
Adaptive Cache Structures

Carsten Tradowsky(B), Enrique Cordero, Christoph Orsinger,
Malte Vesper, and Jürgen Becker

Institute for Information Processing Technologies,
Karlsruhe Institute of Technology, Karlsruhe, Germany

{tradowsky,becker}@kit.edu,
{enrique.cordero,christoph.orsinger,malte.vesper}@student.kit.edu

Abstract. Novel programming paradigms enable the concurrent execu-
tion and the dynamic run-time rescheduling of several competing appli-
cations on large heterogeneous multi-core systems. However, today the
cache memory is still statically allocated at design time. This leads to
a distribution of memory resources that is optimized for an average use
case. This paper introduces adaptive cache structures to be able to cope
with the agility of dynamic run-time systems on future heterogeneous
multi-core platforms. To go beyond the state of the art, the cache model
is an implemented HDL realization capable of dynamic run-time adap-
tations of various cache strategies, parameters and settings. Different
design trade-offs are weighted against each other and a modular imple-
mentation is presented. This hardware representation makes it possible
to deeply integrate the adaptive cache into an existing processor microar-
chitecture. The contribution of this paper is the application-specific
run-time adaptation of the adaptive cache architecture that directly rep-
resents the available memory resources of the underlying hardware. The
evaluation shows very efficient resource utilization while the cache set
size is in- or decreased. Also, performance gains in terms of cache’s miss
rate and application’s run-time are shown. The architecture’s capabili-
ties of performing in a multi-core use case and the potential for future
power savings are also presented in an application scenario.

1 Introduction

Today’s performance gains are mainly powered by a strict application of princi-
ples. Frequency gains are achieved by miniaturization of technology and making
excessive use of parallelism through multi-core architectures. Since the possibili-
ties for improvement are limited, it is time to turn to abstraction and generaliza-
tion. Every abstraction or generalization comes at a cost in terms of performance
or accuracy and hence has to be carefully weighted. It is necessary to take this one
step further to unleash another quantum of performance from a multi-core system.

Performance gains by increasing frequency have hit the power-wall and the
field has turned towards parallelism [6]. Today’s multi-core systems exploit many
heterogeneous resources that are allocated dynamically during run-time to dif-
ferent tasks [7]. The number of resources available on a chip can be varied with
such adaptive architectures [8]. The benefits of reducing abstraction and giving
c© Springer International Publishing Switzerland 2016
F. Hannig et al. (Eds.): ARCS 2016, LNCS 9637, pp. 87–99, 2016.
DOI: 10.1007/978-3-319-30695-7 7



88 C. Tradowsky et al.

the programmer control over hardware parameters is studied. This control allows
the programmer to adapt the hardware to the application’s needs. This paper
presents this approach for adaptive caches in particular.

The cache design is a trade-off between power and performance, for which there
is no general optimal solution [3]. However, there are optimal solutions for specific
programs, in terms of power, performance, or performance per Watt [2]. One solu-
tion that is suggested by research projects like ‘invasive computing’ [7] is to relieve
the chip designer of this burden and allow the application developer to unleash
higher performance. Consequently, the application developer should choose the
optimal cache configuration [4]. Further choices could be made either by the com-
piler or run-time system according to the current system state. This choice will be
put beyond the silicon implementation stage to exploit performance gains that are
higher than the cost arising from added complexity. While this strips an abstrac-
tion layer, which makes the cache truly transparent, it is a necessary step in uncov-
ering additional performance. In parallel computing, caches are seen as something,
for which cache oblivious algorithms could be written [5].

The paper is structured as follows: Sect. 2 then details the design of the
adaptive cache structures. Afterwards, the adaptation possibilities are presented
in Sect. 3. To prove our concept, we provide an evaluation of our adaptive cache
structures in Sect. 4 Concluding, we summarize our contribution and provide an
outlook for future work.

