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Abstract. Image analysis is a key area in the computer vision domain
that has many applications. Genetic Programming (GP) has been suc-
cessfully applied to this area extensively, with promising results. High-
level features extracted from methods such as Speeded Up Robust
Features (SURF) and Histogram of Oriented Gradients (HoG) are com-
monly used for object detection with machine learning techniques. How-
ever, GP techniques are not often used with these methods, despite being
applied extensively to image analysis problems. Combining the training
process of GP with the powerful features extracted by SURF or HoG
has the potential to improve the performance by generating high-level,
domain-tailored features. This paper proposes a new GP method that
automatically detects different regions of an image, extracts HoG fea-
tures from those regions, and simultaneously evolves a classifier for image
classification. By extending an existing GP region selection approach to
incorporate the HoG algorithm, we present a novel way of using high-level
features with GP for image classification. The ability of GP to explore
a large search space in an efficient manner allows all stages of the new
method to be optimised simultaneously, unlike in existing approaches.
The new approach is applied across a range of datasets, with promis-
ing results when compared to a variety of well-known machine learning
techniques. Some high-performing GP individuals are analysed to give
insight into how GP can effectively be used with high-level features for
image classification.

Keywords: Genetic programming · Image classification · Feature
extraction · Feature construction

1 Introduction

A common technique used in computer vision is the creation of features which
provide a representation of an image that is of a higher level than that of the
raw image pixels [12]. Many image classification approaches extract features from
an image using a feature extraction algorithm, and then use these features as
inputs to a machine learning algorithm to perform classification. A wide range of
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algorithms for feature extraction have been proposed [17]. One popular approach
is the Histogram of Oriented Gradients (HoG) algorithm [8], which produces a
histogram of the gradients within an image which can then be used as a feature.

Genetic Programming (GP) has also been applied extensively to image analy-
sis problems [21] since it was introduced in the 1990s. Techniques generally use
GP to extract features from raw images by using pixel statistics [24,26], slid-
ing window [22] or filter [3] approaches. GP is able to achieve success on these
problems using its evolutionary learning process which allows it to automatically
extract and construct high-level features tailored to the dataset it is trained on.
This is in contrast to other algorithms such as HoG which do not have a learning
process; these algorithms produce general, domain-independent features. The GP
approaches tend to extract relatively simple features in comparison to the his-
tograms produced by the HoG algorithm, which might limit their performance.
Combining the training process of GP with the powerful features extracted by
HoG may improve performance by generating high-level, domain-tailored fea-
tures automatically. The literature contains many feature extraction methods;
we use HoG in this work due to it being one of the most prevalent methods that
is simple and efficient enough to implement as a GP function.

Another technique for improving feature quality is to only select regions of an
image which are rich in useful features. A two-tier GP (2TGP) [2] method was
proposed which automatically selects regions for feature extraction. Using this
method in conjunction with more advanced GP feature construction functions
would allow region selection and feature construction to be performed simulta-
neously to improve the image classification performance.

Goals. The goal of this paper is to develop a GP approach to automatically
extract and construct high-level features for image classification. To achieve this,
we propose a new GP-HoG approach which uses GP with functions based on
the HoG method. These new functions are designed to produce more advanced
features than the existing GP approaches. In this way, GP will be used for
simultaneous region selection, feature extraction and image classification. We
aim to achieve this through the following objectives: (1) developing new func-
tions which are inspired by the HoG algorithm. These functions will allow GP to
automatically produce high-level features which have the potential to increase
classification performance; (2) combining these new functions with a region selec-
tion approach 2TGP to allow GP to perform region selection, feature extraction
and classification in a single GP tree; (3) analysing the program trees of some
good individuals to understand how they are able to generate useful features.

2 Background

Evolutionary Computation (EC) is a large field of artificial intelligence which
contains algorithms inspired by biological evolutionary principles [6]. These algo-
rithms are often applied to difficult problems, where the search space is very
large. EC algorithms operate iteratively, refining the candidate solutions to a
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problem in order to gradually improve solutions towards the optimal solution.
Evolutionary Algorithms (EAs) are a field of EC algorithms which use Darwinian
evolutionary principles to improve solutions by mimicking natural evolution [9].

