains all variables z; ; such that z[i] = y[j] = a. The
RFLCS problem can then be rephrased as the problem of selecting a maximal
number of non-conflicting variables from Z provided that, among all variables
representing a letter a € X', at most one variable is chosen. Given these notations,
the ILP is stated as follows.

max Z Zij (1)
zi €L
subject to:
Z 215 <1 foraecX (2)
2i,j€Zq
zij+2zpy <1 forall z; ; and 2z, being in conflict (3)
Zi5 € {O, 1} for Zij € Z (4)

Hereby, constraints (2) ensure that each letter from the alphabet is chosen at
most once, and constraints (3) ensure that selected variables are not in conflict.

3 Application of CMSA to the RFLCS Problem

The application of CMSA to the RFLCS problem is pseudo-coded in Algorithm 1.
Note that, in the context of this algorithm, solutions to the problem and sub-
instances are both subsets of the complete set Z of variables. If a solution S
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Algorithm 1. CMSA for the RFLCS problem

: input: strings z and y over alphabet Y, values for parameters n, and age
Sbst := NULL, Zgup := 0
agelz;,;] == 0 for all z; ; € Z
while CPU time limit not reached do
fori=1,...,n, do
S := ProbabilisticSolutionConstruction(Z)
for all Zij € S and Zi,j §é Zsub, do
agelz;,;] :==0
Zsub = Zsub U {Zz,]}
10: end for
11:  end for
12:  Sipe := ApplylLPSolver(Zgub)
13: if |S£,pt| > |Sbsf| then Spyr := Sc,)pt
14:  Adapt(Zsub, Sopt, 28Cmax)
15: end while
16: output: Shsr

max

©

contains a variable z; ;, this means that this variable must be given value one in
order to produce the corresponding solution. The main loop of CMSA is executed
while the CPU time limit is not reached. It consists of the following actions. First,
the best-so-far solution Spgs is initialized to NULL, and the restricted problem
instance (Zsup) to the empty set. Then, at each iteration a number of n, solutions
is probabilistically constructed in function ProbabilisticSolutionConstruction(Z)
in line 6 of Algorithm 1. The variables contained in these solutions are added
t0 Zgup. The age of a newly added variable z; ; (age[z; ;]) is set to 0. After the
construction of n, solutions, an ILP solver is applied to find the best solution
S(’)pt in the sub-instance Zg,p (see function ApplylLPSolver(Zg,1,) in line 12 of
Algorithm 1). In case S/, opt 18 better than the current best-so-far solution Sy,
solution S, is stored as the new best-so-far solution (line 13). Next, sub-instance
Zsub 18 adapted, based on solution S(’)pt and on the age values of the variables.
This is done in function Adapt(Zsub, Sppts @8€may) in line 14 as follows. First,
the age of each variable in Zg,}, is increased by one, and, subsequently, the age
of each variable in Sc’)pt C Zsup is re-initialized to zero. Finally, those solution
components from Zg,, whose age has reached the maximum component age
(ageax) are deleted from Zgu,. The motivation behind the aging mechanism
is that variables which never appear in an optimal solution of Zg,, should be
removed from Zg,;, after a while, because they simply slow down the ILP solver.
On the other side, components which appear in optimal solutions seem to be
useful and should therefore remain in Zg1,.

In the following we will describe in detail the remaining component of the
algorithm: the probabilistic construction of solutions in function ProbabilisticSo-
lutionConstruction(Z). Such a solution construction starts with an empty solution
S = (), and the first step consists in generating the set of variables that serve
as options to be added to S. More specifically, the initial set C' is generated in
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order to contain for each letter @ € X the variable z; ; € Z, (if any) such that
1 < kand j <, Vzr; € Z,. Moreover, options z; ; € C are given a weight
value w(z, ;) = i + %, which is a known greedy function for longest common
subsequence problems. At each construction step, exactly one variable is chosen
from C' and added to S. For doing so, first, a value r is chosen uniformly at ran-
dom from [0, 1]. In case r < dyate, Where dyate is a parameter of the algorithm,
the variable z; ; € C with the smallest weight value is deterministically chosen.
Otherwise, a candidate list L C C' of size min{lgi,e, |C|} containing the options
with the lowest weight values is generated and exactly one variable z; ; € L is
then chosen uniformly at random and added to S. Note that lg,e is another
parameter of the solution construction process. Finally, the set of options C' for
the next construction step is generated. This is done such that C' only contains
variables that represent letters that are not already represented by one of the
variables in S. Moreover, being z; ; the last variable that was added to S, C
contains for each non-represented letter a € X' the variable z,, € Z, (if any)
with the lowest weight value w(z, s) calculated as w(z, ) = [;_2 + li,_—]j' The
construction of a complete (valid) solution is finished when the set of options is
empty.

4 Experimental Evaluation

We implemented the proposed algorithm in ANSI C++ using GCC 4.7.3, with-
out the use of any external libraries. The ILP models, both the ones of the
original RFLCS instances and the ones of sub-instances within CMSA, were
solved with IBM ILOG CPLEX v12.1 in one-threaded mode. The experimental
evaluation has been performed on a cluster of PCs with Intel(R) Xeon(R) CPU
5670 CPUs of 12 nuclei of 2933 MHz and at least 40 Gigabytes of RAM. In the
following we first describe the set of benchmark instances that we generated to
test the CMSA algorithm. Then, we describe the tuning experiments that were
performed in order to determine a proper setting for the parameters. Finally, an
exhaustive experimental evaluation is presented.

4.1 Problem Instances

Two sets of problem instances were adopted from [10]. These sets were generated
with the same procedure as described in [3]. The first set (henceforth called SET1)
consists for each combination of input sequence length n € {32, 64, 128,256,512}
and alphabet size |X| € {n/8,n/4,3n/8,n/2,5n/8,3n/4,7n/8} of exactly 10
problem instances. The second set of instances (henceforth called SET2) is gen-
erated on the basis of alphabet sizes |X| € {4,8,16,32,64} and the maximal
repetition of each letter rep € {3,4,5,6,7,8} in each input string. For each
combination of |X| and rep this instance set consists of 10 randomly generated
problem instances. In addition, we generated an extension of SET2 consisting of
larger problem instances. More specifically, we generated for each combination
of |X| € {128,256} and rep € {3,4,5,6,7,8} ten problem instances. All the
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results to be shown in the forthcoming sections are averages over the 10 problem
instances of each type.

4.2 Tuning of CMSA

There are several parameters involved in CMSA for which well-working values
must be found: (n,) the number of solution constructions per iteration, (age,,,.)
the maximum allowed age of solution components, (d;ate) the determinism rate,
(Isize) the candidate list size, and (fjax) the maximum time in seconds allowed
for CPLEX per application to a sub-instance. The last parameter is necessary,
because even when applied to reduced problem instances, CPLEX might still
need too much computation time for solving such sub-instances to optimality.
In any case, CPLEX always returns the best feasible solution found within the
given computation time.

We decided to make use of the automatic configuration tool irace[12] for the
tuning of the five parameters. In fact, irace was applied to tune CMSA sepa-
rately for each alphabet size, which—after initial experiments—seems to have
more influence on the behavior of the algorithm than the length of the input
strings. In the context of SET1 we randomly generated two tuning instances for
each combination of string length and alphabet size, whereas for SET2 (and its
extension) we randomly generated two tuning instances for each combination of
alphabet size and number of repetitions.

The tuning process for each alphabet size was given a budget of 200 runs of
CMSA, where each run was given a computation time limit of I,,/10 CPU seconds
for instances of SET1 (remember that for instances of SET1 it holds that I, = 1))
and (| X]*reps)/10 CPU seconds for instances of SET2 and its extension. Finally,
the following parameter value ranges were chosen concerning the five parameters
of CMSA:

- n, € {10, 30,50}

— agenax € {1,5,10, inf}, where inf means that solution components are never
removed from Zgp,.

— dyate € {0.0,0.3,0.5,0.7,0.9}, where a value of 0.0 means that the selection
of the next variable to be added to the partial solution under construction is
always done randomly from the candidate list, while a value of 0.9 means that
solution constructions are nearly deterministic.

— lsize € {3,5,10}

— tmax € {0.5,1.0,5.0} (in seconds) for instances of SET1 and SET2, and tyax €
{1.0,10.0,100.0} for the instances of the extension of SET2.

The tuning runs with iraceproduced the configurations of CMSA as shown in
Table 1.

4.3 Experimental Results

Three algorithms were included in the comparison. Beam-ACO is currently a
state-of-the-art method for the RFLCS problem [10], CPLEX refers to the appli-
cation of CPLEX to the complete problem instances, and CMSA is the algorithm
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Table 1. Results of tuning CMSA with irace.

(a) Tuning results for the seven alphabet  (b) Tuning results for the seven alphabet

sizes of SET1. sizes of SET2 and its extension.
|E| Na AL Ay dratc lsizc tmax |E| Na aA8C ax dratc lsizc tmax
n/8 |30 5 0.7 5 0.5 4 10 inf 0.9 10 1.0
n/4 |10 1 0.7 10 1.0 8 10 10 09 5 0.5
3n/8 |30 1 0.3 10 5.0 16 |50 anf 0.7 3 0.5
n/2 |50 1 03 3 5.0 32 |50 inf 0.5 10 5.0
5n/8 |30 5 0.7 10 5.0 64 |10 10 05 5 1.0
3n/4 130 5 0.5 5 5.0 128 (30 1 0.5 5 10.0
™m/8 |30 5 0.0 10 5.0 256 |10 1 0.7 3 10.0

proposed in this work. The results of Beam-ACO for the instances of SET1 and
SET2 were taken from [10], where Beam-ACO was applied once to each problem
instance with a computation time limit of 5 CPU seconds per run, a beam width
of 10, and a determinism rate of 0.9. Note that the low computation time limit
of 5 CPU seconds was adopted in [10], because Beam-ACO always produced its
best results during the first seconds of a run. For the application to the larger
problem instances that were generated as an extension of SET2 Beam-ACO was
applied with the same parameter values for beam with and determinism rate,
but with the same computation time limit as CMSA. In particular, CMSA was
applied to each problem instance with a computation time limit of I,,/10 CPU
seconds for instances of SET1 (remember that for instances of SET1 it holds that
Iy =1,) and (|X| * reps)/10 CPU seconds for instances of SET2 and its exten-
sion. The stand-alone application of CPLEX to each problem instances was given
more computation time, namely, 600 CPU seconds for each run, regardless of
the instance/alphabet size. Moreover, a memory limit of 2 GB were used for each
application of CPLEX.

The numerical results are presented in Table 2 concerning SET1, Table 3 con-
cerning SET2, and Table4 concerning the extension of SET2. Each table row
presents the results averaged over 10 problem instances of the same type. The
results of Beam-ACO and CMSA are provided in two columns each. The first
one (with heading result) provides the result of the corresponding algorithm
averaged over 10 problem instances, while the second column (with heading
time (s)) provides the average computation time necessary for finding the cor-
responding solutions. The same information is given for CPLEX. However, in
this case we also provide the average optimality gaps (in percent), that is, the
average gaps between the upper bounds and the values of the best solutions
when stopping a run.

The results allow to make the following observations:

— First of all, CPLEX is able to provide optimal solutions for all instances of
29 out of 35 instance types (that is, table rows) concerning SET1, and for all
instances of 27 out of 30 instance types concerning SET2. This means, on one
side, that the instances of these two benchmark sets are, in their majority,
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=] 7 Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)
32 4.0 <0.1 4.0 0.1 0.0 4.0 <0.1
64 8.0 <0.1 8.0 0.8 0.0 8.0 <0.1
n/8 128 16.0 < 0.1 16.0 9.6 0.0 16.0 <0.1
256 31.9 <0.1 n.a. n.a. n.a. 31.8 0.1
512 62.3 1.8 n.a. n.a. n.a. 60.4 13.3
32 7.9 <0.1 7.9 0.1 0.0 7.9 <0.1
64 14.3 <0.1 14.4 0.3 0.0 14.4 <0.1
n/4 128 25.3 0.2 25.9 17.2 0.0 25.7 1.1
256 42.4 0.7 41.6 495.1 8.6 42.6 3.6
512 68.0 0.8 n.a. n.a. n.a. 68.7 7.1
32 8.7 <0.1 9.0 <0.1 0.0 9.0 <0.1
64 14.4 < 0.1 14.8 0.2 0.0 14.8 < 0.1
3n/8 128 25.1 < 0.1 25.3 3.1 0.0 25.3 <0.1
256 39.7 0.2 40.1 133.5 0.0 40.1 1.5
512 59.4 1.3 7.0 36.2 > 100.0 59.5 3.2
32 8.8 <0.1 8.8 <0.1 0.0 8.8 <0.1
64 14.5 < 0.1 14.6 0.1 0.0 14.6 < 0.1
n/2 128 23.4 < 0.1 23.4 1.0 0.0 23.3 <0.1
256 34.1 0.2 34.3 30.5 0.0 34.1 0.3
512 53.1 0.6 14.9 207.5 > 100.0 53.1 5.9
32 7.9 <0.1 7.9 <0.1 0.0 7.9 <0.1
64 13.7 < 0.1 13.7 < 0.1 0.0 13.7 < 0.1
5n/8 128 21.1 < 0.1 21.1 0.5 0.0 21.1 <0.1
256 31.1 0.2 31.2 10.4 0.0 31.2 1.6
512 47.8 0.3 47.9 308.3 0.0 47.8 2.9
32 7.8 <0.1 7.8 <0.1 0.0 7.8 <0.1
64 13.1 < 0.1 13.3 < 0.1 0.0 13.3 <0.1
3n/4 128 19.1 < 0.1 19.1 0.2 0.0 19.1 <0.1
256 30.0 <0.1 30.1 4.3 0.0 30.1 1.3
512 44.7 0.5 44.8 115.5 0.0 44.8 1.3
32 7.6 <0.1 7.6 <0.1 0.0 7.6 <0.1
64 12.2 < 0.1 12.2 < 0.1 0.0 12.2 < 0.1
™/8 128 18.5 < 0.1 18.5 0.2 0.0 18.5 <0.1
256 27.2 <0.1 27.2 2.2 0.0 27.1 0.1
512 40.7 0.3 40.9 59.4 0.0 40.8 4.3

not very difficult to be solved. On the other side, there seems to be a kind
of phase transition between instances that can be solved to optimality quite
easily, and instances that are difficult to be solved. In three out of six instance
types of SET1 which CPLEX cannot solve to optimality within the allocated
CPU time, the allocated memory is not sufficient, and for other two instance
types the average optimality gap is greater than 100 %.
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Table 3. Experimental results concerning the instances of SET2.

Z] n  Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)
3 3.4 < 0.1 3.4 < 0.1 0.0 3.4 <0.1
4 3.8 <0.1 3.8 <0.1 0.0 3.8 <0.1
4 5 3.8 < 0.1 3.8 <0.1 0.0 3.8 <0.1
6 3.8 < 0.1 3.8 < 0.1 0.0 3.8 <0.1
7 3.9 <0.1 3.9 <0.1 0.0 3.9 <0.1
8 4.0 <0.1 4.0 < 0.1 0.0 4.0 <0.1
3 5.9 <0.1 5.9 <0.1 0.0 5.9 <0.1
4 6.7 <0.1 6.7 <0.1 0.0 6.7 <0.1
8 5 6.8 < 0.1 7.0 < 0.1 0.0 7.0 <0.1
6 7.3 <0.1 7.3 <0.1 0.0 7.3 <0.1
7 7.6 <0.1 7.7 <0.1 0.0 7.7 <0.1
8 7.5 < 0.1 7.5 < 0.1 0.0 7.5 < 0.1
3 9.6 <0.1 9.6 <0.1 0.0 9.6 <0.1
4 11.1 < 0.1 11.1 < 0.1 0.0 10.9 <0.1
16 5 13.7 0.2 13.8 <0.1 0.0 13.6 0.2
6 13.0 <0.1 13.2 0.1 0.0 13.1 <0.1
7 14.5 < 0.1 14.7 0.3 0.0 14.7 <0.1
8 14.7 <0.1 15.2 0.6 0.0 15.1 0.3
3 16.1 < 0.1 16.1 < 0.1 0.0 16.1 < 0.1
4 19.2 <0.1 19.2 0.4 0.0 19.2 <0.1
39 5 20.6 0.1 20.9 1.3 0.0 20.9 <0.1
6 24.0 0.5 24.4 5.8 0.0 24.4 0.2
7 24.9 <0.1 25.8 9.4 0.0 25.8 2.8
8 26.8 0.4 27.4 32.2 0.0 27.4 1.5
3 24.8 <0.1 24.9 1.8 0.0 24.9 0.3
4 30.1 0.1 30.3 8.7 0.0 30.3 0.9
64 5 34.5 0.2 34.8 70.5 0.0 34.7 1.8
6 38.4 0.4 38.8 231.4 1.7 39.0 8.4
7 42.3 0.4 42.8 435.7 5.2 44.0 6.0
8 45.1 0.9 35.4 413.1 53.1 45.7 17.0

— Concerning SET1, both Beam-ACO and CMSA provide (near-)optimal solu-
tions and both outperform CPLEX once the average optimality gaps start to
increase. However, no clear trend about the superiority of CMSA over Beam-
ACO (or the other way around) is noticeable.

— Concerning SET2, the performance of Beam-ACO and CMSA is comparable
for instances of alphabet sizes |X| € {4, 8,16}, both providing (near-)optimal
solutions. However, starting from alphabet size | Y| = 32, CMSA outperforms
Beam-ACQO. This becomes even more clear in the case of the extension of
SET2, consisting of larger problem instances. In the context of these instances,
CMSA outperforms both CPLEX and Beam-ACO.
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Table 4. Experimental results for larger problem instances.

X n Beam-ACO CPLEX CMSA
result time (s) result time (s) gap (%) result time (s)
3 38.3 < 0.1 38.4 50.1 0.0 38.4 0.1
4 44.3 < 0.1 45.3 296.1 0.0 45.2 3.8
198 5 52.6 1.8 23.3 85.8 > 100.0 53.7 1.3
6 58.6 < 0.1 18.1 78.3 > 100.0 61.2 9.2
7 66.3 5.3 n.a. n.a. n.a. 68.7 26.0
8 73.7 6.9 n.a. n.a. n.a. 75.8 32.1
3 53.6 < 0.1 7.10 102.2 > 100.0 53.6 0.7
4 66.8 0.9 0.10 143.2 > 100.0 67.0 12.1
956 5 79.4 0.6 n.a. n.a. n.a. 81.0 7.6
6 90.2 22.1 n.a. n.a. n.a. 92.1 35.0
7 99.4 16.5 n.a. n.a. n.a. 102.2 47.7
8 109.0 23.1 n.a. n.a. n.a. 111.3 62.7
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Fig. 1. Graphical presentation of the sizes of the sub-instances in percent with respect
to the size of the original problem instances.
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Finally, we studied the (average) size of the sub-instances that are generated
(and maintained) within CMSA in comparison to the size of the original problem
instances. These sub-instance sizes are provided in a graphical way in Fig. 1a for
instances of SET1, and in Fig. 1b for instances of SET2 and its extension. Note
that these graphics show the sub-instance sizes averaged over all instances of
the same alphabet size. In both cases, the x-axis ranges from small alphabet
size (left) to large alphabet sizes (right). Interestingly, when the alphabet size is
rather small, the tackled sub-instances in CMSA are rather large (up to ~70 %
of the size of the original problem instances). With growing alphabet size, the
size of the tackled sub-instances decreases. This is more clearly visible in the
context of instances of SET1. However, this trend also becomes clear starting
from alphabet size 32 in the context of instances of SET2. The reason for this
trend is as follows. As CPLEX is very efficient for problem instances based on
rather small alphabet sizes, the parameter values of CMSA are chosen during
the tuning process of iracesuch that the sub-instance sizes become quite large.
On the contrary, with growing alphabet size, the parameter values chosen during
tuning lead to smaller sub-instances, simply because CPLEX is not so efficient
anymore when applied to sub-instances that are not much smaller than the
original problem instances.

5 Discussion and Future Work

CMSA is a new, general, algorithm for combinatorial optimization which is based
on a simple, but apparently successful, idea: the generation of sub-instances
based on merging the solution components found in randomly constructed solu-
tions, and their subsequent solution by means of an exact solver. Moreover, the
considered sub-instances are dynamically changing due to adding new solution
components at each iteration, and removing existing solution components on
the basis of indicators about their usefulness. In this work, the CMSA algorithm
has been applied to the repetition-free longest common subsequence problem.
The general picture of the results, in comparison to CPLEX, is similar to the
one observed in earlier applications of CMSA to the minimum common string
partition problem and a minimum weight arborescence problem in [1]. CMSA is
generally competitive with CPLEX for small to medium size problem instances,
whereas it outperforms CPLEX with growing problem instances size. In our
opinion, this algorithm is quite appealing, especially for the following reasons:

— CMSA can be applied to any problem for which a constructive heuristic and
an exact solver are known.

— In comparison to other metaheuristics, CMSA can generally be implemented
with few lines of code.

— When using an ILP solver for solving sub-instances, CMSA allows to make
use of the valuable operations research expertise that has gone into the devel-
opment of the ILP solver, without the need of being an expert in operations
research.
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Finally, note that the idea behind CMSA is similar, in some sense, to the basic
idea of large neighborhood search (LNS) [13]. However, while exact solvers in
LNS are used to search the best solution in a large neighborhood of the current
solution which is generally obtained by a partial destruction of the current solu-
tion, exact solvers in the context of CMSA are applied to sub-instances of the
original problem instances.

Concerning future work, we first plan to extend the conducted experimental
study to even larger problem instances. Second, we intent to study the incor-
poration of potentially valuable knowledge about, for example, the reduced
costs of variables, in order to develop a more sophisticated—and hopefully
more effective—mechanism for the removal of variables from the considered sub-
instances.
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Abstract. The big valley hypothesis suggests that, in combinatorial
optimisation, local optima of good quality are clustered and surround
the global optimum. We show here that the idea of a single valley does
not always hold. Instead the big valley seems to de-construct into several
valleys, also called ‘funnels’ in theoretical chemistry. We use the local
optima networks model and propose an effective procedure for extracting
the network data. We conduct a detailed study on four selected TSP
instances of moderate size and observe that the big valley decomposes
into a number of sub-valleys of different sizes and fitness distributions.
Sometimes the global optimum is located in the largest valley, which
suggests an easy to search landscape, but this is not generally the case.
The global optimum might be located in a small valley, which offers a
clear and visual explanation of the increased search difficulty in these
cases. Our study opens up new possibilities for analysing and visualising
combinatorial landscapes as complex networks.

Keywords: Fitness landscapes - Local optima networks - Funnels -
Traveling salesman problem

1 Introduction

In the mid 1990s, it was conjectured that the search space of travelling sales-
man instances had a “globally convex” or “big valley” structure, in which local
optima are clustered around one central global optimum [3]. This globally convex
structure has subsequently been observed in other combinatorial problems such
as the NK family of landscapes [7,8], graph bipartitioning [13], and flowshop
scheduling [21]. Under this view, there are many local optima but they are easy
to escape from, with the coarse level gradient leading to the global optimum
(see Fig. 1). This hypothesis has become generally accepted and has inspired the
design of modern search heuristics.

We argue that this view of combinatorial search spaces is not complete. We
challenge the existence of a single valley, and present compelling and visual
evidence of examples where the big valley de-constructs into several valleys, also
called ‘funnels’ in the study of energy surfaces in theoretical chemistry [9,14].
The multi-funnel concept implies that local optima are organised into clusters,
so that a particular local optimum largely belongs to a particular cluster.

© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-30698-8 5
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Fig. 1. Depiction of the ‘big-valley’ structure.

Using the travelling salesman problem (TSP) as a case study, we found that
this decomposition into clusters does not only occur near the global optimum as
has been observed recently [6,19]. It occurs earlier on in the search process, even
among local optima tours with relatively high costs. This finding improves our
understanding of search difficulty in combinatorial optimisation. It explains why,
when using current local search heuristics, random restarts are generally required
to consistently find globally optimal solutions. When trapped in a sub-optimal
funnel, a local search heuristic will not be able to escape even with relatively
large random perturbations. This insight will foster research into more informed
escaping and tunnelling mechanisms [6,17,24].

We use the local optima networks model to analyse and visualise the big
valley deconstruction. Local optima networks compress the whole search space
into a graph, where nodes are local optima and edges are transitions among them
with a given search operator [18,20,23]. Local optima are key features of fitness
landscapes as they can be seen as obstacles for reaching high quality solutions.
The local optima networks model emphasises the number, distribution and most
importantly, the connectivity pattern of local optima in the underlying search
space. They are therefore an ideal tool for modelling and visualising the big
valley structure.

We propose a new and effective sampling procedure for extracting the net-
work data of large instances. Local optima and escape edges are collected from
several runs of Chained Lin-Kerninghan, a state-of the-art TSP heuristic [12].
This data is gathered to construct the local optima networks.

The remainder of this article is organised as follows. The next section gives an
overview of Chained Lin-Kerninghan. Section 3 defines the local optima network
model considered, and describes the procedure for extracting the data and con-
structing the networks. Section 4 describes the TSP instances studied. Section 5
presents the analysis and visualisation of the extracted local optima networks.
Finally, Sect.6 summarises our main findings and suggests directions of future
work.

2 Chained Lin-Kernighan

Lin-Kernighan (LK) [10], is a powerful and well-known heuristic for solving the
TSP. For about two decades, it was the best local search method, and nowadays it
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is a key component of state-of-the-art TSP solvers. LK search is based on the idea
of k-changes: take the current tour and remove k different links from it, which are
then reconnected in a new way to achieve a legal tour. A tour is considered to be
‘k-opt’ if no k-change exists which decreases its length. Figure 2a illustrates a 2-
change move. LK applies 2, 3 and higher-order k-changes. The order of a change
is not predetermined, rather & is increased until a stopping criterion is met. Thus
many kinds of k-changes and all 3-changes are included. There are many ways to
choose the stopping criteria and the best implementations are rather involved.
Here, we use the implementation available in the Concorde software package [1],
which uses do not look bits and candidate lists.

it1 § il
I+1 J
! 41
+1 @
J j k+1 L
(a) 2-change (b) Double-bridge

Fig. 2. Illustration of tours obtained after 2-change and double-bridge moves.

The overall tour-finding strategy using LK-search was to repeatedly start the
basic LK routine from different starting points keeping the best solution found.
This practice ended in the 1990s with the seminal work of Martin, Otto and
Felten [12], who proposed the alternative of kicking (perturbing slightly) the LK
tour and reapplying the algorithm. If a better tour is produced, we discard the
old LK tour and keep the new one. Otherwise, we continue with the old tour
and kick it gain. This simple yet powerful strategy is nowadays best known as
iterated local search [11]. Tt was named Chained Lin-Kernighan (Chained LK)
by Applegate et al. [2], who also provided an improved implementation to solve
large TSP instances.

The kick or escape operator in Chained-LK is a type of 4-change, named
double-bridge by Martin et al. [12] (drawn in Fig. 2b). It consists of two improper
2-changes, each of which is a ‘bridge’ as it takes a legal, connected tour into two
disconnected parts. The combination of both bridges, must then be chosen in
order to produce a legal final tour.

3 Local Optima Networks for TSP

To construct the networks we need to define their nodes and edges. The definition
is closely linked to the methodology for extracting the network data, which
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is based on a number of runs of the Chained-LK algorithm described above.
Clearly, a full enumeration of the local optima for TSP instances of non-trivial
size becomes unmanageable. Therefore, the networks are based on a sample
of high-quality local optima in the search space. We first provide some basic
definitions, below, before describing the sampling algorithm.

3.1 Definitions

Definition 1. A tour is a local optimum if no tour in its neighbourhood is
shorter than it. The neighbourhood is imposed by LK-search, which considers
variable values of k. The local optimality criterion is, therefore, rather stringent.
Only a small proportion of all possible tours are LK-optimum. The set of local
optima is denoted by LO.

Definition 2. Edges are directed and based on the double-bridge operator.
There is an escape edge from local optimum LO; to local optimum LO;, if
LO; can be obtained after applying a double-bridge kick to LO; followed by
LK-Search. The set of escape edges is denoted by E¢g..

Definition 3. The local optima network, LON, is the graph LON = (LO, E,s.)
where nodes are the local optima LO, and edges E.. are the escape edges.

3.2 Gathering Network Data

To extract the network data, we instrumented the Chained-LK implementation
of Concorde (see Algorithm 1). We simply store, in LO, every unique local optima
obtained after an LK application, and create and store, in E.., an edge between
the starting and end optima after a double-bridge move.

A hundred independent runs of Chained-LK are executed. We chose to use
two different starting mechanisms, one producing “better” solutions, the other
“worse” solutions, to have a broader picture of the search space. Half of the runs
start from a relatively good solution, built using the Quick-Bortuvka method.
The latter is the default initialisation for Concorde’s Chained-LK and is based
on the minimum-weight spanning tree algorithm of Boruvka [15]. The other half
starts from a random solution.

Each run performs n kicks, where n is the size of the tour (number of cities).
The default kicking procedure in Concorde is used: the edges involved in the
double bridge are selected using random walks along connected vertices.

Since nodes and edges are collected from a combination of several runs, it is
possible that each of them is found more than once. Therefore, weights could be
associated to edges indicating the number of times they were encountered. We
recorded such weights, but chose to analyse unweighted networks. Future work
will consider this information in the analysis.
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Data: I, a TSP instance
Result: LO, the set of local optima,
Flesc, the set of edges between local optima

n «— numberOfCities(I); LO « {}; Eesc < {}
for i — 1 to 100 do
s «— initialSolution()
s «— LK(s)
LO — LO U {s}
for £k — 1 ton do

Sstart < S

Send — applyKick(s)

Send LK(Send)

LO — LO U {Sena}

Eesc — Eesc U {(sstart7 Send)}

if fitness(Send) < fitness(Sstart) then s «— Send
end

end
Algorithm 1. Local optima network sampling for 100 runs of Chained-LK.

4 Selected TSP Instances

Our study considers four TSPLIB [22] instances of a few hundred cities belonging
to different types (see Table1). By exploring and comparing the local optima
networks of instances of similar size, we aim to discover structural differences
distinguishing the hard from the easy to solve instances.

Table 1. Selected TSP instances

Property Instances

atth32 ub74 ratb75 gr666
Cities 532 574 575 666
Edge Weight Type ATT EUC-2D EUC-2D GEO
Description US cities|Drilling problem |Rattled grid|World cities
Optimum 27686 36905 6773 294358
Concorde run time (s) 8.9 3.8 18.9 6.5
Concorde B&B nodes 5.2 1.7 17.7 3.2
Chained-LK success rate, 0.06 0.47 0.01 0.04

The types of edge weights are as follows. EUC-2D refers to the Euclidean
distance of points in a 2D plane rounded to the nearest integer. ATT refers to
a pseudo-Euclidean distance: the sum of the squares is divided by 10 and the
square root of this value is then rounded to an integer. GEO refers to the integer
geographical distance computed from latitude and longitude coordinates on the
surface of a sphere representing an idealised Earth.
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The bottom portion of Table1 gives information on the solving difficulty of
each instance. Specifically, we report the mean run time and the mean number
of branch-and-bound nodes required by Concorde (interfaced with IBM ILOG
CPLEX 12.6) to solve the instances to optimality on a 3.4 GHz Intel Core i7-
3770 CPU across 10 runs. Although Concorde is an exact solver, the means are
computed since randomised heuristics, including Chained-LK, are used. This
leads to different execution times and branch-and-bound trees. The last row
reports the success rate of the 100 Chained-LK runs used for extracting the
network data (described in Sect.3.2). By success rate, we mean the ratio of
runs that found at least one global optimum. According to this information, the
easiest instance to solve is u574 (by far) and the hardest is rat575.

5 Results

When extracting local optima networks from large instances, it is important to
decide which sample to consider. We chose here to analyse two sets: (i) the whole
set of local optima collected with the procedure described in Sect. 3.2, and (ii)
the subset containing the best 10 % local optima according to fitness. For each
TSP instance in Table 1, we consider the two sets and construct the local optima
networks as defined in Sect. 3.

Results are presented in the following two subsections, which conduct a net-
work analysis and a fitness distance correlation analysis, respectively.

5.1 Network Analysis and Visualisation

Over the years, an extensive set of tools — mathematical, computational, and
statistical — have been developed for analysing and understanding networks [16].
We select here a set of network features (see Table 2) which we consider relevant
to search dynamics.

Table 2. Main local optima network features.

Feature | Description

nv Total umber of vertices (local optima)

ne Total number of edges

Ngo Number of different global optima

ne Number of connected components (or clusters)

Cgo Cluster containing the global optimum (or optima), where the clusters are
ordered by decreasing size.

We argue that the decomposition into clusters (connected components in
our study) is one of the most relevant features impacting search. Indeed, we
hypothesise that the notion of multiple funnels, originally studied in theoretical
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chemistry [9,14], and more recently also in combinatorial optimisation [6,17],
is captured by the connected components in the networks studied. Specifically,
funnels correspond to connected components. Once trapped in a connected com-
ponent, it is not easy for the search process to hop to another component. There
are no connections among components with the underlying escaping mechanism
according to our sampling procedure. Some connections may exist, but of low
probability. We, therefore, explore in detail the connected components decom-
position of the studied networks.

Table 3 reports the main network features for each instance and local optima
sample. All instances have more than one global optima, and all decompose
into several clusters. Indeed, several components are found on both samples,
indicating that the deconstruction occurs not only among solutions near the
global optima, but early on in the search process (solutions with higher costs).
The last row in the table (cg40) shows that global optima are not always found
in a large connected component.

Table 3. Network metrics (as described in Table 2) for the four TSP instances and the
two local optima samples:all and best 10 %.

att532 ub74 ratb75 gr666
all |best 10%| all |best 10% all |best 10%| all |best 10%
nv 35,512 3,678 |37,780, 3,842 |41,536| 4,805 |46,021| 4,611
ne |37,730| 4,435 ]40,161| 4,660 (44,643 5,842 147,939 5,039

ngo 2 2 4 4 2 2 2 2
nc| 6 7 8 5 69 47 53 25
Cgo| 1 2 1 1 60 8 4 2

It is interesting to note that for the hardest instance studied, rat575 (see the
bottom of Table1 for an indication of search difficulty), the global optima were
not found in any of the 5 largest connected components. They are located in
cluster number 60 when considering the whole sample and cluster 8, when con-
sidering the best 10 % local optima. On the other hand, for the easiest instance,
ub74, the global optima are found in the largest connected component for both
samples. Table 4 reports sizes (as percentages) of the 5 largest connected compo-
nents for each instance and local optima sample. Bold fonts indicate the compo-
nent containing the global optima. As mentioned before, global optima are not
found in the top 5 connected components of instance rat575, they are located in
the 8" component, which contains only 2.67 % of the local optima sample.

A useful approach to explore the structure of networks is to visualise them.
Software for analysing and visualising networks is currently available in various
languages and environments. Here we use the R statistical language together
with the igraph package [4]. The graph layout algorithm used is the Fruchterman
and Reingold method [5], which is based on exploiting analogies between the
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Table 4. Sizes (as percentages) of the top 5 connected components for the four TSP
instances and the two local optima samples: all and best 10 %. Bold fonts highlight
the connected component containing the global optima. For instance rat575, the global
optima are located in the 8" component, which contains only 2.67 % of the local optima
sample

atth32 ub74 ratb75 gr666
all |best 10%| all |best 10%| all |best 10%| all |best 10%
c1/93.62| 50.33 |58.56| 85.84 |17.55 33.47 |17.20 29.75
co| 2.17| 48.15 |15.97| 11.63 4.93 7.62 7.12| 13.42
c3| 1.12 1.20 |10.30 1.54 4.89 3.79 7.05| 12.67
cal 104 019 | 872 060 203 333 | 6.22 6.6
cs| 1.04 0.08 3.20 0.39 2.01 2.93 3.90 ‘ 4.49

relational structure in graphs and the forces among elements in physical systems.
The heuristic is concerned with drawing graphs according to some generally
accepted aesthetic criteria such as (a) distribute the vertices evenly in the frame
(a circle in this case), (b) minimise edge crossings, (¢) make edge lengths uniform,
and (d) reflect inherent symmetry [5].

In order to have manageable images, we plotted the networks corresponding
to the subset containing the best 10 % local optima. We also pruned some of
the nodes of degree one, and removed self-loops for improved visibility. Figure 3
shows the local optima for instances att532 and ub74, and Fig.4 shows the
networks for ratb75 and gr666. Nodes are LK-search local optima and edges
represent escape transitions according to double-bridge moves.

We decorated the network images according to the two most relevant features
impacting search dynamics: fitness and connectivity. The fitness of a solution is
reflected by its node size, with size inversely proportional to tour cost (so the
best solutions are larger in size). The connected components are distinguished
with different colours: red shows the largest connected component, blue the 27¢
largest and so on, as indicated in the legends of Figs.3 and 4. Global optima
nodes are highlighted with a yellow outline.

The networks show strikingly different structures. In instance att532 (Fig. 3,
top), the two largest connected components (red and blue) show similar sizes,
with the remaining components having small sizes (see also Table4 for percent-
ages). The two global optima are located in the blue component. In instance
ub74 (Fig. 3, top), the largest component (red) clearly dominates, containing
the four global optima and many good local optima as indicated by the node
sizes. This is consistent with the fact that u574 is the easiest instance to solve,
as indicated in the bottom of Table 1.

In the first two instances considered (Fig. 3), the two largest components (red
and blue) dominate the network images. This is not the case for instances rat575
and gr666 (Fig.4), where the smaller connected components are more visible.
In rat575, the global optima are not found in the top 5 components. Instead, the
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@ Node in largest component

@ Node in 2" largest component

@ Node in 3™ largest component
Node in 4" largest component

@ Node in 5" largest component
Global Optimum

Fig. 3. Local optima networks for att532 (top) and u574 (bottom). Nodes are LK-
search local optima, and edges represent escape transitions according to double-bridge
moves. Node colours identify connected components as indicated in the legend, while
node sizes are inversely proportional to tour cost (so the best solutions are larger in
size). Global optima nodes are highlighted with a yellow outline (Color figure online).

two global optima are located in component number 8, visualised in dark green
at the bottom right of the network plot. This is a small component containing
only 2.67 % of the local optima sample: this provides a clear visual indication of
the increased search difficulty of this instance. For the gr666 instance, the global
optima are located in the 2"? largest connected component (blue) visualised
at the bottom left portion of the image. This component contains 13.42 % of
the local optima, suggesting an easier to search instance despite having a larger
number of cities.
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@ Node in largest component

@ Node in 2™ largest component

@ Node in 3 largest component
Node in 4™ largest component

@ Node in 5™ largest component

@ Node in a smaller component
containing global optimum

Node in any remaining component

Global Optimum

Fig. 4. Local optima networks for rat575 (top) and gr666 (bottom). Nodes are LK-
search local optima, and edges represent escape transitions according to double-bridge
moves. Node colours identify connected components as indicated in the legend, while
node sizes are inversely proportional to tour cost. Global optima nodes are highlighted
with a yellow outline (Color figure online).

