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Preface

The 19th European Conference on Genetic Programming (EuroGP) took place between
March 30 and April 1, 2016. Porto, Portugal, was the setting, and the Seminário de
Vilar Rua Arcediago Van Zeller was the venue.

The unique character of GP has been recognized from its very beginning. To date,
GP is essentially the only approach that has demonstrated the ability to automatically
generate, repair, and improve computer code in a wide variety of problem areas. It is
also one of the leading methodologies that can be used to “automate” science, helping
researchers to induce hidden complex models from observed phenomena. Furthermore,
GP has been applied to many problems of practical significance, and has produced
human-competitive solutions. Collectively, over 11,000 articles now appear in the
online GP bibliography1.

EuroGP is a mature event, the only conference exclusively devoted to the evolu-
tionary generation of computer programs. It attracts scholars from all over the world.
EuroGP has had an essential impact on the success of the field, by serving as an
important forum for expressing new ideas, meeting fellow researchers, and starting
collaborations. Indeed, EuroGP represents the single largest venue at which GP results
are published. Many success stories have been witnessed by the 18 editions of EuroGP.

EuroGP 2016 received 36 submissions from around the world. The papers under-
went a rigorous double-blind peer-review process, each being reviewed by at least three
members of the international Program Committee from 23 countries. The overall
quality of submissions was very high, and therefore not all good papers could be
accepted. The selection process resulted in this volume, with 11 papers accepted for
full-length oral presentation (30.6 % acceptance rate) and eight for short talks (52.8 %
global acceptance rate for both categories combined).

The wide range of topics in this volume reflects the current state of research in the
field. Thus, we see topics as diverse as semantic methods, recursive programs, gram-
matical methods, coevolution, Cartesian GP, feature selection, metaheuristics, evolv-
ability, and fitness predictors; and applications including image processing, one-class
classification, SQL injection attacks, numerical modelling, streaming data classifica-
tion, creation and optimization of circuits, multi-class classification, scheduling in
manufacturing and wireless networks. The results presented here represent the state
of the art in this exciting field.

Together with three other co-located evolutionary computation conferences
(EvoCOP 2016, EvoMusArt 2016, and EvoApplications 2016), EuroGP 2016 was part
of the Evo* 2016 event. This meeting could not have taken place without the help of
many people.

1 Maintained at http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html by William B.
Langdon

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html


First to be thanked is the great community of researchers and practitioners who
contributed to the conference by both submitting their work and reviewing others’ as
part of the Program Committee. Their hard work, in evolutionary terms, provided both
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The papers were submitted, reviewed and selected using the MyReview conference
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One-Class Classification for Anomaly
Detection with Kernel Density Estimation

and Genetic Programming

Van Loi Cao(B), Miguel Nicolau, and James McDermott

Natural Computing Research and Application Group,
University College Dublin, Dublin, Ireland

loi.cao@ucdconnect.ie, {miguel.nicolau,james.mcdermott2}@ucd.ie
http://ncra.ucd.ie

Abstract. A novel approach is proposed for fast anomaly detection by
one-class classification. Standard kernel density estimation is first used
to obtain an estimate of the input probability density function, based on
the one-class input data. This can be used for anomaly detection: query
points are classed as anomalies if their density is below some threshold.
The disadvantage is that kernel density estimation is lazy, that is the
bulk of the computation is performed at query time. For large datasets
it can be slow. Therefore it is proposed to approximate the density func-
tion using genetic programming symbolic regression, before imposing
the threshold. The runtime of the resulting genetic programming trees
does not depend on the size of the training data. The method is tested
on datasets including in the domain of network security. Results show
that the genetic programming approximation is generally very good, and
hence classification accuracy approaches or equals that when using kernel
density estimation to carry out one-class classification directly. Results
are also generally superior to another standard approach, one-class sup-
port vector machines.

Keywords: Anomaly detection · One-class classification · Kernel den-
sity estimation

1 Introduction

Anomaly detection is the problem of detecting samples or patterns in data that
are different from expected behavior [3]. The nonconforming patterns are referred
to a variety of names in different application domains, but the terms anomalies
and outliers are common. Anomaly detection is applied in many fields such as
intrusion detection, credit card fraud detection, insurance, health care, fault
detection in safety critical systems. Anomaly detection plays an important role
in a variety of application domains because anomalies in data often translate to
critical, actionable information or potentially dangerous situations [1,3].

In network security, anomaly detection means the discrimination of illegal
and malicious activities from normal connections or expected behavior of systems
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-30668-1 1



4 V.L. Cao et al.

[13,14]. The role of automated anomaly detection has become increasingly impor-
tant in network security due to the widespread use of computer networks in
recent years [13]. However, there are some issues that make constructing anom-
aly detection models challenging. One of the major issues is that anomalies are
continuously evolving over time. The model built from current data may not be
able to capture attacks or unauthorized accesses in the future [6]. Collecting the
anomalous data is extremely difficult due to the privacy and security concerns of
computer networks and the shortage of intrusive network traffic in host logs and
events. Moreover, labeling such data is also a challenging and time-consuming
task for experts in the domain and has potential problems [24]. Thus, in many
situations only the normal class is available.

Because of these issues, one-class learning or novelty detection is a common
method for anomaly detection. In one-class classification (OCC), only one class
(the target) is available for constructing a classifier. The classifier is then used
to distinguish whether a test instance belongs to the target class or the non-
target class [29]. In this work, we use the terms target and non-target to refer
to normal and anomaly respectively. More details about one-class learning and
recent one-class methods are discussed in Sect. 2.

In this paper, we propose a one-class learning method by combining Genetic
Programming (GP) with Kernel Density Estimation (KDE) (described in detail
in Sect. 3.2). KDE has the ability to directly estimate density from data. It can
thus be used as a one-class classifier by imposing a density threshold: points
in low-density areas are classed as anomalies. However the computational cost
of KDE at query time is potentially high, scaling with the number of training
points. Fortunately, GP has the ability to approximate density. The result is a
model where the computational cost at query time depends on the number of
nodes in the GP tree. Therefore, in our system KDE is first used to estimate
the density from target examples, and GP is then employed to approximate this
density. The resulting one-class classifier not only yields high accuracy in detect-
ing anomalies, but has reduced computational cost relative to KDE. Another
potential advantage, not pursued in this paper, is that the resulting models are
interpretable GP trees. The method is described in detail in Sect. 4.

The rest of this paper is organized as follows. In the next section, we briefly
review some work related to one-class classification. In Sect. 3, we give a short
introduction to GP for classification, and KDE. This is followed by a section
proposing OCC using KDE and GP. Experiments, and Results and Discussion
are presented in Sects. 5 and 6 respectively. The paper concludes with highlights
and future directions.

2 Related Work

The concept of one-class classification was originated by Moya et al. [18]. One-
class classification has rapidly emerged in a variety of fields from document
classification [17], concept learning [9], novelty detection [2] to anomaly detec-
tion [8,20]. Based on the availability of training data, one-class classification can
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be categorized into three groups [11]: (1) learning from only target examples;
(2) learning from target examples and unlabeled data; (3) learning from tar-
get examples and a small number of non-target examples. In terms of anomaly
detection, we concentrate on (1), that is the one-class learning techniques that
construct a model when non-target data is absent.

Tax and Duin [28,29] proposed a method called Support Vector Data Descrip-
tion (SVDD) to solve the problem of OCC. In the method, a hypersphere with
minimum radius around the target examples in feature space is found, which
encompasses almost all target instances. In order to achieve a sufficient decrease
in the volume of the hypersphere, it possibly rejects some fraction when training
this model. This illustrates a theme present in all one-class classification research,
the trade-off between false positive and false negative rates. Tax [27] introduced
different kernel functions to SVDD that make the method more flexible, and
the Gaussian kernel was found to be the most suitable for many datasets. How-
ever, this technique requires a large number of target examples, and becomes
inefficient in high dimension [11].

Instead of finding a hypersphere, Schölkopf [21,22] presented an alternative
approach called one-class SVM. The one-class classifier is achieved by searching
for a hyperplane with a maximum margin between the region containing target
data and the origin in feature space. The target data is again mapped to feature
space via a kernel. The efficacy of the method is evaluated on a handwritten
digit dataset, and the results show that the classifier performs well.

Recently, several evolutionary algorithm approaches have been proposed for
one-class classification problem [4,5,31]. Heywood and Curry have a long line of
research, e.g [4,5] on multi-objective one-class genetic programming. In order to
establish a more precise boundary, a large number of artificial data is generated
to construct a two-class classifier. They combine a multi-objective fitness func-
tion with a local membership function to improve the search for specific regions
of the target distribution. Its performance was compared to one-class v-SVM,
bottleneck neural network (BNN) and two-class SVM, and the results show that
the one-class GP performs consistently overall.

Cuong To [31] proposed a different approach to one-class problem by calculat-
ing the sum of the Euclidean distance from a target point to all target examples
with an assumption that the distribution of the summed distance is normal. This
is similar to an inversion of a kernel method since a kernel is a similarity whereas
a Euclidean distance is a dissimilarity. They then used GP to approximate this
sum. They then used two thresholds at 2.5 % and 97.5 % on training dataset to
classify new examples. New points whose sum of distances was below the 2.5
percentile or above the 97.5 percentile of the data were classed as anomalies.
Effectively, the lower threshold meant that points with extremely low sums of
distances (i.e. directly in the middle of the target class) were wrongly classed
as anomalies. It is possible that malfunctions in their GP approximation made
this necessary. Our method is similar but avoids this error by using a single,
upper threshold. We also gain flexibility by using a kernel instead of Euclidean
distance.
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In this work, we present a new approach for one-class classification prob-
lem. This is to combine Kernel Density Estimator and Genetic Programming to
take advantage of their different strengths. While KDE can estimate the density
directly from data with unknown distribution, GP has the ability to search for a
function mapping from data to its density. Thus, the classifier not only produces
accuracy as good as KDE, but also reduces time consuming on testing stage.

3 Preliminaries

In this section we briefly introduce Genetic Programming and its application
in classification (Sect. 3.1), and introduce Kernel Density Estimation and its
application in one-class classification (Sect. 3.2).

3.1 Genetic Programming

GP was popularized by Koza in the 1990s [12]. It is an evolutionary paradigm
that is inspired by biological evolution. It aims to find good solutions to a diverse
spectrum of problems in the form of computer programs. GP has the ability to
represent solutions to many problems since the representation is highly flexible.

In particular, GP methods can be adapted to classification problems [16]. For
two-class classification problems, a typical approach is to evolve real-valued GP
trees, and then translate the numeric (real) values returned by them into class
labels using a threshold. Typically, the threshold is zero. Similar methods can be
applied for one-class classification (OCC): artificial data acts as the non-target
class [4,5]. However, in this paper we propose a different GP approach to OCC.
This is to use GP to approximate the density of the training set (and artificial
data) originally given by KDE.

3.2 Kernel Density Estimation

Kernel density estimation is one of the most attractive non-parametric methods
in the statistical literature for estimating a probability density function from
a sample of points [32]. It estimates the density function directly from data
with no assumption about the underlying distribution. It produces asymptotic
convergence to any density function [23]. These advantages make KDE a general
approach for many problems that do not assume any specific distribution of the
density function.

Let x1, x2, ...., xn be a set of d-dimensional samples in R
d drawn from an

unknown distribution with density function p(x). An estimate p̂(x) of the density
at x can be calculated using

p̂(x) =
1
n

n∑

i=1

Kh (x − xi) (1)

where Kh : Rd → R is a kernel function with a parameter h called the bandwidth.
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Fig. 1. The density distribution estimated by KDE. Figure reproduced from [34]

Two factors, kernel function and bandwidth play vital roles in KDE. A vari-
ety of kernel functions with different properties are typically chosen for KDE;
eg. Gaussian, Uniform, Epanechnikov, Exponential, Linear and Cosine. The
Gaussian kernel (Eq. 2) is probably the most common in applications and is
the only one used in this paper. As illustrated in Fig. 1, in KDE each point
contributes a small “bump” to the overall density, with its shape controlled
by the kernel and bandwidth. The bandwidth parameter h controls the trade-
off between bias of the estimator and its variance. This means that a large
bandwidth leads to a very smooth (i.e. high-bias) density distribution while the
density distribution is less smooth (i.e. high-variance) with a smaller bandwidth.

Kh (x) = exp (− x2

2h2
) (2)

In terms of OCC, we construct a model from only the target class, and we
typically do not assume any particular parametric distribution (e.g. Normal or
uniform) on the target class. Thus, KDE is a suitable approach for estimating the
density distribution of the target class. This can then be used to define a classifier
by imposing a threshold in terms of density: new (query) points are classified as
anomalies if they have a density lower than (say) 95 % of the training set. The
choice of threshold in practice depends on the relative frequency of anomalies in
the domain and the relative costs of false positives and false negatives.

A main drawback of KDE is its computational cost. KDE “remembers” all
training data in order to compute the density of each new point. Thus, the larger
the training data sample size, the greater the computational cost of querying new
points. The computational cost of KDE can be markedly improved using space-
partitioning trees, but the extent of the improvement depends on the bandwidth:
for large values of bandwidth (which appear to give the best results in our
experiments, described in Sect. 5), space-partitioning trees cannot eliminate as
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many points, hence the improvement is less. In any case, the complexity still
depends on the size of the training data [7].

4 Proposed Approach

In this paper we use GP to approximate the function learned by KDE, in order
to speed up the querying stage and remove the dependence on the size of the
training data. A second potential benefit of this approach is that the density
is expressed as a potentially interpretable symbolic expression, although we do
not use this interpretation in this paper. Therefore, the GP classifier not only
inherits the advantages of KDE, but also can reduce the computational cost of
the querying stage.

However, if training data is drawn from a small area of the feature space,
the classifier will lack the ability to predict density on points outside that area.
One solution is to generate artificial data in the low-density regions of the space.
Ideally, generating new data near the “border” between high and low-density
regions will particularly improve the approximation in important areas. This will
strengthen the classifier’s discrimination on both target and non-target exam-
ples. More details of the proposed one-class genetic programming technique is
described in the next subsection.

4.1 Description of Method

Let T = {x1, x2, ...., xm} be the target training set, where xi ∈ R
n is a target

instance and m is the number of samples in the target training set. We assume
that T has been standardized, that is shifted and scaled to give zero mean and
unit variance.

1. Kernel density estimation is employed to estimate the density distribution of
the target training set. Using the kernel density estimator, we compute the
density d(xi) for every target sample xi ∈ T .

2. An artificial data set A = {xm+1, xm+2, ...., xm+q}, is generated as described
in Sect. 4.2. The KDE is used to compute the density d(xi) for each artificial
example xi ∈ A against the target density distribution, where i ∈ {m+1,m+
2, .....,m + q}.

3. Let TS = T ∪ A = {x1, x2, ..., xm, xm+1, ..., xm+q}, and d(xi) is the density
of each point xi ∈ TS, where i ∈ {1, 2, ...,m,m + 1, ....,m + q}. We use GP
symbolic regression with a root mean square error to search for a function f
that satisfies the criterion in Eq. 3.

f (xi) ≈ d(xi) (3)

Therefore, the fitness function is given by

Fitness =

√√√√
(∑m+p

i=1 (f(xi) − d(xi))
2
)

(m + p)
(4)
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where m and p are the numbers of the target training set and the artificial
data set respectively, d(xi) is the density of sample xi ∈ TS.

Now we have a function f that, like KDE, can predict density on query data
but with less computational cost. To construct a classifier, we impose a threshold
on f , just as in the case of KDE, for example at a level that will classify the 5 %
of the training data with the lowest density values as anomalies. The choice of
threshold depends on the domain and dataset.

4.2 Generating Artificial Data

The aim is to generate artificial data around the target training set and in
the low-density regions of the target training set. As mentioned in Subsect. 4.1,
our input data is standardized hence it is centered at the origin. However, it
is infeasible when we only use standard methods (e.g. Gaussian, Uniform) to
generate data in high dimensional feature spaces [4,5,30]. The probability of
an artificial point being in or around the boundary of the target distribution is
very small. Therefore, we propose a method to generate artificial data with more
points in and around the target distribution.

There are two main steps to generate the artificial data in our method. We
generate data in a hypersphere centered at the origin, uniformly in terms of
radius. We then sample only points that are around the target training set and
in the low-density regions of the target training set. More details of these steps
are described below:

1. Generate uniformly in terms of radius
(a) Data X is generated from Gaussian distribution in n dimensions with

zero mean and unit standard deviation, see Fig. 2(a)

X ∼ N (0, 1) (5)

(b) Relocate all samples in X to the surface of the unit hypersphere, see
Fig. 2(b). The direction of each point in X does not change, thus X

′
is

uniformly distributed on the surface of the unit hypersphere:

X
′
=

X

‖X‖ (6)

where ‖X‖ is the Euclidean distance from each sample in X to the origin.

(c) Uniformly generate U in one dimension with a range [0, R]

U ∼ U (0, R) (7)

where R is the maximum radius of a hypersphere. R is chosen to give the
desired distribution, including points in low-density regions. The value
for each dataset is given in the next section.
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(d) Rescale all objects in X
′
with a factor U :

X
′′

= U.X
′

(8)

Now X
′′
are uniform in terms of radius to the origin in the hypersphere

with maximum radius R, see Fig. 2(c).
2. Sample data in and around the target training set

(a) The density of each point in X
′′
is computed against the target training

set by KDE.
(b) Any point in X

′′
whose density is greater than a density value that is

determined by a threshold toverlap is discarded. Threshold toverlap deter-
mines what percentage of the target training set is overlapped by the
artificial data in terms of density. This is because in high-density regions
we already have target examples.

(c) Randomly sample a data set T from X
′′

with a proportion p, where p is
proportional to the number of examples in target training set.

Fig. 2. Generate artificial data uniformly in terms of radius. (a) Gaussian distribution.
(b) Uniform distribution on the surface of the unit hypersphere. (c) Distribution in an
arbitrary hypersphere, uniform in terms of radius.

5 Experiments

5.1 Datasets

The goal of the experiments is to evaluate our method on one-class datasets.
Thus, we choose datasets that have one class considered as target class and
other classes treated as a non-target class [4,31]. Four datasets in UCI Machine
Learning Repository [15] and NSL-KDD dataset [25] are employed for our exper-
iments. In Wisconsin Breast Cancer Database (WBC), each instance contains
9 real-value attributes, one id and one class attribute that divides data into
two classes, benign (458 instances) and malignant (241 instances). We remove
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16 examples that contain missing data. There are 375 benign examples and
212 malignant examples in Wisconsin Diagnostic Breast Cancer (WDBC). Each
instance is presented by 32 attributes (id, class attribute and 30 real-valued
attributes). The third dataset is Cleveland heart disease (C-heart) that contains
164 examples for heart disease level 0, and 139 examples for heart disease level
1–4. There are 14 attributes (13 real-valued attributes and one class attribute).
The last UCI dataset used in our experiments is the Australian Credit Approval
dataset. There are 690 instances and each belongs to approval class or risk class
(383 approval, 307 risk instances respectively). Each instance is described by 14
real-valued attributes and one class attribute.

For the four datasets, we randomly sample 50 percent of the target class
for the target training set and the other 50 percent for the target testing set.
However, all examples from non-target class is used for the non-target testing
set. More details are presented in Table 1.

NSL-KDD dataset [26] is a filtered version of the KDD Cup 1999 dataset [10],
which is in the domain of network security, after removing all redundant instances
and making the task more difficult. In NSL-KDD, a connection is represented by
41 attributes (38 numeric continuous and discrete, and 3 categorical attributes).
Each record is labeled as either normal or as a specific kind of attack belonging
to one of the four main categories: Denial of Service (DoS), Remote to Local
(R2L), User to Local (U2R) and Probe. NSL-KDD consists of two datasets:
KDDTrain+ and KDDTest+ which are drawn from different distributions.

In this work, we plan to conduct our experiments on the R2L attack group.
This is because the aim of the search is to reduce computational cost, thus it is
efficient to reduce redundant features [33]. Moreover, the records from the R2L
group are slightly similar to normal connections due to the fact that they are
based on some content features of network traffic. This makes them more difficult
to classify than DoS or Probe attack groups [13,14,24]. Based on a previous
feature selection research [33], we choose only a subset of 10 features from 41
features in NSL-KDD for detecting the R2L attack category in our experiment.
Several of the variables chosen are categorical or discrete. We simply treat them
as real-valued (e.g. we map service values TCP, UDP and ICMP to values 1, 2
and 3). As shown in Sect. 6 this gives good results.

In our experiments, we randomly sample 2000 normal instances from
KDDTrain+ for the target training set, whereas 2000 normal examples and
2000 R2L examples are randomly selected from KDDTest+ for the target test-
ing set and the non-target testing set respectively. More details are presented in
Table 1.

We use the proposed method in Sect. 4.2 to generate artificial data for our
experiments. The threshold toverlap for the artificial data was set so that 10 % of
the target training set was below it in terms of density. Figure 3 shows the density
distribution of the target training set and artificial data with 10 % overlap. The
size of the artificial training set was chosen to be approximately double the size
of the target training set, except for datasets where this was small (< 100) or
large (> 1000). Too large a number could lead to a good GP approximation in
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the low-density region and a poor GP approximation in the high-density region,
while too small a number would lead to the opposite. The numbers of examples
in target training set, artificial dataset, testing sets are shown in Table 1.

Fig. 3. The density distribution of target training set and artificial data

Table 1. One-class classification datasets

Dataset Features Training set Testing set

Target Artificial Target Non-target

C-heart 13 80 350 80 137

Australia credit card 14 191 400 192 307

WBC 9 222 500 222 239

WDBC 30 178 400 179 212

R2L (NSL-KDD) 10 2000 1000 2000 2000

5.2 Experimental Settings

One preliminary experiment and one main experiment on GP, KDE and one-class
SVM are conducted in order to evaluate the proposed one-class GP on accuracy
and runtime of the resulting models. The five datasets in Table 1 are used for
the experiments. We use the terms OCGP, OCKDE, and OCSVM to refer to
one-class GP, KDE, and SVM classifiers, respectively. The choice of threshold
for classifier in practice varies from domain to domain, but in our experiments
we evaluate AUC using many values of the threshold (and we do the same for
all methods, OCGP, OCKDE, OCSVM). More details of the two experiments
are described below:

In the preliminary experiment we investigated the effect of the bandwidth
parameter. We chose the Gaussian kernel and used cross-validation to choose its
bandwidth value for KDE. That is, the accuracy of the density estimation of the
input data (not the accuracy on a one-class classification task) was used to choose
an optimal value for bandwidth. Accuracy was measured as mean integrated
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squared error (MISE). The resulting bandwidth was in all cases low (about
0.8). When used in a one-class classification task, this bandwidth achieved poor
performance. Similar results were found for OCSVM. Therefore, for remaining
experiments we chose a larger bandwidth value (2.0) that gave worse results on
density estimation, but better results on the one-class classification task.

The main experiment first plans to investigate KDE in terms of one-class
classification. This is a basic framework to evaluate OCGP. We set up the same
kernel function and bandwidth as described in the preliminary experiment. Ker-
nel density estimator is run on five datasets in Table 1, and we calculate the
AUC values for OCKDE on every dataset.

Secondly, the experiment aims to examine how efficiently OCGP performs
on these datasets. Evolutionary parameters and the parameters for generating
artificial data are presented in Table 2. We calculate the mean of AUC values
over 50 runs to evaluate OCGP, and select the individual with median AUC
value over 50 runs to draw ROC curves against OCKDE and OCSVM. The
computational cost of OCGP on testing stage is calculated as the mean of the
numbers of nodes in the best-of-run GP trees over 50 runs.

Finally, the experiment will examine one-class SVM [22] in order to compare
its performance to OCGP. We set up the same kernel function and bandwidth as
KDE, and ν = 0.5. We use one-class SVM from sklearn [19] to run experiments
over the five datasets. The AUC values and the number of support vector are
computed. The results from the three experiments on the five datasets in Table 1
are presented in Tables 3 and 4, and Fig. 4.

Table 2. Parameter settings

Generate artificial data

R 10

toverlap 10 percent

KDE and OC SVM parameters

Bandwidth 2.0

Kernel function Gaussian

GP parameters

Population size 400

Number of generation 500

Crossover probability 0.9

Mutation probability 0.1

Selection Tournament

Tournament size 3

Function set {+, -, ×, /, exp, sqr, sqrt}
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6 Results and Discussion

This section presents the experimental results of evaluating the proposed one-
class GP classifier on the five datasets. The performance of the one-class GP
classifier is evaluated along two measurements, Area Under ROC Curve (AUC)
and computational cost on querying new instances. The results are shown in
Tables 3 and 4, and in Fig. 4 the ROC curves of OCGP median over 50 runs on
the five datasets are shown against those of OCSVM and OCKDE.

Table 3 illustrates the AUC values when applying the three one-class classi-
fiers on the five datasets. It can be seen from the table that OCGP performs
as well as OCKDE, and better than OCSVM in most of datasets in terms of
accuracy.

The mean of AUC values from OCGP are close to OCKDE on C-heart,
Australian Credit Card, WBC and R2L (see Table 3). In comparison to OCc,
the AUC values from OCSVM are lower than those from OCGP on C-heart,
Australian Credit Card and R2L. Conversely, OCGP does not produce a good
accuracy on WDBC.

In general, these results suggest that the proposed OCGP tends to perform
efficiently on the datasets that are low dimension (around 10 or 14 dimensions),
but in high dimension (the WDBC dataset) the classifier may produce a poorer
classification accuracy than OCKDE and OCSVM.

The ROC curves are demonstrated in Fig. 4. In this figure, we draw the ROC
curve of OCGPmedian against the ROC curves of OCKDE and OCSVM. The
term OCGPmedian refers to the GP individual that produces the median AUC

Table 3. The AUC results from three classifiers

Dataset AUC

OCKDE OCSVM OCGPmean

C-heart 0.7731 0.7557 0.7874

Australian credit card 0.8355 0.8201 0.8286

WBC 0.9908 0.9907 0.9904

WDBC 0.9529 0.9500 0.9204

R2L 0.9001 0.8592 0.8727

Table 4. The computational cost for different techniques at query time

Dataset Feature Training points Support vectors GP nodes

C-heart 13 80 53 237.86

Australia credit card 14 191 112 218.36

WBC 9 222 115 207.8

WDBC 30 178 121 182

R2L 10 2000 1001 197.2
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Fig. 4. The receiver operating characheristic from the three classifiers over the five
datasets. (a) ROC on C-heart. (b) ROC on Australia credit card. (c) ROC on WBC
(d) ROC on WDBC. (e) ROC on R2L



16 V.L. Cao et al.

value over 50 runs. It can be seen from the figure that the ROC curve from
OCGPmedian is higher than ROC curves from OCSVM in four datasets again
with the single exception of WDBC.

Table 4 shows the computational cost for the three techniques at query time.
Overall, the computational cost of OCGP does not depend on the size and
dimension of training set. For OCGP, the average number of nodes in GP tree
is around 200 on all five datasets. Conversely, the number of support vectors of
OCSVM tends to increase with the number of training points. The runtime of
OCKDE depends on the number of training points. This result suggests that
OCGP is the least computationally expensive method at query time.

However, the training time of OCGP is much slower than OCKDE and
OCSVM. It is approximately 10 min for constructing OCGP in comparison to a
few seconds for building OCKDE or OCSVM models.

Overall, the results in this section suggest that the one-class GP classifier
has superior scaling of query runtime to OCKDE and OCSVM in performance
at query time, and its accuracy is often similar to the accuracy of OCKDE and
higher than the accuracy of OC SVM.

7 Conclusion and Further Work

This paper has presented a novel approach to one-class classification. It aims to
retain the biggest advantage of KDE, that is accurate modeling of the training
data, while avoiding the main disadvantage, that is slowness at query time, when
the training dataset is large. It aims to achieve this by modeling the output of
KDE using GP. This requires extra training time, but the time to query new
points does not then depend on the size of the training dataset. The output of
the resulting GP model can be regarded as a density value. The model can be
used to carry out one-class classification by imposing a threshold on this density.
This threshold can be varied to reflect the desired false positive/false negative
balance in any particular application.

In order to make the GP approximation work, it is necessary to generate some
artificial training samples in low-density regions of the space, since otherwise GP
has no knowledge of these regions. We have found suitable methods of doing this
for our datasets. The density values for these samples can be found directly from
the already-trained KDE.

Results have shown that with these artificially-generated samples, GP suc-
ceeds in approximating the density function given by KDE. While the resulting
one-class classification accuracy cannot be expected to exceed that of using KDE,
it often approaches or equals it. It is also often superior to the accuracy achieved
using another standard method, one-class SVM.

The one-class classification problem has many important applications. One
example is in network security. In this domain, query points are streamed in at
a high rate, hence the performance gain achieved using the GP approximation
is a valuable contribution. We have shown that our method can provide good
accuracy in this domain.
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Our method still has some limitations. In particular, we wish to adapt the
method of generating artificial data to work well in higher-dimensional spaces
and to deal with binary or categorical variables. We will also investigate alterna-
tive methods of setting the bandwidth automatically. We will apply and tailor
our method to other network security datasets. Finally, we will report on the
measured improvement in runtime on large datasets, and compare our method
to alternatives such as the Autoencoder.
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Abstract. Approximate computing exploits the fact that many applica-
tions are inherently error resilient which means that some errors in their
outputs can safely be exchanged for improving other parameters such
as energy consumption or operation frequency. A new method based
on evolutionary computing is proposed in this paper which enables to
approximate edge detection circuits. Rather than evolving approximate
edge detectors from scratch, key components of existing edge detector are
replaced by their approximate versions obtained using Cartesian Genetic
Programming (CGP). Various approximate edge detectors are then com-
posed and their quality is evaluated using a database of images. The
paper reports interesting edge detectors showing a good tradeoff between
the quality of edge detection and implementation cost.

Keywords: Edge detection circuits · Cartesian genetic programming ·
Evolutionary computation

1 Introduction

Reduction of energy consumption is one of the key issues of current society. For
example, widely popular battery-powered personal electronics requires energy-
efficient computing to reduce the need for battery recharging and big data and
supercomputing centers require energy-efficient computing to minimize their
operation costs. In recent years, a new approach to reducing the energy con-
sumption has been adopted—approximate computing. It exploits the fact that
some applications are inherently error resilient which means that the errors in
their outputs can safely be exchanged for energy consumption reduction. This
is a typical feature of multimedia applications in which some errors are not
recognizable because human perception capabilities are limited.

Edge detection is an important pre-processing step in advanced image
processing applications such as feature detection and feature extraction. The
goal of edge detection is to find sharp changes in image brightness. As edge
detection is performed very often it makes sense to optimize its implementation.
This paper deals with efficient circuit implementations of edge detection based
on the Sobel edge detector.
c© Springer International Publishing Switzerland 2016
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Evolutionary computing has been employed to develop approximate imple-
mentations of existing circuits or to evolve approximate implementations from
scratch. The objective of this paper is to propose and evaluate a method based
on evolutionary computing which will enable to approximate edge detection
circuits. Rather than evolving approximate edge detectors from scratch, we pro-
pose to approximate key components of existing edge detectors. In particular,
Cartesian genetic programming (CGP) is used to generate approximations of
adders which are basic components of Sobel edge detectors. Various approximate
edge detectors are then composed of the approximate adders and their quality is
evaluated using a database of images. The implementation cost is measured as
the number of used gates. It has been shown in the literature that this measure
provides a good estimate of power consumption [24].

The rest of the paper is organized as follows. Section 2 surveys relevant work.
The proposed method is presented in Sect. 3. Experimental results are reported
in Sect. 4. Conclusions are given in Sect. 5.

2 Relevant Work

2.1 Edge Detectors

The majority of edge detection methods is based on the computation of
image gradients. These gradients are often estimated to reduce the computa-
tion requirements. The gradient magnitude is then compared with a predefined
threshold and used as an indicator whether edges are present or not at an image
point. Detailed description of various edge detection algorithms can be found
in [19].

The Sobel operator is one of the most popular edge detectors. It uses two con-
volution kernels (each as a 3×3 pixel window) to estimate gradients in an image.
Let A be the input image. The horizontal and vertical derivative approximations
are computed as

X =

⎛

⎝
−1 0 +1
−2 0 +2
−1 0 +1

⎞

⎠ ∗ A, Y =

⎛

⎝
−1 −2 −1
0 0 0

+1 +2 +1

⎞

⎠ ∗ A,

where ∗ is the convolution operator. At each point of the image, the gradient
magnitude is given by

G =
√

X2 + Y 2. (1)

In order to reduce the computational requirements, the gradient magnitude com-
puted using the square root function is often replaced with a calculation of the
absolute value, i.e.

G′ = |X| + |Y |. (2)

Edge detection algorithms have often been accelerated in hardware in order
to meet real time constrains of a given application, see, for example, a fast stereo
vision system in FPGA [21].
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Fig. 1. A hardware implementation of Sobel edge detector. Symbols v denote the depth
of addition. I0, . . . , I8 are input pixels.

Figure 1 shows an example of a hardware implementation of Sobel edge detec-
tor which operates according to formula 2. In total, this edge detector consists of
twenty NOT gates, twenty XOR gates, four 8-bit adders, four 9-bit adders, and
three 11-bit adders. It will be used as a reference implementation in this paper.

However, hardware implementations are often optimized to save valuable
resources on a chip. In this case, the multiplication by two is implemented by
arithmetic shifting. Subtraction is composed of adders v3 and a set of invert-
ers (neg). The absolute value is obtained by an inversion controlled by the most
significant bit representing a negative sign. In other words, the inversion is imple-
mented by an array of XOR gates in which one input of each XOR gate is con-
nected to the most significant bit. The 9-bit and 11-bit adders were replaced by
8-bit adders. Furthermore, the multiplication of one operand is replaced with a
division for the other operand, i.e. (i0 + i2)+2i1 was replaced by (i0 + i2)/2+ i1.
The size of operands of v2 adders was decreased to 8 bits. For the other adders,
the size of the operands was reduced by excluding less significant bits. This opti-
mized version of the Sobel edge detector produces an insignificant error with
respect to a solution operating exactly according to formula 2. In total, this
edge detector contains sixteen NOT gates, sixteen XOR gates, and eleven 8-bit
adders.

2.2 Evolutionary Computing in Edge Detector Design

Evolutionary computing has been utilized to design edge detectors since the
nineties [5]. The current research on evolutionary computing for edge detection
aims at evolving either edge detectors or edge features, where the features are
functions of pixel values used in the process of classifying pixels as edge points
or non-edge points [2]. Advanced concepts such as multi-objective methods [27]
and Bayesian programs for features definition [2] have been integrated in to
the EA-based design approaches. Evolutionary computing was also employed to
evolve other computational models that can subsequently be employed for edge
detection, for example, cellular automata [15].
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Edge detectors and other image operators have been designed by Cartesian
genetic programming (CGP). The method and representative case studies are
surveyed in [16]. In the case of edge detector evolution, CGP evolves a solution
using elementary two-input functions such as minimum, maximum and addition
operating over pixel values. The objective is to minimize the error function which
is usually defined as a mean absolute error between the image generated by a
candidate solution and a “golden image” in which all edges are ideally marked.
The golden image is in practice obtained by a suitable conventional edge detector
such as Canny or Sobel operator. The evolved circuit, in fact, approximates the
conventional solution using hardware-friendly components.

In order to develop low-cost and efficient hardware implementations, edge
detectors were evolved using gates and other hardware friendly components as
building blocks. For example, an evolvable hardware approach was taken for low
level edge detector design in [7] and genetic programming was used to search for
digital transfer function of image edge detector [3]. The image filter evolution has
been accelerated using specialized hardware such as graphics processing units [4]
and field programmable gate arrays [22].

2.3 Approximate Computing in Image Processing

In recent years, approximate computing was established to investigate how
computer systems can be made better—more energy efficient, faster, and less
complex—by relaxing the requirement that they are exactly correct. One of
the approximation techniques is functional approximation whose purpose is to
implement a slightly different function to the original one providing that the
error is acceptable and power consumption, performance or other parameters
are improved. The functional approximation can be conducted at the level of
software as well as hardware.

Image operators (including edge detectors) are good candidates for approxi-
mations because occasional errors (pixels showing undesired values) are not often
recognized by users. On the other hand, the approximate implementations can
lead to a reduction in power consumption or processing time.

In [1], a software module implementing the Sobel edge detector was replaced
by trained neural network and the module has been later accelerated in a spe-
cialized hardware.

Using Axilog, which is a set of language annotations that provide the nec-
essary syntax and semantics for approximate hardware design and reuse in
Verilog [26], a conventional implementation of Sobel detector counting 143 lines
of code was manually annotated (details not provided in the paper) and an
approximate implementation was obtained. In both cases, appropriate papers
report the quality of resulting images for a few target errors.

Image operators can also be approximated by approximating selected arith-
metic components (adders or multipliers) that are present in conventional
implementations, see denoising filters [9,18]. Finally, approximations of median-
outputting filters based on simplifying of the compare and swap components can
be found in [13].
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2.4 Evolutionary Circuit Design

After publishing a seminal paper introducing the field of evolvable hardware [6],
new methods based on EAs have been proposed for circuit design. A considerable
success have been achieved by Cartesian genetic programming which enabled to
improve results of conventional circuit synthesis and optimization algorithms
for small combinational circuits and discover new implementations of important
circuit components such as filters, classifiers and predictors [11]. More complex
circuits were then evolved by means of decomposition techniques [20], functional
level evolution, developmental encodings, and advanced fitness evaluation meth-
ods utilizing the principles of formal verification [23].

Digital circuits can naturally be approximated by means of CGP. The meth-
ods can be classified as

– Error-oriented: In the first phase, CGP tries to evolve a circuit showing a
predefined error. In the second phase, the resources are optimized.

– Resources-oriented: Resources (e.g. the number of gates) are constrained and
CGP is used to minimize the circuit error with available resources.

– Multi-objective: All criteria are optimized together using a multi-objective EA
such as NSGA-II.

Examples of approximate circuits obtained by CGP are approximate medi-
ans, 8-bit adders and 8-bit multipliers [24,25]. All these circuits were approx-
imated without any decomposition. In this work, we propose to approximate
selected components of the whole circuit and analyze the impact of the approx-
imation on the circuit behavior.

3 Adopting CGP for Circuit Approximation

CGP will be used to approximate selected components of conventional or evolved
edge detection circuits. This section deals with the principles of CGP when
applied to circuit evolution and approximation.