2 Designing Adaptive Cache Structures

Before explaining the actual concept, a summary of the requirements will be
presented to justify and explain the following concept. The ultimate goal of
this design is to target a silicon implementation as an Application-Specific Inte-
grated Circuit (ASIC ). Currently for prototyping and development purposes,
the design has been implemented using the Leon3 on Xilinx Virtex-5 Field Pro-
grammable Gate Arrays (FPGA). To allow future ASIC implementation, the
proposed design run without any FPGA-specific techniques like run-time partial
reconfiguration. Instead, the concept is based on run-time resource reallocation.

2.1 Basic Cache Model

Since caches are smaller than the memory cached by them, a mapping is required.
Therefore, the cache is split in so called lines. A line is the smallest consecutive
part that can be mapped. In the simplest case, referred to as direct mapped cache,
the main memory is split into equal size regions and each region is mapped to one
line. A group of lines is called a set. To loosen the restriction of direct mapped
caches, associativity has been introduced. In associative caches multiple cache
lines are mapped to the same set-bits. For this purpose a power of two number
of lines are grouped to a set. The number of lines in a set is called set size s. The
memory chunks are now mapped to the sets. Therefore, there are s possible lines,
in which the data can be cached. By increasing the associativity and keeping the
cache size the same, the number of sets #s is decreased.



Adaptive Cache Structures 89

(a) Set partitioning

(b) Way partitioning

Fig. 1. Mapping for two-way
cache - Memory mappings for
a two-way associative cache.
Figure a groups the cache by
sets, while Fig. b groups the
cache by way.

For the concept, which we present in this paper,
it is favorable to reinterpret the memory mapping.
Figure 1 shows the memory mapping for a two-
way cache. In Fig. 1a the two-way cache is shown
as one large memory. This interpretation is favor-
able to explain the addressing of the cache memory.
Figure 1b interprets a two-way cache as two parallel
caches. This reinterpretation of the cache is favor-
able for our concept as it enables us to directly rep-
resent the underlying hardware memory resources.

Furthermore, when using the second interpre-
tation, it is important that any value can only be
cached in one of the two caches (ways), but for
retrieval the value is looked up in both caches.

2.2 Modularization

To meet the requirements, the cache is divided into
modules as shown in Fig. 2. The modules are: 1.
the cache controller, 2. the cache memory, 3. the
memory controller, 4. the transceiver, and 5. the adaptation controller.

Figure 2 also shows the minimal necessary connections between the different
modules needed in order to exploit the parallelization capabilities of the cache
subsystem to the fullest. Half-duplex connections support either read or write
transfers, while full duplex connections support both at the same time. While
the CPU -connection type is dictated by the CPU , and the connection between
transceiver and memory controller is implicitly given by the bus capabilities,
all internal connections can be adapted as needed. In the following sections the
individual modules are presented.

2.3 Cache Controller

Fig. 2. Overview of the modules -
Modules composing the cache system
and their connections.

The cache controller is the heart of the sys-
tem. In addition to the standard states, it
has been expanded to include an adapta-
tion state to change the configurations. All
basic states are extended to account for
the adaptation as well. From the idle state
there are five states branching out: 1. read,
2. write, 3. flush, 4. discard, and 5. adapt.
The added adaptation sequence will later
be explained in more detail.

2.4 Cache Memory

The cache memory consists of two main
parts: the tile cluster and the individual tiles.



90 C. Tradowsky et al.

Fig. 3. Tile network - The black arrows show
the schematic address-mapping, the grayed
out multiplier/multiplexer network shows the
implementation.

Tile Cluster. The tile con-
cept comes from looking at
caches with associativity n as
n parallel caches. Any memory
location is cached only once,
however, the cache is chosen
by a replacement strategy. If
we use additional bits from the
address instead of a replace-
ment strategy to select the
cache, it behaves like a large
direct mapped cache. These n
caches are called tiles.