This study only considers instances where the number of connected compo-
nents was less than the number of runs. Yet, the maximum number of com-
ponents that could be discovered by the sampling method corresponds to the
number of runs if no local optimum is repeated in any two runs. It is neverthe-
less possible that some instances actually have many more components than this
number. It is also important to note that the sampling mechanism, including the
parameter values for the number of kicks and runs, introduces a bias generating
an approximation of the search space and not the complete picture.
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5.2 Fitness-Distance Analysis

While the network analyses provide insight into the connected nature of the
search space, it is also useful to examine the landscapes through more traditional
tools. In particular, we now look at the relationship between fitness and bond
distance [3]. The latter is defined as the difference in the number of common
edges, or bonds, between two tours. It is computed by subtracting the number
of common edges from the number of cities. We specifically consider the distance
between a single randomly chosen global optimum and the other local optima.
Let us note that the global optima for each instance share the overwhelming
majority of their edges. The bond distances between the global optima are 2 for
atth32, {2, 4,6} for us74, 3 for rat575 and 13 for gr666. It is thus logical for them
to appear within the same component.

Figure5 presents the fitness-distance plots for the best 10 % sub-sampling
that is represented in the local optima networks and reuses the same colour-
component correspondence. Each of the 5 largest components is plotted in a
separate facet. When the global optima are found in a smaller component, the
points of the latter have their own facet. Any remaining components are grouped
in one final facet. Each plot also displays all the local optima across components
in the background.

Figure 6 provides a similar view of the local optima but considers (almost)
complete samples. Points with fitness above the 95" percentile are not plotted
because they are very spread out and thus interfere with visualisation. Compo-
nents, however, are computed with respect to all the points in the all sample.
Points in common with those in Fig.5 are highlighted with the same colour
scheme, with the aim of exploring the correspondence of clusters between the
two studied samples.

In the best 10 % sampling, smaller components containing a few solutions are
artefacts of the arbitrary threshold and actually form part of larger distinct clus-
ters. For att532, even though this is not visible due to points overlapping, all the
best 10 % components are indeed at the bottom of a single massive component
in the all sampling.

We can observe that there is relatively little overlap between components
when the solution fitness is close to the best fitness (Fig.5). This no longer the
case when the all sampling is observed. The components not containing the
global optima in instances att532 and u674, and to a lesser extent in gr666,
are relatively far away from the one with the global optima both in terms of
fitness and bond distance. In contrast, the best fitness values in the components
of rat575 are all within 4 units of the global optimum. Let us note that, for this
instance, the distribution of points appears to consist of distinct layers. This
is simply because the range of fitness values is very small and all values are
integers.

From Fig. 6, it can be seen that the presence of distinct components does not
match the big valley hypothesis, but rather that there are multiple distinct fun-
nels. On some instances, looking at the bottom of these components, or funnels,
reveals further splits into basins within funnels (Fig. 5).
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Fig. 5. Fitness-distance plots for the best 10 % sampling. All facets show the full set
of solutions of the sampling in the background. Facets 1 to 5 display the overlay of
the largest five connected components. Facet G shows the component containing the
global optima (when it is not among the first five, as in the case of rat575). Facet R

displays the remaining components if there are any.
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Fig. 6. Fitness distance plots for the all sampling. In the background (light grey),
all facets show the set of sampled solutions below the 95" fitness percentile. Points
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with Figure5 use the same colours. Facets 1 to 5 display the overlay of the largest five
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6 Conclusions

Our study suggest that there is not always a single valley in the fitness land-
scape of travelling salesman problems under LK-search and double-bridge escape
moves. Instead, local optima might decompose into a number of sub-valleys or
funnels, as illustrated in Fig. 7 for two funnels, but more than two are generally
present. This decomposition occurs not only among solutions near in evaluation
to the global optimum, but it may also happen among solutions with higher
cost. In our local optima network model, the funnels are clearly identified and
visualised as the connected components of the networks.

This has significant consequences in our understanding of iterated local
search. Once the search process is trapped in a sub-optimal funnel, it simply
cannot escape from it using the underlying escaping mechanism (double-bridge
moves in our study). Increasing the number of iterations will not improve the
performance, the search will stall, as transitions to other funnels are not pos-
sible. We foresee that this observation will inspire new escaping and tunnelling
mechanisms that allow the search process to navigate among funnels.

£(X)

Fig. 7. Depiction of two funnels.

Future work will study the structure of larger, and more diverse TSP
instances and other combinatorial problems where the big valley has been
observed. More extensive sampling methods will need to be considered to con-
firm or infirm our results. We will also look at search strategies to escape from
sub-optimal funnels. We also aim to produce improved and informative images
of fitness landscapes using the local optima network model.
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Abstract. The contribution of this study is twofold: First, we show
that we can predict the performance of Iterated Local Search (ILS) in
different landscapes with the help of Local Optima Networks (LONSs)
with escape edges. As a predictor, we use the PageRank Centrality of
the global optimum. Escape edges can be extracted with lower effort than
the edges used in a previous study. Second, we show that the PageRank
vector of a LON can be used to predict the solution quality (average
fitness) achievable by ILS in different landscapes.

Keywords: Fitness landscape analysis - Search difficulty - PageRank
centrality - Local optima networks - NK-landscapes

1 Introduction

Local Optima Networks [1] are a novel approach to study the structure of opti-
mization problems by using complex network analysis. A Local Optima Net-
work (LON) is a compressed representation of a combinatorial fitness landscape.
Mathematically, a LON is a graph in which the vertices are the search space’s
local optima. The edges are modeled to reflect the transitions between the local
optima and are weighted by transition probabilities. Three types of LON mod-
els have been introduced so far in order to represent different search operators:
edges with basin transition probabilities for the trajectory of Hill Climbing algo-
rithms [2], escape edges for Iterated Local Search [3] and LONs for Partition
Crossover [4].

An application of fitness landscape analysis is to predict the performance
of a search algorithm in a particular problem instance (search difficulty) [5,6].
Network features of LONs can in particular capture the search difficulty of land-
scapes [7]. Among the different network metrics, it was shown that the shortest
path to the global optimum [8] and its PageRank Centrality [9] are good pre-
dictors for local search-based methods. The PageRank of the global optimum
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predicts the empirical success rate of Hill Climbing with approx. 90 % accu-
racy. Success rate is the probability that a search algorithm hits the global opti-
mum. The explanation for this high correlation is that LONs are an approximate
Markov Chain representation of fitness landscapes. As the PageRank vector of
the nodes represents their stationary distribution in the stochastic process, the
PageRank of the global optimum approximates the probability that a search
algorithm finds it.

A major limitation of previous studies is that success rate is just one alterna-
tive of measuring search performance. Most heuristics are—in the first place—
not designed to solve a problem exactly. Instead, they make use of an existing
trade-off between computation time and solution quality, with the goal to gen-
erate a yet sub-optimal, but acceptable solution. Thus, predicting the expected
solution quality is a relevant issue. Another limitation of the PageRank study
[9] is that predicting success rates has only been tested for the LON model with
basin transition probabilities. However, the extraction procedure for this model
is computationally expensive.

In this paper, we take up previous efforts on determining search difficulty of
fitness landscapes with Local Optima Networks. We present a method to pre-
dict both success rate and solution quality (average fitness) with LONs with
escape edges (LON,,, [3]) using PageRank Centrality. The escape edges can
be extracted with much lower computational effort than the basin transition
probabilities. To predict the average fitness, we make use of the fact that the
calculation of the PageRank results in a vector which covers the stationary dis-
tribution of the whole search space. We combine these probabilities with the
distribution of fitness in the search space to calculate an expected value for the
fitness. Using this value, we can predict the fitness that is achieved on average
by Iterated Local Search in different NK landscapes.

Our paper is structured as follows': In Sect. 2, we describe the search heuris-
tic of which we aimed to predict its performance in our experiments, i.e. Iterated
Local Search. In Sect. 3, we give a short introduction to fitness landscapes and
provide a formal definition. In Sect.4, we define LONs with escape edges. In
Sect. 5, we shortly describe the concept of PageRank Centrality. In Sect.6, we
describe our experimental design and the search space used (NK family of land-
scapes). We present our results in Sect. 7 and draw our conclusions in Sect. 8.

2 TIterated Local Search

Tterated Local Search (ILS, [10]) has so far been used in a variety of studies on
local optima networks [3,8,11]. The concept of ILS is used in many practically
relevant search methods, e.g. the Chained Lin Kernighan heuristic [12,13]. This
section gives a brief review on the algorithm.

! For the reader’s convenience, we wanted this paper to be self-contained. In the
introductory sections, we included descriptions and formal definitions for Fitness
Landscapes and PageRank following the explanations in [9].
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ILS combines the concept of intensification by local search with a num-
ber of perturbation steps to obtain some diversification. During intensification,
heuristics focus their search on promising areas of the search space, whereas
during diversification, new areas are explored [14]. Algorithm 1 describes the
search method in pseudo code. Given a search space of valid solutions S for an
optimization problem, we assign a fitness value to each s € S by the function
f S — Rxq. ILS starts with a randomly selected solution sy € S. Then, the
algorithm performs a hill climbing procedure with best improvement as selection
rule (Algorithm 2): from the neighborhood N (s), the best solution with higher
fitness is selected. This requires a scan of the whole neighborhood of s. The
neighborhood N (s) is the set of solutions that can be reached by performing an
incremental change to s. This hill climbing procedure is then repeated until it
reaches a local optimum s*, i.e. no further improvement is possible. Then, ILS
performs a diversification step by applying a limited perturbation to the local
optimum, resulting in s’. As a next step, hill climbing is applied from s’, until the
next local optimum s*' is reached. If the new local optimum s* is different from
the previous s* and has higher fitness, the algorithm has “escaped” to a new
local optimum, and the change is accepted. Otherwise, another perturbation is
applied to s*. This procedure is repeated until a termination condition is met,
e.g. a fixed number of escapes without any further improvement.

Algorithm 1. Iterated Local Search (ILS)

Require: Solution space S, Fitness function f(S), Neighborhood function N(S),
Stopping Threshold ¢
Choose initial random solution so € S
s* « hillClimbBI(so)
10
repeat
s’ « perturbation(s*)
%« hillClimbBI(s’
if (s #£5%) A (f(s*) > f(s*)) then
8* — s*,
9: 10
10:  end if
11: 1141
12: until i >t
13: return s*

3 Fitness Landscape Analysis

3.1 Concept

The notion of fitness landscapes originated from evolutionary biology [15]. The
idea is that there is a fitness for each genome of the different species, and by the
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Algorithm 2. Best Improvement Hill Climbing (hillClimbBI)

Require: Solution space S, Fitness function f(S), Neighborhood function N(S),
Initial solution so
i—0
repeat

choose siy1 s.t. f(Sir1) = mazzen(s;) (f(x))

if f(Sl) < f(8i+1) then

Si < Si4+1

end if

i—1i+1
until s; is local optimum: {s € N(s;) | f(s) < f(s:)} = {}
return s;

distances between the genomes a landscape is shaped in which the fitness is the
height. In combinatorial optimization, a motivation to analyze fitness landscapes
is to gain a better understanding of algorithm performance on a related set of
problem instances. Landscape characteristics reflect the difficulty for a variety
of heuristics [5,6], thus problem specific knowledge can help construct better
search methods [16]. In this chapter, we provide a short explanation of important
fundamentals of fitness landscape analysis.

3.2 Neighborhood Structure

In combinatorial optimization, a fitness landscape [15] is a triplet of the search
space S, the fitness function f, and the neighborhood structure N(.S). S contains
all valid solution candidates. The fitness function f : S — R>( assigns a fitness
value to each s € S. The neighborhood function N : S — P(S) assigns a set
of neighbors N(s) to every s € S. The neighborhood structure determines the
position of each s in the landscape [17]. To determine the neighbors, we define
a distance function between all pairs of solutions sy and s; as

d: (s0,81) — Ng,s0 A sy €S. (1)

The distance function depends on the search operator used. Starting from a
solution sg, local search uses a small distance dy,q; = ds,,s, to choose a new
solution s;. We define the neighborhood function as

N:So—>{81 65‘817580/\0<d(80781)§dmax}. (2)

Iterated Local Search varies dp,.x during run-time to obtain higher diversification
and to escape from a local optimum by using perturbation steps. This results
in changes in the landscape during the run of the algorithm, and makes static
analyses more difficult. Despite that, it is generally accepted to study a landscape
defined by a fitness function and one or several induced distances [16].
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3.3 Definition of Local Optima

A fitness landscape can have one or more local optima. A local optimum is a
solution that has no superior neighbors. For a maximization problem, we define
a function

Naup(s) = {n € S[n e N(s) A f(n) > (f(s)} 3)

which returns the neighbors of a solution s € S that have a superior fitness. As
local optima have no superior neighbors, the set

LO = {lo € S| Naup(l0) = {} } (4)

contains all the local optima, which also includes the global optimum.

3.4 Basins of Attraction

The basin of attraction is defined as the set of solution candidates from which
local search converges to a particular local or global optimum. Extracting the
basins of a fitness landscape is required in order to calculate the edges of LONs.
The extraction process depends on the selection rule of the hill climbing algo-
rithm [2]. Our implementation of ILS used best improvement hill climbing, (Algo-
rithm 2) which accepts only the best of all superior neighbor solutions. Conse-
quently, each solution in the search space belongs to the basin of exactly one
local optimum and the basins form a partition set of the search space. These
basins are referred to as unconditional basins [16]. The function

B:lo— P(S\LO) (5)

assigns a subset from the power set of solutions over the search space to each
local optimum lo € LO, which is the basin of [o. In the following, we use B as a
function which returns the unconditional basins.

3.5 Landscape Features

Structural features of fitness landscapes are often used to predict the perfor-
mance of algorithms. A well-elaborated collection of such features is given by
[18]. Two of the frequently used features are ruggedness [19] and deceptiveness
[20]. The idea of ruggedness is that the smoother the landscape is, the easier
it is to search the landscape in order to find the global optimum. Ruggedness
is a consequence of modality, i.e. the presence of local optima. The higher the
number of local optima, the more rugged is the landscape. Ruggedness is usually
measured as the correlation of fitness values between pairs of neighboring solu-
tions pny, (nearest-neighbor-correlation). The usual way to calculate py, is to
perform a random walk across the search space and draw samples of the fitness
of solution pairs that are neighbors.

A landscape is deceptive if the structure of the search space leads away
from the global optimum. A measurement for deceptiveness is the correlation
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between the fitness of the solutions and their distance to the global optimum [20].
For the calculation of the fitness-distance correlation p¢q, the global optimum
must be known in advance. A random sample of solutions is drawn and pyq is
determined between their fitness and their distance to the global optimum. A
totally misleading landscape with a fitness-distance correlation pyq ~ —1 is often
referred to as a trap.

4 Local Optima Networks

4.1 Concept

LONSs have been inspired by the study of energy landscapes in chemical physics
[1,21]. A LON is a graph representation of a fitness landscape. A graph G consists
of two sets each for vertices and edges G = (V, E). The vertex set V contains
all the local optima of the fitness landscape. E contains the edges that model
transitions between the local optima. In the case of LONs, the edges are directed
and weighted. The existence and weight of edges depend on the trajectory of the
search algorithm. To model the dynamics of Tterated Local Search, [3] introduced
the concept of escape edges.

4.2 Escape Edges

Escape edges are defined according to the distance function of the fitness land-
scape d (minimal number of moves between two solutions). There is an integer
D > 0 that is depicted as the distance that the ILS search applies to perform a
perturbation step. There is a directed edge F;, > 0 from local optimum o, to
loy if there exists a solution s such that

d(s,loy) < D As € B(loy). (6)

The weight of this edge reflects the probability that an algorithm escapes from
log to loy. It is the number of solutions within reach of the escape step and which
belong to the basin of lo,. Since our implementation used best improvement hill
climbing, the function B here returns the unconditional basin of attraction. The
number of solutions with an opportunity to escape is normalized by the total
number of solutions within reach:

{s € S|d(s,lo;) <D As e B(loy)}| (7)
[{s € S|d(s,l0,) < D}| '

By =

5 PageRank Centrality

The centrality of nodes is a concept of network analysis to identify important or
influential nodes [22]. Google were the first to assess the relevance and impor-
tance of web sites by their centrality in the linkage structure of the web. To this
purpose, they have been using PageRank Centrality [23], which is a variant of the
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Eigenvector centrality. It is based on the model of a user who surfs the web by
randomly clicking links. The PageRank value of a website reflects the probability
that the surfer currently is on this website. There are three factors determining
the PageRank of a web page: the number of links a page receives, the number
of outgoing links of the linking pages, and the PageRank of the linking pages.
Thus, PageRank is a recursively defined concept. For detailed information on
the notion and application of PageRank, we refer to [24].

To calculate the PageRank of websites, we need a transition matrix I7, which
is a stochastic matrix of the linkage structure matrix E with all rows and columns
normalized to sum up to 1. In LONS, the transition matrix E as defined by the
edge weights in lemma (7) is a normalized, stochastic matrix. Thus, we can set
II=FE.

A parameter of PageRank is the damping factor a, which reflects the fact
that a random surfer may—instead of following links—visit a totally random
page at some point. This probability is represented by 1 — a.. A typical value is
« = 0.85, which says that a surfer chooses a random page after about five link
clicks. Hill climbing algorithms do not make any jumps in the search space, thus
o = 1.0 was set for analyzing the LONs with Basin Transition Probabilities in
previous work [9]. In the case of ILS, there is a perturbation operator. However,
the escape edges in the corresponding LON model already reflect this behavior.
Consequently, we set o = 1.0 for our analysis.

Then, the PageRank centrality of all nodes (local optima) is given by the
vector P, which is the Eigenvector of II:

P=1IIxP. (8)

If IT is a strongly connected graph, there exists a unique solution for P [25,
26]. These conditions are fulfilled in our case, since negative probabilities are
impossible by our definition of the LONs transition matrix. In addition, we did
not observe any disconnected components in our LONs. The vector P contains
the PageRank centralities of all the local optima in the search space’s LON.
Consequently, we define P, as the PageRank value of the global optimum.

6 Experiment

6.1 Search Space: NK Model

For our experiment, we used the well-known Kauffman NK model [27], which is a
family of combinatorial optimization problems from the class of pseudo-boolean
functions. Each instance of the model can be generated by the two parameters
N and K. Each solution s € S consists of N binary decision variables, forming
a search space of |S| = 2V possible states. The fitness function

fNK : [05 1]N - [07 1] (9)

assigns a score to every combination of bits. It consists of IV sub-functions, which
assign a fitness for each bit ¢, depending on the state of bit ¢ and the states of
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K other bits
fi : [07 1]K+1 - [Oa 1] (10)

The total fitness fyx(s) is the average of the values of the N sub-functions. All
function values are normalized between 0 and 1, with 1.0 as the fitness of the
global optimum. The parameter K determines the number of co-variables per
decision variable and thus the complexity of an instance (epistasis). A value of
K = 0 results in a problem solvable in linear time. K = N —1 leads to a problem
where each decision variable can only be set to the optimal value if all other N —1
co-variables are considered. Even though it is commonly accepted that a higher
level of epistasis lead to higher search difficulty of landscapes, it is only a rough
measure for difficulty. Landscapes with an identical level of epistasis can have a
significant variety of search difficulty. Our results on the performance of ILS in
Sect. 7.1 underpin this assumption.

The distance between two binary solutions z,y € S is calculated by the

n

Hamming-distance d(z,y) = > |x; — y;l, i.e., the number of bits that are set to
different values when comparizn;;) two solutions. For the hill climbing procedure in
ILS, we assumed that two solutions z, y are neighbors if their Hamming distance
equals one (dmax = 1). Thus, a local search step flips exactly one bit of the
current solution. As perturbation operator in ILS, we flipped two bits in one
step.

6.2 Implementation

The objective of our experiment is to predict the success rate ps; and the aver-
age fitness avg(f) achieved by ILS in a variety of different search spaces. We
generated 300 instances in total of the NK model with N = 15 bits. To test
different levels of epistasis, we used 100 instances each for K € {2,7,12}. A
search space contained 2'° = 32,768 solutions, which is small, but manageable
for our analysis. For each instance, we extracted the fitness landscape and the
LON with escape edges and calculated the following features:

1. P: the PageRank Vector, and P,:: the PageRank of the global optimum,

2. F: the vector containing the fitness values of all the local optima,

3. pnn: the ruggedness of the fitness landscape, measured by the Pearson cor-
relation between the fitness of nearest neighbors [19] and

4. pgq: the deceptiveness of the landscape, measured by the Pearson correlation
between fitness and distance to the global optimum [20].

For each problem instance, we performed 1,000 independent runs of ILS. The
initial solutions were randomly selected. As a stopping threshold for ILS, we
limited the running time by a reasonable number of function evaluations, which
was 1/5th of the search space size [8]. We examined two relationships: first,
we studied how the PageRank of the global optimum FP,,; predicts the success
rate of ILS in the different problem instances. The purpose of this approach is to
confirm that the findings from the previous study on LONs with basin transition
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probabilities [9] also hold for the LON,, model. We have also compared the Page-
Rank to the average number of function evalutions avg(t) that were performed
in those runs in which the global optimum was found. Second, we aimed to
predict the solution quality of ILS (the average fitness) by the PageRank vectors
of the LONs. To achieve this, we used the PageRank vector P and the fitness
vector F' of the local optima for each search space. We expect that P provides a
stationary distribution over the whole search space and is a probability vector,
s.t. > P = 1. We use these probabilities to calculate an average of the fitness of
the local optima as given by F', weighted by their stationary probability:

E[f]=P x F. (11)

The result is a scalar value which we call the expected fitness E[f] achieved by
ILS in a distinct search space. We calculated E[f] for all the problem instances.
We assessed the predictive power of the different predictor metrics by the deter-
mination coefficient R? from a univariate, linear regression model. As a bench-
mark, we have also calculated the R? between the performance measures and the
classical metrics from fitness landscapes analysis (ruggedness and deceptiveness).

We implemented our generator for NK landscapes, the extraction procedure
for LONs and the ILS algorithm in the Java programming language. For com-
putation, we utilized 20 nodes from an HPC cluster called Mogon with each 64
cores and 256 GB of RAM. To calculate the PageRank values of the nodes, we
used the NetworkX Library. Our statistical analysis was conducted using the
R framework.

7 Results

7.1 Empirical Performance of ILS

As a pre-test of our experiments, we examined the performance of ILS by success
rate ps, average fitness avg(f) and the number of fitness function evaluations
to find the global optimum awvg(t). The results can be obtained from Fig. 1.
In the landscapes with low epistasis, we can see that ILS could easily find the
global optimum in the majority of the search spaces. With increasing value of
the exogenous parameter for epistasis K, the average success rate decreases, and
so does the average score achieved by ILS. The number of fitness evaluations
necessary to find the global optimum increases with the epistasis: more epistasis
lead to a higher modality, i.e. the number of local optima. The more local optima
are in a search space, the more perturbations are necessary to find the global
optimum. All of these observations are as expected: higher epistasis leads to a
higher search difficulty, and thus lead to a lower success rate, a lower average
fitness and longer running times. We can also see that there is as high variance
of all the performance measures within the different classes of K, indicating that
epistasis has only limited explanatory power for search difficulty.
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Fig.1. The three performance measures of ILS over the epistasis K of the NK-
landscapes: Success Rate (left), Average Fitness (middle) and Running Time by the
Number of Fitness Evaluations (right).

7.2 Prediction of Success Rate and Average Fitness

To assess the predictive quality, we calculated all coefficients of determination
(R?) for each combination of predictor metric and performance measure. We
have also made separate calculations for different levels of epistasis. The results
for all combinations can be obtained from Table1. In Fig.2, we have plotted
the performance of ILS (success rate, average fitness and running time) over the
three predictor metrics. Each dot in the plot represents one search space.

As a first step, we take a look at the standard metrics that are frequently
used in literature. Over all K, ruggedness and deceptiveness each can explain
around 55 % of the variance of success rate and 44 %/35 % of average fitness.
This is an intermediate statistical correlation. This correlation becomes weaker
the higher the level of epistasis is. In the cases where K € {7,12}, the traditional
metrics fail to explain any variance in the performance of ILS over all metrics.
An explanation for this could be that the landscapes with high epistasis have a
low variance in their ruggedness p,, and deceptiveness pyq. A low variance in
the regressor variables then results in a low R2.

We will now take a look at the prediction by PageRank Centrality. Our
expectations were a high correlation between the PageRank of the global Opti-
mum and success rate, as well as between the average score of the local optima
(weighted by their PageRank) and the fitness achieved by ILS on average. We
observed the following patterns in our results:

— The PageRank of the global optimum in the LON with escape edges Pp;
explains almost 97 % of the success rate of ILS p,. Obviously, the PageRank
as obtained from the LON,, model is a good indicator of the search difficulty
for ILS.
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Table 1. R? for the different performance measures and predictor metrics.
Performance Predictor VK K=2K=7K=12
Success rate: ps NN correl.: ppn 0.5567/0.5567/0.0019|0.0134
FD correl.: pgq 0.5400/0.5400/0.0751|0.0897
PageRank: Pop¢ 0.9675]0.9675/0.9683|0.8870
Average fitness: avg(f)|NN correl.: pnn 0.4497/0.4497/0.0235(0.0012
FD correl.: pgq 0.3523/0.35240.0075|0.0295
PageRank weighted fitn.: E[f] 0.9714|0.9714|0.9668|0.9554

Running time: avg(t)

NN correl.: ppn 0.20900.0027/0.0019|0.0007
FD correl.: pgq 0.14550.0006 |0.0089 |0.0069
PageRank: Popt 0.00060.1444/0.3081|0.3950

Success Rate p;

Average Fitness avg(f)

R? = 0.9675394

R? = 0.5566902

R? = 0.5399835
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Fig. 2. The performance of ILS (Top: Success Rate, Bottom: Average Fitness) over
the Predictor Metrics (PageRank/PageRank Weighted Avg. Fitness, Ruggedness and
Deceptiveness, from left to right). Each of the Dots represents a single Problem
Instance.

— The expected average fitness F[f] explains almost 97 % of the average score

achieved by ILS avg(f). Thus, the PageRank vector of a LON P seems to reflect
the dynamics of ILS in terms of the probability to achieve a certain state.
These results are robust for different levels of epistasis K. For high values of
K, the R? is slightly reduced for both predictors, but it is still a very strong
correlation and significantly better than traditional landscape metrics. Thus,
the LON with escape edges nearly approximates the dynamics of ILS.

The number of fitness evaluations needed to locate the global optimum avg(t)
is only weakly correlated to all of the predictor metrics. Surprisingly, in the
case of medium and high epistasis, the PageRank seems to predict 30-40%
of the variance of running time. An explanation for this could be that in
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cases of high epistasis, the basins are very small. In landscapes with small
basins, the running time of ILS is dominated by perturbation steps, and there
is nearly no hill climbing. Since the escape edges in the LON,. map these
perturbations, the LON,, perfectly matches the stochastic process of ILS in
such cases. Then, the LON is more likely to reflect the running time than
in cases where ILS needs to spend many function evaluations for the hill
climbing procedure.

In summary, we have shown that the PageRank of the global optimum in LONs
with escape edges perfectly predicts the search difficulty of landscapes for ILS; i.e.
the empirical success rate. Moreover, we found that the stationary distribution of
the PageRank vector over all local optima is useful to make predictions about the
solution quality when running ILS in a certain search space?. Both predictions
work for all levels of epistasis, which is a clear advantage to the concepts of
ruggedness and deceptiveness.

8 Conclusions

In this study, we have contributed to recent research on predicting search dif-
ficulty of landscapes with the help of local optima networks and the metrics
from the network analysis framework. We have shown that the PageRank Cen-
trality of local optima can be used to predict the average fitness and success
rate achieved by search heuristics. This works because LONs are an approxi-
mation of the fitness landscape’s Markov Chain and the PageRank reflects the
stationary distribution of the states in this chain. Other than classical metrics
of landscape analysis, this method is robust against different levels of epistasis,
i.e. the number of interdependencies between the decision variables. The PageR-
ank of the global optimum also predicts the running time with limited accuracy
in landscapes with high epistasis. Thus, LONs can be used as a tool to draw
conclusions on the structure of problems. We have shown that predictions made
with PageRank in a previous study are applicable with a LON model that can
be extracted in reasonable time. A practical application of these findings could
be in the selection process of problem instances for benchmark purposes. In
benchmarks, test reliability is an important criterion, and the PageRank could
be easily used to select instances that guarantee a uniform search difficulty or
expected fitness outcome.

A limitation of our study is the size of the problem instances used. Even
though we are convinced that our results extrapolate to larger instances, it would
be interesting to perform further examinations on this, e.g. by sampling the
local optima instead of evolving the whole search space. Another limitation is
of fundamental nature: even though we have not made further tests in this
assumption, we think that it is not possible to make general statements on the

2 We have also replicated this result to predict the average fitness achieved by local
search with LONs with basin transition probabilities. Results are available from the
authors upon request.
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performance of an algorithm with an arbitrary LON model. Instead, the LON
model must match the dynamics of the search method. For instance, in the case
of ILS, the escape edges must consider the distance of the perturbation step.
However, this study provides evidence that the prediction by PageRank works
across different LON models in combination with a distinct search heuristic. For
future work, we suggest to conduct further analysis on the analysis of problem
structure by LONs. For instance, it would be worthwhile to study whether it
is possible to make assumptions over the search difficulty of landscapes for a
variety of search heuristics with the help of LONs. Furthermore, it would be
interesting to study the structure of larger problem instances with networks
(e.g. by sampling instead of fully evolving the search space) and see if there are
patterns in the distribution of local optima.
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Abstract. Local search algorithms and iterated local search algorithms
are a basic technique. Local search can be a stand-alone search method,
but it can also be hybridized with evolutionary algorithms. Recently, it
has been shown that it is possible to identify improving moves in Ham-
ming neighborhoods for k-bounded pseudo-Boolean optimization pro-
blems in constant time. This means that local search does not need to
enumerate neighborhoods to find improving moves. It also means that
evolutionary algorithms do not need to use random mutation as a ope-
rator, except perhaps as a way to escape local optima. In this paper, we
show how improving moves can be identified in constant time for mul-
tiobjective problems that are expressed as k-bounded pseudo-Boolean
functions. In particular, multiobjective forms of NK Landscapes and Mk
Landscapes are considered.
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1 Introduction

Local search and iterated local search algorithms [8] start at an initial solution
and then search for an improving move based on a notion of a neighborhood
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of solutions that are adjacent to the current solution. This paper will consider
k-bounded pseudo-Boolean functions, where the Hamming distance 1 neighbor-
hood is the most commonly used local search neighborhood.

Recently, it has been shown that the location of improving moves can be cal-
culated in constant time for the Hamming distance 1 “bit flip” neighborhood [16].
This has implications for both local search algorithms as well as simple evolu-
tionary algorithms such as the (1 + 1) Evolutionary Algorithm. Since we can
calculate the location of improving moves, we do not need to enumerate neigh-
borhoods to discover improving moves.

Chicano et al. [3] generalize this result to present a local search algorithm
that explores the solutions contained in a Hamming ball of radius r around a
solution in constant time. This means that evolutionary algorithms need not
use mutation to find improving moves; either mutation should be used to make
larger moves (that flip more than r bits), or mutation should be used to enable a
form of restart. It can also makes crossover more important. Goldman et al. [6]
combined local search that automatically calculates the location of improving
moves in constant time with recombination to achieve globally optimal results
on relatively large Adjacent NK Landscape problems (e.g. 10,000 variables).

Whitley [15] has introduced the notion of Mk Landspaces to replace NK
Landscapes. Mk Landscapes are k-bounded pseudo-Boolean optimization pro-
blems composed of a linear combination of M subfunctions, where each subfunc-
tion is a pseudo-Boolean optimization problem defined over k variables. This
definition is general enough to include NK landscapes, MAX-kSAT, as well as
spin glass problems.

In this paper, we extend these related concepts to multi-objective optimiza-
tion. We define a class of multi-objective Mk Landscapes and show how these
generalize over previous definitions of multi-objective NK Landscapes. We also
show how exact methods can be used to select improving moves in constant
time. In the multi-objective space, the notion of an “improving move” is com-
plex because improvement can be improvement in all objectives, or improvement
in only part of the objectives. When there are improvement in all objectives, then
clearly the improvement should be accepted. However, when there are improve-
ment in only a subset of objectives, it is less clear what moves should be accepted
because it is possible for search algorithms to cycle and to visit previously dis-
covered solutions. Methods are proposed that allow the identification of improv-
ing moves in constant time for multi-objective optimization. Methods are also
proposed to prevent local search algorithms from cycling and thus repeatedly
revisiting previously discovered solutions. The results of this work could also be
introduced in existing local search algorithms for multi-objective optimization,
like Anytime Pareto Local Search [5].

The rest of the paper is organized as follows. In the next section we intro-
duce multi-objective pseudo-Boolean optimization problems. Section 3 defines
the “Scores” of a solution. The Score vector tracks changes in the evaluation
function and makes it possible to track the locations of improving moves. An
algorithm is introduced to track multiple Scores and to efficiently update them
for multi-objective optimization. Section 4 considers how to address the problems
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of selecting improving moves in a multi-objective search space when the move
only improves some, but not all, of the objectives. Section 5 empirically evaluates
the proposed algorithms. Section 6 summarizes the conclusions and outline the
potential for future work.

2 Multi-Objective Pseudo-Boolean Optimization

In this paper we consider pseudo-Boolean vector functions with k-bounded epis-
tasis, where the component functions are embedded landscapes [7] or Mk Land-
scapes [15]. We will extend the concept of Mk Landscapes to the multi-objective
domain and, thus, we will base our nomenclature in that of Whitley [15].

Definition 1 (Vector Mk Landscape). Given two constants k and d, a vec-
tor Mk Landscape f : B — R? is a d-dimensional vector pseudo-Boolean
function defined over B™ whose components are Mk Landscapes. That is, each
component f; can be written as a sum of m; subfunctions, each one depending
at most on k input variables':

m;

fil) =3 fP2)  for1<i<d, (1)

1=1
where the subfunctions fi(l) depend only on k components of x € B™.

This definition generalizes that of Aguirre and Tanaka [1] for MNK Land-
scapes. In Fig. 1(a) we show a vector Mk Landscape with d = 2 dimensions. The

first objective function, fi, can be written as the sum of 5 subfunctions, fl(l) to
fl(s). The second objective function, fs, can be written as the sum of 3 subfunc-

tions, f2(1) to fz(g). All the subfunctions depend at most on k = 2 variables.

It could seem that the previous class of functions is restrictive because each
subfunction depends on a bounded number of variables. However, every com-
pressible pseudo-Boolean function can be transformed in polynomial time into
a quadratic pseudo-Boolean function (with & = 2) [12].

A useful tool for the forthcoming analysis is the co-ocurrence graph [4] G =
(V, E), where V is the set of Boolean variables and E contains all the pairs of

variables (z;,,x;,) that co-occur in a subfunction fi(l) for any 1 < ¢ < d and
1 <1 < m; (both variables are arguments of the subfunction). In Fig. 1(b) we
show the variable co-occurrence graph of the vector Mk Landscape of Fig. 1(a).

We will consider, without loss of generality, that all the objectives (compo-
nents of the vector function) are to be maximized. Next, we include the definition

of some standard multi-objective concepts to make the paper self-contained.

! In general, we will use boldface to denote vectors in R?, as f, but we will use normal
weight for vectors in B", like .
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Fig.1. A vector Mk Landscape with £ = 2, n = 5 variables and d = 2 dimensions
(top) and its corresponding co-occurrence graph (bottom).

Definition 2 (Dominance). Given a vector function f : B® — R?, we say
that solution x € B™ dominates solution y € B", denoted with = >¢ y, if and
only if fi(x) > fi(y) for all 1 < i < d and there exists j € {1,2,...,d} such that
fi(z) > fi(y). When the vector function is clear from the context, we will use >
instead of >s.

Definition 3 (Pareto Optimal Set and Pareto Front). Given a vector
function f : B® — R?, the Pareto Optimal Set is the set of solutions P that
are not dominated by any other solution in B™. That is:

P={zecB"fyecB"y>z}. (2)
The Pareto Front is the image by f of the Pareto Optimal Set: PF = f(P).

Definition 4 (Set of Non-dominated Solutions). Given a vector function
f:B” — RY, we say that a set X C B™ is a set of non-dominated solutions when
there is no pair of solutions x,y € X wherey > x, that is, Vo € X, fy € X,y > .

Definition 5 (Local Optimum [11]). Given a vector function f : B" — R?,
and a neighborhood function N : B" — 28" we say that solution x is a local
optimum if it is not dominated by any other solution in its neighborhood: Py €
N(z),y > z.

3 Moves in a Hamming Ball

We can characterize a move in B™ by a binary string v € B™ having 1 in all
the bits that change in the solution. Following [3] we will extend the concept of
Score? to vector functions.

2 What we call Score here is also named A-evaluation by other authors [13].
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Definition 6 (Score). For v,z € B", and a vector function £ : B® — R?, we
denote the Score of x with respect to move v as S,(x), defined as follows:

Sy(z) =f(xz dv) — f(z), (3)
where @ denotes the exclusive OR bitwise operation (sum in Zsg).

The Score S,(z) is the change in the vector function when we move from
solution x to solution z @ v, that is obtained by flipping in x all the bits that are
1 in v. Our goal is to efficiently decide where to move from the current solution.
If possible, we want to apply improving moves to our current solution. While the
concept of “improving” move is clear in the single-objective case (an improving
move is one that increases the value of the objective function), in multi-objective
optimization any of the d component functions could be improving, disimproving
or neutral. Thus, we need to be more clear in this context, and define what we
mean by “improving” move. It is useful to define two kinds of improving moves:
the weak improving moves and the strong improving moves. The reason for this
distinction will be clear in Sect. 4.

Definition 7 (Strong and Weak Improving Moves). Given a solution
x € B", a move v € B™ and a vector function f : B — R?, we say that
move v is a weak improving move if there exists © € {1,2,...,d} such that
filx®v) > fi(x). We say that move v is a strong improving move if it is a weak
improving move and for all j € {1,2,...,d} fi(x ®v) > f;(x).

Using our definition of Score, we can say that a move v is a weak improving
move if there exists a j € {1,2,...,d} for which S;,(z) > 0. It is a strong
improving move if S; ,(z) > 0 for all ¢ € {1,2,...,d} and there exists a j €
{1,2,...,d} for which S;,(x) > 0.

From Definition 7 it can be noticed that if v is a strong improving move in
x then x @ v > z, that is, the concept of strong improving move coincides with
that of dominance. It can also be noticed that in the single-objective case, d = 1,
both concepts are the same. Strong improving moves are clearly desirable, since
they cannot be disimproving for any objective and they will improve at least
one. Weak improving moves, on the other hand, improve at least one objective
but could disimprove other ones.