3.1 Cartesian Genetic Programming

Circuit Representation in the Chromosome: A candidate circuit is mod-
eled as a grid of processing nodes arranged in nc columns and nr rows. Each
processing node performs specific operation g from the set of functions Γ . In
evolutionary circuit design, this function set usually contains logic gates or ele-
mentary arithmetic functions. The number of circuit inputs ni and outputs no are
fixed. Parameter l-back defines a degree of interconnection between the columns.
For example, if l = 1 the interconnection is minimal because only neighboring
columns may be connected; if l = nc the circuit interconnection is maximal.
Nodes of the same column can not be connected.

The circuit connection is encoded into a chromosome. Each gate (processing
node) is represented by a triplet (i1, i2, α), where α is a code of operation taken
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from the function set Γ . Symbols i1 and i2 are pointers to nodes (or primary
inputs) to which a given gate is connected to, providing that primary inputs are
labeled 0 . . . ni − 1 and the nodes are labeled ni − 1 . . . ni + ncnr − 1. Finally,
the chromosome contains no genes determining the nodes or logic constants (0
or 1) where the primary outputs are connected to.

Fig. 2. Full adder represented by CGP with parameters: ni = 3, no = 2, nc = 3,
nr = 2, l = 3, Γ = {0AND, 1OR, 2XOR, 3NOT }. Chromosome: (0, 2, 2) (0, 1, 0) (1, 3, 2)
(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8)

Figure 2 provides an example of the CGP encoding. One important feature
of CGP is that not all the nodes have to be included in the phenotype. In this
case, NOT (node 7) is disconnected.

Fitness Function: As our goal is to approximate arithmetic circuits using the
resources-oriented method, the fitness function is defined as a sum of absolute
differences (SAD)

fSAD =
K∑

j=1

|y(j) − t(j)|,

where y is candidate circuit’s response, t is target response and K is the number
of fitness cases. Because target circuits are arithmetic circuits, we have to eval-
uate circuit responses for all possible combinations of operands, i.e. K = 2ni .
This definition of the fitness function is preferred over the Hamming distance as
suggested in [17].

The proposed approximation method is constructed as a resources-oriented
method, in which a good compromise is sought between the number of gates
and the error. Resources (gates) can be constrained either by constraining the
product (nc×nr < k) or by constraining the number active gates in a potentially
big array of gates. The first approach was utilized in the literature [17,25]. In
this work, the second approach is adopted as it enables CGP to operate with
highly redundant arrays of gates which is beneficial for an efficient search [12].
Let the number of available gates be nn and the number of gates in phenotype
be npn. The fitness function is defined:

f =

{
fSAD , if npn ≤ nn

∞, if npn > nn



Evolutionary Approximation of Edge Detection Circuits 25

Search Algorithm: CGP uses a (1+λ) search method consisting of the follow-
ing steps:

1. An initial population of the size 1 + λ is created.
2. Each candidate circuit is evaluated by fitness function f .
3. The highest-scored candidate circuit is selected as a new parent. The parent

from previous generation is never selected as the new parent if there is another
individual with the same fitness value.

4. By applying a point mutation, λ offspring individuals are generated from the
parent. Parameter h defines the number of genes (integers) that undergo a
mutation.

5. Steps 2–4 are repeated until the termination condition is not satisfied.

Heuristic Population Seeding: In many cases a conventional exact solution
(circuit C0, with z gates) is available and can be used in the initial population of
CGP. According to [25], a simple method can be employed in order to obtain the
first approximation of C0. We create 2z circuits in such way that every single
gate of C0 is independently replaced by a wire which connects gate’s first or
second input with its output. The circuit producing the smallest error out of
these 2z approximations is taken as the first parent of CGP.

3.2 Resources-Oriented Approximation

The proposed method should produce a Pareto front showing the best obtained
compromises between the number of gates and the error. As our target circuits
are relatively small (tens of gates), it makes sense to execute CGP multiple times
and constraint the number of gates in each run to z −1, z −2, . . . , zm, where z is
the number of gates in the exact solution C0 and zm is the smallest reasonable
approximation of C0. Each CGP run begins with the best approximate circuit
obtained from the previous approximation and the objective is to minimize the
circuit error for a given amount of gates.

4 Experimental Results

The adders are key components of edge detection circuits. Firstly, results of
adder approximations are summarized in this section. Then, performance and
cost of various edge detectors utilizing the approximate adders are reported.

4.1 Evolutionary Approximation of Adders

Computational requirements of CGP can significantly be reduced if the initial
population is seeded by a conventional solution. In the case of adders, the carry
ripple adder and the Kogge-Stone adder have been employed. The exact 8-bit
carry ripple adder is composed of one half adder and seven full adders. In total,
it consists of 37 two input gates. However, the carry propagates through 15
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Fig. 3. Convergence curves for the adder composed of 41 gates in all 50 evolutionary
runs

Fig. 4. Statistical evaluation of the evolutionary approximation of 8-bit Kogge-Stone
adders using 6–63 gates.

gates and the corresponding delay of 15Δ (where Δ is delay of one gate) is
undesirable for many applications. The 8-bit Kogge-Stone adder [8] exploits the
carry lookahead logic. As the carry bits are computed in parallel, the resulting
delay is only 7Δ. The cost is, however, higher – 73 gates.

The objective is to approximate the 8-bit Kogge-Stone adder. In order to keep
the delay less or equal to 7Δ, CGP is used with nc = 7. CGP is executed multiple-
times with constrained resources to obtain a Pareto front. The CGP parameters
are initialized as follows: nr = 13, nc = 7, l = nc, and Γ = {BUF, NOT, AND,
OR, XOR, NAND, NOR, XNOR}, where BUF stands for an identity function.
The first runs are seeded with the circuit obtained by removing one gate from
the exact adder, i.e. nn = 72.

The parameters of evolution are set as follows: h = 5%, λ = 4, and ng =
500000. After 50 runs, the number of allowed gates nn is decremented.
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Fig. 5. Error plots of approximate adders containing 9 gates.

Table 1. Parameters of evolved approximate 8-bit adders and one conventional approx-
imate 8-bit adder (9a).

Absolute error

Gates Δ Avg. MIN Q1 Q2 Q3 MAX

9a 1 47.87 1 16 47 88 128

9 4 15.02 1 6 12 22 63

13 5 9.51 1 4 9 14 32

24 7 2.56 1 1 3 4 8

37 6 1.23 1 1 2 3 7

43 6 0.85 1 1 1 2 3

62 7 0.00 - - - - -

In order to demonstrate the progress of evolution, an adder constrained to
utilize up to 41 gates is considered. Figure 3 shows convergence curves obtained
from 50 independent runs. Every run starts with the error f = 167 · 103 and
ends up with the error f = 90 · 103 in most cases.

Boxplots summarizing the whole experiment (nn = 6, 7, . . . , 63 gates enabled)
are plotted in Fig. 4. The adders with less than 6 gates were omitted due their
large error. It can be seen from the boxplots that the evolution converges to
a single value in most cases. Moreover, we discovered a fully functional imple-
mentation of the 8-bit adder which contains fewer gates (nn = 62) and features
same latency as the 8-bit Kogge-Stone adder. A detailed analysis of the results
revealed that a solution composed of 37 gates has delay 6Δ, which is more than
two times smaller than the delay of the Carry Ripple Adder. The average error
of this approximate adder is only 1.23 (Table 1).

In common conventional approximations, an 8-bit adder is often approxi-
mated by a very cheap implementation consisting of 8 OR gates and one AND
gate (for the carry bit) [14]. This approximation can be compared with an
evolved approximate 8-bit adder of the same implementation cost (i.e. 9 gates).
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Fig. 6. Edge detection by approximate Sobel detectors

The conventional adder exhibits bigger maximal, median, and average errors
(Table 1). Figure 5 also shows that more significant errors occur in the case of
larger operands. On the other hand, in the case of evolved approximate adder,
more significant errors are spread out in the space of operand combinations.

4.2 Approximation of Sobel Edge Detector

Several approximations of the reference edge detector implementation from Fig. 1
are proposed in this Section. Firstly, some adders of the reference circuit were
replaced by approximate 8-bit adders. The replacement is performed for a set of
adders occupying the same depth (v1, v2, v3, and v4 in Fig. 1) of the adder tree.
Let us denote an approximate edge detector by An1 (n1, n2, n3, n4), where each
element ni represents the number of gates in adders of a given depth, e.g. A50
(50, 50, 50, 50) is an edge detector containing at all levels approximate adders
consisting of 50 gates.

The impact of approximate adders on edge detection is demonstrated in
Fig. 6. For example, by using the adders composed of 37 gates, we obtained a
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Table 2. MAE and other properties of approximate Sobel edge detectors

Edge Detector Mean Absolute Error

Name Gates Δ 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Eq. 2 813 33
A62 714 30
A37 439 26
A13 291 27
A9 221 24
A9a 221 18

Table 3. RMSE and other properties of approximate Sobel edge detectors.

Edge detector Root Mean Square Error

Name Gates Δ 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Eq. 2 813 33
A62 714 30
A37 439 26
A13 291 27
A9 221 24
A9a 221 18

low-cost edge detector A37 (37, 37, 37, 37) that produces a very small error which
is indiscernible to human eye. This approximate edge detector contains the same
amount of gates as the edge detector composed of fully functional 8-bit carry
ripple adders. However, the approximate detector is more than two times faster.

Figure 6 compares edge detector A9 (9, 24, 24, 9) with A9a (9, 24, 24, 9). Both
solutions utilize the same number of gates. A9 (containing the adders evolved
by CGP) shows more precise edge detection than A9a which employs the
adders approximated conventionally. On the image of Lenna, A9 produces the
mean absolute error (MAE) 19.84 per pixel which is bigger than the error of
A9a — 13.53 per pixel. This result is also manifested by darker background of the
image produced by A9. If the root mean square error (RMSE) is used as an error
metric, the result is 20.84 for A9 which is better result than A9a (RMSE = 22.41).

We tested approximate edge detection circuits on a dataset containing 200
images. Tables 2 and 3 demonstrate the differences in terms of MAE and RMSE
between a fully working detector operating exactly according to formula 2, a
solution in which the adders containing operands having more than 8 bits are
replaced with accurate 8-bit adders (A62), and other approximate detectors –
A9, A9a, A13 (13, 24, 34, 43), and A37.

It is difficult to perform a direct comparison with approximate edge detec-
tors published in the literature. The reason is that many circuit parameters and
details of experiments are not published. A brief comparison can be done with
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Fig. 7. Edge detection by approximate Sobel Operators

Axilog. The authors of Axilog reported a 1.82× area reduction for Sobel detector
with RMSE = 10% for a single image. The percentage value of RMSE was com-
puted on the normalized image with pixels in the range (0, 1). Under this metric,
A9 detector obtained 3.89× area reduction with maximal RMSE = 6.2% using
the dataset of 200 images [10]. Moreover, A9 detector reduced the area three
times in comparison with A62 and almost twice in comparison with A37.

4.3 Approximation of Evolved Edge Operator

Paper [22] presents Sobel operator (CSO) implemented as:

uint8 CSO(uint8 kernel[9]) {
int i;
i = kernel[0] + 2*kernel[1] + kernel[2];
i = i - (kernel[6] + 2*kernel[7] + kernel[8]);
i = max(i, 0);
i = min(i, 255);
return i;

}
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Table 4. Properties of approximate edge operator CSO and approximate evolved oper-
ator ESO.

Sobel operator Root Mean Square Error

Name Gates Δ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

CSO 411 30
CSO62 358 28
CSO37 233 25
CSO24 188 24
ESO62 506 73
ESO37 381 68
ESO24 336 69

where kernel is the 3×3-pixel convolution window. Paper [22] also presents an
edge detector (ESO), completely evolved by CGP. This operator used the image
shown in Fig. 7 as a golden image in the fitness function. The evolved code of
ESO is given below.

uint8 ESO(uint8 kernel[9]){
uint i14, i17, i19, i22, i27, i29;
i14 = min((kernel[1] + kernel[7]) >> 1, kernel[7]);
i17 = i14 ^ kernel[7];
i19 = min(i14 + (255 - kernel[1]), 255);
i22 = 255 - i19;
i27 = min(i22, (i17 + i19) >> 1);
i29 = min(i22 + i27, 255);
return (i27 + i29) & 0xff;

}

CSO operator employs just a part of the Sobel edge detector and it thus
computes the horizontal derivative. The cost of CSO is five adders and an array of
NOT gates. In order to obtain edges as shown in Fig. 7, we saturated the output
to 0 or to 255, if the output value is negative or greater than 255, respectively.

Both CSO and ESO can be approximated using the adders presented in
Sect. 4.1. As CSO has only three levels of adders, we denote the approximate
conventional operator CSOn1 (n1, n2, n3) where ni represents the number of
gates used in approximate adders at the level vi.

Evolved operator ESO contains five adders which can be replaced by their
approximate versions. Approximate detectors will be denoted ESOn1 (n1, n2,
n3, n4, n5) where ni represents the number of gates used in a given approximate
adders.

ESO contains more gates than CSO mainly because there were no require-
ments on the area minimization in paper [22]. Table 4 gives RMSE calculated
using 200 images for all approximate edge detectors.
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It can be seen that RMSE is growing when CSO62 (62, 62, 62) is compared
with approximate CSO37 (37, 37, 37) and CSO24 (24, 24, 34). But for example,
RMSE boxplots are almost identical in the case of ESO62 (62, 62, 62, 62, 62),
ESO37 (37, 37, 37, 37, 37), and ESO24 (24, 24, 24, 30, 28). It seems that the
evolved solution is more robust to the approximation than conventional CSO.
It also turns out that it is hard to predict the impact of approximations on the
overall circuit behavior.

5 Conclusions

In this work, various approaches to the approximation of edge detectors based
on the Sobel operator were proposed and evaluated. We replaced exact adders
in conventional as well as evolved edge detectors by their approximate versions.
The approximate adders were obtained using CGP. Results were reported in
terms of the error (MAE and RMSE obtained using 200 test images) and the
implementation cost given as the number of gates.

We showed that evolved approximate 8-bit adder composed of 9 gates has
smaller average error than a commonly used approximation consisting of the
same number of gates. Moreover, evolved inaccurate adder containing 37 gates
and producing a very small average absolute error has 3× smaller delay than
a fully functional carry ripple adder composed of the same amount of gates.
In the case of edge detection, we demonstrated a circuit showing 3.89× area
reduction with maximal RMSE= 6.2%. It seems that evolved edge detectors are
more resilient to approximations than conventional edge detectors.

Our future work will be devoted to a detailed analysis of the approximations
not only at the circuit level but also at the whole system level.

Acknowledgements. This work was supported by the Czech science foundation
project GA16-17538S.
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Abstract. Streaming data scenarios introduce a set of requirements
that do not exist under supervised learning paradigms typically employed
for classification. Specific examples include, anytime operation, non-
stationary processes, and limited label budgets. From the perspective
of class imbalance, this implies that it is not even possible to guaran-
tee that all classes are present in the samples of data used to construct
a model. Moreover, when decisions are made regarding what subset of
data to sample, no label information is available. Only after sampling is
label information provided. This represents a more challenging task than
encountered under non-streaming (offline) scenarios because the training
partition contains label information. In this work, we investigate the util-
ity of different protocols for sampling from the stream under the above
constraints. Adopting a uniform sampling protocol was previously shown
to be reasonably effective under both evolutionary and non-evolutionary
streaming classifiers. In this work, we introduce a scheme for using the
current ‘champion’ classifier to bias the sampling of training instances
during the course of the stream. The resulting streaming framework for
genetic programming is more effective at sampling minor classes and
therefore reacting to changes in the underlying process responsible for
generating the data stream.

Keywords: Streaming data classification · Non-stationary · Class
imbalance · Benchmarking

1 Introduction

The streaming data classification task under label budgets introduces a number of
constraints that do not appear under the typical offline supervised learning con-
text [1,5,7,9,14]. Specifically, a streaming data context implies that there is no
beginning or end to the data, thus there is no prior partition of the data into train-
ing and test sets. Instead, it is necessary to construct a classifier while assuming
a limited label budget, i.e. it is too expensive to label all the data, so part of the
task of the learning algorithm is to decide which exemplars to request labels for
(without exceeding some prior label budget). Naturally, only exemplars for which
the streaming data classification algorithm actually requests labels are used for
parameterizing candidate classifiers. The remaining data are ‘unlabelled’ and it is
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 35–50, 2016.
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this subset for which a classifier needs to make predictions. Improving the quality
of classifier(s) and labelling unlabelled data are therefore not tasks associated with
independent prior partitions of the data. Moreover, the data itself might well be
generated by a non-stationary process [5,9]. Thus, the underlying process responsi-
ble for creating the data might be subject to sudden shifts or gradual drifts, imply-
ing that some form of change detection and / or continuous sampling for labels is
necessary in order for classifiers to keep ‘up-to-date’.

Naturally, it is not possible to make any guarantees regarding the distribution
of class labels within a stream. Moreover, given that streaming classifiers are
limited to querying exemplars from a finite ‘window’ to the stream at any point
in time; then, depending on the degree of mixing, the exemplars within the
current window location may only be representative of a single class.

In this work, we adopt a generic framework for interfacing genetic program-
ming (GP) to streaming data [9,17]; hereafter referred as streamGP (Fig. 1).
The framework identifies four components:

1. the window interface from which new exemplars may be sampled;
2. a sampling policy for deciding which exemplars to request labels for;
3. the data subset against which fitness evaluation is conducted;
4. an archiving policy for deciding which exemplars should be replaced /

retained.

In summary, we are interested in considering how decisions that are made
regarding the sampling and archiving policies impact on the resulting perfor-
mance of the classifier. Specifically, we investigate how heuristics for introducing
class balance into the data subset can be defined without the use of label infor-
mation.

2 Related Work

Streaming data analysis under label budgets represents a topic of growing inter-
est, with several monographs [1,7] and journal special issues [12] being devoted
to the topic. However, until recently there has been little reference to approaches
from evolutionary computation that actively construct models (such as GP,
learning classifier systems or neural evolution). Conversely, optimization under
‘dynamic environments’ represents a distinct topic for evolutionary computation
with an emphasis on the accurate ‘tracking’ of multiple ‘peaks’ in a multi-modal
environment, but without requiring generalization to unseen data. As such, there
is no requirement to operate under the constraints of a framework for addressing
the issue of label budgets. The survey article of [9] reviews developments from
the perspective of both non-evolutionary and evolutionary approaches to model
building. Particular highlights include:

Ensemble methods provide the ability to incrementally adapt to changes
in the stream. Under a GP context adopting an ensemble approach might
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imply that multiple individuals from the same population coevolve, as in var-
ious frameworks for evolving teams of programs [3,10,13,19]. A recent study
demonstrated that supporting coevolutionary teaming under GP is partic-
ularly appropriate for streaming data contexts [16]. In a sense, modularity
enables greater refinement in the credit assignment process, so that rather
than having to replace all of a model, only parts of a model require revision.
This is particularly important under tasks that lack a ‘complete’ definition or
undergo change. More generally, the capacity to change is related to represen-
tations that are in some way ‘elastic’, with specific authors making the case
for the utility of genotypic-to-phenotypic mappings [4] or neutral networks
[18] under dynamic environments.

Anytime operation implies that it must be possible to identify at any point
in time a ‘champion’ individual that will attempt to label the stream. At the
same time, the development of new individuals may also be taking place, or
alternatively, a change detection process is used to trigger the development
of new champion individuals (see below).

Diversity maintenance contributes to the ability to react to change in the
minimum amount of time. Both non-evolutionary ensemble methods and evo-
lutionary methods appear to benefit from diversity maintenance, but open
questions exist around what ‘type’ of diversity is most appropriate.

Change detection versus sampling represents a requirement unique to the
streaming data task under label budgets. Given that models can only be con-
structed relative to a very limited subset of exemplars at any point in time and
there is only a limited label budget, then decisions need to be made regard-
ing which data to request labels for. Change detection might be performed
relative to stream content in an attempt to detect such changes. However,
this will not detect changes that result from the movement in labels from one
concept to another. With this in mind, benefits have been associated with
adopting combined approaches in which both the periodic uniform sampling
for labels is combined with change driven requests for labels (e.g. [14,20]).

Memory mechanisms are implicit in the use of shared genetic material, sup-
port for neutral networks and multi-population models. All forms of memory
have a part to play in contributing to solutions to streaming data tasks.

In this work, we will adopt the general framework for applying GP to stream-
ing data from [9] (Fig. 1) and make use of the symbiotic bid based (SBB) frame-
work for coevolving GP programs into teams [10]. The capacity of the latter for
task decomposition (or constructing modular solutions) has already been demon-
strated to be superior to monolithic GP under non-streaming and streaming
tasks (see [11,16] respectively). Moreover, SBB supports multi-class classifica-
tion from a single run without having to adopt additional heuristics.

3 Methodology

The advancing stream defines a sequential sequence of exemplars, each of dimen-
sion d. Without loss of generality, we assume a non-overlapping window interface
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Fig. 1. StreamGP framework with proposed additional feedback paths (dotted).

SW , each consisting of an equal number of exemplars (Fig. 1). Only the exem-
plars within the current window position, SW (t), are available for sampling.
Label information is not available when making the decision regarding which
exemplars to sample from SW (t). Moreover, for simplicity we assume that each
new window location results in Gap label requests, implying that indexes for
window instance and the label request are the same.

Only once the sampling policy identifies Gap(t) exemplars for sampling is
label information revealed, i.e. |Gap|÷ |SW | denotes the label budget. The data
subset, DS, represents the finite sized archive of labeled exemplars used for guid-
ing the training process; thus, |DS| > |Gap|. A data archiving policy determines
which exemplars are replaced each time a new sample of Gap exemplars are
taken from the stream. Once data subset content is defined for the current win-
dow location, DS(t), one or more generations of GP are performed. It is relative
to the content of the data subset that a champion individual is identified for the
purposes of anytime operation (Sect. 3.1).

Naturally, the sampling policy might be based on a measure designed to
detect change between sequential window locations (for a review see [9]). How-
ever, this also limits the circumstances under which model reconstruction is
initiated. Conversely, assuming a uniform sampling policy (subject to the label
budget) has been empirically shown to be difficult to improve on in practice
[14,20]. This was also the approach adopted in the original experiments with the
framework of Fig. 1 [16,17].1

The question we are interested in explicitly addressing in this work is to what
degree the properties of the resulting classifier are biased by decisions made
regarding the sampling / archiving policy (Fig. 1). The underlying constraint
within which such a sampling policy is required to exist is that label information
is not available when deciding which exemplars to sample. Two protocols will
be considered:

1 Earlier work with SBB under streaming data assumed that label information could
be used to ensure the data subset was always balanced [15].
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1. sample with uniform probability up to the label budget, as per earlier studies
[16,17], hereafter the uniform sampling policy;

2. make use of the current champion classifier to suggest labels and therefore
bias the replacement / selection of exemplars, hereafter the biased sampling
policy.

The first scenario implies that the exemplars within the data subset (against
which GP individuals are evolved) will reflect the underlying distribution of
exemplars in the stream. The second scenario has the potential to incrementally
balance the representation of classes within the data subset. In the following
subsections, we develop the framework for anytime operation (champion identi-
fication) and then establish the mechanism assumed for reintroducing class-wise
sampling of the stream without recourse to any additional label information.

3.1 Anytime Operation

As noted in Sect. 2, streaming data algorithms are required to identify a ‘cham-
pion’ model at any point to label the stream data as it ‘passes by’ or anytime
operation. The only source of information for the purpose of choosing such a
champion individual is the current content of the data subset, Fig. 1. Thus, once
all GP individuals are evaluated against all DS content (or generation, i), a can-
didate ‘champion classifier’ can be identified and deployed. Thereafter, a new
champion might be identified on concluding each generation. The process oper-
ates entirely within the label budget constraint and results in anytime operation.
The metric employed for this purpose is that of multi-class detection rate, as fol-
lows: DR = 1

C

∑
DRi where DRi = tpi

tpi+fni
; C is the count of classes present

in DS(t); tpi and fni are the counts of true positive and false negative for class
i, again relative to exemplars present in DS(t).

Naturally, during the course of a streaming data sequence multiple champion
individuals might be identified, but only one champion deployed during any seg-
ment of the stream. This is distinct from the style of operation assumed for
non-streaming data in which models are constructed from a training partition,
a champion individual is identified relative to the entire training partition (or
an independent validation partition) and test is performed relative to an inde-
pendent test partition. None of this is possible under streaming data scenarios
because access to the data is very limited (with the process creating the data
itself potentially being non-stationary) [1,5,7,9].

3.2 Archiving Policy

The modified archiving policy is designed to target overrepresented classes for
replacement by the next sample of Gap exemplars. This means that exemplars
representing the minor class(es) are more likely to be retained in DS(t) between
consecutive t, whereas exemplars associated with the major classes are prioritized
for replacement. Naturally, this also means that the exemplars representing the
major classes are more up to date / turn over at a higher frequency.
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The modified archiving policy is detailed as follows:

1. Estimate the current class-wise distribution of exemplars within DS(t), or

∀c ∈ C ′ : ∀i ∈ DS(t) IF pi == c THEN wc = wc + 1 (1)

where, C ′ are the number of different classes present within DS(t), pi is
exemplar i from the data subset.

2. Normalize class counts (wc) so distinguishing between under and over repre-
sented classes, or

∀c ∈ C ′ : wc = wc − |DS| − |Gap|
C ′ (2)

3. Mark all cases with wc > 0 so identifying the overrepresented classes and
identify the corresponding budget of exemplars for replacement, Mc, or

∀c ∈ C ′ : Mc =

{
wc × |Gap|∑

wc
IF wc > 0

0 otherwise
(3)

4. For each class, mark Mc instances for replacement with uniform probability,
subject to a total budget of Gap. Note that in doing so, older instances are
replaced first.

5. IF Step 4 marked less than Gap instances from DS(t) for replacement, THEN
the remaining instances Gap − ∑

c∈C′ Mc are identified uniformly across the
overrepresented classes until a total of Gap instances are marked for replace-
ment.

3.3 Sampling Policy

Section 3.2 introduced a bias that resulted in the more overrepresented classes
being targeted for replacement. Naturally, this has not done anything to increase
the chances of sampling instances from the stream corresponding to less fre-
quently sampled classes. The principle constraint is that we have a limited label
budget. Our approach will therefore be to make use of the labels supplied by
the champion individual, gp∗ (identified in support of the anytime operational
requirement, Sect. 3.1) to bias the selection of exemplars for inclusion within Gap
relative to the current window location SW (t). Thus, preference will be given to
the exemplars that the champion classifier associates with the underrepresented
class(es) in the class distribution present in DT (t − 1). The resulting sampling
policy has the following form:

1. Assume Eq. (1) through (3) from Sect. 3.2 to identify any underrepresented
classes and their associated exemplar counts, wc. Such a process is performed
w.r.t. DS(t − 1) content, i.e. after the last updating of the Archive Policy.

2. Use the current champion GP classifier, gp∗, to identify any instances under
SW (t) that (potentially) correspond to an under represented class, or

∀pi ∈ SW (t) : G(pi,m) =
{

m IF gp∗(pi) == Mc(m)
0 otherwise (4)
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where Mc(m) are the subset of classes underrepresented (i.e., those for which
Mc == 0 from Eq. (3)), G(pi,m) is a vector of class labels corresponding
to the underrepresented instances and m correspond to the class label for an
underrepresented class.2

3. The non-zero entries of G(·, ·) constitute the instances potentially correspond-
ing to the under represented class(es). Sample without replacement until
either no instances remain (in G(·, ·)) or |Gap| instances have been sam-
pled. Such a sampling process is biased to prioritize sampling classes least
represented in DS(t − 1).

4. If Gap is not yet full, sample from the remaining instances in SW (t) without
replacement (uniform p.d.f.).

The above process is enabled once some stability is achieved in the identifi-
cation of champion individuals. For the purposes of the experimental evaluation
a generic threshold of the first 2.5% of the generations is assumed across all data
sets.3 During this initialization period the Gap individuals are selected with uni-
form p.d.f. alone. No such constraint is employed in the case of the Archiving
Policy (Sect. 3.2).

4 Experimental Methodology

An empirical evaluation is performed to investigate the impact of assuming the
biased sampling protocol (Sect. 3) versus a uniform sampling of training instances
under fixed label budgets.4 In each case 20 runs are performed over 4 data sets
previously employed for benchmarking streaming data algorithms. Two data
sets are artificial data sets with specific non-stationary properties present (i.e.,
explicitly designed in), whereas the other two data sets represent real-world
tasks in which general spatial-temporal properties are assumed to be present.
Section 4.1 will summarize the properties of these data sets.

Metrics for performance evaluation under streaming data are in itself the sub-
ject of active research [2,8]. That is to say, streaming data has a dynamic compo-
nent on account of the model being under continuous development throughout
the stream; thus, the performance metric should be able to characterize per-
formance over the course of the stream. In this work, we will adopt a count
based metric as it is both robust to different class distributions and capable of
expressing the dynamic properties of classifier performance during the course
of the stream [9,16]. The specific formulation is presented in Sect. 4.2. Finally,
Sect. 4.3 establishes a common parameterization for use throughout the study.

2 Valid class labels appear over the interval [1, ..., C].
3 Given the later benchmarking parameterization this corresponds to no more than

25 generations.
4 Previous studies had compared StreamGP under the uniform sampling protocol to

non-evolutionary streaming algorithms [16,17].
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4.1 Datasets

A total of four data sets will be assumed in which two are artificially constructed
in order for specific non-stationary properties to be embedded within the stream:
hereafter Shift and Drift.5 The Shift dataset [20] defines a 5-class task in 6-
dimensions in which two decision trees are used to define rules for two separate
5-class classification tasks: C1 and C2. The stream is defined in terms of a sequence
of ‘blocks’. Each block is composed from β % of exemplars defined by decision tree
C1 and (100−β)% of exemplars defined by decision tree C2. The first three blocks
assume β = 0% thereafter each block results in β incrementally increasing by 10%
until β = 100%. The Drift dataset [6] is defined by a process of gradual variation
in which three classes are described by 10-dimensional hyperplanes. Every 1,000
exemplars half of the parameters may undergo variation. Class labels are defined
on the basis of whether the hyperplane exceeds a predefined class threshold.

We also make use of the widely used ‘electricity utilization’ dataset in which
the goal is to predict whether the price of electricity (in a region of Australia)
are going to increase or decrease relative to a moving average of the last 24
hours. As such this is an example of a real-world task with implicit temporal
properties and has received considerable interest from the perspective of the
empirical evaluation of streaming algorithms (e.g., [2]). The final dataset is the
‘forest cover type’ dataset from the UCI repository, but preprocessed to introduce
a sequential ordering in the sequence relative to the elevation attribute [14].6

Table 1 summarizes the generic properties of each data stream.

Table 1. Properties of the benchmarking datasets. D : number of attributes per exem-
plar, N : cardinality of the stream, k : number of classes present, ‘Class distribution’
reflects the overall frequency with which each class is represented over the entire stream.
No attempt is made to ensure that this ratio is reflected in the window interface used
by the classifier to sample stream content.

Dataset D N k ≈ % Class distribution

Shift 6 6,500,000 5 [37, 25, 24, 9, 4]

Drift 10 150,000 3 [74, 16, 10]

Electricity 8 45,312 2 [58, 42]

Cover 54 581,012 7 [49, 36, 6, 4, 3, 1.5, 0.5]

4.2 Class-Wise Detection Rate

As noted above, given that under streaming data scenarios there are no mecha-
nisms by which stream content can be stratified, then there are no guarantees that
5 Shift and Drift datasets are available from: http://web.cs.dal.ca/∼mheywood/Code/

SBB/Stream/StreamData.html.
6 Electricity and Cover Type are available from: http://moa.cms.waikato.ac.nz/

datasets/.

http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html
http://web.cs.dal.ca/~mheywood/Code/SBB/Stream/StreamData.html
http://moa.cms.waikato.ac.nz/datasets/
http://moa.cms.waikato.ac.nz/datasets/
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window content, SW (t), will even contain exemplars from each class. With this
in mind, the following definition for the online estimation of multi-class detection
rate is assumed [9,17]. A per class detection rate is first defined as follows:

DRc(t) =
tpc(t)

tpc(t) + fnc(t)
(5)

where t is the exemplar index, and tpc(t), fnc(t) are the respective online counts
for true positive and false negative rates, i.e. up to this point in the stream.

The multi-class detection rate now has the form:

DR(t) =
1
C

∑

c=[1,...,C]

DRc(t) (6)

Hence, the multi-class detection rate can also be evaluated at any point in the
stream.

4.3 Parameters

GP parameterization follows that adopted in previous work (e.g., [16,17]) and
is summarized in Table 2. Moreover, given that for benchmarking purposes the
datasets are of a finite length, we enforce label budgets through the use of a fixed
number of locations, imax, for the non-overlapping window (SW (t)) and knowl-
edge of the dataset cardinality (Table 3). The earlier work also reported that
letting GP perform multiple iterations per DS(t) content was beneficial [16,17].
With this in mind, we perform experiments with a maximum total number of
generations of imax and 5 × imax.7 The former implies that one generation is per-
formed per DS update, the latter implies that five generations are performed per
DS update; hereafter referred to as single generation and multi-generation
respectively. The instruction set takes the form of:

– Single argument operators: R[x] = 〈op〉R[y] where 〈op〉 ∈ {cos, exp, log}
– Two argument arithmetic operators: R[x] = R[x]〈op〉R[y] where 〈op〉 ∈

{+,−,÷,×}
– Two argument conditional operator: IF R[x] < R[y] THEN R[x] = −R[x]

Table 2. GP parameters. Mutation rates control the rate of adding / deleting sym-
bionts or changing symbiont action. DS and Gap refer to the data types in Fig. 1. Host
population size and gap imply a breeder model of evolution (the worst Mgap hosts are
deleted each generation) [10].

Parameter Value Parameter Value

Prob. symbiont deletion (pd) 0.3 Data Subset size (DS) 120

Prob. symbiont addition (pa) 0.3 DS gap size (Gap) 20

Prob. action mutation (µ) 0.1 Host pop 60

Max. symbionts per host (ω) 20 GP gap size (Mgap) 20

7 Any more than five resulted in negligible improvement [16].
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Table 3. Stream dataset parameters. Label budget is defined as a function of the
number of non-overlapping window locations (imax), DS Gap size (20) and dataset
cardinality (N).

Parameter # unique SW locations (imax) Label budget

Shift (shift) 1,000 0.3 %

Drift (drift) 500 6.7 %

Electricity (elec) 500 22.1 %

Covertype (cover) 1,000 3.4 %

5 Results

Given that the overall detection rate (Eq. (6)) can be decomposed into the contri-
bution from each per class detection rate (Eq. (5)), we can view the independent
contributions from each per class detection rate over the course of the stream;
hence, providing additional insight into the relative impact of the original uni-
form sampling protocol versus the proposed biased sampling protocol.

Sections 5.1 and 5.2 review the resulting dynamic multi-class DR as a func-
tion of single and multi-generation parameterizations under uniform and biased
sampling protocols. Section 5.3 concludes the result section with a static analysis
performed in terms of the end-of-stream performance using the overall detection
rate (Eq. (6)).

5.1 Single Generation Performance

Figures 2 and 3 reflect the detection rate of each class over the duration of the
stream for the two artificial datasets (averaged over the 20 runs). Table 1 details
the frequency with which each class is represented. Thus, all figures report class
1 as the most frequently occurring and class C as the least frequently occur-
ring. It is readily apparent that the uniform sampling protocol under the Shift
dataset explicitly favours the detection of the most frequent classes throughout
the stream. Conversely, under the incremental variation of the Drift dataset, the
uniform sampling protocol does not reflect this bias, possibly implying that it is
more difficult to detect class 2 than 3.

Introducing the biased sampling protocol results in a different preference in
class detection rates. Under Shift, the major class (class 1) is still detected most,
whereas the second smallest class (class 4) is also detected strongly throughout
the stream. Moreover, compared to the uniform protocol, it appears that there
is much less difference between the rates at which best and worst classes are
detected when using the biased protocol. The Drift dataset resulted in much
stronger detection by the biased protocol throughout, albeit with the lest fre-
quent class detected most strongly.

Figures 4 and 5 repeat the dynamic depiction of per class detection rate, this
time for the two real-world datasets (curves averaged over the 20 runs). Adopt-
ing a uniform sampling protocol resulted both classes being detected equally
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Fig. 2. Shift dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 1000, single generation. Curves best viewed in colour

Fig. 3. Drift dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 500, single generation

Fig. 4. Electricity dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 500, single generation

Fig. 5. Cover type dataset – Average per class detection rate (over 20 runs) under
label budget of imax = 1000, single generation. Curves best viewed in colour
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throughout the stream under Electricity (60%). Conversely, the biased sam-
pling protocol initially resulted in a strong symmetry, with a very distinct notch
appearing for the duration of the first 2.5% of the stream. This appears to
reflect the parameterization choice assumed for delaying the introduction of the
Sampling policy (see comment at the end of Sect. 3.3). That said, the nega-
tively impacted class 2 returns to a detection rate matching that achieved by
the uniform framework after ≈ 30% of the stream has passed.

Under the Cover dataset the uniform protocol identified all but two classes
with a fixed level of detection rate for the majority of the stream. Class 1 (the
major class) is initially detected at a rate of > 60% before dropping by 10%
whereas class 7 is only ever identified right at the end of the stream. Conversely,
adopting the biased sampling protocol resulted in class 7 being detected much
earlier than under the uniform protocol; likewise for class 6. That said, the two
major classes (1 and 2) were always detected more strongly under the uniform
framework.

Fig. 6. Shift dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 1000, multi-generation. Curves best viewed in colour

5.2 Multi-generation Performance

Adopting a multi-generation parameterization implies that five generations are
performed per data subset update (DS(t)); thus the label budget is unaffected,
but GP is potentially able to react more quickly to change [16,17]. Other than
the addition of multiple generations per DS(t), there are no changes relative to
the configuration of the uniform and biased protocols.

Figure 6 summarizes per class detection rates for the Shift dataset. Relative
to the single generation curves (Fig. 2) all detection rates are improved, i.e., less
variation between the detection of best and worst classes. However, it appears
that the biased sampling protocol sees most improvement overall. Under the
Drift dataset (Fig. 7) all curves are again either improved by the introduction
of multi-generation operation or, in the case of the uniform protocol for class 1,
negatively impacted. This is interesting, as class 1 is the largest class, thus it
might be assumed to see preferential detection by the uniform sampling protocol.
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Fig. 7. Drift dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 500, multi-generation

Fig. 8. Electricity dataset – Average per class detection rate (over 20 runs) under label
budget of imax = 500, multi-generation

Figure 8 summarizes per class behaviour under the Electricity dataset. Per-
forming multiple generations (per DS update) appears to have very little impact
under the uniform sampling protocol, whereas a 5% improvement appears for
the detection of each class under the biased protocol. The notch associated with
the delayed introduction of the biased Sample policy is again in evidence.

