
Reducing Energy Consumption of Data
Transfers Using Runtime Data Type Conversion

Michael Bromberger1,2(B), Vincent Heuveline2, and Wolfgang Karl1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{bromberger,karl}@kit.edu, michael.bromberger@h-its.org

2 Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
vincent.heuveline@h-its.org

Abstract. Reducing the energy consumption of today’s microproces-
sors, for which Approximate Computing (AC) is a promising candidate,
is an important and challenging task. AC comprises approaches to relax
the accuracy of computations in order to achieve a trade-off between
energy efficiency and an acceptable remaining quality of the results.
A high amount of energy is consumed by memory transfers. Therefore,
we present an approach in this paper that saves energy by converting
data before transferring it to memory. We introduce a static approach
that can reduce the energy up to a factor of 4. We evaluate different
methods to get the highest possible accuracy for a given data width.
Extending this approach by a dynamic selection of different storage data
types improves the accuracy for a 2D Fast Fourier Transformation by
two orders of magnitude compared to the static approach using 16-bit
data types, while still retaining the reduction in energy consumption.
First results show that such a conversion unit can be integrated in low
power processors with negligible impact on the power consumption.

Keywords: Energy reduction · Approximate computing · Data type
conversion

1 Introduction

Due to the slowing of Moore’s law as Dennard scaling reaches the physical litho-
graphic limits at around 5 nm, new methods of increasing performance per watt
will have to be found [4]. One possible answer is to support specialized hard-
ware for particular applications, but this specialization results in so-called “dark
silicon”, i.e. silicon that is not used in all use-cases and presents a fixed cost
overhead in such cases. Reducing the energy consumption is essential in low
power processors and embedded systems where the battery or heat dissipation
are often critical limitations. Memory accesses consume a considerable part of
the energy in today’s computing systems. An integer operation is 1,000× less
energy consuming than an access to a memory like DRAM [10]. The idea of
approximate computing (AC) has been suggested as a possible means of increas-
ing performance per watt across the gamut of computing systems. AC relaxes
c© Springer International Publishing Switzerland 2016
F. Hannig et al. (Eds.): ARCS 2016, LNCS 9637, pp. 239–250, 2016.
DOI: 10.1007/978-3-319-30695-7 18

240 M. Bromberger et al.

the accuracy of results produced by hard- and software in order to get an energy-
efficient execution. Many algorithms from machine learning or image processing
have an inherent resilience to such inexact operations.

We consider different approaches to reduce the amount of data that has to
be transferred to memory, while getting the best achievable accuracy in each
case. Our focus lies on conversion methods for a single data type rather than a
bunch of data, because we want to improve energy efficiency of loads and stores
inside a processor. Therefore, the first contribution of the paper is an evaluation
of different conversion methods. A dynamic selection of data types provides a
higher accuracy of results, while retaining the benefit of reducing the energy
consumption. Secondly, a detailed measurement of the energy consumption of
different embedded system platforms is given. We use memory footprints based
on converted data for the measurements. Finally, we give preliminary results of
a design that implements our results.

2 Related Work

Current approaches often focus on reducing the accuracy of hardware execution
units [2]. An approximation of a software function with a certain number of
inputs and outputs is given by a trained neural network (NN) [7]. Since software
execution of a NN is slow, hardware support like a neural network processing
unit is required. AC tools exist that lower the burden of programmers to decide
which parts of an application can be executed approximately [5]. Hardware mem-
oization techniques approximate mathematical and trigonometric functions [6]
as well as fuzzy floating point (FP) operations [1]. Furthermore, there exist self-
tuning off-line approaches, which use different AC kernels running on a GPU. Such
approaches find the best available performance for a given result quality [16].