Genetic Programming (GP) [13] is an EA which models solutions in the form
of computer programs. The most common representation is a tree structure,
where the root of the tree is the output of the genetic program and the leaves of
the tree are inputs or constant values. Non-terminal nodes are functions in the
program, which take some inputs (i.e. outputs of other nodes), and then produce
an output based on a function applied to those inputs. Terminal nodes are the
leaves of a tree.

Feature construction is the process of creating new, high-level features, often
by combining multiple existing features [4,14]. Constructed features generally
better describe an instance than a single existing feature, reducing the number
of features required, which reduces the size of the search space a classifier must
train on. GP has been applied extensively to feature construction tasks [10],
due to its tree-structure which allows features to be combined using a range of
functions to create new features. As GP generally produces a single output value
from the root, techniques often use it to produce a single high-level feature.

Al-Sahaf et al. [5] proposed a GP approach to automatically construct an
image descriptor that is then used to extract features for multi-class texture
classification. Their experiments present the capability of the method to extract
important features. The method has significantly outperformed the competitor
methods on two texture data sets.

The HoG [8] technique produces a feature vector from an image based on
the orientation of gradients within the image. The image is first split into a
number of overlapping blocks. Each block produces a histogram of gradients of
pixels within that block. For each pixel in a block, both the magnitude and
the orientation of its gradient is recorded. The histogram of each block, then,
contains bins for various orientations (one bin for a range of orientations), and
the height of each bin is the sum of the magnitudes of the gradients falling within
that bin. The histogram from each block is then normalised, and all histograms
are then combined to give a final feature vector corresponding to the image as a
whole. This kind of feature vector has been used for a variety of image analysis
problems [8,27].

2.1 Related Work

This subsection briefly surveys typical related work which uses GP to extract
and construct features for image classification. The limitations of these works
are discussed, showing the motivation behind our proposed GP-HoG approach.

The 2TGP approach [2] used GP to select good regions of an image, extract
features from the regions (as simple statistics based on the pixels in the region),
and to perform classification. The approach was tested on a variety of datasets
which varied in difficulty, with good results across different image domains. The
solutions produced were also easy to understand. For example, on a face dataset,
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solutions were produced using regions which humans would also use for classifi-
cation, such as the nose, mouth and eyes. On a pedestrian dataset, regions were
selected which captured areas, where a standing pedestrian would be expected
to appear. By selecting regions, this approach was able to improve classification
accuracy. Using more advanced features, i.e., beyond simple pixel statistics, in
combination with region selection has the potential to improve the performance
even further. This is the direction we take in this study.

In [23], the root of the tree was used as a constructed feature by a Support
Vector Machine (SVM) for image classification. This approach created GP trees
using a large range of functions which directly considered the pixel values of the
given images. By using a multi-objective approach which tried to minimise tree
size while maximising classification accuracy, the authors were able to reduce
over-fitting and achieved a high classification accuracy. The function set used a
range of filtering functions including Gaussian, Laplacian, and Gabor filters, as
well as simpler pixel-by-pixel arithmetic operations. While these filtering func-
tions are more advanced than simpler pixel statistic approaches, they are still
relatively simpler than the HoG algorithm, as they apply a small filter to each
pixel instead of using a more sophisticated histogram technique.

Perez and Olague proposed a GP technique (RDGP) [20] using a function set
and a terminal set, which was designed to emulate the Scale-Invariant Feature
Transform (SIFT) [15], another widely-used feature extraction algorithm. A range
of functions and terminals were used, including arithmetic operators, image deriv-
atives and Gaussian filters. The authors argued that their method would allow GP
to automatically synthesise SIFT-like programs by automatically extracting high-
level features for object recognition. They claimed that their approach allowed fea-
tures to be automatically tailored towards the problem being trained on, as the
GP programs would be optimised by the evolutionary process. The RDGP app-
roach was shown to produce better features than the standard SIFT approach,
with an overall decrease in error in object detection.While this approachperformed
feature extraction and construction, it did not use GP for classification. As their
design broke the SIFT algorithm into its composite parts as GP functions, the evo-
lutionary process must learn to re-construct and optimise these composite parts in
order to produce useful features. This may reduce the performance of the method;
the approach we propose attempts to mimic HoG within a single function, so that
the evolutionary process can instead focus on constructing high-level features and
simultaneously evolve a good classifier.