If the associativity is redu-
ced, there is no need to query
all tiles, therefore a reduction
in the power consumption can be achieved. The connection of multiple tiles form
the actual memory of the cache.

The set address aset is split into two parts like shown in Fig. 3. A static part,
the row address arow that identifies the row inside a tile, and a dynamic part,
the tile address atile, that identifies the tile in the way. The tree of multiplexers
are controlled by the atile bits of the address as shown in Fig. 3. The multiplexer
on the highest level of the binary tree is controlled by the most significant bit
of atile. If the associativity is increased, meaning several stages of the tree act
as multipliers rather than multiplexers, the first level acting as multiplexer is
controlled by the most significant bit of atile. Since increasing the associativity
by n reduces the #atile (#aset) by n the mapping of the stages to the address
bits remains the same, regardless of the currently set associativity. This becomes
clear when comparing Fig. 3a with Fig. 3b. Note that all tiles are connected by
an internal bus relaying the tag and row, however, only those that are enabled
check for hits and output data on the data bus.

Tile. Three independent memory blocks are used to store the data, the tag and
the control bits.

The tag RAM and data RAM hold tag and data respectively. The control
bit RAM holds valid and dirty bits plus any per-line information needed by the
replacement strategy. The data is split to avoid unnecessary read-/write-accesses.

The separation in these three RAM blocks has a potential on reducing power
consumption because it avoids unnecessary read operations when only part of
a memory line needs to be updated. When updating a part of the line only
the data and the control bits (which are located in separate RAMs) need to be
updated and while the tag stays unchanged. This reduces the amount of write
operations because the tag will not be unnecessarily rewritten.

If power saving is a larger issue than performance, the access to the different
RAM cells can be serialized. For example instead of reading the tag, control



Adaptive Cache Structures 91

bits and data at the same time and having logic decide whether the data is put
onto the data bus of the tile cluster one could first match the tag and compare
the valid bit. The data RAM will only be accessed if it actually contains the
value to be fetched. This costs an additional cycle, however there will only be
one instead of s read operations executed on the data RAM .

3 Adaptation

The system supports different adaptation possibilities. The replacement strategy
can be selected on the fly and cache memory parameters can be changed during
run-time.

3.1 Configuration Register

All configuration information is stored in the configuration register located in
the cache controller. A write to this register triggers an adaptation. Reading the
register yields the current configuration.

The cache configuration register composition is described in the following
paragraph but the actual sizes of the different components are omitted since
they depend on the parametrization of the cache. To ease software development
one should define fixed sizes independent of the parametrization.

The configuration register and its contents are shown in Fig. 4. Only powers
of two values are accepted as line lengths, because otherwise irregularities are
introduced in the memory mapping.

ld2(associativity) ld2(line length) blocks flags replacement
strategy

Fig. 4. Adaptive cache configuration register

3.2 Cache Memory

There are three parameters that can be used to adapt the cache memory: 1.
associativity s, 2. size #la, and 3. line length LW .

Using these parameters, all other configuration values for the cache can be com-
puted. Adaptation of cache memory is broken down into base cases. Every base
case has two subcases, increasing or decreasing one of the aforementioned cache
memory parameters. Figure 5 gives an overview of the adaptation paths and the
implied costs. The following subsections detail the different adaptive cache con-
figurations and explain the cost of adaptively changing the cache configuration. It
should be emphasized that all these possibilities do not require a full cache flush.



92 C. Tradowsky et al.

Associativity. Associativity is quantized by the tile-concept. While the direct
mapped configuration offers only one valid location, the two-way associative
configuration has two. This implies that by changing the associativity, values
might end up in invalid locations.

Reducing associativity requires sorting. An associativity of 2n has 2n lines that are
allowed to store values from a set address. If the associativity is decreased from 2n

to 2m then 2n−m cells might hold values which they are not allowed to hold. Due
to the mapping chosen, the 2m new lines are a subset of the 2n lines. Therefore,
those lines can remain untouched. The valid locations of any address a for a lower
associativity form a true subset of those for a higher associativity. Thus, decreasing
the associativity can yield wrongly placed data regarding the new associativity.

