
Supporting Scholarly Search with Keyqueries

Matthias Hagen(B), Anna Beyer, Tim Gollub, Kristof Komlossy,
and Benno Stein

Bauhaus-Universität Weimar, Weimar, Germany
{matthias.hagen,anna.beyer,tim.gollub,kristof.komlossy,

benno.stein}@uni-weimar.de

Abstract. We deal with a problem faced by scholars every day: iden-
tifying relevant papers on a given topic. In particular, we focus on the
scenario where a scholar can come up with a few papers (e.g., suggested
by a colleague) and then wants to find “all” the other related publica-
tions. Our proposed approach to the problem is based on the concept of
keyqueries: formulating keyqueries from the input papers and suggesting
the top results as candidates of related work.

We compare our approach to three baselines that also represent the
different ways of how humans search for related work: (1) a citation-
graph-based approach focusing on cited and citing papers, (2) a method
formulating queries from the paper abstracts, and (3) the “related
articles”-functionality of Google Scholar. The effectiveness is measured in
a Cranfield-style user study on a corpus of 200,000 papers. The results
indicate that our novel keyquery-based approach is on a par with the
strong citation and Google Scholar baselines but with substantially dif-
ferent results—a combination of the different approaches yields the best
results.

1 Introduction

We tackle the problem of automatically supporting a scholar’s search for related
work. Given a research task, the term “related work” refers to papers on similar
topics. Scholars collect and analyze related work in order to get a better under-
standing of their research problem and already existing approaches; a survey of
the strengths and weaknesses of related work forms the basis for placing new
ideas into context. In this paper, we show how the concept of keyqueries [9] can
be employed to support search for related work.

Search engines like Google Scholar, Semantic Scholar, Microsoft Academic
Search, or CiteSeerX provide a keyword-based access to their paper collections.
However, since researchers usually have limited knowledge when they start to
investigate a new topic, it is difficult to find all the related papers with one
or two queries against such interfaces. Keyword queries help to identify a few
promising initial papers, but to find further papers, researchers usually bootstrap
their search from information in these initial papers.

Every paper provides two types of information useful for finding related work:
content and metadata. Content (title, abstract, body text) is a good resource
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for search keywords. Metadata (bibliographic records, references) can be used
to follow links to referenced papers. Recursively exploring the literature via
queries or citations to and from some initial papers is common practice, although
rather time-consuming. Support is provided by methods that automate the above
procedure: graph-based methods exploit the citation network and content-based
methods can generate queries.

Recently, Gollub et al. proposed the concept of keyqueries [9]: A keyquery
for a document is a query that returns the document in the top result ranks
against a (reference) search engine. Assuming that the top results returned by a
document’s keyqueries cover similar topics, we view the concept of keyqueries as
promising for identifying related papers. Moreover, we believe that keyqueries
can identify papers that graph-based methods might miss since the citation
graph tends to be noisy and sparse [4]. Based on these assumptions, we address
the research questions of whether keyqueries are useful for identifying related
work and whether they complement other standard approaches.

Our contributions are threefold: (1) We develop a keyquery-based method
identifying related work. (2) For the evaluation, we implement three strong
baselines representing standard approaches: the graph-based Sofia Search by
Golshan et al. [10], the query-based method by Nascimento et al. [24], and the
“related articles”-feature of Google Scholar. (3) We conduct a Cranfield-style
user study to compare the different approaches.

2 Related Work

Methods for identifying related work can be divided into citation-graph-based
and content-based approaches. Only few of the content-based methods use queries
such that we also investigate query formulation techniques for similar tasks.

2.1 Identifying Related Research Papers

Many variants of related work search are known: literature search, citation rec-
ommendation, research paper recommendation, etc. Some try to find references
for a written text, others predict further “necessary” references given a subset of
a paper’s references. In our setting, the task is to find related papers according
to a given set of papers. This represents the everyday use case of enlarging an
initial related work research.

Related Work Search
Given: An input list I = 〈d1, d2, . . . , dn〉 of papers
Task: Find an output list O = 〈d′

1, d
′
2, . . . , d

′
m〉 of related papers.