However, a considerable amount of energy is consumed by memories and
memory transfers. Therefore, Sampson et al. have introduced EnerJ which uses
approximated data types on a high level of abstraction [17]. Increasing the refresh
cycle of certain DRAM memory regions raises the probability to read incorrect
data, but reduces energy consumption [11,12]. Cache misses caused by loads are
very expensive in terms of latency and energy consumption in modern architec-
tures. Instead of loading a value that is missing in the cache, an approximated
value is generated according to a history of loaded values [19]. Such approx-
imated values have minor impact on the accuracy of output results for some
applications. There exist approaches to store approximated data using Solid
State Disks (SSD) [18] and Phase-Change Memory (PCM) [14]. Compressing
data before storing it into memory reduces the overhead for transferring the data
and increases the amount of data that fits into a certain memory region [20].
Block FP formats, in which several mantissae use the same exponent, also reduce
the amount of data. Our approach reduces the size of data on a single data type
level where we only consider information given by the current data type. After-
wards, several data types can be collected and compressed by above approaches.
Such an approach requires domain-specific user knowledge. This issue has been
addressed by Baek et al. [3].

Reducing Energy Consumption of Data Transfers 241

3 Consideration of Different Conversion Methods

In this section, we evaluate which conversion methods are suitable for different
algorithms. We used Octave to get a rapid prototype implementation. A statis-
tical metric like the Mean Square Error (MSE) is sufficient enough for getting a
deeper understanding of how different conversion methods influence the accuracy
of results.

MSE(xi, yi) =
1
n

n∑

i=0

(xi − yi)2,

whereby xi are results of a 64 bit FP implementation and yi results of an approx-
imated execution.

Instead of using an objective metric like MSE to evaluate the quality, several
models exist, i.e. a mathematical formulation, which return a numerical value for
a subjective quality. Task performance analysis is an approach that correlates
the image quality to the success of a following operation on the data of the image.
For example, the image quality of a radiography is good enough if a radiologist
is able to see the bone fraction. Therefore, the required accuracy of the results
depends strongly on the task that should be fulfilled by the application. In
the absence of a general model that gets knowledge about the needed accuracy,
knowledge from domain experts is required. This paper does not provide hints to
the required accuracy of results. Instead, we give a domain expert the possibility
to easily adapt the accuracy of the results of his application to get a performance
improvement as well as an energy-efficient execution.

In the following, we use an IEEE 754-based 64-bit floating point (FP64) unit
as execution unit. Internal architecture registers can store values in 64 bit. Our
approach is similar to extending the accuracy to 80 bits inside a FP unit like
in x86 architectures. This approach reduces errors, because internal calculations
are performed with higher accuracy. But our approach also further reduces the
overhead for transferring data from FP registers to memory in terms of energy
and transfer time. Furthermore, such an approach avoids having FP units for
different data types, which results in so-called dark silicon because not all units
can be used at the same time. We do not consider additionally required data
like loop counters, though such counters can be represented as FP values.

Methods which we consider for converting a FP64 value into one with 32, 21
or 16 bits are summarized in Table 1. The first method (opcode 0, op0) converts
a FP64 value to one with less bits according to the IEEE-754 standard. Due to
the absence of a FP21 data type, we assume 1 sign bit, 5 bits for the exponent
and 15 bits for the mantissa. We investigate if such a data type is useful. The
approach is to pack three FP21 values into a 64 bit word before transferring it
to memory. It is tolerable for some applications to set values smaller than 1 to 0.
Therefore, we can increase the data range by a factor of 2 for all FP data types,
because we do not have to consider negative superscripts. This is implemented for
opcode 1. Opcode 2 and 3 convert a FP64 value to a fixed point representation
QX.Y or Q.Y, where X is the number of bits for the integer and Y for the

242 M. Bromberger et al.

Table 1. Methods for converting a FP64 value to one with lower accuracy. Signed
numbers are represented by a sign bit.