Finally, the Cover type dataset (Fig. 9) was also generally improved by the
addition of multi-generation operation. Note that the uniform sampling protocol
tends to result in a wider spread of per class detection rates, whereas the biased
protocol allocated it’s resources more evenly across the 7 classes. Also evident is
a strong preference under uniform sampling to detect the major class, whereas
the biased sampling protocol detects the smallest class the strongest. Naturally,
attempting to allocate equal numbers of samples to each class implicitly assumes
that all classes are equally difficult to classify. Conversely, in practice the difficulty
in detecting a class is not related to the number of instances describing it.

5.3 Overall Detection Rates

Overall performance of streaming algorithms is generally characterized in terms
of the performance metric at the ‘conclusion’ of the stream (see for example the
widespread use of prequential error as measured at the end of the stream [2,8]).
In this case, we can utilize the average class-wise detection rate (Eq. (6)) and
then apply a nonparametric Mann-Whitney U test to verify the significance of
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Fig. 9. Cover type dataset – Average per class detection rate (over 20 runs) under
label budget of imax = 1000, multi-generation. Curves best viewed in colour

Table 4. End-of-stream median multi-class detection rates for uniform and biased
sampling protocols and corresponding p-value from Mann-Whitney U test

Single generation mode Multi-generation mode

Dataset Uniform Biased p-value Uniform Biased p-value

Shift 56.74 % 67.5 % 1.33 × 10−8 74.71 % 80.37 % 1.69 × 10−7

Drift 58.01 % 73.94 % 0.0 72.55 % 79.48 % 0.0

Electricity 59.0 % 69.07 % 0.0 57.95 % 72.6 % 0.0

Cover 35.49 % 34.21 % 0.46 41.9 % 42.9 % 0.063

any difference.8 Table 4 provides the quantitative summary of this comparison
for both the single generation and multi-generation parameterizations under
uniform and biased sampling protocols.

In short, under the single generation mode of operation, significant improve-
ments appeared for all but the case of Cover type at the 99% Confidence interval
(with the biased sampling protocol preferred). Under the multi-generation mode
Cover type was also improved, thus, both algorithms improved with the inclusion
of the biased sampling protocol.

6 Conclusion

Building classifiers for non-stationary streaming data applications with label
budgets represents a new challenge for machine learning in general [5,9]. More-
over, only a little research has been conducted to this end using genetic program-
ming. In this work, we benchmark a general framework for applying genetic
programming to this task. We show that the current champion from the GP
population can be used to provide the basis for defining a biased sampling pro-
tocol that more rapidly adapts to dynamical properties in the stream, as well as

8 Violin plots were used to establish that the distributions did not conform to a normal
distribution. Space precludes their inclusion.
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returning stronger classification performance on the under represented classes.
This is achieved without requiring additional label information.

Further investigations will be conducted to determine the relative impact
of the ‘Archiving Policy’ and ‘Sampling Policy’ independently from each other.
We also anticipate characterizing at what points there are changes to the cham-
pion classifier during the course of a stream and expand the types of data such
algorithms are applied to. Moreover, from the application perspective, we have
not sort to explicitly address the issue of how delays in applying an ‘oracle’ to
provide labels when requested impact on the quality of the anytime operation
of the classifier.
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Abstract. Image analysis is a key area in the computer vision domain
that has many applications. Genetic Programming (GP) has been suc-
cessfully applied to this area extensively, with promising results. High-
level features extracted from methods such as Speeded Up Robust
Features (SURF) and Histogram of Oriented Gradients (HoG) are com-
monly used for object detection with machine learning techniques. How-
ever, GP techniques are not often used with these methods, despite being
applied extensively to image analysis problems. Combining the training
process of GP with the powerful features extracted by SURF or HoG
has the potential to improve the performance by generating high-level,
domain-tailored features. This paper proposes a new GP method that
automatically detects different regions of an image, extracts HoG fea-
tures from those regions, and simultaneously evolves a classifier for image
classification. By extending an existing GP region selection approach to
incorporate the HoG algorithm, we present a novel way of using high-level
features with GP for image classification. The ability of GP to explore
a large search space in an efficient manner allows all stages of the new
method to be optimised simultaneously, unlike in existing approaches.
The new approach is applied across a range of datasets, with promis-
ing results when compared to a variety of well-known machine learning
techniques. Some high-performing GP individuals are analysed to give
insight into how GP can effectively be used with high-level features for
image classification.

Keywords: Genetic programming · Image classification · Feature
extraction · Feature construction

1 Introduction

A common technique used in computer vision is the creation of features which
provide a representation of an image that is of a higher level than that of the
raw image pixels [12]. Many image classification approaches extract features from
an image using a feature extraction algorithm, and then use these features as
inputs to a machine learning algorithm to perform classification. A wide range of
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 51–67, 2016.
DOI: 10.1007/978-3-319-30668-1 4
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algorithms for feature extraction have been proposed [17]. One popular approach
is the Histogram of Oriented Gradients (HoG) algorithm [8], which produces a
histogram of the gradients within an image which can then be used as a feature.

Genetic Programming (GP) has also been applied extensively to image analy-
sis problems [21] since it was introduced in the 1990s. Techniques generally use
GP to extract features from raw images by using pixel statistics [24,26], slid-
ing window [22] or filter [3] approaches. GP is able to achieve success on these
problems using its evolutionary learning process which allows it to automatically
extract and construct high-level features tailored to the dataset it is trained on.
This is in contrast to other algorithms such as HoG which do not have a learning
process; these algorithms produce general, domain-independent features. The GP
approaches tend to extract relatively simple features in comparison to the his-
tograms produced by the HoG algorithm, which might limit their performance.
Combining the training process of GP with the powerful features extracted by
HoG may improve performance by generating high-level, domain-tailored fea-
tures automatically. The literature contains many feature extraction methods;
we use HoG in this work due to it being one of the most prevalent methods that
is simple and efficient enough to implement as a GP function.

Another technique for improving feature quality is to only select regions of an
image which are rich in useful features. A two-tier GP (2TGP) [2] method was
proposed which automatically selects regions for feature extraction. Using this
method in conjunction with more advanced GP feature construction functions
would allow region selection and feature construction to be performed simulta-
neously to improve the image classification performance.

Goals. The goal of this paper is to develop a GP approach to automatically
extract and construct high-level features for image classification. To achieve this,
we propose a new GP-HoG approach which uses GP with functions based on
the HoG method. These new functions are designed to produce more advanced
features than the existing GP approaches. In this way, GP will be used for
simultaneous region selection, feature extraction and image classification. We
aim to achieve this through the following objectives: (1) developing new func-
tions which are inspired by the HoG algorithm. These functions will allow GP to
automatically produce high-level features which have the potential to increase
classification performance; (2) combining these new functions with a region selec-
tion approach 2TGP to allow GP to perform region selection, feature extraction
and classification in a single GP tree; (3) analysing the program trees of some
good individuals to understand how they are able to generate useful features.

2 Background

Evolutionary Computation (EC) is a large field of artificial intelligence which
contains algorithms inspired by biological evolutionary principles [6]. These algo-
rithms are often applied to difficult problems, where the search space is very
large. EC algorithms operate iteratively, refining the candidate solutions to a
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problem in order to gradually improve solutions towards the optimal solution.
Evolutionary Algorithms (EAs) are a field of EC algorithms which use Darwinian
evolutionary principles to improve solutions by mimicking natural evolution [9].

Genetic Programming (GP) [13] is an EA which models solutions in the form
of computer programs. The most common representation is a tree structure,
where the root of the tree is the output of the genetic program and the leaves of
the tree are inputs or constant values. Non-terminal nodes are functions in the
program, which take some inputs (i.e. outputs of other nodes), and then produce
an output based on a function applied to those inputs. Terminal nodes are the
leaves of a tree.

Feature construction is the process of creating new, high-level features, often
by combining multiple existing features [4,14]. Constructed features generally
better describe an instance than a single existing feature, reducing the number
of features required, which reduces the size of the search space a classifier must
train on. GP has been applied extensively to feature construction tasks [10],
due to its tree-structure which allows features to be combined using a range of
functions to create new features. As GP generally produces a single output value
from the root, techniques often use it to produce a single high-level feature.

Al-Sahaf et al. [5] proposed a GP approach to automatically construct an
image descriptor that is then used to extract features for multi-class texture
classification. Their experiments present the capability of the method to extract
important features. The method has significantly outperformed the competitor
methods on two texture data sets.

The HoG [8] technique produces a feature vector from an image based on
the orientation of gradients within the image. The image is first split into a
number of overlapping blocks. Each block produces a histogram of gradients of
pixels within that block. For each pixel in a block, both the magnitude and
the orientation of its gradient is recorded. The histogram of each block, then,
contains bins for various orientations (one bin for a range of orientations), and
the height of each bin is the sum of the magnitudes of the gradients falling within
that bin. The histogram from each block is then normalised, and all histograms
are then combined to give a final feature vector corresponding to the image as a
whole. This kind of feature vector has been used for a variety of image analysis
problems [8,27].

2.1 Related Work

This subsection briefly surveys typical related work which uses GP to extract
and construct features for image classification. The limitations of these works
are discussed, showing the motivation behind our proposed GP-HoG approach.

The 2TGP approach [2] used GP to select good regions of an image, extract
features from the regions (as simple statistics based on the pixels in the region),
and to perform classification. The approach was tested on a variety of datasets
which varied in difficulty, with good results across different image domains. The
solutions produced were also easy to understand. For example, on a face dataset,
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solutions were produced using regions which humans would also use for classifi-
cation, such as the nose, mouth and eyes. On a pedestrian dataset, regions were
selected which captured areas, where a standing pedestrian would be expected
to appear. By selecting regions, this approach was able to improve classification
accuracy. Using more advanced features, i.e., beyond simple pixel statistics, in
combination with region selection has the potential to improve the performance
even further. This is the direction we take in this study.

In [23], the root of the tree was used as a constructed feature by a Support
Vector Machine (SVM) for image classification. This approach created GP trees
using a large range of functions which directly considered the pixel values of the
given images. By using a multi-objective approach which tried to minimise tree
size while maximising classification accuracy, the authors were able to reduce
over-fitting and achieved a high classification accuracy. The function set used a
range of filtering functions including Gaussian, Laplacian, and Gabor filters, as
well as simpler pixel-by-pixel arithmetic operations. While these filtering func-
tions are more advanced than simpler pixel statistic approaches, they are still
relatively simpler than the HoG algorithm, as they apply a small filter to each
pixel instead of using a more sophisticated histogram technique.

Perez and Olague proposed a GP technique (RDGP) [20] using a function set
and a terminal set, which was designed to emulate the Scale-Invariant Feature
Transform (SIFT) [15], another widely-used feature extraction algorithm. A range
of functions and terminals were used, including arithmetic operators, image deriv-
atives and Gaussian filters. The authors argued that their method would allow GP
to automatically synthesise SIFT-like programs by automatically extracting high-
level features for object recognition. They claimed that their approach allowed fea-
tures to be automatically tailored towards the problem being trained on, as the
GP programs would be optimised by the evolutionary process. The RDGP app-
roach was shown to produce better features than the standard SIFT approach,
with an overall decrease in error in object detection.While this approachperformed
feature extraction and construction, it did not use GP for classification. As their
design broke the SIFT algorithm into its composite parts as GP functions, the evo-
lutionary process must learn to re-construct and optimise these composite parts in
order to produce useful features. This may reduce the performance of the method;
the approach we propose attempts to mimic HoG within a single function, so that
the evolutionary process can instead focus on constructing high-level features and
simultaneously evolve a good classifier.

3 The Proposed Method

This section details the proposed method (named GP-HoG) including the pro-
gram representation, and the fitness function.

3.1 GP Program Representation

The proposed method uses a combination of existing terminals and functions
from 2TGP and novel terminals and functions inspired by HoG. In this study, a
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Fig. 1. An example shows an individual structure of the GP-HoG method.

new tree-based program structure is proposed, as presented in Fig. 1. To intro-
duce restrictions on the inputs and outputs of the different nodes in an evolved
program, strongly-typed GP [18] is used. The full terminal and function sets
are listed in Tables 1 and 2 respectively. An individual’s tree can be, virtually,
divided into three layers. The bottom layer, which includes the HoG and terminal
nodes, represents the feature extraction part. The middle layer, which consists
of a mix of the bin and distance nodes, represents the feature construction part.
The top layer (including the root node) that is made up of a chain of simple
arithmetic operators represents the classification part. As Strongly-Typed GP
is used, all three layers appear in every valid program. The feature construction
layer represents a main difference between GP-HoG and 2TGP, which has only
feature extraction (as pixel statistics across a region) and classification layers.
The new feature construction layer aims to further reduce the search space by
constructing high-level features from the extracted features from the previous
layer, with the expectation of evolving meaningful classifiers and further improv-
ing the performance.

The majority of the terminal set is based on the 2TGP method, as the ter-
minals provide the parameters used in the region selection process. The image
node is the instance, i.e., image being evaluated represented as a 2D array of
integer values each of which represents the intensity of a pixel in the image. rand
is a random value drawn from the half-closed interval [0, 1). The shape node
defines the shape of a region that can be rectangle, circle, row and column.
The coords node is a pair of (x, y) values that define the location of a region in
an image where (x, y) is the centre pixel for the circular shape and the top-left
corner pixel for all other shapes. The minimum width and height of all images
in the dataset are, respectively, denoted as minWidth and minHeight. T The size
node specifies the size of a region. The value of a size node is defined to be 1
in row and column regions. The size node is not used in the case of a rectangle
region and is replaced by (w, h) which are the width and height of the region. For
a circular region, the size node gives the diameter. Restricting the dimensions of
regions by using minWidth and minHeight encourages regions to be created which
are valid across the majority of images in a dataset, which improved training
and test performance. In order to return a specific value of a histogram, the
index node is introduced that takes a value between 0 and 7 (inclusive) as each
histogram consists of 8 bins (as detailed in the next subsection).
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Table 1. The terminal set

Name Output Details

image image The image being evaluated represented as a 2D array of pixel values

rand double Random double in the half-closed interval [0, 1)

coords coords Provides the location as a region as (x, y). x is the horizontal
location randomly generated in [0,minWidth] and y is the vertical
location in [0,minHeight]

size size Random integer value in [3,min(minWidth,minHeight)]

index index Random integer value in [0, 7], which represents the bin index of a
histogram

shape shape One of rectangle, circle, row, and column. Rectangle has x in
[0,minWidth] and y in [0,minHeight]

Table 2. The function set

Name Input Output Details

+, −, ×, / double, double double Arithmetic operators

bin histogram, index double Returns the value of the specified index

HoG image, coords, shape, size histogram Performs the HoG algorithm on a region

distance histogram, histogram double Returns the distance between two histograms

The function set comprises of the four arithmetic operators +, −, × and pro-
tected /, distance, bin, and HoG nodes. The arithmetic operators in the function
set have their corresponding regular meaning and allow GP to utilise multiple
extracted features for classification. The HoG, distance and bin functions and
the index terminal are used for feature extraction. The design of these functions
is discussed in the next subsection.

The most important new function is the HoG function, which is inspired by
the HoG algorithm [8]. The HoG function takes the image, coords, shape, and size
as inputs, and outputs a histogram which represents the distribution of gradients
within a region of the image. The standard approach of using a histogram with
8 bins [8] is adopted here, where each bin corresponds to 45◦ of rotation. By
using the provided terminal nodes, a GP tree can construct a histogram across
a region of varying shape and size; there are no pre-determined regions as in the
normal HoG method. This allows the regions used to be tailored to the dataset.

3.2 Outline of the HoG Function

The region of the image is selected based on the inputs to the HoG function.
This is done by taking a region of an image defined by the shape (how the region
is shaped), coords (the position of the region) and size (size of the region) inputs.
Then, the steps presented in Algorithm 1 are applied.

Our HoG approach differs from the standard HoG algorithm [8] in a few ways
in order to allow it to be expressed sensibly as a function for GP. The biggest
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difference is that the HoG function is applied only to a single region, given by
the function arguments. Normally, the histograms of multiple overlapping blocks
across an image are combined to give a more versatile feature vector. As multiple
HoG functions can be incorporated in a single GP tree, it is not necessary
to use multiple blocks to try and analyse the whole image; this will be done
automatically as part of the evolutionary process if it gives good performance.
As only a single histogram is produced from one run of the proposed GP-HoG
algorithm, the normalisation process is only applied to a single histogram, rather
than across several as in the original design. This approach also allows for a range
of block (i.e. region) sizes and shapes; normally the design of blocks are fixed,
such as using an 8 × 8 square. It is expected that the evolutionary process will
be able to automatically find the best block sizes and shapes as individuals with
the best block designs, i.e., more representative features, will be rewarded with
a better fitness value. The crossover operator allows useful block designs to be
exchanged between individuals.

As a number of variations to the original HoG algorithm have been made, we
consider Algorithm 1 to be inspired by the HoG algorithm, rather than being a
strict implementation of it. As Algorithm1 outputs a feature vector (histogram)
of eight bins, GP can not directly use this vector for classification; therefore,
two additional functions were designed which construct high-level features from
a histogram. The first function is distance, which finds the Euclidean distance
between two histograms. This produces a double value which gives a measure of
how dissimilar two histograms are. This can be used to compare different regions
of an image in order to identify the image’s class. For example, on the UIUC
dataset (Sect. 4), the regions corresponding to a car’s front and back wheels will
produce similar histograms. These same regions on a background image are more
likely to give different histograms. Hence, the distance between histograms can
be used as a feature for classification. The second function is bin, which returns
the value of a given bin index of a histogram. This function allows GP to select
important orientations which have different magnitudes depending on the image
class. For example, on the Jaffe dataset, the edges of the mouth have different
gradients for the subjects being happy or surprised. The magnitude of a given
bin can be used as a feature for distinguishing two classes.

3.3 The Fitness Function

The evolutionary process measures a program’s goodness using the fitness func-
tion. In this work, the accuracy of a program is used as the fitness value to reflect
its ability to discriminate between instances of different classes. The accuracy is
the proportion of correctly classified instances to the total number of instances.
Hence, an ideal program will have a fitness value of 1 and a fitness value of 0
represents the worst case scenario or performance.

Classification of an instance is performed by feeding it into an evolved GP
tree. The image terminals of the GP tree are set to contain the image being
classified, and then the tree is evaluated from bottom to top, producing a
single real number as an output. A threshold 0 is then applied to this value.
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Algorithm 1. The procedure used in the HoG function
1 Find the gradient for each pixel as Gx = f(x + 1, y) − f(x − 1, y) and Gy =
f(x, y + 1) − f(x, y − 1) where f(i, j) gives the pixel value at (i, j).

2 Find the magnitude at each pixel as m =
√

G2
x + G2

y.

3 Find the orientation of each pixel as arctan
(

Gy

Gx

)
. This is converted to degrees and

mapped to be in range [0◦, 360◦].
4 for each pixel do
5 Find the two bins of the histogram it lies between based on its orientation. The

histogram is divided into 8 bins of size 45◦, so each pixel with an orientation
will have a lower bin and an upper bin. For example, a pixel with an orientation
of 80◦ would have its lower bin as bin 2 (45◦), and its upper bin as bin 3 (90◦).

6 For each bin, find the distance between the bin’s orientation and the pixel’s
orientation. In the previous example, an orientation of 80◦ puts that pixel at
35◦ distance from the lower bin, and 10◦ from the upper bin.

7 For each bin, calculate and add the weighted magnitude as the pixel’s magni-
tude multiplied by how close it is to that bin. As the bin size is 45◦, m× (45−35)

45

is added to the lower bin. The upper bin would have m× (45−10)
45

added to it,
as the upper bin’s orientation is closer to that of the pixel.

8 end for
9 Normalise the histogram by expressing the value of each bin as a fraction of the

sum across all bins.

A negative value gives a negative classification, and a non-negative value gives
a positive classification. A tree may contain regions that partially fall outside
the dimensions of the image. Any such regions are cropped, so only the pixels
within the image bounds are used in the computation of the histogram in the
HoG function.

4 Experiment Design

This section details the datasets, parameter settings, and methods for compari-
son used in this study.

4.1 Datasets

Three datasets were used to assess the performance of the proposed method.
These datasets are for different applications and vary in difficulty. However, each
of the datasets is made up of greyscale images and is set for binary classification.

In computer vision, the Columbia Object Image Library1 (COIL-20) [19]
dataset is widely used. Two classes of the COIL-20 dataset are used to form the
first dataset in this study. Originally, the COIL-20 dataset comprises of 20 classes
that each represents a different toy object, e.g., cars, rubber ducks, and boxes. A
turntable is used in a scene with a black background to prepare those instances.

1 Available at: http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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For each object, 72 images are provided by taking a snapshot every 5◦ where the
object is rotated through 360◦. Then those images are cropped to be 128×128 pix-
els each where the object is centred in the images. Furthermore, those images were
normalised by adjusting the brightest pixel to be 255 and scaling the other pixel
values accordingly. In this study, only the cars and rubber ducks classes (Fig. 2(a))
are used as the focus is on performing binary classification.

Meanwhile, the second dataset in this study is formed using the Japanese
Female Facial Expression2 (Jaffe) [16] dataset. This dataset is broadly used in
the literature for the task of identifying different facial expressions. In total, this
dataset consists of 213 images provided by ten Japanese female subjects, which
is divided into seven groups: neutral, surprised, angry, sad, happy, disgust, and
fear. Each subject provides several images for each facial expression. Following
Cheng et al. [7], and in order to prevent the classifiers from training on irrelevant
features, the images of this dataset were manually cropped in order to remove
most of the subject’s hair, and the image background leaving only the face.
The size of those instances after cropping ranges between 164 and 207 pixels in
height, and between 121 and 143 pixels in width. The instances of the happy and
surprised classes (Fig. 2(b)) are used in this study to form the second dataset.

To form the third dataset in this study, the UIUC database for Car Detection3

(UIUC) dataset [1] is used. In total, the UIUC dataset consists of 1, 050 instances
that fall into two classes: cars and background (Fig. 2(c)). The former comprises
of 550 instances, whilst there are 500 instances in the latter. The car instances
are captured from the same angle and distance (giving the same scale) that show
the side view of the vehicle. Each instance in this dataset is 100 × 40 pixels.

Fig. 2. Samples of the (a) COIL-20, (b) Jaffe, and (c) UIUC cars datasets showing
instances of the positive and negative classes in the top and bottom rows respectively.

4.2 Training and Test Sets

The k-fold cross-validation technique was used to evaluate the proposed method
and all the baseline methods. The instances of the UIUC and COIL-20 datasets
were randomly split into 10 folds. The Jaffe dataset contains only three images of
each expression for each human subject, requiring a careful split to ensure that

2 Available at: http://www.kasrl.org/jaffe.html.
3 Available at: http://cogcomp.cs.illinois.edu/Data/Car/.

http://www.kasrl.org/jaffe.html
http://cogcomp.cs.illinois.edu/Data/Car/
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the test and training sets are both representative of the dataset, and therefore,
this dataset was manually split into 3 folds. Each fold contained one happy and
one surprised expression for each subject.

4.3 Baseline Methods

A number of baseline methods are used to compare the new approach to the
existing methods in the literature. The Waikato Environment for Knowledge
Analysis (WEKA) [11] implementations of the Support Vector Machine (SVM),
Decision Trees (J48), Näıve Bayes (NB), Random Forest (RF), and Adaptive
Boosting (ABM1) classifications methods are used [25]. As the proposed method
is largely based on 2TGP, the 2TGP method is also used as a competitive method
in this study. Each of these seven methods (including the proposed method) were
evaluated using the k-fold cross-validation scheme described in Sect. 4.2. For each
of the non-GP classifiers, an instance is evaluated by giving the classifier a list of
concatenated SURF keypoints (as detailed in the next subsection). As a keypoint
contains 64 values, there will be p× 64 features provided, where p is the number
of keypoints used. For example, if two keypoints called a and b were used, the
list would be formatted in the form [a0, a1, .., a63, b0, b1, ..., b63]. As the WEKA
implementation of each of these methods is deterministic, they are only run once
for a given experiment run. The list of keypoints is ordered by the strength of
each keypoint so that the methods are able to learn most effectively. The SURF
feature extractor generates keypoints based on the location of the keypoint in the
image, which means that a classifier may classify two instances of the same class
differently depending on the distribution of keypoints throughout the images,
even if the images are actually similar. For example, if two images were of the
same person’s face but in one the face was shifted 50 pixels to the right, the
keypoint corresponding to a “nose feature” could appear in different locations
in the keypoint list. By ordering keypoints by how strong they are, the classifier
is more likely to classify similar instances to the same class as they will likely
have similar strong keypoints at the same index in the list.

4.4 Generating SURF Keypoints

Both of the GP-based (2TGP and GP-HoG) methods are designed to operate
directly on the raw pixel values, which is not the case for the other baseline
methods. Therefore, SURF image descriptor is used to generate a list of keypoints
that can be used as a high-level features by those classifiers. However, SURF
generates varying numbers of keypoints based on the number of interest points
an image has. For many classifiers, this presents a problem as a static number
of features (fixed length feature vector) is expected. Algorithm2 is developed to
address this problem. This method relies on altering the Hessian threshold, which
represents a main component of the SURF method, in order to determine the
interest points. Binary search is used to adjust this threshold until a predefined
number of keypoints are retrieved. A fixed number of keypoints allows more
effective training as a solution can perform consistently across a dataset.
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Algorithm 2. Selecting top-p keypoints
1 function selectKeypoints(image, Lbound, Ubound, p) � where Lbound and Ubound are the
2 threshold ← (Ubound − Lbound)/2 + Lbound lower and upper bounds of the
3 keypoints ← SURF(threshold) Hessian threshold, respectively.
4 if |keypoints| = p then
5 return keypoints
6 else if |keypoints| > p then
7 Lbound ← threshold
8 else
9 Ubound ← threshold

10 end if
11 return selectKeypoints(image, Lbound, Ubound, p)
12 end function

4.5 Evolutionary Parameters

GP has a number of parameters which can be altered in order to optimise the
evolutionary process for a given problem. The GP-HoG and the 2TGP methods
were applied to the three datasets (Sect. 4.1). For 2TGP, the same parameters
were used as in [2]; namely, 80% crossover, 20% mutation and top-10 elitism
was used. The population size was 1, 024, and the minimum and maximum tree
depth were 2 and 10, respectively. On each dataset, the evolutionary process was
independently executed 35 times using different seed values. Each execution was
run for 50 generations or until perfect training performance was obtained. GP-
HoG used 40% mutation and 60% crossover as it was found a higher mutation
rate could produce better training performance by allowing a wider exploration
of the search space. All other parameters were the same as for 2TGP.

5 Results and Discussion

This section compares the performance of the GP-HoG approach to the 2TGP
approach and the five SURF baselines. It also discusses the increase in training
time required to train GP using the GP-HoG approach compared to using 2TGP.

5.1 Compared to the 2TGP Approach

The results of the 2TGP and GP-HoG are shown in Table 3. Student’s t-test
with a 95% confidence interval was used to evaluate the significance of the
performance increase using GP-HoG. A “+” in Table 3 indicates that GP-HoG
is significantly better than the 2TGP approach, whereas a “−” indicates it is
significantly worse. The GP-HoG approach performs significantly better on the
Jaffe and UIUC datasets (the two difficult datasets) while achieving slightly
worse mean (but identical maximum) test performance on the COIL-20 dataset.
On the most difficult dataset (Jaffe), GP-HoG achieves a 5% and 11% increase
in mean and maximum test performance respectively over the 2TGP approach.

The average training time has increased notably using the new approach com-
pared to 2TGP, with approximately 3× more computation required on the Jaffe
and UIUC datasets, likely due to the larger amount of computation required by
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the HoG function than in the aggregation functions used in the 2TGP approach.
The arctan (·) function is the slowest part of the HoG algorithm (from empirical
sampling), as it is somewhat expensive to compute even on a modern CPU, and
is used once for every pixel in a region. On the UIUC dataset (which has the
largest number of images), training never finishes before the maximum number
of generations (the maximum training performance is 98%), and so the train-
ing time is much longer than the other datasets. Even with the utilisation of
multi-threading, the 600 hours of CPU time across all folds takes about a week
of real time. It is important to note that while the increase in training time is
a downside of the new approach, the time required to apply the best trained
solution to new, unseen images is still minimal. Long training times are common
when GP is used, but as long as the evolved programs are not overly complex,
they are often quick enough to be used on unseen instances.

5.2 Compared to the Baselines

The results of the five non-GP methods on the three datasets using different
numbers of SURF keypoints are presented in Table 4. The values of the last two
blocks (p = 20 and p = 50) of the UIUC dataset are not available as SURF could
not generate this many keypoints due to a lack of interest points in the images in
this dataset. The GP-HoG approach has similar performance on COIL-20 and
improved performance on the Jaffe and UIUC datasets compared to the non-
GP baselines. This is unsurprising, as the GP-HoG approach is able to perform
region selection and feature construction to give more advanced and dataset-
specific features than the domain-independent features produced by SURF.

Table 3. The accuracy and average training time (H:M:S) of the 2TGP and GP-HoG
methods on the three datasets.

2TGP GP-HoG

COIL-20 Jaffe UIUC COIL-20 Jaffe UIUC

Train Test Train Test Train Test Train Test Train Test Train Test

Max 1.00 1.00 0.98 0.81 0.96 0.94 1.00 1.00 0.99 0.92 0.96 0.95

Mean 1.00 0.99 0.95 0.71 0.94 0.92 1.00 0.97− 0.97+ 0.76+ 0.95+ 0.93+

St.Dev 0.00 0.01 0.02 0.05 0.01 0.01 0.00 0.02 0.02 0.07 0.01 0.01

Training time 00:05:49 01:35:54 16:22:39 03:24:26 04:36:24 52:15:25

6 Further Analysis

The GP-HoG approach produces programs which can be interpreted and under-
stood by humans. This section analyses three high-performing evolved programs
to understand how they can perform classification with high accuracy.
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Table 4. The average accuracies of the non-GP baseline methods on the three datasets.

p = 5 p = 10 p = 20 p = 50

Train Test Train Test Train Test Train Test

C
O

IL
-2

0 SVM 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00
J48 0.99 0.86 0.99 0.86 0.99 0.86 0.99 0.85
NB 0.99 0.97 0.99 0.96 1.00 0.91 1.00 0.94
RF 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00
ABM1 1.00 0.96 1.00 0.96 1.00 0.93 1.00 0.93

J
a
ff
e

SVM 1.00 0.63 1.00 0.72 1.00 0.74 1.00 0.82
J48 0.98 0.70 0.98 0.56 0.98 0.59 0.98 0.79
NB 0.89 0.72 0.92 0.72 0.98 0.75 1.00 0.69
RF 1.00 0.77 1.00 0.76 1.00 0.77 1.00 0.71
ABM1 1.00 0.70 1.00 0.77 1.00 0.67 1.00 0.71

U
IU

C

SVM 0.99 0.92 1.00 0.91 N/A N/A N/A N/A
J48 0.99 0.84 0.99 0.83 N/A N/A N/A N/A
NB 0.90 0.89 0.90 0.89 N/A N/A N/A N/A
RF 1.00 0.94 1.00 0.93 N/A N/A N/A N/A
ABM1 0.88 0.85 0.88 0.84 N/A N/A N/A N/A

6.1 Example Program 1

An evolved program with high performance on the Jaffe dataset is shown in
Fig. 3. This program is interesting to analyse, as it is very simple, consisting of
two HoG operators, and a subtraction operator. The left side of the tree applies
the HoG operator to a rectangular region corresponding to the right side of the
face, including the eye, cheek, and part of the nose and lip areas. This region
contains different features of the face in the happy and surprised expressions.
When the subject is happy, the corner of the mouth is narrower than when
surprised, producing a smaller gradient orientation. When they are surprised,
the mouth is widened, creating a right-angle between the chin and where the
subject’s ear would be. This edge is at a larger angle than when the subject is
happy, and hence a different histogram is produced. The HoG operator produces
a histogram, and the value of the bin corresponding to the 270◦–314◦ orientation
range is selected by the bin function. On the right side of the tree, the HoG
operator is applied to a circular region of the image, which corresponds to the
upper nose, eyes, and eyebrow areas. The subject’s nose appears much narrower
when surprised, due to her mouth being open. There is also more of the nose
included in the surprised image, which introduces an additional edge gradient.
The eyes are also different when surprised; they appear wider and have more
white showing. All of these differences change the histogram that is produced,
allowing GP to extract features that distinguish these two expressions. The value
of the bin corresponding to the 0◦–44◦ range is chosen by the bin node on the
right side of the tree. The root of the tree then outputs the difference between
the values from the left and right sides of the tree. This program scores 98%
and 95% on training and test sets respectively on the fold it was generated in.
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Fig. 3. Example program 1: 98 % training and 95 % test performance on Jaffe dataset
(a) GP tree, (b) Happy (+ve) expression, and (c) Surprised (−ve) expression.

6.2 Example Program 2

Another program with very good performance (95% training and 100% test
accuracy) on the Jaffe dataset is shown in Fig. 4. This program is similar to
Program 1 in that it uses only the difference of two histogram values to classify
images with high accuracy. The yellow circular region contains the left eye and
cheek, and a small part of the nose. The left eye has a different appearance
between the happy and surprised expressions; when surprised, a larger amount
of the eye is visible. The left nostril is also open in the surprised expression,
producing a large gradient around it which is included in the yellow circle. While
the blue circle is more difficult to analyse as it covers a large part of the image,
one important observation is that it appears to be bounded by the eyes and
mouth. The mouth is much darker in the surprised expression, giving a smaller
gradient than in the happy expression where there is a distinct gradient between
the white teeth and darker lips. By selecting the important mouth, eye and nose
regions, the feature selected from the blue circle are used by GP to distinguish
between happy and surprised expressions.

Fig. 4. Example program 2: 95 % training and 100 % test performance on Jaffe dataset
(a) GP tree, (b) Happy (+ve) expression, and (c) Surprised (−ve) expression.

6.3 Example Program 3

Unlike the Jaffe and COIL-20 datasets, GP-HoG is unable to obtain perfect
training performance on UIUC, and so large programs are produced by the evo-
lutionary training process to maximise the training performance. The program
in Fig. 5 (a) is one of the simpler programs that performs well on UIUC, with a
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tree depth of eight. The regions used by this program are shown in Fig. 5 (b) and
(c). While many regions are used, most tend to be small, identifying particular
aspects of the image that are useful for classification. Several of these regions
enclose specific parts of the car in (b), such as the front wheel, wheel arch and
parts of the front door. The front wheel is likely to have a distinctive histogram,
as it has a circular tyre surrounding the hubcap. This gives a circular edge which
has a consistently changing orientation and a large gradient magnitude (as the
tyre is black and the hubcap is grey), producing a histogram with a similar mag-
nitude in each bin. The same region in the background image contains a straight
edge, which would produce a histogram with a spike in one bin. This difference
in histograms helps the GP tree to distinguish these two classes.

Fig. 5. Example program 3: 96 % training and 97 % test performance on UIUC dataset
(a) Lisp expression, (b) Car (+ve) image, and (c) Background (−ve) image.

7 Conclusions

We proposed a new GP method for simultaneous region selection, feature con-
struction and classification, which combines novel functions inspired by the HoG
algorithm with the region selection concept proposed in the 2TGP method. Per-
formance evaluation showed good results using the proposed method compared
to the performance of 2TGP on three datasets with increasing difficulty. Perfor-
mance was also promising when compared to other machine learning baselines
using SURF features. The analysis of high-performing solutions showed that the
GP-HoG approach could perform very well using simple programs. The adapta-
tion of HoG for use as a GP function was shown to be an effective method of
performing high-level feature extraction directly within a GP tree.

In the future, we would like to study the use of the extracted and con-
structed features produced by GP-HoG across different classifiers. This will help
in identifying whether GP-HoG can be used for automatic feature extraction
and construction, and whether these features are biased towards a specific type
of classifiers. Another very important direction is to investigate the possibility
of using other algorithms which could also be adapted directly in GP functions.
For example, deeper analysis of the SURF or SIFT algorithms could produce
functions that could be added to the GP-HoG approach. Other techniques such
as edge detection could also be used within a GP tree in order to build a multi-
faceted classifier which draws upon a range of techniques for complex classifica-
tion tasks.
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Abstract. We propose SFIMX, a method that reduces the number of
required interactions between programs and tests in genetic program-
ming. SFIMX performs factorization of the matrix of the outcomes of
interactions between the programs in a working population and the
tests. Crucially, that factorization is applied to matrix that is only par-
tially filled with interaction outcomes, i.e., sparse. The reconstructed
approximate interaction matrix is then used to calculate the fitness of
programs. In empirical comparison to several reference methods in cate-
gorical domains, SFIMX attains higher success rate of synthesizing cor-
rect programs within a given computational budget.

Keywords: Genetic programming · Test-based problem · Recom-
mender systems · Machine learning · Surrogate fitness

1 Introduction

Conventional fitness evaluation in genetic programming (GP) consists in apply-
ing a program to multiple tests (fitness cases) and aggregating the observed
differences between the actual and desired program output. Running a program
multiple times can be computationally costly, especially when it involves non-
trivial computation or requires processing large amount of data. Computational
expense becomes particularly high when programs grow large (a common ailment
of GP) or engage loops.

Lowering computational cost incurred by evaluation by simply reducing the
number of tests is often not a viable option. Few tests implies inaccurate fitness,
and consequently a poorly informed search process. Moreover, discarding tests
may cause a task to be formally underspecified (underconstrained). For instance,
a set of tests for a multiplexer problem that misses even a single test does not
technically specify that problem anymore. Also, if the differences between the
actual and desired program outputs are discrete, a low number of tests leads
to coarse-grained fitness that often fails to differentiate solutions. When, as it
is common, the actual and desired output can be compared only for equality,
the outcome of a program-test interaction is binary and fitness can assume only
n + 1 values for n tests.

c© Springer International Publishing Switzerland 2016
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Surrogate Fitness via Factorization of Interaction Matrix 69

Various means for reducing the number of required program-test interactions
other than plain discarding of tests have been proposed in the past. Most of
them fall under the category of surrogate fitness and involve measurement of
similarity between the inputs of particular tests. In the simplest scenario, an
unknown output of a program for a test t is substituted with the known output
of that program for a similar test t′. However, designing an appropriate input
similarity measure for a given problem requires domain knowledge. And once
designed, such a measure may bias the selection of tests to be used as surrogates
and lower the likelihood of synthesizing the correct program.