Given the initial knowledge of a scholar specified as the list I of input papers
(could also be just one), most approaches to Related Work Search retrieve
candidate papers in a first step. In a second step, the candidates are ranked
to generate the final output list O. More than 80 approaches are known for the
problem of identifying related papers [1]. We concentrate on the recent and better
performing approaches and classify them by the employed candidate retrieval
method: content and/or citations can be used.
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Citation-Graph-Based Methods. The network of citations forms the citation
graph. If d cites d′, we call d a citing paper of d′ and d′ a cited paper of d. Several
approaches apply collaborative filtering (CF) using the adjacency matrix of the
citation graph as the “rating” matrix [4,28]. A limitation of CF is that it has
problems for poorly connected papers, known as the “cold-start-problem” [31].
Ekstrand et al. thus explore the additional application of link ranking algorithms
like PageRank [6] that can also be applied stand-alone [19]. Since the citation
graph tends to be noisy and sparse [4], by design, graph-based approaches favor
frequently cited papers [31]. Methods that only use the citation graph easily miss
papers that are rarely cited (e.g., very recent ones).

As a graph-based baseline, we select Sofia Search [10]. It very closely mimics
the way how humans would identify candidates from the citation graph. Starting
from an initial set of papers, the approach follows all links to cited and citing
papers up to a given recursion depth or until a desired number of candidates is
found. Note that this procedure conforms with CF methods and link ranking to
some extent. Papers citing similar papers are linked via the cited papers, such
that the CF candidates are included. Setting the recursion depth large enough,
also all interesting results from PageRank random walk paths will be found—
except the low-probability “clicks” on some random non-linked papers. Thus,
Sofia Search forms a good representative of graph-based approaches.

Content-Based Techniques. Content-based approaches utilize the paper texts
to find related work. Translation models are used to compute the probabil-
ity of citing a paper based on citation contexts [15], the content of potential
references [21], or via an embedding model [30]. Similar ideas are based on
topic models: LDA was combined with PLSA to build a topic model from texts
and citations [23]. Later improvements use only citation contexts instead of full
texts [17,29]. Drawbacks of translation- and topic-model-based approaches are
the long training phase and that re-training is necessary whenever papers dealing
with new topics are added to the collection. Besides such efficiency aspects, topic
and translation models do not resemble human behavior, and they cannot be
used with the keyword query interfaces of existing scholarly search engines. We
thus choose a query-based baseline to represent the content-based approaches.

While there are complete retrieval models for recommending papers for a
given abstract using metadata and content-based features [3], we prefer a stan-
dard keyword query baseline since it can be used against any scholarly search
interface. Nascimento et al. [24] propose such a method: given a paper, ten word
bigrams are extracted from the title and the abstract and submitted as sepa-
rate queries. Note that queries containing only two words are very general and
return a large number of results. Still, Nascimento et al.’s idea is close to human
behavior and forms a good content-based baseline.

Combined Approaches. Several methods combine citations and content. For
instance, by querying with sentences from a given paper and then following
references in the search results [13,14]. However, submitting complete sen-
tences leads to very specific queries returning very few results only; a drawback
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we will avoid in our query formulation. Other combined approaches use topic
models for citation weighting [7] or overcoming the cold-start-problem of papers
without ratings in online reference management communities like CiteULike or
Mendeley [31]. The CiteSight system [20] is supposed to recommend references
while writing a manuscript using both graph- and content-based features to rec-
ommend papers the author cited in the past, or cited papers from references the
author already added. Since our use case is different and considering only cited
papers appears very restrictive, we do not employ this approach either.

As a representative of the combined approaches, we use Google Scholar’s
feature “related articles” to form an often used and very strong baseline. Even
though the underlying algorithms are proprietary, it is very reasonable that
content-based features (e.g., text similarity) and citation-based features (e.g.,
number of citations) are combined.

2.2 Query Formulation

Since the existing query techniques for related work search are rather simplis-
tic, we briefly review querying strategies for other problems that inspired our
approach.