In particular, if v is a weak, but not strong, improving move in solution =,
then it will improve at least one objective, say i-th, and disimprove at least
another one, say j-th. If this move is taken, in the new solution, x @ v, the same
move v will be again a weak, but not strong, improving move. However, now
v will improve (at least) the j-th objective and will disimprove (at least) i-th.
Taking v again in x @ v will lead to z, and the algorithm cycles. Any hill climber
taking weak improving moves should include a mechanism to avoid cycling.

Scores are introduced in order to efficiently identify where the (weak or
strong) improving moves are. For this purpose, we can have a data structure
where all the improving moves can be accessed in constant time. As the search
progresses the Score values change and they also move in the data structure



Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization 93

to keep improving moves separated from the rest. A naive approach to track
all improving moves in a Hamming Ball of radius r around a solution would
require to store all possible Scores for moves v with |v| < r, where |v| denotes
the number of 1 bits in v.

If we naively use Eq.(3) to explicitly update the scores, we will have to
evaluate all 37, () = O(n") neighbors in the Hamming ball. Instead, if the
objective function is a vector Mk Landscape where each Boolean variable appears
in at most a constant number of subfunctions, we can design an efficient next
improvement hill climber for the radius r neighborhood that only stores a linear
number of Scores and requires a constant time to update them.

3.1 Scores Update

Using the fact that each component f; of the objective vector function is an Mk
Landscape, we can write:

Z (f(l) fi(l) (x)> _ Zsz(}g(x)’ (4)

where we use S; ( ) to represent the score of the subfunction f; O for move v. Let
us define w;; € IB" as the binary string such that the j-th element of w;; is 1
if and only if fi( ) depends on variable x;. The vector w;; can be considered as
a mask that characterizes the variables that affect fi(l). Since fi(l) has bounded
epistasis k, the number of ones in w;;, denoted with |w; |, is at most k. By the
definition of w;;, the next equalities immediately follow.

f(l)(x Gv) = fi(l)(ac) for all v € B" with v Aw;; =0, (5)
0 ifw;; Av=20
) - il )
Sin(®) = { Si(,lZ/\wi () otherwise. (6)

Equation (6) claims that if none of the variables that change in the move
characterized by v is an argument of fi(l) the Score of this subfunction is zero,
since the value of this subfunction will not change from fi(l)(x) to fi(l)(x @ v).
On the other hand, if fi(l) depends on variables that change, we only need to

consider for the evaluation of Sflg(x) the changed variables that affect fi(l). These
variables are characterized by the mask vector v A w; ;. With the help of (6) we
can re-write (4):

Siv(@)= > S (@) (7)

=1
w;  AV£O
Equation (7) simply says that we don’t have to consider all the subfunctions
to compute a Score. This can reduce the runtime to compute the scores from
scratch.
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During the search, instead of computing the Scores using (7) after every move,
it is more efficient in time to store the Scores S, (x) of the current solution = in
memory and update only those that are affected by the move.

In the following, and abusing of notation, given a move v € B™ we will also
use v to represent the set of variables that will be flipped in the move (in addition
to the binary string).

For each of the Scores to update, the change related to subfunction fi(l) after
move ¢ € B™ can be computed with the help of Sz(ll))(x ®t) = fi(l)(ac Dtd
v) — fi(l)(x @ t) and Sl(lg(x) = fi(l)(x ®v) — fi(l)(a;). The component S; ,, will be
updated by subtracting S gl)(x) and adding Sl(lg (z @ t). This procedure is shown

i,
in Algorithm 1, where the term S, , represents the i-th component of the Score
of move v stored in memory and M" is the set of moves whose scores are stored.
In the worst (and naive) case M" is the set of all strings v with at most r ones,
M™ = {v|]1 < |v| <r}, and |M"| = O(n"). However, we will prove in Sect. 3.2
that, for some vector Mk Landscapes, we only need to store O(n) Scores to
identify improving moves in a ball of radius r.

Algorithm 1. Efficient algorithm for Scores update

Input: scores vector S, current solution x, move t
1: for (4,1) such that w;; At # 0 do
2: for v € M" such that w;; Av # 0 do
3: Siw — Siv+ fz-(l)(a: BtHv) — fi(l)(x Dt)
~f e+ 10
4:  end for
5: end for

3.2 Scores Decomposition

Some scores can be written as a sum of other scores. The benefit of such a
decomposition is that we do not really need to store all the scores in memory to
have complete information of the influence that the moves in a Hamming ball of
radius r have on the objective function f. The co-occurrence graph has a main
role in identifying the moves whose Scores are fundamental to recover all the
improving moves in the Hamming ball.

Let us denote with G[v] the subgraph of G induced by v, that is, the subgraph
containing only the vertices in v and the edges of E between vertices in v.

Proposition 1 (Score decomposition). Let vi,vy € B™ be two moves such
that viNve = 0 and variables in v, do not co-occur with variables in vy. In terms
of the co-occurrence graph this implies that there is no edge between a variable
in v1 and a variable in vy and, thus, Glvy Uve] = Gv1] U Gva]. Then, the score
function Sy, Uy, () can be written as:

Sv;Uvs (33) =S, (ZL') + So, ($) (8)
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Proof. Using (7) we can write:

- l
Si,m Uvg (J)) = Z Si(,()vl V) Aw;,g (.13)
wiJA(ﬁixvz)ﬂ)
B : 0)
= Z Sz J(v1Aw; )V (va Aw;, L)( )

=1
(w1 Av1)V(w; Ava)#0

Since variables in v; do not co-occur with variables in vy, there is no w;;
such that v; Aw;; # 0 and vy A w;; # 0 at the same time. Then we can write:

- l 1)
Sivvluv‘z(x) = Z Sz('t))l/\w” Z Sz(vz/\wll ‘T) = Siﬂfl (1‘) +Si,112(x)7
wi, Avy#0 zsz#O
and the result follows. O

For example, in the vector Mk Landscape of Fig. 1 the scoring function Sy 3 4
can be written as the sum of the scoring functions S; and Ss 4, where we used
i1,19,... to denote the binary string having 1in positions iy, %2, ..., and the rest
set to 0.

A consequence of Proposition 1 is that we only need to store scores for moves
v where G[v] is a connected subgraph. If G[v] is not a connected subgraph, then
there are sets of variables v; and v, such that v = vy U vy and v1 Nve = () and,
applying Proposition 1 we have S,(z) = S,, (z) + Sy, (2). Thus, we can recover
all the scores in the Hamming ball of radius r from the ones for moves v where
1 < |Jv] < r and G[v] is connected. In the following we will assume that the set
MT™ of Algorithm 1 is:

"={v e B"1 < |v| <r and G[v] is connected} . (9)

3.3 Memory and Time Complexity of Scores Update

We will now address the question of how many of these Scores exist and what
is the cost in time of updating them after a move.

Lemma 1. Let f : B® — R? be a vector Mk Landscape where each Boolean
variable appears in at most ¢ subfunctions fi(l). Then, the number of connected
subgraphs with size no greater than v of the co-occurrence graph G containing a
given variable x; is O((3ck)").

Proof. For each connected subgraph of G containing x; we can find a spanning
tree with z; at the root. The degree of any node in G is bounded by ck, since
each variable appears at most in ¢ subfunctions and each subfunction depends
at most on k variables. Given a tree of [ nodes with x; at the root, we have
to assign variables to the rest of the nodes in such a way that two connected
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nodes have variables that are adjacent in G. The ways in which we can do this
is bounded by (ck)!~!. We have to repeat the same operation for all the possible
rooted trees of size no greater than r. If T; is the number of rooted trees with [
vertices, then the number of connected subgraphs of G' containing z; and with
size no greater than r nodes is bounded by

iTl(ck)l’l < zrjgl(c/g)l*1 < 3(3ck)", (10)

=1 =1

where we used the result in [10] for the asymptotic behaviour of 1

T,
lim T—l ~ 2.955765. (11)

l—oo L]
O

Lemma 1 provides a bound for the number of moves in M" that contains
an arbitrary variable x;. In effect, the connected subgraphs in G' containing x;
corresponds to the moves in M" that flip variable ;. An important consequence
is given by the following theorem.

Theorem 1. Let £ : B — R? be a vector Mk Landscape where each Boolean
variable appears in at most ¢ subfunctions. Then, the number of connected sub-
graphs of G of size no greater than r is O(n(3ck)"), which is linear in n if c is
independent of n. This is the cardinality of M" given in (9).

Proof. The set of connected subgraphs of G with size no greater than r is the
union of connected subgraphs of G of size no greater than r that contains each
of the n variables. According to Lemma 1 the cardinality of this set must be
O(n(3ck)"). O

The next Theorem bounds the time required to update the scores.

Theorem 2. Let £ : B” — R? be a vector Mk Landscape where each Boolean

variable appears in at most ¢ subfunctions fi(l), The time required to update the
Scores using Algorithm 1 is O(b(k)|t|(3ck)™ 1) where b(k) is a bound on the time

required to evaluate any subfunction fi(l).

Proof. Since each variable appears in at most ¢ subfunctions, the number of
subfunctions containing at least one of the bits in ¢ is at most c|¢|, and this
is the number of times that the body of the outer loop starting in Line 1 of
Algorithm 1 is executed. Once the outer loop has fixed a pair (4,1), the number
of moves v € M" with w; ; Av # 0 is the number of moves v € M" that contains
a variable in w; ;. Since |w; ;| < k and using Lemma 1, this number of moves is
O(k(3ck)™). Line 3 of the algorithm is, thus, executed O(|t|ck(3ck)”) times, and
considering the bound on the time to evaluate the subfunctions, b(k) the result
follows. a
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Since |t| < r, the time required to update the Scores is ©(1) if ¢ does not

depend on n. Observe that if ¢ is O(1), then the number of subfunctions of the

vector Mk Landscape is m = Z?Zl m; = O(n). On the other hand, if every

variable appears in at least one subfunction (otherwise the variable could be
removed), m = Q(n). Thus, a consequence of ¢ = O(1) is that m = ©(n).

4 Multi-Objective Hamming-Ball Hill Climber

We have seen that, under the hypothesis of Theorem 1, a linear number of Scores
can provide information of all the Scores in a Hamming ball of radius r around a
solution. However, we need to sum some of the scores to get complete information
of where all the improving moves are, and this is not more efficient than exploring
the Hamming ball. In order to efficiently identify improving moves we have to
discard some of them. In particular, we will discard all the improving moves
whose scores are not stored in memory. In [3] the authors proved for the single-
objective case that if none of the O(n) stored scores is improving, then it cannot
exist an improving move in the Hamming ball of radius r around the current
solution. Although not all the improving moves can be identified, it is possible
to identify local optima in constant time when the hill climber reaches them.
This is a desirable property for any hill climber. We will prove in the following
that this result can be adapted to the multi-objective case.

If one of the scores stored indicates a strong improving move, then it is clear
that the hill climber is not in a local optima, and it can take the move to improve
the current solution. However, if only weak improving moves can be found in
the Scores store, it is not possible to certify that the hill climber reached a local
optima. The reason is that two weak improving moves taken together could give
a strong improving move in the Hamming ball. For example, let us say that we
are exploring a Hamming ball of radius r = 2, variables z; and x5 do not co-
occur in a two-dimensional vector function, and S; = (—1,3) and Sg = (3, —1).
Moves 1 and 2 are weak improving moves, but the move S 2 = S1 + Sy = (2,2)
is a strong improving move. We should not miss that strong improving move
during our exploration.

To discover all strong improving moves in the Hamming ball we have to con-
sider weak improving moves. But we saw in Sect. 3 that taking weak improving
moves is dangerous because they could make the algorithm to cycle. One very
simple and effective mechanism to avoid cycling is to classify weak improving
moves according to a weighted sum of their score components.

Definition 8 (w-improving move and w-score). Let f : B" — R? be a
vector Mk Landscape, and w € R? a d-dimensional weight vector. We say that a
move v € B™ is w-improving for solution x if w-S,(x) > 0, where - denotes the
dot product of vectors. We call w - S, (x) the w-score of move v for solution x.

Proposition 2. Let f : B — R? be a vector Mk Landscape, and w € R? a
d-dimensional weight vector with w; > 0 for 1 < i < d. If there exists a strong
improving move in a ball of radius r around solution x, then there exists v € M"
such that w - S,(x) > 0.
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Proof. Let us say that v is a strong improving move in the Hamming ball of radius
7. Then there exist moves vy, va, ... v; € M" suchthat S, (z) = 7_, S, (). Since
v is strong improving and all w; > 0, we have w - S,,(z) = >7_, w - S;, (z) > 0.
There must be a v; with 1 <[ < j such that w - S,,(z) > 0. O

Proposition 2 ensures that we will not miss any strong improving move in
the Hamming ball if we take the weak improving moves with an improving
w-score. Thus, our proposed Hill Climber, shown in Algorithm 2, will select
strong improving moves in first place (Line 4) and w-improving moves when
no strong improving moves are available (Line 6). In this last case, we should
report the value of solution z, since it could be a non-dominated solution (Line 7).
The algorithm will stop when no w-improving move is available. In this case, a
local optima has been reached, and we should report this final (locally optimal)
solution (Line 12). The algorithm cannot cycle, since only w-improving moves
are selected, and this means that an improvement is required in the direction
of w. A cycle would require to take a w-disimproving move at some step of the
climb.

Algorithm 2. Multi-objective Hamming-Ball Hill Climber.

Input: scores vector S, weight vector w, initial solution =
Output: local optimum in z (and potentially non-dominated intermediate solutions)
1: S « computeScores(z);
while w - S, > 0 for some v € M" do
if there is a strong improving move v € M" then
t «— selectStrongImprovingMove(S);
else
t «— selectWImprovingMove(S);
report(z);
end if
9:  updateScores(S,z,t);
10: T — Pt
11: end while
12: report(x);

The procedure report in Algorithm 2 should add the reported solution to
an external set of non-dominated solutions. This set should be managed by the
high-level algorithm invoking the Hamming Ball Hill Climber.

For an efficient implementation of Algorithm 2, the scores stored in memory
can be classified in three categories, each one stored in a different bucket: strong
improving moves, w-improving moves that are not strong improving moves, and
the rest. The scores can be moved from one of the buckets to the other as they
are updated. The move from one bucket to another requires constant time, and
thus, the expected time per move in Algorithm 2 is ©(1), excluding the time
required by report. This implementation corresponds to a next improvement
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hill climber. An approximate form of best improvement hill climber could also
be implemented following the guidelines in [14].

The weight vector w in the hill climber determines a direction to explore
in the objective space. The use of w to select the weak improving moves is
equivalent to consider improving moves of the single-objective function w - f.
However, there are two main reasons why it is more convenient to update and
deal with the vector scores S rather than using scalar scores S of w - f. First,
using vector scores we can identify strong improving moves stored in memory,
while using scalar scores of w - f it is not possible to distinguish between weak
and strong improving moves. And second, it is possible to change w during the
search without re-computing all the scores. The only operation to do after a
change of w is a re-classification of the moves that are not strong improving®.

Regarding the selection of improving moves in selectStrongImprovingMove
and selectWImprovingMove, our implementation selects always a random one
with the lowest Hamming distance to the current solution, that is, the move ¢
with the lowest value of |t|. As stated by Theorem 2, such moves are faster, in
principle, than other more distant moves, since the time required for updating
the Scores is proportional to [¢].

5 Experimental Results

We implemented a simple Multi-Start Hill Climber algorithm to measure the
runtime speedup of the proposed Multi-Objective Hamming Ball Hill Climber of
Algorithm 2. The algorithm iterates a loop where a solution and a weight vector
are randomly generated and Algorithm 2 is executed starting on them. The
algorithm keeps a set of non-dominated solutions, that is potentially updated
whenever Algorithm 2 reports a solution. The loop stops when a given time limit
is reached. In our experiments shown here this time limit was 1 min. The machine
used in all the experiments has an Intel Core 2 Quad CPU (Q9400) at 2.7 GHz,
3 GB of memory and Ubuntu 14.04 LTS. Only one core of the Processor is used.
The algorithm was implemented in Java 1.6 and the source code is publicly
available in GitHub?.

To test the algorithm we have focused on MNK Landscapes [1]. An MNK
Landscape is a vector Mk Landscape where all m; = N for all 1 < i < d and each
subfunction fi(l) depends on z; and other K more variables (thus, k = K+1). The

subfunctions fi(l) are randomly generated using real values between 0 and 1. In
order to avoid inaccuracy problems with floating point arithmetic, instead of real
numbers we use integer numbers between 0 and ¢—1 and the sum of subfunctions
are not divided by N. That is, each component f; is an NKq Landscape [2].
We also focused on the adjacent model of NKq Landscape. In this model the

3 Distinguishing the weak, but not strong, improving moves from the strong disim-
proving moves in the implementation would reduce the runtime here, since only weak
improving moves need to be re-classified.

4 https://github.com/jfrchicanog/EfficientHillClimbers.
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variables each fi(l) depends on are consecutive, that is, z;, 241, ..., 21 x. This
ensures that the number of subfunctions a given variable appears in is bounded
by a constant, in particular, K 4+ 1, and Theorems 1 and 2 apply. Although these
functions are not very common in pseudo-Boolean multi-objective optimization
they are appropriate to empirically illustrate the theoretical results.

5.1 Runtime

There are two procedures in the hill climber that requires Q(n) time. The first
one is a problem-dependent initialization procedure, where the scores to be stored
in memory are determined. This procedure is run only once in one run of the
multi-start algorithm. In our experiments this time varies from 284 to 5,377
milliseconds.

The second procedure is a solution-dependent initialization of the hill climber
starting from random solution and weight vector. This procedure is run once in
each iteration of the multi-start hill climber loop, and can have an important
impact on algorithm runtime, especially when there are no many moves during
the execution of Algorithm 2. On the other hand, as the search progresses and
the non-dominated set of solutions grows, the procedure to update it could also
require a non-negligible runtime that depends on the number of solutions in the
non-dominated set, which could be proportional to the number of moves done
during the search.

In Fig.2 we show the average time per move in microseconds (ps) for the
Multi-Start Hill Climber solving MNK Landscapes with a time limit of 1min,
where N varies from 10,000 to 100,000, ¢ = 100, K = 3, the dimensions are
d =2 and d = 3, and the exploration radius r varies from 1 to 3. We performed
30 independent runs of the algorithm for each configuration, and the results are
the average of these 30 runs. To compute the average, we excluded the time
required by the problem-dependent initialization procedure.

We can observe that moves are done very fast (tens to hundreds of microsec-
onds). This is especially surprising if we consider the number of solutions
“explored” in a neighborhood. For N = 100,000 and r = 3 the neighborhood
contains around 166 trillion solutions that are explored in around 1 millisec-
ond. For all values of r and d the increase in the average time per move is very
slow (if any) when N grows. This slight growth in the average runtime is due
to the solution-dependent initialization and the non-dominated set update, and
contrasts with the theoretical Q(n”) time required by a black box algorithm.

As we could expect, the value of r has a great influence in the average time
per move. In fact, the time is exponential in r. Regarding the memory required
to store the Scores, we have already seen that it is ©(n). In the particular case
of the MNK Landscapes with an adjacent interaction model and r < N/K, it
is not hard to conclude that the exact number of scores is N(K" —1)/(K — 1),
which is linear in N.
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Fig. 2. Average time per move in ps for the Multi-Start Hill Climber based on Algo-
rithm 2 for a MNK Landscape with d = 2,3, K = 3, ¢ = 100, N = 10,000 to 100,000
and 7 =1 to 3.

5.2 Quality of the Solutions

In a second experiment we want to check if a large value of r leads to better
solutions. This highly depends on the algorithm that includes the hill climber.
In our case, since the algorithm is a multi-start hill climber, we would expect
an improvement in solution quality as we increase r. But at the same time,
the average time per move is increased. Thus, there must be a value of r at
which the time is so large that lower values for the radius can lead to the same
solution quality. In Fig. 3 we show the 50 %-empirical attainment surfaces of the
fronts obtained in the 30 independent runs of the multi-start hill climber for
N = 10,000, d = 2, ¢ = 100 and r varying from 1 to 3. The 50 %-empirical
attainment surface (50 %-EAS) limits the region in the objective space that is
dominated by half the runs of the algorithm. It generalizes the concept of median
to the multi-objective case (see [9] for more details).

We can see in Fig. 3 that the 50 %-EAS obtained for » = 2 completely domi-
nates the one obtained for » = 1, and the 50 %-EAS for r = 3 dominates that of
r = 2. That is, increasing r we obtained better approximated Pareto fronts, in
spite of the fact that the time per move is increased. This means that less moves
are done in the given time limit (1 min) but they are more effective.
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Fig. 3. 50 %-empirical attainment surfaces of the 30 independent runs of the Multi-
Start Hill Climber based on Algorithm 2 for a MNK Landscape with d = 2, K = 3,
q =100, N = 10,000 and r =1 to 3.

6 Conclusions and Future Work

We proposed in this paper a hill climber based on an efficient mechanism to identify
improving moves in a Hamming ball of radius r around a solution of a k-bounded
pseudo-Boolean multi-objective optimization problem. With this paper we con-
tribute to an active line of research, sometimes called Gray-Box optimization [6],
that suggests the use of as much information of the problems as possible to provide
better search methods, in contrast to the Black-Box optimization.

Our proposed hill climber performs each move in bounded constant time if the
variables of the problem appears in at most a constant number of subfunctions. In
practice, the experiments on adjacent MNK Landscapes show that when K = 3
the average time per move varies from tenths to hundreds of microseconds if the
exploration radius r varies from 1 to 3. This number is independent of n despite
the fact that the hill climber is considering a Hamming Ball of radius r with
O(n™) solutions.

Further work is needed to integrate this hill climber in a higher-level algo-
rithm including mechanisms to escape from plateaus and local optima. On the
other hand, one important limitation of our hill climber is that is does not take
into account constraints in the search space. Constraint management and the
combination with other components to build an efficient search algorithm seem
two promising and challenging directions to work in the near future.
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Abstract. Meta-heuristics and hybrid heuristic approaches have been
successfully applied to Periodic Vehicle Routing Problems (PVRPs).
However, to be competitive, these methods require careful design of spe-
cific search strategies for each problem. By contrast, hyperheuristics use
the performance of low level heuristics to automatically select and tai-
lor search strategies. Hyperheuristics have been successfully applied to
problem domains such as timetabling and production scheduling. In this
study, we present a comprehensive analysis of hyperheuristic approaches
to solving PVRPs. The performance of hyperheuristics is compared to
published performance of state-of-the-art meta-heuristics.

Keywords: Hyperheuristic + Computational analysis - PVRP

1 Introduction

Most (meta-)heuristic approaches applied to new search problem domains need
expert input in design. To automatize the process, hyperheuristics provide a
problem-independent approach that automatically applies an appropriate search
strategy, by calling low level heuristics (LLHs) at each decision point [1]. Whilst
various hyperheuristics have been tested for a range of optimization problems
(e.g. [1-4]), none has yet addressed PVRPs.

Hyperheuristic approaches operate at a management level, consisting of selec-
tion and acceptance stages. The LLH(s) to test at each search stage may be deter-
ministically or probabilistically selected. In more advanced selection strategies,
hyperheuristics can learn from the performance of previous selections; perfor-
mance is usually evaluated using problem-independent measures such as change
in the solution quality or elapsed CPU time. Acceptance determines whether
to replace the current solution with the one yielded by the selected LLH(s).
A large variety of acceptance strategies, such as only improved (OI) (e.g. [1])
and simulated annealing (e.g. [5]), have been tested in literature. Theoretically,
a hyperheuristic should adapt to any hard computational search problem, and
provides a mechanism for studying the strengths and weaknesses of LLHs for a
specific problem.

© Springer International Publishing Switzerland 2016
F. Chicano et al. (Eds.): EvoCOP 2016, LNCS 9595, pp. 104-120, 2016.
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Evaluating Hyperheuristics and Local Search Operators 105

In this paper, we provide a comprehensive analysis on three types of hyper-
heuristics and apply them to benchmark and real-world PVRP instances with
different characteristics. We also use the hyperheuristics to explore the strengths
and weaknesses of LLHs designed for PVRPs. Section 2, briefly introduces PVRP
and (meta-)heuristic solvers from literature. We then review LLHs designed for
PVRP in Sect. 3. Section 4 presents the hyperheuristics. Sections 5 and 6 present
the experimental design and analysis of the experiments respectively.

2 Periodic Routing Problem

PVRPs [6-9] provide a well-researched mathematical model for real-world prob-
lems such as inventory servicing, periodic maintenance, and on-site service plan-
ning. A PVRP comprises K vehicles which can be used to service the demands
of N customers over M days. Each PVRP has constraints that must be met by
legal solutions: vehicles start and end their journey at a depot; no more than
K routes are built each day; vehicle capacity restrictions are respected; each
customer request is serviced in one time slot by one vehicle; only one service
pattern is chosen for each customer. A feasible visit pattern, A; € A;, for a cus-
tomer i, is a pattern that meets all constraints and provides the level of servicing
required for customer i. For example, a customer might require two service visits
per week, on either Monday and Thursday or Tuesday and Friday, giving two
feasible patterns. The PVRP objective is to design a set of daily routes, com-
prising feasible patterns for each customer, that minimizes the total travelling
cost and satisfies the PVRP constraints.

2.1 Existing (Meta-)heuristic Solvers for PVRP

Heuristic approaches to PVRP developed since the 1970s [6,10-13] generate
solutions by determining customer-day patterns that group geographically close
customers. In 1995, Chao et al. [7] introduced a record-to-record meta-heuristic
that outperformed the earlier heuristics approaches. Subsequent meta-heuristics
approaches, including tabu search [8], scatter search [14] and variable neigh-
bourhood search (VNS) [5], have all produced new best solutions for benchmark
problems. Hybrid heuristics now present very competitive results: Gulczynski
et al. [9] use integer programming-based improvement heuristics combined with
routing-based local searches; Vidal et al. [15] propose a hybrid genetic algorithm
that combines local search and sophisticated population management strategies
to guide the search — an approach shown to perform better than all the above
algorithms. Cordeau and Maischberger [16] combine tabu search and iterated
local search to give a competitive, broad exploration of the search space.

3 Low Level Heuristics for the PVRP

A hyperheuristic has a repository of LLHs that operate directly on the solution
space, and should provide good coverage of the solution space.
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3.1 Constructive Heuristics

To construct a valid PVRP initial solution, most PVRP solvers first assign cus-
tomers to days, then build a solution of a vehicle routing problem (VRP) for
each day. For assignment, Cordeau et al. [8,16], Hemmelmayr et al. [5] and
Vidal et al. [15] randomly select a feasible customer-day pattern for each cus-
tomer; Chao et al. [7] and Gulezynski et al. [9] minimize the maximum demand
serviced each day; Christofides and Beasley [6] minimize the daily total dis-
tance from each customer to the depot. To construct daily routes, the Clarke
and Wright algorithm (CW) [17] and GENI insertion heuristic [18] are generally
applied. Our hyperheuristics use the same approach as [5]: random assignment
followed by a CW routes construction process for each day.

3.2 Perturbation Operators

From an initial solution, a hyperheuristic manages the application of perturba-
tion operators to either daily routes or customer patterns. Application may be
first improvement (FI) — seeking to improve the current solution, or mutation
(shaking) to derive a similar, but new solution from the current solution.

Route Related Operators. There are a number of common operators used to
modify single and multiple routes in PVRP (see VRP local search library [19]).

1. 20pt: replace two edges from a route with two new edges (e.g. [7,9,15])

2. 30pt: replace three edges from a route with three new edges (e.g. [5]).

3. Or-opt: remove a string of two to four nodes and insert it into a new position,
either in the same route (e.g. [14]) or in a different route (e.g. [15]).

4. One point move (1PM): relocate a point to a new position, either in the same
route or in a different route (e.g. [7,9]).

5. Two points swap (2PS): swap two points, either in the same route or between
different routes (e.g. [9]).

6. Relocate: relocate a string of points from one route to another (e.g. [5,15]).

7. Cross: swap two chains of points between two routes. ([5,14]).

Route-based perturbation is typically applied as FI, embedded in an itera-
tive local search (ILS) [7,9,14,15]; however, they can also be used as mutation
operators: Hemmelmayr [5] uses “Relocate” and “Cross”, for this purpose.

Pattern Related Operators. All these operators assign different valid pat-
terns for selected customers. A customer with a new pattern is removed from
their current routes and re-inserted to their new lowest-cost position on each
day in the new pattern, meaning that we always get a complete PVRP solution.

1. Random pattern reassign (Pa_RR): randomly assign a new feasible visit pat-
tern to n customers drawn at random. A tabu mechanism prevents a customer
from being subject to reassignment again in the short term.
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2. Score based reassign (Pa_SR): chooses n random customers, for each i € n,
assign the pattern \; with the highest score, Q(\;). Q(\;) is updated after any
pattern related operator use; if no improvement is found, Q(\;) = /Q(\).

3. Pattern reassign FI (Pa_FIR): for each customer i, successively test each
feasible pattern, the first improvement found is executed.

4. Two points pattern swap (Pa_-2SW): swaps the visit patterns of two customers
¢ and j which have the same available patterns, A; = A; and A\; # ;.

Mixed Operators. To improve flexibility, mixed operators support moves
between days, and potentially modify both routes structure and customer pat-
terns. Chao et al. [7] propose an operator that removes the current routing of
a customer’s current pattern, and inserts into a different set of routes, with or
without changing the customer’s current pattern. For our LLH repository, we
design two mixed operators that operate on chains; all customers moved must
have the same available patterns, and only customers with a single visit per
pattern are used.

1. Relocate with Pattern (MRPa): relocate a chain of points from one route to
another route in the same day or a different day.

2. Cross with Pattern (MCPa): swap two chains of points between two routes
within the same day or between days.

3.3 Reinitialization

If the current solution has not been improved for a certain number of iterations,
we assume the search is stuck in a local optimum that cannot be escaped by a
small mutation. A reinitialization mechanism, Algorithm 1, is applied. The new
solution is made feasible by repeatedly removing the customer with the greatest
load requirement from any route in the candidate solution that violates duration
or load constraints, and re-inserting in a route where the constraints are met.

Algorithm 1. Reinitialisation
Define:
Tpest 18 the best found solution so far
Prandom 1S the probability of generating a random initial solution
Reinitialisation(zyest, Prandom)
if random(seed) < prandom then
random assignment and CW daily routes construction (Sect. 3.1).
else
Destroy w% of the longest routes in Zpest-
For each customer in destroyed routes, randomly reassign feasible visit pattern.
Insert each customer greedily to cheapest position in each day of assigned pattern.
end if
Return the new (re)constructed solution z.
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4 Hyperheuristics

We consider three types of hyperheuristics: simple hyperheuristics, learning
based hyperheuristics and VNS based methods.

4.1 Simple Hyperheuristics

Simple hyperheuristics [1] have basic LLH selection mechanisms such as simple
random (SR), random descent (RD), random permutation, random permutation
descent, and greedy. Acceptance strategies, such as all moves or only improving
(OI) were originally tested on a sales summit problem [1]. Here, we implement SR
and RD combined with OI acceptance, designated SROI and RDOI, respectively.

SR randomly selects a LLH, based on a uniform distribution. RD randomly
selects a LLH and applies it repeatedly until there is no further improvement
in the solution. OI accepts a new solution only if it is better than the current
solution, evaluated by fitness.

4.2 Learning Based Hyperheuristics

Learning based hyperheuristics adapt the LLH trial set according to the histor-
ical performance of each LLH. In each iteration, a favourable LLH is applied,
based on predefined rules: in our implementation, the LLH from the trial set
that produces the most improved solution is applied. Three well known learning
based selection mechanisms are tested: binary exponential back off (BEBO) [3],
reinforcement learning (RL) [20] and a ranked choice function (CF) [1].

BEBO. [3] uses a tabu based learning mechanism. The tabu tenure, tabu,,
changes dynamically, such that a LLH that performs poorly is disabled for a
number of iterations (which increases exponentially if the LLH subsequently
perform poorly). Each iteration only LLHs ¢ with tabu; = 0 are selected to
form the trial set, T'.

RL. [20] uses positive reinforcement to reward good LLH choices and neg-
ative reinforcement to penalise bad LLH choices. The utility value of each
LLH is dynamically updated based on its performance, and the w% of LLHs
with the highest utility form the trial set, T, for the next iteration. We apply
hyperheuristic RL methods identified by Nareyek [20]. For each LLH; € T,
utility; = /utility;. After testing, the best performing LLHpes; € T that
improves the solution is rewarded by setting utility; = utility? + 1.

CF. [1] provides a different utility adoption scheme. In each iteration, the utility
of each LLH; € T is updated based on a linear function that considers the
LLH’s performance (evaluated by fitness change and execution time), the ability
of the LLH in collaboration (evaluated by successively applied pairs of LLHs),
and the elapsed time since the LLH was last called.
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4.3 General Variable Neighbourhood Search (GVNS) with Learning

GVNS [21,22] differs from the hyperheuristics above in its more intensive use
of local search (LS): the selected LLH is applied repeatedly rather than for one
iteration only. Shaking is another critical component for GVNS, meaning that
when no further improvement is found using LS, mutation operators are applied
to facilitate the search to jump out of a local optimum.

Algorithm 2. General VNS Algorithm 3. General VNSr

Define: kmam = ‘LLH]\{U‘, the GVNSI‘(.%, LLHMU, LLHF[,
number of mutation operators tmam)
GVNS({I?, LLHyy, LLHEy, tmaz) while ¢t < t,,42 do

randomly choose LLHY; from

while t < t,,4, do LLH gy
E=1 z' = shaking(z, LLHY,;;)
while £ < k4. do " = VND(a/, LLHpy)
v’ = shaking(z, LLHY ;) If 2 is better than z then
.I‘N = VND(%‘/,LLHFI) Tr = IN
If 2” is better than x then  end while
v = 2"andk = 1
Otherwise k = k+1
end while
end while

GVNS is a parameter-free approach; LLH selection uses a pre-ordered LLH
set [5]. Our experiments need to test a large number of LLHs, which is very
CPU-intensive. We propose variations to the GVNS: Algorithms 2 and 3 with,
respectively, fixed order and random selection strategies to manage the selection
of mutation operators (LLH ). The first stage of GVNS takes a candidate
solution, z, and shakes it by applying one mutation operator (from LLH yy).
The second stage of GVNS calls a variable neighbourhood descent algorithm,
VND, which applies FI operators (LLHpy) to the shaken solution. VNS is run
over a fixed time, t < tmaz-

Algorithm 4 describes the VND procedure called in Algorithms 2 and 3. The
VND manages selection of FI operators using either random ordering or one of
three RL-based LLH orderings: ascending, descending, and top w%. Although
utility is calculated in all cases, it is not used in random ordering selection.

5 Experimental Design

We design experiments that allow us to analyse the performance of hyperheuris-
tics from different angles. We use data (benchmark and real) with different
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Algorithm 4. VND(z, LLHpy)

Choose subset LLHy; C LLHp; based on the LLH selection approach used.
Define: kmas = |LLHp;|, the number of local search operators to be tested.
k=1

while k£ < ka0 do

x’ = ILS(CE7LLH§I)7 where ILS applies the selected FI operator,
LLHY;, repeatedly until no further improvement occurs. In each iteration
of ILS, wtilityr = ~/utilityy; if LLHY; makes an improvement, then

utility, = utility? + 1.
If 2’ is better than z then z = 2’ and k = 1
Otherwise £k = k+1

end while

spatial characteristics. We also compare the performance of hyperheuristics with
that of meta-heuristics applied to the benchmark problems.

The experiments are designed to replicate benchmark conditions from [15].
In particular, the search is always terminated after the fixed amount of CPU
time stated in [15]. To check the suitability of this time limit for scalability
experiments (Sect.6.3), we ran preliminary experiments using twice the CPU
time. We found no significant change in the quality of solutions, suggesting that
a performance plateau is attained, and the chosen CPU time is appropriate.

All experiments are implemented in C* and executed on a cluster composed
of 8 Windows computers, each with Intel Xeon E3-1230 CPU.

LLH Repository Settings. The operators introduced in Sect.3 are classi-
fied according to whether we use them for mutation and/or FI, Table 1. Route
related operators are parametrized by route ID, day, length of chain and number
of points changed in one move; this makes it possible for an intelligent hyper-
heuristic to select a LLH specifically related to each sub-problem (e.g. daily

Table 1. LLH Repository used in our PVRP hyperheuristics

Type Operators

Route related: mutation |2 points swap (2PS), Relocate, Cross
Route related: FI 20pt, 30pt, 2PS, Relocate, Cross

Pattern related: mutation | Random pattern reassign (Pa_RR),

Score based reassign (Pa_SR),

Two points pattern swap (Pa_2SW)

Pattern related: FI Pattern reassign first improvement (Pa_FIR),

Two points pattern swap (Pa_2SW)
Mixed: FI Relocate with pattern (MRPa),
Cross with pattern (MCPa)
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VRP or single route optimization). Pattern related operators reassign the pat-
terns of n customers; we consider n = 1,2,...,6 in our experiments. Because of
the structure of LLH parameter design, our LLH repository contains 70 to 110
LLHs, depending on the problem instance.

Algorithm Frameworks. To test LLH management strategies, we use three
hyperheuristic frameworks, Fig.1. The only difference between the first two
frameworks is the strategy used to organize different types of LLHs (mutation
and FI). Both the simple hyperheuristics and learning based hyperheuristics
(Sect. 4) can be applied in frameworks 1 and 2. The third framework supports a
VNS-based method (Sect. 4.3). Compared to framework 2, it replaces the second
stage (a single selection) with an ILS over a subset of the LLH repository.

4)‘ (Re)initialization

Select one LLH from
{Mutation set}

Stagel Stagel

'
'
'
1
1

(Re)initialization |
'
1 Accept/Reject
1
1

Select
one LLH from
{Mutation & First Improvement set}

Select one LLH from
{First Improvement (Fl) set}

Select a subset of LLHs from
First Improvement (Fl) set!

Accept/Reject Stage2

Iterativelocal search

Accept,

Accept/Reject

Reject

\ '
' '
| '
| '
| '
| Stage2 :
'

| '
' '
| '
| '
| '

(a) Framework 1 (b) Framework 2 (c) Framework 3

Fig. 1. Hyperheuristic frameworks (the first two are modified from [23])

5.1 Problem Instance

Our data comprises 42 benchmark problems (summarised by [5]) and six
instances from a real-world periodic maintenance problem'. We classify the prob-
lems according to their spatial characteristics (Fig.2). Table 2 summarises each
class. The six real-world instances are all street type. The big random bench-
mark problems have both a larger number of customers and greater clustering
of data points than the small random class.

! The real-world data and associated best-performance results (Sect.6) can be found
at https://www-users.cs.york.ac.uk/~yujiec/.


https://www-users.cs.york.ac.uk/~yujiec/
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(a) street style (b) Small random (c¢) Big random (d) Symmetrical
(real world exam- (from benchmark (from  benchmark (From benchmark
ple) p02 [6]) pr05 (8]) p32 [7])

Fig. 2. Examples of four types of spatial distributions in the PVRP instance set.