In this paper, we propose a method that builds a Surrogate Function via Fac-
torization of Interaction Matrix (SFIMX) and reduces so the number of interac-
tions. SFIMX, detailed in Sect. 4, is applicable to any domain where interaction
outcomes can be encoded as numbers (e.g., symbolic regression, Boolean, inte-
ger, etc.) and, unlike the similarity measures mentioned above, does not require
additional knowledge. It engages the well-known algebraic concept of matrix
factorization, that recently grew in popularity in machine learning and recom-
mender systems. SFIMX is straightforward, performs well in practice (Sect. 6),
and has interesting conceptual implications, which we elaborate on in Conclu-
sions.

2 Background

The desired behavior of a program to be synthesized in GP is specified by a set of
tests (fitness cases), each being a pair (x, y) ∈ T of the input x fed into a program
and the desired output y expected to result from that program execution. T may
be sampled from a potentially infinite universe T ⊃ T .

A GP algorithm solving a program synthesis task maintains a population of
programs P ⊂ P. In every generation, each program p ∈ P is tested on every
test (x, y) ∈ T , in which p is applied to x and returns an output p(x). In other
words, p engages in an interaction with a test t. The outcome of that interaction
can be characterized by a scalar interaction function g(p, t). If p(x) = y, p is
said to pass the test and g(p(x), y) = 1. Otherwise, we set g(p(x), y) = 0 and
say that p fails (x, y). In this paper, we assume that interaction outcomes are
binary, i.e., g : P ×T → {0, 1}, though in general various degrees of passing tests
could be considered (for instance by grading them according to the similarity of
the actual and desired output).

We gather the outcomes of interactions in an interaction matrix G. For a
population of m programs and n tests in T , G is an m × n matrix where gij
is the outcome of interaction between the ith program pi and jth test tj . The
conventional GP fitness that rewards a program for the number of passed tests
can be then written as

f(pi) =
n∑

j=1

gij , (1)

or alternatively as
f(p) = |{t ∈ T : g(p, t) = 1}|. (2)
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As it follows from the above, all elements of G need to be calculated in order
to assess fitness values of all programs in P . Therefore, mn program executions
are required in every generation of a GP run.

3 Factorization of Interaction Matrix

The motivation behind all methods that aim at reducing the number of program-
test interactions is the potential redundancy of interaction matrix. The simplest
form of redundancy is test duplication: though we referred above to T as a set,
it is in practice usually implemented as a list, so duplicates are allowed.

Redundancy may also manifest when tests are different but all (or many)
programs behave identically on them (in terms of passing or failing). Consider
the task of synthesizing a sorting program, where tests are pairs (x, y) of lists
and y is the sorted version of x. If the programming language of consideration
does not allow any other operation on list elements than comparisons, then once
a program passed a specific test of sorting a list of length, say, four, it will pass
all other tests with the same permutation of four elements.

The SFIMX method proposed here aims at more subtle type of redundancy,
i.e., when the value of the interaction of a program p with a given test t can be
reconstructed from the responses of p and other programs in a population to t
and other tests. More precisely, reconstructed by means of linear combinations of
interaction outcomes. To this aim, we apply the well-known technique of matrix
factorization (MF).

Formally, given an non-negative matrix G (interaction matrix in our case)
and a desired rank k � min(m,n), non-negative matrix factorization (NMF)
[1] searches for non-negative matrices (factors) W and H that give a lower rank
approximation of G as:

G ≈ WH s.t. W,H ≥ 0, (3)

where W ∈ R
m×k is traditionally called weights matrix (or basis matrix ) and

H ∈ R
k×n is feature matrix. Note that each test t ∈ T is associated with a

column in H (a vector ht ∈ R
k) and each program p ∈ P is associated with a

row in W (a vector wp ∈ R
k). For clarity, we abuse the notation and index the

elements, rows, and columns of matrices with programs p and tests t.
The problem given by Eq. 3 is commonly reformulated as the following opti-

mization problem:

min
W,H

f(W,H) ≡ 1
2
||G − WH||2F s.t. W,H ≥ 0, (4)

where || · ||F is the Frobenius norm.
In the simplest scenario, MF model is trained by fitting to the observed

interaction outcomes in G. Notice that if G’s rank is ≤ k, there exists an exact
solution to (3). However, as it will become clear in a moment, our goal is to
generalize in a way that allows predicting unknown interaction outcomes. Thus,
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caution should be exercised to avoid overfitting the observed data in G. A com-
mon extension of the basic MF formula that addresses this issue is regularization,
which can be implemented by adding a parameter λ and modifying the squared
error objective function:

min
W,H

f(W,H) ≡ 1
2
||G − WH||2F + λ(||W ||2F + ||H||2F ) s.t. W,H ≥ 0. (5)

The minimization problem given by (5) is not convex in both W and H
simultaneously, however it is convex in either W or H. Thus, by keeping one
matrix constant, the other can be found with a simple least squares computa-
tion. This strategy is widely known as alternating least squares [25]. Expression
(5) can also be minimized using stochastic gradient descent, however the most
popular approach to solve this optimization problem is the multiplicative update
algorithm [18], which alternates the following two steps:

wpk ← wpk
(GHT )pk

(WHHT )pk
(6)

hkt ← hkt
(WTG)kt

(WTWH)kt
(7)

In each iteration, the new values of W and H are found by multiplying the
current one by a factor that depends on the quality of approximation in (3). The
quality of approximation improves monotonically with the application of the
above rules [18]. The update rules are applied for a fixed number of iterations
or until the error given by the left-hand side of (5) is sufficiently small.

As it follows from (3), to predict an interaction outcome of a program p with
a test t from the matrices W and H found by solving (5), we calculate the dot
product of two vectors corresponding to p and t:

ĝpt = wT
p ht =

k∑

k=1

wpkhkt (8)

Crucially for SFIMX, G can be factorized in the above way even if some of its
elements are unknown, i.e., when G is sparse. This makes matrix factorization
a powerful tool in machine learning, where it can be used to fill in the gaps in
a large matrix (of, e.g., users’ recommendations [12]) even if only small part of
that matrix is known for certain. However, the update rules given by (6) and
(7) implicitly assume that the input matrix is complete. In order to make them
work for sparse matrices, a small modification must be introduced so that the
unobserved outcomes in G are masked by zeros and ignored during training of
the NMF model. Let M be a binary mask where mpt = 1 if gpt is known and
mpt = 0 otherwise. Then the update rules for so-called weighted non-negative
matrix factorization (WNMF) [20] become:

wpk ← wpk
((M � G)HT )pk

((M � (WH))HT )pk
, (9)
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hkt ← hkt
(WT (M � G))kt

(WT (M � (WH)))kt
, (10)

where � is the Hadamard (element-wise) product.

4 The SFIMX Algorithm

Based in observations made in the previous section, we propose a method dubbed
Surrogate Fitness via Factorization of Interaction Matrix (SFIMX). The method
expects two parameters: the factorization rank k and desired density α ∈ (0, 1]
of partial interaction matrix. SFIMX employs the NMF formalisms described in
Sect. 3 to replace the conventional fitness evaluation stage of GP algorithm with
the following steps:

1. Calculate in part the sparse interaction matrix G between the programs from
the current population P and the tests from T in the following way:
(a) For each program p, draw a nonempty random subset of tests T ′ ⊂ T of

size α|T| to interact with, where α ∈ (0, 1] is the parameter that controls
the fraction of interactions to be calculated.

(b) Apply p to tests in T ′, placing the interaction results in the appropriate
cells of the corresponding row of G.

(c) Fill in the remaining (missing) entries in G with zeros.
2. Factorize G in non-negative components W and H using the multiplicative

update algorithm ((9) and (10)).
3. Use the obtained matrices to reconstruct the interaction outcomes by calcu-

lating Ĝ = WH.
4. Compute from Ĝ the fitness of each program p ∈ P using the conventional

formula (1), by substituting gijs with the values taken from Ĝ, i.e., ĝijs.

For the purpose of the above algorithm it is mandatory to redefine the original
interaction function g(p, t) defined in Sect. 2, because zero is reserved for missing
interaction outcomes. We assume that g returns 1 if p fails (x, y) and 2 if p solves
(x, y). Note also that α ≥ 1

|T | must hold for T ′ to be nonempty.

Example. Consider population of programs P = {p1, p2, p3, p4} and the popu-
lation of tests T = {t1, t2, t3, t4, t5}. Assume that SFIMX is run with α = 3

5 and
yields the following sparse matrix of interactions G between P and T :

G =

⎛

⎜⎜⎝

t1 t2 t3 t4 t5

p1 2 1 2
p2 2 1 1
p3 1 2 2
p4 2 1 1

⎞

⎟⎟⎠
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Let k = 3. In step 2 of SFIMX, application of 50 iterations of the multiplicative
update algorithm to G results in the following factorization:

W =

⎛

⎜⎜⎝

f1 f2 f3
p1 0.46 1.96 0.6
p2 1.27 0.1 0.95
p3 1.37 0.02 2.83
p4 0.4 1.86 1.60

⎞

⎟⎟⎠, H =

⎛

⎝

t1 t2 t3 t4 t5

f1 0.48 1.50 0.01 0.41 0.41
f2 0.87 0.14 0.19 0.77 0.01
f3 0.11 0.09 1.02 0.50 0.51

⎞

⎠.

When multiplied (step 3 of SFIMX), W and H lead to the following recon-
structed interaction matrix:

Ĝ = WH =

⎛

⎜⎜⎝

t1 t2 t3 t4 t5

p1 2 1.02 1 2 0.52
p2 0.8 2 1 1.07 1
p3 1 2.31 2.1 2 2
p4 2 1 2.01 2.4 1

⎞

⎟⎟⎠

Finally, in step 4, we calculate the fitness of particular programs by summing
the corresponding rows of the reconstructed interaction matrix, which results in
f(p1) = 6.54, f(p2) = 5.87, f(p3) = 9.41, and f(p4) = 8.41. Overall, SFIMX
enabled calculating these values using α|T ||P | = 12 known interaction outcomes,
compared to |T ||P | = 20 interactions required by the conventional method. �

In the above example, the reconstructed matrix Ĝ perfectly reproduces the
known interaction outcomes, so the square approximation error (5) attains zero.
This is guaranteed to happen when k ≥ rank(G). In general the approximation
error will have the tendency to be greater for smaller values of k and greater
values of α.

Properties of SFIMX. Predictions made by the method are based on how
similar programs interact with the tests in T . The similarity in behavior of two
programs is calculated based on the similarity in the outcomes of interactions
with certain tests. Missing interaction outcomes are predicted based on the feed-
back from other programs and tests in the population.

As a result, evaluation in SFIMX is contextual : prediction ĝpt made for a miss-
ing outcome depends not only on corresponding p and t but also on other pro-
grams in P and other tests in T . All available outcomes of interactions between
programs in P and tests in T together determine the MF model and therefore
influence how the predictions for missing outcomes are made. As the programs
evolve with time, so does the model. Therefore, SFIMX performs NMF anew
with each generation to model the missing interaction outcomes.

By factorizing interaction matrix G, the programs and the tests are projected
into a reduced latent spaces that capture their most salient abstract features.
The weight matrix H has one column for every abstract feature and one row for
every program, and maps the features to the programs. The values in W state
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how much each feature applies to each program. Feature matrix H, on the other
hand, has a row for each abstract feature and a column for each test. Every value
in H indicates the extent to which a test possesses an abstract feature.

Interestingly, NMF with the least squares objective (Eq. 4) is characterized by
an inherent clustering property, i.e., it clusters the columns of interaction matrix
G. If additional orthogonality constraint on H is added, i.e., HHT = I, then the
minimized objective is equivalent to the one of K-means clustering (except for
the non-negativity constraint), i.e., the sum of square of distances from clusters’
centroids. In such a case, NMF can be viewed as a relaxed form of K-means
where the matrix W contains non-negative cluster centroids and the elements
of H are cluster membership indicators. This convergence helps understand how
the problem of finding similar programs is internally tackled by NMF. It also
reveals certain similarities to the recently proposed DOC algorithm, which we
touch upon in the following review of related work.

5 Related Work

The values calculated by SFIMX can be treated as a surrogate fitness. Also
known as approximate fitness function or response surface [10], a surrogate fit-
ness function provides a computationally cheaper approximation of the original
objective function. Surrogates are particularly helpful in domains where evalu-
ation is computationally expensive, e.g., when it involves simulation. They usu-
ally rely on simplified models of the process being simulated, hence yet another
alternative name: surrogate models. In continuous optimization, such models are
typically implemented using low-order polynomials, Gaussian processes, or arti-
ficial neural networks. Occasionally, surrogate models have been also used in GP.
For instance, in [8], Hildebrandt and Branke proposed a surrogate fitness for GP
applied to job-shop scheduling problems. A metric was defined that reflected
the behavioral similarity between programs, more specifically how the programs
rank the jobs. Whenever an individual needed to be evaluated, that metric was
used to locate its closest neighbor in a database of historical candidate solutions
and neighbor’s fitness was used as a surrogate.

Several other studies in GP attempted to reduce the number of programs’
evaluations. An arguably simplest approach is to draw a subset of tests T ′ ⊂ T
and allow the programs interact only with them. This approach was also inves-
tigated in the context of evolutionary algorithms, where it is known as Random
Subset Selection (RSS) [3]. Apart from speeding up the evolution, the motiva-
tion is that programs that perform well on various different subsets might have
captured essential knowledge to generalize to all tests in T . Random selection of
tests has been shown to improve the success rate and reduce overfitting [6].

SFIMX redefines fitness function. Several other methods proposed in the past
in GP do that too, albeit usually not in terms of linear algebra. The arguably
oldest approach of this type is implicit fitness sharing introduced by Smith et al.
[26] and further explored for genetic programming by McKay [21,22]. IFS lets the
evolution assess the difficulty of particular tests and weighs the rewards granted
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for solving them. In this sense, IFS treats tests as limited resources: programs
share the rewards for solving particular tests, each of which can vary from 1

|P | to
1 inclusive. Higher rewards are provided for solving tests that are rarely solved by
population members, while importance of tests that are easy is diminished. The
assessed difficulties of tests change with evolution, which can help escaping local
minima and diversifies population. Diversification maintenance was also the main
motivation for the recent lexicase selection algorithm [7], that avoids aggregating
interaction outcomes altogether and differentiates programs by comparing them
on randomly selected tests.

Another method that aims at scrutinizing the individual outcomes of pro-
grams’ interactions and leveraging them for better performance is DOC [15].
In every generation, the algorithm identifies the groups of tests on which the
programs in the current population behave similarly and clusters them together
to give rise to new search objectives. Typically, a few such objectives emerge
from this process, each of which is intended to capture a subset of ‘capabilities’
exhibited by the programs in the context of other individuals in population. The
newly derived objectives replace then the conventional fitness function are used
to drive the selection process. DOC is inspired by previous work in coevolution-
ary algorithms and test-based problems in [19].

Relying on binary interaction outcomes that only state whether a given test
has been passed by a program or not stays in close resemblance to test-based
problems originating in coevolutionary algorithms [2,5]. In test-based problems,
candidate solutions interact with multiple environments – tests. Typically, the
number of such environments is very large, making it infeasible to evaluate can-
didate solutions on all of them. Depending on problem domain, tests may take
on the form of, e.g., opponent strategies (when evolving a game-playing strat-
egy) or simulation environments (when evolving a robot controller). Solving a
test-based problem requires a learning algorithm to generalize from a sample of
tests. Similarly in GP, a synthesized program is expected to generalize beyond
the training set and tests often do not enumerate all possible program inputs.

Last but not least, there are certain connections between SFIMX and seman-
tic GP [24] and behavioral [14,16,17] GP methods that define program semantics
as the vector of outputs produced by a program for particular tests. From the
viewpoint of SFIMX, a single row in an interaction matrix is the outcome of con-
fronting program’s semantics with the vector of desired outputs. Recent years
have seen a large number of contributions that employ this characterization
of program behavior to design new initialization, search, and selection opera-
tors [23]. However, those methods are in general not designed to redefine search
objectives, which is the primary goal of SFIMX.

6 Experimental Verification

We examine the performance of SFIMX in the domain of tree-based GP. All
compared methods implement generational evolutionary algorithm and share the
same parameter settings, with initial population of size |P | = 1000 filled with the
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ramped half-and-half operator, subtree-replacing mutation engaged with prob-
ability 0.1, subtree-swapping crossover engaged with probability 0.9, and tour-
nament of size 7 in the selection phase. The fitness of each program p ∈ P
is computed using (1). Search lasts up to 200 generations and stops when the
assumed number of generation elapses or an ideal program is found; the latter
case is considered a success.

Compared Algorithms. We are interested in verifying whether SFIMX is
a viable method for reducing the computational cost incurred by evaluation.
For that aim, we control the fraction of interactions to be calculated by the
parameter α ∈ {0.1, 0.2, . . . , 1.0} in SFIMX algorithm in Sect. 4. By reducing
in each generation the number of interactions by a factor of (1 − α), we spare
(1−α)|P ||T | interactions per run. We investigate what can be gained by investing
these savings in increased population size: we increase the population size by
the factor of (1 − α), so that it holds |P | + (1 − α)|P | = (2 − α)|P | individuals.
Therefore, population size does not change at all when α = 1.0, while for α close
to 0 it is almost doubled. Nevertheless, the overall computational budget is the
same for all configurations and amounts to 1, 000|T | interactions per generation
and thus 200, 000|T | interactions per run. This holds for all of the compared
algorithms, including the control setups.

We consider three settings of factorization rank k that controls the degree
to which the interaction outcomes are being compressed by factorization. The
configuration dubbed SFIMX-full uses k = min(|P |, |T |), which is equivalent
here to k = |T |, because for the considered benchmarks |P | > |T |. This value
should be considered large, as NMF can then perfectly reproduce the known
interaction outcomes, because the rank of G can be at most min(|P |, |T |).

The SFIMX-half configuration uses k = |T |/2, which forces the interaction
outcomes to be compressed in half the number of weights in matrix W and
features in matrix H. However, this number can be still considered quite high,
given that we expect the interaction outcomes to be mutually correlated between
program and tests.

Finally, the configuration SFIMX-log uses the smallest rank k = 
log2 |T |�.
In this case, k is in the order of the number of input variables; for instance, for
the Mux6 problem k = log2 26 = 6.

The factorization is realized by the WNMF algorithm ((9) and (10)). The
regularization factor λ is set to 0.01, as suggested by the common practice. When
invoked for a given sparse interaction matrix G, we let WNMF perform up to 50
iterations, each involving both steps, i.e., (9) and (10). If the approximation error
(the left-hand size of (5)) drops below 10−5, we stop the optimization earlier.
The computational overhead of running WNMF is on average 19 percent of the
time spent evaluating programs in the population.

We confront SFIMX with several control setups. The first baseline is the
conventional Koza-style GP [13]. The second control configuration, dubbed RSS,
calculates fitness using α|T | randomly selected tests. The subset of tests is drawn
anew in every generation of evolutionary run. We refer to this method as Random
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Subset Selection (RSS), based on its similarity to an evaluation scheme known
in coevolutionary algorithms [3].

Benchmark Problems. SFIMX and the multiplicative update algorithm it
involves can in principle factor an arbitrary non-negative interaction matrix
G and then reconstruct its approximation Ĝ. However, obtaining good recon-
structions for arbitrarily large interaction outcomes might be difficult, and such
unconstrained outcomes can be expected for symbolic regression, where they
are based on arbitrarily large errors committed by programs on test (not men-
tioning the possibility of programs returning infinity). Also, the raw interaction
outcomes for symbolic regression problems are signed (the difference between
the real-valued actual and desired output) and as such would require a well-
justified mapping to positive numbers. For these reasons, in this study we limit
our interest to problems with discrete interaction outcomes.

The first group are Boolean benchmarks, which employ instruction set {and,
nand, or, nor} and are defined as follows. For an v-bit comparator Cmp v, a
program is required to return true if the v

2 least significant input bits encode a
number that is smaller than the number represented by the v

2 most significant
bits. In case of the majority Maj v problems, true should be returned if more
that half of the input variables are true. For the multiplexer Mul v, the state
of the addressed input should be returned (6-bit multiplexer uses two inputs to
address the remaining four inputs). In the parity Par v problems, true should
be returned only for an odd number of true inputs.

The second group of benchmarks are the algebra problems originating from
Spector et al.’s work on evolving algebraic terms [27]. These problems dwell
in a ternary domain: the admissible values of program inputs and outputs are
{0, 1, 2}. The peculiarity of these problems consists of using only one binary
instruction in the programming language, which defines the underlying algebra.
For instance, for the a1 algebra, the semantics of that instruction is defined as
follows:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

In the following, the employed algebra is indicated by the suffix the name of term
to be evolved. See [27] for the definitions of the remaining four algebras. For each
of the five algebras considered here, we consider two tasks (of four discussed in
[27]). In the discriminator term tasks (Dsc in the following), the goal is to
synthesize an expression that accepts three inputs x, y, z and is semantically
equivalent to the one shown below:

tA(x, y, z) =

{
x if x �= y

z if x = y
(11)

There are thus 33 = 27 fitness cases in these benchmarks. The second tasks
(Mal), consists in evolving a so-called Mal’cev term, i.e., a ternary term that
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satisfies the equation:
m(x, x, y) = m(y, x, x) = y (12)

This condition specifies the desired program output only for some combinations
of inputs: the desired value for m(x, y, z), where x, y, and z are all distinct, is
not determined. As a result, there are only 15 fitness cases in our Mal tasks, the
lowest of all considered benchmarks. The motivation for the discriminator and
Mal’cev term problems is originally that they’re of interest to mathematicians [4].
In this paper, however, we chose them as benchmarks because of their difficulty
and formal elegance.

Table 1. Success rate (×100) of best-of-run individuals, averaged over 30 evolutionary
runs. Bold marks the best result for each benchmark.
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Performance. Table 1 reports the success rates of particular algorithms, result-
ing from 30 runs of each configuration on every benchmark. To provide an aggre-
gated perspective on performance, we employ the Friedman’s test for multiple
achievements of multiple subjects [11]. We first determine the best perform-
ing configuration within each method. For SFIMX-full and SFIMX-half, the
configurations with α = 0.4 fare the best, while for SFIMX-log and for RSS
α = 0.3 is most advantageous. The Friedman test applied to those configura-
tions leads to the following ranking:

SFIMX-half-04 SFIMX-full-04 SFIMX-log-03 GP RSS-03
2.07 2.13 2.67 3.90 4.23

The p-value for Friedman test is � 0.001, which strongly indicates that at least
one method performs significantly different from the remaining ones. We con-
ducted post-hoc analysis using symmetry test [9]: bold font marks the methods
that are outranked at 0.05 significance level by SFIMX-half-04.

For additional insight, we also ranked all considered configurations for all
individual values of α. The best overall average rank of 7.57 was achieved by
SFIMX-half-04. Eight out of ten SFIMX-half configurations ranked before any
of the control configurations; only SFIMX-half with α = 0.1 and α = 1.0 ranked
behind GP and some RSS setups (average ranks 32.47 and 24.53, respectively).
GP attained average rank 21.43.

SFIMX clearly outperforms the other methods. Its average ranks are bet-
ter than the ranks of control configurations, albeit not so for the logarithmic
variant SFIMX-log. That last fact is not surprising, given that SFIMX-log uses
roughly an order of magnitude fewer weights and features than SFIMX-full and
SFIMX-half. Nevertheless, SFIMX-log still delivers decent performance and for
its preferred setting α = 0.3 surpasses GP and RSS on most benchmarks. This
corroborates our hypothesis that the interaction outcomes are significantly cor-
related and lend themselves to high compression without affecting the overall
performance of the method. This result is particularly appealing, as low k implies
low computational overhead of factorization: for SFIMX-log, it amounts only to
approximately 6 percent of the total cost of calculating the 1, 000|T | program-
test interactions.

On the other hand, there are no significant differences in performance
between SFIMX-full and SFIMX-half. Apparently the relatively high rank of
the resulting matrices makes it possible to model the interaction outcomes suf-
ficiently well in both these cases.

The success rates of SFIMX for individual benchmarks are always the best
among the considered methods – see the values marked in bold in Table 1. For
SFIMX-half, the SFIMX variant that overall fares the best, for three problems
(Mux6, Mal1, and Mal5) there is at least one setting of α that makes SFIMX
succeed systematically, i.e., in every run (success rate 100). In that respect, it is
equaled only by GP and only on the Mal5 problem.

SFIMX performs also well in qualitative terms. It manages to produce solu-
tions for all problems, while GP never solves Cmp8, Dsc1, Dsc2, Dsc4 and Dsc5,
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and RSS never solves Dsc1 and Dsc4, and hardly ever solves Cmp8, Dsc2 and
Dsc5. On those hard problems, SFIMX is in most cases remarkably resistant to
the setting of α: for Cmp8 and Dsc1, it succeeds for most values of α in the
range [0.2, 0.9], and for Dsc5 for α ∈ [0.2, 1.0]. The only exception is Dsc4 where
it managed to solve the problem only for α = 0.4, and only once in 30 runs.

As a rule of thumb, we may say that setting α in [0.3, 0.7] is favorable. How-
ever, using other values is not very detrimental. For many problems SFIMX
maintains decent success rates even for very low setting of this parameter; for
instance SFIMX-half is better than or comparable to GP for α = 0.2 on Cmp8,
Mux6, Dsc1, Dsc2, Dsc3, Dsc5, Mal2, Mal3, Mal4, and Mal5. For some bench-
mark, it still works quite well even for α = 0.1. This is impressive, given that the
interaction matrix is reconstructed there from only 10 percent of actual outcomes
of program-test interactions.

7 Conclusions and Future Work

In conclusion, we find the idea of reconstructing interaction outcomes via fac-
torization of sparse interaction matrix both conceptually appealing and useful
in practice. SFIMX is straightforward, founded on solid mathematical under-
pinnings, and performs well for a broad range of values of parameters α and
k. We assumed here that the algorithm spends the spared evaluation cycles on
additional programs in extended population. Obviously, nothing precludes other
designs, i.e., extending evolution with additional generations or simply complet-
ing a run in a shorter time.

Applicability of SFIMX reaches beyond GP. In general, interaction matrices
produced in any test-based problems can be subject to the proposed processing.
This applies in particular to interactive domains typically solved with compet-
itive coevolution algorithms. Examples include two-player games, evolution of
robot controllers, and abstract problems like density classification task, a classi-
cal problem in cellular automata.

In the form presented in this paper, SFIMX deliberately discards certain
interactions. However, it might be used in scenarios where G is sparse due to
other, more objective and external reasons. The most obvious example are the
problems with an infinite or very large number of tests. Many control problems
belong to this category. Even in the discrete domains like artificial ant or density
classification task, the numbers of possible environments (or initial conditions)
are often astronomical, not mentioning the continuous domain with problems
like inverted pendulum. In such problems, tests (environments) can be gener-
ated on demand, and the interaction function performs agent’s simulation in an
environment and is thus computationally costly. SFIMX’s capability of filling in
the missing interaction outcomes can be in such cases invaluable. This prelimi-
nary study can be extended in multiple directions. For instance, here we applied
SFIMX to discrete domains only; its usefulness in continuous domains typical for
symbolic regression is an open question. The required adaptation concerns map-
ping the – in general arbitrary large – continuous error to interaction outcomes.
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We hypothesize that simple transformation with some squeezing function (e.g.,
sigmoidal function or hyperbolic tangent) may be appropriate for that purpose.
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Abstract. Effective scheduling in Heterogeneous Networks is key to
realising the benefits from enhanced Inter-Cell Interference Coordina-
tion. In this paper we address the problem using Grammar-based Genetic
Programming. Our solution executes on a millisecond timescale so it
can track with changing network conditions. Furthermore, the system
is trained using only those measurement statistics that are attainable
in real networks. Finally, the solution generalises well with respect to
dynamic traffic and variable cell placement. Superior results are achieved
relative to a benchmark scheme from the literature, illustrating an oppor-
tunity for the further use of Genetic Programming in software-defined
autonomic wireless communications networks.
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1 Introduction

Traditional cellular infrastructure is under significant strain due to exponentially
increasing demand [8]. The number of mobile-connected devices is now greater
than the world’s population and network traffic will grow tenfold by 2019 [3].
Low-powered antennas called Small Cells (SCs) have been proposed as a means
of scaling existing deployments to meet these trends [4].

In traditional networks, high-powered Macro Cells (MCs) are distributed on
hexagonal grids to provide blanket coverage to User Equipments (UEs). A UE
could be a smartphone, tablet or laptop etc. Heterogeneous Networks (HetNets)
are comprised of both SCs and MCs. By offloading UEs in traffic hotspots, SCs
alleviate strain on the macro tier. Note that hotspots are regions containing a
concentration of UEs. Multi-tiered networks exhibit several desirable properties.
Firstly, SCs support ad-hoc deployment by operators. Secondly, they are a cost
effective means of densifying networks. Finally, HetNets are spectrally efficient as
both tiers share the same channel under the current 3rd Generation Partnership
Project–Long Term Evolution (3GPP–LTE) framework [1].

Network operators must offer better quality of service than their competitors
to attract and retain customers. In particular, they must maximise the data rates
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 83–98, 2016.
DOI: 10.1007/978-3-319-30668-1 6
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delivered by their networks. The metric that most strongly correlates with user
experience is the downlink rate which quantifies the amount of data that can
be transferred per unit time. Operators must maximise downlink rates for the
least advantaged customers (due to location say), sometimes at the expense of
the more privileged. Fairness is vital because dropped calls or slow data speeds
are unacceptable from a customer satisfaction standpoint.

HetNets present unique challenges vis-à-vis optimisation because they are
highly dynamic. In this paper, we employ a grammar-based form of Genetic
Programming (GP) to evolve a HetNet scheduling heuristic. This is a difficult real
world problem which to date has not been tackled with GP. Operators currently
implement highly suboptimal greedy proportionally fair scheduling. Tailoring
such methods to corner cases requires much human effort. These inefficiencies
can be alleviated by evolving better software at a cost that is negligible compared
to cell densification–deploying a single SC can cost several thousand euros.

The paper is organised as follows. Section 2 describes the problem in detail.
Previous work is surveyed in Sect. 3. Our simulation environment is described in
Sect. 4. Experiments, results and discussion follow in Sects. 5 and 6. Finally, the
paper closes with future directions and conclusions in Sect. 7.

2 Problem Definition

The 3GPP–LTE framework outlines a number of high level protocols for making
HetNets viable [1]. SCs are typically underutilised because UEs preferentially
attach to stronger MCs. The Cell Range Expansion mechanism is proposed to
encourage more efficient offloading from MCs. To achieve this, SCs broadcast a
Cell Selection Bias (βi) such that βi ≥ 0, ∀i ∈ S, the set of all SCs. There is no
need for MCs to implement bias so βi = 0, ∀i ∈ M, the set of all MCs. A UE
(u) attaches to and hence receives data from cell k, where,

k = arg max
i

(Signalu,i + βi), ∀i ∈ M ∪ S. (1)

If a UE attaches to cell k ∈ S but would otherwise attach to a MC m ∈ M,
then we say that the UE resides in the expanded region of k. Since the signal
from m in the expanded region is by definition larger than that from k, it follows
that interference is significant therein. Edge interference is exacerbated in LTE
HetNets because MCs broadcast on the same channel as SCs.

Interference mitigation in the time domain is a defining feature of the 3GPP
framework. UEs can receive data in 1ms intervals referred to as subframes (SFs).
A contiguous block of 40 SFs defines a ‘frame’. Frames constitute a conve-
nient timespan over which network performance can be analysed. The enhanced
Inter-Cell Interference Coordination (eICIC) paradigm introduced the notion
of Almost Blank Subframes (ABSs) to mitigate cell-edge interference [11]. MCs
mute their data transmissions during an ABS so that only minimal control signals
are broadcast, allowing neighbouring SCs to transmit with minimal interference.
We refer to the sequence of active and muted SFs at MCs as an ‘ABS pattern’.
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Clearly, UEs at SC edges experience greatly reduced interference when nearby
MCs undergo an ABS. However, UEs that are attached to the muting MC can-
not receive any data during an ABS. Intelligent resource interleaving strategies
are thus required to realise the benefits from eICIC. A key task in this regard is
allocating SFs to SC attached UEs–hence, the scheduling problem.

Scheduling is trivial for UEs served by MCs because they enjoy high signal
to interference and noise ratios (SINRs) and therefore can be allocated to every
non-ABS SF. However, SC attached UEs are subjected to high MC interference.
Shannon’s formula [27] describes how downlink rates (R) depend on bandwidth
and SINR:

Ru,f =
B

Nf
× log2(1 + SINRu,f ), (2)

where, B is the available bandwidth, Nf is the number of UEs scheduled in SF
f and u denotes a UE. From Eq. 2, observe that Ru,f is inversely proportional
to Nf , where the downlink rate quantifies how much data can be transferred
in a unit of time. Each UE will experience reduced rates in any given SF as
it becomes more congested. Consequently, scheduling is a non-trivial problem
because we would like to schedule each UE for as many SFs as possible but yet
minimise per SF congestion.

Fig. 1. Depiction of a SC schedule where rows represent SFs and columns store sched-
ules. UE u receives data in all SFs indexed by ‘T’ in their schedule.

The non-trivial nature of the problem can be appreciated by visualising
schedules in the form of a boolean matrix. Figure 1 describes a feasible set of
schedules for a SC with six attached UEs (only 8 out of 40 SFs are displayed for
concision). Here ‘T’ indicates that a UE will receive data in the corresponding
SF, and ‘F’ implies the converse. For instance, UE 9 is scheduled in the first
3 SFs. By construction the illustrative schedules in Fig. 1 exhibit sub-optimal
properties. SFs 1–3 are fully congested so the bandwidth is divided six-fold. SFs
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4–8 are less congested and so UEs 6, 4 and 7 profit from the liberated band-
width. However, the reduced congestion is at the expense of UEs 2, 8 and 9
because they receive less airtime. Clearly, this SC could employ a vast number
of alternative strategies to allocate SFs, despite the fact that it only serves six
UEs. We ask if GP can derive a heuristic to compose synergistic schedules on
the fly. Our task is to populate a scheduling matrix like Fig. 1 for all SCs in the
network.

HetNet control algorithms are typically evaluated using a proportional fair
utility of user experience. The sum log of downlink rates, see for example [12,
22,26,29], is given by:

PF Utility =
∑

u∈M∪S
log Ru, (3)

where,

Ru =
1

|F|
|F|∑

f=1

Ru,f ,

is the average downlink rate for UE u over |F| = 40 SFs. Equation 3 rewards
individuals that fairly allocate resources. Lifting the downlink rates for poorly
performing UEs is heavily rewarded by the logarithm. Conversely, losses for the
best performing UEs are not penalised severely. Therefore, the fitness function
rewards solutions that ‘rob from the rich and give to the poor’.

3 Previous Work

An extensive literature exists on scheduling. Such problems arise in domains of
operations research ranging from rostering [14] and job shop scheduling [23] to
air traffic control [16]. In general, the feasible solution space is explored directly
via search-based techniques. However, heuristic rules that can compute solutions
on the fly are often motivated by practical constraints.

Bader-El-Den and Fatima (2010) employed an auction inspired scheme for
the exam time-tabling problem [6]. They evolved a ‘bidding function’ that exams
use to bid for time-windows. Auctions are held for each available window until
all exams have been allocated. We note that the evolved solution operates within
the context of a meta-algorithm, in this case inspired by an auction.

Jakovocić and Marasović (2012) identified the limitations of enumerative and
search-based techniques [21]. The combinatorial nature of scheduling problems
renders a direct search of the solution space impractical when runtime must be
minimised. Following the authors in [6], they manually designed meta-algorithms
tailored to specific job-shop scheduling environments. Evolved priority functions
operate within these meta-algorithms. Thus, domain knowledge informed the
solution structure, lending GP a foothold to search for functional forms.

Sun et al. (2006) instrumented a game theoretic approach to allocate channel
resources in a wireless network [28] but our literature review has uncovered no
previous work addressing scheduling in HetNets using GP. This paper attempts
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to fill the gap. Evolutionary methods are indicated in this domain because they
are known to yield good solutions in dynamic environments [13,31]. Ho and
Claussen (2009) used GP to optimise the coverage of femtocell deployments in
enterprise environments [20]. Femtocells are SCs with a range of several meters.
Their study represented a proof of concept that it is possible to automatically
evolve controllers for wireless networks. Hemberg et al. (2011-13) used Gram-
matical Evolution to evolve symbolic expressions for setting femtocell powers
to optimise coverage [17–19]. The best solutions outperformed human designed
heuristics on two of the three objectives.

A number of papers are relevant to our work in the space of eICIC optimi-
sation. Weber and Stanze (2012) compared the performance of two scheduling
strategies: strict and dynamic [30]. The former schedules centre UEs in non-
ABSs so that ABSs are reserved for expanded region UEs. The latter allows
edge UEs to receive both ABS and non-ABS airtime. Experiments showed that
the dynamic scheduler achieves a better tradeoff between cell border rates and
spectral efficiency.

Pang et al. (2012) proposed a scheduling method based on dynamic program-
ming [26]. Synchronous patterns were assumed so that MCs mute in unison.
Exactly two SCs were simulated per MC sector, with UEs uniformly distributed
on the map. It is unclear whether their algorithm would perform well under
more general conditions. Jiang and Lei (2012) modelled the scheduling prob-
lem as a two player Nash bargaining game where protected (ABSs) and normal
(non-ABSs) resources at SCs compete for UEs [22]. Each ‘player’ strives to max-
imise the total data that it transmits. Performance was improved under the
proposed algorithm relative to standard baselines. Edge UEs experienced com-
parable rates in the proposed and baseline cases. We will demonstrate that a
GP evolved heuristic can give considerable gains for edge UEs.

Deb et al. (2014) formulated eICIC optimisation as a non-linear programming
instance [12]. Their algorithm computes the airtime UEs should receive from
their serving MC and SC during ABS and non-ABS periods. Simulation revealed
that cell edge UEs gain the most under eICIC. The authors showed that their
algorithm is within 90 % of the optimal but it requires measurement reports
from each UE’s best SC and MC. In practice UEs only communicate with their
serving cell [24].

López-Peréz and Claussen (2013) proposed a heuristic to balance load (num-
ber of UEs) between ABSs and non-ABSs at SCs [24]. Load balancing improved
the 5th percentile of SC attached UE rates by 55 %, in a scenario with fixed
MC ratios and with non-zero biases on SCs. Reduced mean MC throughput
under the proposed scheme, relative to the benchmark, was compensated by
increased mean SC throughput. In sum, this paper demonstrated the consid-
erable gains achievable with intelligent scheduling. We adopt López-Peréz and
Claussen (2013) as a benchmark.
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4 Simulation Environment

In order to rapidly evaluate solutions we simulated a HetNet serving 3.61 km2

of Dublin City Centre. SCs are typically deployed in an ad-hoc fashion because
they serve hotspots, whereas MCs are placed on a grid by network operators. As
such, we scattered SCs randomly on the map and arrange MCs in a hexagonal
pattern. Figure 3 displays a snapshot of the network used for fitness evaluations.
A HetNet with 21 MCs, 50 SCs and 1250 UEs was simulated for training.