There are several query-by-document approaches that derive “fingerprint”
queries for a document in near-duplicate, text reuse, or similarity detec-
tion [2,5,32]. Hagen and Stein [12] further improve these query formulation
strategies trying to satisfy a so-called covering property and the User-over-
Ranking hypothesis [27]. Recently, Gollub et al. also introduced the concept
of keyqueries for describing a document’s content [9]. A query is a keyquery for
a document if it returns the document in the top-ranked results when submitted
to a reference search engine. Instead of just representing a paper by its keyqueries
(as suggested by Gollub et al.), we further generalize the idea and assume that
the other top-ranked results returned by a paper’s keyqueries are highly related
to the paper. We will adjust the keyquery formulation to our case of poten-
tially more than one input paper and combine it with the covering property of
Hagen and Stein [12] to derive a keyquery cover for the input papers.

3 Baselines and Our Approach

After describing three baselines, we introduce our novel keyquery-based approach
and a straightforward interleaving scheme for combining the results of different
methods.

3.1 Baselines

The baselines are chosen from the literature to mimic the strategies scholars
employ: formulating queries, following citations, and Google Scholar’s “related
articles.”
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As a representative of the content-based strategies, we select a method by
Nascimento et al. [24]. The approach submits as its ten queries the ten distinct
consecutive bigrams of non-stopword terms from a paper’s title and abstract
that have the highest normalized tf -weights. For each query, the top-50 results
are stored. The combined candidate set is then ranked according to the tf -
weighted cosine similarity to the input paper. Note that the candidate retrieval
and ranking are designed for only one input paper. We adapt the process to our
use case by applying the retrieval phase for every input paper individually and
then ranking the combined result sets of all input papers by the highest similarity
to any of the input papers. The reason for taking the highest similarity and not
the average is the better performance in pilot experiments. We also tried to
combine the titles and abstracts to a single meta-paper in case of more than one
input paper. Taking the highest similarity for individual input papers showed
the best performance.

As a representative of the citation graph approaches, we select Sofia Search
[10]. For each input paper d, both cited and citing papers are added to a candi-
date set C. This routine is iterated using the candidates as new starting points
until either enough (or no more) candidates are found or a specified recursion
depth is reached (typically 2 or 3). Again, we rank the candidates by their highest
similarity to any of the input papers.

Our third baseline is formed by Google Scholar’s “related articles” feature.
For a given research paper, a link in the Google Scholar interface yields a list
of about 100 related articles. We collect all these related articles for each input
paper individually, treating the underlying retrieval model as a black box. Since
Google Scholar already presents ranked results, we do not re-rank them. In case
of more than one input paper, we use a simple interleaving strategy: first the
first rank for the first input paper, then the first rank for the second input paper,
then the first rank for the third input paper, etc., then the second rank for the
first input paper, etc. In case that a ranked result is already contained in the
merged list it is not considered again.

3.2 New Keyquery-Based Approach

Our new approach combines the concepts of keyqueries [9] and query covers [12].
Generalizing the original single-document notion [9], a query q is a keyquery for
a document set D with respect to a reference search engine S, if it fulfills the
following conditions: (1) every d ∈ D is in the top-k results returned by S on q,
(2) q has at least l results, and (3) no subset q′ ⊂ q returns every d ∈ D in its
top-k results. The generality of a keyquery is defined by the parameters k and l
(e.g., 10 or 50). We argue that the top-ranked results returned by a keyquery
for D cover topics similar to the documents themselves—rendering keyqueries a
promising concept for identifying related work.

The power set Q = 2W forms the range of queries that can be formulated
from the extracted keyphrases W of a document set D. A query q is said to
cover the terms it contains. The more terms w ∈ W are covered by q, and the
more documents d ∈ D are among q’s top results, the better the query describes
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Algorithm 1. Solving Keyquery Cover

Input: Sets D of documents and W of keywords, keyquery generality parameters
k and l
Output: Set Q of keyqueries covering W

1: for all w ∈ W do
2: if w returns less than l search results then W ← W \ w
3: q ← ∅
4: for all w ∈ W do
5: q ← q ∪ {w}
6: if q is keyquery for all d ∈ D then Q ← Q ∪ {q}, q ← ∅
7: if q �= ∅ then
8: for all w ∈ W do
9: if � ∃ q′ ∈ Q : q′ ⊂ q ∪ {w} then q ← q ∪ {w}