Fig. 5. Overview of the basic adaptation
cases. Combining these spans the entire
configuration space.

Increasing associativity does not
require sorting. As shown under the
decrease of associativity, the valid
locations for higher associativities
form a superset for those of lower asso-
ciativities. Thus, all data remains valid
and no scrubbing is required.

Cache Size. Like associativity, we
quantize cache size based on the size
of a tile. The reason behind this is
that tiles can be powered off to con-
serve energy or be reused as a whole.
To make changes in cache size per-
pendicular to changes in associativ-
ity we assume that they are achieved
by reducing/increasing the number of
lines in a direct mapped cache. This
concept can be applied to an s-way
associative cache by looking at it as
s parallel caches as explained in Sub-
sect. 2.1. There are two possibilities to reduce the cache size based on this model:
either all n-caches are reduced in size by an equal amount or m-ways are shut
down. Increasing the cache size works by adding ways or increasing the set num-
ber. To increase the granularity a number of ways unequal to a power of two are
allowed [1]. To achieve this the ways with the highest order identifier are shut
down first. The corresponding hit, valid, and dirty signals are tied to 0.

Reducing ways requires different procedures depending on the cache configura-
tion and on the further utilization of the reduced part. When operating in write-
through mode, no further action is needed because of redundant data copies on
lower cache hierarchy levels. For other operation modes, the tiles need to be
flushed only if the stored values in the tile end will end up in invalid locations,
or if they will be powered off.



Adaptive Cache Structures 93

Increasing/Reducing sets can be modelled as an increase or reduction of ways
with a subsequent change in associativity. The same conditions explained in the
previous sections apply for this cases.

Line Length. The line length variation works by constructing so called virtual
lines. This means that for longer lines (multiples of the base line length) the line
length can be simulated by the cache controller. By loading more than one line
on every cache miss, the virtual line size can be increased. In order to avoid parts
of the virtual line being spread over multiple sets, the way for each virtual line is
determined once and then used as default for the next parts. This additional check-
ing causes a slight overhead that can be hidden, if the tiles have a sufficient number
of ports to enable checking for presence/free ways while other ways are written.

4 Evaluation of Adaptive Cache Structures

Different adaptive cache features have been presented that allow the variation of
cache parameters depending on the application’s current needs during run-time.
This has been done with the goal of exploiting the faster run-time potential
providing an optimized working point in each application by providing a more
efficient individual cache setting at a given time.

As an evaluation of the proposed architecture, three main aspects will be con-
sidered. First, we will evaluate the amount of occupied hardware resources used
by the adaptive cache design as well as the distribution of resources between
all tiles and the tile controller based on three specific scenarios. Second, we
will evaluate the impact of the adaptive cache structure on the application’s
and cache’s performance. Third, the benefit of the adaptive cache structure
in a multi-core case will be evaluated in terms of application performance.

8T/256B 8T/512B 8T/1024B

H
ar

dw
ar

e 
R

es
ou

rc
es

 (
in

 s
lic

es
)

0

50

100

150

200

250

300

350

400

450
Usage and Distribution of Hardware Resources

Tile Controller
All Tiles (8T)

Fig. 6. Usage and distribution of
hardware resources for tile controller
and all tiles in three different scenar-
ios: 256, 512 and 1024 bytes per tile
with 8 tiles each.

4.1 Hardware Resources Evaluation

For utilization analysis we consider three
different hardware configurations where the
cache always contains 8 tiles. In each sce-
nario the tile size is doubled with respect
to the previous one, so that each design
has 256, 512 and 1024 bytes per tile
respectively.