Opcode (op) Conversion method Applications

0 IEEE-754 standard High data range

1 Values < 1 set to zero Small numbers not needed

2 Unsigned/signed QX.Y Small data range

3 Unsigned/signed Q0.Y Small data range (adapting the
scale value improves accuracy)

fractional part. The conversion is achieved by dividing the FP64 value by an
adaptable scale value. Lines named with FP16, FP21, and FP32 in the following
figures are based on opcode 0, lines with Q8.8, Q8.13 and Q8.24 are based on
opcode 2, and Q.16, Q.21, and Q.32 are based on opcode 3. Opcode 1 was
not used for the first two benchmarks. Additionally, an approach that changes
dynamically between 16, 21 and 32 bit conversion data types is considered and
corresponding lines are named with dynamic data type (dyn dt (th=j), where j
specifies a threshold). This threshold can be set by a programmer and specifies
the maximum absolute error allowed for a conversion into a certain data type.
The hardware itself, i.e. the conversion unit, checks whether a conversion into
a lower data type is below this given threshold j or not. The conversion unit
uses the smallest data type for which the resulting conversion error is less than
the given threshold. A programmer can adapt the threshold during run-time, in
order to trade off accuracy against energy consumption. This is useful if some
parts of an algorithm need more accurate calculations. A line named with Full
FP32 means that all internal operations are executed in FP32 and not FP64.
Due to the absence of a FP16 execution unit in the test system, we do not
consider a Full FP16 execution.

The first benchmark is a 2D convolution

I
′
[x, y] = I[x, y] ∗ f [x, y] =

k/2∑

m=−k/2

k/2∑

n=−k/2

I[x, y] · f [m − x, n − y],

where I is the original image, f is a k × k 2D Gaussian filter and I
′

is the de-
blurred output image. The 2D convolution is executed up to 10 times, where the
pixels of image I

′
are converted and used for following iterations. Pixel intensities

are chosen randomly between 0 and 255 for a input image of size 1024×1024.
We specify for the first test that the values of a kernel are not preconverted

before executing the first iteration and that the register set is large enough
to store all kernel values (results see Fig. 1). Instead of a preconversion where
values of a kernel are stored as converted values in the memory and have to be
deconverted before transferring to the registers, kernel values are transferred as
FP64 values to the FP register set. As mentioned above, image values are 8 bit
integers, hence converting the image data is unnecessary. Therefore, the output
of the first iteration is equal to a FP64 execution (MSE = 0.0). The MSE

Reducing Energy Consumption of Data Transfers 243

Fig. 1. MSE values of 2D convolutions using different conversion methods without
preconversion. As input an image of size 1024×1024 with random values was used.

of a Full FP32 execution is slightly higher than an execution using Q8.13 or
Q.21, but about two orders of magnitude higher than our FP32 based approach
and even seven orders of magnitude higher than Q8.24 and Q.32. Hence, our
approach results in a much smaller MSE than a Full FP32 execution, but has
the same factor of data reduction. For the dynamic approach dyn dt (th=0.01),
the threshold 0.01 implies a usage of more FP16 data types, hence the MSE is
closer to the MSE of the FP16 execution. More FP32 data types are used in the
case of dyn dt (th=0.0001), therefore the resulting MSE is closer to the MSE of
the FP32 execution. For the second case, the kernel is preconverted into different
conversion formats (see Fig. 2). The fixed point conversion formats (QY.X and
Q.Y) are less accurate in terms of MSE than their FP relatives. According to
the results in Figs. 1 and 2, higher accuracy is achieved in the first case. Hence,
it turns out that for a higher accuracy of results frequently used data like the
kernel values should be stored into the register set without conversion.

The second benchmark is a 2D Richardson-Lucy Deconvolution:

u(t+1) = u(t) ·
(g

u(t) ∗ K
∗ K̂

)
,

where u(t) is the latent image, g the observed image, K a point spread function
(PSF) and K̂ the flipped PSF. The Conversion method for the PSF values is
fixed to FP16, FP21, and FP32 respectively (opcode 0). Conversion methods
used for values of the intermediate results as well as the output image are shown
in Fig. 3. Due to the higher data range of the algorithm, we have to adapt the

244 M. Bromberger et al.

Fig. 2. MSE values of 2D convolutions using different conversion methods with pre-
conversion. As input an image of size 1024×1024 with random values was used.

QX.Y conversion methods to Q.16, Q.21, Q.32, Q11.5, Q11.10, and Q11.21.
Again the MSE of a Full FP32 execution is higher than our FP32 approach.
The FP approaches (FP16, FP21, FP32) have a smaller error than their fixed-
point relatives (Q.16, Q.21, Q.32, Q11.5, Q11.10, and Q11.21). With the dynamic
approach (dyn dt (th=j)) we can adapt the accuracy between FP16 and FP32
by adapting the threshold.