10: if q is keyquery for all d ∈ D then Q ← Q ∪ {q}, break
11: return Q

the topics represented by D’s vocabulary W . The covering property [12] states
that (1) in a proper set Q of queries for W , each term w ∈ W should be contained
in at least one query q ∈ Q (i.e., the queries “cover” W in a set-theoretic sense)
and (2) Q should be simple (i.e., qi �⊆ qj for any qi, qj ∈ Q with i �= j), to avoid
redundancy. The formal problem we tackle then is:

Keyquery Cover
Given: (1) A vocabulary W extracted from a set D of documents

(2) Levels k and l describing keyquery generality
Task: Find a simple set Q ⊆ 2W of queries that are keyquery for every

d ∈ D with respect to k and l and that together cover W .

The parameters k and l are typically set to 10, 50, or 100 but it will not
always be possible to find a covering set of queries that are keyqueries for all
documents in D. In such a case, we strive for queries that are keyqueries for a
|D| − 1 subset of D.

Solving Keyquery Cover. Our approach has four steps (pseudocode in
Algorithm 1). First, all keywords w ∈ W are removed that return less than l
results when submitted to the search engine S (lines 1–2); queries including such
terms can not be keyqueries.

In a second step, the remaining terms w ∈ W are iterated and added to an
intermediate candidate query q (lines 3–5). If q is a keyquery for all papers d ∈ D,
it is added to the set Q of keyqueries and q is emptied (line 6). Then the next
query is formed from the remaining terms, etc., until the last term w ∈ W has
been processed.

After this first iteration, not all terms w ∈ W are necessarily covered by
the set Q of keyqueries. In this case, q is not empty (line 7) and we again go
through the terms w ∈ W (line 8) and consecutively add terms w to q—as long
as no keyquery is found and simplicity of Q is not violated (line 9). According to
the keyquery definition, keyqueries that are already in Q must not be contained
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in the candidate query q. We hence omit terms w ∈ W that would cause q to
contain a keyquery q′ ∈ Q.

After this iteration, we do not further deepen the search but output Q
although still not all terms w ∈ W may be covered. This heuristic serves effi-
ciency reasons and our experiments show that often all possible keywords are
covered.

Solving Related Work Search. The pseudocode of our algorithm using key-
query covers for related work search is given as Algorithm 2. Using the Key-
query Cover algorithm as a subroutine, the basic idea is to first try to find
keyqueries for all given input papers, and to add the corresponding results to the
set C of candidates. If there are too few candidates after this step, Keyquery
Cover is solved for combinations with |I| − 1 input papers, then with |I| − 2
input papers, etc.

The vocabulary combination (line 3) is based on the top-20 keyphrases per
paper extracted by KP-Miner [8], the best unsupervised keyphrase extractor for
research papers in SemEval 2010 [18]. The terms (keyphrases) in the combined
vocabulary list W are ranked by the following strategy: First, all terms that
appear in all papers ranked according to their mean rank in the different lists.
Below these, all terms contained in (|D| − 1)-sized subsets ranked according to
their mean ranks, etc.

In the next steps (lines 4–6), the Keyquery Cover-instance is solved for
the subset D and its combined vocabulary W , the found candidate papers are
added to the candidate set C. In case that enough candidates are found, the
algorithm stops (line 7). Otherwise, some other input subset is used in the next
iteration. If not enough candidates can be found with keyqueries for more than
one paper, the keyqueries for the single papers form the fallback option (also
applies to single-paper inputs).

In our experiments, we will set k, l = 10 and c = 100 · |I| (to be comparable,
also the baselines are set to retrieve 100 candidate papers per input paper).

Algorithm 2. Solving Related Work Search

Input: List I of input papers, number c of desired related papers,
keyquery generality parameters k and l

Output: Set C of candidate related papers
1: for i ← |I| down to 1 do
2: for all D : D ∈ 2I , |D| = i do
3: W ← combine vocabularies of documents in D
4: Q ← Keyquery Cover(D,W, k, l)
5: C ← combined at most top-l results of each q ∈ Q
6: C ← C ∪ C
7: if |C| ≥ c then break
8: return C ranked by highest similarity to any document in I
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3.3 Combining Approaches

To combine different Related Work Search algorithms (e.g., Google
Scholar’s related articles and our keyquery approach), we use a simple inter-
leaving procedure. First, the results of the individual approaches are computed
and ranked as described above. We then interleave the ranked lists by first tak-
ing the first rank from the first approach, then the first rank from the second
approach and so on, then the second rank from the first approach, etc. Already
contained papers are not added again.

