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Abstract. A common approach in Geometric Semantic Genetic Pro-
gramming (GSGP) is to seed initial populations using conventional,
semantic-unaware methods like Ramped Half-and-Half. We formally
demonstrate that this may limit GSGP’s ability to find a program
with the sought semantics. To overcome this issue, we determine the
desired properties of geometric-aware semantic initialization and imple-
ment them in Semantic Geometric Initialization (Sgi) algorithm, which
we instantiate for symbolic regression and Boolean function synthesis
problems. Properties of Sgi and its impact on GSGP search are verified
experimentally on nine symbolic regression and nine Boolean function
synthesis benchmarks. When assessed experimentally, Sgi leads to supe-
rior performance of GSGP search: better best-of-run fitness and higher
probability of finding the optimal program.

Keywords: Geometric semantic genetic programming · Semantic ini-
tialization · Population

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [16] exploits the spatial
properties of program semantics in order to improve the effectiveness of program
synthesis. The operators proposed within this branch of genetic programming
(GP) have well-understood effects in terms of program behavior on tests, and
some of them even guarantee producing programs with semantics that remain
in certain geometric relationship with the parent(s). As a result, the dynamics
of a GSGP search process is in general more predictable than for conventional
GP, GSGP methods are often superior in terms of performance [3,4,16,20,23]
and lend themselves conveniently to theoretical analysis [17–20,22].

The majority of research effort in GSGP focuses on search operators, which
is not surprising given that successful program synthesis is directly contingent on
them. However, like in case of other evolutionary computation algorithms, the
performance of GSGP depends also on the starting point of a search process, i.e.,
on the contents of the initial population. It is often assumed that the exploratory
capabilities of evolutionary search weaken that dependency. This claim can be
however questioned in GSGP, because of the mentioned above more predictable,
more ‘directional’ and targeted behavior of search operators.
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Our case in point in this study is the convergent character of semantic geomet-
ric crossover (Sgx). The exact variant of this search operator [16] is guaranteed
to produce an offspring with semantics located in the segment connecting par-
ents’ semantics. This, as we showed in [20], implies that for a GP run equipped
with Sgx only, the set of all semantics that can be reached in a search process is
determined by the initial population. A scenario in which the initial population
precludes arriving at the program with desired semantics (the target) is plausi-
ble, and the odds for it grow with the dimensionality of semantics (the number
of tests (fitness cases)). This risk was largely ignored in past studies on GSGP, in
part due to widespread use of mutation along with crossover. Nevertheless, this
effect deserves better understanding. Also, as we will argue further, it may be
worth addressing this issue even if mutation accompanies crossover as a search
operator.

The main contribution of this study is the observation that an alternative
(to mutation) remedy to Sgx’s high susceptibility to initial conditions is to con-
struct the starting population more carefully. We propose Semantic Geometric
Initialization (Sgi), a semantically aware initialization method that designs the
initial population with the search target in mind. A population initialized with
Sgi is guaranteed to make the target semantics achievable with Sgx. Sgx, due
to its stochastic nature and oblivion to target, is still not guaranteed to syn-
thesize the correct program when initialized with Sgi; however, such a success
becomes much more likely, as we demonstrate in experimental part of this study.

The following Sect. 2 briefly introduces the necessary formalisms. Section 3
uses that formal framework to identify the problem signaled above, i.e., that
initial population imposes strict constraints on the set of semantics that can be
reached with Sgx. Section 4 presents the Sgi algorithm and justifies its design.
Section 5 argues that Sgi is fundamentally different from population initializa-
tion methods proposed in the past (including the semantic-aware ones), and
Sect. 6 demonstrates Sgi’s usefulness empirically on a suite of well-known GP
problems. Section 7 discusses the main results, and Sect. 8 summarizes this study
and outlines the potential follow-up directions.

2 Background

We define a program p ∈ P in a programming language P as a function that maps
a set of inputs I into a set of outputs O, which we denote by o = p(in), where
in ∈ I and o ∈ O. We consider only deterministic programs that feature no side
effects, nor memory persistent across executions. Semantics s ∈ S is a vector
s = [o1, o2, . . . , on] ∈ On, where we refer to On as semantic space (a vector
space), and oi corresponds to ith element in a given n-tuple of program inputs
from In that defines the considered program synthesis task. Semantics s(p) of
a program p is a vector of p’s outputs when executed on a fixed set of inputs
I ⊂ I, i.e., s(p) = [p(in1), p(in2), . . . , p(inn)], ini ∈ I.