A 2D Fast Fourier Transformation1 (FFT) is the last benchmark. As input
we use an image with a size of 1024×1024, where the pixel intensities are chosen
randomly between 0 and 255. A 2D FFT is done by row-wise 1D FFTs followed
by column-wise 1D FFTs. The formula

X(n) =
N−1∑

k=0

x(k)e−jk2π n
N , n = 0...N − 1

is a forward FFT, where x(k) is a complex series with N samples. We consider
opcode 0, opcode 1, opcode 3, and the dynamic approach as conversion methods.
The maximum absolute value during an execution has to be used as scale value
for opcode 3. We also consider opcode 3 where we adapt the scale value by
multiplying with 2 after each FFT butterfly beginning with 256.
1 Code is based on the implementation of Paul Bourke http://paulbourke.net/

miscellaneous/dft/.

http://paulbourke.net/miscellaneous/dft/
http://paulbourke.net/miscellaneous/dft/

Reducing Energy Consumption of Data Transfers 245

Fig. 3. MSE values for a 1024×1024 2D Richardson Lucy Deconvolution using different
conversion methods for intermediate as well as the output image. The kernel values
(psf) are converted using FP16, FP21 and FP32 (opcode 0), respectively.

The MSE and the factor of reduced data (RD) is shown in Table 2. Most of
the static approaches using either 16 or 21 bits are assumedly not applicable in
real applications. This is caused by the large codomain of the FFT algorithm.
The only exception is opcode 1 using a 21 bit data type. A Full FP32 execution
has a higher MSE compared to FP32. Formats based on opcode 1 enable the
reduction of the MSE compared to FP16 and FP21. Adapting the scale value
for Q.32 results in a smaller MSE compared to FP32. Compared to a Full FP32,
the dynamic approach with a threshold of 0.1 has roughly the same MSE, but
reduces the amount of data by a factor of about 3. Hence, the dynamic approach
is assumedly applicable for all used thresholds. We integrate the 2D FFT into
an algorithm that reconstructs an image taken by a lens-free microscopy (see
Table 3) [9]. The so-called spectral method is used to reconstruct holography
images acquired by lens-free microscopy. Using FP32 yields to MSE of 0.0. The
dynamic approach can reduce the MSE by two orders of magnitude while slightly
decreasing the reduction of data transfers compared to FP16.

According to above benchmarks, it is sufficient for a conversion unit to have
the conversion methods with opcode 0/1, because they achieve the best results
in terms of MSE. It also turned out that Q.Y yields a lower MSE for algorithms
with a small data range.

246 M. Bromberger et al.

Table 2. MSE values for 2D FFTs using different conversion methods and an image
of size 1024×1024 with random values.

Full FP32 FP (op 0) FP (op 1) Q.Y (op 3) Q.Y adapt. (op3)

MSE RD MSE RD MSE RD MSE RD MSE RD

16 bit - - ∞ 4 1.60E+05 4 2.00E+10 4 9.87E+07 4

21 bit - - ∞ 3 2.84E+02 3 3.66E+09 3 9.53E+04 3

32 bit 1.63E+02 2 1.67E-04 2 - 2 9.02E+02 2 2.27E−05 2

Dynamic approach

Threshhold 1E00 1E-01 1E-03 1E-05 1E-07

MSE RD MSE RD MSE RD MSE RD MSE RD

1.16E+03 3.65 1.85E+02 3.14 2.75E-02 2.34 1.67E-04 2.21 1.67E−04 2.21

Table 3. MSE values for the spectral method that reconstructs holography images
using the above different FFT methods.

FP16 (Op 0) FP21 (Op 0) FP32 (Op 0)

MSE RD MSE RD MSE RD

4.93E−02 4 4.78E−02 3 0.00E+00 2

Dynamic approach

Thesh = 1 Thesh = .5 Thresh = .1 Thresh = .01

MSE RD MSE RD MSE RD MSE RD

2.16E−04 3.94 1.63E−04 3.91 8.00E−05 3.77 1.40E−05 3.35

4 Measuring Energy Consumption

After the evaluation of promising conversion methods, we extract memory foot-
prints of the 2D FFT benchmark that are created by using different FP conver-
sion methods. Due to the fact that FP21 is not supported in current computing
environments, we consider FP16, FP32 and FP64. The function memcpy, which is
part of the standard C library, is used to transfer data according to the 2D FFT
extracted memory footprints. We used memcpy, because we are only interested in
the energy consumption of the data transfers. The used data is the result of a 2D
FFT of a random image. Platforms used for the measurements are the Odriod-
XU [8], the Parallela board [15], and the Myriad 1 development board [13]. An
overview of the integrated compute units in each platform is given in Table 4.
We selected these platforms because reducing energy consumption is especially
important in embedded systems.