4 Evaluation

To experimentally compare the algorithms, we conduct a Cranfield-style exper-
iment on 200,000 computer science papers. Topics and judgments are acquired
in a user study.

4.1 Experimental Design

In general, there are two different approaches to evaluate algorithms for
Related Work Search. A widely used method is to take the reference lists of
papers as ground truth for the purpose of evaluation. Some of the references of a
single input paper are hidden and it is measured whether the Related Work
Search algorithm is able to re-identify these. The second possible method uses
relevance judgments assigned by scholars. These judgments then state whether a
recommended paper is relevant to a specific topic or not. Since the first method
is rather biased towards the citation graph and also not really representing the
use case we have in mind, we choose the second approach and utilize human
relevance judgments from a carefully designed user study.

Paper Corpus. We crawled a corpus of computer science papers starting from
the 35,000 papers published at 20 top-tier conferences like SIGIR, CHI, CIKM,
ACL, STOC, and iteratively including cited and citing papers until the desired
size of 200,000 papers was reached. In the crawling process, not all papers had
a full text available on the web (for 57 % of the corpus, we have an associated
full text). In this case, only the abstracts and metadata were obtained when
possible (contained for 43 % of the corpus) but often not even abstracts were
available and the respective papers were not included. On average, only 7.0 of
the 13.9 references in a paper and 6.8 of the 9.5 citations to a paper could
be crawled. Thus, only about 60 % of the cited/citing papers are contained in
our corpus. Not surprisingly, especially older papers often were not available.
The papers included in our corpus have been published in the years 1962–2013
(more than 75% published after 2000). Starting from the 20 seed conferences,
we included papers from about 1,000 conferences/workshops and 500 journals.
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Experimental Setup. Sofia Search is run on the citation information contained in
the metadata of the papers. Note that due to the non-availability of 40 % of the
cited/citing papers, our corpus might not be optimally suited for Sofia Search.
Still, this was not intended in the corpus design and could not be avoided—it
rather represents the realistic web scenario but should be kept in mind when
analyzing Sofia Search’s performance.

In order to run the query-based baseline and our keyquery cover algorithm,
we indexed the corpus papers using Lucene 5.0 while treating title, abstract, and
body text as separate fields. In case that no full text is available in the corpus,
only title and abstract are indexed. The retrieval model is BM25F [26] with
different boost factors: the title is the most important followed by the abstract
and then the body text.

Whenever a corpus paper with only title and abstract is used as an input
paper for our keyquery-based algorithm, the keyphrase extraction is done on
these two fields only and text similarity of a candidate paper is also only mea-
sured against these two fields (similar to the Sofia Search and Nascimento et al.
baselines).

User Study Design. Topics (information needs) and relevance judgments for a
Cranfield-style analysis of the Related Work Search approaches are obtained
from computer science students and scholars (other qualifications do not match
the corpus characteristics). A study participant first specifies a topic by selecting
a set of input papers (could just be one) and then judges the found papers of
the different approaches with respect to their relevance. These judgments are
the basis for our experimental comparison.

In order to ensure a smooth work flow, we have built a web interface that also
allows a user to participate without being on site. The study itself consists of two
steps with different interfaces. In the first step, a participant is asked to enter a
research task they are familiar with and describe it with one or two sentences.
Note that we request a familiar research task because expert knowledge is later
required in order to judge the relevance of the suggested papers. After task
description, the participants have to enter titles of input papers related to their
task. While the user is entering a title, a background process automatically
suggests title auto completions from our corpus. Whenever a title was not chosen
from the suggestions but was manually entered, it is again checked whether the
specified paper exists in our corpus or not. If the paper cannot be found in the
collection, the user is notified to enter another title. After this two-phase topic
formation (written description + input papers), the participants have to name
at least one paper that they expect to be found (again with the help of auto
completion). Last, the users should describe how they have chosen the input and
expected papers to get some feedback of whether for instance Google Scholar
was used which might bias the judgments.