3 The Proposed Method

This section details the proposed method (named GP-HoG) including the pro-
gram representation, and the fitness function.

3.1 GP Program Representation

The proposed method uses a combination of existing terminals and functions
from 2TGP and novel terminals and functions inspired by HoG. In this study, a
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Fig. 1. An example shows an individual structure of the GP-HoG method.

new tree-based program structure is proposed, as presented in Fig. 1. To intro-
duce restrictions on the inputs and outputs of the different nodes in an evolved
program, strongly-typed GP [18] is used. The full terminal and function sets
are listed in Tables 1 and 2 respectively. An individual’s tree can be, virtually,
divided into three layers. The bottom layer, which includes the HoG and terminal
nodes, represents the feature extraction part. The middle layer, which consists
of a mix of the bin and distance nodes, represents the feature construction part.
The top layer (including the root node) that is made up of a chain of simple
arithmetic operators represents the classification part. As Strongly-Typed GP
is used, all three layers appear in every valid program. The feature construction
layer represents a main difference between GP-HoG and 2TGP, which has only
feature extraction (as pixel statistics across a region) and classification layers.
The new feature construction layer aims to further reduce the search space by
constructing high-level features from the extracted features from the previous
layer, with the expectation of evolving meaningful classifiers and further improv-
ing the performance.

The majority of the terminal set is based on the 2TGP method, as the ter-
minals provide the parameters used in the region selection process. The image
node is the instance, i.e., image being evaluated represented as a 2D array of
integer values each of which represents the intensity of a pixel in the image. rand
is a random value drawn from the half-closed interval [0, 1). The shape node
defines the shape of a region that can be rectangle, circle, row and column.
The coords node is a pair of (x, y) values that define the location of a region in
an image where (x, y) is the centre pixel for the circular shape and the top-left
corner pixel for all other shapes. The minimum width and height of all images
in the dataset are, respectively, denoted as minWidth and minHeight. T The size
node specifies the size of a region. The value of a size node is defined to be 1
in row and column regions. The size node is not used in the case of a rectangle
region and is replaced by (w, h) which are the width and height of the region. For
a circular region, the size node gives the diameter. Restricting the dimensions of
regions by using minWidth and minHeight encourages regions to be created which
are valid across the majority of images in a dataset, which improved training
and test performance. In order to return a specific value of a histogram, the
index node is introduced that takes a value between 0 and 7 (inclusive) as each
histogram consists of 8 bins (as detailed in the next subsection).
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Table 1. The terminal set

Name Output Details

image image The image being evaluated represented as a 2D array of pixel values

rand double Random double in the half-closed interval [0, 1)

coords coords Provides the location as a region as (x, y). x is the horizontal
location randomly generated in [0,minWidth] and y is the vertical
location in [0,minHeight]

size size Random integer value in [3,min(minWidth,minHeight)]

index index Random integer value in [0, 7], which represents the bin index of a
histogram

shape shape One of rectangle, circle, row, and column. Rectangle has x in
[0,minWidth] and y in [0,minHeight]

Table 2. The function set

Name Input Output Details

+, −, ×, / double, double double Arithmetic operators

bin histogram, index double Returns the value of the specified index

HoG image, coords, shape, size histogram Performs the HoG algorithm on a region

distance histogram, histogram double Returns the distance between two histograms

The function set comprises of the four arithmetic operators +, −, × and pro-
tected /, distance, bin, and HoG nodes. The arithmetic operators in the function
set have their corresponding regular meaning and allow GP to utilise multiple
extracted features for classification. The HoG, distance and bin functions and
the index terminal are used for feature extraction. The design of these functions
is discussed in the next subsection.

The most important new function is the HoG function, which is inspired by
the HoG algorithm [8]. The HoG function takes the image, coords, shape, and size
as inputs, and outputs a histogram which represents the distribution of gradients
within a region of the image. The standard approach of using a histogram with
8 bins [8] is adopted here, where each bin corresponds to 45◦ of rotation. By
using the provided terminal nodes, a GP tree can construct a histogram across
a region of varying shape and size; there are no pre-determined regions as in the
normal HoG method. This allows the regions used to be tailored to the dataset.

3.2 Outline of the HoG Function

The region of the image is selected based on the inputs to the HoG function.
This is done by taking a region of an image defined by the shape (how the region
is shaped), coords (the position of the region) and size (size of the region) inputs.
Then, the steps presented in Algorithm 1 are applied.