The concept of semantics allows reasoning about program behavior in terms
of n-dimensional spaces. Each program has a well-defined semantics, i.e., a point
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in semantic space On. The desired outputs given by a specific synthesis problem
uniquely determine a point t in that space called target (or target semantics).
If a fitness function happens to be a metric (which is almost always the case in
GP), the fitness landscape defined over On is a unimodal cone with the apex in
t [22]. These properties open the door to defining spatial relationships between
program semantics, and investigating whether particular search operators obey
them or not and what is the impact of those properties on the efficiency of
search. The concepts of particular importance here are geometric mutation and
geometric crossover.

Definition 1. Given a parent program p, an r-geometric mutation is an opera-
tor that produces an offspring p′ with semantics s(p′) in a ball of radius r centered
in s(p), i.e., ‖s(p), s(p′)‖ ≤ r.

Definition 2. Given parent programs p1, p2, a geometric crossover is an opera-
tor that produces an offspring p′ with semantics s(p′) in a segment between s(p1)
and s(p2), i.e., ‖s(p1), s(p2)‖ = ‖s(p1), s(p′)‖ + ‖s(p′), s(p2)‖.

A crossover operator with the above property has the ideal ‘mixing’ charac-
teristics: the semantics of the offspring is located ‘in between’ of parents’ seman-
tics. This is in stark contrast to the highly unpredictable semantics of programs
produced by conventional search operators (see, e.g., the arguments in [11]).

The quest for practical algorithms that implement geometric search opera-
tors lasted for several years. Among others, multiple approximately geometric
crossovers have been proposed [10–12,20,23,24]. The breakthrough came with
publication of [16], where exact versions of geometric crossover and mutation
have been proposed, defined as follows for particular domains.

Definition 3. (Algorithms for geometric mutation, Sgm) Symbolic regres-
sion: Given parent arithmetic program p, an offspring is a program p′ =
p+ r(m1 −m2), where m1 and m2 are random arithmetic programs that output
values in range [0,1]. Boolean domain: Given Boolean parent program p, an
offspring is a program p′ = m ∨ p with probability 0.5, p′ = m ∧ p otherwise,
where m is a random minterm.

Definition 4. (Algorithms for geometric crossover, Sgx) Symbolic regres-
sion: Given parent arithmetic programs p1, p2, an offspring is a program p′ =
mp1+(1−m)p2, where m is a random arithmetic program that returns values in
range [0,1]. Boolean domain: Given Boolean parent programs p1, p2, an off-
spring is a program p′ = (p1 ∧ m) ∨ (m ∧ p2), where m is a random Boolean
program.

3 The Problem

The Sgm and Sgx operators are geometric by construction: the offspring is
guaranteed to be geometric with respect to parents in the sense of Definitions 1
and 2. Expectedly, they deliver superior search performance in all domains, as
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shown experimentally in [16] and further studies. However, Sgm is the key to
that success: it is indispensable for good performance, while Sgx used alone
sometimes fails to converge to the sought program [16,23].

The reason for this state of affairs is the ‘centripetal’ character of Sgx, which
can produce only the offspring with semantics in the segment connecting parents’
semantics. On one hand, this is highly desirable given that fitness landscape in
semantic space is unimodal: an application of Sgx to any pair of solutions in
that space is guaranteed to produce an offspring with attractive properties – for
instance for fitness and operator’s metric being Euclidean distance, an offspring
that is not worse that the worse of the parents [22]. On the other hand however, if
Sgx is the only search operator used for program synthesis, the set of semantics
achievable from a given initial population P ⊂ P is limited to the convex hull
spanning the semantics of programs in P , since that convex hull incorporates all
segments between semantics of all pairs of programs in P . Formally (cf. [20]):

Theorem 1. Consider a population P1 of programs and a search process that
starts from P1 and uses Sgx to generate subsequent generations of programs.
A program having semantics t can be achieved in that search process iff the convex
hull of P1 includes t.

Proof. Let Pg be population in generation g ≥ 1, Cg be convex hull of semantics
of programs in Pg. For all given pairs of parent programs p1, p2 ∈ Pg, a semantics
s(p′) of an offspring p′ is included in a segment of s(p1) and s(p2) that in turn
is included in Cg. The set of all offspring Pg+1 ⊆ Cg constitutes a population
of generation g + 1. By the non-decreasing property of convex hull, Cg+1 ⊆ Cg.
By induction, Cg+1 ⊆ Cg ⊆ ... ⊆ C1. Hence, semantics t can be achieved in
generation g iff t ∈ Cg ⊆ C1.