Table 2. PVRP instances. n is number of customers; m is number of vehicles; t is
length of planning period in days. Benchmark labelling is from [5].

Class n m t Average visit | Number of problem
frequency instances
Street style 240-324|3-5 |6 1.6-2.1 6
Small random | 50-100 |1-6 |2-10|1-2.1 10 (benchmark p01-p10)
Big random 48-417 12-12|4-7 |1.1-3 13 (benchmark p11-p13,
pr01-prl0)
Symmetrical |20-184 |2-9 |46 |1.8-2 19 (benchmark p14-p32)

6 Experimental Results and Analysis

6.1 Random Vs Learning Based Selection Strategies

A hyperheuristic needs an efficient selection strategy, because it is impractical
to apply all LLHs exhaustively. The first experiment compares the SR selection
strategy to the learning based strategies, RL, CF and BEBO. The experiment
uses framework 1 (Fig.1a) and OI acceptance. For RL and CF, we test using
both the best 30 % and the best 80 % of LLHs in each iteration (See Sect.4.2).

Each selection strategy is run 20 times on each instance of each of the four
classes of problem, to give the percentage differences to the best-found bench-
mark route length of each instance. We then average the results for each class
of problems.

The results in Table 3 show that, whilst acceptable, none of our solutions
matches the best-found benchmark solution. Learning based selection strategies
consistently out-perform SR LLH selection, with BEBO performing best. For
both RL and CF, the limited CPU time makes it difficult for the hyperheuristics
to produce competitive results for w = 80. In subsequent experiments we only
use the best 30 % of LLHs.
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Table 3. The average percentage difference to the best found solution over all instances
in each group, for simple random (SR) and learning based hyperheuristics, using frame-
work 1 and OI acceptance.

SR RL(30 %) | CF(30%) | RL(80 %) | CF(80 %) | BEBO
Street style +8.90 | 4+-5.36 +6.08 +6.47 +6.64 +4.90
Small random | +4.67 | +-2.12 +2.28 +2.15 +2.33 +2.06
Big random | +4.32|+4.14 +4.32 +4.28 +4.35 +4.13
Symmetrical |42.74 | 4+1.46 +1.56 +1.55 +1.53 +1.50

6.2 Impact of Algorithm Framework

Having shown that learning based selection strategies can manage a large number
of LLHs in a simple hyperheuristic framework, we now consider the different
hyperheuristic frameworks.

In framework 1, the OI acceptance rule means that mutation LLHs are
unlikely to be favoured. In framework 2, a mutation operator is randomly
selected, and is applied as long as it generates valid solutions, then FI LLHs
are selected using a learning based strategy, as above. Framework 2 is similar to
framework 1 when we use the all-move-accept rule, but, whereas framework 1
evaluates the mutation and FI operators together, framework 2 allows separate
consideration.

The results in Table4 show that framework 2 improves the performance of
both RL and CF hyperheuristics for all types of problem instances, and, BEBO
does not show obvious difference between framework 1 and 2.

Framework 3 uses the VNS-based algorithms; the main difference to frame-
work 2 lies in the use of ILS once a FI operator is selected. Five variants are
tested. The first two use GVNS (Algorithm 2), with VND using, respectively, ran-
domly ordered FI LLHs (VNS(R)) and the best 30 % of FI LLHs (VNS(30%)).
Three variants use GVNSr (Algorithm 3), with random, ascending or descend-
ing FI LLH ordering determined using utility (respectively, VNSr(R), VNSr(A),
VNSr(D)). We compare performance with the above three framework 1 and

Table 4. The average percentage differences to the best found solutions over all
instances in each group, for learning based hyperheuristics using frameworks 1 and
2 (FW1, FW2)

Instances RL(30 %) CF(30%) BEBO

FwW1l |[FW2 |FW1 |[FW2 |FW1 |FW2
Street style +5.36 | +5.26 | +6.08 | +5.54 | +4.90 | +5.31
Small random | +2.19 | +1.88 | +2.28 | +1.90 | +2.06 | +2.03
Big random +4.14 | +3.93 | +4.32| +3.88 | +4.13 | +4.12
Symmetrical | +1.46 +1.45|+1.56 | +1.54 | 4+1.50 | +1.56
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Fig. 3. Ranking of hyperheuristics for PVRPs. Higher rank is better.

three framework 2 strategies, plus random descent (RDOI) and simple random
(SROI) embedded in framework 1. We then rank the performance of the 12 com-
binations of framework and LLH selection strategy, awarding 16 points to the
best performing hyperheuristic, then 14,12,10,8,7,...1,0 points successively to
worse performing hyperheuristics.

Figure 3 shows a small difference in performance between frameworks 1 and 2.
Compared to the framework 3 results, they are both generally low-ranking for
all cases except the symmetrical benchmark problems. This shows the positive
impact of using ILS. Among framework 3, the five VNS-based algorithms show
similar ranking, except for big random, where VNS(R) is not highly ranked;
random selection of the shaking operator combined with random ordered FI
LLHs (VNSr(R)) is the most robust over all classes of problem.

6.3 Scalability

The PVRP is NP-hard [15]. One of its biggest challenges is the rate of growth in
complexity with problem size. In preliminary experiments, we determined that
the performance of algorithms on symmetrical and non-symmetrical problems is
very different. To test the scalability of our hyperheuristics, we first group the
problem instances into symmetrical and non-symmetrical problems and then
order them by the number of customers. Each method is runs 20 times.
Figure 4 shows that SROI has the worst scalability in both symmetrical and
non-symmetrical problems. For the other algorithms, there is little difference in
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Devation from best (%)

(a) Non-symmetric problems

Devation from best (%)

Problem size

(b) Symmetric problems

Fig. 4. Performance of hyperheuristics tested on PVRP with various sizes

performance on problems with fewer than about 60 customers. VNS-based algo-
rithms are the most robust across non-symmetrical instances with 150 to 420
customers. However, performance decreases dramatically for VNS-based algo-
rithms applied to bigger problem instances in the symmetrical data set.

6.4 LLH Usage Analysis

Whilst hyperheuristics need little specialised design, the LLH repository does
need thought. In this experiment, we explore the usage of LLHs by the different
hyperheuristics. We use frameworks 2 and 3, which manage the mutation and
FI operators separately. The results focus on the 9 FI LLHs, since there is no
learning in mutation operator selection.

Figure 5 summarises average usage of FI LLHs for all learning based algo-
rithms using framework 2 (BeboFW2, RLFW2(30 %), CFFW2(30%)) and all
VNS-based algorithms using framework 3 (VNS(R), VNS(30%), VNSr(D),
VNSr(A), VNDr(R)). The stronger LLHs are favoured more in framework 3
than in framework 2. “Relocate with pattern” (MRPa) and “two points pattern
swap” (Pa_2SW) are the most applied LLHs by all hyperheuristics. Since we



116 Y. Chen et al.

°

o

T
°
o
T

Framework

i

°

Y

-
°
Y

°

N
v
°
»

°

Average deviation fromthe best
b
°

Average devialion from the best
°
©

: ﬂﬂ 5
NS lﬂ_ﬁ

' :lzﬁlﬁ-zL

°
o

20pt 2PS 30pt Cross MCPs MRPs PI_ZSWPI Flﬂﬂlbﬂl! ZOpl 2PS  20pt Cross MCPs MRPs Ps_2SWPs_FIRRelccate
(a) Street style ) Small random

2os- Ros

£ £

8047 Framework S04 Framework

éu.: W Soa w2
:

o2 . Bo2- P

: .

H 8,

g go

£ 5

: s

< <

il el

20pt 2PS  30pt Cross MCPs MRPs Ps_2SWPs_FIRRelocste 30pt  Cross MCPs MRPa Ps_25WPs_FIRRelocste

(c) Big random (d) Symmetrical

Fig.5. FI LLHs usage for different types of problem. Results show the mean value of
percentage of each LLH are applied during the search, where 0.1 stands for 10 %. Error
bars show 95 % confidence interval.

8% 1 an- R 8%
FLh H 6% - 6% 8% 1
o
£
=
'c 4% 4% 4%
s
s
> i ‘ i:—r-’
Q
Q2% 2% = 2%
0%~ T 0%- T — 0%- = L g - — =
RLFW2(20%) VNSH(R) RLFW2(20%) VNSI(R) RLFW2(20%) VNSH(R) RLFW2(20%) VNSr(R)
(a) Street style (b) Small random  (c) Big random (d) Symmetrical

.Full LLHs Remove Relocste Z Subset1

Fig. 6. Performance of RLFW2(30 %) and VNSr(R) using different subset of LLHs.
Error bars show 95% confident interval. The subsetl removes the most used LLH
(Pa_2SW) and all mutation operators except Pa_RR

are using an OI strategy, this implies that they consistently produce improved
solutions.

The “Relocate” operator is preferred in symmetrical problems, but not in
other instances. The importance of this operator is emphasised by the big reduc-
tion in performance when the “relocate” operator is removed (Fig. 6d).

To further explore the contribution of specific LLHs in improving PVRP
solutions, we test the two best performing hyperheuristics for frameworks 2 and
3 (RLFW2(30 %) and VNSr(R)) with different subsets of the original LLHs. Each
method is run over all problem instances; results are the average of 20 runs.
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Fig. 7. Impact of removing Pa_2SW on four hyperheuristics over all problem instances.
Error bars show 95 % confidence intervals.

Figure 6 shows a change in performance after removal of the most-used FI
LLH (Pa_2SW) and all mutation operators except Pa_RR (Subset 1): the per-
formance of RLFW2(30 %) and VNSr(R) decreases dramatically for the small
random and symmetrical problems. However, there is little difference for the big
random instances, and we even find a small improvement for VNSr(R) on street
style problems. One interpretation of this result is that the strongly-performing
FI LLHs, which are most effective in small and symmetric problems, tend to
become stuck in local optima in the street style and big random problems. Fur-
ther work is needed to understand why removing the “relocate” operator affects
performance on street style problems more than less-structured spatial distrib-
utions.

To explore the robustness of different hyperheuristics when we remove
the strongest LLH (Pa-2SW), we extend the LLH subset experiments to
SROI and RDOI. VNSr(R) shows the best robustness (Fig. 7). Comparing the
RLFW2(30 %) with VNSr(R) and SROI with RDOI, the algorithms with ILS
mechanisms are more robust than the algorithms without ILS.

6.5 Comparison Between Hyperheuristics and Other
Meta-Heuristics

This section compares the two best performing hyperheuristics from framework
2 and 3 (RLFW2(30 %) and VNSr(R)), to published meta-heuristics which have
been designed or tailored for PVRP, including (parallel) tabu search [8,16], scat-
ter search [14], VNS [5], record-to-record ILP [9] and hybrid Genetic Algorithm
(GA) [15]. No comparative data exists for our street style data set.

Benchmark research uses 32 instances collected from early work on PVRP
(the old data set). Cordeau [8] presents 10 additional PVRP instances (the new
data set). We present our results for these two groups, because some research
has not tested both groups. Table 5 reports the percentage difference in average
performance from the best found (summarised in [15]) over these two data sets.
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Table 5. Performance on PVRP benchmarks compared with meta-heuristics; tabu
search (CGL) [8], scatter search (ALP)[14], VNS (HDH)[5], record-to-record ILP
(GGW) [9], hybrid-GA (VCGLR)[15], parallel tabu search (CM) [16]

RLFW2(30%) | VNSr(R) CGL | ALP |HDH |GGW | VCGLR | CM

Avg. Avg. | Avg. Avg. |1run|- Avg. - Avg. Avg.

20 run | (best) | 20 run | (best) 10 run 10 run | 10 run
Old data (%) | 1.86 1.08 1.77 0.93 1.8 1.57 | 1.6 1.11 0.032 0.044
New data (%) | 3.88 2.40 3.44 2.12 2.82 |- 1.86 - 0.071 0.091

Our hyperheuristics achieve competitive results compared to the tabu search
[8], scatter search [14] and VNS [5] for the “old data” set. For the relatively
larger “new data” set, we achieve close to the best found solutions in most cases.
The hyperheuristic approaches are about 1% worse than these problem-specific
algorithms, in terms of total route distance.

Compared to the hybrid-GA, which out performs all the other algorithms,
our hyperheuristics produce routes that are about 2 % longer on average. How-
ever, hyperheuristics do not require any knowledge directly from the solution
space and require minimal design effort, whereas the meta-heuristics need to be
designed and tailored for each problem.

7 Conclusion

Our analysis of hyperheuristics for PVRP shows that both learning selection
strategy and ILS have positive impacts on an algorithm’s performance and
enhance the scalability. ILS also improves the robustness of hyperheuristics when
a poor LLH set is given, because ILS concentrates on a neighbourhood structure
until it reaches a local optimum, whilst approaches without ILS have a wider,
but shallower, exploration within the search space.

Our hyperheuristics find solutions that are almost as good as those published
for meta-heuristics. Since all experiments have limited CPU time, it is possible
that this is due to the hyperheuristics’ additional overhead in applying search at
the LLH selection level. The hyperheuristics are more adaptable to new prob-
lems: our results show that hyperheuristics can efficiently manage a large LLH
set and automatically select appropriate LLHs.

The tested hyperheuristics show similar performance on real-world street
style problem instances and random instances, but the symmetrical benchmarks
tend to favour different strategies and LLHs. This suggests that symmetri-
cal instances are not a good indicator of algorithm performance for real-world
PVRP.

“Relocate with pattern” and “two points pattern swap” are the most applied
LLHs across all PVRP hyperheuristics: these LLHs make most improvements
during the search. However, experiments on LLH subsets show that a strong
LLH may lead to premature local optima; further work is needed on the effect
of structure in real-world problems, and on ways to measure “strong” LLHs.
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For PVRP, we show that hyperheuristics perform similarly to problem-

specific meta-heuristics, despite their working mechanism potentially increasing
the complexity of solving a specific problem within limited time. We are work-
ing on improving hyperheuristic efficiency, and investigating whether the positive
impact of learning based selection and ILS translates to other problem domains.
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Abstract. The problem of finding the shortest addition chain for a given
exponent is of great relevance in cryptography, but is also very difficult to
solve since it is an NP-hard problem. In this paper, we propose a genetic
algorithm with a novel representation of solutions and new crossover
and mutation operators to minimize the length of the addition chains
corresponding to a given exponent. We also develop a repair strategy
that significantly enhances the performance of our approach. The results
are compared with respect to those generated by other metaheuristics for
instances of moderate size, but we also investigate values up to 227 — 3.
For those instances, we were unable to find any results produced by
other metaheuristics for comparison, and three additional strategies were
adopted in this case to serve as benchmarks. Our results indicate that
the proposed approach is a very promising alternative to deal with this
problem.
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1 Introduction

Field or modular exponentiation has several important applications in error-
correcting codes and cryptography. Well-known public-key cryptosystems such
as Rivest-Shamir-Adleman (RSA) [1] adopt modular exponentiation. In a sim-
plified way, modular exponentiation can be defined as the problem of finding the
(unique) integer B € [1,...,p — 1] that satisfies:

B = A° mod p, (1)

where A is an integer in the range [1,...,p— 1], ¢ is an arbitrary positive integer
and p is a large prime number. One possible way of reducing the computational
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load of Eq. (1) is to minimize the total number of multiplications required to
compute the exponentiation.

Since the exponent in Eq. (1) is additive, the problem of computing powers
of the base element A can be formulated as an addition calculation, for which
so-called addition chains are used. Informally, an addition chain for the expo-
nent c¢ of length [ is a sequence V of positive integers vg = 1,...,v; = ¢, such
that for each ¢ > 1, v; = v; + vi for some j and k with 0 < j < k < 4. An
addition chain provides the correct sequence of multiplications required for per-
forming an exponentiation. Thus, given an addition chain V' that computes the
exponent ¢ as indicated before, we can find B = A° by successively computing:
A AV A1 A For example, if we want to compute A%Y, the traditional
procedure would require 60 multiplications. However, if we use instead the fol-
lowing addition chain: [1 -2 — 4 — 6 — 12 — 24 — 30 — 60], then only seven
multiplications are required:

Al;A2 :AIAI;A4 :A2A2;A6 :A4A2;A12 :A6A6;
A24 _ A12A12,A30 _ A24A6,A60 _ ASOABO. (2)

Thus, the length of the addition chain defines the number of multiplications
required for computing the exponentiation. The aim is to find the shortest addi-
tion chain for a given exponent ¢ (several addition chains can be produced for
the same exponent). Naturally, as the exponent value grows, it becomes more
difficult to find a chain that forms the exponent in a minimal number of steps.

One simple algorithm that can be used (although, in general it will not give
optimal results) works in the following way. First, write the exponent in its
binary representation. Then, replace each occurrence of the digit 1 with the
letters “DA” and each occurrence of the digit 0 with the letter “D”. After all
digits are replaced, cross out the first “DA” that appears on the left. What
remains represents a rule to calculate the exponent, since the letter “A” stands
for addition (multiplication) and the letter “D” for doubling (squaring). If we
consider again the example A%, the exponent in binary representation would be
“111100”. After the replacement and the removal of “DA” at the left we have
“DADADADD?”. Thus, the rule is: square, multiply, square, multiply, square,
multiply, square, square (1 -2 —3 —6 — 7 — 14 — 15 — 30 — 60). This is a
simple example describing the binary method. We can immediately observe that
the binary method does not always give the shortest chain (cf. with the chain
given in Eq. (2)). In fact, already for the value 15, the binary method will not
produce the shortest chain [2]. However, the binary method can be generalized to
some more powerful methods as presented in Sect. 2. Unfortunately, in general,
the problem of finding the shortest addition chain is NP-hard [3]. This has
motivated the use of metaheuristics to tackle this problem as indicated in Sect. 3.

Here, we propose a genetic algorithm to find short addition chains for a
given exponent. Qur main contributions are the following: the first one is a
new representation of solutions. With that representation, we can obtain a bet-
ter granularity than when using just the representation based on the values
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in the addition chains. Next, we present several mutation and crossover opera-
tors designed to improve convergence. The behavior of those operators is modeled
on the basis of several relevant test case scenarios as presented in Sect.2. We
then design repair heuristics that we believe are an integral part of the algorithm
and we use several examples to justify our approach. From a more pragmatic
perspective, in Sect.5, we investigate a number of exponents that we want to
obtain, whose values progress gradually from small ones up to the ones that are
relevant in real-world applications. Finally, we identify a possible oversight in
most of the relevant works that limits the applicability of those algorithms.

2 On Addition Chains

We start this section with basic notions about addition chains and, afterwards,
we give several important results we use when designing our algorithm. Next,
we briefly discuss algorithms that are commonly used to compute exponentia-
tions. We follow the notation and theoretical results presented in “The Art of
Computer Programming, Volume 2: Seminumerical Algorithms” [2]. For more
detailed information about addition chains, we refer the readers to Chap. 4.6.3.
“Evaluation of Powers” [2].

2.1 Theoretical Background

Definition 1. An addition chain is a sequence of positive values starting with
the value 1 and finishing with the desired exponent value n.

Definition 2. An addition chain is called ascending if:
l=agy<a1 <ax<..<a,=n. (3)

In this work, we focus only on ascending chains. From this point on, when we
talk about addition chains, we mean ascending addition chains.

The values in the addition chain have the property that they are the sum of
two values appearing previously in the chain. Formally, an addition chain is a
sequence ag = 1, a1, ..., a, = n where:

a; = a; + ay, for some k < j <. (4)

The shortest length of any valid addition chain is denoted as I(n). In the
length of a chain, one does not count the initial step that has a value of one.

Next, it is possible to define types of steps in the addition chain based on
Eq. (4):

1. Doubling step; when j = k = ¢ — 1. This step always gives the maximal
possible value at the position 1.

2. Star step; when j but not necessarily k equals i — 1.

Small step; when loga(a;) = loga(a;—1).

4. Standard step; when a; = a; + a, where i > j > k.

©w
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On the basis of the aforementioned steps, it is easy to infer the following
conclusions: [2]:

— The first step is always a doubling step.
— A doubling step is always a star step and never a small step.
— A doubling step must be followed by a star step.

Now, we focus on the shortest addition chains. Trivially, the shortest chain
for any number n must have at least logs(n) steps. To be more precise, any chain
length is equal to loga(n) plus the number of small steps [2].

Let v(n) be the number of ones in the binary representation of the exponent
n. When v(n) > 9 then there are at least four small steps in any chain for
exponent length n [4]. That statement can be also generalized with the following
theorem [4]:

Theorem 1. If v(n) > 24™~1 + 1, then I(n) > loga(n) +m + 3 where m is a
nonnegative value.

Definition 3. A star chain is a chain that involves only star operations.
The minimal length of a star chain is denoted as [*(n) and it holds:

I(n) < I"(n). ()

Although it seems intuitive that the shortest addition chain is also a star
chain, in 1958, Walter Hansen proved that for certain large exponents n, the
value of I(n) is smaller than [*(n) [2]. The smallest such exponent n equals
12 509.

Albeit counterintuitive, there exist values of n for which I(n) = I(2n) with
the smallest example being n = 191. Here, both n and 2n have length [ equal
to 11. Furthermore, there exist values of n where I(n) > I(2n) [5]. The smallest
such n is 375494703 [6].

Finally, the length seems to be the most difficult to compute for one specific
class of numbers: let ¢(r) be the smallest value of n such that I(n) = r [2].
Therefore, ¢(r) is the first integer value requiring r steps in a shortest addition
chain [5]. To obtain such shortest addition chains is regarded more difficult than
to obtain a shortest addition chain for some other value (of course, with regards
to the size).

Up to now, we discussed only ascending addition chains, but there exists a
number of other types of chains, e.g. addition-subtraction chains [2], differential
addition chains [7] or differential addition-subtraction chains [7].

2.2 Techniques for Exponentiation

A number of techniques that are useful for cryptography, and that apply to both
exponentiation in a multiplicative group and elliptic curve point multiplication,
are explained in [3,8] and can be divided into three categories:
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1. techniques for general exponentiation,
2. techniques for fixed-base exponentiation and
3. techniques for fixed-exponent exponentiation.

In the following paragraphs, we use the term exponentiation, while all prin-
ciples hold for both exponentiation and elliptic curve point multiplication. In
the first category, the most straightforward ways to perform an exponentiation
or a point multiplication, are the left-to-right and right-to-left binary methods.
An option for speeding up these algorithms consists of evaluating more than
one bit of the exponent at a time after precomputing a number of multiples of
the base. An example is the window or k-ary method that evaluates k bits of
the exponent at a time. The precomputation of base multiples maximizes the
speed by minimizing the number of multiplications. However, the optimizations
require a larger memory usage for the storage of the precomputed values. When
the base is fixed, the precomputed multiples of the base can be prestored, which
shortens the time needed for the online exponentiation.

Another way of minimizing the number of multiplications without storing
precomputed multiples of the base is exponent recoding, which uses a repre-
sentation of the exponent that is different from the binary representation. The
recoding of the exponent requires additional resources on a chip (logic gates) or
a microprocessor (program memory).

For elliptic curve cryptography, further speed optimizations are possible by
considering elliptic curves with special properties, like the Gallant-Lambert-
Vanstone (GLV) curve [9], the Galbraith-Lin-Scott (GLS) curve [10] or the FourQ
curve [11]. In [12], side-channel security is taken into account in the derivation
of efficient algorithms for scalar multiplication on GLS-GLV curves.

In this paper, we focus on addition chains for fixed-exponent exponentiations
or fixed-scalar point multiplication without taking into account optimizations
using specific fields or curves. We do not consider side-channel analysis, but we
believe this does not undermine our results, since a number of side-channel coun-
termeasures can be applied on top of the proposed addition chains. Examples
are point blinding or randomized projective coordinates [13].

3 Related Work

In 1990, Bos and Coster present the Makesequence algorithm that produces an
addition sequence of a set of numbers [14]. The proposed method is able to
find chains of large dimensions, and the authors conclude that their method is
relatively more effective than the binary method. The heuristics in the algorithm
choose, on the basis of a weight function, which method will be used to produce
the sequence (the authors experiment with four methods). However, the authors
report that their current weight function does not give satisfactory results and
they experiment with simulated annealing, but without success.

Nedjah and de Macedo Mourelle experiment with a genetic algorithm (GA)
in order to find minimal addition chains [15]. They use binary encoding where
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value 1 means that the entry number is in the chain, and 0 means the opposite.
This representation is not suitable for large numbers and the authors experiment
with values of only up to 250. We note that the chromosome is of length 250 for
that value, and for any value of practical interest the chromosome would amount
to more than the memory of all computers in the world. The same authors focus
on optimizing addition-subtraction chains with GAs [16]. They use the same
representation and exponent values as in [15], which makes their work also far
from applicable. They also experiment with addition-subtraction chains with a
maximal value of 343 in [17].

Nedjah and de Macedo Mourelle use Ant Colony Optimization to find min-
imal addition chains working with exponent sizes of up to 128 bits [18]. How-
ever, since they do not provide the numbers themselves, but only their sizes, it
is impossible to assess the quality of this approach besides the fact that they
report it is better than the binary, quaternary, and octal method. The same
authors extend their work for exponent sizes up to 1024 bits resulting in better
results for the Ant Colony Optimization algorithm than in cases when binary,
quaternary, octal, and GA methods are used [19].

Cruz-Cortés et al. propose a genetic algorithm approach for which the encod-
ing is the chain itself [20]. Besides that, the authors also propose dedicated
mutation and crossover operators. Using this approach, they report to suc-
cessfully find minimal addition chains for numbers up to 14143 037. Cortés,
Rodriguez-Henriquez, and Coello present an Artificial Immune System for gen-
erating short addition chains of sizes up to 14 143037 [21]. With that approach,
the authors were successful in finding almost all optimal addition chains for
exponents e < 4096.

Osorio-Herndandez et al. [22] propose a genetic algorithm coupled with a
local search algorithm and repair mechanism in order to find minimal short
addition chains. This work is of high relevance since it clearly discusses the need
for a repair mechanism when using heuristics for the addition chains problem.

Leén-Javier et al. [23] experiment with the Particle Swarm Optimization
algorithm in order to find optimal short addition chains. Nedjah and de Macedo
Mourelle [24] implement the Ant Colony Optimization algorithm on a SoC in
order to speed up the modular exponentiation in cryptographic applications.
Sarkar and Mandal [25] use Particle Swarm Optimization to obtain faster mod-
ular multiplication in cryptographic applications for wireless communication.

Rodriguez-Cristerna and Torres-Jimenez [26] use a GA to find minimal
Brauer chains where a Brauer chain is an addition chain in which each member
uses the previous member as a summand. Finally, Dominguez-Isidro et al. [27,28]
investigate the usage of evolutionary programming for minimizing the length of
addition chains.

4 The Design of the Proposed Algorithm

Before discussing the choice of the algorithm, we briefly enumerate some basic
rules our chains need to fulfill:



Evolutionary Algorithms for Finding Short Addition Chains 127

1. Every chain (solution) needs to be an ascending chain.

2. Every chain needs to be non-redundant, i.e., there should not be two identical
numbers in a chain.

3. Every chain needs to be valid, i.e., every number in a chain needs to be a sum
of two previously appearing numbers.

4. Every chain needs to start with the value 1 and finish with the desired expo-
nent value.

When choosing the appropriate algorithm for the evolution of chains, we start
with the considerations about the representation. If we disregard the approach
where one encodes individuals in a binary way (i.e., for each possible value, we
use either zero if it is not a part of the chain, or one when it is a part of the
chain), up to now there is not much of a choice. Indeed, encoding solutions as
integer values where each value represents the number that occurs in the chain
seems rather natural. Accordingly, we also use that representation, which we
denote as encoding with chain values.

However, internally, our algorithm works with one more representation where
we represent each value n as a pair of positions i; and i that hold the previ-
ous values ny and no forming the value n, which is denoted as encoding with
summand positions.

Although such position based encoding gives longer chromosomes, for large
exponents the encoded values are much smaller and the memory requirements
for storing an individual are consequently smaller. Furthermore, it is possible to
use operators that work on the positions and to give an algorithm more options
to combine solutions (since we have two positions for every number, the length
of a chain encoded with positions is always twice as long as the one encoded
with values).

For both representations, a GA seems a natural choice, but there is one
important difference in both approaches. When using the representation based
on chain values for large numbers, the chromosome encoding needs to support
large numbers, while in the representation based on summand positions we only
need to support large numbers for calculating the chain elements, but not for
storing them.

However, one cannot aim to fulfill the aforementioned rules and use a stan-
dard GA. Therefore, we need to design a custom initialization procedure, muta-
tion, and crossover operators. In fact, only the selection algorithm can be used as
in the standard GA. In all our experiments, we work with k-tournament selection
where k = 3. In each tournament, the worst of k randomly selected individuals
is replaced by the offspring of the best two from the same tournament.

Since initialization and variation operators are expected to produce many
invalid solutions (in fact, for larger chains our experiments showed that it is
highly unlikely that genetic operators will produce valid solutions) we also need
to design a repair strategy. The repair strategy can be incorporated in each of
the previous parts or to be considered as a special kind of operator, which is the
approach we opted to follow. Next, we present the operators we use in our GA.
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4.1 Initialization Algorithm

We design the initialization algorithm in a way to offer as much diversity as
possible. We accomplish this by analyzing a number of known optimal chains
(both star and standard chains) and checking the necessary steps to obtain
them. Here, we note that if the initialization can produce only star chains and
the mutation can generate only star steps, the whole algorithm will be able
to produce only star chains. Naturally, one could circumvent this by adding
additional steps in the repair mechanism. In that case, the model would not
follow the intuition, since one expects that the repair mechanism only repairs
the chains and it should not possess additional mechanisms for the generation
of new values.

The initial population is generated via a set of hardcoded values that are
positioned at the beginning of the chain and randomly generated chain sequences
as presented below. The probability values are selected on the basis of a set of
tuning experiments.

1. Set the zeroth element to 1 and the first element to 2.

2. Uniformly at random select between all minimal subchains consisting of three
elements (i.e., the second, third, and fourth position in the chain) and a
random choice of the second element (according to the rules, either the value
3 or 4).

3. With a probability equal to 3/5, double the elements until they reach half of
the exponent size.

4. Check whether the current element and any previous element sum up to the
exponent value.

5. Uniformly at random, choose among the following mechanisms to obtain the
next value in the chain, under the constraint that it needs to be smaller than
the exponent value:

(a) Sum two preceding elements of the chain.

(b) Sum the previous element and a random element.

(¢) Sum two random elements. One random element is chosen between the
zeroth position and the element in the middle of the chain and the second
one is chosen between the middle element and the final (exponent) value.

(d) Loop from the element on the position 7 — 1 until the largest element that
can be summed up with the last element is found.

4.2 Variation Operators

Next, we present the mutation and crossover operators we use. They are very
similar to the operators provided, for instance, in [20,21]. For such a specific
problem as the one we study here, the task of devising new operators is difficult.
Furthermore, many operators reduce to the ones described here. For instance,
we present here something that is analogous to a single-point mutation, but
since the change in a single position will invalidate the chain, after the repair
mechanism, the mutation can also be regarded as a mixed mutation. Therefore,
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the number of mutation points is irrelevant since a single point change brings
changes in every position until the end of the chain.

Since we have several branches in the mutation operator, one can say that
those branches could be separated into different mutation operators. We note
that there are more possibilities on how to combine two values to form a new
value in a sequence and there could be possibilities for additional mutation
operators.

On the other hand, we implemented two crossover operators and we consider
advantageous to use both of them, since this promotes diversity. However, iden-
tifying which of them is better than the other is hard, since it depends on the
exponent value that we aim to reach.

Crossover. We implemented two versions on the crossover operator: one-point
crossover and two-point crossover. We provide the pseudocode for one-point
crossover in Algorithm 1 and note that the two-point version is analogous. Here,
the function FindLowestPair(P,1,pairy,paire) determines the pair of elements
with lowest indexes (pairi,pairs) which give the target element ¢ in a chain
P. The dominant difference between the mutation operator and the crossover
operator lies in the fact that in the crossover, we have defined the rules on how to
build elements while in the mutation we do not have such strict rules. However,
since both require the usage of the repair mechanism, that difference can become
rather fuzzy.

Algorithm 1. Crossover operator.
Require: Exponent exp > 0, Parent addition chains Pi, P>
rand = random(3, exp — 1)
for all 7 such that 0 < i < rand do
e; = Pr;
end for
for all 7 such that rand <i+4+1 <n do
FindLowestPair(Pa, 1, pairi, pairs)

€; = €pair; T €pairy
end for
RepairChain(e, exp)
return e =egp,e1,...,€,

Mutation. The mutation operator is again similar to those presented in the
related literature, but we allow more diversity in the generation process as pre-
sented in Algorithm 2. As already stated, since the mutation invalidates the
chain, it is impossible to expect small changes (except when the mutation point
is at the end of the chain) and therefore, this is actually a macromutation
operator.
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Algorithm 2. Mutation operator.
Require: Exponent exp > 0,e = eg, €1, ...,€n
rand = random(2,exp — 1)
rands = random(0, 1)
if rands then
€rand = €rand—1 + €rand—2
else
rands = random(2,rand — 1)

€rand = €rand—1 t €rands

end if
RepairChain(e, exp)
return e =egp,€e1,...,€n

4.3 The Repair Algorithm

Function RepairChain(e,exp) takes the chain e and repairs it in the following
way:

Delete duplicate elements in the chain.
Delete elements greater than the exp value.
Check that all elements are in ascending order, if not, sort them.
Ensure that the chain finishes with the exp value by repeating operations in
the following order:
(a) Try to find two elements in the chain that result in exp.
(b) Uniformly at random apply:
i. Double the last element of the chain while it is smaller than exp.
ii. Add the last element and a random element.
iii. Add two random elements.

Ll

This function is in many ways similar to the Initialization procedure, but
here with the primary goal of removing redundant chain elements, rather than
maximizing diversity as is the case in the Initialization.

There are several places in our algorithm where we choose what branch to
enter based on random values. We decided to use uniform random values where
each branch has the same probability to be chosen. We believe this mechanism
can be further improved. One trivial modification would be with regards to
whether one wants to obtain a star chain or not. In the case when only star
chains are wanted, then the branches that cannot result in a star step can be
set either to a zero or some small value, analogous for the case when we want to
have a larger number of standard steps.

4.4 The Fitness Function

We use a simple fitness function where the goal is minimization. The number of
elements in the chain is minimized as given by the equation:

fitness = 1(n). (6)
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5 Results and Discussion

5.1 Experimental Setup

The number of independent runs for each experiment is 50. For the stopping
criterion we use stagnation which we set to 100 generations without improve-
ment. We set the total number of generations to 1500. The population size is
set to 300 in all experiments. We note that larger population sizes perform even
better thanks to increased diversity from the initialization mechanism, but for
large exponent values the evolution then takes a long time. With the current
setting, even for larger exponent size, one evolutionary run finishes in less than
one hour.

5.2 Results

When discussing the efficiency of our algorithm, we need to establish a number
of test cases that will:

1. serve as a comparison with previous work,
2. serve as special test cases and
3. serve as real-world benchmark tests.

Tests Based on a Comparison with Previous Work

For the first category, we used a set of exponent values that are also used in
previous work. Namely, those are the exponents belonging to the class that
is the most difficult to calculate according to [2]. Recall, those values are the
minimal integers that form an addition chain of a certain length ¢. Up to now,
experiments were done for values of 7 up to 30 [20,21]. However, we wanted to
evaluate the performance of our algorithm with even higher values and, therefore,
we experimented with values up to 7 = 40. Furthermore, for each of those values
we give statistical indicators in order to understand better the performance of
our algorithm as well as to serve as a reference for future work.

Any comparison with previous work is difficult since it only reports the value
(and the chain) that presents the best obtained solution. From the reproducibil-
ity and the efficiency side, we find that approach somewhat incomplete since it
makes a difference if the algorithm found the best possible value in one instance
out of 100 runs or in 90 instances out of 100 runs.

We note that for exponent values n < 227 one can find optimal chains
online [6], while values of up to n = 23! can be obtained from the same web
page. Therefore, in a sense, we conclude it is easy to compare with all values up
to 23! and we do not investigate such cases any further. However, as n increases,
the situation changes since it becomes difficult to find any results for a direct
comparison. Therefore, besides our algorithm, we implement the binary algo-
rithm as well as two variants of the window method. In the first m-window
method, we set the value of k to four in the expression m = 2. It has been
shown [5] that with this method the length of the chain is:

I(n) < loga(n) + 251 — (k — 1) + [logs (n) /K], ¥k. (7)
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The second version of the window method tries to optimize Eq. (7) by choos-
ing the value k that minimizes 2*~! — (k — 1) + [loga(n)/k]. We emphasize that
none of the aforementioned methods should be regarded as the state-of-the-art,
but as methods that give good results and should serve as the baseline cases. For
smaller values of the exponent, the first window method gives far worse results
than even the binary method and therefore we do not present such solutions.
We omit the results for the first five values of r where the exponent value ¢(r)
is smaller than 10 since it is trivial to find optimal values in this case (recall
Sect. 1 where we stated that the value 15 is the first exponent where the binary
method is not the optimal choice). Additionally, the initialization part of our
algorithm has all optimal combinations for the first five exponents hardcoded
and therefore the comparison is not fair. The results are given in Table 1 where
it is easy to observe that the GA performs better than the binary and optimized
window methods.

Special Test Cases
Tests constituting special cases deal with the theoretical results we enumerated in
Sect. 2. Here, we test the smallest value where [(n) = [(2n) which is 191. Next, we
test the smallest number n where the optimal chain is not a star chain, which is
12509. We present the values that form the chain since it is interesting to observe
several things. The smallest chainis1 -2 —-3 -6 - 12 - 13 - 24 — 48 —
96 — 192 — 384 — 768 — 781 — 1562 — 3124 — 6248 — 12496 — 12509.
Note that this is not the only combination giving this chain of shortest length,
but the following observations hold for others. Here, we are interested in values
12 — 13 — 24, which is the part that does not follow the rules of a star chain.
If we compare this sequence with those obtainable from related work
(cf. [20,21]), we notice that in those approaches there exist no steps that can
produce such a sequence. Therefore, although related work presented heuristic
algorithms that are good on selected test cases, we show that they would not
work for this case and therefore are not general enough for every addition chain,
but only for star chains. The final special test case is the number n = 375494 703
since [(n) = 35 while [(2n) = 34. Results for all special cases are given in Table 2.
As in the first set of experiments, the GA approach again easily outperforms the
binary and optimized window methods.