Figure 6 shows the amount of reconfig-
urable hardware slices used for each case. It
can be noted that the amount of resources
used by the tile controller in each case is
considerably lower (about 20 %) than the
one of the tiles. In fact, considering that
each scenario doubles the size of the tiles,
the size of the tile controller can be considered to be almost constant with a



94 C. Tradowsky et al.

small variation of ±10 slices. When looking at the total amount of tiles for each
scenario we see increases of 4 % between the first and second scenario, and 9 %
between the second and third scenario respectively.

These results show that the resources used on the FPGA for control and
logic computations of the adaptive structure are comparably low considering
the gain provided by each jump to the next scenario. The slices shown in Fig. 6
include all the resources used to control the cache. The actual cache memory is
implemented using BRAMs. Even though the memory is being doubled in each
scenario the BRAM utilization is constant for all three scenarios at 3 BRAMs
per tile, thus 24 BRAMs in total. Despite the fact that the Virtex-5 XUPV5
contains BRAMs with sizes of 18 kB and 36 kB, each tile is using three separate
blocks and the total amount is constant also for larger caches. This behavior can
be explained by the high degree of parallel operations that need to be performed
in an adaptive cache architecture. Since the BRAM blocks available are dual-
port memory blocks, mapping an entire cache or an entire tile into the same
BRAM would cause only an availability of two parallel access points into the
memory. In the cache, however, more access points are needed in order to check
in parallel all the tags depending on the associativity of the cache. This leads to
an implementation of the cache in multiple blocks to allow this behavior.

4.2 Performance Evaluation

An adaptive cache reallocation architecture has the goal to provide performance
gains for applications. In order to evaluate this gains we use the same three
hardware scenarios explained before (256, 512 and 1024 bytes per tile).

These three scenarios will be analyzed in two different evaluations with focus
on the cache performance improvements (cache miss rate) and the application’s
performance (run-time).

The software application running on each scenario is a Coremark benchmark.
According to the benchmark’s documentation a minimum of 10 s of run-time is
necessary in order for the benchmark to produce meaningful results. We use a
Coremark with 2000 iterations which in this architecture leads to a run-time of
more than 35 s. The following tests are run on the real hardware implementation
of the adaptive cache reallocation architecture on the Xilinx XUPV5.

Cache’s Performance. For the analysis of the cache miss rate in this archi-
tecture, we perform two main tests: For the first test the software application is
run 5 times on the previously defined hardware scenarios. Each time the appli-
cation runs, a different cache configuration will be applied by the software. The
configuration parameter to be changed is the amount of exclusive tiles available
as cache memory for the processor. By changing the amount of tiles that the
cache can use not only the cache’s size will change depending on the size of each
tile, but also the cache associativity will change. For each scenario we vary the
amount of exclusive tiles from 4 to 8 in steps of 1 and we measure cache’s miss
rate during the application’s run-time as a performance metric.



Adaptive Cache Structures 95

Figure 7 upper graph shows the behavior of the cache misses over the total
cache size. We can notice a non-linear behavior and a performance gain that can
be achieved when running the benchmark with a different cache configurations.
For instance, a cache size of 3.5 kB built using 7 tiles of 512 bytes per tile would
lead in this case to the lowest miss rate, hence the best cache performance.

In this test we selected always the same amount of tiles for each hardware
scenario, which lead to different total cache sizes for each case. This is the case
because each scenario has tiles of different sizes.

For the second test the same three hardware scenarios previously presented
are being used. However, this time the total cache size will be varied from 2
to 6 kB in steps of 1 kB by adjusting the amount of tiles respectively for each
hardware scenario. This has the advantage that the effect of the tile size and
amount of tiles can be directly seen for all scenarios for each cache size. The
hardware designs have been expanded to contain more available tiles as needed,
however the amount of tiles to be used in each case is still configured on run-time
by the software and varies depending on the hardware scenario. For example, to
build a 5 kB cache in all three scenarios we would need 20 tiles of 256 bytes, 10
tiles of 512 bytes but only 5 tiles of 1024 bytes.