The choice of ‘t’ as the symbol denoting the semantic in question is not
incidental: the above theorem applies in particular to the target, with profound
consequences. If t happens to be located outside the convex hull, applications
of Sgx to P , regardless how many, cannot lead to a program with semantics t.
Unfortunately, this is relatively likely for populations initialized in conventional,
semantic-unaware ways. For instance, for symbolic regression, the semantics of
programs generated by means of the popular Ramped Half-and-Half (Rhh)
method [9] tend to initialize programs with relatively simple semantics, typi-
cally clustered around the origin of coordinate system of semantic space [13]. A
target located far away from that origin is likely to be outside the convex hull
and thus unreachable by the actions of Sgx.

This observation, though rarely formalized in the above way in past literature,
was one of the reasons for using mutation operators alongside with Sgx (the
other reason being Sgx’s propensity to produce large programs). The natural
operator of choice is in this context Sgm, as it is provably capable of reaching
the target from arbitrary starting location in semantic space (even when used
alone; see the semantic stochastic hill climber in [16]). However, it may require
multiple iterations and by this token produce large programs. In the following,
we propose an alternative way of making target achievable for Sgx.
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4 Semantic Geometric Initialization

In the light of Sect. 3 it becomes evident that the target becomes reachable for
Sgx once it belongs to the convex hull spanning the semantics of programs in
initial population. In this section, we propose Semantic Geometric Initialization
(Sgi), a method that achieves that goal by means of semantic- and geometry-
aware population initialization.

Algorithm 1. Calculation of a set of semantics such that their convex hull in
On encloses the target t. popsize is desired population size.
1: function Wrap(t, popsize)
2: S = ∅ � Output set
3: n = |t| � Dimensionality of semantic space
4: I = {1, . . . , n} � Indices of all dimensions
5: k = 1 � Number of dimensions to change in t
6: while k ≤ n do
7: for I ′ ∈ (I

k

)
do � I ′ = k-element combination of dimensions

8: for b ∈ {0, 1}k do � b = combination of directions on dimensions in I ′

9: s ← t
10: for i ∈ I ′ do
11: if bi = 1 then
12: si ← AddOne(ti)
13: else
14: si ← SubtractOne(ti)

15: if s �∈ S then
16: S = S ∪ {s}
17: if |S| = popsize then
18: return S
19: k ← k + 1

20: return S � |S| < popsize, population is not filled

The input to the method is the target t. The algorithm proceeds in two steps:

1. Use the function Wrap (Algorithm 1) to generate a set of semantics S ⊂ On

such that the convex hull of S encloses target t, i.e., t ∈ C(S),
2. For each semantics si ∈ S, synthesize a program p such that s(p) = si.

The realization of each step is domain-dependent. For the first step we provide an
abstract Algorithm 1 that will be specialized in the following for symbolic regres-
sion and Boolean function synthesis domains. It calculates set of semantics that
wrap t in their convex hull in On semantic space. The algorithm iteratively con-
structs new semantics by modifying k components (dimensions) of the target t.
For each subset of k components of t, the algorithm attempts to construct 2k

semantics by applying to these components all combinations of two domain-
dependent functions: AddOne and SubtractOne. We gather the resulting
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semantics in the output set S while discarding duplicates. We start with k = 1
and increment it each time all k-component sets have been considered.

For the symbolic regression domain, we define AddOne and Subtrac-

tOne functions using arithmetic operations:

AddOne(tai
) ≡ tai

+ 1 SubtractOne(tai
) ≡ tai

− 1

The Wrap algorithm, when instantiated with these functions and invoked
with popsize ≥ 2, is guaranteed to construct a set of semantics S such that
t ∈ C(S). In other words, there exists a dimension i of t and semantics s1 and
s2, such that s1i < ti < s2i and ∀j �=is

1
j = tj = s2j . Thus, under any metric, t is

included in the segment between s1 and s2 – a degenerated case of a convex hull.
Concerning program synthesis, for each semantics s ∈ S calculated by

Algorithm 1, Sgi constructs a program using multivariate polynomial interpola-
tion as described in [26]. The set of points used in interpolation comes from the
set of program inputs in ∈ I on which program’s semantics is to be calculated
and corresponding components of s, i.e., (ini, si), k = 1, . . . , n.