Fig. 2. Environmental encoding. Fig. 3. SCs are shaded blue, MCs
white and UEs are indicated by black
dots (Color figure online).

4.1 Generating Inputs

The simulation proceeds sequentially. Firstly, an environmental encoding is gen-
erated from a Google Maps [2] image of the serviced region (Fig. 2). This encod-
ing captures the distribution of buildings, bodies of water, open spaces and roads.
A signal gain path loss matrix G is then computed for all cells. G models the cell
gains, shadow fading and environmental obstacles, so that G[i, x, y] represents
the path loss from cell i to location [x, y].

Next, UEs are distributed onto the map. Hotspots, 30 in total, are generated
containing between 5 and 25 UEs. With probability 0.1 a hotspot will materialise
outside of a SC but mostly they appear within SCs. If a UE is not assigned to
a hotspot then it is placed at a random point on the map. A total of 1250 UEs
are simulated or about 60 per MC sector.

The signal received by UE u from cell i depends on path loss such that:

Signalu,i = PTX
i + G[i, x, y], (4)

where, PTX
i is the transmitting power of i in decibel milliwatts (dBm). SC trans-

mit powers and Cell Selection Biases (βi) are set by an evolved heuristic devised
by the authors [15]. MC powers and biases are constant at PTX

i = 37[dBm] and
βi = 0[dBm],∀i ∈ M. Hence, u can identify its serving cell using Eq. 1.
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MC ABS ratios are set using the simple heuristic from [29]. The ratio of
ABSs to non-ABSs for MC m ∈ M is established by:

ABS r =
|SCexpanded |

|SCexpanded | + |Am| , (5)

where, |Am| is the number of UEs served by m and SCexpanded is the set of
UEs that would attach to m but instead reside in the expanded regions of SCs
within m’s coverage area. Recall from Sect. 2 that the ‘expanded region’ contains
those UEs that attach to SC i instead of m because βi is non-zero. Equation 5 is
sensible because if the number of expanded region UEs is large relative to |Am|,
then m should surrender more SFs, thus mitigating cell-edge interference.

Each MC constructs a feasible muting pattern from the ABS ratio (Eq. 5) by
combining eight base patterns from the standard [1]. Since five SFs are muted
in each of the eight base patterns it follows that the ABS r must be rounded to
an element in the set {5/40, ..., 35/40}. Intra-frame SINR variance is reduced
by ‘front-loading’ muted SFs so that if ABS r = 10/40 for m ∈ M, then m will
mute in the first two SFs for every block of eight, e.g. in SFs (1, 2, 9, 10, 17, 18,
25, 26, 33, 34). A MC cannot entirely mute or transmit ∀f ∈ F .

The most important statistic from a scheduling standpoint is the SINR that
UEs experience in each SF. SINRu,f is computed by dividing Signalu,serving

(the signal in Watts from u’s serving cell) in SF f by, the sum of all interfering
signals (from all other cells) plus noise. Note that SINRu,f depends on which
MCs are muting or transmitting in SF f . The denominator will be reduced
during protected SFs because Signalu,m = 0 from MC m if it is undergoing an
ABS. Therefore, SINRu,f varies over a frame due to the variable number of MCs
that mute in different SFs. Our goal is evolve an expression that maps SINR
related statistics and attachment information to a binary decision for each UE
per SF: schedule or don’t schedule. The terminal set for GP is derived from the
cell attachment information and SINRs as annotated in Table 1.

4.2 Calculating Fitness

Algorithm 1 delineates the meta-algorithm (in the sense of [6,11]) used to yield
schedules from an individual. The GP tree executes independently on each SC
as follows. We loop over SFs and UEs, evaluating the tree at each (u, f) tuple. If
the tree outputs a positive value then u will receive transmissions in SF f , else
u is not scheduled in f . In this sense the tree performs a binary classification
task on every execution.

The schedules are implemented in simulation and summary statistics on the
realised downlink rates (accounting for congestion) are computed. Performance
is expressed as the improvement in sum log downlink rates relative to a baseline
strategy whereby u receives data in every SF f if SINRu,f ≥ 1. This baseline
is naive because whilst airtime is maximised for each UE, so too is congestion.
Recalling Eq. 3, the fitness function is expressed thusly:
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Algorithm 1. Schedule UEs
function getStatistics(u, f)

return Column 2 of Table 1 for UE u in SF f

procedure doScheduling(S, Tree)
for SC ∈ S do � Process each SC independently

congestionf ← 0 � Track congestion in SF f
airtimeu ← 0 � Track number of SFs received by u
S ← 0(|F|×|A|) � Stores SC schedule, see Fig. 1
for f ∈ F do � F = {1, ..., 40} is the set of SFs

for u ∈ A do � A stores the attached UEs
inputs ← getStatistics(f, u)
Output = evaluate(Tree(inputs)) � Inputs are listed in Table 1
if Output > 0 and SINRu,f ≥ 1 then

Su,f ← True � u will receive data in f
congestionf += 1
airtimeu += 1

else
Su,f ← False � For the greater good sacrifice u

return S

Fitness =
1
10

10∑

s=1

(
PF Utilitytree

s − PF Utilitybaseline
s

)
. (6)

Equation 6 expresses overall fitness as the average performance over ten UE
distributions, hereafter scenarios (s). Thus, we provision against overfitting on
a single set of UE locations.

5 Experiments

We instrumented a grammar-based form of GP [9,25]. Grammars allow us to
incorporate domain knowledge and guarantees that syntactically correct struc-
tures are generated. Figure 4 displays the function approximation type grammar
used in Backus-Naur Form (BNF). Four non-linear transforms were admitted
including ‘step’ which output -1 if its argument is less than 0, else +1. The
logarithm and square root functions were protected via log(1 + |x|) and

√|x|
respectively. Random floats in the set {−1.0,−0.9, ..., 1.0}, statistics on instanta-
neous rates and memory nodes (airtime and congestion) composed the terminal
set. The SINR statistics were mapped to instantaneous downlink rates (assum-
ing no bandwidth splitting) as illustrated in Table 1. Note that num viable is
the number of SFs in which a UE can receive data without packet loss (i.e. when
SINR ≥ 1). By contextualising u relative to all attached UEs, we anticipated
that GP would uncover cooperation strategies, whereby u sometimes sacrifices
a particular SF f for the global objective.

Thirty independent runs were performed for 75 generations. The Ramped
Half-and-Half method was used to initialise the population (pop size = 1000)
with an initial max depth of 6. We used fair tournament selection (tournament
size was 1 % of pop size) so that all individuals had a chance of getting selected.
Subtree Crossover, Subtree Mutation and Point Mutation were used to search the
space of derivation trees. Subtree crossover was applied with a probability of 0.5
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Table 1. GP Terminal Set

Raw Input Statistic Terminal Name

SC attached UEs |A| num att

SINRu,f log2(1 + SINRu,f ) downlink

SINRu,f ,∀f ∈ F 1
|F|

∑

f∈F
log2(1 + SINRu,f ) avg downlink frame

" max
f

{
log2(1 + SINRu,f )

}
max downlink frame

" min
f

{
log2(1 + SINRu,f )

}
min downlink frame

" |{SINRu,f ≥ 1
} |f num viable

SINRu,f ,∀u ∈ A 1
|A|

∑

u∈A
log2(1 + SINRu,f ) avg downlink SF

" max
u

{
log2(1 + SINRu,f )

}
max downlink SF

" min
u

{
log2(1 + SINRu,f )

}
min downlink SF

SINRu,f ,∀f ∈ F ,∀u ∈ A 1
|A|

∑

u∈A

(

1
|F|

∑

f∈F
log2(1 + SINRu,f )

)

avg downlink cell

" max
u

{

max
f

{
log2(1 + SINRu,f )

}
}

max downlink cell

" min
u

{

min
f

{
log2(1 + SINRu,f )

}
}

min downlink cell

Previous outputs of tree #SFs received by current UE airtime

Previous outputs of tree # other UEs sharing SF congestion

to each pair of selected parents. Sixty percent of the population was subjected to
Subtree Mutation. The remaining forty percent underwent point mutation with
probability of 0.05, 0.1, 0.2 or 0.3 per node. We used generational replacement
and elitism with elite size equal to 1 % of pop size. A run took ten hours on a
twelve core hyperthreaded machine operating at 2.66GHz.

The search space for this problem admitted many local optima. Trees that
output exclusively positive or negative values yielded trivial schedules whereby
all UEs were always or never scheduled. To avoid local optimum we assigned

Fig. 4. BNF Grammar Definition.
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zero fitness to such trees. Runtime was reduced substantially, without degrading
solution quality, by terminating the simulation early for trivial trees.

6 Results and Discussion

Figure 5 displays the mean best fitness, with a 95 % confidence interval about the
mean (grey shading), across 30 runs for 75 generations. Note we are maximising
the improvement in sum log rates–Eq. 6. Clearly, the evolved population has a
significantly higher mean fitness than the initial random population. Evidently
convergence is not achieved in only 75 generations, so better solutions are likely
to emerge from longer runs. Figure 5 suggests that the GP system is stable
because the variance about mean best fitness is low across many independent
runs.

Fig. 5. Mean best fitness on training data including a 95 % confidence interval (Color
figure online).

The best overall solution (see Fig. 61) was identified by exposing all 30 best-
of-run individuals to unseen test networks. The test fitness of each individual
was computed as the average performance across 100 scenarios, in networks with
20, 60 and 100 SCs (each serving 1250 UEs). Most individuals performed well
in one or two of the three test networks. A few performed very well across all
three topologies. The best individual achieved a fitness of 55.5, 60.4 and 25.8
on the networks containing 20, 60 and 100 SCs respectively. These observations
underscore the need for multiple runs despite the fact that we seek only one
good solution. That some individuals struggle on one or two of the test networks
but perform well on the other(s) may be indicative of overfitting. In future work
the use of a validation network will enable intelligent termination if overfitting
ensues.
1 Note that the constants have been obfuscated to protect intellectual property.
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Fig. 6. Best Evolved Scheduler. Terminals are distinguished by blue text.

The percentage lift in sum log rates in the test network containing 100 SCs
was lower relative to that in the less densified networks. One might expect that
a larger number of SCs should afford the scheduler greater scope to improve
fairness. However on inspection we found that the proportion of UEs in SC
expanded regions decreased with increasing SC density. With 20 SCs on the map
about 14 % of the SC attached UEs resided in an expanded region compared to
just 7 % with 100 SCs. In addition, the average number of UEs per SC decreased
as more SCs were added. In combination these factors diminished the marginal
impact of scheduling. As expected, the overall network utility was boosted by
SC densification. The sum log downlink rates trended 17912→ 18621→18933
as the number of SCs increased 20→60→100. Densification and scheduling are
recognised as key requisites for 5G [7].

6.1 Terminal Utilisation

Figure 7 displays each terminal’s count in the fittest 150 individuals at each gen-
eration. The instantaneous downlink rate (downlink) occurs most frequently.
Heavy utilisation of this terminal is unsurprising because it most faithfully pre-
dicts realised downlink rates. Antithetically, num att appears least frequently.
This too is unsurprising as the number of attached UEs is a constant statistic and
hence it bears no differentiating power. Therefore, num att represents a base-
line with respect to which the importance of other terminals can be inferred.
The terminals describing u’s performance across all 40 SFs appear more fre-
quently than the other contextual statistics. This may suggest that although
u’s context within a SF relative to other UEs is important (* downlink SF,
* downlink cell), more relevant for u are the attributes of a SF f relative to
other SFs (* downlink frame). Of particular interest is the standing of our mem-
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Fig. 7. Count of each terminal in the best 150 individuals over 75 generations.

ory nodes, airtime and congestion. Their importance is commensurate with
that of most SF and cell-wide context nodes. In any case it is clear that they
are selected for in the evolving populations. Given the ostensible importance
of memory in HetNet scheduling, we are motivated in future work to explicitly
factor prior decisions into the current tree output, see Sect. 7.

6.2 Subframe Utilisation

This subsection examines how the scheduler displayed in Fig. 6 behaves seman-
tically. To appreciate how MC muting modulates interference at SCs, consider a
toy network with three MCs running ABS ratios of 5/40, 10/40 and 15/40. Since
ABSs are front-loaded as described in Subsect. 4.1, it follows that all three MCs
will mute in SFs 1, 9, 17, 25 and 33. Two of the three MCs will mute in SFs 2,
10, 18, 26, 34, and only one MC will mute in SFs 3, 11, 19, 27, 35. All three will
transmit in the remaining SFs. Thus, SFs 1, 9, 17, 25 and 33 are protected from
high MC interference. Perhaps GP would learn to award protected SFs to UEs
at the SC cell-edge whilst de-allocating those more advantaged cell-centre UEs
(in order to relieve congestion). Indeed, simulation of a network with 60 SCs and
21 MCs revealed stark differences in how edge and centre UEs are scheduled.
For both groups, we counted the cumulative number of UEs scheduled per SF,
for all SCs over ten scenarios.

Columns 2 and 3 of Table 2 display the proportion of expanded region and
centre UEs that are scheduled in each SF. For example, column 2 states that
on aggregate 85 % of the expanded region UEs are scheduled in the best SFs
(1, 9, 17, 25, 33), 58 % in the second best SFs, etc. Column 3 indicates that
the scheduler sacrifices centre UEs by denying them the most protected SFs.
Consequently, congestion is dramatically reduced for expanded region UEs where
their SINR will be greatest. Column 1 confirms that expanded region UEs are
awarded more airtime in the better SFs. They can thus leverage both high SINR’s
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and the liberated bandwidth to maximise their achieved downlink rates. Centre
UEs make up for the lost premium airtime by dominating less protected SFs
where few or no expanded region UEs receive data.

Column 3 shows the cell-wide proportion of UEs scheduled per SF. Clearly,
congestion management is of prime importance in SFs 1, 9, 17, 25 and 33 as less
that 25 % receive data. In fact quite a few UEs are denied in every SF. The pro-
portion jumps to 91 % in SFs 2, 10, 18, 26 and 34 then decreases monotonically
reflecting how the scheduler negotiates trade-offs between airtime and conges-
tion. In sum, non-trivial yet intuitive behaviour is realised by the expression in
Fig. 6.

Table 2. Proportion scheduled per SF in various SC regions.

SF Expanded region UEs Cell-centre UEs All attached

1, 9, 17, 25, 33 0.85 0.14 0.23

2, 10, 18, 26, 34 0.58 0.96 0.91

3, 11, 19, 27, 35 0.28 0.94 0.86

4, 12, 20, 28, 36 0.10 0.93 0.82

5, 13, 21, 29, 37 0.02 0.92 0.81

6, 14, 22, 30, 38 0.0 0.92 0.80

7, 15, 23, 31, 39 0.0 0.92 0.80

8, 16, 24, 32, 40 0.0 0.92 0.80

6.3 Benchmarking

The benchmark scheme was proposed by López-Peréz and Claussen (2013) [24].
Based on SINR, UEs are split into queues ‘overlapping’ with host MC ABSs or
‘non-overlapping’. The worst UE in both queues is identified. Achievable down-
link rates are computed for both worst UEs for both queue types. Next the
SC computes target queue lengths based on the expected rates. UEs are trans-
ferred iteratively from one queue to the other until convergence. They are then
scheduled according to their queue type, i.e. during ABS or non-ABS SFs.

Table 3 compares the evolved GP solution with the benchmark scheme, a
Genetic Algorithm (GA) and a Hill Climbing heuristic. The improvements in the
5th and 50th percentile downlink rates and the lifts in sum log rates (Eq. 6) over
baseline scheduling are reported. Statistics are generated across 100 scenarios in
unseen test networks containing 20, 60 and 100 SCs. The GA was instrumented
using a population size of 750 and run for 50 generations for each SC in the
test set. The solution space was explored using two-point crossover (probability
1.0) and bit flip mutation on 20 % of the population (probability 0.2 per codon).
Similarly, the Hill Climber mutated a randomly generated schedule (bit flip
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Table 3. Comparison of Methods

with probability 0.025 per codon) for 20,000 iterations and greedily accepted
improvements to the current best.

The first panel shows that our evolved solution outperforms the benchmark
on all metrics. Two sample t-tests confirm that the differences are significant at
a confidence level of 0.99. Of particular interest is row 2 of the first panel which
compares the benchmark and evolved heuristics with respect to the 5th percentile
of downlink rates. Our fitness function does not incorporate this metric explicitly.
We simply maximise sum log rates. Therefore, the improved performance of the
worst UEs versus the baseline and benchmark schemes emerges naturally as a
by-product of the optimisation.

The second panel shows that there is scope to build on this pilot study.
Both the GA and Hill Climbing heuristics significantly outperform the evolved
solution and benchmark. Note that these direct search methods are orders of
magnitude too slow for online operation.

7 Future Work and Conclusions

We implemented a reinforcement learning approach in this work but some pilot
experiments suggest that supervised training will yield far better schedulers.
In a follow-up study we will compute near optimal schedules offline using a
genetic algorithm. Hence, a more informative fitness function can be devised
which respects the distance (e.g. Hamming) to the target semantics. Table 3
reveals that significant gains are achievable.

We observed in Sect. 6 that it is expedient to track intermediate scheduling
decisions using counters. Conrads et al. (1998) considered a time series problem
where previous tree outputs acted as terminals for the current evaluation [10].
Alfaro et al. showed their recurrent system achieves comparable performance
with state of the art methods on real world problems [5]. We propose that a
recurrent system like [5,10] will yield better results on the present problem.

Genetic Programming lends itself well to the task of evolving schedulers for
HetNets implementing eICIC. Indeed, the framework proposed in this paper
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outperforms a state of the art human engineered approach. Future work will
build on this pilot study to close the optimality gap.
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Abstract. This work presents a first step towards a systematic time
and space complexity analysis of genetic programming (GP) for evolving
functions with desired input/output behaviour. Two simple GP algo-
rithms, called (1+1) GP and (1+1) GP*, equipped with minimal func-
tion (F) and terminal (L) sets are considered for evolving two standard
classes of Boolean functions. It is rigorously proved that both algorithms
are efficient for the easy problem of evolving conjunctions of Boolean
variables with the minimal sets. However, if an extra function (i.e. NOT)
is added to F, then the algorithms require at least exponential time to
evolve the conjunction of n variables. On the other hand, it is proved that
both algorithms fail at evolving the difficult parity function in polyno-
mial time with probability at least exponentially close to 1. Concerning
generalisation, it is shown how the quality of the evolved conjunctions
depends on the size of the training set s while the evolved exclusive
disjunctions generalize equally badly independent of s.

Keywords: Genetic programming · Theory · Runtime analysis

1 Introduction

Genetic programming (GP) was originally proposed by Koza as an evolutionary
computation technique for evolving computer programs [4]. Traditionally GP
represents programs using syntax trees and evaluates their fitness by executing
them and then comparing their behaviour against an ideal one (eg., the desired
input/output behaviour of the function to be evolved). A population of pro-
grams is evolved using typical genetic algorithm (GA) variation and selection
operators adapted to work on syntax trees with the goal of eventually identi-
fying a program with the desired functionality. GP has shown great potential
by evolving, for example, quantum computing algorithms that outperformed all
previous approaches [17], soccer-playing programs [7] and algorithms for the
transmembrane segment identification protein problem [5], to name a few.

Despite the wide range of successful applications, there is still very little
understanding of GP’s behaviour [13,15]. Theoretical work concerning GP has
always been undertaken since its early days [6], the majority of which has applied
schema theory [4,16]. Schema theories are based on the idea of partitioning
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 99–114, 2016.
DOI: 10.1007/978-3-319-30668-1 7
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the search space into subsets, called schemata, and modelling the behaviour
and dynamics of the population over the schemata. However, such an analy-
sis does not allow any insight towards the understanding of the performance of
GP. Chapter 11.1 of [15] concludes that through schema theories “...we have
no way of closing the loop and fully characterising the behaviour of GP sys-
tems which is always a result of the interaction between the fitness function and
the search biases of the representation and genetic operations used in the sys-
tem”. Such characterisations and interactions can, instead, be understood by
analysing the time and space complexity of a GP system when attempting to
evolve a given class of functions. This approach has been applied to other classes
of bio-inspired optimisation heuristics, with remarkable success [1]. Nowadays,
the performance quality of various bio-inspired optimisation heuristics is known
concerning sophisticated population-based heuristics and even for standard com-
binatorial optimisation problems with practical applications [11]. These results
shed light on which kind of problems a given algorithm works on efficiently
and on which it is inefficient and provide a relationship between the size of the
problem and the time and space required to solve it. Along the way guidelines
towards optimal parameter settings are given.

Some initial runtime analysis results concerning GP systems have already
appeared [10]. Such first studies regarded two functions classes called ORDER
and MAJORITY where the fitness of a tree (i.e., a candidate solution) depends
on the structure of the tree rather than on its execution. Although this is a
considerable simplification compared to the problems to which GP is usually
applied, these results show that very simple GP systems can optimise both struc-
tures efficiently. Furthermore, understanding how and when correct structures
are evolved will be necessarily crucial in an analysis of more realistic GP sce-
narios. Recently, the same simple GP systems have been analysed on the MAX
Problem [6] where, given a set of functions, a set of terminals and a bound D
on the maximum depth of the solution, the goal is to evolve a tree that returns
the maximum value given any combination of functions and terminals [3]. The
analysis shows that the simple GP systems can efficiently evolve MAX with func-
tion set F = {+, ∗} and one constant as terminal set. Compared to the previous
functions, MAX is more similar to those evolved by GP in practical applications
since the fitness indeed depends on the behaviour of the computed function on
the input. Still, dependence is not very strong, since the space of possible inputs
can be partitioned into just two subsets such that for every input in a subset,
the optimal solution to the problem is the same.

In this paper we make a further step forward and provide an analysis of GP
for typical benchmark functions used in the field of GP [4,6]. Hence, we con-
sider proper learning problems where the fitness depends on the input/output
behaviour of the trees. When the initial foundations for a systematic time com-
plexity analysis of EAs were being set, very simple EAs were considered (eg.,
the (1+1) EA) for simple benchmark problems which are easy for EAs (eg.,
OneMax and LeadingOnes) and others which are hard (eg., Trap Functions and
Needle-In-A-Haystack) [2]. In a similar fashion we will analyse the simple and
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minimalistic (1+1) GP considered in previous runtime analyses of GP [3,10] for
simple Boolean functions with minimal function and terminal sets. Since under
the evolvability notion in the PAC-learing framework it is well-understood that
conjunctions (i.e., AND) are evolvable efficiently while parity problems (i.e.,
XOR) are not [18], we naturally choose these boolean functions as our start-
ing points for the analysis. In particular, the presented AND problem may be
regarded as a GP analogue to OneMax for EAs, while XOR the analogue to
Needle. Moreover, we will take into consideration the generalization ability of
the solutions found by the algorithms when using incomplete training sets since,
as the problem size grows, it is not possible to test the candidate solutions on
the complete training set efficiently. We point out that runtime results are avail-
able concerning the recently introduced GP variant called Geometric Semantic
Genetic Programming (GSGP) [9]. The long term aim of the work presented
herein is to understand the behaviour and performance of standard and widely
used GP systems.

In the next section we introduce the two simple (1+1) GP and (1+1) GP* sys-
tems and formally define the learning problems. In Sect. 3 we present the results
for the AND and XOR functions of n variables using the complete training set
and minimal function and terminal sets (i.e., respectively F = {AND}, L =
{X1, . . . , Xn} and F = {XOR}, L = {X1, . . . , Xn}). In particular, we show that
both the (1+1) GP and the (1+1) GP* can evolve conjunctions efficiently while
they are both inefficient when evolving parity. However, if we add another func-
tion to F (i.e., NOT), then the algorithms become inefficient also for evolving
conjunctions. In Sect. 4 we present the results when only a training set of poly-
nomial size in the problem size is allowed. We show that the algorithms fit the
training set for the AND function in logarithmic time while the XOR function
becomes harder than a Needle function for larger than logarithmic training sets
because points leading closer to the optimal solution may be rejected. We con-
clude the section by providing results on how the evolved solutions generalise to
the complete training set. In the Conclusions we discuss future work directions.

2 Preliminaries

We consider the (1+1)-GP (Algorithm 1) and (1+1)-GP* (Algorithm 2) from
[10], both working with a population of size one and producing at each generation
one new offspring using the HVL-Prime mutation operator [14] which chooses,
uniformly at random, to either insert, to remove or to replace a node according
to the procedures described in Algorithm 3.

Algorithm 1. (1+1) GP
1: Initialise an empty tree X
2: for t := 1 to ∞ do
3: X ′ := HVL-Prime(X)
4: if f(X ′) ≤ f(X) then
5: X := X ′

Algorithm 2. (1+1) GP*
1: Initialise an empty tree X
2: for t := 1 to ∞ do
3: X ′ := HVL-Prime(X)
4: if f(X ′) < f(X) then
5: X := X ′
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The only difference between (1+1) GP and (1+1)-GP* is that the former
accepts an offspring which is at least as fit as its parent, while the latter accepts
only strictly better offspring. An individual X is represented as a binary tree
such that each internal node can be an element of the function set F and each
leaf can be an element of the terminal set L. The two algorithms do not have
a termination criterion since, here, we are interested in the first point of time
when the optimal solution is found. For simplicity we initialise the algorithms
with empty trees1. However, all the presented results can be easily adapted to
random tree initialisation with only slightly differing theorem statements.

Let the complete truth table C = {(x1, y1), ..., (xN , yN )} describe the complete
input-output behaviour of a Boolean function ĥ : {0, 1}n → {0, 1} over n variables
(i.e., the table has N = 2n rows). A training set T consisting of s ≤ N test cases
T ⊂ C = {(x1, y1), ..., (xs, ys)} is sampled from the truth table uniformly at ran-
dom with replacement. The black box Boolean learning problem consists of using
just the training set T to learn a Boolean function h : {0, 1}n → {0, 1} match-
ing as well as possible the input-output behaviour described by C. Given a candi-
date solution (i.e., a Boolean expression h), the fitness function returns the training
error εt(h) which is the number of rows on which the expression h mismatches the
input-output behaviour described by T : εt(h) =

∑
(xi,yi)∈T I[h(xi) �= yi] where

I[·] is the indicator function that is 1 if its inner expression is true and 0 otherwise.
We impose that the fitness function returns a value of 2n + 1 for an empty tree,
which is worse than the fitness of any tree.

Algorithm 3. HVL-Prime
1: procedure HVL-Prime(X)
2: Select uniformly a random an action among INS, DEL, SUB
3: if action is INS then
4: Choose a node v ∈ X uniformly at random
5: Select uniformly at random a terminal v′ from L
6: Replace v with a node f selected uniformly at random from F
7: Set v and v′ as children of f , choosing the order of the children uniformly

at random.
8: if action is DEL then
9: Choose, uniformly at random, a leaf node v with parent p and sibling s

10: Replace p with s
11: Delete p and v

12: if action is SUB then
13: Choose a leaf v uniformly at random
14: Select uniformly at random a terminal v′ from L
15: Replace v with v′

1 We assume the SUB and DEL of an empty tree return an empty tree.
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We will analyse the (1+1) GP and (1+1) GP* on two boolean problems,
ANDn with target function ĥ = AND(X1, . . . , Xn) and XORn with target
function ĥ = XOR(X1, . . . , Xn). We say that an algorithm solves a boolean
problem efficiently if it can evolve a solution fitting the training set (i.e., having
training error equal to zero) in expected polynomial time, where time is defined
as the number of fitness function evaluations.

We will first analyse the situation in which s = N , thus the training set
encompasses all the possible input-output cases (i.e. complete dataset). In this
situation finding an expression that fits the training set T will obviously also
lead to an expression that fits the complete set, and thus the original Boolean
function. Afterwards we will consider training sets of at most polynomial size,
s = poly(n) < N (i.e. incomplete training set). In this case, minimizing the error
on the training set will lead to a generalization error which can be defined as
εg(h) =

∑
(xi,yi)∈C I[h(xi) �= yi] where C is the complete truth table.

We define the generalization ability of an algorithm A as G(A, s) = 1 −
E[εg(X̃)]

N where X̃ is the best individual found by the algorithm (which tries to
minimize the error on the training set) after a polynomial number of steps.

3 Analysis for Complete Training Sets

In this section we analyse the (1+1) GP and the (1+1) GP* on ANDn and
XORn in the case of training sets of size s = 2n = N (i.e. complete datasets).

3.1 Analysis for ANDn with Complete Training Sets

Theorem 1 shows that both the (1+1)-GP and the (1+1) GP* evolve ANDn

efficiently with L = {X1, . . . , Xn} and F = {AND}. The theorem also shows
that the strict selection of (1+1) GP* enforces solutions of exactly n variables
while the (1+1) GP may produce solutions that are asymptotically larger by a
logarithmic factor. The following Lemma will be useful.

Lemma 1. Every conjunction of v distinct variables differs from the target func-
tion AND(X1, . . . , Xn) on fv = 2n−v − 1 rows.

Proof. We prove the statement by induction. The base case f1 = 2n−1−1 follows
because the truth table of any conjunction of one variable has 2n/2 ones and
2n/2 zeros. The target function and the conjunction of one variable will agree
on one row, i.e. the one in which all the variables are set to 1. On the rest of the
2n−1 − 1 rows the two functions will not agree.

To prove the inductive step we need to assume fi = 2n−i − 1 and prove
that fi+1(x) = 2n−(i+1) − 1. When one variable is added to the conjunction, the
number of ones will halve (since half of them will be anded with a zero). Since
just one of them agrees with the target function, the new conjunction will differ
on fi+1 = (fi + 1)/2 − 1, which by hypothesis is 2n−(i+1).
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Theorem 1. The (1+1)-GP and the (1+1) GP* using F = {AND} and L =
{X1, . . . , Xn} efficiently solve ANDn, using the complete truth table as training
set, in time O(n log n). The size of the final expression is n for (1+1) GP* and
O(n log n) in expectation for (1+1)-GP.

Proof. We divide the search space into A1, . . . , An fitness levels such that each
level Ai contains all the conjunctions of i distinct variables. By Lemma 1 we
have a fitness level partition with increasing fitness and the artificial fitness levels
technique [1] is in force. We need to derive a lower bound on the probability pi

that an individual leaves level Ai and reaches level Ai+1.
For both (1+1) GPs at level Ai the number of distinct i variables may not be

reduced as the fitness would decrease. Hence to reach level Ai+1 it is sufficient
for both algorithms to choose an INS operation and then insert one of the n − i
variables that is not already in the conjunction. This probability is pi ≥ 1

3
n−i
n .

Thus, by the fitness level method the expected runtime is E[T ] ≤ ∑n
i=1 1/pi =∑n

i=1
3n

n−i = O(n log n), which proves the first statement.
For the (1+1) GP* (strict selection) an INS operation adding a duplicate of

an existing variable will not be accepted since it would have the same fitness
of the parent. The same holds for a SUB operation replacing one variable with
a duplicate of an existing one. Thus at each iteration the current solution has
each variable appearing at most once and, for this reason, a DEL operation will
never be accepted, since it would reduce the fitness. Since no duplicates are
allowed in the (1+1) GP*, the size of the final expression is exactly n. For the
(1+1) GP (weak selection) the situation is different because an INS operation
can insert a variable that already exists in the current expression. We observe
that the only operation increasing the size of the current expression is INS. Since
in expectation O(n log n) of these operations occur, the expected size of the final
expression cannot be more than O(n log n).

In the following theorem we show that just adding the negation of all the
variables to the terminal set makes both algorithms inefficient.

Theorem 2. Both the (1+1)-GP and the (1+1)-GP* using F = {AND} and
L = {X1, . . . , Xn,X1, . . . ,Xn} cannot solve ANDn with probability at least p >

1 − (
1
4

)n/3 using the complete truth table as training set.

Proof. Differently from the situation of Theorem 1, the search space contains
many local optima from which the algorithms cannot escape. All solutions con-
taining both a variable Xi and its negation Xi evaluate to 0, hence have a fitness
of 1. We prove that such a solution is found with probability exponentially close
to 1. When the current expression is missing just i ≤ n/3 variables the prob-
ability of adding a new variable is bounded from above by the probability of
doing so with an INS operation plus the probability that a SUB operation adds
a missing variable, which is padd ≤ 1

3
n/3
2n + 1

3
n/3
2n = 1/9. At the same time the

probability of inserting the negation of a variable which is already in the current
expression is at least pneg ≥ (2/3)n

2n = 1/3. The probability of the second event
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happening before the first is P (neg|neg ∪ add) ≥ pneg

pneg+padd
≥ 1/3

1/3+1/9 = 3/4.
The probability that neg never happens before all the n/3 missing variables are
added is p ≤ (1 − 3/4)n/3 =

(
1
4

)n/3, thus the algorithm ends up in one of these

local optima with probability p > 1 − (
1
4

)n/3.
Since a deletion of Xi decreases fitness, the only way to leave such local

optima is by adding all the missing variables and then removing Xi (plus all the
other negated variables that might have been inserted in the process). In the
case of strict selection, this is not possible and the (1+1) GP* is stuck forever.
For the case of weak selection, the algorithm will have to walk on a plateau of
fitness 1 until it reaches a point when all the n variables are in the tree. Only at
that point it would be allowed to walk on another plateau by removing all the
negated variables. When this happens the optimum would be found. Similarly
to the proof of Theorem 4 it is possible to show that this cannot happen in less
than exponential time with probability exponentially close to 1. We don’t report
a complete proof here due to space restrictions.

3.2 Analysis for XORn with Complete Training Sets

The analysis for XORn will show a needle-like fitness landscape (Proposition 2).
In fact when the training set encompasses all the possible input-output pairs,
all the solutions in the search space but the optimum will have the same fit-
ness. As a result, we will show in Theorem 3 that the (1+1) GP* cannot solve
XORn in finite time because it cannot find strictly improving solutions and in
Theorem 4 that the (1+1) GP cannot solve XORn in less than exponential time
with probability exponentially close to 1. We state the two following facts.

Proposition 1. Any exclusive disjunction of m variables (X1 ⊕ . . .⊕Xm) on a
truth table of n ≥ m variables outputs 1 for half of its inputs and 0 for the other
half.

Proposition 2. Any exclusive disjunction of m variables (X1 ⊕ . . . ⊕ Xm) on
a truth table of n ≥ m variables differs from X1 ⊕ . . .⊕Xn on 2n−1 inputs, thus
has fitness 2n−1.

Now we are ready to state and prove the theorems.

Theorem 3. The (1+1)-GP* using F = {XOR} as function set and L =
{X1, . . . , Xn} as terminal set cannot solve XORn, using the complete truth table
as training set.

Proof. Since by Proposition 2 all the points in the search space have the same
fitness, any individual after the first one will not be accepted. Thus XORn

cannot be solved using strict selection.

The following Lemma will be useful in the proof of Theorem 4.
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Lemma 2. In a tree containing m leaves, each one sampled uniformly at random
from L = {X1, . . . , Xn} with replacement, with probability p ≥ 1 − e−Ω(n) each
variable Xi appears at most M < m log n

n times for m ≥ n2

e , and at most M <
2n

ln
(

n2
em

) < 2n times for m < n2

e .

Proof. We will bound M from above by using a balls and bins argument [8],
where the m balls represent the total number of variables in the tree and each
of the n bins represents a different variable Xi. The probability that M > γ
is the probability that after throwing m balls into n bins by selecting each bin
uniformly at random, there is at least one bin containing at least γ balls. Let X
be a random variable counting the number of balls in a given bin and P (X > γ)
be the probability that one bin contains more than γ balls. Then by the union
bound P (M > γ) ≤ n · P (X > γ). We will calculate P (X > γ) for two separate
cases.

(1) Let m ≥ n2

e . Since the probability of selecting a bin is 1/n, the expected
number of balls in the bin is μ = E(X) = m/n. Applying the Chernoff bound
P (X > (1 + δ) · μ) ≤ [ 1

1+δ ( e
1+δ )]μ ≤ ( 1

1+δ )μ for any δ > 0 [8] and by exploiting

m ≥ n2

e we get:

P

(
X >

m log n

n

)
≤

(
1

log n

)m
n

≤
(

1
log n

)n
e

≤
(

1
e

)n
e

= e−Ω(n)

where the inequality before the last one holds for n > ee. Thus M < m log n
n with

probability at least 1 − ne−Ω(n) = 1 − e−Ω(n).
(2) Let m < n2

e . By applying the Chernoff bound again with τ = 1 + δ we
get for any τ > 1

P (X > τ · μ) ≤
( e

τ

)τμ

We want τ such that P (X > τ · μ) ≤ e−n which is equivalent to
( e

τ

)τμ

≤ e−n ⇐⇒ en ≤
(τ

e

)τμ

⇐⇒ e
n
eμ ≤

(τ

e

) τ
e ⇐⇒ e

n2
e·m ≤

(τ

e

) τ
e

Now, let K = τ/e and N = e
n2

e·m . Since K > 2 lnN
ln lnN implies KK > N provided

that N > e which holds since m < n2/e, we get that
(

τ
e

) τ
e ≥ e

n2
e·m holds for

τ

e
>

2 ln(e
n2
em )

ln ln(e
n2
em )

⇐⇒ τ >
2n

μ ln( n2

em )

Hence τ > 1 for m < 2n2 and we can apply the Chernoff bound. Thus,

P

(
X ≥ 2n

ln( n2

em )

)
≤ e−n

So M ≤ 2n

ln( n2
em )

< 2n with probability at least 1 − ne−n.
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Theorem 4. The (1+1)-GP using F = {XOR} and L = {X1, . . . , Xn} to
evolve XORn using the complete truth table as training set requires more than
2Ω( n

log n ) steps with probability p > 1 − 2−Ω( n
log n ) to reach the optimum.

Proof. We apply the simplified negative drift theorem [12]. Let kt denote the
number of missing variables in our current solution after simplification2 (thus
e.g. for X1 ⊕X4 ⊕X1, kt = n−1) at step t. Given an expression with i variables
missing after simplification we denote with E[Δ(i)] = E[(kt+1 − kt)|kt = i)] the
negative drift, which is the expected increase in the number of missing variables
after simplification in the next step. Since each of the operations (INS, DEL,
SUB) happens with equal probability, E[Δ(i)] = 1

3E[ΔINS(i)] + 1
3E[ΔDEL(i)] +

1
3E[ΔSUB(i)].