Total Cache Size (in kB)
1 2 3 4 5 6 7 8

M
is

s 
ra

te
 (

in
 %

)

5.5

6

6.5

7

7.5

8
Miss rate comparison for equal associativity

256 Bytes/Tile
512 Bytes/Tile
1024 Bytes/Tile

Total Cache Size (in kB)
2 2.5 3 3.5 4 4.5 5 5.5 6

M
is

s 
ra

te
 (

in
 %

)

5.9

6

6.1

6.2

6.3

6.4
Miss rate comparison for equal cache sizes

256 Bytes/Tile
512 Bytes/Tile
1024 Bytes/Tile

Fig. 7. Miss rate for the Coremark benchmark
with 2000 iterations on three scenarios of the
adaptive cache architecture with same associa-
tivity (upper graph) and with same cache size
(lower graph).

Figure 7 lower graph shows the
different miss rates measured for
each cache configuration on each
hardware scenario. We see the miss
rates staying in the range of 5 %
to 8 % with variations in the miss
rate in a range of about 2 %. The
data shows that for this particular
application a minimum miss rate
can be achieved at a total cache
size of 3.5 kB with 7 tiles of 512
bytes per tile. The same analysis
for other applications would pro-
vide different results, thus show-
ing the importance of an adaptive
cache structure that can match
the individual application needs
and that can be controlled by the
software.

This analysis is intended as an
example to show the impact that
the different adaptive parameters in the dynamic cache reallocation architec-
ture can have on each individual application. Giving the developer the chance
to adapt the underlying hardware characteristics to the current application, can
allow the software to profit from a more suited architecture for a better perfor-
mance.



96 C. Tradowsky et al.

Application’s Performance. This second evaluation will investigate the effect
of the adaptive architecture on the application’s run-time of the same two tests
previously described in the first evaluation. The software running in each of these
tests is also the Coremark benchmark with 2000 iterations. First we consider the
first test where in all three scenarios the amount of tiles is varied between 4 and
8 by the software.

Figure 8 upper graph shows the run-time in seconds over the total cache size for
the three scenarios. The graph shows a strong improvement of the application run-
time on small cache sizes and a much smaller variation for larger cache sizes. The
graph also suggests that the performance can vary significantly with a constant
cache size but with a different tile distribution or different bytes per tile. This can
be seen more clearly at 2 kB cache size, where fewer tiles with 512 bytes per tile
lead to a longer execution time than more tiles with 256 bytes per tile each.

Further, we consider the second test where the total cache size is varied
equally among the three scenarios by adjusting the amount of tiles respectively.

Total Cache Size (in kB)
1 2 3 4 5 6 7 8

T
ot

al
 R

un
-t

im
e 

(in
 s

ec
on

ds
)

37.3

37.4

37.5

37.6

37.7

37.8
Run-time comparison for equal associativity

256 Bytes/Tile
512 Bytes/Tile
1024 Bytes/Tile

Total Cache Size (in kB)
2 2.5 3 3.5 4 4.5 5 5.5 6

T
ot

al
 R

un
-t

im
e 

(in
 s

ec
on

ds
)

37.32

37.34

37.36

37.38

37.4

37.42
Run-time comparison for equal cache sizes

256 Bytes/Tile
512 Bytes/Tile
1024 Bytes/Tile

Fig. 8. Run-time for the Coremark benchmark
with 2000 iterations on three scenarios of the
adaptive cache architecture with same associa-
tivity (upper graph) and same cache size (lower
graph).

Figure 8 lower graph shows the
results for the amount of computa-
tion cycles used for each scenario
with equal cache sizes. The results
show a noticeable difference for
small sized caches however much
lower variation in the amount of
computation cycles needed as the
cache gets bigger.

The results of these two eval-
uations for the cache’s and appli-
cation’s performance show that by
giving the application developer
control of the cache configuration a
performance gain can be achieved
with the flexibility of this adaptive
cache architecture.