For the Boolean function synthesis, the definitions of AddOne and Sub-

tractOne are Boolean counterparts of the above arithmetic operations, limited
to the corners of the unit hypercube {0, 1}n. Since there are only two values in
Boolean domain: 0 (false) and 1 (true), the Boolean addition of 1 results in 1
(i.e., q ∨ 1 ≡ 1), the Boolean subtraction of 1 results in 0 (i.e., q ∧ 0 ≡ 0) for any
term, and the functions reduce to constants:

AddOne(tai
) ≡ 1 SubtractOne(tai

) ≡ 0

For popsize ≥ 2 Wrap is guaranteed to include the target t in C(S), because
there exists a dimension i of t and semantics s1 and s2, such that s1i = ti �= s2i
or s1i �= ti = s2i and ∀j �=is

1
j = tj = s2j . Sgi synthesizes the Boolean programs pi

for semantics si ∈ S using the following formula:

pi =
∨

j=1..n : tj=1

yj , where yj =
∧

k=1..n

{
xk if injk
— ——
xk if injk

, (1)

where injk is a value of kth variable of jth input used to calculate semantics, yj
is a minterm that is 1 for jth input and xk is kth program argument.

5 Related Work

To our knowledge, Sgi is the first semantic and geometric population initializa-
tion method in GP, however not the first semantic method of this kind.

Looks in [13] proposed Semantic Sampling (Ss) heuristic that produces a pop-
ulation of semantically unique Boolean programs with uniformly distributed pro-
gram sizes. Ss partitions a population into bins by program size and fills them
up to assumed capacity by semantically unique programs. Sgi differs from Ss

in its awareness of geometry of semantic space. Also, Sgi can operate in any
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Table 1. Parameters of evolutionary algorithms.

Symbolic regression Boolean domain

Number of runs 30

Population size 1000

Termination condition 50 generations or fitness = 0

Selection method Tournament selection of size 7

Fitness function L2 metric L1 metric

Instructions x1, x2,+,−,×, /, sin, cos, exp, loga x1, x2, . . . ,b and, or, nand, nor
a log is defined as log |x|; / returns 0 if divisor is 0.
b The number of inputs depends on a particular problem instance

Table 2. Benchmark problems.

Problem Definition (formula) Variables Range Size

S
y
m
b
o
li
c
re
g
re
ss
io
n

R1 (x1 + 1)3/(x2
1 − x1 1)1+ 〈−1, 1〉 20

R2 (x5
1 − 3x3

1 + 1)/(x2
1 1)1+ 〈−1, 1〉 20

R3 (x6
1 + x5

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 1 〈−1, 1〉 20

Kj1 0.3x1 sin(2πx1 1) 〈−1, 1〉 20
Kj4 x3

1e
−x1 cos(x1) sin(x1)(sin

2(x1) cos(x1) − 1) 1 〈0, 10〉 20

Ng9 sin(x1) + sin(x2
2 2) 〈0, 1〉2 100

Ng12 x4
1 − x3

1 +
x2
2
2

− x2 2 〈0, 1〉2 100

Pg1 1/(1 + x−4
1 ) + 1/(1 + x−4

2 2) 〈−5, 5〉2 100

Vl1 e−(x1−1)2/(1.2 + (x2 − 2.5)2) 2 〈0, 6〉2 100

Problem Instance Variables Size

B
o
o
le
a
n
d
o
m
a
in Even parity

2355raP
4666raP
82177raP

Multiplexer
4666xuM
84021111xuM

Majority
4677jaM
82188jaM

Comparator
4666pmC
65288pmC

domain for which the AddOne and SubtractOne functions can be defined
(and efficiently computed).

Beadle and Johnson [1] proposed Semantically Driven Initialization (Sdi)
that fills population with semantically unique programs. Sdi was designed for
Boolean and artificial ant problems and uses a reduced ordered binary deci-
sion diagram or a sequence of ant moves, respectively, as the representation of
program’s semantics. Like Ss, Sdi does not engage geometric considerations.

An approach called Behavioral Initialization (Bi) was proposed by Jackson [7].
Bi is a wrapper onRhh that accepts a program created byRhh if it is semantically
unique in the population being initialized. Although domain-independent, Bi is
oblivious to geometry of the semantic space.
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Pawlak proposed Competent Initialization (Ci) [20] for symbolic regression
and Boolean domains. Ci repetitively invokes Sdi and accepts (i.e., adds to the
population) the created program if its semantics expands the convex hull of the
semantics of programs already present in the population. Ci is geometric in the
limit of population size approaching infinity, but in contrast to Sgi does not
guarantee including the target in the convex hull.