Real-World Benchmark Tests

As a real-world benchmark, we investigate values up to 227 — 3. We select
that upper limit since it has applications in certain high speed Diffie-Hellman
implementations [29]. To provide additional experiments for a comparison, we
start with a value 237 — 3 and we progress by increasing the exponent in steps
of ten, i.e., the following value is 2% — 3. We finish the experiments with the
exponent 2127 — 3 (170141183 460 469 231 731 687 303 715 884 105 725). We also
present the results for the window method with a fixed value of k (k = 4) since it
produces better results than the binary method. The results are given in Table 3.
Similarly as in the previous cases, the GA approach is again superior while the
differences between the results are even more striking than before.
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Table 1. ¢(r) family of the exponent values.

r |c(r) Binary | Optimized window | GA

Min | Avg | Stdev
5 11 5 5 5 5 0
6 |19 6 11 6 6 0
729 7 11 7 7 0
8 |47 9 12 8 8 0
9 |71 9 13 9 9 0
10127 12 13 10 |10 0
11191 13 14 11 |11 0
12379 14 16 12112 0
13 607 15 17 13 |13 0
14| 1087 16 18 14 |14 0
15| 1903 18 18 15 |15 0
16 | 3583 21 19 16 |16 0
176271 20 20 17 |17 0
1811231 23 22 18 |18 0
19| 18287 23 23 19 119 0
2034303 25 24 20 |20 0
2165131 26 24 21 |21 0
22110591 30 25 22 122.08|0.27
231196 591 32 27 23 123.04/0.19
24| 357887 32 28 24 124.281.26
25| 685951 33 29 25 |25.1 |0.58
261176431 33 31 26 |26.18|1.27
2712211837 36 32 27 |27.18|1.68
2814169527 37 32 28 128.18/0.38
297624319 36 33 29 130.16|0.71
3014143037 |38 34 30 130.92/0.6
31/25450463 |38 35 31 |32.620.66
32146444543 |42 36 32 1335 |0.54
33189209343 |42 38 33 [34.46/0.81
341155691199 |42 39 34 |35.44/1.03
35/298695487 |46 41 35 |35.67/0.74
36550040063 |45 41 36 37.96/0.83
371994660991 |46 42 37 |38.76|1.47
381886023151 |48 42 38 140.28 1.21
393502562143 | 48 43 39 |41.36|1.19
406490123999 | 52 45 41 | 41.770.63

133
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Table 2. Special test cases.

n 1(n) | Binary | Optimized window | GA

Min | Avg | Stdev
191 11 |13 14 11 |11 0
382 11 |14 16 11 |11.1 |0.3
12509 17 |20 21 17 117.96|0.19
375494703 |35 |41 40 35 |36.36 | 0.87
750989406 | 34 | 42 40 34 ]36.56|0.81

Table 3. Exponents up to 2127 — 3.

Exponent |logz2(n) | v(n) | Binary | Window | Optimized win. | GA
Min | Avg | Stdev

257 -3 136 35 |71 57 51 43 |45.32 1 0.99
24T 3 46 45 |91 69 63 54 | 56.25 |1.11
257 3 |56 55 |111 82 76 64 |64.9 0.87
267 -3 |66 65 |131 94 88 73 1732 |0.43
23 |76 75 151 107 101 85 [85.4 051
287 3 |86 85 |171 119 113 97 |104.3 |3.56
297 -3 96 95 |191 132 126 106 | 107.2 |0.91
2107 _3 1106 105 | 211 144 138 115 | 115.71{0.75
217 _3 1116 115 |231 157 151 126 | 126.6 |0.89
2127 _3 1126 125 | 251 169 163 136 | 136.8 |0.83

We note that the shortest known chain for the exponent value 2127 —3 has 136
elements, which is the same value our algorithm reached. The question is whether
this should be regarded as a success or a failure. In a sense, it depends on the
perspective; if one knows that the value 136 was obtained (somewhat surprising)
by a pen and paper approach in a matter of a few hours by an expert, then our
result does not seem impressive. However, recall Definition 1 where it is easy to
calculate that [(2127 — 3) has a chain of a length at least equal to 130 since this
exponent has 125 ones in its binary representation. On the other hand, the GA
found the chain of the same length without any problems and in less than 30 min
on average. Furthermore, maybe there are no shorter chains for that exponent,
so the GA actually reaches the optimal value. Unfortunately, the answer to this
question seems out of our reach without some new analytical breakthrough or
until the processing power increases sufficiently to run an exhaustive search.
Since both of those perspectives are unlikely at this moment, we consider our
algorithm useful since it gives us an option to effortlessly find many short chains
for a wide range of exponent values.
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6 Conclusions and Future Work

In this work, we showed that GAs can be used to find shortest addition chains
for a wide set of exponent sizes. However, we note this problem is not as easy
as could be perceived from a number of related works. Indeed, the first step is
the design of a custom GA and then one needs to carefully tune the parameters.
Here, we managed to find chains that are either optimal (where it was possible
to confirm based on related work) or as short as possible for a number of values.
From that perspective, we see this work also as a reference work against which
new heuristics should be tested, since it is undoubtedly possible to compare the
results. As far as we know, we are the first to investigate this kind of heuristics
for an exponent value that has a real world usage.

As part of our future work we plan to investigate even larger values that are
useful in practice. We also note that our position based representation actually
corresponds to the Cartesian Genetic Programming (CGP) encoding. There,
we always use one function (plus) and for each node the indexes from the two
previous nodes are recorded, which can be encoded as a graph of size 1 x N,
which motivates us to experiment with CGP in the future.
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Abstract. We consider two approaches to formulation and solving of
optimal recombination problems arising as supplementary problems in
genetic algorithms for the Asymmetric Travelling Salesman Problem and
the Makespan Minimization Problem on a Single Machine. All four opti-
mal recombination problems under consideration are NP-hard but rela-
tively fast exponential-time algorithms are known for solving them. The
experimental evaluation carried out in this paper shows that the two
approaches to optimal recombination are competitive with each other.

Keywords: Genetic algorithm - Optimal recombination problem - Per-
mutation

1 Introduction

Performance of genetic algorithms (GA) depends significantly upon the choice of
the crossover operator, where the components of parent solutions are combined
to build the offspring. Optimal recombination problem (ORP) consists in finding
the best possible offspring as a result of a crossover operator, given two feasible
parent solutions. The ORP is a supplementary problem (usually) of smaller
dimension than the original problem, formulated in view of the basic principles of
crossover [21]. The experimental results of Yagiura and Ibaraki [26], Cotta et al.
[6], Cook and Seymour [4], Tinds et al. [24] indicate that optimal recombination
may be used successfully in the genetic algorithms for problems on permutations.

This paper is devoted to analysis and comparison of two approaches to con-
struct the optimal recombination operators for Asymmetric Travelling Salesman
Problem (ATSP) and Makespan Minimization Problem on a Single Machine
(1|svu|cmax)~

The first approach is based on the preservation of elements in positions of
the parent permutations. Following this approach for ATSP and 1|8,y |Ciax We
show that on one hand the ORP with position-based representation is strongly
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NP-hard, on the other hand, almost all of the ORP instances are efficiently
solvable. We develop an exact algorithm for solving the ORP, using enumeration
of all possible combinations of the maximal matchings in cycles of a special
bipartite graph. A crossover operator, where this ORP is solved by means of the
proposed algorithm, is called here Optimized Cycle Crossover (OCX) and may
be considered as a derandomization of Uniform Cycle Crossover [7].

The second approach is based on the preservation of the adjacencies found
in the parents. Strong NP-hardness of the ORP with adjacency-based represen-
tation is proven and a solution method is proposed. A crossover operator, which
solves this ORP, is called here Optimized Directed Edge Crossover (ODEC) and
may be considered as a “direct descendant” of Directed Edge Crossover [25].

The theoretical worst-case and average-case upper bounds on time complex-
ity of optimized crossovers obtained in this paper and in [11] are not sufficient to
estimate efficiency of GAs based on such operators. Even if the time complexity
of one optimized crossover is greater than the other, this does not necessarily
mean that a GA using the slower crossover will require more time to find an
optimal solution. Note that given the same pair of parent solutions, the slower
crossover operator may be choosing the best offspring from a larger set of pos-
sible offspring solutions, thus giving more advantage to the GA. Therefore, a
deeper analysis is required in order to decide which of the two approaches is the
most appropriate for a given problem. We perform computational experiments
to compare the behavior of GAs that use the optimized crossovers based on the
two approaches mentioned above.

A wide spectrum of metaheuristics and heuristics has been proposed to the
ATSP problem (see e.g. [1,3,20]). Many of these algorithms solve the ATSP
instances from [22] very quickly. Note, however, that the present paper is aimed,
first of all, at comparison of the optimized crossovers, rather than constructing
fast algorithms for ATSP problem. In particular, in the computational experi-
ments we test the optimized crossovers in a very basic GA with elitist recom-
bination without any problem-specific local search procedures or fine tuning of
parameters.

The paper is organized as follows. In Sect. 2, we provide a formal description
of the Optimal Recombination Problem. Section 3 is devoted to the theoretical
analysis of computational complexity of the two ORPs for Makespan Minimiza-
tion Problem on a Single Machine. A similar analysis for Asymmetric Travelling
Salesman Problem is provided in Sect.4. The computational experiments are
described in Sect. 5 and the concluding remarks are given in Sect. 6.

2 Optimal Recombination Problem

The genetic algorithm is a random search method that models a process of evo-
lution of a population of individuals [18]. Each individual is a sample solution
to the optimization problem being solved. For the sake of generality in this
section we can consider combinatorial optimization problems, where the solu-
tions are represented by strings of length n, composed of symbols from some
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finite alphabet. The components of these stings are called genes. Individuals of
a new population are built by means of variation operators (crossover and/or
mutation).

Performance of the GA depends significantly upon the choice of the crossover
operator, where genes of parent individuals are combined to build the offspring.
Optimal Recombination Problem consists in finding the best possible offspring
as a result of a crossover operator, given two parent individuals. The following
definition of the optimal recombination problem is motivated by the principles
of (strictly) gene transmitting recombination formulated by Radcliffe [21].

Given: an instance I of combinatorial optimization problem with the set of
feasible solutions Sol, objective function f : Sol — R, and two parent solutions

xt=(x},...,2l),x2 = (2%,...,22) from Sol.

Find: a feasible solution (offspring) x’ = (2}, ...,z ) such that

(i) o} = oraj =aF forall j=1,...,n;

(ii) for each x € Sol such that z; = x]l or x; = x?, j=1,...,n, the inequality

f(x") < f(x) holds in the case of minimization problem,

or
f(x") > f(x) holds in the case of maximization problem.

Note that in the case of permutation problems, the set of feasible solutions Sol
consists of permutations, so the offspring is required to be a permutation too.

3 Makespan Minimization Problem on a Single Machine

Consider the Makespan Minimization Problem on a Single Machine (1,4 |Crax),
which is equivalent to the problem of finding the shortest Hamiltonian path in
a digraph.

The input consists of a set of jobs V' = {wy,...,v;} with positive processing
times d,, v € V. All jobs are available for processing at time zero, and preemption
is not allowed. A sequence dependent setup time is required to switch a machine
from one job to another. Let s,, be the a non-negative setup time from job v to
job w for all v,u € V| where v # u. The goal is to schedule the jobs on a single
machine so as to minimize the maximum job completion time, the so-called
makespan Cpax.

Problem 1]8yy|Chax is strongly NP-hard [15], and cannot be approximated
with any constant or polynomial factor of the optimum in polynomial time,
unless P=NP. Therefore metaheuristics, in particular, genetic algorithms, are
appropriate for this problem.

The feasible solutions of 1|s,,|Cmax can be represented in two natural ways
in a GA: (I) genes encode jobs and (IT) genes encode adjacencies. Let us consider
these representations and the ORPs that correspond to them.
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3.1 Optimal Recombination with Position-Based Representation

Let m = (w1, ..., 7m) denote a permutation of the jobs, i.e. m; is the i-th job on the
k=1

machine, i = 1,..., k. Put s(7) = > Sz, .., Then the problem 1|s,,|Crax is
i=1

equivalent to finding a permutation 7* that minimizes the total setup time s(7*).

The ORP for problem 1|s,,|Cmax Wwith position-based representation, given

two parent solutions 7' and 72, asks for a permutation 7’ such that:

(i) mi=mnlorml=n?foralli=1,... k;

(ii) 7" has the minimum value of objective function s(7’) among all permutations
that satisfy condition (i).

The following theorem is obtained in [11].

Theorem 1. The ORP for problem 1|8,,|Cmax with position-based representa-
tion is strongly NP-hard.

We build an algorithm for solving the formulated ORP, using the approach of
Serdyukov [23] which was developed for solving the travelling salesman problem
with vertex requisitions.

Let us consider a bipartite graph G = (V,,,V,U) where the two subsets
of vertices of bipartition V;, = {1,...,n} and V have equal sizes and the set
of edges is U = {{i,v} : i € V,,, v=m} or v=n?}. Now there is a one-to-one
correspondence between the set of perfect matchings in graph G and the set
of feasible solutions to an ORP instance with parents 7', 72: Given a perfect
matching of the form {{1 v}, {2,0%},. .., {n,v"}}, this mapping produces the
permutation of jobs (v!,v?, ... v").

An edge {i,v} € U is called special, if {i,v} belongs to all perfect matchings
in graph G. Note that a maximal (by inclusion) connected subgraph of graph G
with at least two edges is a cycle. Let q(G) denote the number of cycles in
graph G. The edges {i,v} € U, such that 7} = 72, are special and belong to
none of the cycles, while the edges {i,v} € U, such that 7} # 72, belong to some
cycles. Besides that, each cycle j, j =1,...,q(G), of graph G contains exactly
two maximal (edge disjoint) matchings, so it does not contain the special edges.
Hence an edge {i,v} € U is special iff 7} = 72, and every perfect matching in G
is defined by a combination of maxnnal matchlngs chosen in each of the cycles
and the set of all special edges.

The cycles of graph G may be computed in O(k) time, e.g. by means of the
“depth first” algorithm [5]. The special edges and maximal matchings in cycles
may be found easily in O(k) time.

Therefore, the ORP with position-based representation is solvable by the
following algorithm: Build the bipartite graph G, identify the set of special
edges and cycles and find all maximal matchings in cycles. Enumerate all perfect
matchings of graph G by combining the maximal matchings of cycles and joining
them with special edges. During enumeration, each of the perfect matchings is
assigned the corresponding permutation 7 of jobs and s(7) is computed. As a
result, one can find the required permutation 7’.
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The total number of perfect matchings in graph G is equal to 29() | so the
time complexity of the above algorithm is O(k29(%)), where ¢(G) < | 4| and this
bound is tight. Note that the proposed algorithm can be used for different objec-
tive functions defined on the set of permutations (see examples in [6,7,17,26]).

In [11], a modification of the described algorithm was proposed to speed up
the evaluation of makespan function in the process of perfect matching enu-
meration. This modification performs a preprocessing stage, where the values
of makespan function for cycle contacts are computed, and solves the ORP
for 1]spu|Crmax in O (¢(G)299 + ¢(G)k) time.

Moreover in [11], it was shown that for almost all pairs of parent solutions

q(G) < EES;, i.e. the cardinality of the set of feasible solutions is at most k. To

describe this result precisely, let us give the following

Definition 1. [23] A graph G = (Vi,V,U) is called “good” if it satisfies the

inequality q(G) < iﬂgg;

Let R, denote the set of pairs of parent solutions with k jobs which corre-
spond to “good” bipartite graphs G and let R be the set of all pairs of parent
solutions with & jobs. The results from [11] imply

Theorem 2. |Ry|/|Ri| — 1 as k — oo.

According to the frequently used terminology (see e.g. [2]), this theorem
means that almost all of the ORP instances have at most k feasible solutions
and thus solvable in O(kln(k)) time.

In what follows, the crossover operator, solving the ORP by means of the algo-
rithm described above, will be called Optimized Cycle Crossover. Such crossover
may be considered as a derandomization of Uniform Cycle Crossover, which con-
structs an offspring so that maximal matching is chosen randomly in each of the
cycles [7].

3.2 Optimal Recombination with Adjacency-Based Representation

Consider representation of solutions based on adjacencies. Here a solution is
encoded as a vector p = (p1,...,pr), where p; is the job that immediately
precedes job v;, ¢ =1,..., k. We assume that p; = vy marks the first element of
the sequence, where vy is an artificial job and $,,, = 0 for all v € V. Then s(p) =

1
minimizes the total setup time s(p*).

The ORP for problem 1|s,,,|Cimax with adjacency-based representation, given
two parent solutions p' and p?, asks for a feasible solution p’ such that:

k
Sps,v;- The problem 1]s,,|Crax is equivalent to finding a permutation p* that
=1

(i) pi=plorp,=p?foralli=1,... k;
(ii) p’ has the minimum value of objective function s(p’) among all solutions
that satisfy condition (i).
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Theorem 3. The ORP for problem 1|Sy,|Cmax with adjacency-based represen-
tation is strongly NP-hard.

The proof is based on the known result from [11] about NP-hardness of the
ORP for ATSP with adjacency-based representation (see Sect.4). In the proof
of NP-hardness of this ORP in Theorem 1.3 in [11], the vertex cover problem
is reduced to it in such a way that there are arcs belonging to both parent
tours (and thus should belong to the offspring tour). Let us take one of these
arcs (ve,vp) and delete it from both of the parent tours. The remaining two
Hamilton paths will be used now to build a pair of parents for the 1|s,y|Cmax
ORP.

Suppose that an instance of ATSP (an n-vertex graph and arc weights ¢;;,
t=1,...,n, j=1,...,n) is given as defined in the proof of Theorem 1.3
from [11]. Let us construct an instance of 1]8,y|Cmax problem with & = n + 1,
where s,, ., = ¢ for all i@ = 1,...,n, 7 = 1,...,n. The job v, is intro-
duced to ensure that the offspring solution will end with job v,. The setup times
associated with v, 1 are set to zero, i.e. Sy, v,,, = Sv,;q1,0; = 0. Suppose that
two tours vy = iy, Viy,...,V;, = Vg,V and vy = Vi Vjo + -+, Vj,, = Vg, Vg are
the parent solutions of the ORP instance for ATSP constructed in the proof
of Theorem 1.3 from [11]. Then the two parent solutions p! and p? for the
1]$pu|Cmax ORP problem with adjacency-based representation are defined as
follows: pj, = vo, pi, = Vi,,-..,Dj, = Vi,_,, Phi1 = Vi, and p?l = 2y, p?z =
Vjys- s D5, = Vj,_y, Daiq = 5, The first and the last setups are the same in
these schedules so an optimal ORP solution to 1|8,y|Cmax will define an optimal
ORP solution for ATSP, which is NP-hard. The described transformations are
efficiently computable, so the ORP for 1]s,,|Cmax problem is NP-hard as well.
Q.E.D.

The optimized crossover operator, which solves the ORP for 1|s,,|Crax
with adjacency-based representation, will be called Optimized Directed Edge
Crossover and may be considered as a deterministic “direct descendant” of
Directed Edge Crossover [25]. However, unlike the latter one, Optimized Directed
Edge Crossover guarantees a gene transmitting recombination.

The following theorem gives an upper bound on time-complexity of ODEC.

Theorem 4. The ORP for problem 1|Sy,|Cmax with adjacency-based represen-
tation is solvable in O(k22%) time.

The proof is based on a Turing reduction of the ORP to O(k) instances of
Travelling Salesman Problem with forced edges on cubic graphs, i.e. the graphs
with maximal degree three. Let us consider the ORP for 1|$,,|Cmax with parent
solutions p! and p? as a Shortest Hamilton Path problem on (k + 1)-vertex
digraph G’ = (V U {vg}, A) where the arcs correspond to setups presented in p*
and p? and the arc costs ¢;; are equal to the setup times Svy, 1=0,1,..k, j =
1,...,k. Add a zero-cost arc (v,vg) where v € V (enumerate all O(k) options
to choose v € V). The resulting digraph is denoted by G.. This digraph may
be transformed into a cubic graph G, with forced edges the same way as in the
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ORP for ATSP [11]. The graph G, is constructed so that the setups presented
in both parent solutions p! and p? correspond to forced edges.

All Hamiltonian cycles in G,, w.r.t. the set of forced edges are enumerated in
time 0(23) by the algorithm of Eppstein [10]. Then, for each Hamiltonian cycle
C from G, in each of the two directions we can check if it is possible to pass
a circuit in G through the arcs corresponding to edges of C, and if possible,
compute the cost of the circuit. So, the ATSP problem on graph G, is solvable
in O(k2%) time and, therefore, solving the ATSP problems on graphs &, for all
v € V requires O(k22%) time. Q.E.D.

4 Asymmetric Travelling Salesman Problem

In this section, we briefly consider the Travelling Salesman Problem (TSP). Sup-
pose a complete digraph G is given. The set of vertices of G is V = {v1,...,v,}
and a set of arcs is A = {(v;,v;) : v;,v; € V, ¢ # j}. A weight (length) ¢;; > 0 of
each arc (v;,v;) € A is given as well. It is required to find a Hamiltonian circuit
of minimum length. If ¢;; # ¢j; for at least one (v;,v;) then the TSP is called
Asymmetric Travelling Salesman Problem (ATSP).

Feasible solution to the ATSP may be encoded as a sequence of the vertices
in the TSP tour (without loss of generality we assume that the first position con-
tains vertex vy), or as a vector of adjacencies, where the immediate predecessor
is indicated for each vertex.

Position-Based Representation. In the case of position-based encoding of solu-
tions in ATSP, the ORP may be solved by the means of the algorithm described
in Subsect. 3.1. A slight modification of the speed-up method from [11] is applica-
ble here as well. Therefore, the ORP for ATSP with position-based represen-
tation is solvable in O(n2%) time and almost all of its instances are solvable
in O(nln(n)) time.

The following theorem is proved analogously to Theorem 2.2 form [11].

Theorem 5. The ORP for ATSP with position-based representation is strongly
NP-hard.

Adjacency-Based Representation. The ORP for the ATSP with adjacency-based
representation is shown to be strongly NP-hard but solvable in O(n273 ) time [11].

5 Computational Experiment on TSPLIB Instances

5.1 Genetic Algorithm

Yagiura and Ibaraki [26] applied a genetic algorithm with elitist recombina-
tion [16] to a number of combinatorial optimization problems on permutations.
Let us consider the scheme of the GA with elitist recombination in a general
form as it may be applied to a combinatorial minimization problem from Sect. 2.
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Genetic Algorithm with Elitist Recombination

STEP 1. Construct the initial population.
STEP 2. Assign ¢ := 1.
STEP 3. Repeat steps 3.1-3.4 until some stopping criterion is satisfied:
3.1. Choose randomly two parent individuals x!,x? from the population.
3.2. Create an offspring x’, applying a crossover to x! and x2.
3.3. Replace one of the two parents by x'.
34. t:=t+1.
STEP 4. The result is the best found individual w.r.t. objective function.

In our implementation of the GA with elitist recombination the arbitrary
insertion method [26] is used for generating individuals of the initial population
on Step 1. The population size N remains constant during the execution of the
GA.

We apply an optimized crossover (ODEC or OCX) to generate a new indi-
vidual on Step 3.2. One of the parents x!, x? is replaced by the offspring as
follows. We suppose without loss of generality that f(x!) < f(x?). Replace x>
by x’ with probability P(A;/As), otherwise replace x! by x’, where

A = f(XZ) - f(xl)v 1=1,2, (1)
P(A1)As) = min{AléA2,1}. 2)

Note that Ay > A; > 0 by the definition, and hence A;/Ay € [0,1] (we
consider Ay /As = 1if Ay = As = 0). The constant a > 0 is a tunable parameter.
If a = 0, then p’ always replaces p?, and if a = oo, then p’ always replaces p'.

The described GA was programmed in Java (NetBeans IDE 7.2.1) and tested
on a computer with Intel Core 2 Duo CPU E7200 2,53 GHz processor, 2 Gb RAM.

5.2 Testing Problems and Experimental Outline

In the computational experiment, the described above GA was applied to ATSP
and 1|8,y |Cmax problems for evaluation of the effects of different optimized
crossovers. Population size N was set to 50 and the tunable parameter a was set
to 0.5.

In the experiments, we used the ATSP instances from TSPLIB [22] library.
The ATSP collection includes instances from different applications [12-14]. The
rbg instances come from a stacker crane application. The two ft instances arise in
a problem of optimal sequencing tasks in the coloring plant of a resin production
department. The ftv instances are from vehicle routing. Instances ry48p and
krol124p are perturbed random Euclidean instances.

The names of the 1|s,,|Cmax problems, their dimensions and optimal val-
ues Ck_ - of makespan function are listed in Tables1, 2 and 3. The optimal
solutions to ATSP instances may be found in [22]. To find the optimal solu-
tions to 1|8$yy|Cmax instances, we employed CPLEX MIP solver with addition of
problem specific cuts which were constructed using the well-known approach [8].
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Table 1. Instances of 1|syu|Cmax problems in series ftv

Instance | ftv33 | ftv35 | ftv38 |ftv44 |ftv47 |ftvE5 |ftv64d |ftv70 |{ftv90
k 34 36 39 45 48 56 65 71 91
Chax 1159 |1323 1399 |1483 |1634 |1485 |1656 | 1818 |1482
Instance | ftv100 | ftv110 | ftv120 | ftv130 | ftv140 | ftv150 | ftv160 | ftv170
k 101 111 121 131 141 151 161 171
Crhae 1691 1857 [2023 2189 12320 |2511 |2561 | 2642

Table 2. Instances of 1|syu|Cmax problems in series rbg

Instance | rbg323 | rbg358 | rbg403 | rbg443
k 323 358 403 443
Chax 1299 | 1130 |2432 |2687

The experiment consisted of two stages. On the first stage, the competing
GAs were run for a given number of iterations in order to estimate the influence
of different crossover operators upon the CPU cost of one GA iteration. Besides
that, the shortest average execution time, denoted ¢, was identified for each
problem instance. On the second stage of experiments, a number of independent
runs of competing GAs were made with each instance, given the time budget tmin
seconds for each run. This stage was aimed at evaluation of frequency of finding
optimal solutions.

5.3 Makespan Minimization Problem on a Single Machine

First we consider 1|sy,|Cmax problem. In what follows, GA1 denotes the GA
with position-based representation employing the Optimized Cycle Crossover.
We use the notation GA2 for the GA with adjacency-based representation where
the ORP is solved approximately with only one application of the algorithm of
Eppstein. This corresponds to testing at most two options for vertex v among
the vertices that correspond to the last jobs of parent schedules. Exact solving
of this ORP requires enumeration of O(k) options for vertex v and it was not
used in the experiments due to high computational burden.

On the first stage of the experiment, the GA with elitist recombination was
run 1000 times for each instance and each run continued for 4000 iterations for all

Table 3. Other 1|syy|Cmax instances

Instance | ry48p | ft53 | {t70 |krol24p
k 48| 53 70 100
Chax 13451 | 5846 | 36981 | 35227
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Table 4. Average execution time for 1|syu|Cmax instances in series ftv

Instance | ftv33 | ftv35 |ftv38 |ftv4d4d |ftv47 |ftvb5 |ftv64d |ftv70 | ftv90
&A1 0.26 1 0.25 |0.27 |0.29 |0.3 0.75 0.72 |0.95 |1.27
%, 1035 038 |044 |051 (058 |0.71 |0.87 |1.15 |1.49
Instance | ftv100 | ftv110 | ftv120 | ftv130 | ftv140 | ftv150 | ftv160 | ftv170
&A1 1.59 |1.93 293 4.34 5.07 3.76 |4.41 |4.52
v, 1.8 |25 |2.84 [3.23 [4.09 488 [582 851

Table 5. Average execution time for other 1|syu|Cmax instances

Instance | ry48p | {t53 | ft70 | krol124p
avr 0.43 0.32 0.35 8.1
t& Ao 0.66 |0.67 |1.03 | 2.03

problems except rbg series. In the case of rbg series, each run continued for 8000
iterations. These termination conditions were chosen on the basis of preliminary
experiments which showed that such numbers of iterations were enough for GA1
to find the optimal solutions with a sufficiently high probability (more than 5 %).

Average execution times of GAs (in seconds) denoted by t&%, and t&x, are
shown in Tables4 and 5.

On majority of the problem instances (16 out of 21) presented in Tables4
and 5, algorithm GA1 terminated faster compared to GA2. However the average
execution time of GA2 is at most twice the average execution time of GA1 on
all instances, except ft53 and ft70.

On the second stage of experiments, both GAs were run 1000 times for equal
amount of time tyin = min{t¥x,, t&%,}. The results of this stage are displayed in
Tables6 and 7. Here ngl and FEIXQ are the frequencies of finding an optimum
for GA1 and GA2 (respectively).

The statistical analysis of experimental data was carried out using the fol-
lowing approach. For each problem, the testing of an algorithm is considered
as a sequence of v Bernoulli trials, where “success” corresponds to finding an
optimal solution. In our experiments, we performed v = 1000 trials with GA1
and GA2 algorithms. The confidence intervals for the success probability p* are
built using the standard method [19] applied to the Bernoulli distribution and
presented in Tables 6 and 7 (the confidence level is set to 5 %). These tables show
that on most of the instances the considered GAs have similar performance.

On the first stage of experiments with rbg series the execution time of GA2
was much longer than that of GA1. Therefore both algorithms were given t&
seconds on the second stage. The execution times t&s; and the frequencies of
finding an optimum in 1000 runs are presented in Table8. GA1 has a significant
advantage on this series, which is due to large computational cost of crossover
in GA2.
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Table 6. Frequencies of finding the optimum and confidence intervals for 1|syu|Cmax
instances in series ftv

Instance | ftv33 ftv35s ftv38 ftv44 ftv47 ftvb5
FSRY 1 0.69 0.6 0.6 0.6 0.5 0.49
Ient (0.66;0.72) | (0.57;0.63) | (0.57;0.63) | (0.57;0.63) | (0.47;0.53) | (0.46;0.52)
FER, 1065 0.59 0.59 0.44 0.4 0.5

Ient (0.62;0.68) | (0.56;0.62) | (0.56;0.62) | (0.41;0.47) | (0.37;0.43) | (0.47;0.53)
Instance | ftv64 ftv70 ftv90 ftv100 ftv110 ftv120
FSRY 1 0.49 0.51 0.4 0.37 0.31 0.24
I 1(0.46;0.52) | (0.48;0.54) | (0.37;0.43) | (0.34;0.4) | (0.28;0.34) | (0.21;0.27)
FSR 1 0.49 0.53 0.39 0.33 0.35 0.27
I (0.46;0.52) | (0.5;0.56) | (0.36;0.42) | (0.3;0.36) | (0.32;0.38) | (0.24;0.3)
Instance | ftv130 ftv140 ftv150 ftv160 ftv170

FY10.27 0.31 0.29 0.4 0.36

It (0.24;0.3) |(0.28;0.34) | (0.26;0.32) | (0.37;0.43) | (0.33;0.39)

Fg, 10.31 0.41 0.31 0.39 0.3

IRt 1(0.28;0.34) | (0.38;0.44) | (0.28; 0.34) | (0.36:0.42) | (0.27;0.33)

Table 7. Frequencies of finding the optimum and confidence intervals for other
1]S$vu|Cmax instances

Instance | ry48p ft53 ft70 krol24p
FERL 0.4 0.55 0.43 0.22
IeRt (0.37;0.43) | (0,52;0,58) | (0.4;0.46) | (0.19;0.25)
FS, 0.4 0.35 0.32 0.53
e (0.37;0.43) | (0.32;0.38) | (0.29;0.35) | (0.5;0.56)

Table 8. Average time and frequency of finding the optimum for 1|sy.|Cmax instances
in series rbg

Instance | rbg323 | rbg358 | rbg403 | rbg443
tEAL 7.02 7.47 7.54 7.53
FPY10.195 0.111 | 0.107 | 0.091
FeX, |0 0 0 0

We carried out additional experiment in order to find out whether this drastic
difference in computational cost of the two crossovers is due to specific problems
structure in rbg series or it is due to high dimension of these problems. To this
end, we generated testing instances with the same numbers of jobs as in rbg and
chose the setup times uniformly from [$max/2, Smax], Where Smax is the largest



Experimental Evaluation of Two Approaches to Optimal Recombination 149

7 7 + ftv100
= ftv]130
6 6 = fv150
= ftv170
. 3 5
>3 Q. N
=4 E4
g g
<3 $3
£ g
) =
2 2
1 1
g
3
0 ; — % 0
1400 800 1200 1600 2000 2400 2800 3200 3600 4000 1400 800 1200 1600 2000 2400 2800 3200 3600 4000
Tteration Iteration

Fig. 1. Average CPU time of crossover on 1|syy|Cmax instances in series ftv. The left
plot corresponds to GA1, the right plot corresponds to GA2.
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Fig. 2. Average CPU time of crossover in GA1 on series rbg.

setup time on the corresponding instance from series rbg. It turned out that
there was no drastic difference between the CPU times of GA1 and GA2 in this
additional experiment, so we conclude that the cause of poor performance of
GA1 on series rbg might be in the specific structure of these instances.

As seen from the tables, GA1 in general demonstrates more stable results
than GA2.

The dynamics of CPU time required for solving ORPs in GA1l and GA2
on instances ftv100, ftv130, ftv150, ftv170 is displayed in Fig.1. The plots for
the remaining problems of ftv series were analogous and they are skipped here.
The CPU time required for solving ORPs in GA1l on series rbg is shown in
Fig. 2. It can be seen that the time-complexity of crossover operators decreases
with iterations count, which is due to decreasing population diversity. The CPU
cost of optimized crossover in the case of the position-based representation is
somewhat smaller compared to the adjacency-based representation. The ORPs
for instance ftv170 are especially hard for GA2. This observation agrees with the
greater execution time of GA2 and its lower frequency of obtaining the optimum
on ftv170.
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It was mentioned in Subsect. 3.1 that with probability approaching to 1, as
k — oo, randomly chosen parent solutions define an ORP instance with “good”
graph G and the Optimized Cycle Crossover requires O(kln(k)) time. The high
frequency of such ORP instances was observed in the experiments, e.g. on ftv
series the “good” graphs G were observed in more than 60 % of crossover calls,
and in more than 80 % of the calls on rbg series. In process of GA execution this
frequency increased.

5.4 Asymmetric Travelling Salesman Problem

Experiments with ATSP were carried out following the same outline as with
1]8pu|Cmax on instances of TSPLIB. In what follows, GA1’ denotes the GA for
ATSP based on Optimized Cycle Crossover and GA2’ denotes the GA for ATSP
based on Optimized Directed Edge Crossover, where the ORP with adjacency-
based representation is solved exactly (see Sect.4).

Average execution times of GA1’ and GA2’ (t&},, and t¥x,,) are close to
those of GA1 and GA2 respectively. A rough comparison on the basis of com-
puters performance table [9] suggests that the CPU resource given to GAs in our
experiments is approximately 3 times the resource used by SAX/RAI memetic
algorithm in [1] on all instances, except for series rbg. The latter series is excluded
in this comparison because in [1], a problem-specific heuristic of Zhang [27] was
used in construction of initial populations. This heuristic of Zhang is very effi-
cient on series rbg and most likely the optimal solutions to all rbg instances were
found in SAX/RAI memetic algorithm at the initialization stage.

Tables9, 10 and 11 present the frequencies of finding an optimum in 1000
runs, given tyin = min{t¥x;, t&4 } CPU seconds for each run, and the confi-
dence intervals for the probability of obtaining an optimum (the confidence level
is 5 %).

On majority of the problems (19 out of 25) GA2’ finds an optimum more
frequently than GA1’ (in 14 cases among these the confidence intervals for p* do
not intersect), although GA1’ is still more successful on rbg series. Better results
of GA2’ with adjacency-based representation in the case of ATSP, compared to
the results of GA2 on 1|8,,|Cmax problem, are presumably due to exact solving
of the ORP in Optimized Directed Edge Crossover.

Comparing GA2’ and SAX/RAI memetic algorithm from [1] in terms of
frequencies of finding optimal solutions, we estimate the frequency of GA2’ as
approximately 70 % of the frequency reported for SAX/RAI memetic algorithm
on all instances, except for series rbg. This outcome seems to be promising since
the general GA outline and tunable parameters were chosen quite straightfor-
wardly in this paper.

Summing up the experimental results for 1]$,y|Cmax problem and ATSP in
terms of frequency of finding optimal solutions we can conclude that the two
compared approaches are competitive with each other. In the case of 1|,y |Cmax
problem, GA1 tends to outperform GA2 on larger instances such as ftv170,
rbg323, rbg358, rbg403 and rbg443. In the case of ATSP, GA2’ dominates GA1’,
except for series rbg where instances have special structure.
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Table 9. Frequencies of finding the optimum and confidence intervals for ATSP series

ftv
Instance | ftv33 ftv35 ftv38 ftv44 ftv47 ftvh5
FgR,. 1051 0.53 0.52 0.51 0.47 0.4
TN 1(0.48;0.54) | (0.5;0.56) | (0.49;0.55) | (0.48;0.54) | (0.44;0.5) | (0.37;0.43)
F2R,  0.93 0.76 0.75 0.7 0.86 0.67
ISR, 1(0.91;0.95) | (0.73;0.79) | (0.72;0.78) | (0.67;0.73) | (0.84;0.88) | (0.64;0.7)
Instance | ftv64 ftv70 ftv90 ftv100 ftv110 ftv120
FR, 104 0.39 0.35 0.33 0.29 0.22
IEN  1(0.37;0.43) | (0.36;0.42) | (0.32;0.38) | (0.3;0.36) | (0.26;0.32) | (0.19;0.25)
FgRY,. 1079 0.65 0.38 0.47 0.32 0.26
IEN.  1(0.76;0.82) | (0.62;0.68) | (0.35;0.41) | (0.44;0.5) | (0.29;0.35) | (0.23;0.29)
Instance | ftv130 ftv140 ftv150 ftv160 ftv170
FSRY,. 1029 0.2 0.22 0.38 0.31
IS, 1(0.26;0.32) | (0.17;0.23) | (0.19;0.25) | (0.35;0.41) | (0.28;0.34)
FE,.  10.41 0.42 0.43 0.41 0.3
IERS1(0.38;0.44) | (0.39;0.45) | (0.4;0.46) | (0.38;0.44) | (0.27;0.33)

Table 10. Frequencies of finding the optimum and confidence intervals for other ATSP

instances

Instance | ry48p ft53 ft70 krol24p
FSR, 10.37 0.53 0.42 0.1

IEM. 1(0.34;,0.44) | (0.5;0.56) | (0.39;0.45) | (0.08;0.12)
FRY,,  10.42 0.64 0.42 0.47
IR 1(0.39;0.45) | (0.61;0.67) | (0.39;0.45) | (0.44;0.5)

Table 11. Frequency of finding the optimum for ATSP series rbg

Instance | rbg323 | rbg358 | rbg403 | rbg443
F*. 10.145 |0.105 0.086 0.079
Fg,, |0 0.001 |0 0

We carried out an additional experiment in order to compare the optimized
crossovers ODEC and OCX to their randomized prototypes DEC and RCX. It
clearly showed an advantage of ODEC and OCX over DEC and RCX. For the
large-scale problems such as ftv110, ftv120, ftv150, kro124p, rbg323, and rbg358
the GA with operators DEC and RCX found optimal solution within the same
CPU time limit ¢,,;, no more than once out of 1000 runs. A similar situation
was observed in the case of 1|8,y |Cmax problem.
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6 Conclusions

Optimal recombination problems for Makespan Minimization Problem on a Sin-
gle Machine and for Asymmetric Travelling Salesman Problem are shown to be
NP-hard under two “natural” solutions encodings (position-based representation
and adjacency-based representation). In the case of position-based representa-
tion, almost all instances of the optimal recombination problem are polynomi-
ally solvable both for 1|s,,|Cmax and ATSP. The worst case time-complexity of
optimized crossover operators is O(k22§) in the case of adjacency-based rep-
resentation for 1[sy,|Cimax and it is O(k22) (or O(n2%)) in the other cases
considered in this paper. The computational experiment indicates that the two
approaches to optimal recombination yield competitive results. However GA
with position-based representation dominates GA with adjacency-based repre-
sentation on problems with special structure.