Table 4. Overview about the considered platforms.

Platform Host processor [Technology] Coprocessor [Technology]

Odriod-XU Exsynos5 Octa (5410) [28 nm] PowerVR SGX544MP3 GPU [28 nm]

Parallela Zynq-7010 [28 nm] E16G301 [65 nm]

Myriad 1 Leon 3 [65 nm] SHAVEs [65 nm]

Reducing Energy Consumption of Data Transfers 247

The Odriod-XU includes a Samsung Exsynos Octa processor that is based
on the ARM big.LITTLE architecture and integrates a Cortex-A15 and a
Cortex-A7. An operating system can switch between both clusters depending
on the workload and the required performance, but the clusters cannot be used
concurrently. We used a script to measure the energy consumption of the Odriod-
XU. The script reads the values of different sensors for voltage, current, and
power of the A7, A15 and the main memory. However, such a script influences
the measurement. Therefore, we plan to use an external measuring setup using
a GPIO pin of the Odriod-XU in the future. POSIX Threads (Pthreads) enable
the usage of all four available cores. It is possible to decide on which cluster the
benchmark is executed by specifying the frequency of the Exsynos5. We used an
infinite loop around the memcpy calls to get a stable value of the electric power.
We also measured the execution time in a different run.

The Parallela board, which includes a Dual-core ARM A9 (600 MHz) and
a 16-core Epiphany (666 MHz), was developed for an energy efficient execution
of high performance applications. We used the Odriod Smart Power, which is a
deployable power supply to specify a fixed voltage and to measure the current
as well as the electric power. The Odriod Smart Power measures the values
for the entire board. For the first test, we used Pthreads again for starting two
threads on the A9 and did not consider the energy consumption of the Epiphany.
We measured the execution time in a second run and calculated the energy
consumption. To measure the electric power of the A9 host processor together
with the Epiphany, the A9 calls all 16 cores of the Epiphany. The 2D FFT data
is transferred from the host memory to the local memory by Direct Memory
Access (DMA). On each Epiphany core, memcpy transfers data to another region
in the local memory of the core.

The Myriad I combines a Leon processor with eight Streaming Hybrid Archi-
tecture Vector Engines (SHAVEs). To measure the electric power of the Myriad
1, power cables are connected directly to supply the processor with electrical
energy. A switched-mode power supply together with an ampere-meter enable
to specify the voltage and to measure the current. To transfer the memory foot-
prints inside the host memory, the function memcpy is used on the Leon processor.
In the second test, eight DMA units, that are assigned to each SHAVEs, transfer
data to the local memory. All SHAVES are used to transfer data inside the local
memory according to the memory footprints.

The results of all setups are summarized in Table 5. Columns named with
Reduction specify the factor of reduction in energy consumption compared
to FP64. Energy consumptions are calculated by multiplying the execution time
with the measured electric power. Our expectation is that a reduction of the
amount of data, that has to be transferred, results in a reduction of the energy
consumption of the same factor. According to the measurements, the expectation
turned out to be true. The only exception is the dual-core A9 on the Parallela
board, which is presumably caused by the underlying inefficient memcpy imple-
mentation.

248 M. Bromberger et al.

Table 5. Measured energy consumption for a 2D FFT memory footprint.