When an INS operation occurs E[ΔINS(i)] ≥ n−i
n − i

n since we decrease kt by
one when we insert a variable which was not in the current solution and increase
it by one when we add a variable that was already there (because simplification
would remove it). For i ≤ 1

4n, E[ΔINS(i)] > 1/2.
When a DEL operation occurs we notice that the number of missing variables

after simplification increases if we delete one of the variables appearing an odd
number of times in the expression (thus not being simplified out), while we
decrease the number of missing variables if we delete a variable appearing an
even number of times (because it would not be simplified out anymore). Thus
calling m the number of leaves in the tree (i.e. the number of variables before
simplification), and M = maxi [count(Xi)] the maximum number of occurrences
of a variable, we observe pessimistically that E[ΔDEL(i)] ≥ m−M ·i

m − M ·i
m =

m−2·M ·i
m . The conditional drift when m ≥ n2

e (thus M < m log n
n with probability

exponentially close to 1 by Lemma 2) is

E[ΔDEL(i)] ≥ m − 2 · M · i

m
≥ m − 2 · m log n

n · i

m

which is positive for i < n
2 log n On the other hand the conditional drift when

m < n2

e (thus M < 2n with probability exponentially close to 1) is

E[ΔDEL(i)] ≥ m − 2 · M · i

m
≥ m − 4n · i

m

which is positive for i < m
4n < n

4e (since m < n2/e).
When a SUB operation occurs we notice that the number of missing variables

after simplification increases by two if we replace one of the variables appearing
an odd number of times in the expression with another different variable appear-
ing an odd number of times, while it decreases by two if we replace one of the
variables appearing an even number of times in the expression with one different
variable appearing an even number of times. In all other cases the number of

2 Simplification is a conceptual tool used for the proofs. The actual tree contains all
the variables (i.e., the algorithm does not simplify the trees).
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missing variables stays the same. Thus E[ΔSUB(i)] ≥ 2· m−Mi
m · n−i−1

n −2· Mi
m · i−1

n .
For i ≤ n/2 [thus n−i−1

n ≥ i−1
n ] we get

E[ΔSUB(i)] ≥ 2(i − 1)
n

[
m − Mi

m
− Mi

m

]
=

2(i − 1)
n

[
m − 2Mi

m

]

Now we check the two cases of Lemma 2. For m ≥ n2

e , we get

E[ΔSUB(i)] ≥ 2(i − 1)
n

[
m − 2 · m log n

n · i

m

]

For 2 ≤ i ≤ n
4 log n we get E[ΔSUB(i)] ≥ 1

n . For m < n2

e , we get

E[ΔSUB(i)] ≥ 2(i − 1)
n

[
m − 2 · 2n · i

m

]

For 2 ≤ i ≤ m
8n < n

8e (since m < n2

e ) we get E[ΔSUB(i)] ≥ 1
n .

Finally, choosing a = n
8 log n and b = n

16 log n , the expected negative drift
E[Δ(i)] = 1

3 (E[ΔINS(i)] + E[ΔDEL(i)] + E[ΔSUB(i)]) ≥ (1/3)[1/2 + 0 + 1
n ] ≥

1/6+ o(1) for i ∈ (a, b). Since the probability of performing steps greater than 2 is
0 and p(Δ(i) = 2) ≤ 1/3 ≤ (1/2)2−r for r = 1 the drift theorem is in force. Thus,
conditional to the failure probabilities of Lemma 2, the optimum is found in time
T < 2

n
16 log n with probability 2−Ω( n

log n ). By the union bound the probability that
the bounds on M do not hold in 2

n
16 log n steps is less than 2

n
16 log n ·e−Ω(n) = e−Ω(n).

Summing up the failure probabilities completes the proof.

4 Analysis for Incomplete Training Sets

In this section we consider training sets of at most polynomial size, s << 2n. The
algorithm will thus calculate the fitness just on s = poly(n) rows. We say that
an algorithm efficiently solves a boolean problem if it can find a solution fitting
the training set (i.e. with training error equal to zero) in expected polynomial
time. We first analyse the time the algorithms takes to get to a solution with
fitness zero on the training set and afterwards we will analyse the generalization
error.

4.1 Analysis for ANDn with Incomplete Training Set

The analysis for ANDn shows that a polynomial training set is fit in logarithmic
time (Theorem 5). Theorem 6 gives an upper bound on the generalization ability
and gives a necessary condition on the size of the training set to achieve a
generalization ability over a fixed threshold.

Theorem 5. Let s = poly(n) be the size of a training set chosen from the truth
table uniformly at random with replacement. Then both the (1+1) GP and the
(1+1) GP* using F = {AND} and L = {X1, . . . , Xn} will solve ANDn in
expected time O(log s) = O(log n).
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Proof. Since the elements of the truth table are binomially distributed with
parameters n and p = 1/2, the expected number of 1 s in a randomly chosen
row of the training set is n/2. By a simple application of Chernoff bounds,
the probability that more than Y = n/2 + εn 1s are in the chosen element is
bounded from above by e−Ω(n). By a union bound the probability that any of the
s elements of the training set contains more than Y 1s is less than s · e−Ω(n) =
poly(n) · e−Ω(n) = e−Ω(n). The algorithm will reach the minimum error (i.e.
fitness) of 0 when for each row of the training set there exists a variable Xi

in the constructed tree that has a 0 in that row. In this case the AND of Xi

with itself or any other variable will return 0. We call a step successful if in that
step the algorithm adds a new unseen terminal to the tree. For strict selection
such a terminal is accepted if it reduces the error in the training set while for
non-strict selection it is always accepted as the fitness cannot decrease. The
other operators SUB and DEL do not contribute to fitness since DEL may only
remove redundant terminals in the non-strict selection version and SUB may only
exchange terminals that do not decrease fitness. If a terminal Xi is exchanged for
a terminal Xj leading to an improvement (i.e., more rows of the training set have
a 0) this may only speed up the algorithm. We consider a phase of k successful
steps of the (1+1)-GP and calculate the probability that at the end of the k
steps not even one variable with value 0 in a given row of the training set has
been added. This probability is the probability that the first k terminals that are
selected to be added to the tree have value 1 in the chosen row. Since for each row
of the training set there are at most Y 1s, the probability that a terminal has a
1 in that position is at most Y/n and the probability that k consecutive terminals
are all 1 s in that position is bounded from above by (Y/n)k. By the union bound,
the probability that in any of the s rows of the training set all the k terminals
have values 1 is less than ps = s · (Y/n)k. We calculate the value of ps after a

phase of length k = log n
Y

(2s): ps ≤ s ·
(

Y
n

)k

= s ·
(

Y
n

)log n
Y

(2s)

= s · 1
2s = 1

2 .

Hence with probability at least 1/2, after k = log n
Y

(2s) successful steps, for each
row of the training set the constructed tree contains at least one terminal Xi

that has value 0 in that row. This implies that, in expectation, 2 phases of length
k each are sufficient to reduce the error in the training set to 0. All that remains
to be done is to calculate the expected time for 2k successful steps. Given that
the tree consists of i different terminals, the probability that the (1+1)-GP adds
a new terminal to the tree is pi = 1

3
n−i
n where 1/3 is the probability that an INS

operation is chosen. Hence, by a simple coupon collector argument the expected
time to collect the AND of 2k = 2 log n

Y
(2s) different terminals is bounded by:

2 log n
Y

(2s)−1∑

i=0

3n

n − i
≤

2 log n
Y

(2s)−1∑

i=0

3n

n − (2 log n
Y

(2s) − 1)

≤
2 log n

Y
(2s)−1∑

i=0

3n

cn
= O(log n

Y
(2s)) = O(log n)
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Finally, we need to remember that the above expected time is conditional to
starting with at most Y ones in each row of the training set. This may not
happen with probability at most e−Ω(n). If this is the case we pessimistically
assume that a row of the training set consists of its worst case value of n − 1
1s and one 0. Then, by the same coupon collector argument used in Theorem 1,
the conditional expected runtime is bounded from above by O(n log n). The
statement of the theorem now follows by an application of the law of total
expectation:

E(T ) = p(X) · E(T |X) + p(X) · E(T |X)

≤ (1 − e−Ω(n)) · O(log n) + e−Ω(n) · O(n log n) = O(log n)

Theorem 6. Both the (1+1) GP and the (1+1) GP* using F = {AND}, L =
{X1, . . . , Xn} and a training set of size s = poly(n), have a generalization ability
on ANDn of G ≤ 1 − 2− log(s).

Proof. Recall that the generalization error εg(h) of an expression h is the number
of rows mismatching the target function. In the case of AND, εg(h) ≥ ones(h)−1,
since all but at most one 1 s are mismatched.

Theorem 5 states that the algorithms will stop at an expression h̃ having
at most log(s) variables, thus having at least 2n−log(s) ones. Thus εg(h̃) ≥
2n−log(s) −1. The generalization ability is then G = 1− εg(h̃)

2n ≤ 1−2− log(s).

Corollary 1. A necessary condition to get a generalization ability greater than
1 − ε, is to have a training set of size s > 1

ε .

Proof. From Theorem 6 the generalization ability is G ≤ 1 − 2− log(s). Thus:

1 − 2− log(s) > 1 − ε ⇔ 2− log(s) < ε ⇔ 1/s < ε ⇔ s > 1/ε

4.2 Analysis for XORn with Incomplete Training Set

The analysis for XORn shows that if the training set size is at most log(n), the
training set can be fit efficiently (Theorem 7). On the other hand if the size of
the training set grows asymptotically faster than log n, then the algorithms do
not fit the training set in polynomial time with probability exponentially close
to 1 (Theorem 8). However, in both cases the generalization ability will be equal
to 1/2 with probability exponentially close to 1 in the former case, and with
probability 1 in the latter case (Theorem 9).

Theorem 7. Let s ≤ ln n be the size of the training set chosen from the
truth table uniformly at random with repetition. Then the (1+1) GP using
F = {XOR} as function set and L = {X1, . . . , Xn} as terminal set will find
a solution fitting the training set of XORn in time O(n2) with probability at
least 1 − e−Ω(n).
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Proof. Since each row of the training set is binomially distributed with parame-
ters n and p = 1/2, also each variable Xi is binomially distributed, but with
parameters s and p = 1/2 because the training set has s rows. An element j
(i.e., 1 ≤ j ≤ s) of the optimal solution opt fitting the training set has value
1 if the number of 1 s in the n variables X1, . . . , Xn at position j is odd while
it has value 0 if the number of 1 s at position j in the n variables is even.
Hence, once the training set has been created, the optimal solution is deter-
mined and each variable Xi will have the same value as opt at each position j
with probability 1/2. By the principle of deferred decisions [8], the same holds
for Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n − 1 at each position j. In fact if the first m − 1
terms Xi,⊕, . . . ,⊕Xm−1 have the “correct“ value at position j, then with prob-
ability 1/2 the output will still be correct after the first m−1 terms are XOR-ed
with Xm (i.e., Xm has a 0 at position j). On the other hand if it was not correct
it would become “correct“ with probability 1/2 (i.e., Xm has a 1 at position j).
Thus

P (j is correct) = P (Xm(j) = 0 | j was correct) + P (Xm(j) = 1 | j was not correct)

= 1/2 · 1/2 + 1/2 · 1/2 = 1/2

As a result the probability that any solution, Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n−1 is
equal to opt in all positions is bounded by p(Xt = opt) = 1

2s ≥ 1
2ln n = 1

n . Hence
the probability that a solution Xi⊕, . . . ,⊕Xm, 1 ≤ i,m ≤ n−1 is different from
opt is less than (1 − 1/n) and the probability that cn2 solutions are all different
than opt is bounded by

(
1 − 1

n

)cn2

≤
(

1 − 1
n

)n·cn

≤
(

1
e

)cn

where c < 1 is a positive constant. As a result, after visiting cn2 distinct solu-
tions, with probability at least 1 − e−cn, the training set has been fitted by the
algorithm.

All that remains to be shown is that cn2 distinct solutions are visited by
the (1+1)-GP. We consider a current solution of the algorithm X1,X2, . . . , Xm,
Xm+1, . . . ,Xn where the Xi are the variables that are missing after simpli-
fication. By just considering an INS operation, from each such solution it is
possible to reach n different neighbours (i.e., n − i neighbours are reached by
adding a missing variable and i neighbours are reached by adding one of the
m variables, hence effectively removing a variable after simplification). If less
than (9/10)n of the neighbours on the current level have not been visited, the
probability of visiting one is at least 1/3 · 9/10 = 3/10 > 1/4. Otherwise we
consider the set of neighbours as “full” and look at the probability of moving to
a new solution not having any neighbours in common with the current solution.
Such a solution can be visited by either: (a) adding two missing variables; (b)
removing two of the m variables in the current solution; (c) adding one miss-
ing variable and removing one of the m variables. Each of (a), (b), (c) can be
achieved by performing two consecutive INS operations of which the first opera-
tion must lead to an accepted search point (i.e., which happens with probability
at least 1/2). If, after the first INS operations all the neighbours of c′n different
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solutions (not having neighbours in common with the previous search point)
were all “full” then c′(9/10)n2 distinct solutions would have been visited (recall
a neighbourhood is full when (9/10)n neighbours have been visited). We set
c′(9/10) > c. Hence, unless (9/10)c′n2 distinct solutions have been seen, there
must be at least a constant fraction c′′n of neighbours reached by the second
INS that lead to unseen new solutions by another INS operation. Overall, the
probability of reaching a new solution with ’unfilled neighbourhood’ is at least
1/3·1/3·1/2·(c′′n)/n = c∗. Since each of the distinct solutions is found with con-
stant probability, the expected time to find them all is bounded from above by
(c′n2 ·c∗). By another application of Chernoff bounds with success probability c∗

and a phase of length 2c′c∗n2, we get that c′n2 distinct solutions have not been
seen with probability at most e−1/8·c∗c′n2

. Summing up the failure probabilities
proves the statement of the theorem.

We now consider larger training sets.

Theorem 8. Let s = ω(log n) be the size of the training set chosen from the
truth table uniformly at random with repetition. Then the (1+1) GP using F =
{XOR} and L = {X1, . . . , Xn} will not find a solution fitting the training set
of XORn with fitness better than (1 − δ)s/2, δ > 0 any constant, in polynomial
time with probability at least 1 − e−Ω(s).

Proof. As shown in the proof of Theorem 7 each column of the training set is
binomially distributed with parameters s and p = 1/2, and by the principle
of deferred decisions the same holds for each candidate solution Xi⊕, . . . ,⊕Xm,
1 ≤ i,m ≤ n−1. As a result the probability that each row of a candidate solution
is equal to the value in the respective row in opt with probability p(Yi) = 1/2
and the expected number of rows where they are equal is E(Y ) = s/2. Hence,
by a simple application of Chernoff bounds, the probability that a candidate
solution has (1 + δ)s/2 rows that agree with the respective rows in opt is

P

(
Y >

s

2
+ δ

s

2

)
≤ e−(δ/6)·s)

By the union bound the probability that after a polynomial number of steps nc

any seen solution agrees in (1 + δ)s/2 rows is less than

nc · e−(δ/6)·s) ≤ ec log n−(δ/6)s ≤ e−Ω(s)

for any s = ω(log n), which proves the statement of the theorem.

Theorem 9. Both the (1+1) GP and the (1+1) GP* using F = {XOR}, L =
{X1, . . . , Xn} and a training set of size s = poly(n) have a generalization ability
of G = 1/2.
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Proof. By Proposition 2 all the expressions but X1 ⊕ . . . ⊕ Xn have a gen-
eralization error of 2n−1 thus if the algorithms do not find the expression
Y = X1 ⊕ . . . ⊕ Xn in polynomial time their generalization ability is G =
1− 2n−1

2n = 1/2. By Theorem 3 the (1+1) GP* will never move from its first point,
hence does not find Y with probability 1−2−s. The (1+1) GP with s = ω(log n)
cannot fit the training set in polynomial time by Theorem 7, thus cannot find Y
efficiently. When s < log(n) we use a similar argument to that of Theorem 4 to
show that, even if the training set can be fit in polynomial time, the expression
Y will not be found in polynomial time. In fact since with probability 1/2 a new
solution will have fitness better than its parent, the expected drift will be half
of that calculated in Theorem 4 (i.e., in expectation half of the offspring will
not be accepted). Thus the time to get to Y is still at least exponential with
probability exponentially close to 1, which concludes the proof.

5 Conclusions

A further step has been made towards the rigorous computational complexity
analysis of GP for evolving functions with desired input/output behaviour. We
have analysed the (1+1) GP and (1+1)-GP* for evolving two common boolean
functions, XORn and ANDn (which may be considered the GP analogues to
OneMax and Needle for EAs) both in the case of complete input-output infor-
mation and with incomplete training sets of polynomial size.

We have rigorously proved that ANDn can be efficiently solved by both the
(1+1) GP and the (1+1) GP* in case of complete datasets, with (1+1) GP*
producing shorter expressions. We have also shown that both the algorithms
can efficiently fit a training set of polynomial size and provided a necessary
condition to achieve a given generalization ability. The analysis for XORn reveals
a needle-like fitness landscape, leading to the (1+1) GP* not being able to solve
the problem at all and the (1+1) GP requiring exponential time. The analysis
for the incomplete datasets has shown that there is a log(n) threshold for the
size of the training set under which the training set can be fit efficiently and
over which asymptotically it cannot be fit in polynomial time with probability
exponentially close to 1. The analysis on the generalization ability has shown
that, despite the size of the training set, the generalization ability is equal to
1/2 with probability exponentially close to 1.

Future work will be directed, on one hand, towards extending the results to
increasingly deal with more comprehensive terminal and function sets, while on
the other hand will focus on more sophisticated GP systems and benchmark
functions where typical bloat and overfitting problems can be studied.
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Abstract. Job shop scheduling (JSS) problems are optimisation prob-
lems that have been studied extensively due to their computational com-
plexity and application in manufacturing systems. This paper focuses on
a dynamic JSS problem to minimise the total weighted tardiness. In
dynamic JSS, attributes of a job are only revealed after it arrives at
the shop floor. Dispatching rule heuristics are prominent approaches to
dynamic JSS problems, and Genetic Programming based Hyper-heuristic
(GP-HH) approaches have been proposed to automatically generate
effective dispatching rules for dynamic JSS problems. Research on static
JSS problems shows that high quality ensembles of dispatching rules can
be evolved by a GP-HH that uses cooperative coevolution. Therefore, we
compare two coevolutionary GP approaches to evolve ensembles of dis-
patching rules for dynamic JSS problems. First, we adapt the Multilevel
Genetic Programming (MLGP) approach, which has never been applied
to JSS problems. Second, we extend an existing approach for a static JSS
problem, called Ensemble Genetic Programming for Job Shop Schedul-
ing (EGP-JSS), by adding “less-myopic” terminals that take job and
machine attributes outside of the scope of the attributes commonly used
in the literature. The results show that MLGP for JSS evolves ensembles
that are significantly better than single “less-myopic” rules evolved using
GP with only little difference in computation time. In addition, the rules
evolved using EGP-JSS perform better than the MLGP-JSS rules, but
MLGP-JSS evolves rules significantly faster than EGP-JSS.

Keywords: Dynamic job shop scheduling · Multilevel GP ·
Ensemble GP

1 Introduction

Job shop scheduling (JSS) problems are combinatorial optimisation problems
that have been studied over the past 50 years [17]. In a JSS problem instance,
there are typically a fixed number of machines on the shop floor. Jobs arrive
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on the shop floor over time, and need to be processed on a specific sequence of
machines. However, a machine can only process one job at a time. The sequence
of jobs and the times when the jobs are selected to be processed by a machine
is called a schedule. A JSS problem instance has a measure of “quality” for the
final schedule called an objective function [14]. Therefore, the goal for solving
a JSS problem instance is to find the schedule that will give the best possible
outcome according to the objective function.

Various approaches to different JSS problems have been proposed in the liter-
ature. Exact mathematical optimisation techniques have been proposed [14,17]
to find the optimal (best feasible) solution to a static JSS problem instance. In
a static JSS problem instance the properties of the jobs and the machines on
the shop floor are known a priori. On the other hand, in dynamic JSS problem
instance [10] unforeseen events occur and affect the shop floor, e.g., the break-
down of a machine. Unforeseen events mean that it is not possible to deter-
mine whether a schedule is optimal until all arriving jobs have been processed,
meaning that mathematical optimisation techniques are not suitable for dynamic
JSS problems. Instead, researchers have proposed various heuristic techniques
for dynamic JSS problems. Heuristic techniques range from simple dispatch-
ing rules [14] to complex meta-heuristic techniques [17]. A dispatching rule is
a heuristic that iteratively selects a job to be processed by a machine when-
ever the machine becomes available. Dispatching rule approaches to dynamic
JSS problem are prominent in the literature because in practice they can react
quickly and effectively to unforeseen changes on the shop floor [9]. In addition,
recent approaches have proposed Genetic Programming based Hyper-heuristic
(GP-HH) approaches for dynamic JSS problems [1,2]. A GP-HH automatically
evolves dispatching rules for a dynamic JSS problem, bypassing the need for
human experts and extensive trial-and-error testing required to construct a dis-
patching rule manually. In addition, GP evolved rules generally perform better
than manually designed rules [1]. However, there are many challenges that can
arise when evolving dispatching rules using GP-HH. To generate a schedule for a
JSS problem instance using a dispatching rule, there can be potential scenarios
where complex decisions need to be made. Decisions made early in the schedule
can greatly affect the overall quality of the schedule. However, many existing
GP-HH approaches evolve “myopic” dispatching rules. These rules only take
into account the current state of the job and the machine that the job is wait-
ing at when selecting a job to process [5]. This can result in situations where
the evolved rules make good local decisions, but make poor global decisions.
In addition, most GP-HH approaches evolve single dispatching rules to handle
dynamic JSS problems. In classification, research has shown that an ensemble of
decision makers (i.e. a diverse set of “experts” that cover for each other’s errors)
generally performs better than a single decision maker for handling a complex
and difficult classification problem [15]. Therefore, it may be more effective to
evolve ensembles of dispatching rules instead of evolving single dispatching rules
for JSS problems. However, research into evolving ensembles of dispatching rules
for JSS problems has been limited.
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The goal of this paper is to investigate two GP-HH approaches and determine
which of the two approaches will evolve higher quality ensembles of dispatching
rules for a dynamic JSS problem. The two GP-HH approaches combine coevolu-
tionary techniques with GP to evolve ensembles, which have not been applied to
dynamic JSS problems previously. The first GP-HH approach is an adaptation
of the approach called Multilevel Genetic Programming (MLGP) [20]. MLGP
has not previously been applied to JSS problems. MLGP is promising due to
its ability to automatically find a group of individuals that work together effec-
tively. The adaptation of MLGP for the dynamic JSS problem will be denoted
as Multilevel Genetic Programming for Job Shop Scheduling (MLGP-JSS). In
addition, a set of “less-myopic” terminals proposed by Hunt et al. [5] will be used
in MLGP-JSS. These terminals consist of job and machine attributes outside of
the attributes associated with the current state of a job and the machine that
the job is waiting at. By combining job and machine attributes which can reduce
the myopic nature of dispatching rules [5] with MLGP-JSS, it may be possible to
evolve a set of rules that can cover for each other’s errors by handling different
“locality” of decisions.

The second GP-HH approach is an extension of an existing GP-HH approach
called Ensemble Genetic Programming for Job Shop Scheduling (EGP-JSS).
EGP-JSS is an approach proposed by Park et al. [12], and uses Potter and De
Jong’s cooperative coevolution [16] to evolve ensembles of dispatching rules for
a static JSS problem. This will be updated with the “less-myopic” terminals
and will be applied to the dynamic JSS problem for the first time. Therefore,
the research objectives in this paper are: (1) Adapting the MLGP framework
to the dynamic JSS problem. (2) Incorporate the “less-myopic” terminals to the
both MLGP-JSS and EGP-JSS for the dynamic JSS problem. (3) Comparing the
evolved rules from MLGP-JSS, EGP-JSS and a benchmark GP-HH that evolves
single dispatching rules.

2 Background

This section firstly describes the notation and definitions for JSS, and approaches
to dynamic JSS problems. Afterwards, GP-HH approaches to JSS are covered,
along with some Cooperative Coevolutionary Algorithms (CCEAs) which have
been proposed in the literature.

2.1 Dynamic Job Shop Scheduling

The notation used for JSS problem instances is as follows. In a JSS problem
instance, there are M machines on the shop floor. A job j arrives at the shop floor
requiring a sequence of Nj operations σ1j , . . . , σNjj which need to be processed in
order for the job to be completed. The operations must be processed sequentially,
i.e., operation σ2j for a job j cannot be processed before σ1j , etc. Each operation
σij of job j needs to be processed by a specific machine m(σij). Job j needs to
be processed at the machine m for time p(σij) (shortened to pij), during which
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machine m cannot process any other jobs. The time when the last operation of
job j is completed is called the completion time, denoted as Cj . The time when
job j arrives at a machine to process operation σij is called the arrival time,
denoted as r(σij). This means that job j arrives at the shop floor at time r(σ1j),
which is abbreviated to rj . In a JSS problem with total weighted tardiness
(TWT) minimisation objective, there are two additional attributes associated
with a job j: a due date dj and a weight wj . Job j is considered tardy if its
completion time Cj is greater than its due date. Job j’s tardiness Tj is given by
Tj = max{Cj − dj , 0}. The goal of the JSS problem with TWT minimisation is
to process all N jobs while minimising

∑N
j=1 wjTj .

A dispatching rule is applied to a JSS problem instance as follows. When a
machine m becomes available, the dispatching rule first determines the set of jobs
that can potentially be selected. The decision to select the job to be processed by
machine m is called a dispatching decision. If the dispatching rule only considers
the jobs already waiting at the machine, then it is said to generate a non-delay
schedule [14]. On the other hand, a dispatching rule that considers future jobs
which arrive earlier than a job which can be completed on the machine before
the future job’s arrival is said to generate an active schedule [14]. From the
considered jobs, the dispatching rule selects a job to begin processing based
on the job and the machine attributes. This process is repeated until all jobs
that have arrived on the shop floor are completed and a schedule is generated.
For example, shortest processing time (SPT) is a dispatching rule in which the
SPT rule selects the job with the shortest processing time to be processed at a
dispatching decision.

Constructing dispatching rules which use a good combination of job and
machine attributes has been shown to give better performance than dispatching
rules which use single attributes for specific dynamic JSS problems [6]. There-
fore, many priority-based dispatching rule approaches have been proposed for
dynamic JSS problems [6]. A priority-based dispatching rule consists of a prior-
ity function, which takes job, machine and shop floor attributes as inputs. The
priority function assigns priority values to jobs waiting at a machine. The job
with the highest priority is then selected to be processed by the machine. Exam-
ples of well-known priority-based dispatching rules are the apparent tardiness
cost (ATC) and cost over time (COVERT) rules [19] for dynamic JSS problems
with the TWT minimisation objective.

2.2 Genetic Programming Based Hyper-heuristics for Dynamic JSS

Many GP-HH approaches have been proposed to generate reusable scheduling
heuristics. In most cases, the output heuristic is a dispatching rule [1]. Hildebrandt
et al. [3] evolved priority-based dispatching rules for a dynamic JSS problem that
models a semiconductor manufacturing environment. They showed that the rules
evolved using GP perform significantly better than existing man-made dispatching
rules. Nguyen et al. [9] explored three different GP representations for static JSS
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problems to evolve dispatching rules, and applied the evolved rules to a dynamic
JSS problem. Although the evolved dispatching rules outperformed benchmark
man-made dispatching rules for the static JSS problems, they did not perform
as well as man-made dispatching rules for the dynamic JSS problem. Pickardt
et al. [13] proposed a two-step procedure, where priority-based dispatching rules
are evolved using GP, and combined with existing rules using a genetic algorithm
(GA) to assign the rules to specific machines on the shop floor. The two-step app-
roach performed significantly better than evolving rules using GP or allocating
rules to specific machines using GA separately, and outperformed the state-of-the-
art approaches to a dynamic semiconductor manufacturing problem. Hunt et al. [4]
evolved priority-based dispatching rules for a dynamic two-machine JSS problem
with TWT minimisation objective. The evolved rules performed significantly bet-
ter than some benchmark dispatching rules. Hunt et al. [5] then proposed a set of
“less-myopic” terminals to the GP process to reduce the myopic nature of dispatch-
ing rules. They showed that the rules evolved with the added terminals performed
significantly better than the benchmark GP-HH approach which uses the standard
job and machine properties.

2.3 Cooperative Coevolution in Genetic Programming

CCEAs are techniques where behaviours from multi-agent systems are incorpo-
rated with evolutionary computation [11]. First, the problem is decomposed into
smaller subproblems. Afterwards, the agents that make up the multi-agent sys-
tem are applied to the subproblems. In CCEA approaches, the aim is to allow
different individuals of the population to fill different “ecological niches” [16].
The evolved individuals that can best handle the different niches are then com-
bined together as a cohesive solver. A survey of CCEA techniques is provided
by Panait and Luke [11].

Nguyen et al. [8] used Potter and De Jong’s cooperative coevolution [16]
to evolve multiple scheduling policies for a dynamic JSS problem with three
objectives. In their approach, they used two subpopulations. The individuals
in the first subpopulation were used to assign due dates to the jobs during a
dispatching decision. The individuals in the second subpopulation were used as
priority-based dispatching rules. Park et al. [12] used cooperative coevolution to
evolve ensembles of dispatching rules for a static JSS problem with the makespan
minimisation objective. In this approach, individuals in all subpopulations are
“voters”, and vote on the job to be selected for processing. Other CCEA tech-
niques include Orthogonal Evolution of Teams (OET) [18] and MLGP [20]. OET
groups individuals into separate “teams” that compete against other teams dur-
ing the selection procedure. MLGP is a CCEA which evolves multiple levels of
evolution simultaneously. Neither OET and MLGP have previously been applied
to dynamic JSS problems. In addition, Potter and De Jong’s cooperative coevo-
lution has not been applied to dynamic JSS problems to evolve ensembles of
dispatching rules.
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3 Coevolutionary GP Approaches to JSS: MLGP-JSS
and EGP-JSS

The two coevolutionary GP approaches for evolving ensembles of dispatching rules
to the dynamic JSS problem with TWT minimisation objective are given below.
The first approach, MLGP-JSS, adapts the MLGP approach of Wu and Banzhaf
[20]. The description of MLGP-JSS is broken down into two steps: a high-level
overview of the approach, and the evaluation procedure, which includes the fit-
ness functions used. The second approach extends EGP-JSS proposed by Park
et al. [12] that uses Potter and De Jong’s cooperative coevolution [16]. Finally, the
representation of individuals used for MLGP-JSS and EGP-JSS is described.

3.1 MLGP-JSS Process Overview

A key component of MLGP-JSS is groups. A group is a set of individuals in the
population that cooperate with each other. For our approach, we use groups as
ensembles to solve JSS problem instances. This is discussed in further detail in
Sect. 3.3. The MLGP-JSS process is broken down into three major steps. The first
step is to carry out evolution on the group level, where groups are bred, evaluated
and added to the GP population. The second step is to carry out evolution on
the individual level, where GP individuals are bred, evaluated and added to the
population. The final step is the selection procedure, where only the elite groups
and individuals are retained in the population for the next generation. After
the termination criterion, i.e., the maximum number of generations, is reached,
the final output is the best group of individuals found so far, an ensemble of
dispatching rules that can be applied to dynamic JSS problem instances. The
overall MLGP-JSS process is shown in Algorithm 1, where GB is the number of
groups bred at each generation, and IB is the number of individuals bred at each
generation.

Evolution on the Group Level: There are three evolutionary operators which
breed new groups from existing individuals and groups in the population. The
first operator is cooperation. Cooperation combines two entities together to form
a new group containing all individuals from both entities without duplicates. An
entity can be either an individual or a group. This means that two individuals,
an individual and a group, or two groups can be merged to form another group.
The entities for cooperation are selected using roulette wheel selection over all
entities. An example is shown in Fig. 1a, where group G1 is combined with group
G2 to form the new group G4, which contains individuals I1, I2 and I4.

The second evolutionary operator on the group level is the group crossover
operator. In group crossover, roulette wheel selection selects two groups from the
GP population as parents. The two parents randomly exchange one individual to
produce the child groups. Individuals in a parent group have equal probabilities
of being exchanged. In Fig. 1b, crossover occurs between parents G1 and G3,
exchanging individuals I2 and I3 respectively. This generates groups G4 and G5.
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Algorithm 1: MLGP-JSS
Initialise Population P with IR Individuals;
Evaluate Fitnesses of Individuals idv1, . . . , idvIR ∈ P ;
while Maximum generation is not reached do

for g ← 1 to GB do
Breed a Group grp from Population P ;
Evaluate the Fitness of Group grp;
Add Group grp to Population P ;

end
for i ← 1 to IB do

Breed an Individual idv from Population P ;
Evaluate the Fitness of Individual idv;
Add Individual idv to Population P ;

end
Retain the GR Best Groups and the IR Best Individuals from Population P ;

end
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(a) Cooperation Operator

I1 I2

G1

I3

G2

I4

G3

I5 I6

G1

I1 I2

G2

I3

G3

I4

G4

I5

G5

I6

(b) Crossover Operator

I1 I2

G1

I3

G2

I4

G3

I5 I6

I1 I2

G1

I3

G2

I4

G3

I5

G4

I6
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Fig. 1. Examples of group operators used to breed new groups.

The final evolutionary operator on the group level is the group mutation
operator. In the group mutation, a group is selected through roulette wheel
selection, and either an individual is added to or removed from the group. If an
individual is being added, then an individual is selected through roulette wheel
selection over the individuals in the GP population. If an individual is being
removed, then an individual in the group is randomly selected with uniform
probability. An example of mutation operator adding an individual is shown in
Fig. 1c, where individual I5 is added to G2 to produce offspring G4.

Evolution on the Individual Level: Crossover and mutation operators used
to breed the individuals are the standard operators for tree-based GP [7]. To
select the parent individuals to breed new offspring, a group grp is selected based
on a probability proportional to the group’s fitness. It is expected that individ-
uals in a group contribute to achieve cooperation despite their fitnesses [20].
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Therefore, an appropriate number of parent individuals are selected from group
grp with a uniform probability. After crossover or mutation is carried out, the
newly bred children do not automatically become part of the group from which
the parent individuals were selected from, but are inserted back into the pool of
individuals after evaluating the children’s fitness.

3.2 Selection

After GB groups and IB individuals are breed and added to the population, the
selection procedure retains the GR groups with the highest fitnesses out of all
the groups in the population, while discarding the groups with fitnesses lower
than the top GR groups. A similar procedure is then applied to the individuals,
where the top IR fittest individuals in the population are retained and the rest
discarded. However, if an individual idv does not belong to the top IR fittest
individuals, but belongs to a group grp, then individual idv is still retained by
group grp. This is due to the fact that individual idv may have poor individual
fitness, but works well together with other individuals in group grp.

3.3 Evaluation Procedure

To evaluate a group grp in the population, group grp is applied as a non-delay
[14] dispatching rule to the set Δtrain of JSS training instances. When a machine
becomes available in a discrete-event simulation of the job shop on JSS problem
instance I, the individuals that are part of group grp act as an ensemble, “voting”
on the next job to be processed by the machine. An individual in group grp first
assigns priorities to the non-delay jobs waiting at the machine, and then votes
on the job with the highest assigned priority. The job with the most votes is
then selected by the group to be processed. In the case of a tie in the number of
votes between two jobs, the ATC dispatching rule [19] is used as a tie-breaker.
The job with the higher priority assigned by the ATC rule is ranked higher than
the other job. An example of the voting procedure is shown in Fig. 2 for a group
consisting of 3 individuals. The individuals each vote for one of four jobs waiting
at the machine to be processed. Rule 1 votes for job 1 which has the priority of
9.787, rule 2 votes for job 2, and rule 3 votes for job 1, resulting in job 1 being
selected to be processed.

After group grp is applied to the training instances, we get the fitness Fitgrp

of group grp as shown in Eq. (1). The group fitness function used as the dynamic
JSS problem is modified from the group fitness function proposed by Wu and
Banzhaf [20]. In the equation, Obj(grp, I) is the TWT objective value of the
solution generated for a JSS problem instance I by group grp. GSgrp denotes
the size of group grp, and is used as a penalty factor to prevent groups from
increasing in size with minimal improvement in performance [20].

Fitgrp =
1

|Δtrain|
∑

I∈Δtrain

Obj(grp, I) +

√
2 × GSgrp

2 + GSgrp
(1)
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Fig. 2. An example of a voting procedure for individuals in a group.

On the other hand, to evaluate an individual idv, individual idv is applied to
the JSS training instances as a non-delay priority-based dispatching rule. The
fitness of individual idv, denoted as Fitidv, is the average TWT of the solutions
over the training instances as shown in Eq. (2).

Fitidv =
1

|Δtrain|
∑

I∈Δtrain

Obj(idv, I) (2)

3.4 EGP-JSS Process Overview

The EGP-JSS approach incorporates Potter and De Jong’s cooperative coevo-
lution [16] to evolve ensembles of dispatching rules. EGP-JSS is an extension
of a previous approach by Park et al. [12] for a static JSS problem, where they
provide a full description of the EGP-JSS approach. In cooperative coevolu-
tion [16], a population of individuals is partitioned into subpopulations, and
individuals from each subpopulation only interact with representatives of other
subpopulation. A representative in a subpopulation is the best individual of the
subpopulation found so far. To evaluate an individual of a subpopulation, the
individual is grouped up with the representatives of the other subpopulations
to form an ensemble of dispatching rules. The ensemble is then applied to the
training instances. In EGP-JSS, an ensemble’s voting procedure for selecting
jobs is similar to the ensemble’s voting procedure in MLGP-JSS, i.e., the job
with the majority vote is selected to be processed, and the ATC rule is used
as the tie-breaker between jobs with equal number of votes. The fitness of the
ensemble over the training instances is used as the fitness of the individual.

3.5 GP Representation, Terminals and Function Sets

For MLGP-JSS and EGP-JSS, we use tree-based GP, where the individuals
represent arithmetic function trees. An individual’s function tree is used as a
priority function in a non-delay dispatching rule. When a machine m∗ becomes
available at time Rm∗ , the non-delay jobs waiting in the queue in front of machine
m∗ are considered for selection. The set of non-delay jobs in the queue in front
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of machine m∗ will be denoted as Am∗ . The priority of the operation for a job
j ∈ Am∗ waiting at machine m∗ is calculated by inputting the attributes of j
and the machines on the shop floor into the function tree.