Further research might extend the analysis to other problems on permuta-
tions and reduce some of the known upper bounds on the time complexity of
optimal recombination. In particular, we hypothesize that the time complexity
of the optimized crossover for 1]$,,|Cmax With adjacency-based representation
may be reduced to O(k2%). We expect that the GA behavior observed in this
paper might be helpful for improvement of state-of-the-art metaheuristics for
problems on permutations.
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Abstract. Examining the properties of local optima is a common
method for understanding combinatorial-problem landscapes. Unfortu-
nately, exhaustive algorithms for finding local optima are limited to
very small problem sizes. We propose a method for exploiting problem
structure to skip hyperplanes that cannot contain local optima, allowing
runtime to scale with the number of local optima instead of with the
landscape size. We prove optimality for linear functions and Concate-
nated Traps, and we provide empirical evidence of optimality on NKq
Landscapes and Ising Spin Glasses. We further refine this method to find
solutions that cannot be improved by flipping r or fewer bits, which coun-
terintuitively can reduce total runtime. While previous methods were
limited to landscapes with at most 23 binary strings, hyperplane elim-
ination can enumerate the same problems with 277 binary strings, and
find all 4-bit local optima of problems with 22°° binary strings.

Keywords: Landscape understanding - Gray-Box - Mk Landscapes

1 Introduction

The ruggedness and high dimensionality of most problem landscapes makes them
challenging to analyze and understand. However, doing so can be helpful in quan-
tifying the difficulty of a problem. Furthermore, this understanding can be used
to design search algorithms that specifically deal with those difficulties. Simi-
larly, knowing problem characteristics that favor a particular algorithm can help
researchers choose the algorithm most likely to perform well on their problem.

A common way of analyzing landscapes is to examine both the frequency and
distribution of local optima [1], as well as how different search operators transi-
tion between these optima [9,13,14]. However, finding all of the local optima of a
complex problem is prohibitively time-consuming even for small problems. Many
studies have been limited to 18-bit problems [13,14] due to this time constraint.
By leveraging recent advancements in Gray-Box optimization that allow for con-
stant time local search [2], this limit was raised to 30-bit problems [9]. While
sampling methods can approximate the number and distribution of local optima
for much larger landscapes [7], they do not provide enough detail necessary for
some metrics [9].
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Here we introduce a method for finding all local optima for the same prob-
lems using up to 77 bits. The cornerstone of this method is the identification
of hyperplanes that cannot contain any local optima, allowing large portions of
the search space to be skipped during enumeration. The techniques developed
here can be applied to the generalized problem class of Mk Landscapes, which
contains many real world and benchmark combinatorial problems.

2 Mk Landscapes as a Tool for Problem Generalization

An Mk Landscape [15] is any function whose value is equal to the sum of a set of
subfunctions. Each subfunction uses a small subset of variables from the original
function’s input. Combined with limits on the number of subfunctions and the
size of each subfunction’s subset, Mk Landscapes can be efficiently searched for
both local [2,16] and global [4,12] optima.

Formally, an Mk Landscape is any function f : BY — R that can be expressed
in the following form:

M

f(x) = filmask(z,s;)) (1)

i=1

In this equation f; is a subfunction such that f; : Bl*l — R. Each s, is a set
of variables in x, such that |s;| < k. The mask function returns the values in
x associated with each variable in s;. The total number of subfunctions M is
constrained to grow at O(N), and k is constant with respect to N.

This formulation can represent many problems of real-world interest, as well
as the most commonly used combinatorial benchmark problems. In this work we
examine 5 problems in particular: Concatenated Traps, Adjacent and Random
NKq Landscapes, Ising Spin Glasses, and MAX-kSAT.

The Concatenated Trap problem [3] is a composition of k-order deceptive,
separable subfunctions. In Mk Landscape terms, M = N/k such that V;|s;| = k
and V,.;s,Ns; = (. Each f; applies an identical subfunction based on the number
of variables set to 1:

k—1—1t, t<k
wapte) = {F 710 12 @

While this problem is still in common use [6,8], most advanced methods can
solve it trivially [5] and when expressed as an Mk Landscape it can be solved
exactly in O(N) time [15]. We therefore include it only because its structure
allows for straight forward algorithm analysis. Here we set & = 5 to ensure
sufficient deceptiveness.

NKq Landscapes specify a class of randomly generated problem instances
using 3 paramters: (1) the number of problem variables N, (2) the amount of
variable epistasis K where k = K +1, and (3) the number of unique subfunction
values ¢. From these parameters a landscape is generated by creating M = N
subfunctions f;, where f; uses variable x; and K others to look up a fitness value

)
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in the range [0..¢ — 1] from a randomly generated table. As NKq Landscapes
are structured as a sum of bounded subfunctions, they are a natural fit for Mk
Landscapes and are the most studied problem class for Gray-Box optimization [2,
4,9,12,15,16]. We set k = 3 and ¢ = 251 = 2F = 8 in line with previous work.

We use two common variants of NKq in our experiments that specify how the
K additional variables in each subfunction are chosen: Adjacent and Random.
In Adjacent NKq, f; depends on variable indices [i..(i + k) mod N]. In Random
NKq, f; depends on z; and a random set of K unique variables that does not
include x;. While Random NKgq is NP-Hard, the structure of Adjacent NKq
allows for a polynomial time solution [17].

Ising Spin Glasses are a type of MAX-CUT problem derived from statistical
physics. Each atom in the glass (vertex) can be assigned a spin, with the goal
being to find the set of assignments that minimize the energy between nearby
atoms (edges). Similar to Adjacent NKq, the 2D + J subset of Ising Spin Glasses
can be polynomially solved [10]. In this subset, the graph is defined as a square
two-dimensional grid with periodic boundaries such that each edge weight is
chosen from {—1,1}. Each vertex is assigned a spin from {—1, 1} with the energy
in the glass equal to

Z Ti€ij Ty (3)

ei; €EE

where e;; is the weight of the edge connecting vertex ¢ to vertex j. In Mk Land-
scape terms this type of spin glass has M = 2N and k = 2.

Our final problem is randomly generated maximum satisfiability or MAX-
kSAT. This version of the canonical NP-Complete boolean satisfiability problem
is formulated as the maximization of M = 4.27N clauses, each containing exactly
k = 3 unique literals [11]. A clause is satisfied if any of its literals match how a
solution’s variables are set.

3 Gray-Box Enumeration of Mk Landscapes

When considered as a black box, the process of finding all local optima in a
landscape requires §2(N2") time. This is because each of the 2V solutions must
be compared with each of its IV neighbors. Extending this method to look for
solutions that cannot be improved by flipping r or fewer bits requires 2(N"2V)
time. However, by exploiting Gray-Box optimization methods, previous work [9]
was able to find all 7-bit local optima of Mk Landscapes in O(2") for small r.

The first major result in Gray-Box optimization was the proof that the list
of fitness-improving moves from a solution can be updated after a bit flip in
O(1) time [16]. The fitness effect of flipping ; only changes after flipping =;
if there is a non-linear relationship between x; and z;. In an Mk Landscape,
variables can only have a non-linear relationship if they appear together in at
least one s;. By definition the total number of non-linear relationships in an
Mk Landscape is linear with /N, meaning on average the amortized number of
non-linear relationships per variable is O(1).
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This result has been extended, with no increase in asymptotic costs, to
include search for solutions that cannot be improved by flipping r or fewer
bits [2]. Consider two variables z; and x; that do not appear in the same s;.
By definition the fitness effect of flipping both z; and z; is equal to the sum
of flipping each independently. As a result, if neither individual flip is fitness-
improving, flipping both together cannot be fitness-improving. By examining the
graph of non-linear interactions between variables, this principle can be extended
to any collection of r variables, with the number of useful collections growing
at O(N) when r is a small constant. As a result, the time to update the list of
improving moves after up to r bit-flips is still O(1).

These advances can be applied directly to the task of finding all local optima
in a landscape [9]. Instead of requiring O(NV) time to evaluate each solution and
to check if it is a local optima, only O(1) time is needed. Consider an enumeration
of the landscape that uses gray-codes, meaning that each transition between
solutions requires exactly 1 bit flip. In Gray-Box optimization updating fitness
and the list of improving moves after a single bit flip takes O(1) time. That
property holds even when looking for r-bit fitness-improving moves. Therefore
Gray-Box enumeration is able to find all local optima in O(2%V) time.

4 Hyperplane Elimination

Due to the limited non-linearity of the Gray-Box domain, it is possible to exclude
large parts of the search space without missing any local optima. Consider the
representation presented in the top of Fig. 1. In a Black-Box domain, enumer-
ation would progress as a binary counter, treating index 0 (symbol A in the
solution) as the least significant bit. This ordering ensures that before changing
index i, all possible settings of index 0 through i — 1 have been tested. This
corresponds to examining the hyperplane where the lowest ¢ positions can vary
and all other positions remain fixed. The Gray-Box domain makes it possible to
skip hyperplanes that cannot contain local optima. In Fig.1, move m;, which
flips variable F, is a fitness improvement when enumeration starts (all variables
set to 0). Due to the known relationships between variables, we know that the
quality of m; only depends on variables C, E, F', and H. Therefore, until one of
those four variables is modified, the solution cannot be a local optimum. As a

Original Al B c | oo E F G H

index o 1 2 3 4 5 6 7

Reordered A B D G C E F H

Fig. 1. Example reordering. The gray variables are all dependencies for move m; which
flips variable F'. Reordering improves m;’s lowest index dependency from 2 to 4.
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result, the hyperplane **0*00*0 cannot contain a local optima and can therefore
be eliminated from consideration during enumeration. More generally, if at any
point during enumeration there exists a fitness-improving move, no local optima
can exist until at least one dependency of that move is modified. Any hyperplane
that has all of a fitness-improving move’s dependencies fixed cannot contain any
local optima.

Algorithm 1. Find all local optima using Hyperplane Elimination.

Input: solution «— {0}V
Input: move_bin (Count of improving moves at each minimum dependency)
Input: FLIPBIT (Function that flips index in solution and updates move_bin)
Output: found (list of all local optima)

1: found « []

2: index — N —1

3: while index < N do

4: while index > 0 and move_bin[index] = 0 do
5: index «— inder — 1

6: if index = —1 then

7: found — found + [solution]

8: index < 0

9: while index < N and solution[index] = 1 do
10: FLIPBIT(index)

11: index «— index + 1

12: if index < N then

13: FLIPBIT(index)

This knowledge can be exploited to skip parts of the enumeration, as shown in
Algorithm 1. Initially all variables are set to 0 and each fitness-improving move
is put into a table move_bin based on that move’s lowest index dependency.
This is the first index that can be modified by enumeration that can potentially
change the fitness effect of making that move. Algorithm 1 works by finding the
highest index in move_bin that is not empty (Line 4) and then adding a 1 to
that index in solution. Initially all bins could contain a fitness-improving move,
so index starts at N — 1. If at any point all bins are empty, then the solution
is added to the list of local optima found. Algorithm 1 then adds a 1 to index,
using the loop on Line 9 to perform carry operations and Line 13 to create the
new 1 value. Iteration stops when the carry exceeds the solution length.

When performing subsequent iterations, not all bins need to be checked.
Instead, the highest index bin that must be tested is the highest index flipped
by the previous iteration. This simplification is possible because the previous iter-
ations have verified that all moves in higher index bins are not fitness-improving,
and no action performed during that iteration can make them fitness-improving.
Furthermore, index is always the location of the lowest index 1 bit in solution,
meaning iteration can continue immediately from the found index. This is true
by construction. Initially solution contains all Os. Each time a 1 is inserted, its
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position is equal to index and index is only increased by carry operations which
reset a position to 0 before increasing indezx.

Extending Algorithm 1 to search for r-bit optima only requires adding the
necessary 7-bit moves to move_bin. As discussed in Sect. 3, we know the number
of these moves is O(IN) and can be kept updated in O(1) time per flip. Therefore,
for small 7, the cost of finding r-bit local optima is no more than a constant slower
than finding 1-bit local optima. In fact, we will provide evidence in Sect. 7.2 that
increasing r can actually decrease runtime.

5 Reordering Variables

Changing the order in which variables are indexed can provide further efficiency
gains. When a move is fitness-improving, the amount of search space that is
skipped depends on how high its lowest index dependency is. Therefore, by
rearranging the order to make its lowest index dependency higher, more search
space can be skipped. Figure 1 shows how changing the index order of variables
improves m;’s lowest index dependency from two to four. Consider that before
reordering m; allows the hyperplane **000000 to be skipped by Algorithm 1,
while after reordering the hyperplane that can be skipped is ****0000. Now,
whenever m; is a fitness improvement, four times as many solutions are skipped.

We perform this reordering in a greedy fashion, such that the move with the
least-unmapped dependencies has all of its remaining dependencies mapped to
the highest remaining indices. Before iteration, each move is binned based on
its number of dependencies, and dictionaries are created to convert a move to
its bin location and a variable to the moves that depend on that variable. Each
of these requires O(N) time as for each move (O(N)) you must consider all
variables (O(N)) in all subfunctions (O(1)) it overlaps. The algorithm then iter-
atively queries the move bins in ascending order (requiring at most kM /N =O(1)
amortized steps) until the first non-empty bin is found. All dependencies of that
move are assigned positions, and all moves that depend on that variable are
updated in the move bin (requiring at most O(1) amortized updates). Each
iteration finishes a move, meaning after O(N) iterations the process is complete.

The quality of an ordering is determined by how many solutions Algorithm 1
can skip when using that ordering. Each time the loop on Line 4 stops with
index > 0, 2" solutions have been skipped. For practical purposes we will
assume that all moves are equally likely to be fitness-improving.

Lemma 1. All optimal orderings of variables are orderings of moves, such that
all remaining dependencies of each move are sequentially assigned the highest
remaining position in the enumeration ordering.

Proof. Any ordering of variables that cannot be described by an ordering of
moves must contain positions ¢ and j with the following properties: (1) ¢ < j
(2) 4 is the minimum dependency of a move m (3) no move with minimum
dependency of ¢ or higher depends on z;. In this situation, swapping the order
of x; and z; will raise m’s minimum dependency by at least one, but it will
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not lower the minimum dependency of any move. Therefore, any ordering which
contains this property cannot be optimal. a

Moves can have their dependencies assigned in some permutation P of all
possible moves, such that Py is the first move to have its dependencies assigned.
Dp(i,m) is a function that returns how many unassigned dependencies move m
has after all moves in P before i have been assigned. A greedy solution to this
problem is one such that P; is set to be the move that minimizes Dp(i,m).

Theorem 1. All optimal orderings of variables are greedy orderings of moves.

Proof. All non-greedy solutions must have some ¢ such that Dp(i, P;) >
Dp(i, P;iy1). This is because Dp(i,m) can only decrease as i increases, meaning
that if some m has a lower value at i than P;, this property must hold for some
index between ¢ and when m appears in P. Finally, all non-greedy solutions must
have some 7 that is the maximum i value for which Dp(i, P;) > Dp(i, Piy1) is
true.

Consider the optimal ordering P* that is not greedy and that has the mini-
mum value for 7. Swapping P%* and P%*+ , cannot change the minimum dependency
of any other moves. Performing the swap causes P%* to have the minimum depen-
dency P;:r L had before the swap, while P%*+ l’s minimum dependency is raised by

at least Dp- (i, P*)—Dp« (1, P{;l). This value cannot be negative, meaning that
we have now constructed a solution that either skips more solutions than P* or
has a lower ¢ than P*, contradicting our assertions. a

Theorem 2. Not all greedy orderings are optimal orderings.

Proof. Consider a problem with move dependencies my = {A,B}, m; =
{C, D}, and ms = {C, D, E}. There are two greedy orderings, [mg, m1,mz] and
[m1, ma, mg]. The former skips 2% + 2! solutions, while the latter skips 23 + 22.
This is because m; and my overlap. Even though both are greedy, only the
second is optimal. a

We suspect finding the optimal ordering of moves is NP-Hard and therefore
rely on the greedy method as it is probabilistically optimal.

6 Complexity Classes for Simple Landscapes

Understanding the runtime complexity of Algorithm 1 requires knowledge of how
often each move is fitness-improving. For most landscapes, this is intractable to
do theoretically. However, for some restricted problem types it is possible to
rigorously determine Algorithm 1’s complexity class.
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6.1 Linear Functions

A linear function is any f : BY — R which contains no non-linear terms between
variables. These functions are of the form:

N—-1
flz) = Z WiT4 (4)
i=0
In Mk Landscape terms, M = N and k = 1. The most well known linear function
is OneMax, in which w; = 1 for all i.

Theorem 3. Algorithm 1 finds all local optima of any linear function where
Viw; # 0 in O(N) time.

Proof. When Algorithm 1 is applied to a linear function, an index i of move_bin
is non-zero if and only if x; disagrees with the global optimum. Initially index is
set to IV — 1, and is decreased by at least one in every step after the first. Each
step will flip a bit that disagrees with the global optimum. No carry operations
can occur before finding the global optimum, meaning the cost of each iteration
is equal to the amount by which index is decreased. Therefore, Algorithm 1
requires O(N) time to reach the global optimum.

After finding the global optimum, indez is set to 0. One iteration is then spent
adding a 1 to index 0, which in the worst case requires O(N) carry operations.
For all future iterations, index is the position of the highest fitness-improving
move which is currently set to 1. In these iterations at least 1 carry operation
must occur, and indexr cannot be decreased. Iteration ends when index exceeds
N, which requires at most IV carry operations. Therefore, Algorithm 1 requires
O(N) time to reach termination after finding the global optimum. Combined
with initialization and the time to find the global optimum, the total complexity
is O(N), which is the lowest possible bound for this problem. O

6.2 k-Bound Separable Problems

A k-bound separable problem is any problem that is composed of non-
overlapping subfunctions, each using k or fewer bits. Formally this means
Vilsi| < k and V,xjs, N's; = 0. Let ; be the set of ways f; can be set such
that it contains no fitness improving moves.

Theorem 4. Algorithm 1 with reordering finds all Hi]\ial ;| local optima in a

k-bound problem in at most 2" ij\igl i]\i;}_j [l;|+ O(M) time.

Proof. While there is no restriction on how variables are ordered in the problem,
performing reordering will ensure that all variables that appear in the same s;
are consecutive. As such, it is possible to create a numbering of f; such that if
i < j then all of s;’s variables appear before s;’s in enumeration ordering.
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Algorithm 1 finds the f; with the highest ¢ that contains a fitness-improving
move and enumerates its variables until it no longer contains an improving move.
In total, enumerating f; requires at most 2% steps. Each f; is considered sequen-
tially until none contains an improving move, meaning the first local optimum
is found in O(2%M) time.

Once the first local optimum is found, Algorithm 1 proceeds by finding all local
optima in larger and larger hyperplanes. Initially, fo is enumerated to find all local
optima in the hyperplane where all f;, 7 > 0 remain fixed. This process ends when a
carry operation modifies a bit of f;. At this point, f; is enumerated such that each
time f; contains no improving moves fy is enumerated again. This finds all local
optima in the hyperplane where f;,7 > 1 remain fixed. T'(¢) represents the time
required to find all local optima in the hyperplane with f;,j > i fixed. T(0) = 2*
as all values of f, must be enumerated, and T(i) = |l;| * T'(i — 1) + 2*. Each setting
in [; exposes a new hyperplane that can contain local optima, which causes the
recursive call to T(i — 1) The time required to find all local optima is therefore

T(M —1) =28 Y0 T [l O

When looking for only r-bit local optima of k-bound separable problems,
Algorithm 1’s complexity only increases by a constant. For r < k, the additional
moves may reduce |l;| without increasing the cost by more than a constant.
When r > k there can only be one local optimum: the global optimum. Further-
more, as only non-linearly related subsets of variables must be checked for fitness
improvements, no subsets can be added that are larger than k. Therefore, even
if r = N — 1, the number of subsets only grows at O(N). Because all |I;] =1 in
this case, the cost of finding the single global optimum only requires the O(M)
time, which is optimal.

Theorem 5. If V;|l;| = ¢ and ¢ > 1 in a k-bound problem, Algorithm 1 with
reordering finds all ¢M local optima in at most 28cM 4+ O(M) time.

Proof. From Theorem 4 the number of local optlma can be expressed as
10" 1] = TT2g " e = ™. Similarly 28 S T [l = 28 000 it <
2k M, O

Concatenated Traps is a commonly used k-bound separable problem with
¢ =2and M = N/k. Algorithm 1 requires 2k9N/k time to find all 2V/* local
optima in this problem. Note also that in the degenerate case of k = 1, a k-bound
separable problem is a linear function. As such, when k = 1 and ¢ = 1, 2k¢M+

O(M) = O(N).

Importance of Reordering. The order of variables for k-bound separable
problems has a significant impact on Algorithm 1’s complexity. Instead of using
the normal reordering procedure, consider an ordering such that if ¢ < j, all
variables in s; appear before the second variable in s; and after the first variable
in s;.

In order to flip the second variable in s;, all of s;_; must be enumerated.
This is because only carry operations can result in index being set to the second
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variable in s;. Each time f; contains a fitness-improving move, index is set to
the first variable in s;, which comes before all variables in s;_1. As a result, the
time to solve this ordering becomes T'(i) = 28=1 % T'(i — 1) + 2¥. Therefore, if
l; < 2F=1 this ordering performs much worse than optimal.

7 Experiments

We compare three methods for finding all local optima: Gray-Box, Hyper, and
Hyper-Reorder. The Gray-Box method refers to previous work [9] that does not
perform hyperplane elimination. Hyper is Algorithm 1 without the order improve-
ments discuss ed in Sect. 5. Hyper-Reorder is Algorithm 1 with reordering.

For each of the five types of Mk Landscape outlined in Sect.2, we tested
all algorithms for all N in [15..100] and r in [1..4]. For each problem size we
generated 30 problem instances, with each r of each algorithm run once per
instance. Variables were randomly ordered in the genome for problems with
natural structure. For example, variables in the same s; of an Adjacent NKq
instance are not likely to be consecutive in the genome. However, s; still overlaps
Si+1 in all but 1 variable.

Each algorithm was given a maximum of four hours to find all r-bit local
optima. Runs were distributed across a cluster using 2.5 GHz Intel Xeon E5-
2670v2 processors. Any run which failed was rerun once to prevent cluster issues
from introducing noise. For the same reason, any run which was over ten times
slower than the next slowest run of the same configuration with a different seed
was rerun. This resulted in 33 out of 36,000 runs being rerun. If the algorithm
failed to complete in the alloted time for an instance, we declared it unsuccessful
for that combination of  and N of that problem. All results we report are for
successful combinations. For timing purposes, local optima were counted but not
recorded. All of our code, data, and statistical analysis can be downloaded from
our website.!

7.1 Finding Local Optima

We tested 932 task configurations (problem, N, r), with 681 completed by at
least one method. Of those, Hyper-Reorder had the lowest mean time to find all
local optima in all but 2. In both of those cases, Hyper-Reorder was within a
tenth of a second of the best method. Figure 2 shows the variance in runtime for
the largest problem size where all three methods were successful. In all cases it
is clear that Hyper-Reorder outperforms the other methods.

More critically, Fig. 3 shows how each method scales with problem size. Not
only does Hyper-Reorder outperform the alternatives on all sizes, the rate at
which it scales to problem complexity is better. Table 1 shows the model fit for
each method on each problem. This value is the slope of each line shown in
Fig.3. As expected, Gray-Box scales at almost exactly 2VV. Using hyperplane

! https://github.com /brianwgoldman /Enumerate-Local-Optima /releases.
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elimination without reordering reduces this complexity, and reordering makes
further improvements. In the final column we show the growth rate of the num-
ber of local optima. It is impossible for any method that enumerates all local
optima to grow slower than this rate. However, Hyper-Reorder has an estimated
slope better than optimal on Concatenated Traps, Adjacent NKq, and Ising Spin
Glass. This is due to lower order terms dominating runtime for small problem
sizes, as can be see in Fig. 3. For instance, fitting the curve only to problems
where N > 60 makes Hyper-Reorder have m = 0.199 on Concatenated Traps
and m = 0.358 on Adjacent NKq. For Concatenated Traps this matches our

theoretical predictions that Hyper-Reorder scales at 282N/% ag % =0.2.

Concatenated Traps, N=30 ‘ ‘ Adjacent NKq, N=34 ‘ ‘ Random NKgq, N=34
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LT ——
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10°
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Gray-Box  HyperHyper—Reorder Gray—-Box HyperHyper—Reorder
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Fig. 2. Comparison of completion time variance for the largest size of each problem
where all three methods were successful at finding all 1-bit local optima.

This reduction in growth complexity translates into a substantial increase in
the size of problems which can be enumerated in reasonable time. For instance,
using the previous best enumeration methods [9], the largest Adjacent NKq
problem size that can be enumerated in 4h is 34 bits. Given the same amount
of time, Hyper-Reorder can enumerate problems with 77 bits. Using the regres-
sion model, we estimate solving a 77 bit problem using Gray-Box would require
900 million years. Similarly, Hyper-Reorder’s largest Random NKq size of 69
bits would require Gray-Box 3 million years. We believe these larger problems
are more likely to share characteristics with those where search algorithms are
actually applied.

With the exception of MAX-kSAT, Hyper-Reorder’s time required to find
all local optima appears to be growing at the same rate as the total number
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Fig. 3. Comparison of how each method scales with problem size when finding 1-bit
local optima on log-linear scales. Each point is the mean runtime over 30 instances and
each line the linear model. All confidence intervals too tight to see.

Table 1. Value of m when fitting a model to y = 2°2™" where y is number of seconds
required to find all 1-bit local optima of a problem using N bits. Optimal refers to
the same model where y is the number of local optima. All R? values over 0.95 except
Hyper on Concatenated Traps which has 0.898.

Gray-Box | Hyper | Hyper-Reorder | Optimal
Concatenated Traps | 0.9809 0.5831 | 0.1620 0.2000
Adjacent NKq 0.9922 0.5972 | 0.3419 0.3603
Random NKq 0.9920 0.6229 | 0.3989 0.3531
Ising Spin Glass 0.9821 0.6722 1 0.5976 0.6015
MAX-kSAT 0.9949 0.8922 | 0.7737 0.5393

of local optima. We suspect some of this deficiency on MAX-kSAT is due to
its significantly higher number of non-linear interactions. Concatenated Traps,
Adjacent NKq, and Ising Spin Glass all have exactly 4 non-linear relationships
per variable. For small problem sizes, the number of non-linear relationships per
variable in Random NKq and MAX-kSAT both increase with problem size. Ran-
dom NKq’s average ranges between 5 and 6 on problems we tested. With N = 15,
MAX-kSAT has, on average, nearly 12 non-linear relationships per variable. By
N = 30, this grows to just over 17. Having each variable depend on over half the
genome significantly limits the size of hyperplanes that can be eliminated. While
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the number of non-linear relationships per variable is asymptotically constant,
this growth on small problems is likely affecting runtime.

7.2 Finding r-Bit Local Optima

A major advantage of Gray-Box enumeration is that it can find r-bit local optima
with only a constant increase in runtime. Figure4 shows the estimated growth
rate for each method as r increases. On Concatenated Traps, Adjacent NKq,
Ising Spin Glass, and to a lesser extent Random NKq, none of our enumeration
methods have an increase in growth complexity with increasing r. In all cases,
using Hyper-Reorder has a lower growth rate than the other two methods using
the same 7. On every problem except MAX-kSAT, Hyper-Reorder’s slowest r is
faster than the fastest r of any other configuration.

Perhaps most striking in Fig.4 is that on Adjacent NKq, Random NKq,
and Ising Spin Glass, increasing r reduces Hyper-Reorder’s growth complex-
ity. Increasing r creates more moves which can be fitness-improving. As a result
there are more hyperplanes that can potentially be detected and eliminated. On
Concatenated Traps, no flip using 1 < r < k bits can be fitness-improving with-
out a 1-bit flip being fitness-improving, meaning no additional hyperplanes can
be skipped. For MAX-kSAT, increasing r likely compounds the high dependency
problems discussed in Sect. 7.1.

Concatenated Traps ‘ ‘ Adjacent NKq ‘ ‘ Random NKq
prm—
1.0 4
—
7 Y 3 LY x
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—_— e 4 —e—
S
—_——
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Fig. 4. Estimated slope with 95 % confidence intervals for each method to find r-bit
local optima. Slope is m in the model y = 2°2™" where y is number of seconds required
to find all local optima of a problem using N bits.
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Increasing r also results in a substantial reduction in the total number of
local optima, as shown in Fig. 5. For every problem except Concatenated Traps,
increasing r not only reduces the number of local optima, it decreases the growth
rate with respect to N. As there are fewer local optima to enumerate, Algorithm 1
requires less time to enumerate them all. In Concatenated Traps, each trap
requires exactly k flips in order to move between local optima. Therefore, while
r < k the number of local optima cannot change, and once r > k there is exactly
one local optima.

R=1 R=2 R=3

T T T T T T T
25 50 75 100 25 50 75 100 25 50 75 100

Count
=~
1
L

s Problem

® Concatenated Traps
Adjacent NKq
Random NKq

+ Ising Spin Glass
MAX-kSA

T T
25 50 75 100
Length

Fig.5. Number of r-bit local optima for each size of each problem. Note that the
number of local optima in Concatenated Traps does not change while r < k.

Previous work [9] noted that, counter-intuitively, Adjacent NKq has more
local optima than Random NKq for r = 1 and NV = 20, even though the former
is generally easier to solve. However, many of these optima are “weak” in the
sense that they are not also 2-bit local optima. Here we extend those observa-
tions for up to N = 59 and up to r = 4. Adjacent NKq tends to have more 1-bit
local optima than Random NKq, most of which disappear as r increases. Fur-
thermore, the growth rate of local optima between the two landscapes diverges
as r increases.

MAX-kSAT and Ising Spin Glasses generally appear to contain far more
local optima than any of the other problems we enumerated. With just N = 49,
Ising Spin Glasses average nearly 800 million local optima. For comparison,
Adjacent NKq with N = 49 averages fewer than 300 thousand, and with N =77
Adjacent NKq still has fewer than 500 million. As with NKq, the polynomially-
solvable Ising Spin Glass problem has more 1-bit local optima than the NP-Hard
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MAX-KSAT. Unlike with NKq, this relationship generally does not change as r
increases. However, both do still see large decreases in the number and growth
rate of local optima. With N = 49 the number of 4-bit local optima in an
Ising Spin Glass is on average under 70 thousand, a reduction of four orders of
magnitude.

In our original experiments we tested problems up to size N = 100, which
was sufficient to cause all three methods using 7 = 1 to fail all problems except
for Hyper-Reorder on Concatenated Traps. For Gray-Box and Hyper, increasing
r only decreased the largest size they could enumerate. However, using higher
r values, Hyper-Reorder is able to significantly extend its range. On Random
NKq, Hyper-Reorder was successful at finding 2-bit local optima for N = 73.
On Adjacent NKq for all r tested except 1, Hyper-Reorder was successful on
N = 100. To push Algorithm 1 to the extreme, we tested Adjacent NKq with
N =200 and r = 4, with all 30 runs successful. On average, these runs required
5.6 min to complete. However, there was substantial variance in both the runtime
and number of local optima. Eighteen runs completed in under one minute, while
the slowest run took 1.5h. Three had fewer than 50 4-bit local optima, while
five had over 100,000.

8 Conclusions and Future Work

By expressing a function as an Mk Landscape, we have developed a method
to find all local optima of that function very efficiently. The structure imposed
by an Mk Landscape allows for the identification of hyperplanes in the search
space that cannot contain any local optima and can therefore be eliminated
from enumeration. Combined with a greedy method to change the ordering of
variables, we were able to show this method’s runtime complexity scales with the
number of local optima, unlike previous methods that scale with the number of
possible solutions. When applied to NKq Landscapes and Ising Spin Glasses, this
allowed for a dramatic increase in the size of problems which can be enumerated.
We believe that these larger problem sizes will be more representative of the types
of search spaces where optimization is performed.

We further refined this hyperplane elimination to find only solutions that
cannot be improved by flipping r or fewer bits. For some problems this coun-
terintuitively reduces search times, and on Adjacent NKq allowed us to find all
4-bit local optima of 200 bit problems.

The obvious next step is to use the results of hyperplane elimination in con-
junction with landscape analysis techniques [9,13,14]. We are especially inter-
ested to see how landscape properties change for larger N and r. As to the
algorithm itself, we suspect there may be room for improvement in enumeration
ordering. While we are able to prove that all optimal orderings are greedy, the
reverse is not true due to how ties are broken. Therefore, more gains may be
possible by improving this ordering. Furthermore, we assumed that all moves
are equally likely to be fitness-improving. It is likely possible to determine the
true probability of a move being fitness-improving, resulting in potentially better
ordering.
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Abstract. Learning mechanisms in selection hyper-heuristics are used
to identify the most appropriate subset of heuristics when solving a given
problem. Several experimental studies have used additive reinforcement
learning mechanisms, however, these are inconclusive with regard to the
performance of selection hyper-heuristics with these learning mechanisms.
This paper points out limitations to learning with additive reinforcement
learning mechanisms. Our theoretical results show that if the probability
of improving the candidate solution in each point of the search process
is less than 1/2 which is a mild assumption, then additive reinforcement
learning mechanisms perform asymptotically similar to the simple random
mechanism which chooses heuristics uniformly at random. In addition, fre-
quently used adaptation schemes can affect the memory of reinforcement
learning mechanisms negatively. We also conducted experiments on two
well-known combinatorial optimisation problems, bin-packing and flow-
shop, and the obtained results confirm the theoretical findings. This study
suggests that alternatives to the additive updates in reinforcement learn-
ing mechanisms should be considered.

Keywords: Hyper-heuristics - Reinforcement learning - Runtime
analysis

1 Introduction

The term ’hyper-heuristic’ refers to a search methodology that automatically
selects or generates heuristics to solve a given optimisation problem. One main
goal of this line of research is to design general-purpose optimisation meth-
ods that can adapt to different problem instances and domains. There are two
main categories of hyper-heuristics; selection hyper-heuristics and generation
hyper-heuristics. This paper focuses on the former. Typically, a selection hyper-
heuristic framework evolves an initial randomly generated solution by iteratively
(i) selecting a heuristic from a repository of pre-chosen low-level heuristics; (ii)
applying the selected heuristic, thus generating new offspring; (iii) evaluating the
offspring and deciding whether it should replace the current candidate solution
or be discarded. This process is iterated until a predetermined termination con-
dition is satisfied. A growing body of literature has assessed the effectiveness of
applications of hyper-heuristics on different optimisation problems. An overview
can be found in Burke et al. [4].
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Learning mechanisms in selection hyper-heuristics are heuristic selection
techniques that specify which heuristic to apply in a given point of the search
process. Reinforcement learning is sufficiently general in nature, and thus
describes several learning mechanisms [14]. Conceptually, all reinforcement learn-
ing mechanisms aim to iteratively solve the appropriate heuristics identification
task by trial-and-error interactions with the search environment. Traditional
reinforcement learning hyper-heuristics associate every heuristic with a weight
(rank), and each heuristic is subject to a positive or a negative reinforcement
based on its performance [16]. This reinforcement increases or decreases the
probability of the heuristic being chosen in the next points of the search process
(e.g., each heuristic is chosen with probability proportional to its weight). All
the weights of low-level heuristics are initialised to the same value and adapted
during the search process by a pre-chosen weights adaptation scheme. The adap-
tation scheme determines how the weights of the heuristics should be updated.
The additive weights adaptation scheme is the most frequently used adapta-
tion scheme which combines slow additive and subtractive adaptation rates so
that, if an improvement in the candidate solution is found, the weight of the
selected heuristic is increased by a small value; otherwise, the weight is mini-
mally degraded by of same value. Several experimental studies have used the rein-
forcement learning mechanisms on different search and optimisation problems.
However, non-conclusive results about the performance of hyper-heuristics with
the reinforcement learning mechanisms were obtained (see e.g. [3,5,8,16,18,19]).

This study investigates theoretically the learning behaviour of reinforcement
learning mechanisms in hyper-heuristics. A theoretical foundation of learning
mechanisms in hyper-heuristics is largely absent. Lehre and Ozcan [15] showed that
mixing low-level heuristics can be necessary for certain benchmark problems. He
et al. [11], demonstrated that (1 + 1) Evolutionary Algorithms (EAs) that com-
bine several mutation operators can outperform the (1 + 1) EAs that use any one
of the operators alone. Alanazi and Lehre [1] showed that several classical learning
mechanisms have roughly the same performance on both a benchmark problem
and a general model of fitness landscapes. To the best of our knowledge, this is
one of the first theoretical studies of reinforcement learning mechanisms within a
hyper-heuristic framework. We perform rigorous runtime analyses (see e.g. [13])
to investigate how reinforcement learning mechanisms choose low-level heuristics.
Additionally, we investigate empirically the performance of the additive reinforce-
ment learning mechanism on a set of instances of two different problems.

The paper is organised as follows: Sect. 2 presents notation used in this paper;
Sect. 3 describes briefly reinforcement learning hype-heuristics; Sect. 4 provides
a theoretical investigation of the reinforcement learning mechanisms; Sect.5
presents an empirical investigation of additive reinforcement learning mecha-
nisms; Sect. 6 draws the conclusions of this study.

2 Notation

This paper uses the following notation. For any integer n, let [n] := {1,...,n}.
We use s ~ Unif(S) to signify that s is sampled uniformly at random from S.
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Standard asymptotic notation (e.g. O, £2, @) is used (see e.g. [6]). An event
occurs with high probability (w.h.p.) with respect to a parameter n, if the prob-
ability of the event is bounded from below by at least 1 — O(1/n).

3 Reinforcement Learning Hyper-heuristics

We begin by briefly reviewing reinforcement learning hyper-heuristics [16]. The
framework consists of a finite set of states S, an objective function f : & —
R mapping states to real numbers, a set H := {hy,..., hy} of m low-level
heuristics, and an adaptation scheme A : & x H — R. We define low-level
heuristics as follows.

Definition 1. Given a finite set S and an integer k > 1, a low-level heuristic h
of arity k is a random mapping

h:8" -8

A low-level heuristic in this paper is a function that generates a new search
point given one or more search points. Reinforcement learning mechanisms asso-

(t)

7

ciate each low-level heuristic ¢ € [m] with a positive weight. Denote by w

the weight of heuristic ¢ in iteration ¢. Initially, wgo) = w](p) for all 4,5 € [m)].