Size Time Power Energy Reduction Time Power Energy Reduction
[MB] [ms] [W] [mJ] [ms] [W] [mJ]

Odroid-XU

A15 & Global memory A7 & Global memory

FP64 16 5.503 4.849 26.682 1.0 11.226 0.702 7.881 1

FP32 8 2.588 4.875 12.618 2.1 5.104 0.724 3.695 2.1

FP16 4 1.185 4.962 5.880 4.5 2.503 0.729 1.825 4.3

Parallela board

ARM A9 ARM A9 & Epiphany

FP64 16 39.836 5.767 229.734 1.0 16513.133 6.179 102034.649 1.0

FP32 8 26.174 5.828 152.542 1.5 8257.387 6.026 49759.014 2.1

FP16 4 12.534 5.805 72.760 3.2 4135.034 4.034 16680.727 6.1

Myriad I board

Leon 3 Leon 3 & SHAVES

FP64 16 1826.062 0.190 346.952 1.0 168.571 0.499 84.117 1.0

FP32 8 910.723 0.187 170.305 2.0 83.152 0.482 40.079 2.1

FP16 4 456.516 0.188 85.825 4.0 40.162 0.478 19.197 4.4

5 Preliminary Design of a Conversion Unit

The Conversion Unit (CU) converts a FP64 value into a data type with fewer bits
before storing it to memory (see Fig. 4). While reading the data, the value is con-
verted back to FP64. The decision about the accuracy of the stored data is made
statically using a conversion instruction. As a first step to realize such a CU, we
described the Converter and Deconverter in Verilog. The Converter can convert
a FP64 value to a FP16 or a FP32 value. This is realized by adapting the exponent
part of the type and selecting the leading 10 or 23 bits of the mantissa. Instead
of truncation, the round to nearest method is used for rounding. A FP64 value
can also be converted to a FP format where no negative exponents are consid-
ered (opcode 1). If the exponent part of a FP64 value is smaller than the bias,
the exponent part is set to 0. If the bias is equal to the exponent part, the expo-
nent part is set to 1. 2 is added to the FP64 exponent for all other cases. The
Q.16 and Q.32 data types are calculated by scaling the FP64 value. Such a scaling
is only allowed for values xi = 2i, where i = 0, 1, 2.... Therefore, the scaling is

Fig. 4. Structure of the conversion unit.

Reducing Energy Consumption of Data Transfers 249

performed by subtracting i from the exponent part. This avoids the use of a FP
divider which increases the electric power as well as the latency of the unit. Each
conversion is performed in a clock cycle. The Deconverter converts a conversion
data type back to a FP64 value. Deconverting a FP value is always exact. As we
restrict the factors to be a power of 2 for the scaling, the deconversion from a fixed
point to the 64 bit floating point format is also exact. Using the Synopsis tools,
we got an estimation about the electric power and the area of the units. We use
the TSMC 28 nm HPM High Speed library for the synthesis. The results are sum-
marized in Table 6. Compared to the measured values in Table 5, these units will
not significantly increase the energy consumption. Supporting the dynamic app-
roach will require an Address Translation Unit (ATU), as well as storing further
information about the conversion method that was used for a specific data type.
The ATU will avoid fragmentation inside memory. An Error Check Unit (ECU)
decides, which conversion method is used depending on the error that will occur
after the conversion. We will design and implement both units in future.

Table 6. Area and estimated power for the Converter and the Deconverter.

500 MHz 600 MHz

Area Power Area Power

[µm2] [µW] [µm2] [µW]

Converter 1958.681 336.900 2187.844 435.100

Deconverter 1199.812 188.300 1214.325 225.800

6 Conclusion

Memory accesses are expensive in terms of energy consumption and latency.
Image processing applications can tolerate an execution on inaccurate hardware.
Therefore, we presented an approach in this paper for a conversion unit (CU),
that could be integrated in today’s low power processors. Such a unit offers a sta-
tic and a dynamic conversion of data types before the transfer to memory, which
yields a reduction of the energy consumption for data transfers by a factor up to
about 4. Using the dynamic approach, the accuracy of the results produced by
a 2D FFT is improved by two orders of magnitude, while retaining the potential
gain in the reduction of energy consumption. Dealing with different thresholds
enables to trade off accuracy against energy consumption. In the future, we will
integrate the implemented units into an existing processor design. Furthermore,
we want to implement a CU that also supports the dynamic approach. Addition-
ally, we will also design a memory architecture that enables an efficient transfer
of data types for the dynamic approach.

Acknowledgements. The work was mainly performed during a HiPEAC internship
at Movidius, Ireland. Special thanks to Fergal Connor and David Moloney. Additionally,
this work was also funded by the Klaus Tschira Foundation.