The terminals in the GP terminal set either correspond to base level
attributes of jobs and machines or are constructed from multiple base level
attributes. Examples of a base level attribute are the due date (dj) or the
processing time (p(σkj)) of the kth operation of job j. As an example, suppose
that job j is waiting at machine m∗ during a dispatching decision, requiring
the ith operation σij to be processed by the machine. When job j is inputted
into an individual’s function tree, the DD terminal corresponds to the due date
dj of job j. The RT terminal corresponds to the sum of the remaining total
processing times of input job j from the ith operation to the final operation, i.e.,∑Nj

k=i p(σkj).
The terminal set consists of “basic” terminals and the “less-myopic” termi-

nals. The basic terminals are terminals used by Nguyen et al. [9] to evolve rules
using arithmetic representations for individuals in the GP population. The less-
myopic terminals are terminals proposed by Hunt et al. which are used to evolve

Table 1. The terminal set used for the GP representation, where job j is one of the
jobs waiting at the machine m∗ to process operation σij .

Terminal Description Value

Basic RJ Operation ready time r(σij)

RO Remaining number of
operations of job j

Ni − m + 1

RT Remaining total processing
times of job j

∑Nj

k=i p(σjk)

PR Operation processing time of
job j

p(σij)

RM Machine m∗ ready time Rm∗

NJ Non-delay jobs waiting at
machine m∗

|Am∗ |

DD Due date of job j dj

W Tardiness penalty of job j wj

# Constant Uniform[0,1]

Less-myopic NPR Next operation processing
time

p(σ(i+1)j)

NNQ Number of idle jobs waiting
at the next machine

|Am(σ(i+1)j)
|

NQW Average waiting time of last
5 jobs at the next machine

1
5

∑5
k=1 q(Nm∗∗

j
+1−k)m∗∗

j

AQW Average waiting time of last
5 jobs at all machines

1
5M

∑M
m=1

∑5
k=1 q(Nm+1−k)m

Function +, −, ×, /, if, max, min
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“wider-looking” rules [5]. The less-myopic terminals are used because they allow
individuals that are part of the ensemble to focus on different “locality” of the deci-
sions, with some individuals focusing on very local decisions and other individuals
focusing on decisions further down the line. An example of Hunt et al.’s [5] less-
myopic terminals is the average wait time of last five jobs processed at the next
machine (NQW). Let q1m, . . . , qNmm be the waiting times of the 1st, . . . , Nmth
jobs processed by machine m, and let m∗∗

j be the machine for which the job j’s
next operation is to be processed on. Then the NQW terminal corresponds to
1
5

∑5
k=1 q(Nm∗∗

j
+1−k),m∗∗

j
for j. On the other hand, the function set consists of arith-

metic operators +, −, ×, protected /, if, max and min. Protected division returns
a value of 1 if the denominator is zero. if is a ternary operator which returns the
value of the second argument if the value of the first argument is ≥ 0, and returns
the value of the third argument otherwise. max and min are binary operators which
return the maximum and minimum of the arguments respectively. The full list of
terminals and functions are given in Table 1.

4 Experimental Design

This section covers the dataset that is used for training and testing. A description
of the benchmark GP-HH approach used to compare with MLGP-JSS and EGP-
JSS will also be presented. In addition, this section gives the GP parameter
settings used to evolve the rules.

4.1 Dataset

The effectiveness of evolved rules can be significantly affected by the number
and the frequency of job arrivals [3,9]. In addition, long-running discrete-event
simulations are commonly used to evaluate rules for dynamic JSS problems [1].
On the other hand, applying a dispatching rule within a simulation is expensive,
and a large training set may not necessarily lead to significantly higher quality
heuristics [1]. Therefore, the dataset that is used for evaluating the GP-HH
approaches are discrete-event simulations that were used by Hunt et al. [5],
where there are a small number of training and test problem instances, each
with large number of job arrival. Each problem instance in the dataset has 10
machines, and job attributes are randomly generated. A job’s operations have
random processing times that follow a discrete uniform distribution with mean μ.
Jobs arrive according to a Poisson process with mean λ, where λ is configured so
that it meets a desired utilisation rate ρ. Therefore, λ = ρ×pM

(1/μ) , where pM is the
expected number of operations per job divided by the number of machines. If all
jobs arriving on the shop floor require 4 operations in a 10 machine environment
shop, then pM = 0.4. Due date dj of job j is given by dj = rj + h

∑Nj

i=1 p(σji),
where h is the due date tightness parameter. For each problem instance, a list
of possible due date tightness values is provided. A job’s due date tightness h is
randomly selected from the list with an equal probability. Weight wj for job j
is selected from 1, 2, or 4 with probabilities of 0.2, 0.6 and 0.2 respectively [14].
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Table 2. Configurations used for the discrete-event simulation representing dynamic
JSS problem instances.

Training, 4op Mean processing time, μ 25

Expected utilisation rate, ρ 0.85, 0.95

Due date tightness, h {3, 5, 7}
# of operations per job 4

# of configurations 2

Training, 8op Mean processing time, μ 25

Expected utilisation rate, ρ 0.85, 0.95

Due date tightness, h {3, 5, 7}
# of operations per job 8

# of configurations 2

Testing Mean processing time, μ 25, 50

Expected utilisation rate, ρ 0.90, 0.97

Due date tightness, h {2, 4, 6}
# of operations per job 4, 6, 8, 10, X ∼ Unif(2, 10)

# of configurations 20

There is a warm up period of 500 jobs. Thereafter, the weighted tardiness values
of subsequent jobs are added to the objective function value. The simulation
ends once N = 2500 jobs have been processed.

To evolve the rules, there are two training sets which have a different number
of operations for each job. A problem instance in the first training set, 4op, has
4 operations per job. A problem instance in the second training set, 8op, has 8
operations per job. Both training sets have 2 problem instances, where the first
problem instance in both sets have ρ = 0.85, and the second problem instance
in both sets have ρ = 0.95. On the other hand, the test set has 20 problem
instances, divided into four subsets of five problem instances. In a subset, the
first four problem instances have 4, 6, 8, 10 operations per job. The last problem
instance in the subset has anywhere between 2 and 10 operations per job, where
the number of operations per job is random with an equal probability. Therefore,
pM = 0.4, 0.6, 0.8, 1.0, 0.6 for each problem instance in the subset respectively.
The five instances in each of the four subsets have μ = 25, 50, 25, 50 and ρ =
0.90, 0.90, 0.97, 0.97. For all problem instances the machine which the operation is
carried out is random, and there is no re-entry for the jobs, i.e., no two operations
for a single job occur on the same machine. The overall parameter settings for
the dataset are shown in Table 2.

4.2 GP-HH Benchmark Methods for Comparison

As MLGP-JSS has not been applied to JSS problems, it will first be compared
against a benchmark GP-HH approach. As the most prominent method for
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evolving dispatching rules [1], the benchmark GP-HH approach in this paper
evolves single priority-based dispatching rules. The benchmark GP-HH will be
abbreviated to GP-JSS, and uses the same terminals as both MLGP-JSS and
EGP-JSS (Table 1), which includes the less-myopic terminals.

4.3 Parameter Settings

The following parameters are used for GP-JSS, EGP-JSS and MLGP-JSS. The
total population size for all three GP-HH is set to 1024. Similar to parameter
configurations used by Park et al. [12], the population for EGP-JSS is divided to
4 subpopulations of size 256. The rest of the GP parameter configuration is the
same as the configuration suggested by Koza [7]. However, tournament selection
is used in the MLGP process when there are no groups in the population. The
additional parameters for MLGP-JSS are the number of individuals bred (IB),
the number of groups bred (GB), the number of groups retained (GR), and the
group cooperation/crossover/mutation rate. The number of individuals bred is
equal to the number of individuals in the population, i.e., 1024. MLGP-JSS
starts off with no groups in the population, and the number of groups bred and
retained are set to 200 and 100 respectively. The probability of using a specific
group operator is based off the probability used by Wu and Banzhaf [20] for
their MLGP approach. Finally, the k value for the tie-breaker ATC heuristic is
set to k [19]. All these parameter settings are listed in Table 3.

Table 3. GP parameters used by the GP-HH approaches for evolving ensembles
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5 Results

This section covers the results of the evaluation between the different GP-HH
approaches, which is broken down into two steps. First, MLGP-JSS will be eval-
uated against GP-JSS. Second, MLGP-JSS will be evaluated against EGP-JSS
in order to determine which CCEA approach out of the two performs better
on dynamic JSS problems. For each GP-HH approach, rules are evolved from
the training sets 4op and 8op over 30 independent runs. The computation times
taken to evolve a rule for the GP-HH are also measured and analysed.

5.1 MLGP-JSS vs GP-JSS

The evolved rules from MLGP-JSS and GP-JSS are applied to the 20 JSS prob-
lem instances in the test set. From this, we get sets of TWT solution values
for each JSS problem instance that are used to compare the performance of the
rules. For a fair comparison, the MLGP-JSS rules evolved over a specific training
set are compared against the GP-JSS rules evolved over the same training set,
e.g., rules evolved over training set 4op are compared against each other. One
set of rules is significantly better than another set of rules for a particular JSS
problem instance if the obtained p-value under the one-sided Z-test is less than
0.05. The results are shown in Table 4. In the table, 〈x, y〉 denotes that μ = x
and ρ = y for the JSS problem instance. The problem instance for which the
MLGP-JSS rules are significantly better than the GP-JSS rules are highlighted,
and vice versa.

Table 4. The evolution times and TWTs for the MLGP-JSS rules and the GP-JSS
rules over the training and the test JSS problem instances.
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From the results, the MLGP-JSS rules perform significantly better than the
GP-JSS rules for all problem instances. In addition, although the time required
to evolve the MLGP-JSS rules is slightly greater than the time required to evolve
GP-JSS rules, the difference is not statistically significant. Therefore, the MLGP-
JSS is more effective than the standard GP-HH approach for the dynamic JSS
problems with TWT minimisation objective. This supports the hypothesis that
an ensemble of dispatching rules is more capable of handling complex decisions in
a dynamic JSS problem instance than a single rule. Hence, it would be promising
to carry out further research into evolving new and effective ensembles of rules
using coevolutionary GP for dynamic JSS problems.

5.2 MLGP-JSS vs EGP-JSS

The MLGP-JSS and EGP-JSS rules evolved from the same training set Δtrain

are compared against each other over the test set in terms of the qualities of the
solutions generated, i.e., the TWT of the solutions for the JSS problem instances.
The results are shown in Table 5, where a set of rules that is significantly better
than the other set of rules for a particular JSS problem instance is highlighted.

Table 5. The evolution times and TWTs for the MLGP-JSS rules and the EGP-JSS
rules over the training and the test JSS problem instances.

From the results, the EGP-JSS rules have significantly lower TWT values
than the MLGP-JSS rules for most of the JSS problem instances in the test
set. A possible reason for this observation may be due to the MLGP-JSS’s
breeding and selection procedure. As described in Sect. 3.1, the MLGP uses
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roulette wheel selection for choosing different groups to breed new groups and
individuals. During the training procedure, the groups generally have similar fit-
nesses to each other. This means that roulette wheel selection may not be biased
enough towards a potentially good group, resulting in a lack of exploitation.
Both exploitation, the idea of greedily pursuing the local optima, and explo-
ration, the idea of moving towards areas of the search space to potentially find
better points, need to be finely balanced for a GP-HH to find good heuristics in
the heuristic space [7].

Another possible reason why the EGP-JSS rules perform better than the
MLGP-JSS rules may be linked to the difference in time taken to evolve the
rules using EGP-JSS and MLGP-JSS and the performance of the evolved rules
on the training sets. MLGP-JSS requires much lower computation time to evolve
the rules during the training procedure than EGP-JSS. On average, MLGP-JSS
took less than half of the amount of time to evolve the rules over 4op compared to
EGP-JSS, and slightly more than a third the amount of time to evolve the rules
over 8op. During an evaluation procedure, the number of times the individuals
in the GP population is applied to the training instances is significantly lower for
MLGP-JSS than EGP-JSS. Therefore, it might be the case that EGP-JSS takes
a longer time to explore for good rules in a single generation than MLGP-JSS.
This is supported by the differences in the performance over the training sets of
the MLGP-JSS rules and the EGP-JSS rules, the EGP-JSS rules perform slightly
better than the MLGP-JSS rules. However, the differences in the performances
over the training sets are not statistically significant.

In summary, two major findings were made: (1) MLGP-JSS evolves signifi-
cantly better rules than GP-JSS for the dynamic JSS problem, supporting the
hypothesis that ensembles of dispatching rules are better than single dispatch-
ing rules. The differences in the evolution times is insignificant. (2) EGP-JSS
evolves significantly better rules than MLGP-JSS for the dynamic JSS problem,
but EGP-JSS takes longer to evolve the rules than MLGP-JSS.

6 Conclusions

In this paper, we proposed the MLGP-JSS approach for the dynamic JSS prob-
lem with the TWT minimisation objective. MLGP-JSS is an adaptation of the
MLGP approach proposed by Wu and Banzhaf [20] that has not been applied to
dynamic JSS problems. In addition, we extended the EGP-JSS approach by Park
et al. for a static JSS problem [12] by incorporating new “less-myopic” terminals
[5] and applying it to a dynamic JSS problem for the first time. The experi-
mental results show that MLGP-JSS evolves rules with insignificant increase in
time compared to a benchmark GP-HH approach but with significant improve-
ments in the performance. On the other hand, EGP-JSS produces higher quality
evolved rules than MLGP-JSS, but MLGP-JSS evolves rules significantly faster
than EGP-JSS.

For future work, it may be promising to investigate alternative selection
methods during the breeding and selection procedure of MLGP, such as replac-
ing the roulette wheel selection with tournament selection. In addition, it is
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likely that MLGP-JSS and EGP-JSS can evolve better rules by adding niching
or diversity measures, which have been shown in classification to improve the
quality of the ensembles [15]. In addition, the evolved rules from both EGP-JSS
and MLGP-JSS will also be investigated for further analysis.
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Abstract. This paper presents a proof-of-concept for an Epigenetics-
based modification of Genetic Programming (GP). The modification
is tested with a traffic signal control problem under dynamic traffic
conditions.

We describe the new algorithm and show first results. Experiments
reveal that GP benefits from properties such as phenotype differentiation,
memory consolidation within generations and environmentally-induced
change in behavior provided by the epigenetic mechanism. The method
can be extended to other dynamic environments.

Keywords: Genetic Programming · Epigenetic modification · Dynamic
environments · Traffic signal control

1 Introduction

Because of the flexibility of its representation and its context independent
methodology, GP can be used to generate solutions to problems in different
areas of application in science and technology. However, in real world problems,
the goal is often not fixed and can change during the evolutionary process. In a
dynamic environment GP needs to be able to adapt to constant changes of the
goal and fitness evaluation criteria. One approach to face these challenges is to
generate variable locally adaptable solutions.

Biological evolution has different mechanisms to deal with environmental
perturbations. Recently, Epigenetics, defined as phenotypic modifications with-
out requiring changes in the nucleotide sequence (DNA), has been discovered
to have important influences on the development of adaptation mechanisms at
cellular, individual and species levels [13,16]. These imply a more active role for
epigenetic mechanisms on the cellular, individual and species development.

In this paper an Epigenetics-based mechanism is presented and integrated
into the Genetic Programming algorithm using a decision tree forest represen-
tation. A proof-of-concept in a dynamic environment is presented and future
experiments are described.
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In this paper, the term decision tree is used in a loose sense. By decision tree
we mean a tree that evaluates to an integer value with a conditional statement
as the first node.

We use a traffic signal control problem as our testbed. Urban traffic network
control is a complex nonlinear problem and traffic congestion affects daily life
of millions of citizens. Furthermore, the rapid increment of metropolitan pop-
ulations makes control of traffic signals a challenging task. Most of the traffic
controller systems currently in use are pre-timed and cannot handle the dynamic
nature of the problem. However, in the last decades, different adaptive methods
have been implemented in simulated environments, reducing the delay during
rush hours.

This paper is organized as follows: Sect. 2 describes one of the biological
epigenetic mechanisms named DNA methylation and gives an overview of the
different approaches followed to integrate epigenetic mechanisms into Evolu-
tionary Computation. Section 3 introduces the Traffic Signal Control Problem
and explores different Evolutionary Algorithm methods implemented for its solu-
tion. Section 4 describes the simulator and the traffic network used in this paper.
Section 5 defines the chromosome representation and genetic operators used in
the GP environment. Section 6 describes the epigenetic mechanism introduced
in this paper. Section 7 provides details on the experimental configuration used.
Results are presented and discussed in Sect. 8. Section 9 presents conclusions.

2 Epigenetics

Epigenetics is the study of cellular and physiological phenotypic trait variations
that are caused by external or environmental factors affecting how cells read
genes. This could be seen in contrast to the modifications caused by changes in
the DNA sequence.

One of the clearly heritable mechanisms of Epigenetics is DNA methylation
[16]. Methylated DNA has a methyl group (CH3) attached to some of its bases.
It is found in vertebrates, plants, and even in many invertebrates, fungi and
bacteria [11]. A methyl group is normally attached to the cytosine (C) nucleotide.
Methylated cytosine doesn’t change its role in the genetic code. It is still paired
with guanine. However, the methyl group affects protein transcription by binding
with special proteins and preventing Ribonucleic acid (RNA) polymerase to work
on it, or by interfering with the binding of regulatory factors to the gene control
region. In other words, cytosine methylation is a mechanism to silence DNA
sections. During development, methylation marks can change and the modified
(methylated) DNA sequence is transferred from cell to cell during cell division.

Even though the importance of epigenetic inheritance in cell differentiation
and memory processes has been recognized, its influence on macroscopic phe-
nomena has been discovered only recently. Some examples are environmentally
induced epigenetic modification of behavior [10], the influence of Epigenetics
on memory consolidation within generations [5], the inherited propensity for
learning [2], the role of Epigenetics in morphological differentiation (Honeybee
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reproductive queen differentiation mediated by royal jelly consumption [8]) and
even species differentiation through morphological specializations (for instance
phenotypic changes in the modern human brain and behavior compared to other
hominids [13]).

The Evolutionary Algorithm (EA) community has recently started to con-
sider the discoveries in the area of Epigenetics. Different approaches have been
used to represent the phenotypic mechanism, but it has normally been imple-
mented as extra optimization to accelerate the adaptation of the EA.

Tanev and Yuta [22] worked with a modification of the predator-prey pursuit
problem. GP is used to define a set of stimulus-response rules to model the
reactive behavior of predator agents. The implementation includes active and
inactive histones in the representation and uses age-based predators moving
through different life stages (birth, development, survival and death). An extra
step called Epigenetic Learning (EL) is included in the fitness evaluation. EL is
basically a hill climber acting through epi-mutations of the histone activation
signals.

It was found that the probability of success is larger when the Epigenetic
Learning mechanism is included. The authors ascribe the difference to the
robustness gained with the representation by preserving the individuals from
the destructive effects of crossover by silencing certain genetic combinations and
explicitly activating them only when they are most likely to be expressed in
corresponding beneficial phenotypic traits.

Fontana [6] used other multi-cellular morphogenic models for development
with an integer number genetic representation controlled by a regulatory net-
work with epigenetic activation and deactivation signals in different development
phases. A two-dimensional cellular grid and a Genetic Algorithm running on the
genome allow the model to generate predefined 2-dimensional shapes.

In [21], Sousa and Costa present an epi-genetically controlled agent system
for Artificial Life. The agents wander around a 2D environment with walls and
different attributes -temperature, light and food- that can vary over time. The
goal of the agents is to survive and to reproduce.

The behavior of the agents is coded on binary strings. Activation of genes
is controlled by methylation marks. An Evolutionary Algorithm controls the
survival and reproduction of the different organisms. Several experiments were
performed with different levels of epigenetic transfer between parents and off-
spring. The results show a significant improvement: Non epigenetic populations
found it hard to thrive in dynamic environments, while epigenetic populations
were able to regulate themselves under dynamic conditions.

Chikumbo et al. [3] proposed a Multi-Objective Evolutionary Algorithm with
epigenetic silencing for the land use management problem. The goal of the farm
was to reduce the environmental footprint whilst maintaining a viable farming
business through land use and/or management option changes.

The chromosome encoded each paddock land use and the system emulated
gene regulation with epigenetic silencing based in histone modification and RNA
editing mechanisms. A Pareto front visualization tool was developed composing
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the 14 fitness criteria into 3 super-objectives. However, the approach was not
compared against a classical Multi-Objective Evolutionary Algorithm. There-
fore, the improvement of the epigenetic variation could not be estimated.

In 2014, the same authors [4] extended their previous work using a similar
epigenetic based modification. The main modification is the use of Hyper Radial
Visualization, 3D Modeling and Virtual Reality to reduce the 14 fitness functions
and display the solutions in a understandable way to a group of experts. Again,
the approach is not compared with a classical EA.

Turner et al. [23] used an Artificial Gene Regulation model with an epige-
netic mechanism based on DNA methylation and chromatin modifications. The
inclusion of epigenetic information gave the network the ability to allocate dif-
ferent genes to different tasks, effectively regulating gene expression according
to the environment in which it was operating.

The goal of the model was to follow specific trajectories in a chaotic system
(Chirikov’s standard map). The network was evolved using a Genetic Algorithm.
The epigenetic mechanism improved performance of the model in a dynamic
system. With the ability to inactivate genes came the ability to increase the effi-
ciency of the network. Hence, with each inactive gene for an objective, there was
less computational effort required to complete a single iteration of the network
simulation.

La Cava et al. [15] included an Epigenetic Hill Climber into the Linear
Genetic Programming algorithm by the addition of a binary array equivalent in
length to the genotype of each individual. This array, referred to as an epiline,
indicated the active genes. The algorithm was used to solve different symbolic
regression problems and performed better than the non-epigenetic one. Even
when there was no statistically significant improvement in Mean Best Error, the
authors reported improvements in effective program size and beneficial genetics
(genetic operations that resulted in fitter offspring).

The same research group used a similar epigenetic mechanism in [14] to
solve symbolic regression and program synthesis problems. Stack-based GP rep-
resentations are used for both types of problems. The binary epiline is used
to deactivate nodes. Epigenetic hill climber and epigenetic mutation variations
are compared against a GP method were all the nodes are active. The epige-
netic methods outperformed the GP baseline implementation in terms of fitness
minimization, exact solutions, and program sizes.

3 Traffic Signal Control

Urban traffic network control is a complex nonlinear problem and traffic conges-
tion affects daily life of millions of citizens. Furthermore, the rapid increment of
metropolitan populations makes the control of the traffic signals a challenging
task. Different traffic signal control methods have been implemented over time
to try to reduce the negative effects of traffic congestion.

A basic fixed traffic signal has static phase lengths based on historical infor-
mation for each intersection. However, traffic doesn’t behave in the same way
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during different hours of the day. An engineer can analyze the behavior of the
traffic during the day and define different phase lengths for specific intervals.
This method is called pre-timed control. It presents an improvement over the
fixed control depending on human expertise and the correct modeling of traffic
conditions, but requires constant surveillance and constant update, but cannot
adapt to sudden modifications in traffic behavior.

Actuated control or traffic-responsive control consists of phase length sets
that are extended in response to vehicle detectors. Detection is used to pro-
vide information about traffic demand to the controller. Each phase length is
determined by a detector input and corresponding controller parameters.

Different traffic units have been used in the literature to measure traffic:
average car speed, average intersection delay, average queue length, total system
delay, etc. Total system delay is defined as the sum of the stop time of all vehicles
in the system for a defined interval of time.

Traffic-control systems are affected by many factors: infrastructure, vehi-
cles, drivers, pedestrians, weather, seasonal effects, etc. Each factor has its own
characteristics, which makes the entire traffic system a large complex nonlin-
ear stochastic system which poses many interesting problems and challenges for
researchers and engineers.

Wang [24] proposed a general “parallel” control model, where parallel implies
parallel interactions between a real transportation system and its corresponding
artificial or simulated counterpart. The approach consists of three steps: (1)
generation of a simulated model; (2) analysis and evaluation by computational
experiments; (3) control and management through parallel execution of the real
and artificial system.

This general framework can be used with different simulation, control and
learning algorithms, with the constant feedback of differences between real world
events and simulated environments as one of its main benefits.

In [25], Zhang et al. proposed a real-time online urban traffic signal control
approach using a multi-objective discrete differential evolution modification to
optimize the light phase periods of a three-lane, single intersection road includ-
ing left-turn phases. The authors compared their algorithm with a pre-timed
controller using a Poisson distribution to regulate the traffic flow. The proposed
approach behaved better in the single intersection problem.

Sánchez-Medina et al. [20] used a Cellular Automaton based traffic simulator
and a Genetic Algorithm to simulate and optimize the traffic light phase periods
of a section of Saragossa city. The section has seven intersections, 16 input nodes,
18 output nodes and 17 traffic signals. Individuals were represented as an array
containing light phase periods of all traffic signals. Four different parameters
were used as fitness function. The algorithm was tested with different traffic
situations and limited results were obtained. The methodology does not provide
a significant improvement for regular traffic conditions of the network; however,
it increases the performance for more congested scenarios.

Nie et al. [18] used a two-dimensional Cellular Automaton and a 1 + λ Evo-
lutionary Strategy to update the time parameters of CA rules in a 20 × 20 cell



138 E. Ricalde and W. Banzhaf

network. The authors performed experiments with different traffic densities and
the results demonstrated a better performance of the evolutionary approach com-
pared to previous work done with the same Cellular Automaton. However, the
simulated environment was too rigid and was not able to represent all conditions
of a real environment.

In [1], Braum and Kemper modified an open source area-wide traffic light
signal optimizer, called BALANCE [7]. They replaced the hill-climbing algo-
rithm used on the tactical level of BALANCE with a Genetic Algorithm. The
chromosome representation used is similar to the one used in [20]; however, the
optimization was done online with a real system. The architecture used is similar
to the parallel control model defined in [24].

Several experiments were performed with the traffic network of Ingolstadt,
Germany. The results demonstrated a better performance of the GA over the
Hill Climber (HC) in almost all (different) traffic density tests. The authors
conclude that as the network becomes larger and more complex, the evolutionary
algorithm provides larger advantages. Once the system started operating in the
real world, daily average delays were reduced by 21% compared to the standard
10% expected using the traditional HC algorithm of BALANCE.

In [19], Padmasiri and Ranasinghe used a GP and fuzzy logic hybrid app-
roach to define a single fine-tuned fuzzy rule for a single intersection using a
Poisson distribution to control the vehicle arrival rate under different traffic
volume scenarios. The set of evolved rules use traffic parameters as input and
decide to extend or terminate the current green lapse. The results present an
improvement compared to previous work. However, solutions lack adaptability
to changes in the traffic conditions and the method was tested only with a single
intersection.

4 The Traffic Simulator

Microscopic traffic simulation models study individual elements of transportation
systems, such as individual vehicle dynamics and individual traveler behavior.
The model depends on random numbers to generate vehicles, to select routes
and to determine the behavior of the system. In a microscopic simulator the
dynamic variables of the model represent microscopic properties like the position
and velocity of single vehicles.

Even though several commercial and open source simulators are available,
we decided to create a microscopic model simulator in order to have full control
of the environment. It allows the parallel execution of experiments in a multi-
processor environment, and to simulate different dynamic traffic conditions by
the hour.

The simulator works in a similar way to the Cellular Automaton described
in [12,20], but operates in a two-dimensional environment. It can represent
roads with multiple-lanes and two directions. An extra Object-Oriented layer
was incorporated to update only the cells containing vehicles and to reduce
simulation time. Instead of using a toroidally closed environment, the network
entries are controlled by a Poisson distribution described in Sect. 4.2.
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4.1 Traffic Network

The size of the network, its number of connections, geometry, number of lanes
and type of intersections can be modified before running the simulator. For this
paper, the experiments were performed in a 10 intersections network with 9
input/output nodes and 31 traffic signals. All the nodes are connected by two-
lane bi-directional roads. The network is presented in Fig. 1.

Fig. 1. Traffic network used for the experiment

4.2 Vehicle Insertion

The Poisson distribution correctly models arrival of vehicles, on one or multi-
ple lanes [17]. The flexibility of the Poisson distribution allows the simulation of
changes in the traffic densities. In order to simulate real-world similar conditions,
the scenario simulates 16.5 h of traffic. The traffic densities change during the
simulated day and each entry point to the network follows a different distribu-
tion.

The first hour is considered a training step where all the entries follow a
standard Poisson distribution going from zero traffic conditions to the maxi-
mum saturation peak and declining again to zero traffic. During the remaining
15.5 h of the scenario, two traffic waves are executed. The first one initiates from
south-west entries between 7 and 11 am. The second one from north-east entries
between 4 and 7 pm. Figure 2 presents the probability distributions generated
corresponding to the defined behavior for the network presented in Fig. 1.

Even when the complete scenario covers more than 16 h of traffic, each simu-
lation runs only for one hour of traffic. A time window is used during the exper-
iments. The window moves 5 min after each execution. Using this approach, the
full scenario is covered with 200 simulations.
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Fig. 2. Traffic input probability distributions

5 Representation

We used a forest of decision trees as the GP representation. Each decision tree
is employed to evaluate a set of intersections with similar characteristics; i.e.,
same number of intersecting roads and equivalent proximity to entry points. For
example, the network in Fig. 1 requires a forest of 4 decision trees: (E, F, H),
(B, D, G, I), (A, J) and (C).

The terminal set is formed by integer numbers, between −10 and 10, and
traffic parameters listed in Appendix A. The function set is formed by mathe-
matical operators (addition, subtraction, multiplication and protected division),
logical operators (conjunction, disjunction and negation), comparison operators
(equal to, bigger than and smaller than), and a conditional operator.

During the simulation, a decision tree is executed for each intersection twice
in every light cycle with current traffic parameters. The resulting integer number
is added to the vertical green phase period, subtracted from the vertical red
phase period, added to the horizontal red phase period and subtracted from the
horizontal green phase period.

Figure 3 presents a single decision tree. This tree represents a human designed
solution. The idea is to increase the mobility (increase the green phase in 1 s
and reduce the red phase in 1 s) of the vertical or horizontal directions if the
corresponding queue is larger than the opposite direction queue for more than 5
vehicles.

Two different crossover operations are available: Tree exchange and sub-tree
exchange. The former occurs in 10% of all crossover operations and exchanges
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Fig. 3. Decision tree

one tree between two chromosomes. The trees exchanged are in the same position
of the two different forests. The latter operator selects a random crossover point
of a specific decision tree in both chromosomes and exchanges the two sub-trees
selected only if both are of the same type; otherwise, it selects a new crossover
point.

Two different mutation operations are available: New tree mutation and node
mutation. The former occurs with a probability of 0.1%, selects a random tree
of the forest and replaces it with a newly generated tree. The latter replaces a
single node with a node of the same type.

Strong typing is performed through evaluation of the selected points before
the application of the reproduction operators. These GP parameters and those
presented in Table 1 were selected based on a set of preliminary experiments.

6 The Epigenetic Mechanism

The epigenetic mechanism proposed is based in DNA methylation. Each condi-
tional node is associated with an activation index in analogy to the concentration
of methyl groups attached to cytosine nucleotides along the DNA structure. As
in the biological counterpart, the evolutionary process of chromosomes is not
affected by the activation index. However, during the evaluation step, if the
activation index is smaller than an activation threshold, defined as 50% for this
experiment, the conditional node is ignored and the else sub-tree is executed,
deactivating with that action the conditional sub-tree and the then sub-tree.

The activation indices are initialized randomly between 0% and 100% for
the first generation. However, they are transferred to the offspring as part of the
crossover operation in the same way methylated DNA is transferred between gen-
erations. The collection of activation indices is stored in an epigenetic vector for
easy manipulation. The epigenetic vector is included as part of the chromosome,
but it is not affected by the genetic operators.

Figure 4 presents the effect of the activation thresholds in a forest of decision
trees. The branches in gray are inactive. This change modifies the behavior of
the decision tree without modifying the chromosome.

Since methylation marks change during development, it was decided to mod-
ify the epigenetic vector during the simulation process using the following proce-
dure: For each intersection that uses a tree expression the traffic balance, defined
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Fig. 4. Decision trees under influence of activation thresholds and epigenetic vector

as the difference between the traffic congestion in vertical directions and the traf-
fic congestion in horizontal directions, is calculated using (1), where i represents
an intersection evaluated through the tree expression e, and t represents the
current time step.

Bei(t) = verticalQueueei(t) − horizontalQueueei(t) (1)

Every 5 light cycles, a mean traffic balance of the interval is calculated per
intersection with (2), where T is the number of time steps of the interval.

Bei =

T∑
t=1

Bei(t)

T
(2)

The interval mean is then compared to the last element of the time interval
in order to get the adaptive factor of the expression as it is defined by (3).

Λei = |Bei(T ) − Bei | (3)

The goal of the adaptive factor is to identify differences between the interval
mean congestion levels and the current state for each intersection in the system.
A large difference between the current congestion level and the mean behavior
of the intersection indicates a change in the environment. In that case, a modifi-
cation in the behavior of the intersection could help the system to adapt to this
environmental change.

Therefore, the adaptive factor of the expression is used as a mutation prob-
ability to modify the activation indices of the expression tree. A mutation is
performed on the local activation indices. This step is performed as an internal
mutation during the simulation process for each intersection. The mechanism
works in a similar way to the epigenetic mutation variations presented in [14]
and has the purpose to adapt the intersection behavior to environmental changes.
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The conceptual idea behind this process is to keep the system behavior stable
under environmental perturbations, one of the roles of Epigenetics at the cellular
level in Nature. At the end of the simulation, the final activation indices are
stored in the epigenetic vector of the chromosome and transferred to the next
generation.

7 Experiments

Five different algorithms were tested with the traffic network of Sect. 4: (1) a
fixed static control, (2) an actuated control using a human designed fixed decision
tree, (3) a pre-timed control evolved using a Genetic Algorithm (GA), (4) an
actuated control using the GP representation described in Sect. 5 and (5) an
actuated control using the GP representation including the epigenetic mechanism
described in the previous section.

The baseline is a fixed control with synchronization of all the intersections.
For this method, all the lights are synchronized and the lapses are fixed (15 s
for the green light, 5 s for yellow light, 10 s for red light and 10 s for a left turn).
The system behavior keeps static for the 16 h of traffic.

The decision tree of Fig. 3 is the human designed actuated control used for
the second algorithm. In each simulation, the lights start with the fixed con-
figuration used in the static method, but the decision tree is executed at each
intersection twice every light cycle. Therefore, the lapses of each intersection can
be modified depending on traffic conditions. The same decision tree is used for
all intersections in every simulation.

A pre-timed control is evolved using a GA similar to those presented in
[1,20]. The length of the lapses for each intersection in the system is stored as
an integer chromosome. An online optimization approach is used with the GA
for 200 generations to approximate an optimal pre-timed configuration for the
16.5 h of traffic as it is described in Sect. 4.2.

The GP actuated control and the GP actuated control including the epige-
netic mechanism evolve a forest of decision trees (see Sects. 5 and 6) using an
online approach.

During the evolution process each individual is evaluated with 20 indepen-
dent simulation runs. Total system delay, defined in Sect. 3, is used as objective
function.

For the fixed control and fixed tree actuated control, 20 independent simula-
tion runs are effectuated for each of the 200 simulation configurations. The total
system delay is calculated for each of them and the objective function is defined
as the average total system delay of the 20 simulations.

The parameters employed for the Genetic Programming are presented in
Table 1. A similar configuration in terms of population size, number of genera-
tions, selection method, mutation probability and crossover probability is used
for the Genetic Algorithm.



144 E. Ricalde and W. Banzhaf

Table 1. Summary of the configuration parameters for the Genetic Programming
Model

Configuration parameters Selected values

Population size 50 individuals

Number of generations 200

Mutation probability rate per node 5%

Crossover probability 80%

Initial size limit 5 levels

Maximum size limit 7 levels

Selection operator Tournament selection with group size of
7 individuals

Elitism 1 individual

Fig. 5. Fitness curves of fixed control, tree actuated control, GA pre-timed control,
GP and epigenetic modification of GP for the experiment

8 Results and Discussion

15 independent runs were performed for each algorithm. Figure 5 presents the com-
parison of the fitness obtained by the five methods. For GA, GP and the epigenetic
modification of GP the fitness value of the best individual per generation is dis-
played.
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Table 2. Vehicle waiting time differences of the four methods

Compared methods Vehicle waiting time
difference (seconds)

Relative difference with
static method

Static - GA 13.85 3.33 %

Static - GP 61.82 14.91 %

Static - EpiGP 98.29 23.71 %

GP - GA 47.58 11.57 %

GA - EpiGP 84.45 20.37 %

GP - EpiGP 36.47 8.80 %

From the first generation, the learning curve of the evolutionary actuated
control methods starts to provide better solutions than the fixed control app-
roach for almost all evaluation steps. This behavior can be caused by the high
variability of traffic densities used in the experiment. Further experiments should
be performed with lower variability to analyze the behavior of the methods in
more detail.

The epigenetic modification of GP has a lower delay than the standard GP
algorithm for almost all the evaluation points. The difference between both meth-
ods is more drastic during rush hours. A possible explanation is the adaptive
ability provided by the activation-deactivation of code of the epigenetic method
during the simulation.

Table 2 presents pairwise comparisons of the vehicle waiting time for com-
binations of the methods. The second column indicates the difference of the
average waiting time per vehicle for the different algorithms. The third column
is that difference divided by the average vehicle waiting time of the pre-timed
experiment.

It is noteworthy that the epigenetic modification outperformed the other four
methods used in the experiments, providing an improvement of more than 20 %
compared to the fixed control and the pre-timed control. However, an evaluation
of the methods with different variability in traffic conditions needs to be con-
ducted to provide a better understanding of the behavior of the methods. For
now, this set of experiments is a proof-of-concept.

9 Conclusions and Future Work

The GP modification described in this paper is an epigenetic approach specifi-
cally designed to work on traffic signal control problems. A basic set of experi-
ments was performed and the results demonstrate an increase in the performance
compared to the basic GP method and other methods previously used.

Extensive experimentation is required to give statistical significance to the
results. To achieve that, statistical tools should be used to perform analysis of
the data generated by the independent runs. Scenarios of different sizes should be
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evaluated to analyze the behavior of the method under different circumstances.
It would be ideal to acquire data from a real world network.

Furthermore, the modification needs to be compared against traditional
methods used in Traffic Signal Control. An example of these methods is the green
wave algorithm described in [9]. Because the architecture developed can be easily
transformed into an online real-virtual parallel system as the one described in
[24], it can be used in real world traffic optimization.