Our HoG approach differs from the standard HoG algorithm [8] in a few ways
in order to allow it to be expressed sensibly as a function for GP. The biggest
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difference is that the HoG function is applied only to a single region, given by
the function arguments. Normally, the histograms of multiple overlapping blocks
across an image are combined to give a more versatile feature vector. As multiple
HoG functions can be incorporated in a single GP tree, it is not necessary
to use multiple blocks to try and analyse the whole image; this will be done
automatically as part of the evolutionary process if it gives good performance.
As only a single histogram is produced from one run of the proposed GP-HoG
algorithm, the normalisation process is only applied to a single histogram, rather
than across several as in the original design. This approach also allows for a range
of block (i.e. region) sizes and shapes; normally the design of blocks are fixed,
such as using an 8 × 8 square. It is expected that the evolutionary process will
be able to automatically find the best block sizes and shapes as individuals with
the best block designs, i.e., more representative features, will be rewarded with
a better fitness value. The crossover operator allows useful block designs to be
exchanged between individuals.

As a number of variations to the original HoG algorithm have been made, we
consider Algorithm 1 to be inspired by the HoG algorithm, rather than being a
strict implementation of it. As Algorithm1 outputs a feature vector (histogram)
of eight bins, GP can not directly use this vector for classification; therefore,
two additional functions were designed which construct high-level features from
a histogram. The first function is distance, which finds the Euclidean distance
between two histograms. This produces a double value which gives a measure of
how dissimilar two histograms are. This can be used to compare different regions
of an image in order to identify the image’s class. For example, on the UIUC
dataset (Sect. 4), the regions corresponding to a car’s front and back wheels will
produce similar histograms. These same regions on a background image are more
likely to give different histograms. Hence, the distance between histograms can
be used as a feature for classification. The second function is bin, which returns
the value of a given bin index of a histogram. This function allows GP to select
important orientations which have different magnitudes depending on the image
class. For example, on the Jaffe dataset, the edges of the mouth have different
gradients for the subjects being happy or surprised. The magnitude of a given
bin can be used as a feature for distinguishing two classes.

3.3 The Fitness Function

The evolutionary process measures a program’s goodness using the fitness func-
tion. In this work, the accuracy of a program is used as the fitness value to reflect
its ability to discriminate between instances of different classes. The accuracy is
the proportion of correctly classified instances to the total number of instances.
Hence, an ideal program will have a fitness value of 1 and a fitness value of 0
represents the worst case scenario or performance.

Classification of an instance is performed by feeding it into an evolved GP
tree. The image terminals of the GP tree are set to contain the image being
classified, and then the tree is evaluated from bottom to top, producing a
single real number as an output. A threshold 0 is then applied to this value.
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Algorithm 1. The procedure used in the HoG function
1 Find the gradient for each pixel as Gx = f(x + 1, y) − f(x − 1, y) and Gy =
f(x, y + 1) − f(x, y − 1) where f(i, j) gives the pixel value at (i, j).

2 Find the magnitude at each pixel as m =
√

G2
x + G2

y.

3 Find the orientation of each pixel as arctan
(

Gy

Gx

)
. This is converted to degrees and

mapped to be in range [0◦, 360◦].
4 for each pixel do
5 Find the two bins of the histogram it lies between based on its orientation. The

histogram is divided into 8 bins of size 45◦, so each pixel with an orientation
will have a lower bin and an upper bin. For example, a pixel with an orientation
of 80◦ would have its lower bin as bin 2 (45◦), and its upper bin as bin 3 (90◦).

6 For each bin, find the distance between the bin’s orientation and the pixel’s
orientation. In the previous example, an orientation of 80◦ puts that pixel at
35◦ distance from the lower bin, and 10◦ from the upper bin.

7 For each bin, calculate and add the weighted magnitude as the pixel’s magni-
tude multiplied by how close it is to that bin. As the bin size is 45◦, m× (45−35)

45

is added to the lower bin. The upper bin would have m× (45−10)
45

added to it,
as the upper bin’s orientation is closer to that of the pixel.

8 end for
9 Normalise the histogram by expressing the value of each bin as a fraction of the

sum across all bins.