It is not only important how
much improvement the architec-
ture can bring to the applica-
tion, but also the potential of this
architecture in a multi-core environment to provide benefits across multi-
ple CPUs constantly increasing or reducing their momentary cache needs.
This topic is more important than ever as every L1 cache miss has to go
through a local bus to a 2nd level cache. If there is a miss in the 2nd
level cache, which is most likely, the comparably slow DDR memory has
to be accessed via the NoC, which costs a lot of time in shared memory
multi-core scenarios. This aspects are considered in the following section.



Adaptive Cache Structures 97

4.3 Potential of the Adaptive Cache Architecture in a Multi-core
Scenario

Table 1. Test system configura-
tion parameters.

Parameter Value

Amount CPUs 2
Clock frequency 80MHz
I-Cache size 8 kB
I-Cache associativity 1
D-Cache amount tiles 8
D-Cache tile size 256B, 512B
D-Cache line length 32Bit

Reconfiguring the architecture to reallocate
cache tiles with different parameters during
run-time adds a reallocation overhead to the
scenario. In order to evaluate the overhead
and analyze the potential gain we simulate
a dual-core system with each core featuring
the adaptive cache architecture. The system
parameters are provided in Table 1. We choose
two applications, which have a different cache
behaviour. The Coremark benchmark profits
from more cache memory, while the MiBench
(ADPCM) streaming Benchmark is not impacted by less cache memory.

The test scenario consists of two stages as shown in Fig. 9. In the first stage
the Coremark benchmark runs in both CPUs simultaneously with the same
cache resources. In the second stage the MiBench (ADPCM) benchmark is run
in CPU1, while the Coremark is run again in CPU2 with additionally reallocated
cache resources from CPU1. In order to avoid false results because of cache
influences, the Coremark Benchmark exists in two separate copies in the memory,
such that the CPU2 uses two different copies for both stages of the test.

Fig. 9. Time flow of bench-
marks in dual-core applica-
tion scenario

We compare a static configuration design
with the adaptive system containing an adaption
sequence between both benchmarks. Test results
have shown that for the first stage of the test (Core-
mark benchmark running on both CPUs) with 8
tiles, a distribution of 4:4 between both cores offers
the best results. Similarly, for the second stage of
the test (MiBench (ADPCM) running in CPU1 and
Coremark running in CPU2) a distribution of 2:6
provides the best results. The adaptive design will reallocate the resources
between both test stages to compare the total run-time with a static design. The
goal is to evaluate if the costs for the adaption sequence can achieve a shorter
run-time because of a better distribution of resources. The static configuration
will run with constant four tiles per CPU.

Table 2. Run-time of the applications of second
test stage benchmarks.

Benchmark Tiles Adaption time Run-time

CPU 1 MiBench 4 0 ns 13,31ms
CPU 2 Coremark 4 0 ns 11,60ms
CPU 1 MiBench 2 75 ns 13,38ms
CPU 2 Coremark 6 880 ns 11,27ms

Table 2 shows an overview of
the results for the second stage of
the test. The first row presents the
static case with an equal tile dis-
tribution across both CPUs and
no adaption sequence. The second
row shows the results for the real-
located resources with the corre-
sponding times for the adaption sequence. We notice a slight increase in the



98 C. Tradowsky et al.

run-time for CPU1 and a larger decrease in the run-time for CPU2 for the adap-
tive design.

Table 3. Relative run-time and performance gain
of the dynamic cache reallocation.

Benchmark relative Run-time Performance gain

CPU 1 MiBench +67µs −0.5%
CPU 2 Coremark −329µs +2.8%

An overview of the
absolute differences between
the static and adaptive cases
can be seen in Table 3. As
expected the MiBench runs
slower on CPU1 however the
Coremark is accelerated. It is
important to note that the 853 ns of reallocation time is already included in
the total run-time. Overall, we see a 2.8 % improvement after the resources
reallocation.