The weight of each heuristic is restricted to be within a user-defined interval
[Wimin, Wmax] such that wgt) € [Wmin, Wmax] for all i € [m] and ¢t > 0. At each
iteration t, a heuristic selection strategy is used to decide which heuristic to
apply based on a distribution p® := (pgt), . ,pg,?). For example, the roulette
wheel selection strategy chooses each heuristic with probability proportional to

(t) wi”

its weight, i.e., p w7~ The reinforcement learning hyper-heuristic is
w

3 m
given in Algorithm 1. ForJoiur ‘theoretical investigation, the additive adaptation
scheme is considered (see line 11 in Algorithm 1). The adaptation rates « and
are usually fixed beforehand, however, they can also be functions of the current
heuristic weight or of the heuristic performance. The move-acceptance strategy
determines whether to accept or reject the new generated solution. We assume
a maximisation problem in all algorithms in this paper.

4 Theoretical Analysis

This section theoretically investigates the learning behaviour of Algorithm 1. Due
to the space restriction, all technical proofs are omitted. These proofs employ
standard techniques from runtime analysis [9,10,12]. We use the simple ran-
dom hyper-heuristic as a baseline hyper-heuristic with which Algorithm 1 is
compared. The simple random hyper-heuristic [7] chooses low-level heuristics
uniformly at random, and hence it does not learn (see Algorithm 2).
Obviously, the user-defined bounds of the weights (Wmin, Wmax) also imply
bounds on the selection probabilities of low-level heuristics. Proposition 2 shows
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Algorithm 1. Reinforcement Learning Hyper-heuristic

: Given a finite set S, and an objective function f:S — R.

: Let H :={h1,...,hm} be a set of m low-level heuristics, where h; : S — S.
. FiX wmin and wmax such that wmin, Wmax > 0.

: Let @ and 8 € [0, Wmax| be a rewarding and punishing rates respectively.

: Let s ~ Unif(S) be an initial solution generated uniformly at random.

: Let 7 be the maximum admissible number of iterations.

: fort=0,1,...,7 do

wl®

m t
Ej:l wé )

1
2
3
4
5: For all i € [m], let w® = Win -
6
7
8
9

Pick heuristic i € [m], with probability p!" :=
10: S/ = hz (s)
11 (t+1) mln(wit) +a awmax) if f(sl) > f(s) , and
N w; =
' ma'X(wz(t) - ﬁ >wmin) otherwise

12:  if move-acceptance(s,s’) then

13: s:=3s'
14: end if
15: end for

Algorithm 2. Simple Random Hyper-heuristic

1: Given a finite set S, and an objective function f: S — R.
2: Let H :={h1,...,hm} be a set of m low-level heuristics, where h; : S — S.
3: Let 7 be the maximum admissible number of iterations.
4: fort=0,1,...,7 do
5. Pick heuristic i € [m], with probability pl(-t) = %
6: s :=hi(s)
7 if move-acceptance(s, s’) then
8: s:=3s"
9:  end if
10: end for

that if these bounds are constant with respect to the number of low-level heuris-
tics m (i.e. e = O(1)), then Algorithm 1 assigns asymptotically, w.r.t. the
number of heuristics, the same selection probability to each low-level heuristic
(i.e. similar to the simple random mechanism).

Proposition 2. If wyi, and wmax are constants with respect to m, then Vi € [m)]
andt > 0 Algorithm 1 chooses low-level heuristic i with probability pgt) =0 (i)

m

This implies that if these bounds are constants w.r.t. m, then no selection prob-
ability is larger than (¢/m) for some constant ¢ > 0. Typical low-level heuristics
perform differently on different search states, and hence Algorithm 1 faces an
obvious issue of exploration versus exploitation. The bounds of the weights main-
tain a non-zero selection probability for each heuristic in every iteration of the
algorithm. These bounds, however, are predefined parameters that need to be
tuned correctly beforehand.
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Definition 3. Let S be a finite set, and f : S — R be an objective function. Let
s’ € S be the offspring of s € S generated by the low-level heuristic i in iteration
t. In Algorithm 1 and 2, the success probability of the low-level heuristic i in
iteration t s

" (s) == Pr (f (hi(s)) > [ (s))

The objective of reinforcement learning mechanisms is to learn the effectiveness
and the differences between the success probabilities of low-level heuristics. The
following proposition shows that if the success probabilities of heuristics are
less than 1/2 and the most common settings for the adaptation rates are used,
where they are chosen so that av < 3, then the probability that the total weights
of low-level heuristics is much larger than the initial total weights is small. A
consequence of this is that Algorithm 1 generates selection probabilities which
are almost the same.

Proposition 4. Consider Algorithm 1 with o < 3. Let &) = >, wj(-t) be

(®

the total weights of low-level heuristics in iteration t. Let q;’(s) be the success

probability of heuristic i € [m] in iteration t. If there exists a constant £ €]0, 1]
such that q(t)(s) <i.-(1-¢)forallseS, i€[m]andt >0, then for every

i
iteration t > 0

Pr(¢® > @O 4 k. a) <2(1 —e)ke (1)

The proof idea is based on tracking the progress in the total weights of low-level
heuristics using so-called drift analysis. It follows from Proposition 4 that if the
success probabilities of low-level heuristics are less than 1/2, then the weight
of each heuristic is, with high probability, not much larger than the minimum
weight. Formally, for any i € [m] and ¢ > 0 we have

Pr(w™ > w® 1+ k- a) <2(1 - )k (2)

Corollary 5 shows that if the success probabilities of heuristics are less than
%(1 — ¢), then reinforcement learning mechanisms with the additive adaptation
scheme choose low-level heuristics almost uniformly at random.

Corollary 5. Suppose that wyin and o are constants. If there exists a constant
e €]0,1] such that qi(t)(s) <(1/2)(1 =€) forall s € S, i€ [m] andt > 0, then
for any 6 > 0 , i € [m], and t > 0, with probability at least 1 — 2(1 — 5)‘””6,
pl(-t) =0 (m=(=%) and E[pz(-t)] =0(1/m).

The success probabilities of heuristics are small (i.e. less than 1/2), so if « is no
larger than 3, the reinforcement learning mechanism with roulette wheel selec-
tion strategy performs asymptotically similar to the simple random mechanism.
The weights of heuristics quickly converge to the minimum weight if their success
probabilities are less than 1/2. As a result, Algorithm 1 assigns roughly the same
probability to each heuristic. Corollary 5 also shows that the probability that



Limits to Learning in Reinforcement Learning Hyper-heuristics 175

Algorithm 1 chooses roughly low-level heuristics with probability % increases
as the number of low-level heuristics m increases. Therefore, alternatives to the
roulette wheel selection strategy should be considered.

The so-called max strategy has been used as an alternative to the roulette
wheel selection strategy (see line 7 in Algorithm 1). It deterministically chooses
the heuristic with the maximal weight (see e.g. [5,18]).

Proposition 6. Suppose that Algorithm 1 uses the following heuristic selection
strateqy:

1 ifi=arg max{wj(-t)}, and
J€[m]
0 otherwise

Let a:= 3, and k := “ma—tmin - Agsyme that w(t) = Wpin + @ and w(t) = Wpin

Vj € [m] and j #i. Let Ty, := min{t'|w!*" Y= = Wnin |- If there exists a constant

e €]0,1] such that q(t)( ) < 3(1—¢) for any s € S, t >0, then with probability
1u§t)—k ’ ’

at least 1 — (}fi) , the weight reaches wgt ) — Wmin before wgt) = Wmax

and

E[T,

Wmin

w(t)fk
1 1 i

|w§t) = Wmin + a] <- wgt) + k- <+6)
€ 1—¢

We consider the scenario of the so-called gambler’s ruin problem [9] to prove
Proposition 6. When w( ) > Wmin, Proposition 6 suggests that the expected num-
ber of iterations until the weight of heuristic ¢ returns to the minimum weight,
and hence the reinforcement learning mechanism starts choosing heuristics uni-

formly at random, is small if the success probability of heuristic ¢ is smaller than
1/2.

4.1 Runtime Analysis

Runtime analysis is a theoretical investigation that evaluates the efficiency of
optimisation algorithms through their expected runtimes and probabilities of
finding satisfactory solutions [2,13]. The runtime of an algorithm is the number
of times the objective function is evaluated until the algorithm produces an
optimal solution for the first time. We analyse the expected runtime of the
reinforcement learning hyper-heuristic on a simple search scenario. We consider
a frequently used theoretical benchmark function in runtime analysis, the so-
called LEADINGONES problem.

Definition 7. For all s € {0,1}",

LEADINGONES (s Z H 5

=1 j=1
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The LEADINCGONES value of a bit-string is the number of consecutive, leading
1-bits in the bit-string. In order to improve the candidate solution, at least the
left-most 0-bit should be flipped and the leading 1-bits should remain the same.
We assume that there are m low-level heuristics, but only one of them has success
probability larger than 0 and all the other heuristics have success probability 0.
In such a simple search scenario, if the reinforcement learning mechanism is
unable to identify the successful heuristic, then it might not be able to identify
the appropriate heuristics in more complex problems. The successful low-level
heuristic is a mutation operator that flips one bit uniformly at random, and
hence its success probability is 1/n. We use the improve-or-equal strategy as
move-acceptance operator in both Algorithms 1 and 2.

Definition 8. Let S be a finite set, and f : S — R be an objective function.
Let s’ be the offspring the candidate solution s. In the case of a mazimisation
problem, the improve-or-equal move-acceptance strategy accepts s' if and only if

f(s') = f(s).

Suppose that ¢; is the success probability of the i-th low-level heuristic. The
following lemma shows that if ¢; < 1/8, then the probability that its weight is
larger than (wmin) is O(g;)-

Lemma 9. Suppose that o = 3, if
(t)

%

— — gi
= Wmin + O[|’LU = Wmin EL

(
2. Pr (wEtH) —w® + a|w£t) > wmin> =q;
(

%

and ¢; < 1/8, then
Pr (wz(t) > Winin + a) =O0(q:)

Theorem 10. The expected runtime of the reinforcement learning hyper-
heuristic with both roulette wheel and max selection strategies with o = 3,
and the prescribed settings above on LEADINGONES is @ (an).

Theorem 11. The expected runtime of the simple random hyper-heuristic with
the prescribed settings above on LEADINGONES is © (mnz).

Additive reinforcement learning and simple random hyper-heuristics have asymp-
totically the same expected runtime on the LEADINGONES problem. The analysis
shows that the expected runtime of both algorithms increase linearly with the
number of low-level heuristics. We make no assumption about the number of
low-level heuristics, so m can be a function of n. In this case, the expected

runtime of both algorithms are asymptotically different from n?.
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4.2 Frequently Used Adaptation Rates

The adaptation rates in Algorithm 1 are usually set so that o := 1 =: 3 (see e.g.
[5,8,18]). As shown above, this adaptation scheme leads reinforcement learning
mechanisms to quickly forget how low-level heuristics performed in the recent
past iterations if the success probabilities of the low-level heuristics are less than
1/2. The following adaptation scheme was suggested by Nareyek [16], and it has
been argued to be the most appropriate adaptation scheme.

Definition 12. Consider Algorithm 1 with max strategy, and let wpi, = 1.
For all t > 0, update the weight of the selected heuristic i in the iteration t as
follows.

3)

3

LD _ {min(wl(t) + 1 ,Wmax) if f(s') > f(s),and

t .
max ( wg) Wmin) otherwise

If Algorithm 1 uses the prescribed adaptation scheme in Definition 12, then
the weight of the first rewarded low-level heuristic remains the one with max-
imal weight, because /z > 1 for all # > 1. Therefore, Algorithm 1 with the
above adaptation scheme chooses the first rewarded heuristic (which is selected
uniformly at random) continuously throughout the entire run and ignores the
other heuristics. However, this adaptation scheme works due to the fact that the
weight of the selected heuristic after sufficiently large number of punishments
is eventually rounded to 1 by the computer, and the algorithm starts again
choosing low-level heuristics uniformly at random.

5 Empirical Investigations

A set of experiments is conducted to investigate the performance of the rein-
forcement learning hyper-heuristic on several instances of two different com-
binatorial optimisation problems. We use common settings for the adaptation
rates of the reinforcement learning mechanism, where the rates are set so that
a =1 =: . We implement the hyper-heuristics as extensions to the Hyflex
framework [17]. Hyflex is a public object-oriented hyper-heuristic framework
that provides several problem domains, each with various instances and a set of
low-level heuristics. The performances of the reinforcement learning mechanism
and simple random hyper-heuristics are examined on different instances of the
bin-packing (BP) and permutation flow-shop (PF). To provide fair comparisons,
each hyper-heuristic is allowed to evaluate the objective function 2 - 10% times.
A single run is repeated 1000 times, each run with a different seed. Both hyper-
heuristics are used to minimise the objective functions. The experimental results
are presented in the following charts.

Figure 1 shows the results of the simple random and reinforcement learning
hyper-heuristics on 6 instances of the bin-packing problem. As can be seen from
the figure, the hyper-heuristics perform almost the same on all instances. Com-
parable results are obtained on different instances of the permutation flow-shop
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packing (BP) problem.
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Fig. 3. The estimated success probabilities of low-level heuristics on the second instance
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scheduling, as shown in Fig. 2. This is consistent with the theoretical results in
Sect. 4. We have shown that if the success probabilities of low-level heuristics are
smaller than 1/2, then the additive reinforcement learning mechanism provides
roughly the same probability of being chosen to each heuristic, similarly to the
simple random. We track the success probabilities of low-level heuristics on the
considered problems. A success probability of a heuristic can be estimated as
a ratio of the number of times the heuristic has improved the candidate solu-
tion divided by the number of times it has been executed. The results show
that the success probabilities of low-level heuristics are very small and varies
between search states. Figure 3 shows the estimated success probabilities of 6
low-level heuristics out of 8 available heuristics on a randomly chosen instance
of the bin-packing problem (the success probability of the remaining heuristics
were zero during the entire running time). The estimated success probabilities
of low-level heuristics in permutation flow-shop are also very small. Figure4
shows that the total number of times each low-level heuristic was invoked by the
additive reinforcement learning mechanism is almost the same in all instances
of the bin-packing problem. The same observations can be seen in Fig.5 where
the reinforcement learning hyper-heuristic was applied to different instances of
the permutation flow-shop problem. This shows that the additive reinforcement
learning mechanism provides roughly the same number of invocations to all low-
level heuristics (i.e. similar to simple random). This indicates that if the success
probability of low-level heuristics are smaller than (1/2)(1 —¢) the additive rein-
forcement learning mechanisms almost choose low-level heuristics uniformly at
random (as shown in Sect. 4).

6 Conclusion

The main goal of this paper was to determine the limitation of learning in addi-
tive reinforcement learning hyper-heuristics. We have shown that if the success
probabilities of the low-level heuristics under consideration are less than 1/2,
then these hyper-heuristics assign approximately the same probability of being
chosen to each heuristic which is similar to using the simple random mechanism.
Consistently with this, we have shown that both additive reinforcement learning
and simple random hyper-heuristics have asymptotically the same expected run-
time on the LEADINGONES problem. The experimental analysis shows that the
estimated success probabilities of typical low-level heuristics are much smaller
than 1/2. In addition, we found that several frequently used adaptation schemes
either reduce the memory length of reinforcement learning mechanisms or lead
them to pick systematically a specific heuristic. The study suggests that additive
reinforcement learning mechanisms are not necessarily capable of distinguishing
between the performances of the heuristics. In future work, we intend to identify
learning mechanisms that adapt themselves to cope with the dynamic change in
the success probabilities of low-level heuristics.
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Modifying Colourings Between Time-Steps
to Tackle Changes in Dynamic Random Graphs
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Abstract. Many real world operational research problems can be for-
mulated as graph colouring problems. Algorithms for this problem usu-
ally operate under the assumption that the size and constraints of a
problem are fixed, allowing us to model the problem using a static graph.
For many problems however, this is not the case and it would be more
appropriate to model such problems using dynamic graphs. In this paper
we will explore whether feasible colourings for one graph at time-step ¢
can be modified into a colouring for a similar graph at time-step ¢+ 1 in
some beneficial manner.

Keywords: Graph colouring - Dynamic graphs - Heuristics

1 Introduction

The graph colouring problem (GCP) aims to colour each vertex of a graph
G = (V, E) such that no adjacent vertices have the same colour and the number
of colours used is minimised. The minimum number of colours required to colour
a graph G is called the chromatic number of G, denoted by x(G).

By considering the different aspects of a given problem instance and how
they might relate to the components of a graph (vertices, edges and colours),
one can reformulate many real world problems into a GCP. One example is fre-
quency assignment [1] where each geographical site is represented by a vertex,
an edge exists between two vertices if their respective sites are within a cer-
tain proximity of one another, and colours represent communication frequencies
(e.g. radio frequencies). Other examples include exam timetabling [5,15], reg-
ister allocation [3], designing seating plans [11] and grouping people in social
networks [16].

Most GCP methods can only be applied to such problems under the assump-
tion that the size and constraints of a problem are fixed (i.e. V and E are fixed
in the associated graph G = (V| E)). However, in areas such as the frequency
assignment problem [4] this is not always appropriate as sites can be added or
removed from the communication network, or the location of sites can themselves
move. The aim of this particular research, therefore, is to explore graph colouring
on dynamic graphs. More specifically, we wish to look at methods which modify
a feasible colouring for one graph into a colouring for a “similar” graph.

© Springer International Publishing Switzerland 2016
F. Chicano et al. (Eds.): EvoCOP 2016, LNCS 9595, pp. 186-201, 2016.
DOI: 10.1007/978-3-319-30698-8_13
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The rest of the paper will be structured as follows: Sect. 2 will formerly define
dynamic graphs and their associated problems and Sect. 3 will then discuss the
various search spaces for graph colouring problems. Section 4 will then outline a
general approach and define the different modification methods used, Sect. 5 will
contain the experimentation details, and in Sect.6 we will present the results.
Finally, Sect. 7 will summarise the findings of the experiments and discuss future
work.

2 Dynamic Graph Colouring Problems

The importance of studying dynamic graphs and their associated problems has
been highlighted by Harary and Gupta [7] who outlined many applications, espe-
cially in the area of computer science, and postulated that techniques applied to
static graphs should be extended for dynamic graphs. However, there has been
very little research regarding methods designed explicitly for dynamic graphs.

Two methods for finding colourings for dynamic graphs are given in [13,14].
The first of these proposes a genetic algorithm that uses the same population
of colourings between time-steps for vertex dynamic graphs and the second pro-
poses an agent-based approach for repairing colourings between time-steps for
edge dynamic graphs. Both of these methods are only concerned with the quality
of initial colourings, whereas this research will presume that optimisation can
take place between time-steps.

We define a dynamic graph G = (Go, Gy, ...,Gr) as a series of T + 1 static
graphs where Gy = (V;, E;) € G is the static graph defined for time-step t €
{0,1,...,T}. At every time-step, the objective in analogous to the static GCP.
In terms of methodology, this means using heuristic methods to find a feasible
k¢-colouring for each time-step ¢, where k; is a good approximation of x(Gi).
Objectively, this is an attempt to minimise ZtT:O k.

In this work we choose to split the concept of dynamic graphs into two
cases: edge dynamic graphs and vertex dynamic graphs. In the edge dynamic
graph colouring problem, changes can only occur on the edge set Ey; therefore
Vo =V, = .- = Vp =V for all time-steps. For an edge dynamic graph G,
consider the graph Gy = (V, E;) for time-step t. To get to time-step ¢+ 1 we must
define a set of deleted edges E;, C E; and a set of new edges Ej+1 C (E\E:)
where £ is the set of all possible edges between vertices in V. The edge set for
time-step ¢ + 1 is then defined as By = (E\E, ;) U E/, .

In the vertex dynamic graph colouring problem, changes are applied to the
vertex set V;. This in turn affects the edge set E, as edges incident to deleted ver-
tices will themselves need to be deleted. Similarly, new vertices will also require
the addition of new edges unless the new vertex is intended to be isolated. For
a vertex dynamic graph G, consider the graph G; = (V;, E;) for time-step t.
To get to time-step ¢ + 1 we must define a set of deleted vertices V,;; C V;
and a set of new vertices V,1 ;. Once these are defined, the set of deleted edges
E,CEis defined to be the set of all edges incident to the deleted vertices (i. e.
E;, | contains all the edges {u,v} € E; such that either u € V,; or v € V).
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The set of new edges Et‘:_l is a set of connecting edges from the set of new ver-
tices to any of the vertices in Vi1 (i.e. E;Zrl contains edges {u,v} € 41 where
41 is the set of all possible edges between vertices in Vi1 and either u € V1,
or v € V;i,). The vertex and edge sets for time-step ¢ + 1 are then defined as
Vi1 = (V\Vi51) UVE, and Eipq = (B\E,, ;) U E/", | respectively.

In fact, edge dynamic graphs can be considered as a special case of vertex
dynamic graphs where |V,”| = |V;T| = |V;_1| and E; = F;_1, Vt € {1,...,T}.
Another special case is on-line graph colouring, where exactly one vertex is added
at each time-step (i.e. V;" = @ and |V;"| = 1, V¢t € {1,...,T}). On-line graph
colouring has the additional constraint that, once coloured, a vertex cannot
be transferred to a different colour class. Research concerning on-line graph
colouring mainly consists of worst case behaviour analysis of algorithms [6,12].

3 Search Spaces of the GCP

In this paper we will approach dynamic graph colouring problems by adapting
methods for the static problem. In general, the literature suggest three main
search spaces for the static GCP: (i) feasible colourings only, where every vertex
is coloured, there are no clashes (i. e. all adjacent vertices are coloured differently)
and the number of colour classes is allowed to vary; (ii) complete, improper
colourings, where every vertex is coloured but clashes are permitted; and (iii)
partial, proper colourings, where no clashes occur but there may be “uncoloured”
vertices.

The search space of feasible colourings only is rarely used in the literature as
it is often difficult to determine which of two k-colourings is closer to becoming
a colouring with k& — 1 colour classes. One example of a heuristic method in this
search space is a simulated annealing approach outlined in [9)].

In the complete, improper search space a colouring S = {S1,...,S;} is a
partition of V' into k disjoint subsets (i.e. V = Ule S;and S;NS; =0, Vi, j €
{1,...,k} and i # j). S; is called the ith colour class of the colouring S and the
colouring function ¢ : V' — {1,...,k} is defined such that c(v) =i for all v € S;.
One well-known algorithm that operates in this search space is TABUCOL [8].
In this algorithm, to move from one colouring S to a neighbouring colouring &',
a vertex v is transferred from its current colour class S; to a different colour
class S; where ¢ # j. Then S becomes &' = {S57,...,5,.} with S = S;\{v},
St =8;U{v} and ] = S, VI € {1,...,k}\{4,5}. The vertex v to be moved can
also be chosen exclusively from the set of currently clashing vertices (i. e. we can
move v € S; if and only if Ju € S; such that u # v and {u,v} € E). For a given
solution S, the associated cost function in this algorithm is given by

k
F(8) = |1Ew (1)
i=1
where E(;) is the set of edges with both end points in S;. This cost function is
equivalent to the number clashes in the colouring. If f(S) = 0 then the colouring
S has no clashes and is therefore a feasible k-colouring.
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In the partial, proper search space a colouring S = {S1,...,Sk, Sk+1} is
defined by a partition of V into k& + 1 disjoint subsets. The first k£ subsets are
independent sets (i.e. E;) = 0, Vi € {1,...,k}) and the remaining vertices

v e V\(Uf=1 S;) are placed in the additional subset Si41 of “uncoloured” ver-
tices, in which clashes are also permitted.

PARTIALCOL [2] (a modification of TABUCOL) is an example of an algorithm
that operates in this search space. In this algorithm, to move from one colouring
S to a neighbouring colouring §’, we transfer an uncoloured vertex v € Si11 to
a colour class S; where ¢ < k and move the set of vertices adjacent to v, U; C S;,
to Sky1. Then S becomes S = {S7,..., S}, S} with S; = (S;\U;) U {v},
Sii1 = (Skr1 UU)\{v} and S} = Sp, VI € {1,..., k}\{i}.

For a given solution &, the associated cost function in this algorithm is
given by

f(8) = |Sk4] (2)

which is equivalent to the number of uncoloured vertices. An alternative cost

function is
f(8)= S deglv) (3)

VESk4+1

where deg(v) is the degree of vertex v. If the vertices in Sk41 have low degrees
then, in theory, they will be easier to move into colour classes without causing
clashes. For both of these cost functions, if f(S) = 0 then there are no uncoloured
vertices and S is therefore a feasible k-colouring.

4 Methods

Our approach for solving a dynamic graph G = {Go, G1,...,Gr} will follow the
process outlined in Algorithm 1. Notice that for Gy a method for the static GCP
needs to be applied.

Algorithm 1. Generic DGCP Algorithm
Input: a dynamic graph G = (Go,G1,...,G7)

Output: a set S = {So,S1,...,Sr} where S; is a feasible colourings for G¢ € G
1: So « Static GCP Algorithm (Gp)

2: fort=1to T do

3: St « Dynamic GCP Time-step Algorithm (G4, Si—1) (i.e. Algorithm 2)
4: return S = {So, S1,...,Sr}

For each time-step ¢, suppose a feasible colouring S; for G; has been found;
that is, a colouring where all vertices are coloured and no clashes occur. This
colouring might then be saved and possibly modified in some way to be used as
a colouring for Gy41. Using this modified colouring with k& > |S;| colour classes
as a starting point, we then wish to find a feasible k-colouring for Gyyi. If we
succeed, then we search for a feasible colouring with one fewer colour class and
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so on until some stopping criteria (e.g. a time or iteration limit) is reached. It
may of course be impossible to find a feasible k-colouring for Gyyi. In order
to accommodate this eventuality, if some timing criteria is met and a feasible
colouring (of any size) has not be found, then we increase k by 1, we allow
the target number of colour classes to be increased indefinitely until a feasible
colouring is found or the algorithm’s stopping criteria is met. This process is
outlined in Algorithm 2.

The focus of this particular piece of research is to explore the different meth-
ods for modifying a feasible colouring achieved in time-step ¢ into an initial
colouring for time-step t + 1 (i.e. line 2 of Algorithm 2). The essential question
to be answered is: can a feasible colouring for one graph G; be used in some
advantageous way to find a feasible colouring for a similar graph G417

Algorithm 2. Generic DGCP Time-step Algorithm

Input: a graph G;1 and a feasible colouring S; for G
Output: a feasible colouring S;41 for Gi41

1: Sbe.st — Q)

2: Siy1 «— S modified in some way (see Sects. 4.1 and 4.2)
3k — |Se41]

4: while not stopping criterion do

5: attempt to make Si4+1 a feasible k-colouring for G¢41
6: if Si41 is a feasible k-colouring for G;y1 then

T Stest — 8t+1

8: k—k—1

9: if Spest = 0 and a computation limit is reached then
10: k—k+1

11: $t+1 — Sbest
12: return Si11

4.1 Modification for Edge Dynamic Graphs

For all of the following methods, the final feasible colouring S; for G; can be
considered as a complete, improper colouring for Gyy1 with k = |S¢| colour
classes. We can do this because every vertex v € V will be coloured but the new
edges E;;l are likely to cause clashes. With this knowledge we can then apply
one of the following modification methods.

(1) Calculate the number of clashes: Calculate the initial number of clashes
and then pass S; directly to the tabu search operator which will attempt to find
a feasible k-colouring for G1.

(2) Uncolour clashing vertices: By identifying pairs of clashing vertices in S;
and transferring one of the vertices in each of these pairs to a set of uncoloured
vertices, one produces a partial, proper colouring Stﬂ for Gyy1. St+1 along with
the set of uncoloured vertices can now be passed to the tabu search operator
which will attempt to find a feasible k-colouring for Gyy;.
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(3) Solve clashing vertices: In a similar manner to Method (2), clashing ver-
tices are “uncoloured” to produce a partial, proper colouring St-i—l for G¢41. An
attempt is then made to re-insert each of these uncoloured vertices into a colour
class in St+1 such that no clashes are incurred. The remaining uncoloured ver-
tices and any appropriate edges are then considered as a residual graph G,
of Gy11. This residual graph is passed to the constructive operator (specifically,
the recursive largest first (RLF) algorithm [10]) which produces a feasible k’-
colouring for G, ;. The feasible colouring for G} is then combined with Siy1to
produce a feasible colouring for Gy, 1 with k + &’ colour classes. The tabu search

operator will then attempt to find a feasible (k 4+ k' — 1)-colouring for Gy41.

4.2 Modification for Vertex Dynamic Graphs

The final feasible colouring &; achieved for G; will be neither a complete,
improper colouring or a partial, proper colouring for G;y; as it will include
the deleted vertices V,;; and won’t include the new vertices V,%,. For each of
the following methods, every deleted vertex v € V| must first be removed from
S; in order to produce a partial, proper colouring St+1 for Giy1 with k = |S¢]
colour classes. We can then apply one of the following modification methods.

(4) Randomly assign new vertices: Each new vertex v € Vtil is randomly
assigned to a colour class in S}H to produce a complete, improper colouring for
G41. This can then be passed to the tabu search operator which will attempt
to find a feasible k-colouring for Gi1.

(5) Uncolour new vertices: Unlike Method (4), the new vertices V,%; are not
assigned to colour classes in Sy, ;. Instead the new vertices Vi, are considered
as a set of uncoloured vertices. Along with St+1, this set of uncoloured vertices is
passed to the tabu search operator which attempts to find a feasible k-colouring
for Gt+1.

(6) Solve new vertices: An attempt is made to insert each of the new ver-
tex v € V;‘L into an a colour class in 3t+1 such that no clashes are incurred.
The remaining new vertices and any appropriate edges are then considered as
a residual graph G}, of G¢;1. This residual graph is passed to the construc-
tive operator (again, RLF) which produces a feasible k’-colouring for G} ;. The
feasible colouring for G}, is then combined with Si41 to produce a feasible
colouring for Gy 1 with k+ k' colour classes. The tabu search operator will then
attempt to find a feasible (k 4+ k' — 1)-colouring for Gy41.

5 Experimentation Details

In our experiments we considered dynamic random graphs. For each dynamic
random graph we specify an initial number of vertices n, a desired density d, a
change probability p and a number of time-steps T'. To construct a sequence of
graphs G we use the following methods.

For an edge dynamic graph consider the graph G; = (V, E;). To construct
Giy1, every edge {u,v} € E; is copied to the set of deleted edges E;,, with
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probability p and every currently non-existent edge {u,v} € E\FE; is copied to
the set of new edges Et':l with probability ldfpd.

For a vertex dynamic graph, consider the graph G; = (V;, E;). To construct
Gy, every vertex v € V; is copied to the set of deleted vertices V[, with
probability p and the set of new vertices is constructed such that [V,1,| is an
integer between np(1—p) and np(1+p). Every edge {u, v} € &1 with u € Vi4q,
v E V;jrl and u # v is then added to the set of new edges E;CH with probability d.

For both the edge and vertex dynamic graphs, the following parameters were
used: n = 500, d € {0.1,0.5,0.9}, p € {0.005,0.01,...,0.05} and T = 10, and
for each combination of these parameters, 20 graphs were produced. The RLF
algorithm [10] was applied to obtain an initial colouring for Go. Note that all
results corresponding to these initial graphs are ignored; however, the colourings
they produced were used in the modification methods for G;.

In our case, each time-step was given a time limit of 10s' (i.e. line 4 of
Algorithm 2). If this time limit had been set much longer, say hours, then the
advantage of modifying colourings between time-steps would obviously diminish.

TABUCOL [8] and PARTIALCOL [2] were used to find feasible colourings in the
complete, improper search space and partial, proper search space respectively
(i.e. line 5 of Algorithm 2). These algorithms use the neighbourhood moves
outlined in Sect.3 and, upon performing a move, the inverse moves are made
“tabu” for 0.6 x f(S’)+r iterations, where f is the cost function given in Egs. (1)
and (2) respectively, S’ is the resultant colouring after the neighbourhood move,
and r is a random integer from the set {0,1,...,9}. This tabu tenure has been
used in both [8] and [2].

During execution, the target number of colour classes is adjusted in the fol-
lowing way. Let k be the target number of colour classes, initially defined by
the modification method being implemented. If a feasible k-colouring cannot be
obtained within half of the allotted time limit then k is increased by 1. If a feasi-
ble k-colouring cannot then be obtained within half of this remaining time limit
then k is again increased by 1, and so on (i.e. lines 9 and 10 of Algorithm 2). For
example, say the target number of colour classes for G, is initially set as k = 23,
if a feasible 23-colouring cannot be found within 5s then the tabu search opera-
tor attempts to find a feasible 24-colouring for G, if this cannot be found within
a further 2.5s then the tabu search attempts to find a feasible 25-colouring for
Gy, and so on.

For a base-line comparison, the following control method was also imple-
mented:

(0) Reset: The static graph Gy € G for each time-step ¢t € {1,...,T} is
considered without any information about colourings achieved in the previous
time-steps. As with Gy, the RLF algorithm is applied to obtain an initial colour-
ing for G; (i.e., RLF replaces line 2 of Algorithm 2). Tabu search is then applied
iteratively in an attempt to find colourings with fewer colour classes. The number

L All algorithms were programmed in C++ and executed on a 3.3 GHZ Windows 7
PC with an Intel Core i3-2120 processor and 8 GB RAM.
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of colour classes in the final, feasible colouring achieved and the time required
to obtain this colouring is then recorded.

Note that Methods (1) and (4) operate exclusively in the complete, improper
search space, Methods (2) and (5) operate exclusively in the partial, proper
search space, and Methods (0), (3) and (6) can operate in either search space
as required. Because of this, only comparisons between methods designed for
the same problem and operating in the same search space are compared. For
example, for the edge dynamic GCP operating in the complete, improper search
space only Methods (0), (1) and (3) are compared against one another.

In all of our results, unless otherwise stated, all statistical tests are Wilcoxon
signed rank tests with significance level a = 0.05.

6 Results

6.1 Initial Colourings for the Edge Dynamic GCP

Let us first consider the initial feasible colourings produced for the edge dynamic
GCP. For all densities d and change probabilities p, Methods (1) and (2) were
found to produce initial, feasible colourings with significantly fewer colour classes
than both Methods (0) and (3). This is clearly illustrated in Fig. 1.

We have observed a significant increase in the time required by Methods (1)
and (2) to achieve their initial, feasible colourings compared to Methods (0) and
(3) for all values of d and p, as seen in Table 1. A main contributing factor to this
may be found in the nature of the different methods: Methods (0) and (3) both
start from feasible colourings whereas Methods (1) and (2) do not and therefore
require more time to move to a feasible region of the search space. For similar
reasons, as p increases so too does the time required by Methods (1) and (2) to
achieve an initial, feasible colouring.

For d = 0.1 with p = 0.005, d = 0.5 with p < 0.02, and d = 0.9 with p < 0.01
Method (3) was found to produce initial, feasible colourings with significantly
fewer colour classes than Method (0). However, for higher settings of p, specif-
ically for d = 0.1 with p > 0.01, d = 0.5 with p > 0.03, and d = 0.9 with
p > 0.015, the opposite holds. This is again clearly illustrated in Fig. 1. Hence
we can conclude that for these high levels of p, modifying feasible colourings
for G; is of no benefit when attempting to achieve initial, feasible colourings
for G41.

Considering computational effort, we have found that the time required by
Method (3) to achieve initial, feasible colourings is significantly less compared
to Method (0) for d € {0.5,0.9} with all values of p. Both Methods (0) and (3)
employ RLF; however, Method (0) applies it to the whole graph G; = (V, E})
at each time-step ¢ as opposed to Method (3) which only applies it to a residual
graph G} = (V' E}) of G where V' C V (which implies |[V’| < |V]). We therefore
see that applying Method (3) with low levels of p is advantageous with regards
to both the number of colour classes in initial, feasible colourings and the time
required to obtain them.
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Fig. 1. Mean initial, feasible colourings for the edge dynamic GCP. Graphs on the left
represents results from trials in the complete, improper search space and those on the
right for trials in the partial, proper search space. From top to bottom, rows represent
d =0.1,0.5, and 0.9 respectively.

6.2 Initial Colourings for the Vertex Dynamic GCP

Let us now consider initial colourings for the vertex dynamic GCP. It is first
worth mentioning that a small change to the edge set of a graph will affect more
vertices than a comparable change to its vertex set. It is therefore not surprising
that the following results are similar to those presented in Sect. 6.1 but for higher
values of p.

Comparable to Methods (1) and (2) for the edge dynamic problem, the initial,
feasible colourings achieved by Methods (4) and (5) have significantly fewer
colour classes than Methods (0) and (6) but require significantly more time to
obtain them. The time required by Methods (4) and (5) also has a positive
relationship with the change probability p. These observations can be seen in
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Table 1. Median time (in seconds) required to obtain an initial, feasible colouring for
the edge dynamic GCP (a 0* entry implies that the recorded time is less than 1073 s).

p(%)
Method | 0.5 |1.0 |15 [20 (25 [30 [35 |40 [45 |50
0.1 (0) o 0* |0 0* |0* 0* |0° |o* |o* |0
(1) 0* 10.015 0.016 0.031|0.031]0.0310.031 0.047 0.047 | 0.047
(2) 0* 0" | 0.015 0.015 0.015 0.015 0.015]0.016 0.016 0.016
(3) o o* o* 0* |0 o* o= |o* |o* o
0.5/ (0) 0.016 | 0.016  0.031 0.031 | 0.0310.016  0.016|0.016  0.016 | 0.016
(1) 1.692 | 2.246 | 2.777 | 2.948 | 3.182 | 3.268 | 3.363 | 3.791  4.181 3.713
(2) 1.545 | 1.872 | 2.083 | 2.996 | 2.325 | 2.590 | 2.824 | 2.519 | 2.730 | 2.972
(3) o ot o* 0o* |0 o* o0 o~ o~ o
0.9 (0) 0.0310.031 | 0.031 0.031 | 0.031]0.031 | 0.031|0.031 0.031 | 0.031
(1) 5.008 | 5.125 | 5.335 | 5.140 | 5.288 | 5.421 | 5.366 | 5.171 | 5.327 | 5.304
(2) 4.376 | 4.235 | 5.016 | 5.070 | 5.047  5.031 | 5.008 | 4.789 | 5.038 | 5.023
(3) o lo* o* 0* |0 o* |o° |o* |o* o

Fig.2 and Table2. The reasons for this behaviour are the same as those given
for Methods (1) and (2) in Sect. 6.1.

Again, as with Method (3) for the edge dynamic problem, Method (6) pro-
duces initial, feasible colourings with both significantly fewer and significantly
more colour classes than Method (0) depending on the change probability p.
However, Method (6) only produces initial, feasible colourings with significantly
more colour classes for d = 0.1 with p > 0.035. In fact, for d = 0.1 with p < 0.02,
and d € {0.5,0.9} with all values of p, Method (6) achieves initial, feasible
colourings with significantly fewer colour classes. This is clearly illustrated in
Fig. 2.

As with Method (3), Method (6) requires significantly less time than Method
(0) in all instances except for d = 0.1 with p < 0.03 (as seen in Table2). This
is again likely because Method (6) applies RLF to a smaller graph G} with
|V/| = |V;T| = np as opposed to applying it to G; with |V;| ~ n.