6 Experimental Verification

We compare Sgi to Ramped Half-and-Half (Rhh) [9] – the arguably most com-
mon population initialization method in GSGP and in GP in general. We run
two groups of GSGP setups, with Sgi and with Rhh as the initialization opera-
tor, to determine the advantages and disadvantages of using Sgi. In both groups,
we consider a setup with Sgx [16] as the only search operator to verify whether
inclusion of the target in the convex hull of the initial population increases Sgx’s
ability of reaching it (cf. Sect. 3). The second setup in each group uses both Sgx

and Sgm [16], in a configuration that is most commonly practiced in GSGP.
In addition, we run a canonical control setup, with Rhh and traditional non-
semantic search operators. Overall, there are thus five setups:

SgiX – Sgi accompanied with Sgx only,
SgiXM – Sgi with Sgx and Sgm in proportions 50 : 50,
RhhX – Rhh with Sgx only,
RhhXM – Rhh with Sgx and Sgm in proportions 50 : 50,
RhhTxTm – Rhh with tree crossover and tree mutation [9] in propor-
tions 90:10.

Table 1 sums up the parameter settings; other parameters are set to ECJ [14]
defaults.

We compare the setups on nine uni- and bi-variate symbolic regression prob-
lems, and nine Boolean function synthesis problems. The problems come from
[15,23] and are summarized Table 2. In univariate symbolic regression problems,
20 Chebyshev nodes1 [2] are used for training, and 20 uniformly sampled points
for testing. For bivariate problems 10 values are picked in analogous way for each
input variable and the Cartesian product of them constitutes a data set. Points
are selected from the ranges shown in the table. For the Boolean benchmarks,
training sets enumerate all combinations of inputs and there are no testing sets.

Training Set Performance. Figure 1 and Table 3 present average and
.95-confidence interval of the best-of-generation and the best-of-run program,
respectively. Both Sgi* setups begin from a relatively low fitness of about 1
in all problems in both problem domains. This phenomenon originates in the

1 Points given by xk = 1
2
(a+b)+ 1

2
(b−a) cos( 2k−1

2n
π), k = 1..n, where [a, b] is the range

of training set, and n is number of data points. Using Chebyshev nodes minimizes
the likelihood of Runge’s phenomenon [25].
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Fig. 1. Average and .95-confidence interval of the best-of-generation fitness.
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Table 3. Average and .95-confidence interval of the best-of-run fitness. Last row
presents the averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 0.02 ±0.00 0.02 ±0.00 2.62 ±0.20 1.05 ±0.08 0.24 ±0.07

R2 0.02 ±0.00 0.02 ±0.00 0.53 ±0.06 0.26 ±0.02 0.20 ±0.03

R3 0.02 ±0.00 0.02 ±0.00 0.18 ±0.02 0.14 ±0.01 0.04 ±0.01

Kj1 0.02 ±0.00 0.02 ±0.00 0.34 ±0.02 0.29 ±0.02 0.08 ±0.02

Kj4 0.02 ±0.00 0.02 ±0.00 0.95 ±0.03 0.79 ±0.03 0.26 ±0.04

Ng9 0.11 ±0.01 0.11 ±0.01 0.59 ±0.05 0.39 ±0.03 0.24 ±0.06

Ng12 0.12 ±0.01 0.12 ±0.01 0.37 ±0.02 0.33 ±0.02 0.35 ±0.04

Pg1 0.09 ±0.00 0.10 ±0.00 1.31 ±0.08 1.00 ±0.06 0.28 ±0.08

Vl1 0.16 ±0.01 0.14 ±0.01 1.03 ±0.03 0.93 ±0.02 0.42 ±0.08

Par5 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 5.57 ±0.56

Par6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 17.93 ±0.90

Par7 0.00 ±0.00 0.00 ±0.00 0.17 ±0.19 0.10 ±0.11 47.77 ±1.22

Mux6 0.00 ±0.00 0.00 ±0.00 1.40 ±0.34 1.27 ±0.37 4.63 ±0.72

Mux11 0.00 ±0.00 0.00 ±0.00 125.50 ±9.63 132.33 ±11.25 122.73 ±6.43

Maj7 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.20 ±0.62

Maj8 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.67 ±0.32

Cmp6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.40 ±0.41

Cmp8 0.00 ±0.00 0.00 ±0.00 0.03 ±0.06 0.00 ±0.00 11.93 ±1.08

Rank: 1.89 1.72 4.08 3.36 3.94

Table 4. Post-hoc analysis of Friedman’s test on Table 3: p-values of incorrectly judging
a setup in a row as achieving better best-of-run fitness than a setup in a column.
Significant values (p < 0.05) are visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm

SgiX 0.000 0.020 0.000
SgiXM 0.997 0.000 0.006 0.000
RhhX

RhhXM 0.567 0.748
RhhTxTm 0.999

RhhTxTm

SgiX RhhX

SgiXM RhhXM

construction of AddOne and SubtractOne formulas that cause the initial
population to consists of multiple programs at distance 1 from the target. These
superior starting conditions are especially evident in Boolean domain, where the
programs produced by Rhh in the initial generation are 1–2 orders of magnitude
worse than those produced by Sgi.

In symbolic regression problems GSGP clearly benefits from Sgi. We
observe steep improvement of fitness in the first ten generations that gradu-
ally slows down and finally stops after about 20 generations. The initial rate of
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Table 5. Probability and .95-confidence interval of success over problems. Problems
that were not solved at least once are not shown. Last row presents the averaged ranks
of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

Ng9 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.07 ±0.09

Par5 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Par6 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Par7 1.00 ±0.00 1.00 ±0.00 0.90 ±0.11 0.90 ±0.11 0.00 ±0.00

Mux6 1.00 ±0.00 1.00 ±0.00 0.17 ±0.13 0.23 ±0.15 0.00 ±0.00

Mux11 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Maj7 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.03 ±0.06

Maj8 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.53 ±0.18

Cmp6 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.30 ±0.16

Cmp8 1.00 ±0.00 1.00 ±0.00 0.97 ±0.06 1.00 ±0.00 0.00 ±0.00

Rank: 2.58 2.58 3.08 2.92 3.83

Table 6. Post-hoc analysis of Friedman’s test on Table 5: p-values of incorrectly judging
a setup in a row as having higher probability of success than a setup in a column.
Significant values (p < 0.05) are visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm

SgiX 1.000 0.503 0.827 0.001
SgiXM 0.503 0.827 0.001
RhhX 0.119

RhhXM 0.984 0.029
RhhTxTm

RhhTxTm

SgiX RhhX

SgiXM RhhXM

improvement is slower for RhhX and RhhXM, which gradually improve in the
first 5–8 generations and then saturate. In Boolean domain both Sgi* setups
find the optimum in 1–2 generations, while Rhh* GSGP setups need 10–25
generations to solve all problems, except for multiplexers.

There is no noticeable difference in generational characteristic between both
Sgi* setups. In contrast, both Rhh* GSGP setups differ noticeably: RhhXM

fares better in most symbolic regression problems. In the Boolean domain,
there are no significant differences. Best-of-generation fitness of RhhTxTm is
in between those of the GSGP setups for greater part of runs for the symbolic
regression problems, and worse than all GSGP setups for the Boolean problems.

Friedman’s test [8] on the best-of-run fitness signals significant differences
between setups (p = 9.68×10−6), so we conduct post-hoc analysis with symmetry
test [6]. Table 4 presents the p-values for the hypothesis that a setup in a row is
better than a setup in a column, and the graph of significant outrankings. The
setups initialized with Sgi are significantly better than all other setups.

Table 5 presents the empirical probability of solving problems by particu-
lar setups, which we define as achieving best-of-run fitness lower than 2−23
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Fig. 2. Median and .95-confidence interval of test set fitness of the best-of-generation
program on training set.

Table 7. Median and .95-confidence interval of test set fitness of the best-of-run pro-
gram on training set. Last row presents the averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 18.40 ±0.00 18.40 ±0.00 17.53 ±0.25 18.39 ±0.12 0.21 ±0.07

R2 3.38 ±0.00 3.38 ±0.00 3.29 ±0.08 3.34 ±0.02 0.10 ±0.06

R3 0.71 ±0.00 0.72 ±0.00 0.66 ±0.02 0.69 ±0.01 0.03 ±0.02

Kj1 0.56 ±0.00 0.56 ±0.00 0.51 ±0.02 0.52 ±0.02 0.18 ±0.04

Kj4 2.66 ±0.00 2.66 ±0.00 2.24 ±0.03 2.25 ±0.04 1.38 ±0.89

Ng9 6.08 ±0.00 6.08 ±0.00 5.91 ±0.06 6.02 ±0.03 0.16 ±0.07

Ng12 2.21 ±0.00 2.21 ±0.00 2.10 ±0.02 2.13 ±0.03 0.19 ±0.06

Pg1 7.55 ±0.00 7.55 ±0.01 7.37 ±0.10 7.45 ±0.19 3.79 ±0.90

Vl1 3.62 ±0.01 3.62 ±0.01 3.38 ±0.04 3.37 ±0.06 0.80 ±0.57

Rank: 4.44 4.56 2.11 2.89 1.00
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Table 8. Post-hoc analysis of Friedman’s test on Table 7: p-values of incorrectly judging
a setup in a row as achieving better test set fitness than a setup in a column. Significant
values (α = 0.05) visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm

SgiX 1.000
SgiXM

RhhX0.015 0.009 0.835
RhhXM0.226 0.166

RhhTxTm0.000 0.000 0.569 0.083

RhhTxTm

SgiX RhhX

SgiXM RhhXM

Table 9. Average and .95-confidence interval of number of nodes in the best of run
program. Values ≥ 104 are rounded to an order of magnitude. Last row presents the
averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 1017 ±1016 1017 ±1016 1014 ±1014 1014 ±1014 103.73 ±13.76

R2 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 69.90 ±12.79

R3 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 123.37 ±16.20

Kj1 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 115.70 ±11.87

Kj4 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 127.37 ±14.44

Ng9 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 65.07 ±10.01

Ng12 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 52.50 ±12.88

Pg1 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 77.07 ±10.70

Vl1 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 97.23 ±13.71

Par5 199.00 ±0.00 199.00 ±0.00 104 ±1905.85 104 ±1458.59 321.80 ±26.53

Par6 694.90 ±25.58 700.10 ±20.84 106 ±105 106 ±105 353.27 ±34.98

Par7 1458.30 ±42.05 1461.20 ±42.64 1015 ±1015 1015 ±1015 378.27 ±39.02

Mux6 354.30 ±5.46 354.63 ±9.73 1015 ±1015 1016 ±1015 186.13 ±30.18

Mux11 9563.97 ±18.39 9416.97 ±219.98 1016 ±1014 1016 ±1015 159.13 ±19.26

Maj7 1400.20 ±23.91 1401.30 ±24.95 105 ±104 105 ±104 406.13 ±35.64

Maj8 1739.00 ±0.00 1739.00 ±0.00 105 ±5010.51 105 ±5096.79 313.20 ±34.53

Cmp6 579.77 ±13.04 578.87 ±9.58 1899.90 ±294.67 2350.37 ±354.01 245.73 ±25.83

Cmp8 2949.40 ±9.08 2892.53 ±38.50 1014 ±1014 105 ±105 249.87 ±38.20

Rank: 3.28 3.61 3.17 3.83 1.11

Table 10. Post-hoc analysis of Friedman’s test on Table 9: p-values of incorrectly
judging a setup in a row as producing smaller programs than a setup in a column.
Significant values (α = 0.05) visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm

SgiX 0.970 0.828
SgiXM 0.993
RhhX1.000 0.916 0.711

RhhXM

RhhTxTm0.000 0.000 0.001 0.000

RhhTxTm

SgiX RhhX

SgiXM RhhXM
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(the difference between 1.0 and the closest IEEE754 single precision number).
Both Sgi* setups solve all Boolean problems, while the setups using Rhh for
population initialization do not solve Mux11 in any run, and do not always solve
the other 3 out of 9 Boolean problems. The probabilities are a bit higher for
the setup that uses mutation. On the other hand, in symbolic regression, none
of the GSGP setups solved any of problems and only Ng9 problem is solved by
RhhTxTm. Friedman’s test (p = 6.73 × 10−4) and post-hoc analysis in Table 6
show that both Sgi* setups and RhhXM are better than RhhTxTm, however
the evidence is too weak to conclude about the differences between Sgi and Rhh

in GSGP.

Test-Set Performance. Figure 2 and Table 7 present the median and .95-
confidence interval of test-set fitness of the best-of-generation and the best-of-run
program on the training set, respectively. All GSGP setups significantly overfit
to training data: the test set fitness quickly increases in early generations and
remains high for the rest of runs. The values are slightly worse for the Sgi*
setups. This observation is consistent with previous studies, [20,23] and can be
attributed to the well-known bias-variance dilemma [5] in machine learning. The
use of Sgi leads to better adaptation to training data, and thus reduces bias.
That in turn increases the variance of performance on the unknown test data, and
makes GP more prone to overfitting. The conventional RhhTxTm setup is the
only one that generalizes well to the test set. Friedman’s test (p = 2.18 × 10−5)
and post-hoc analysis in Table 8 confirm: RhhTxTm and RhhX are better than
both Sgi* setups.