5 Conclusion and Future Work

We provide a dynamic cache architecture, that for the first time has been
described in a hardware description language and implemented on a Virtex-5
XUPV5. Our cache architecture exploits fine grain run-time adaption, which
enables performance gains while keeping the hardware implementation over-
head to a minimum. The presented concept provides the capability to adapt
to different cache parameters on run-time and to redistribute vacant memory
to other parallel processors. As the evaluation has shown, the architecture pro-
vides multiple advantages and performance gains with an expandable potential
for multi-core architectures. It was shown that the hardware overhead intro-
duced in the resource utilization of the adaptive architecture is small and slowly
increasing while doubling the cache size. The evaluation also shows performance
gains in both, the cache’s miss rate and the application’s run-time. Miss rate
improvements and run-time reductions can be achieved by selecting an appro-
priate cache configuration through the software accessible cache configuration
register. At last, the potential of the adaptive architecture in a multi-core sce-
nario was shown by simulating a dual-core use case with adaptive cache archi-
tectures and running two different benchmarks in two CPUs. The results showed
a 2.8% improvement compared to the static case, as well as the feasibility of the
adaptive architecture to reallocate tiles in a multi-core environment. Overall,
this evaluation shows the importance of allowing the application developer to
control hardware parameters of the underlying architecture to boost the appli-
cations performance.

For future work, the adaptive architecture will be expanded to a larger multi-
core scenario running on the FPGA hardware, and tested using well established
benchmarks for performance evaluations. Further, we will evaluate the power
consumption as an important criterion for design decisions. Such an analysis
would furthermore help to decide on which granularity cache size and associa-
tivity adjustments are sensible.

Acknowledgment. This research work is supported by the German Research Foun-
dation (DFG) within the Transregio SFB Invasive Computing (DFG SFB/TRR89).



Adaptive Cache Structures 99

References

1. Albonesi, D.: Selective cache ways: on-demand cache resource allocation. In:
MICRO-32, Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture, pp. 248–259 (1999)

2. Gordon-Ross, A., Lau, J., Calder, B.: Phase-based cache reconfiguration for a highly-
configurable two-level cache hierarchy. In: Proceedings of the 18th ACM Great Lakes
Symposium on VLSI - GLSVLSI 2008, pp. 379–382 (2008)

3. Malik, A., Moyer, B., Cermak, D.: A low power unified cache architecture providing
power and performance flexibility (poster session). In: Proceedings of the Inter-
national Symposium on Low Power Electronics and Design - ISLPED 2000, pp.
241–243 (2000)

4. Nowak, F., Buchty, R., Karl, W.: A run-time reconfigurable cache architecture. Adv.
Parallel Comput. 15, 757–766 (2008)

5. Prokop, H.: Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute of
Technology (1999)

6. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobb’s J. 30, 202–210 (2005)

7. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schröder-Preikschat,
W., Snelting, G.: Invasive computing: an overview. In: Hübner, M., Becker, J. (eds.)
Multiprocessor System-on-Chip, pp. 241–268. Springer, New York (2011)

8. Tradowsky, C., Thoma, F., Hubner, M., Becker, J.: Lisparc: using an architec-
ture description language approach for modelling an adaptive processor microarchi-
tecture. In: 7th IEEE International Symposium on Industrial Embedded Systems
(SIES), pp. 279–282 (2012)


	Adaptive Cache Structures
	1 Introduction
	2 Designing Adaptive Cache Structures
	2.1 Basic Cache Model
	2.2 Modularization
	2.3 Cache Controller
	2.4 Cache Memory

	3 Adaptation
	3.1 Configuration Register
	3.2 Cache Memory

	4 Evaluation of Adaptive Cache Structures
	4.1 Hardware Resources Evaluation
	4.2 Performance Evaluation
	4.3 Potential of the Adaptive Cache Architecture in a Multi-core Scenario

	5 Conclusion and Future Work
	References