A negative value gives a negative classification, and a non-negative value gives
a positive classification. A tree may contain regions that partially fall outside
the dimensions of the image. Any such regions are cropped, so only the pixels
within the image bounds are used in the computation of the histogram in the
HoG function.

4 Experiment Design

This section details the datasets, parameter settings, and methods for compari-
son used in this study.

4.1 Datasets

Three datasets were used to assess the performance of the proposed method.
These datasets are for different applications and vary in difficulty. However, each
of the datasets is made up of greyscale images and is set for binary classification.

In computer vision, the Columbia Object Image Library1 (COIL-20) [19]
dataset is widely used. Two classes of the COIL-20 dataset are used to form the
first dataset in this study. Originally, the COIL-20 dataset comprises of 20 classes
that each represents a different toy object, e.g., cars, rubber ducks, and boxes. A
turntable is used in a scene with a black background to prepare those instances.

1 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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For each object, 72 images are provided by taking a snapshot every 5◦ where the
object is rotated through 360◦. Then those images are cropped to be 128×128 pix-
els each where the object is centred in the images. Furthermore, those images were
normalised by adjusting the brightest pixel to be 255 and scaling the other pixel
values accordingly. In this study, only the cars and rubber ducks classes (Fig. 2(a))
are used as the focus is on performing binary classification.

Meanwhile, the second dataset in this study is formed using the Japanese
Female Facial Expression2 (Jaffe) [16] dataset. This dataset is broadly used in
the literature for the task of identifying different facial expressions. In total, this
dataset consists of 213 images provided by ten Japanese female subjects, which
is divided into seven groups: neutral, surprised, angry, sad, happy, disgust, and
fear. Each subject provides several images for each facial expression. Following
Cheng et al. [7], and in order to prevent the classifiers from training on irrelevant
features, the images of this dataset were manually cropped in order to remove
most of the subject’s hair, and the image background leaving only the face.
The size of those instances after cropping ranges between 164 and 207 pixels in
height, and between 121 and 143 pixels in width. The instances of the happy and
surprised classes (Fig. 2(b)) are used in this study to form the second dataset.

To form the third dataset in this study, the UIUC database for Car Detection3

(UIUC) dataset [1] is used. In total, the UIUC dataset consists of 1, 050 instances
that fall into two classes: cars and background (Fig. 2(c)). The former comprises
of 550 instances, whilst there are 500 instances in the latter. The car instances
are captured from the same angle and distance (giving the same scale) that show
the side view of the vehicle. Each instance in this dataset is 100 × 40 pixels.

Fig. 2. Samples of the (a) COIL-20, (b) Jaffe, and (c) UIUC cars datasets showing
instances of the positive and negative classes in the top and bottom rows respectively.

4.2 Training and Test Sets

The k-fold cross-validation technique was used to evaluate the proposed method
and all the baseline methods. The instances of the UIUC and COIL-20 datasets
were randomly split into 10 folds. The Jaffe dataset contains only three images of
each expression for each human subject, requiring a careful split to ensure that

2 Available at: http://www.kasrl.org/jaffe.html.
3 Available at: http://cogcomp.cs.illinois.edu/Data/Car/.

http://www.kasrl.org/jaffe.html
http://cogcomp.cs.illinois.edu/Data/Car/
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the test and training sets are both representative of the dataset, and therefore,
this dataset was manually split into 3 folds. Each fold contained one happy and
one surprised expression for each subject.

4.3 Baseline Methods

A number of baseline methods are used to compare the new approach to the
existing methods in the literature. The Waikato Environment for Knowledge
Analysis (WEKA) [11] implementations of the Support Vector Machine (SVM),
Decision Trees (J48), Näıve Bayes (NB), Random Forest (RF), and Adaptive
Boosting (ABM1) classifications methods are used [25]. As the proposed method
is largely based on 2TGP, the 2TGP method is also used as a competitive method
in this study. Each of these seven methods (including the proposed method) were
evaluated using the k-fold cross-validation scheme described in Sect. 4.2. For each
of the non-GP classifiers, an instance is evaluated by giving the classifier a list of
concatenated SURF keypoints (as detailed in the next subsection). As a keypoint
contains 64 values, there will be p× 64 features provided, where p is the number
of keypoints used. For example, if two keypoints called a and b were used, the
list would be formatted in the form [a0, a1, .., a63, b0, b1, ..., b63]. As the WEKA
implementation of each of these methods is deterministic, they are only run once
for a given experiment run. The list of keypoints is ordered by the strength of
each keypoint so that the methods are able to learn most effectively. The SURF
feature extractor generates keypoints based on the location of the keypoint in the
image, which means that a classifier may classify two instances of the same class
differently depending on the distribution of keypoints throughout the images,
even if the images are actually similar. For example, if two images were of the
same person’s face but in one the face was shifted 50 pixels to the right, the
keypoint corresponding to a “nose feature” could appear in different locations
in the keypoint list. By ordering keypoints by how strong they are, the classifier
is more likely to classify similar instances to the same class as they will likely
have similar strong keypoints at the same index in the list.