After a participant has completed the topic formation, the different recom-
mendation algorithms are run on the input papers and the pooled set of the
top-10 results of each approach is displayed in random order for judgment (i.e.,
at most 40 papers to judge). For each paper, the fields title, authors, publication
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venue, and publication year are shown. Additionally, links to fade in the abstract
and, if available in our corpus, to the respective PDF-file are listed. Thus, the
participants can check the abstract or the full text if needed.

The participants assessed two criteria: relevance and familiarity. Relevance
was rated on a 4-point scale (highly relevant, relevant, marginally, not relevant)
while familiarity was a two-level judgment (familiar or not). Combining the two
criteria, we can identify good papers not known to the participant before our
study. This is especially interesting since we asked for research topics the par-
ticipants are familiar with and in such a scenario algorithms identifying relevant
papers not known before are very promising.

Characteristics of the User Study. In total, 13 experienced scholars and 7 gradu-
ate students have “generated” and judged 42 topics in our study—in a previous
study we had another 25 topics with single-paper inputs only [11]. The scholars
typically chose topics related to one of their paper projects while the graduate
students chose topics from their Master’s theses. On average, the topic creation
took about 4 min while the judgment took about 27 min. For 23 topics, one or
two input papers are given, while for 19 topics even three or up to five input
papers were specified. For most topics (80 %), two or more expected papers were
entered. The number of different papers returned by the four algorithms varies
highly. For the topic with the most different results, the participant had to judge
37 papers, while the topic with the least different results required only 13 judg-
ments. On average, a participant had to judge 28 papers. In total, 31 % of the
results were judged as highly relevant, 22 % as relevant, 24 % as marginally rel-
evant, and 23 % as not at all relevant to the topic. Interestingly, 79 % of the
papers that are judged as relevant and 59 % of the highly relevant papers were
unfamiliar to the user before the study. We will evaluate the algorithms with
respect to their ability of retrieving unexpected good results when discussing
the experimental results.

4.2 Experimental Results

We employ the standard retrieval effectiveness measures of nDCG [16] and pre-
cision for the top-10 results, and recall for evaluating the ability to retrieve the
expected and also the relevant unexpected papers. The experimental results are
reported in Table 1 (Left). The top four rows contain the results for the four
individual algorithms while the bottom three rows contain the most promising
combinations that can also be evaluated due to the pooling strategy. In the top-k
results of our combination scheme described in Sect. 3.3 only results from the
top-k of the combined algorithms are included.

General Retrieval Performance. We measure nDCG using the 4-point scale: high
as 3, relevant as 2, marginal as 1, and not relevant as 0, and precision considering
highly and relevant as the relevant class. The mean nDCG@10 and prec@10
over all topics are given in the second and third columns of Table 1 (Left). The
top-10 of our new keyquery-cover-based approach KQC are the most relevant
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Table 1. (Left) Performance values achieved by the different algorithms averaged over
all topics. (Right) Percentage of top-10 rank overlap averaged over all topics.

among the individual methods on a par with Google Scholar and Sofia Search;
both differences are not significant according to a two-sided paired t-test (p =
0.05). The overall best result is achieved by the KQC+Sofia+Google combination
that significantly outperforms its components. Another observation is that most
methods significantly outperform the Nascimento et al. baseline.

Recall of Expected Papers. To analyze how many papers were retrieved that the
scholars entered as expected in the first step of our study, we use the recall of the
expected papers denoted as rece. Since the computation of rece is not dependent
on the obtained relevance judgments, we can compute recall for any k. We choose
k = 50 since we assume that a human would often not consider many more than
the top-50 papers of a single related work search approach. The fourth column of
Table 1 (Left) shows the average rece@50-values for each algorithm over all topics.
The best rece@50 among the individual methods is the 0.43 of Google Scholar. The
combinations including KQC and Google Scholar achieve an even better result
of 0.48. An explanation for the advantage of Google Scholar—beyond the proba-
bly good black-box model underlying the “related articles” functionality—can be
found in the participants’ free text fields of topic formation. For several topics, the
study participants stated that they used Google Scholar to come up with the set
of expected papers and this obviously biases the results.