Program Size. Table 9 presents the average and .95-confidence interval of the
number of nodes in the best-of-run programs. The exponential growth of Sgx’s
offspring is clearly visible in the data. For the setups that involve that operator,
we report the total number of nodes/instructions in ‘unrolled’ trees. The actual
number of unique program nodes held in memory is many orders of magnitude
lower, because a given program may refer to its ancestor programs multiple times,
due to the ‘aggregative’ nature of exact semantic operators (see Definitions 3
and 4).

In contrast, RhhTxTm produces programs smaller than 500 nodes. For the
setups initialized with Sgi, it is worth noting that they produce large programs
only for problems that they failed to solve in some of runs (cf. Table 5). For
the remaining problems, the average number of nodes in a program is smaller,
however still bigger than of RhhTxTm. An exception is Par5 problem, for
which both Sgi* setups produce the smallest programs. Fortunately, use of Sgi
increases the probability of success and thus rises the likelihood of producing
small programs. Friedman’s test (p = 2.74 × 10−6) and post-hoc analysis in
Table 10 confirm that RhhTxTm produces smallest programs, but there is no
sufficient evidence to reveal the differences between the remaining setups.
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7 Discussion

The results presented above clearly corroborate the importance of population
initialization for GSGP. In particular, the geometric and semantic-aware initial-
ization offered by Sgi brings to zero the differences of the setups that use and
do not use Sgm (i.e., SgiX and SgiXM), on virtually all performance indicators
(fitness, test-set performance, program size). In other words, the convex hull of
semantics built around the target by Sgi makes the use of Sgm optional. We
hypothesize that this characteristics may be convenient in scenarios where Sgm

is slow at traversing search space, and where Sgx may be better in that respect.
Concerning low generalization capabilities, they are not due to Sgi, but are com-
mon to all setups that involve Sgm and Sgx, and reveal the more fundamental
problem of semantic geometric GP, i.e., its inherent lack of bias resulting in high
variance [5] (Sec. 6).

A vigilant reader might have noticed the seemingly paradoxical feature of the
proposed initialization technique. Sgi employs exact techniques to synthesize the
programs that support the convex hull around the target (multivariate polyno-
mial interpolation for the symbolic regression domain and disjunctive normal
forms for the Boolean domain). Then it relies on heuristic GP search to synthe-
size the program that solves the original task, i.e., has semantics in the target. It
does not take long to realize that the above exact techniques could be directly
used to synthesize the sought program, without using GP altogether.

Note however that the above paradox applies to the entire domain of GP, and
not only to Sgi or this particular study. Our goal was to verify the relevance
of geometric and semantic-aware initialization for search conducted by means
of GSGP, and the empirical evidence gathered here confirms the theoretical
suppositions. We explore the possibility of one-step construction of a perfect
program from a population in another study published in this very volume [21].

Sgi offers certain advantages for program size in the Boolean domain. As it
follows from Table 9, GSGP starting from traditionally initialized populations
(with Rhh) may grow monstrously large programs before reaching the target
(even when using Sgm, which is known to increase program size only by fixed
factor in every application, compared to the exponential growth of Sgx). When
an initial population forms a convex hull around the target, a few moves of Sgm
and/or Sgx may be sufficient to solve a synthesis task. We hypothesize thus that
the positive impact of Sgi is not only due to its convex hull property, but also
due to the proximity of the initial population to the target.

8 Conclusions

We have brought theoretical evidence that the possibility of finding a program
with the optimal semantics by GSGP running solely geometric crossover depends
on whether the convex hull spanning the programs in the initial population
includes the search target. Experimental verification has shown that the above
is true also for GSGP equipped with crossover and mutation. The commonly used
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Rhh initialization does not provide this guarantee. To overcome this problem,
we provided the Sgi algorithm that seeds the initial population with programs
that form an appropriate convex hull.

Further work is needed to develop Sgi for other domains than those consid-
ered in this paper, e.g., for the categorical one. Another interesting research topic
is the influence of the initial distribution of programs’ semantics on the analo-
gous distributions in subsequent populations and search performance. Last but
not least, the convex hull property is only the necessary condition to reach the
target. It remains an open question how to efficiently prevent GSGP operators
from losing the target from the population’s convex hull.
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