6.3 Final Colourings for the Edge Dynamic GCP

Next let us consider final colourings for the edge dynamic GCP. The Friedman test
with e = 0.05 shows that for d = 0.1 there is no significant difference between the
number of colour classes in the final, feasible colourings achieved when applying
Methods (0), (1), (2) and (3). However, Methods (1) and (2) both achieve final,
feasible colourings with significantly more colour classes than those achieved by
Method (0) for d = 0.9 with p > 0.01 and p > 0.035 respectively. Methods (1) and
(2) also achieve final, feasible colourings with significantly more colour classes than
those achieved by Method (3) for d = 0.9 with some values of p. This observation
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Fig. 2. Mean initial, feasible colourings for the vertex dynamic GCP. Graphs on the
left represents results from trials in the complete, improper search space and those
on the right for trials in the partial, proper search space. From top to bottom, rows
represent d = 0.1,0.5, and 0.9 respectively.

is likely due to the relatively large amount of time required by Methods (1) and (2)
to find an initial, feasible colouring compared to Methods (0) and (3) (see Sect. 6.1
and Table 1). This “wasted” time then translates to time not being allocated to
finding feasible colourings with fewer colour classes.

For d = 0.5 and some values of p, Method (3) was found to achieve final, fea-
sible colourings with significantly fewer colour classes than Method (0). However,
for d = 0.9 with p > 0.04 the opposite holds which is unsurprising as Method (3)
produces initial, feasible colourings with significantly more colour classes under
these parameter settings.
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Table 2. Median time (in seconds) required to obtain an initial, feasible colouring for
the vertex dynamic GCP (a 0* entry implies that the recorded time is less than 1072 s).

p(%)
Method 0.5 [1.0 |15 [20 (25 [30 [35 |40 [45 |50
0.1/ (0) 0 0* |0 0* |0* 0° |0° |0* 0.015 0.015
(4) 0* |0 |0.015 0.015|0.016]0.031 0.031 0.031 0.0310.046
(5) 0* 0 | 0.015 0.015 0.015]0.016 0.015 0.016 0.016 0.016
(6) o o* o* 0o* |0 o* |o° |o* |o* o
0.5 (0) 0.016 | 0.031 | 0.016  0.016 | 0.016|0.016 | 0.016 0.016 0.016 | 0.016
(4) 0.320 | 1.131 1.240 1.724 | 1.482 1.724 | 1.935|2.411 | 2.114  2.785
(5) 0.663 | 0.983 | 1.537 | 1.529 | 1.630 | 1.537 | 1.973  1.794 | 1.841 | 2.340
(6) o o* o* 0* |0 o* |o* |o* |0~ o
0.9/ (0) 0.0310.031 | 0.031 0.031 | 0.031]0.031 | 0.031|0.031 0.031 | 0.031
(4) 1.069 | 1.997 | 2.941 | 3.830 | 3.565 | 4.189 | 4.820 | 4.938 | 4.852 | 5.007
(5) 1.163 | 1.731 | 2.644 | 3.222 | 2.387 | 3.416 | 3.339 | 3.424 | 2.816 | 3.346
(6) o lo* o* 0* |0 o* |o° |o* |o* o

The following time comparisons correspond only to trials where the number of
colour classes in the final, feasible colourings achieved by the compared methods
were equal to one another. This will also be the case in Sect. 6.4.

Method (1) was found to reach final, feasible colourings significantly faster
than Method (0) for d = 0.1 with p < 0.035, and d = 0.5 with p < 0.01 as
seen in Table 3. Similarly, Method (2) also achieves final, feasible colourings in
significantly less time than Method (0) for d = 0.1 with all values of p, and
d = 0.5 with p = 0.005. Both of these methods were also able to reach final,
feasible colourings significantly faster than Method (3) for d = 0.1 with some
values of p. These observations are likely due to the fact that the initial, feasible
colourings achieved by Methods (1) and (2) are also the final, feasible colourings
achieved for d € {0.1,0.5} with low values of p.

On the other hand, Method (1) was found to require significantly more time
than Method (0) to achieve final, feasible colourings for d = 0.5 with p > 0.035,
and d = 0.9 with all values of p. The same was also found for Method (2) for
d = 0.9 with most values of p. In a similar fashion, these two methods require
significantly more time to achieve final, feasible colourings than Method (3) for
d € {0.5,09} with most values of p. This is probably due to the same arguments
presented with regards to the number of colour classes in the final, feasible
colourings achieved by these methods for d = 0.9.

Unlike Methods (1) and (2), Method (3) was not found to require significantly
more time than Method (0) for any parameter settings. On the contrary, for
d = 0.1 with p < 0.035, and d = 0.5 with p < 0.02, Method (3) requires
significantly less time to achieve final, feasible colourings. It should be highlighted
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Table 3. Median time (in seconds) required to obtain final, feasible colourings with
the same numbers of colour classes for the edge dynamic GCP (a 0" entry implies that
the recorded time is less than 107%s).

p(%)

S.S. |Method |05 [1.0 |15 [20 [25 [30 [35 [40 [45 [50
0.1/ C.I | (0) 0.047 | 0.046 | 0.047 | 0.046 | 0.047 | 0.046 | 0.047 | 0.046 | 0.047 | 0.047
(1) 0*  10.015|0.016 | 0.031 | 0.031 | 0.031 | 0.031 | 0.047 | 0.047 | 0.047
(3) 0.015 | 0.016 | 0.031 | 0.031 | 0.046 | 0.031 | 0.047 | 0.047 | 0.047 | 0.047
P.P.| (0) 0.016 | 0.016 | 0.031 | 0.016 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031
(2) 0* |0* |0.015 0.015|0.015 0.015 | 0.015 | 0.016 | 0.016 | 0.016
(3) 0* 10.015]0.015|0.015 | 0.016 | 0.016 | 0.016 | 0.031 | 0.031 | 0.031
0.5 C.I. | (0) 3.478 | 2.996 | 3.034 | 3.128 | 2.442 | 2.855 | 2.528 | 3.136 | 2.941 | 2.754
(1) 1.653 | 2.371 | 3.190 | 3.097 | 3.424 | 3.417 | 3.869 | 4.259 | 4.321 | 4.275
(3) 1.077 | 1.794 | 2.130 | 2.683 | 2.239 | 2.652 | 2.754 | 2.465 | 3.284 | 2.762
P.P. | (0) 2.9332.910 | 3.081 | 2.870 | 2.278 | 2.730 | 2.636 | 2.559 | 2.309 | 2.676
(2) 1.872 | 1.888 | 2.356 | 3.783 | 2.356 | 2.722 | 3.058 | 2.847 | 2.746 | 3.331
(3) 1.435 ] 2.160 | 2.060 | 2.356 | 2.246 | 2.699 | 2.169 | 2.442 | 2.168 | 2.598
0.9/ C.L | (0) 5.492 | 5.476 | 5.008 | 4.836 | 5.569 | 5.912 | 4.851 | 5.694 | 4.430 | 4.602
(1) 6.225 | 7.122 | 7.691 | 7.074 | 7.964 | 7.550 | 7.535 | 8.455 | 7.176 | 7.488
(3) 4.181 | 4.906 | 4.415 | 4.353 | 5.694 | 5.195 | 4.649 | 5.234 | 5.039 | 4.882
P.P.| (0) 4.181|5.242 | 5.179 | 4.166 | 5.273 | 4.914 | 3.681 | 4.602 | 4.212 | 4.633
(2) 5.141 | 5.616 | 5.975 | 6.365 | 6.365 | 5.741 | 6.038 | 5.506 | 5.452 | 5.866
(3) 3.877 | 4.649 | 5.070 | 4.275 | 4.352 | 4.025 | 4.196 | 4.618 | 4.688 | 4.977

that these are similar parameter settings for which Method (3) is able to produce
initial, feasible colourings with significantly fewer colour classes than Method (0).

6.4 Final Colourings for the Vertex Dynamic GCP

Finally, let us consider final colourings for the vertex dynamic GCP. As men-
tioned in Sect. 6.2, a small change to the edge set will usually affect more vertices
than a comparable change to its vertex set.

Method (4) was found to achieve final, feasible colourings with significantly
fewer colour classes than Method (0) for d = 0.5 with most values of p, and
d = 0.9 with p < 0.03. Similarly, Method (5) was also found to achieve final,
feasible colourings with significantly fewer colour classes than Method (0) for
d € {0.5,0.9} with some values of p. On the other hand, Method (4) achieves
final, feasible colourings with significantly more colour classes than Method (6)
for d = 0.9 with p > 0.025. Although Methods (4) and (5) require significantly
more time to produce initial, feasible colourings (see Sect.6.2 and Tablel) it
is likely that Methods (0) and (6) still require more time to reach a feasible
colouring with equivalent numbers of colour classes for low levels of p. This
would imply that Methods (4) and (5) attempt to find feasible colourings with
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Table 4. Median time (in seconds) required to obtain final, feasible colourings with
the same numbers of colour classes for the vertex dynamic GCP (a 0" entry implies
that the recorded time is less than 1073 s).

p(%)

S.S. |Method |05 [1.0 |15 [20 [25 [30 [35 [40 [45 [50
0.1]CI1 | (0) 0.046 | 0.046 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.047 | 0.062
(4) 0* |0* |0.015 0.015|0.016  0.031|0.031 |0.031 | 0.031|0.046
(6) o* |o* ]0.015]0.016|0.031]0.031|0.031 | 0.046 | 0.031 | 0.047
P.P.| (0) 0.016 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031
(5) 0* |0* |0.015|0.015|0.016 | 0.016 | 0.016 |0.031 | 0.031|0.031
(6) 0* 10.015]0.015|0.015 | 0.016 | 0.016 | 0.016 | 0.031 | 0.031 | 0.031
0.5|C.I. | (0) 5.141 | 3.682 | 4.321 | 4.610 | 4.212 | 3.619 | 3.884 | 3.713 | 3.666 | 3.612
(4) 0.515 | 1.224 | 1.996 | 1.747 | 2.738 | 2.699 | 3.713 | 2.551 | 4.103 | 4.470
(6) 0.328 | 1.084 | 1.045 | 1.303 | 2.028 | 1.740 | 1.981 | 2.020 | 2.013 | 2.247
P.P.| (0) 2.652 | 3.073 | 3.276 | 3.151 | 2.980 | 2.504 | 2.964 | 2.457 | 2.933 | 2.855
(5) 1.505 | 1.264 | 2.574 | 2.621 | 2.341 | 3.066 | 2.566 | 2.551 | 3.167 | 2.980
(6) 0.203 | 1.068 | 1.092 | 1.529 | 1.544 | 1.420 | 1.381 | 2.192 | 2.387 | 2.293
0.9/ C.L | (0) 5.702 | 6.069 | 6.318 | 6.146 | 6.053 | 6.021 | 6.209 | 5.843 | 5.881 | 6.186
(4) 1.428 | 5.007 | 5.007 | 4.399 | 5.460 | 5.148 | 5.507 | 6.069 | 6.381 | 6.459
(6) 1.786 | 2.090 | 3.019 | 3.307 | 4.033 | 3.681 | 3.667 | 4.227 | 3.791 | 4.142
P.P.| (0) 4.867 | 5.281 | 4.680 | 5.492 | 5.585 | 4.267 | 4.181 | 4.665 | 4.602 | 4.462
(5) 2.964 | 3.362 | 4.665 | 5.194 | 4.446 | 4.196 | 6.255 | 5.585 | 5.054 | 5.281
(6) 1.373 | 2.013 | 2.566 | 1.981 | 3.261 | 3.330 | 3.416 | 2.745 | 3.884 | 4.189

fewer colour classes earlier than Methods (0) and (6). Further analysis should
be conducted in order to investigate the validity of this proposition.

Unlike Method (3) for the edge dynamic problem, Method (6) was only found
to reach final, feasible colourings with the same or significantly fewer colour
classes than Method (0). Both Methods (0) and (6) start each time-step from
a feasible colouring; however, Method (6) achieves initial colouring with signif-
icantly fewer colour classes than Method (0) for most combinations of d and
p (see Sect.6.2 and Fig.2). Method (6) will therefore attempt to find feasible
colourings with fewer colour classes earlier than Method (0).

It was found that Methods (4) and (5) achieve final, feasible colourings in
significantly less time than Method (0) for d = 0.1 with all values of p, and
d € {0.5,0.9} with p < 0.01. Additionally, Method (4) was found to achieve
final, feasible colourings in significantly less time for d = 0.5 with p < 0.04, and
d = 0.9 with p < 0.025 also. This can be seen in Table4. The reason for these
observations is likely to be the same as that given with regards to the number
of colour classes in the final, feasible colourings achieved with low levels of p.

On the contrary, Methods (4) and (5) require significantly more time to
achieve final, feasible colourings than Method (6) for d € {0.5,0.9} with most
values of p. In comparison to Method (0), Method (6) starts from a feasible
colouring with significantly fewer colour classes for d € {0.5,0.9} with all values
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of p (see Sect. 6.2 and Fig. 2). This will likely translate to Method (6) attempting
to find feasible colourings with fewer colour classes before Methods (4) and (5)
are able to produce initial, feasible colourings.

Method (6) was also found to require significantly less time to achieve final,
feasible colourings than Method (0) for all values of d with most values of p
(again, see Table4). This is probably due to the same argument given earlier
with regards to the number of colour classes in the final, feasible colourings
achieved by Method (6) compared to Method (0).

7 Conclusions and Future Work

In this paper we have presented several methods for modifying feasible colourings
from one time-step of a dynamic random graph in order to help find a feasible
colouring for the next time-step.

Our experiments have shown that, for both edge and vertex dynamic graphs,
initial colourings with significantly fewer colour classes can be achieved by ini-
tially modifying a feasible k-colouring for G into an infeasible k-colouring for
G41 and then passing this directly to the tabu search operator. However, there
is a significant trade off with respect to the time required to achieve an initial,
feasible colouring when these modification methods are applied. These methods
were also found to achieve final, feasible colourings with the significantly more
colour classes for some edge dynamic problems but significantly fewer colour
classes for some vertex dynamic problems. The time required to achieve compa-
rable final colourings via these methods is dependent on p.

It has also been shown that reducing a feasible colouring for G into a par-
tial, proper colouring for Gy;1 and then applying a constructive algorithm to
the residual graph induced by the “uncoloured” vertices can also achieve ini-
tial, feasible colourings with significantly fewer colour classes when p is small
enough. These modification methods were also shown to produce initial, feasible
colourings in significantly less time for d € {0.5,0.9}. Finally, these methods also
resulted in final, feasible colourings with the same or significantly fewer colour
classes and require equal or significantly less time to do so.

Note that in this piece of work, all changes between time-steps of dynamic
graphs have occurred completely at random; however, for some real world appli-
cations there may be some level of predictability. More specifically, we might have
some knowledge of how edges and vertices are likely to change in the future. We
wish to extend this research and explore how this sort of information can be
used to our advantage in order to produce more robust colourings.
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Abstract. Automated Web service composition, which refers to the cre-
ation of a complex application from pre-existing building blocks (Web
services), has been an active research topic in the past years. The advan-
tage of having an automated composition system is that it allows users
to create new applications simply by providing the required parameters,
instead of having to manually assemble the services. Existing approaches
to automated composition rely on planning techniques or evolutionary
computing (EC) to modify and optimise composition solutions directly
in their tree/graph form, a complex process that requires several con-
straints to be considered before each alteration. To improve the search
efficiency and simplify the checking of constraints, this work proposes an
indirect Particle Swarm Optimisation (PSO)-based approach. The key
idea of the indirect approach is to optimise a service queue which is
then decoded into a composition solution by using a planning algorithm.
This approach is compared to a previously proposed graph-based direct
representation method, and experiment results show that the indirect
representation can lead to a greater (or equivalent) quality while requir-
ing a lower execution time. The analysis conducted shows that this is
due to the design of the algorithms used for building and evaluating the
fitness of solutions.

Keywords: Web service composition - Particle swarm optimisation -
Quality of Service - Candidate representation

1 Introduction

Software developers around the world are well acquainted with Web services,
which may be defined as applications that provide operations and/or data and
are accessible via the network using communication protocols [7]. The modular
nature of Web services has led users to think of them as building blocks for
more complex applications, selected and integrated as needed from a repository
of available candidates in a process known as Web service composition [5]. As the
number of candidates in the repository grows and as composition tasks become
© Springer International Publishing Switzerland 2016
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more complex, performing the selection and integration of services manually
becomes increasingly difficult [12]. Additionally, if the repository contains multi-
ple candidates with equivalent functionality but different quality attributes, then
manually choosing the ideal alternative to include in a composition may become
infeasible [8]. To overcome these challenges, researchers have been investigating
the development of techniques to perform automated Web service composition
[15]. By using these techniques, the composition requestor would be able to sim-
ply specify the inputs and outputs of the desired application, and an automated
composition system would then correctly select and integrate services into a
correct composition solution.

There are normally two tasks to be considered in Web service composition:
maintaining the correctness of solutions, i.e. ensuring atomic services are con-
nected in a way that can be executed at run time, and optimising solutions
according to their overall Quality of Service. To accomplish this, there are typ-
ically three different kinds of methods: the first group focuses on creating a
correct composition [18]; the second group optimises the quality of composi-
tions assuming that an abstract workflow is already known [25]; the third group
attempts to address both of these concerns simultaneously, creating a correct
workflow and at the same time optimising the quality of the services included
in the composition [20]. However, simultaneously accomplishing these two tasks
increases the complexity of these approaches, since the optimisation must also
respect a number of interrelated constraints [22].

The overall goal of this paper is to investigate an indirect representation to
the problem of Web service composition, proposing a Particle Swarm Optimi-
sation (PSO)-based approach [6] that represents each solution candidate as a
queue of services. Each queue is decoded into the corresponding composition
workflow by using a specific graph-planning algorithm, verifying the correctness
of the connections between services. To the best of our knowledge, the idea of
encoding/decoding solutions has not been used before in the field of Web service
composition. This work accomplishes three objectives:

1. It identifies suitable encodings for representing a queue of services within a
PSO particle vector.

2. It proposes decoding algorithms that efficiently create composition workflows
from a service queue as efficiently as possible.

3. It compares the indirect approach with a state-of-the-art direct composition
approach to verify that there is indeed a performance gain without a loss of
solution quality.

The remainder of this paper is organised as follows: Sect.2 provides the
fundamental background on the Web service composition problem, including a
literature review; Sect.3 describes the indirect representation proposed in this
paper; Sect.4 describes the experiments conducted to test the performance of
the novel PSO methods; Sect. 5 presents the results of these experiments; Sect. 6
concludes the paper.
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2 Background

2.1 Problem Description and Example

The fundamental idea of Web service composition is to combine Web ser-
vices into a structure that accomplishes a more complex task. A Web service
S = (input(z1, T2, ..., Tpn), output(yi,y2,...,Yn), QoS(time, cost, availability,
reliability)) requires a set of inputs, produces a set of outputs, and has an
associated set of quality attributes. The fundamental elements in the compo-
sition problem are a service repository SR = {Si,..., S} containing the ser-
vices, and a composition request R = (input(iy, i, ..., iy ), output(oy, 02, ..., 0,))
which specifies the overall inputs that should be made available when execut-
ing the composition as well as the overall outputs the composition should pro-
duce. The objective of this problem is to create a service composition with the
best possible overall quality attributes, optimised according to a set of objec-
tive functions f1, fa, ..., fn, where 1 < ¢ < n and ¢ € QoS. There are three
fundamental constraints required in a composition solution: firstly, the inputs
of each service must be fully satisfied by predecessor services in the compo-
sition (Vz : input(z) 2O output(pred(x))); secondly, the outputs of the start-
ing node of a composition must be the composition requests overall inputs
(output(s) = input(R)); thirdly, the inputs of the ending node of a composition
must be the composition requests overall outputs (input(e) = output(R)). The
travel problem, a well-known Web service composition example which has been
extensively described in the literature [19,21], is shown in Fig.1 as a concrete
example of this problem description.

Auvailable: customerinto, departureDate,
fromCity, toCity, durationOfStay

Required: returnTicket, arrivalDate

FlightBooking
Service

customerinfo, __w
departureDate, )
fromCity, toCity, returnTicket

durationOfStay arivalDate

customerinfo, arrivalDate
toCity, durationOfStay
T

HotelBooking
Service

Fig. 1. Example of a solution to a Web service composition task [20].

2.2 Quality of Service and Composition Constructs

When creating compositions, it is necessary to pay attention to the Quality of
Service (QoS) properties of each selected service, i.e. a QoS-aware composition
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approach is needed. These non-functional criteria may be quite in certain field,
e.g. in finance. There exist many Web service quality properties, from security
levels to service throughput [14]. Based on the properties selected in previous
works [9,26], in this paper we consider four of them: the probability of a service
being available (A) upon request, the probability of a service providing a reli-
able response to a request (R), the expected service time limit between sending
a request to the service and receiving a response (T), and the execution cost to
be paid by the service requestor (C). The higher the probabilities of a service
being available and of it producing a reliable response, the higher its quality
with regard to A and R; conversely, the services with the lowest response time
and execution cost have the highest quality with regard to T and C. The con-
figuration of services in a composition is dictated by constructs used in building
a workflow showing how services connect to each other [27]. This work considers
two composition configurations, sequence and parallel, that are recognised by
Web service composition languages such as BPELAWS [4,26]. These two con-
structs are described as follows.

Sequence Construct. Services in a composition construct are chained sequen-
tially, so that the outputs of a preceding service fulfil the inputs of the subsequent
one, as shown in Fig.2. The total time (7') and total cost (T) for a sequence
can be calculated simply by adding the individual time and cost values of the
composing services. The availability (A) and reliability (R) of individual ser-
vices are expressed as probabilities, therefore the total composition values can
be calculated by multiplying the individual service values.

O-@---@-O

m m m m

A:Ha" R = HT‘n T:Ztﬂ C:ZCH,
n=1 n=1 n=1 n=1

Fig. 2. Sequence construct and formulae for calculating its QoS properties [26].

Q%Q

m m

C = 2_:16" A= l:[lan R= 1:[11”7,,
T=MAX{ty|n € {1,...,m}}

Fig. 3. Parallel construct and formulae for calculating its QoS properties [26].
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Parallel Construct. The inputs of components in a parallel construct are sat-
isfied independently, which allows these services to be executed simultaneously.
The output produced by this construct can then be provided to any subsequent
services, as shown in Fig.3. The overall QoS values for the parallel construct
are calculated using the same formulae applied to the sequence construct, with
the exception of the total time (T'), which is simply the time of the component
service that takes the longest to execute.

2.3 Related Work

In addition to planning [17] and traditional optimisation strategies [28], a wide
variety of Evolutionary Computing (EC) approaches have been applied to the
problem of Web service composition [16,24]. One of the earliest works in this area
[3] applies genetic algorithms to optimise the overall Quality of Service (QoS) of
a composition. Its objective is to select a set of concrete services that fulfil the
required functionality of their abstract counterparts, ensuring that the selected
set results in a composition with the best possible quality. Even though this
approach takes QoS into account, it is not capable of performing fully automated
composition, which is when the composition workflow is automatically deduced
at the same time that the services to include in the composition are identified.
Several works employ particle swarm optimisation (PSO) to solving the problem
of service composition [13,25,29], but similarly to genetic algorithms they focus
exclusively on semi-automated composition.

Another approach [18] employs Genetic Programming (GP) to perform fully
automated Web service composition, representing solutions as trees with candi-
date services as the leaf nodes and composition constructs as the inner nodes.
A context-free grammar is used to generate new individuals at the beginning of
the evolutionary process, as well as ensuring structural correctness during the
crossover and mutation operations. Despite its favourable experimental results,
this approach has the shortcoming of neglecting the Quality of Service of com-
positions and optimising candidates according to workflow topology measures
such as the length of the longest path in the composition and the number of
atomic services included.

Finally, some approaches both create the composition workflow and optimise
the quality of the overall composition [20,26]. These works accomplish this by
relying on variable-size solution representations (trees or directed acyclic graphs)
and by measuring the quality of candidate compositions through the fitness func-
tion. In [26], the fitness function is responsible for penalising solutions that are
not functionally correct, i.e. solutions that contain services whose inputs have not
been entirely fulfilled; in [20], candidate initialisation and genetic operators are
restricted to only produce functionally correct solutions. While these approaches
do consider both workflow creation and quality improvement simultaneously,
they perform operations to the solution workflows directly, which requires quite
complex constraint checks.
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3 PSO with Indirect Representation

The core idea explored in this work is to optimise solutions indirectly, using
a representation that is then decoded into the final composition. Given that
the verification of correctness constraints is very time-consuming, the indirect
representations, which are usually simpler than the direct one, are expected
to simplify or even remove the computationally expensive tasks of constraint
checking and solution repairing, and thus improve the search efficiency. However,
the implication of using this approach is that its efficiency and the quality of the
solutions produced is affected by two factors: the specific representation used
during the optimisation process, and the decoding process used for translating
the particular representation into an actual service composition. In the context
of an evolutionary computing approach, the use of an indirect representation
requires candidates to be decoded before the usual fitness evaluation step.

The representation investigated in this work uses a linear format that is
meant to represent a sequence of services, i.e. a service queue. The composition
solution is then decoded from this queue by using an algorithm that adds services
one by one to the solution according to the queue’s ordering. PSO is the technique
chosen for the indirect optimisation, since the linear structure of its particles
naturally lends itself to representing a service queue. This approach follows the
usual PSO steps [6], though with some particularities shown in Algorithm 1.
Firstly, the size of particles is determined based on the number of candidate
services being considered for the composition, with each candidate service being
mapped to an index of the particle’s position vector (each position holds a weight
between 0.0 and 1.0, inclusive). Secondly, solutions must be built using a graph-
building algorithm before their fitness can be calculated; a queue of services
is generated from the particle’s position vector and used as the input for the
algorithm, which decodes a corresponding solution graph from it. Finally, the
particle’s fitness can be calculated from this corresponding solution graph. Two
PSO variations are presented in this work, and they are discussed separately in
the subsections below.

3.1 A Simple Forward Decoding PSO

The first PSO method proposed investigates a forward-decoding strategy for
a particle vector of weight values, used for sorting all available services in a
queue. In this method, a simple service queue is constructed using the particle’s
position vector before it can be translated into a composition graph. This is
done by checking the service-to-index mapping for the particles’ position vector.
Each service is placed on the queue with an associated weight, which is retrieved
by accessing the position vector with the index mapped to that service. This
queue is then sorted according to these weights, placing the services with the
highest weight at the head of the queue, and those with the lowest weight at the
tail. Note that if two or more services have the same weight, then the ordering
between them may vary.
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Algorithm 1. Steps of the PSO-based Web service composition tech-
nique.

1: Randomly initialise each particle in the swarm;

2: while maz. iterations not met do

3 forall the particles in the swarm do

4 Create queue of services using the particle’s position vector;
5: Build the corresponding composition graph using the queue;
6 Calculate the fitness of the resulting graph;

7 if fitness value better than pBest then

8 ‘ Assign current fitness as new pBest;

9

: else
10: L Keep previous pBest;
11: Assign best particle’s pBest value to gBest, if better than gBest;
12: Calculate the velocity of each particle according to the equation:
13: Vg = Via + 1 * rand() * (pia — Tia) + c2 x rand() * (pga — Tia);
14: Update the position of each particle according to the equation:
15: ZTid = Tid + Vid;

Graph-Building Algorithm. By determining the service queue represented
in a particle, it is then possible to build a composition graph from that service
ordering, based on the Graphplan technique discussed in [2]. The graph is built
in a forward way — from the start node towards the end node — to prevent
the formation of cycles, which may lead to the addition of nodes that do not
contribute to reaching the end (i.e. dangling nodes). To address this, after the
graph has been constructed, it is submitted to a function that removes these
redundant nodes.

Algorithm 2. Generating a composition graph from a queue

Input : I, O, queue
Output: composition graph G
Create start node with outputs I and end node with inputs O;
Create graph G containing the start node;
Create set of available outputs containing start outputs;
while available outputs do not satisfy end inputs do
Get next candidate from queue;
if candidate inputs are satisfied by available outputs then
L Connect node to graph;

AN A

Remove it from queue and go back to the queue’s beginning;

9: Connect end node;
10: Remove dangling nodes from graph Gj
11: return G,
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As shown in Algorithm 2, the values initially required are the composition
task inputs (I), task outputs (O), and a queue of services as its input; this leads
to the creation of a composition graph G. Firstly, the start node is added to
the graph G, its outputs are added to a set that records all available outputs
from the nodes currently in the graph. Then, the following steps are repeated
until the available outputs can be used to fulfil all of the inputs of end: the next
node of the queue is retrieved as a candidate; if all of its inputs can be fulfilled,
the candidate is connected to the graph, its outputs are added to the set of
available outputs, and it is removed from the queue; otherwise, the candidate
in the next queue position is considered. Finally, end is connected to the graph,
any dangling nodes are removed, and G is returned. This process is illustrated
in Fig.4a, where node b is dangling. Note that different sequences may lead
to completely different solution topologies, thus preventing this approach from
being overly restrictive.
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Fig. 4. Approaches for decoding a particle solution.

Fitness Calculation. The fitness for a candidate graph is calculated using a
function that evaluates its overall QoS values, considering the four attributes dis-
cussed in Subsect. 2.2. Note that when using a forward graph-building method,
the fitness function can only be calculated once the entire graph has been decoded
(as dangling nodes must not be included QoS calculations). The QoS attributes
are combined using a commonly used weighted sum [23], according to the func-
tion fitness; = w1 A; + waR; + w3(1 — T;) + wa(l — C;), where Zle w; = 1.
A, C, and R are calculated using each atomic service in the graph according
to the formulae shown in Figs.2 and 3; T', on the other hand, is determined by
adding the individual times of the services that form the longest path in the
graph, from start to end. The time is calculated based on the longest graph path
because this allows us to handle both parallel and sequence constructs at the
same time. The output of the fitness function is within the range [0, 1], with
1 representing the best possible fitness and 0 representing the worst. To ensure
that the final result of the sum is within this range, the values of A, C, R and T
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must all be normalised between 0 and 1 (for time and cost, the maximum value
used in the normalisation is the highest individual service value in the repository
multiplied by the total number of services in the repository) [23]. The weights
in the function are specified by the user.

3.2 Layered Backward Decoding PSO

A variation to the PSO-based method proposed in the previous section, which
considers the use of service layers, was also developed with the objective of
further improving the efficiency of the indirect technique. This variation was
implemented because the use of layers allows solutions to be decoded using a
backwards algorithm, which is more computationally effective. A layer in this
context refers to a group of discovered services whose inputs that can be com-
pletely fulfilled by a set of outputs (either given or from previous layers). The
same steps used in the non-layered method are also employed here, with three
fundamental differences: firstly, before initialising the population candidate ser-
vices are mapped to an index in the particle’s position vector according to the
position information from the layers; secondly, the decoding and evaluation of
the solution represented by a particle are performed in a single step by using
a new algorithm that does not require the creation of a graph; finally, a graph
representing the global best solution is created after the optimisation process
has finished running. Each of these steps is explained below.

Layer Identification and Particle Mapping. The unique feature of the
PSO method proposed here is that it identifies the composition layer to which
a service belongs. Before the optimisation process begins, the service repository
is run through a discovery process [23] that identifies the services that could
be possibly used in the composition. As shown in Algorithm 3, this filtering
process requires the set of inputs (I) and the set of outputs (O) from the overall
composition task, in addition to the service repository (R); given these inputs,
it produces a list of candidate service layers that are relevant to the composition
(L). The algorithm keeps track of all available outputs so far, and uses them
to discover additional layers: if a previously undiscovered service has all of its
inputs satisfied by the set of available outputs, then it is added to the current
layer and its outputs are added to the set of available outputs. The discovery
continues until no additional layers are found, and the final step verifies whether
the desired composite output O can in fact be achieved using the services in
the repository. Once the composition layers are identified, the particle mapping
takes place. As shown in in Fig.5, each service layer is mapped to contiguous
particle indices, effectively segmenting particles according to the layers. This
segmentation facilitates the solution decoding process to be discussed in the
following subsection, as the connectivity information can be reused during the
optimisation process.
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Algorithm 3. Discovering relevant service composition layers [23].
Input : 1,0, R
Output: service layers L
Initialise output set with I;
Discover services satisfied by output set;
while at least one service discovered do
Add services as the next layer in L;
Add the outputs of these services to the output set;
Discover additional services satisfied by the updated output set;

if Output set satisfies O then
‘ return L;

else

10: L Report no solution;
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Fig. 5. Mapping of services to particles according to layers.

Solution Decoding and Fitness Calculation. The solution decoding step
employed in the layered PSO method is fundamentally different from that of the
simple PSO method. Since particles are segmented by layers, it becomes possible
to build graph solutions backwards (i.e. from the graph’s end node towards the
graph’s start node) without leading to cycles being formed, provided that only
services from previous layers are used to fulfil the input of a service in the current
layer. Another difference is that the solution decoding process shown here does
not produce a graph structure at the end of its execution, and instead calculates
the fitness of the solution at the same time that the solution is identified. As
discussed earlier, before the decoding process can begin it is necessary to order
candidate services according to the weights contained in the particle. Instead of
generating a single queue, however, we generate one individual queue for each of
the layers mapped to that particle, creating a series of sorted layers (L). These
sorted layers are then provided in conjunction with the solution’s end node as
the input to Algorithm 4, which calculates the corresponding fitness (f) to the
particle’s solution.

The algorithm works by keeping track of all service inputs that need to be
satisfied, initialising it to contain all the inputs required by the end node. Then,
the algorithm is executed from the last layer towards the first layer, each time
performing the same series of steps. Firstly, all the inputs in set to satisfy that
correspond to services in the current layer are identified. Then, all previous
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sorted layers are merged into a single service queue that is then used to fulfil
the current inputs. As each service is selected from the queue to satisfy a given
input, its QoS values are added to the QoS totals and all of its inputs are placed
in the next-to-satisfy set. The time aspect of QoS is calculated by keeping track
of the longest total time required by the services in previously processed layers,
and by updating this total time with each new service addition. After all layers
are satisfied, the fitness is calculated using the same fitness calculation as the
previous PSO and the algorithm returns the result. A simplified depiction of the
order in which this process is carried out is shown in Fig. 4b.

Algorithm 4. Algorithm for decoding solutions and calculating their
fitness.
Input : end, sorted layers L
Output: fitness f
1: Initialise variables to keep track of QoS:
cost = 0, availability = 1, reliability = 1;
2: Set all inputs of end as the next to satisfy, associating each input with time 0
and layer |L| + 1;
3: for all sorted layers in L, from end to first do

4: Identify the inputs from next-to-satisfy set that correspond to services in
this layer;
5: while not all of these inputs have been satisfied do
6: Find the next service from the previous layers with the highest
weight;
if service outputs satisfy at least one input then
8: Update running QoS values with service QoS (add to running
cost, multiply with running availability and reliability);
9: Add the inputs of service to the set of next inputs to satisfy, each
associated with (service time + highest time from satisfied
inputs) and current layer position;

10: Find the total composition time as the highest from the remaining set of
next inputs to satisfy;

11: Calculate fitness f using total QoS values;

12: return f;

Construction of Final Graph. As the decoding algorithm described in the
previous subsection does not create a directed acyclic graph out of every candi-
date solution, at the end of the run it is necessary to build a solution graph out
of the overall fittest particle by using Algorithm 5. This algorithm has a very
similar structure to the decoding one, but instead of calculating QoS values it
connects services from earlier layers whose outputs fulfil the inputs of services in
later layers. As before, the algorithm goes through all composition layers, though
in this case the final step is to connect the start node to any service with inputs
that are still unfulfilled. Finally, the composition graph G is returned.
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Algorithm 5. Algorithm for building final graph solution.

Input : start, end, sorted layers L
Output: final graph G

1: Create graph G containing the end node;

2: Set all inputs of end as the next to satisfy, associating each input with the
end node and layer |L| + 1;

3: forall the sorted layers in L, from end to first do

Identify the inputs from next-to-satisfy set that correspond to services in
thWeb servicesis layer;
5: while not all of these inputs have been satisfied do
6: Find the next service from the previous layer with the highest weight;
7 if the outputs of this service satisfy at least one of the inputs for this
layer then
8: Add service node to graph;
9: Add edges connecting this service node to the nodes whose
inputs it satisfies;
10: Add the inputs of the service node to the set of next inputs to
satisfy, each associated with the service node and current layer
position;

11: Add start node to graph;

12: Add edges connecting start node the associated nodes of all remaining
inputs in the next-to-satisfy set;

13: return G,

4 Experiment Design

Experiments were conducted to evaluate the performance of the PSO-based indi-
rect composition methods in comparison to a graph-based direct composition
approach [20], with the hypothesis that the indirect representation will pro-
duce solutions with equivalent quality but requiring shorter execution times.
The graph-based approach was chosen for the comparison because of its flexi-
bility, as it can also simultaneously optimise the quality of solutions and ensure
their correctness. All experiments were conducted on a personal computer with
8 GB RAM and an Intel Core i7-4770 CPU (3.4 GHz). The graph-based and
PSO methods were compared using the datasets and tasks from WSC-2008 [1]
and WSC-2009 [10], which contain service descriptions and their associated QoS
attributes. 30 independent runs were carried out for each approach using each
dataset. The parameters were chosen based on common settings from the lit-
erature [6,11]. For both PSO methods, 100 iterations were run for a swarm of
30 particles, having both ¢; and ¢y as 1.49618, w as 0.7298 and all weights in
the fitness function were 0.25. For the graph-based approach, a population of
size 500 was evolved for 51 generations, with crossover probability of 0.8, both
mutation and reproduction with a probability of 0.1, tournament selection with
a tournament of size 2, and all fitness function weights as 0.25.
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5 Results

Results are presented and discussed in the following subsections, where the solu-
tion fitness and execution time means are shown accompanied by the standard
deviation. A Wilcoxon signed-rank test at 95 % confidence level was conducted
to ascertain whether the differences between the two PSO methods and the
graph-based approach are statistically significant, and the symbols T and | are
used to indicate values significantly larger than the graph-based approach and
significantly smaller than the graph-based approach, respectively.

5.1 Solution Fitness

The fitness results presented in Table 1 generally show that the solution fitness
produced by the PSO-based methods is equivalent to that of the graph-based
approach. However, it must also be noted that the fitness of PSO solutions is
significantly higher for a number of datasets (08-3, 08-6, 08-7, 09-4), whereas
this is not the case for the graph-based approach. Thus, these results indicate
that the PSO-based methods are preferable when the focus of the composition
process is on the quality of the resulting solutions. This difference in quality
was investigated by manually comparing the solutions produced by the graph-
based approach to those produced by layered PSO for dataset WSC-08-6, where
the difference is the most pronounced. For most runs with this dataset, the
layered PSO produced many solutions with fitness 0.4980, whereas the graph-
based approach did not produce any solutions with fitness higher than 0.4976.
When comparing the topology of the