Recall of Unfamiliar but Relevant Papers. We also measure how many “gems”
the different algorithms recommend. That is, how many highly or relevant papers
are found that the user was not familiar with before our study. Providing such
papers is a very interesting feature that might eventually help a researcher to find
“all” relevant literature on a given topic. Again we measure recall, but since we
have familiarity judgments for the top-10 only, we measure the recall recur@10 of
unexpected but relevant papers listed in the rightmost column of Table 1 (Left).
Again, the combination KQC+Sofia+Google finds the most of the unfamiliar
but relevant papers.

Result Overlap. Since no participant had to judge 40 different papers, the top-
10 results cannot be completely distinct; Table 1 (Right) shows the percentage
of overlap for each combination. On average, the top-10 retrieved papers of two
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different algorithms share 2–4 papers meaning that the approaches retrieve a
rather diverse set of related papers. This again suggests combinations of differ-
ent approaches as the best possible system and combining the best query-based
method (our new KQC), Google Scholar, and Sofia Search indeed achieves the best
overall performance. Having in mind the “sparsity” of our crawled paper corpus’
citation graph (only about 60 % of the cited/citing papers could be crawled), Sofia
Search probably could diversify the results even more in a corpus containing all ref-
erences. The combination of the three systems in our opinion also very well mod-
els the human way of looking for related work such that the KQC+Sofia+Google
combination could be viewed as very close to automated human behavior.

A Word on Efficiency. The most costly part of our approach is the number
of submitted queries. In our study, about 79 queries were submitted per topic;
results for already submitted queries were cached such that no query was sub-
mitted twice (e.g., once when trying to find a keyquery for all input papers
together, another time for a smaller subset again). On the one hand, 79 queries
might be viewed more costly than the about 27 queries submitted by the
Nascimento et al. baseline (10·|I| queries) or the about 30 requests submitted for
the Google Scholar suggestions (11 · |I| requests; one to find an individual input
paper, ten to retrieve the 100 related articles). Also Sofia Search on a good index
of the citation graph is much faster than our keyquery-based approach. On the
other hand, keyqueries could be pre-computed at indexing time for every paper
such that at retrieval time only a few postlists from a reverted index [25] have
to be merged. This would substantially speed up the whole process, rendering
a reverted-index-based variant of our keyquery approach an important step for
deploying the first real prototype.

5 Conclusion

We have presented a novel keyquery-based approach to related work search.
The addressed common scenario is a scholar who has already found a hand-
ful of papers in an initial research and wants to find “all” the other related
papers—often a rather tedious task. Our problem formalization of Related
Work Search is meant to provide automatic support in such situations. As
for solving the problem, our new keyquery-based technique focuses on the con-
tent of the already found papers complementing most of the existing approaches
that exploit the citation graph only. Our overall idea is to get the best of both
worlds (i.e., queries and citations) from appropriate method combinations.

And in fact, in our effectiveness evaluations of a Cranfield-style experiment
on a collection of about 200,000 computer science papers, the combination of key-
queries with the citation-based Sofia Search and Google Scholar’s related article
suggestions performed best on 42 topics (i.e., sets of initial papers). The top-10
results of each approach were judged by the expert who suggested the topic.
Based on these relevance judgments, we have evaluated the different algorithms
and identified promising combinations based on the rather different returned
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results of the individual approaches amongst which keyqueries slightly outper-
formed Sofia Search and Google Scholar suggestions.

Our experiments should be confirmed using other topic sets and paper cor-
pora. The iSearch collection [22] may be suitable: it comprises a large set of
research papers from the domain of physics and a set of topics with correspond-
ing relevance judgments. Yet, the iSearch collection judgments may have been
obtained using keyword queries, a fact that could give an advantage to our key-
query approach. Another promising future direction is to evaluate other back-
ground retrieval models, as well as keyphrase selection and weighting methods
since our keyqueries heavily depend on these. Also the candidate ranking deserves
further analyses. We have adopted simple text-based cosine similarity, which is
also used in many other approaches but taking the number of citations or the
publication venue into account may further improve the rankings.
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