4.4 Generating SURF Keypoints

Both of the GP-based (2TGP and GP-HoG) methods are designed to operate
directly on the raw pixel values, which is not the case for the other baseline
methods. Therefore, SURF image descriptor is used to generate a list of keypoints
that can be used as a high-level features by those classifiers. However, SURF
generates varying numbers of keypoints based on the number of interest points
an image has. For many classifiers, this presents a problem as a static number
of features (fixed length feature vector) is expected. Algorithm2 is developed to
address this problem. This method relies on altering the Hessian threshold, which
represents a main component of the SURF method, in order to determine the
interest points. Binary search is used to adjust this threshold until a predefined
number of keypoints are retrieved. A fixed number of keypoints allows more
effective training as a solution can perform consistently across a dataset.
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Algorithm 2. Selecting top-p keypoints
1 function selectKeypoints(image, Lbound, Ubound, p) � where Lbound and Ubound are the
2 threshold ← (Ubound − Lbound)/2 + Lbound lower and upper bounds of the
3 keypoints ← SURF(threshold) Hessian threshold, respectively.
4 if |keypoints| = p then
5 return keypoints
6 else if |keypoints| > p then
7 Lbound ← threshold
8 else
9 Ubound ← threshold

10 end if
11 return selectKeypoints(image, Lbound, Ubound, p)
12 end function

4.5 Evolutionary Parameters

GP has a number of parameters which can be altered in order to optimise the
evolutionary process for a given problem. The GP-HoG and the 2TGP methods
were applied to the three datasets (Sect. 4.1). For 2TGP, the same parameters
were used as in [2]; namely, 80% crossover, 20% mutation and top-10 elitism
was used. The population size was 1, 024, and the minimum and maximum tree
depth were 2 and 10, respectively. On each dataset, the evolutionary process was
independently executed 35 times using different seed values. Each execution was
run for 50 generations or until perfect training performance was obtained. GP-
HoG used 40% mutation and 60% crossover as it was found a higher mutation
rate could produce better training performance by allowing a wider exploration
of the search space. All other parameters were the same as for 2TGP.

5 Results and Discussion

This section compares the performance of the GP-HoG approach to the 2TGP
approach and the five SURF baselines. It also discusses the increase in training
time required to train GP using the GP-HoG approach compared to using 2TGP.

5.1 Compared to the 2TGP Approach

The results of the 2TGP and GP-HoG are shown in Table 3. Student’s t-test
with a 95% confidence interval was used to evaluate the significance of the
performance increase using GP-HoG. A “+” in Table 3 indicates that GP-HoG
is significantly better than the 2TGP approach, whereas a “−” indicates it is
significantly worse. The GP-HoG approach performs significantly better on the
Jaffe and UIUC datasets (the two difficult datasets) while achieving slightly
worse mean (but identical maximum) test performance on the COIL-20 dataset.
On the most difficult dataset (Jaffe), GP-HoG achieves a 5% and 11% increase
in mean and maximum test performance respectively over the 2TGP approach.

The average training time has increased notably using the new approach com-
pared to 2TGP, with approximately 3× more computation required on the Jaffe
and UIUC datasets, likely due to the larger amount of computation required by
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the HoG function than in the aggregation functions used in the 2TGP approach.
The arctan (·) function is the slowest part of the HoG algorithm (from empirical
sampling), as it is somewhat expensive to compute even on a modern CPU, and
is used once for every pixel in a region. On the UIUC dataset (which has the
largest number of images), training never finishes before the maximum number
of generations (the maximum training performance is 98%), and so the train-
ing time is much longer than the other datasets. Even with the utilisation of
multi-threading, the 600 hours of CPU time across all folds takes about a week
of real time. It is important to note that while the increase in training time is
a downside of the new approach, the time required to apply the best trained
solution to new, unseen images is still minimal. Long training times are common
when GP is used, but as long as the evolved programs are not overly complex,
they are often quick enough to be used on unseen instances.