250 M. Bromberger et al.

References

1. Alvarez, C., Corbal, J., Valero, M.: Fuzzy memoization for floating-point multime-
dia applications. IEEE Trans. Comput. 54(7), 922–927 (2005)

2. Avinash, L., Enz, C.C., Palem, K.V., Piguet, C.: Designing energy-efficient arith-
metic operators using inexact computing. J. Low Power Electron. 9(1), 141–153
(2013)

3. Baek, W., Chilimbi, T.M.: Green: a framework for supporting energy-conscious
programming using controlled approximation. In: ACM Sigplan Notices, vol. 45,
pp. 198–209. ACM (2010)

4. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5),
67–77 (2011)

5. Chippa, V., Chakradhar, S., Roy, K., Raghunathan, A.: Analysis and characteri-
zation of inherent application resilience for approximate computing. In: DAC, pp.
1–9, May 2013

6. Citron, D., Feitelson, D.G.: Hardware Memoization of Mathematical and Trigono-
metric Functions. Hebrew University of Jerusalem, Technical report (2000)

7. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for
general-purpose approximate programs. In: MICRO, pp. 449–460 (2012)

8. Hardkernel.: Odriod-XU. http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu.
Accessed 03 May 2015

9. Hennelly, B., Kelly, D., Pandey, N., Monaghan, D.: Zooming algorithms for digital
holography. J. Phys: Conf. Ser. 206(1), 012027 (2010)

10. Horowitz, M.: Computing energy problem: and what we can do about it. In:
Keynote, International Solid-State Circuits Conference, February 2014. https://
www.futurearchs.org/sites/default/files/horowitz-ComputingEnergyISSCC.pdf.
Accessed 03 May 2015

11. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.: Flikker: saving DRAM refresh-
power through critical data partitioning. In: ASPLOS, March 2011

12. Lucas, J., Alvarez-Mesa, M., Andersch, M., Juurlink, B.: Sparkk: Quality-scalable
approximate storage in DRAM. In: The Memory Forum, June 2014

13. Movidius Ltd.: Myriad 1. http://www.hotchips.org/wp-content/uploads/hc
archives/hc23/HC23.19.8-Video/HC23.19.811-1TOPS-Media-Moloney-Movidius.
pdf. Accessed 03 May 2015

14. Nelson, J., Sampson, A., Ceze, L.: Dense approximate storage in phase-change
memory. In: ASPLOS (2011)

15. Parallela Project: Parallela board. http://www.parallella.org/board/. Accessed 03
May 2015

16. Samadi, M., Lee, J., Jamshidi, D.A., Hormati, A., Mahlke, S.: SAGE: self-tuning
approximation for graphics engines. In: MICRO, pp. 13–24 (2013)

17. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:
Enerj: approximate data types for safe and general low-power computation. In:
ACM SIGPLAN Notices, vol. 46, pp. 164–174. ACM (2011)

18. Sampson, A., Nelson, J., Strauss, K., Ceze, L.: Approximate Storage in Solid-state
Memories. In: Proceedings of the MICRO, MICRO-46, pp. 25–36. ACM, New York
(2013)

19. San Miguel, J., Enright Jerger, N.: Load value approximation: approaching the
ideal memory access latency. In: WACAS (2014)

20. Sardashti, S., Wood, D.A.: Decoupled compressed cache: exploiting spatial locality
for energy-optimized compressed caching. In: MICRO, pp. 62–73 (2013)

http://odroid.com/dokuwiki/doku.php?id=en: odroid-xu
https://www.futurearchs.org/sites/default/files/horowitz-ComputingEnergyISSCC.pdf
https://www.futurearchs.org/sites/default/files/horowitz-ComputingEnergyISSCC.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.8-Video/HC23.19.811-1TOPS-Media-Moloney-Movidius.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.8-Video/HC23.19.811-1TOPS-Media-Moloney-Movidius.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.8-Video/HC23.19.811-1TOPS-Media-Moloney-Movidius.pdf
http://www.parallella.org/board/

	Reducing Energy Consumption of Data Transfers Using Runtime Data Type Conversion
	1 Introduction
	2 Related Work
	3 Consideration of Different Conversion Methods
	4 Measuring Energy Consumption
	5 Preliminary Design of a Conversion Unit
	6 Conclusion
	References