5.2 Compared to the Baselines

The results of the five non-GP methods on the three datasets using different
numbers of SURF keypoints are presented in Table 4. The values of the last two
blocks (p = 20 and p = 50) of the UIUC dataset are not available as SURF could
not generate this many keypoints due to a lack of interest points in the images in
this dataset. The GP-HoG approach has similar performance on COIL-20 and
improved performance on the Jaffe and UIUC datasets compared to the non-
GP baselines. This is unsurprising, as the GP-HoG approach is able to perform
region selection and feature construction to give more advanced and dataset-
specific features than the domain-independent features produced by SURF.

Table 3. The accuracy and average training time (H:M:S) of the 2TGP and GP-HoG
methods on the three datasets.

2TGP GP-HoG

COIL-20 Jaffe UIUC COIL-20 Jaffe UIUC

Train Test Train Test Train Test Train Test Train Test Train Test

Max 1.00 1.00 0.98 0.81 0.96 0.94 1.00 1.00 0.99 0.92 0.96 0.95

Mean 1.00 0.99 0.95 0.71 0.94 0.92 1.00 0.97− 0.97+ 0.76+ 0.95+ 0.93+

St.Dev 0.00 0.01 0.02 0.05 0.01 0.01 0.00 0.02 0.02 0.07 0.01 0.01

Training time 00:05:49 01:35:54 16:22:39 03:24:26 04:36:24 52:15:25

6 Further Analysis

The GP-HoG approach produces programs which can be interpreted and under-
stood by humans. This section analyses three high-performing evolved programs
to understand how they can perform classification with high accuracy.
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Table 4. The average accuracies of the non-GP baseline methods on the three datasets.

p = 5 p = 10 p = 20 p = 50

Train Test Train Test Train Test Train Test

C
O

IL
-2

0 SVM 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00
J48 0.99 0.86 0.99 0.86 0.99 0.86 0.99 0.85
NB 0.99 0.97 0.99 0.96 1.00 0.91 1.00 0.94
RF 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00
ABM1 1.00 0.96 1.00 0.96 1.00 0.93 1.00 0.93

J
a
ff
e

SVM 1.00 0.63 1.00 0.72 1.00 0.74 1.00 0.82
J48 0.98 0.70 0.98 0.56 0.98 0.59 0.98 0.79
NB 0.89 0.72 0.92 0.72 0.98 0.75 1.00 0.69
RF 1.00 0.77 1.00 0.76 1.00 0.77 1.00 0.71
ABM1 1.00 0.70 1.00 0.77 1.00 0.67 1.00 0.71

U
IU

C

SVM 0.99 0.92 1.00 0.91 N/A N/A N/A N/A
J48 0.99 0.84 0.99 0.83 N/A N/A N/A N/A
NB 0.90 0.89 0.90 0.89 N/A N/A N/A N/A
RF 1.00 0.94 1.00 0.93 N/A N/A N/A N/A
ABM1 0.88 0.85 0.88 0.84 N/A N/A N/A N/A

6.1 Example Program 1

An evolved program with high performance on the Jaffe dataset is shown in
Fig. 3. This program is interesting to analyse, as it is very simple, consisting of
two HoG operators, and a subtraction operator. The left side of the tree applies
the HoG operator to a rectangular region corresponding to the right side of the
face, including the eye, cheek, and part of the nose and lip areas. This region
contains different features of the face in the happy and surprised expressions.
When the subject is happy, the corner of the mouth is narrower than when
surprised, producing a smaller gradient orientation. When they are surprised,
the mouth is widened, creating a right-angle between the chin and where the
subject’s ear would be. This edge is at a larger angle than when the subject is
happy, and hence a different histogram is produced. The HoG operator produces
a histogram, and the value of the bin corresponding to the 270◦–314◦ orientation
range is selected by the bin function. On the right side of the tree, the HoG
operator is applied to a circular region of the image, which corresponds to the
upper nose, eyes, and eyebrow areas. The subject’s nose appears much narrower
when surprised, due to her mouth being open. There is also more of the nose
included in the surprised image, which introduces an additional edge gradient.
The eyes are also different when surprised; they appear wider and have more
white showing. All of these differences change the histogram that is produced,
allowing GP to extract features that distinguish these two expressions. The value
of the bin corresponding to the 0◦–44◦ range is chosen by the bin node on the
right side of the tree. The root of the tree then outputs the difference between
the values from the left and right sides of the tree. This program scores 98%
and 95% on training and test sets respectively on the fold it was generated in.
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Fig. 3. Example program 1: 98 % training and 95 % test performance on Jaffe dataset
(a) GP tree, (b) Happy (+ve) expression, and (c) Surprised (−ve) expression.

6.2 Example Program 2

Another program with very good performance (95% training and 100% test
accuracy) on the Jaffe dataset is shown in Fig. 4. This program is similar to
Program 1 in that it uses only the difference of two histogram values to classify
images with high accuracy. The yellow circular region contains the left eye and
cheek, and a small part of the nose. The left eye has a different appearance
between the happy and surprised expressions; when surprised, a larger amount
of the eye is visible. The left nostril is also open in the surprised expression,
producing a large gradient around it which is included in the yellow circle. While
the blue circle is more difficult to analyse as it covers a large part of the image,
one important observation is that it appears to be bounded by the eyes and
mouth. The mouth is much darker in the surprised expression, giving a smaller
gradient than in the happy expression where there is a distinct gradient between
the white teeth and darker lips. By selecting the important mouth, eye and nose
regions, the feature selected from the blue circle are used by GP to distinguish
between happy and surprised expressions.

Fig. 4. Example program 2: 95 % training and 100% test performance on Jaffe dataset
(a) GP tree, (b) Happy (+ve) expression, and (c) Surprised (−ve) expression.

6.3 Example Program 3

Unlike the Jaffe and COIL-20 datasets, GP-HoG is unable to obtain perfect
training performance on UIUC, and so large programs are produced by the evo-
lutionary training process to maximise the training performance. The program
in Fig. 5 (a) is one of the simpler programs that performs well on UIUC, with a
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tree depth of eight. The regions used by this program are shown in Fig. 5 (b) and
(c). While many regions are used, most tend to be small, identifying particular
aspects of the image that are useful for classification. Several of these regions
enclose specific parts of the car in (b), such as the front wheel, wheel arch and
parts of the front door. The front wheel is likely to have a distinctive histogram,
as it has a circular tyre surrounding the hubcap. This gives a circular edge which
has a consistently changing orientation and a large gradient magnitude (as the
tyre is black and the hubcap is grey), producing a histogram with a similar mag-
nitude in each bin. The same region in the background image contains a straight
edge, which would produce a histogram with a spike in one bin. This difference
in histograms helps the GP tree to distinguish these two classes.

Fig. 5. Example program 3: 96 % training and 97 % test performance on UIUC dataset
(a) Lisp expression, (b) Car (+ve) image, and (c) Background (−ve) image.

7 Conclusions

We proposed a new GP method for simultaneous region selection, feature con-
struction and classification, which combines novel functions inspired by the HoG
algorithm with the region selection concept proposed in the 2TGP method. Per-
formance evaluation showed good results using the proposed method compared
to the performance of 2TGP on three datasets with increasing difficulty. Perfor-
mance was also promising when compared to other machine learning baselines
using SURF features. The analysis of high-performing solutions showed that the
GP-HoG approach could perform very well using simple programs. The adapta-
tion of HoG for use as a GP function was shown to be an effective method of
performing high-level feature extraction directly within a GP tree.

In the future, we would like to study the use of the extracted and con-
structed features produced by GP-HoG across different classifiers. This will help
in identifying whether GP-HoG can be used for automatic feature extraction
and construction, and whether these features are biased towards a specific type
of classifiers. Another very important direction is to investigate the possibility
of using other algorithms which could also be adapted directly in GP functions.
For example, deeper analysis of the SURF or SIFT algorithms could produce
functions that could be added to the GP-HoG approach. Other techniques such
as edge detection could also be used within a GP tree in order to build a multi-
faceted classifier which draws upon a range of techniques for complex classifica-
tion tasks.
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