Moreover, the epigenetic modification can be used to solve other problems.
Problems were some elements of the domain vary with the progression of time
(dynamic environments) can benefit of the short term memory mechanism pre-
sented in this paper. The key elements to implement the epigenetic modification
are: the identification of a variable independent to the objective function (traffic
balance in our experiment) to calculate the adaptive factor, the insertion of acti-
vation indices in nodes of a specific type and the code activation-deactivation
process described in Sect. 6.

A Traffic Parameteres

Traffic parameters included in the terminal set:

– topStatus: Status of the north-south direction light of the current intersec-
tion (returns 0 if the light is red, 1 if the light is yellow, 2 if the light is green
and 3 if the turn left right is on).

– bottomStatus: Status of south-north direction light of the current intersec-
tion (same output configuration that topStatus).

– leftStatus: Status of west-east direction light of the current intersection
(same output configuration that topStatus).

– rightStatus: Status of east-west direction light of the current intersection
(same output configuration that topStatus).

– verQueue: Sum of the number of vehicles stopped in the north-south direc-
tion and the number of vehicles stopped in the south-north direction in the
current intersection.

– horQueue: Sum of the number of vehicles stopped in the west-east direction
and the number of vehicles stopped in the east-west direction of the current
intersection.

– 1stTopNeighborQueue: Number of vehicles stopped in the north-south
direction of the first intersection in the north direction of the current crossing.

– 1stBottomNeighborQueue: Number of vehicles stopped in the south-north
direction of the first intersection in the south direction of the current crossing.

– 1stLeftNeighborQueue: Number of vehicles stopped in the west-east direc-
tion of the first intersection in the west direction of the current crossing.

– 1stRightNeighborQueue: Number of vehicles stopped in the east-west
direction of the first intersection in the east direction of the current
crossing.

– 2ndTopNeighborQueue: Number of vehicles stopped in the north-south
direction of the second intersection in the north direction of the current
crossing.
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– 2ndBottomNeighborQueue: Number of vehicles stopped in the south-
north direction of the second intersection in the south direction of the current
crossing.

– 2ndLeftNeighborQueue: Number of vehicles stopped in the west-east direc-
tion of the second intersection in the west direction of the current crossing.

– 2ndRightNeighborQueue: Number of vehicles stopped in the east-west
direction of the second intersection in the east direction of the current crossing.
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Abstract. Many industrial and real-world datasets suffer from an
unavoidable problem of missing values. The ability to deal with missing
values is an essential requirement for classification because inadequate
treatment of missing values may lead to large errors on classification. The
problem of missing data has been addressed extensively in the statistics
literature, and also, but to a lesser extent in the classification literature.
One of the most popular approaches to deal with missing data is to use
imputation methods to fill missing values with plausible values. Some
powerful imputation methods such as regression-based imputations in
MICE [36] are often suitable for batch imputation tasks. However, they
are often expensive to impute missing values for every single incom-
plete instance in the unseen set for classification. This paper proposes a
genetic programming-based imputation (GPI) method for classification
with missing data that uses genetic programming as a regression method
to impute missing values. The experiments on six benchmark datasets
and five popular classifiers compare GPI with five other popular and
advanced regression-based imputation methods in MICE on two mea-
sures: classification accuracy and computation time. The results showed
that, in most cases, GPI achieves classification accuracy at least as good
as the other imputation methods, and sometimes significantly better.
However, using GPI to impute missing values for every single incomplete
instance is dramatically faster than the other imputation methods.

Keywords: Missing data · Imputation methods · Genentic program-
ming · Symbolic regression · Classification

1 Introduction

Missing values are a common issue in many datasets [24,29]. For example, about
45 % of datasets in the UCI repository [3], which is one of the most popu-
lar data repositories for benchmarking machine learning tasks, contain missing
values [15].

There are various reasons why data often contains missing values. For
instance, respondents may refuse to answer some questions in a social survey;
due to mechanical failures while collecting data, some results may be missing
c© Springer International Publishing Switzerland 2016
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in an industrial experiment; medical databases often suffer from missing values,
where almost every patient’s record lacks some values because not all possible
tests can be run on every patient.

Missing data may cause a number of serious problems [6]. The non-
applicability of data analysis methods is one of the most serious problems because
the majority of existing data analysis methods require complete data. Therefore,
these data analysis methods are not able to work directly with original data con-
taining missing values. Furthermore, missing data may result in biased results
because of differences between missing and complete data.

One of the most popular approaches to missing data is to use imputation
methods that fill missing values with plausible values. For instance, mean impu-
tation fills in missing values in each feature with the average of the complete
values in the same feature. Imputation methods provide complete data that can
be used by any data analysis methods. Therefore, imputation methods are a pop-
ular approach to handling missing data and a number of imputation methods
have been developed in literature [24,29].

Classification is one of the most important tasks in machine learning and data
mining [18]. The ability to deal with missing values is an essential requirement
for classification because the majority of classifiers are not able to classify miss-
ing data. For example, there are numerous decision tree-based classifiers, but only
C4.5 [28] and CART [8] can handle missing data. Furthermore, inadequate treat-
ment of missing values may result in large errors on classification [13].

Regression-based imputation is an approach to imputing missing values,
where a regression method is used to generate a regression function that is
then used to estimate missing values. For example, log-linear models are often
used to impute discrete missing features, and linear or polynomial models are
often used to impute continuous missing features [14]. One of the most power-
ful regression-based imputation methods is MICE [36]. MICE uses a number of
regression methods to estimate missing values such as Bayesian linear regression
[26], classification and regression tree (CART) [8] and random forest regression
[23]. Regression-based imputation methods in MICE are often suitable for batch
imputation. However, they are very expensive to impute missing values for every
single incomplete instance that is required in classification problems. The main
reason is that they take a long time to rebuild regression functions when they
need to impute missing values for new single incomplete instances.

Genetic programming (GP) is an evolutionary technique to generate solutions
in the form of computer programs for a problem [22]. GP has successfully been
used for symbolic regression. In [33], GP is used as a non-parametric regression
method to build a multiple imputation. The empirical results show that, in
most cases, GP-based multiple imputation achieves better prediction accuracy
and better classification accuracy than other popular and advanced imputation
methods. However, just as regression-based imputations in MICE, the GP-based
multiple imputation is expensive for imputing missing values for every single
incomplete instance in the unseen set for classification. Therefore, developing
an efficient GP-based imputation method to estimate missing values in single
incomplete instances for classification tasks should be investigated.
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1.1 Research Goals

The goal of this paper is to propose an efficient GP-based imputation method
to estimate missing values for classification tasks (GPI). GPI will be compared
with other popular and advanced regression-based imputation methods in MICE
[36] on different classifiers to address the following objectives:

1. Whether GPI can achieve better classification accuracy than the other pop-
ular and advanced imputation methods; and

2. Whether GPI is more efficient than the other popular and advanced imputa-
tion methods.

3. What classifiers should combine with GPI to achieve good performance.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 discusses related work.
Section 3 introduces GPI, a GP-based imputation method for classification with
missing data. Section 4 presents experiment design. Section 5 shows results and
analysis. Section 6 draws conclusions and discusses potential future work.

2 Related Work

This section discusses the background to our work including classification with
missing data, imputation methods, GP-based symbolic regression.

2.1 Classification with Missing Data

Most approaches to classification with missing data can be divided into four
groups [15]:

Deletion approach eliminates all incomplete instances before applying clas-
sifiers. This approach provides complete data for classifiers, but instances con-
taining missing values are not included in the classification process.

Imputation approach fills missing values with plausible values before using
classifiers. As a result, missing data is transferred to complete data that can
be classified by any classifiers. Furthermore, most imputation methods help to
improve classification accuracy when compared to classification without impu-
tation [13]. Therefore, using imputation methods is a popular approach to clas-
sification with missing data.

Model-based approach models data distribution of input data that is then
used to classify both complete and incomplete instances by using the Bayesian
decision theory [7]. Although this approach can classify incomplete instances, it
requires making assumptions about the joint distribution of all variables in the
model [15].
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Machine learning approach builds classifiers that can classify incomplete
instances directly. For example, C4.5 can classify incomplete instances by using
a probabilistic approach to handling missing values in both the training set and
test set. In the training stage, each value of each feature is assigned a weight: if
a feature value is known, then the weight is assigned one; otherwise, the weight
of any other values for that feature is the frequency of that values. In the testing
stage, if a test case is unknown, from the current node, it finds all the available
branches and decides the class label by using the most probable value [28].

2.2 Imputation Methods

The purpose of imputation methods is to fill missing values with plausible val-
ues. By using imputation methods, missing data is transformed into complete
data that can be then analysed by any data analysis methods. Therefore, using
imputation methods is a popular approach to handling missing data [24,29,30].

Many imputation methods have been proposed in literature. For example,
one simple imputation method is mean imputation that fills in missing values
in each feature with the average of the complete values in the same feature.
Mean imputation maintains the mean of each feature, but it under-represents
the variability in the data because all missing values in each feature have the
same value. Another simple imputation method is hot deck imputation, where
missing values are filled with complete values from the most similar instance.
An advantage of hot deck imputation is to replace missing values by real values
from the data. However, this method ignores all global properties of the data
because it uses information of only the most similar instance [2]. One more
sophisticated imputation method is expectation maximization-based imputation
method [24] that uses the expectation maximization algorithm to estimate a
maximum likelihood variance-covariance matrix and vector of means that are
then used to impute missing values [16].

One of the most flexible and powerful imputation methods is multivari-
ate imputation by chained functions (MICE) [35,36]. Multiple imputation by
chained functions, which is the first step in MICE, is designed to generate mul-
tiple imputed datasets. MICE uses a set of regression models to build regression
functions that are then used to estimate missing values. Initially, missing values
in each feature are filled randomly with complete values in the feature. After that,
each feature containing missing values is regressed on other features to compute
a better estimate for the feature. The process is repeated several times for all
features containing missing values to generate one imputed dataset. The whole
procedure is repeated N times to generate N imputed datasets. After that, the
N imputed datasets are combined to provide the final imputed data [38]. MICE
software [9] makes it easy to use this method.

This paper compared our proposed imputation method with five multiple
imputation methods in MICE: multiple Bayesian linear regression imputation,
multiple linear regression non-Bayesian imputation, multiple linear regression
using bootstrap imputation, multiple classification and regression trees (CART)
imputation and multiple random forest regression imputation. Bayesian linear
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regression is a linear regression that applies Bayesian inference to do statistical
analysis [26]. CART [8] is a decision tree-based learning technique that has ability
to produce either classification or regression trees. CART uses the sum of squared
errors as a splitting criterion to build a tree. The same as CART, random forest
[23] is also a learning method for both classification and regression. Random
forest builds a set of decision trees, and outputs are then the mode of the classes
(classification) or mean prediction (regression) of the individual trees.

2.3 Genetic Programming-Based Symbolic Regression

Regression analysis is a process of inferring the relationship between a depen-
dent variable and one or more independent variables in the form of a function of
the independent variables. Many techniques for doing regression analysis have
been developed [12]. Regression analysis methods can be subdivided into para-
meter regression methods and non-parametric regression methods. In paramet-
ric regression methods, a regression function has a form with a finite number
of unknown parameters. In contrast, in non-parametric regression methods, a
regression function does not take a predetermined form, but it is constructed
according to information from the data. Regression analysis has been widely
applied to prediction and forecasting [21].

Symbolic regression is a kind of regression analysis that search on mathemat-
ical expressions space to find a regression function that best fits a given dataset.
Symbolic regression is non-parametric regression because instead of requiring a
predetermined model structure, it attempts to discover both model structures
and corresponding parameters. The original purpose of GP is to evolve computer
programs; hence, GP is an ideal choice for symbol regression [4]. GP has been
successfully been used for symbolic regression [4,5,20,34].

To apply GP to solve symbol regression, regression functions are initially
formed by randomly combining mathematical building blocks such as mathemat-
ical operators, functions, and constants. After that, new functions are formed
by recombining previous functions using GP operators such as crossover and
mutation [4].

Traditional parameter regression techniques require a pre-defined model
structure. After that, they try to optimize parameters for the pre-defined model
structure. Hence, conventional parameter regression techniques not only require
domain knowledge to identify a pre-defined model structure, but also may be
affected by human bias. In contrast, instead of requiring priori assumptions,
GP-based symbolic regression attempts to discover both model structures and
model parameters. Although GP-based symbolic regression often takes much
longer to discover an appropriate model structure and parameter than traditional
regression techniques, the end result is likely to be a selection of high-scoring
models [37].
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3 Genetic Programming-Based Imputation
for Classification with Missing Data

The proposed algorithm has two phrases: the training process and the imputa-
tion process. The training process builds regression functions for each feature.
After that, the imputation process uses the built regression functions to estimate
missing values for each incomplete instance.

Algorithm 1 shows the main body of the training process. The input of
the training process is the training data and a number indicating the required
number of evolved regression functions for each feature. Firstly, the complete
instances are extracted from the training data. Next, for each feature in the
data, each instance in the complete data is divided into 2 parts: first part con-
taining only the feature and the second part containing all of other features.
After that, GP uses the complete data to build a regression function for the
feature in the first part in terms of the features in the second part. The last
step is repeated several times to generate a set of regression functions for each
feature.

Algorithm 1. Training Process
Input:
X: training data
N: number of regression functions required for each feature
Output: N regression functions with fitness values for each feature

1 Extract complete data Xc from data X.
2 for d=1 to NumberOfFeatures do
3 Partition each instance in Xc into two parts: the first part contains only

the dth feature; the second part contains all of other features.
4 for i=1 to N do
5 - Use GP, the first part of Xc as a expected results and the second

part of Xc as an input to build a regression function of the dth

feature on the other features.
6 - Store the regression function and its fitness.

7 end

8 end
9 return The N regresion functions with fitness values for each feature

Algorithm 2 shows the main body of the imputation process. The input of
the imputation process is one instance containing missing values that need to be
imputed, a set of regression functions for each features and a vector containing
the mean values of all features. For each feature having missing value in the
instance, it searches for the best regression function. It first counts the number of
features in each regression function that have missing values in the instance, and
choose the regression function with the fewest missing features and the highest
fitness. After that, if the best regression function does not contain features having
missing values in the instance, then the function is used to estimate missing
value in the feature. Otherwise, missing values of features in the function are
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Algorithm 2. Imputation Process
Input:
I: one instance containing training missing values
Regression functions with fitness values of all features
M: a vector containing mean values of all features
Output: Instance I with missing values replaced by imputed values

1 for d=1 to NumberOfFeatures do

2 if the dth feature in I is missing then

3 for each regression function of the dth feature do
4 Count the number of features in the regression function that

have missing values in I.
5 end

6 Identify the highest fitness regression function for the dth feature
that contains the fewest number of features having missing values in
I.

7 if The number of missing features in the best regression function > 0
then

8 Fill temporarily missing features in the best regression function
by their mean values in M.

9 end

10 Use the best regression function to impute missing value in the dth

feature
11 end

12 end
13 return Instance I with imputed values

temporarily filled by their mean values, before the function is used to estimate
missing value in the feature.

The key point of the proposed algorithm is that the training process produces
a set of regression functions for each feature rather than a single regression
function. The purpose of evolving a set of regression functions is that when
an incomplete instance has multiple missing values, a regression function may
depend on features having missing values. Therefore, for a particular incomplete
instance, a set of regression functions provides the imputation process more
chances to choose the most suitable regression function for each feature to impute
missing values. The ability to evolve a set of different regression functions for
each feature is an advantage of GP over traditional regression methods which
would build the same regression function on each repetition.

4 Experiment Design

4.1 Method

The main objective of the experiments was to compare GPI with other impu-
tation methods on classification. To achieve this, an experimental setup was
designed as shown in Fig. 1. In case of complete data, firstly, missing values are
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introduced into compete data to generate missing data. Next, missing data is
divided into training missing data and testing missing data. Training missing
data and testing missing data are then put into an imputation method to gen-
erate imputed training data and imputed testing data. After that, the imputed
training data is put into a classifier to build a classification model that is then
used to classify the imputed testing data. The detailed configuration for each
step of the experiment is shown below.

Fig. 1. Classification with missing data by using an imputation method before applying
a classifier

4.2 Datasets

The experiments used six benchmark datasets selected from the UCI machine
learning repository [3]. Table 1 summarises the main characteristics of each
dataset including the number of instances, the number of features and the num-
ber of classes.

Table 1. Datasets used in the experiments

Dataset #Instances #Features #Classes

Hepatitis 115 19 2

Ecoli 336 7 8

Leaf 340 15 30

Parkinsons 267 44 2

Seeds 210 7 3

Vertebral 310 6 3

The first dataset has 48.39 % incomplete instances which contain at least
one missing value. For each of the last five complete datasets, perform 30 times:
choose randomly 50 % features of the dataset, and then put randomly 10 %
missing values into the chosen features. Therefore, for each dataset, 30 artificial
missing datasets were generated, and a total of 150 (30×5) artificial missing
datasets were used in the experiments.
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Since none of the datasets in the experiments comes with a specific test
set and the number of examples in some datasets is relatively small, a ten-fold
cross-validation approach was used to evaluate the performance of induced clas-
sification models. With the first dataset, which contains natural missing values,
a ten-fold cross-validation approach was performed 30 times on the dataset. For
each of the last five datasets, ten-fold cross-validation was performed one time
on the 30 missing datasets. As a result, for each dataset, 300 couples of training
set and testing set were generated.

4.3 Benchmark Imputation Methods for Comparison

The experiments compared GPI to five regression-based imputation methods in
MICE [36]: norm, nob, boot, cart and rf. Table 2 summaries the main character-
istics of the imputation methods. The experiments used MICE’s implementation
in [9] for the five imputation methods by setting their parameters as the default
values. In the five imputation methods, each feature was repeatedly regressed
on other features 20 times as suggested in [35]. With each missing dataset, each
of the imputation methods was performed 10 times to procedure 10 imputed
datasets before combining by calculating average of them to make a final imputed
dataset.

Table 2. Benchmark imputation methods.

Methods Description Scale type

norm Bayesian linear regression-based multiple imputation numeric

nob Linear regression, non-Bayesian-based multiple imputation numeric

boot Linear regression using bootstrap-based multiple imputation numeric

cart Classification and regression trees-based multiple imputation any

rf Random forest -based multiple imputation any

4.4 Classification Algorithms

The experiments compared GPI with the other imputation methods on five
popular classifiers in the data mining community: C4.5 [28], k-Nearest Neighbors
(kNN) [11], Naive Bayes (NB) [27], Support Vector Machine (SVM) [10] and
Multilayer Perceptron (MLP) [19]. For the classifiers, WEKA’s implementation
[17] was used and all parameters were set to WEKA’s defaults.

4.5 GP Settings

The experiments used the ECJ package [25] to implement GP. Table 3 shows the
parameters of GP in GPI. For each dataset, 300 couples of training set and test
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set were generated. For each couple of training set and test set, GP repeated
10 times to generate 10 regression functions for each feature. Therefore, GP run
3000×NumberFeatures times on each dataset.

Table 3. GP parameters in the experiments.

Parameter Value

Function set +, −, ×, / (protected division)

Variable terminals all features except one feature being regressed

Constant terminals Random float values

Population size 1000

Initialization Ramped half-and-half

Selection type Tournament(size=7)

Generations 100

Crossover probability 60 %

Mutation probability 30 %

Reproduction rate 10 %

Elitism Yes

5 Results and Analysis

5.1 Classification Accuracy

Table 4 presents the average classification accuracy and corresponding standard
deviation of the different imputation methods combined with different classifiers
on six datasets. With the first dataset, which contains natural missing values, the
average classification accuracy was computed on 30 times performing ten-fold
cross-validation on the dataset. For each of the other five datasets, the average
classification accuracy was computed on 30 versions of the dataset each with
10 % missing values on 50 % of the features. In order to compare the classification
accuracy of GPI with the other methods, t-tests at 95 % confidence level were
conducted. “T” columns in Table 4 shows the result of the significance tests of
the colums before them against GPI, where “+” means GPI was significantly
more accurate, “=” means not significantly different, and “-” means significantly
less accurate.

Figure 2 summarises the results from Table 4 by comparing GPI with each of
the other imputation methods. For each of the other imputation methods (norm,
nob, boot, cart and rf), it shows the fraction of entries in the column for that
method where GPI is significantly better, similar or significantly worse than the
other imputation method. It is clear from Fig. 2 that GPI is at least as good
as all the other methods. GPI performs significantly better than boot in almost
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Table 4. Classification accuracy comparison of GPI with other imputation methods
on different classifiers. The T columns indicate significant tests of the columns before
them against GPI.

Data GPI norm T nob T boot T cart T rf T

C4.5 Hepatitis 80.05±1.69 78.43±1.93 + 79.14±1.74 = 78.17±2.36 + 78.68±1.68 + 78.19±1.62 +

Ecoli 82.00±1.36 81.55±1.47 = 81.36±1.64 + 81.41±1.46 + 82.09±1.42 = 82.12±1.47 =

Leaf 59.90±2.10 59.56±2.34 = 58.77±2.50 + 58.99±2.52 + 59.78±2.04 = 59.18±1.77 =

Parkinsons 85.52±2.14 85.19±2.37 = 84.70±2.08 = 85.23±1.67 = 84.75±2.19 = 84.74±1.70 =

Seeds 91.90±1.14 91.84±1.12 = 91.76±1.25 = 91.52±1.51 = 91.34±1.38 + 91.15±1.66 +

Vertebral 80.37±1.59 79.74±2.00 = 79.93±1.99 = 79.98±1.99 = 80.45±1.84 = 80.69±2.03 =

kNN Hepatitis 84.93±0.78 85.10±1.15 = 85.25±0.81 = 84.77±0.91 = 84.48±0.83 + 84.34±0.77 +

Ecoli 85.29±1.14 85.24±1.00 = 85.16±1.22 = 85.19±1.02 = 84.76±1.20 + 85.09±1.08 =

Leaf 55.35±1.15 55.21±1.71 = 55.14±1.73 = 55.23±1.20 = 55.19±1.10 = 55.31±1.50 =

Parkinsons 89.61±1.34 88.10±1.80 + 88.17±1.64 + 8.13±1.62 + 88.16±1.72 + 88.27±1.44 +

Seeds 92.25±0.79 91.95±0.66 + 92.19±0.89 = 92.01±0.79 + 91.85±0.84 + 91.95±0.80 +

Vertebral 77.33±1.19 76.65±1.19 + 76.82±1.30 + 76.84±1.26 + 76.98±1.28 = 76.78±1.32 =

NB Hepatitis 83.40±1.83 84.35±0.66 − 84.41±0.81 − 84.53±0.83 − 84.00±0.84 = 84.16±0.71 =

Ecoli 84.03±1.36 83.10±1.62 + 83.27±1.52 + 83.23±1.74 + 84.37±1.16 = 84.75±1.21 =

Leaf 70.42±1.48 68.38±1.76 + 68.49±1.74 + 68.37±1.81 + 70.35±1.33 = 0.06±1.44 =

Parkinsons 69.29±0.92 69.56±0.94 = 69.51±0.94 = 69.56±1.03 = 69.56±0.94 = 69.52±0.78 =

Seeds 90.06±0.55 90.00±0.52 = 90.12±0.60 = 89.90±0.59 = 89.92±0.63 = 89.93±0.74 =

Vertebral 81.26±1.64 80.44±2.74 + 80.17±2.56 + 80.47±2.56 + 81.20±1.79 = 81.05±1.95 =

MNP Hepatitis 84.02±1.80 81.23±1.97 + 81.89±1.25 + 81.81±1.59 + 79.07±1.36 + 82.17±1.30 +

Ecoli 84.55±1.27 84.28±1.37 = 84.38±1.35 = 84.33±1.23 = 84.19±1.20 + 84.05±1.47 =

Leaf 74.57±1.59 74.35±2.17 = 73.79±1.94 + 73.81±1.95 + 74.37±2.05 = 74.10±1.84 =

Parkinsons 90.44±1.75 90.55±1.71 = 90.51±1.71 = 90.80±1.67 = 90.92±1.82 = 90.96±1.63 =

Seeds 94.36±1.33 94.25±1.55 = 94.25±1.14 = 94.30±0.99 = 94.00±1.48 = 94.04±1.28 =

Vertebral 84.38±1.37 83.90±1.63 + 83.65±2.04 + 83.78±1.60 + 84.39±1.38 = 84.34±1.54 =

SVM Hepatitis 85.82±0.81 85.33±1.07 + 85.73±1.01 = 85.49±0.66 = 85.80±0.94 = 86.04±1.33 =

Ecoli 82.51±1.11 82.52±1.06 = 82.47±1.15 = 82.64±1.01 = 82.51±1.05 = 82.55±1.29 =

Leaf 50.43±1.24 50.14±1.78 = 49.87±1.65 + 49.76±1.49 + 51.07±1.57 − 50.63±1.68 =

Parkinsons 87.53±1.02 87.58±0.86 = 87.52±0.94 = 87.56±1.06 = 87.47±0.83 = 87.54±0.93 =

Seeds 93.25±0.68 93.30±0.44 = 93.34±0.56 = 93.26±0.54 = 93.25±0.76 = 93.19±0.73 =

Vertebral 75.20±1.26 74.96±1.37 = 75.03±1.33 = 75.19±1.32 = 75.39±1.13 = 75.20±0.98 =

Fig. 2. Fraction of cases that GPI is significantly better or worse than norm, nob, boot,
cart and rf.
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Fig. 3. Fraction of cases that GPI is significantly better or worse than the other impu-
tation method for each classifier.

half of the cases, but is better than rf in only a quarter of the cases. GPI is
significantly worse in very few cases- only one case for norm, nob, boot and cart.

Figure 3 summarises the results from Table 4 by comparing GPI with all of
the other imputation methods on each classifier. It is clear from Fig. 3 that the
choice of classifier makes only a little difference. With kNN, C4.5 and MNP, GPI
is never significantly worse than the other methods and better in one third to
half of the cases. With NB, GPI is more frequently worse than any the other
classifier. With SVM, GPI is more consistently similar to the other imputation
methods.

In summary, GPI is almost always at least as good as than the other impu-
tation methods, and sometimes significantly better, especially with kNN as the
classifiers.

5.2 Computation Time

Regression-based imputation methods in MICE [36] are expensive for classifica-
tion. The main reason is that they require rebuilding the regression functions
using all the training data and the new instance each time when they need to
estimate missing values in a new instance. This may not be significant in the
training stage, but when using the learned classifier in an application, each new
instance to be classified requires imputation methods to impute any missing val-
ues. It is not feasible in many application for the classification to take many
seconds per instance. Table 5 shows the average computation time of GPI and
the other imputation methods to impute the missing values for one instance.

It is clear from Table 5 that GPI is at least thousand times faster than the
other imputation methods in almost all of the datasets (it is only about 600
times faster than three other methods on the Vertebral dataset). The reason is
that GPI builds symbolic regression functions to impute incomplete instances in
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Table 5. The average computation time (millisecond) of GPI and the other imputation
methods to impute the missing values of one instance

Data GPI norm nob boot cart rt

Hepatitis 2.58 3.34 × 103 3.38 × 103 3.45 × 103 1.29 × 104 3.53 × 104

Ecoli 0.61 6.22 × 102 6.23 × 102 6.26 × 102 2.83 × 103 8.51 × 103

Leaf 0.89 2.97 × 103 2.98 × 103 3.00 × 103 1.10 × 104 2.60 × 104

Parkinsons 0.86 3.88 × 103 3.90 × 103 3.95 × 103 1.23 × 104 2.88 × 104

Seeds 0.61 5.95 × 102 5.85 × 102 5.89 × 102 2.45 × 103 7.12 × 103

Vertebral 1.10 6.25 × 102 6.17 × 102 6.19 × 102 2.70 × 103 7.72 × 103

a training process. After that, GPI uses the built symbolic regression function
directly to impute missing values in new incomplete instances. In other words,
unlike regression-based imputation methods in MICE, GPI does not require
rebuilding the regressions to impute missing values in new incomplete instances.
Therefore, GPI spends no time rebuilding the regressions and only spends time
to estimate missing values based on the built symbolic regressions.

In summary, GPI is dramatically more efficient for estimating missing values
in new incomplete instances than the regression-based imputation methods in
MICE, and achieves this with no loss of accuracy.

6 Conclusion and Future Work

This paper proposed GPI algorithm, which uses GP as a symbolic regression
method to build regression functions for estimating missing values. GPI has two
processes: the train process and the imputation process. The training process
builds a set of regression functions for each feature that are then used to esti-
mate missing values in the imputation process. The experiments on six bench-
mark datasets and five popular classifiers compared GPI with five other popular
and advanced regression-based imputation methods in MICE on two measures:
classification accuracy and computation time. The results showed that, in most
cases, GPI achieves at least similar classification accuracy to the other impu-
tation methods, and sometimes significantly better. GPI makes the greatest
improvement with KNN, but little improvement with SVM and NB. However,
using GPI to impute missing values for new incomplete instances is dramatically
faster than the other imputation methods, typically by a faster of thousand.

In this paper, GPI used standard GP to build regression functions for fea-
tures. Therefore, one future work could apply advanced GP-based regression
methods such as GP with interval arithmetic and linear scaling [20], gradient
descent GP [32], semantic GP [34] to improve GPI. Furthermore, two common
issues in GP are bloat and overfitting. Hence, another possible future work is to
apply bloat control methods [31] and overfitting control methods [1] to enhance
GPI.
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Abstract. Coevolution of fitness predictors, which are a small sample
of all training data for a particular task, was successfully used to reduce
the computational cost of the design performed by cartesian genetic pro-
gramming. However, it is necessary to specify the most advantageous
number of fitness cases in predictors, which differs from task to task.
This paper introduces a new type of directly encoded fitness predictors
inspired by the principles of phenotypic plasticity. The size of the coe-
volved fitness predictor is adapted in response to the learning phase that
the program evolution goes through. It is shown in 5 symbolic regres-
sion tasks that the proposed algorithm is able to adapt the number of
fitness cases in predictors in response to the solved task and the program
evolution flow.

Keywords: Fitness predictors · Cartesian genetic programming ·
Coevolution · Phenotypic plasticity

1 Introduction

Cartesian genetic programming (CGP) is a specific form of genetic programming
(GP) and has been successfully applied to a number of challenging real-world
problem domains [7]. In CGP, as well as in GP, every evolved program must be
executed to find out what it does. Each program in the population is assigned a
fitness value, representing the degree to which it solves the problem of interest.
Often, but not always, the fitness is calculated over a set of fitness cases. A
fitness case consists of potential program inputs and target values expected from
a perfect solution as a response to these program inputs. The outputs of the
evolved program are then compared with the desired outputs for given inputs.
The choice of how many fitness cases (and which ones) to use is often a crucial
decision since whether or not the evolved program will generalize over the entire
domain depends on this choice.

In the case of digital circuit evolution, which is a typical task for CGP, it is
necessary to verify whether a candidate n-input circuit generates correct responses
for all possible input combinations (i.e., 2n assignments). It was shown that testing
just a subset of 2n fitness cases does not lead to correctly working circuits [5].

In the symbolic regression tasks, the goal of GP system design and GP para-
meters’ tuning is to obtain a solution with predefined accuracy and robustness.
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 164–179, 2016.
DOI: 10.1007/978-3-319-30668-1 11
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In this case, k fitness cases are evaluated during one fitness function call, where
k typically goes from hundreds to ten thousands. The time needed for evaluat-
ing a single fitness case depends on a particular application. Usually, in order to
find a robust and acceptable solution a large number of fitness evaluations has
to be performed. In order to reduce the evaluation time, fitness approximation
techniques have been employed, e.g. fitness modeling [6].

Closely related concept to the fitness modeling is a fitness prediction, which
is a low cost adaptive procedure utilized to replace the fitness evaluation. A
framework for reducing the computation requirements of symbolic regression
using fitness predictors has been introduced for standard genetic programming
by Schmidt and Lipson [9]. The method utilizes a coevolutionary algorithm which
exploits the fact that one individual can influence the relative fitness ranking
between two other individuals in the same or a separate population [4]. The
state of the art of coevolutionary principles has recently been summarized in the
chapter of Handbook of Natural Computing [8].

Inspired by [9], we have introduced coevolving fitness predictors to CGP
and have shown that by using them, the execution time of symbolic regression
can significantly be reduced [12]. Fitness predictors have been represented as a
constant-size array of pointers to elements in the fitness case set and operated
using a simple genetic algorithm. The same coevolutionary CGP and Hillis’
competitive coevolution approach [4] adapted for CGP have been used in the
evolutionary image filter design [11]. Although the time of evolution has also
been reduced, a large number of experiments had to be accomplished in order
to find the most advantageous size of the fitness predictor (the number of fitness
cases in predictor) for this particular task.

To solve this problem, we have introduced a new type of indirectly encoded
fitness predictors which can automatically adapt the number of fitness cases used
to evaluate the candidate programs [10]. However, during the evolution of fitness
predictors, also large fitness predictors have to be evaluated (and then refused
for a larger size), and thus plenty of fitness case evaluations have been wasted.

In this paper, we integrate phenotypic plasticity principles into coevolution.
The phenotypic plasticity is the ability of an individual to learn how to utilize its
genotype in order to adapt to the environment [1]. It was shown that a proper
rate of environmental change may reduce the learning cost while evolving the
solution [2,3]. Inspired by these principles, we introduce a new type of fitness
predictors, operated using a simple genetic algorithm (GA), using the phenotypic
plasticity in order to adapt the number of fitness cases for candidate solution
evaluations and thus regulate the rate of environmental change. In the case of
fitness prediction, a stable environment contains a complete fitness cases set, a
highly changing environment only a few of them.

The paper is organized as follows. Section 2 introduces cartesian genetic pro-
gramming and coevolution of fitness predictors. In Sect. 3, a new approach to
fitness predictor encoding is presented. The proposed approach is evaluated using
5 symbolic regression benchmarks. Experimental results are discussed in Sect. 4.
Finally, conclusions are given in Sect. 5.
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2 Fitness Prediction in CGP

In standard CGP, candidate programs are represented in the form of directed
acyclic graph, which is modeled as a matrix of nc × nr programmable elements
(nodes). Each node is programmed to perform one of na-input functions defined
in the set Γ . The number of primary inputs, ni, and outputs, no, of the program
is defined for a particular task. Each node input can be connected either to the
output of a node placed in previous l columns or to one of the program inputs.
Feedback is not allowed. The search is usually performed using a simple (1 + λ)
evolutionary algorithm, where usually λ = 4. Every new population consists of
the best individual of the previous population and its λ offspring created using
a mutation operator which modifies up to h genes of the chromosome. The state
of the art of CGP has recently been summarized in a monograph [7].

In the case of symbolic regression, the set of fitness cases is usually constructed
from experimentally obtained data. Then each of k fitness cases from the set is
used to evaluate each candidate program (see Fig. 1). The fitness function of
candidate program is often defined as the relative number of hits. Formally,

f (s) =
1
k

k∑

j=1

g (y (j)) , where (1)

g (y (j)) =
{

0 if |y (j) − t (j)| ≥ ε
1 if |y (j) − t (j)| < ε

(2)

and y is a candidate program response, t is a target response and ε is a user-
defined acceptable error. The fitness evaluation is the most time consuming part
in standard CGP (as well as tree-based GP).

Fig. 1. Fitness evaluation of a candidate cartesian program.

2.1 Fitness Predictor

In order to reduce the total number of evaluations during each one fitness func-
tion call, fitness predictor in the form of small subset of the fitness case set
have been introduced to CGP [12]. An optimal fitness predictor is sought using
a simple genetic algorithm (GA) which operates with a population of fitness
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Fig. 2. Fitness predictor representation.

predictors. Every predictor is encoded as a constant-size array of pointers to
elements in the training data (see Fig. 2). In addition to one-point crossover and
mutation, a randomly selected predictor replacing the worst-scored predictor in
each generation has been introduced as a new genetic operator of GA. The goal
of the evolution of predictors is to minimize the relative error of fitness prediction
and the expensive exact fitness evaluation.

2.2 Coevolution of Cartesian Programs and Fitness Predictors

The aim of coevolving fitness predictors and programs is to allow both solutions
(programs) and fitness predictors to enhance each other automatically until a
satisfactory problem solution is found. There are two concurrently working pop-
ulations: (1) candidate programs (syntactic expressions) evolving using CGP and
(2) fitness predictors evolving using GA. The overall scheme of the coevolution-
ary algorithm is shown in Fig. 3.

Evolution of candidate programs is based on principles of CGP. The fitness
function for CGP is defined as the relative number of hits. There are, in fact,
two fitness functions for candidate program s. While the exact fitness function
fexact(s) utilizes the complete set of fitness cases, the predicted fitness function
fpredicted (s) employs only selected fitness cases. Formally,

fexact (s) =
1
k

k∑

j=1

g (y (j)) (3)

fpredicted (s) =
1
m

m∑

j=1

g (y (j)) (4)

where k is the number of fitness cases in the set of fitness cases and m is the
number of fitness cases in the fitness predictor. The fpredicted is used to evaluate
the candidate programs in the population. The fexact is used during the predictor
training.

The predictor training is accomplished as follows. The archive of trainers
is generated and updated in response to the candidate program evolution. It
consists of candidate programs with evaluated fexact and is divided into two
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Fig. 3. Coevolution of candidate solutions and fitness predictors.

parts: The first part contains copies of top-ranked programs (with different fit-
ness) obtained during the program evolution and the second part is periodically
updated with randomly generated programs to ensure genetic diversity of the
archive. The size of the archive is kept constant during the coevolution and each
new trainer replaces the oldest one in the corresponding part of the archive.

The fitness value of predictor p is calculated using the mean absolute error
of the exact and predicted fitness values of programs in the archive of trainers:

f (p) =
1
u

u∑

i=1

|fexact (i) − fpredicted (i)| (5)

where u is the number of candidate programs in the archive of trainers. The
predictor with the best fitness value is used to predict the fitness of candidate
programs in the population of candidate programs [9].

3 Proposed Method

In this paper, we propose a new approach to fitness predictor encoding. The
number of fitness cases required to obtain a satisfactory solution varies from
benchmark to benchmark. In order to apply coevolutionary CGP to different
tasks, it is required to perform numerous experiments to find the most advanta-
geous number of fitness cases in fitness predictors.
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It can be observed that the population of solutions goes through various
phases as the population’s ability to adapt to the problem changes over the
time [2]. A lower fitness phase needs less stimuli to improve solutions, but the
same amount of stimuli does not lead to converge during the higher fitness phase.
This property is discussed by Ellefsen [2], in order to reduce the learning cost.
In this paper, the number of fitness cases in predictors is changed according to
the latest development in the population of the candidate programs.

3.1 Plastic Directly Encoded Predictor

We propose directly encoded fitness predictors with an adaptive number of fit-
ness cases for candidate solution evaluations. To be able to modify their size,
we employ the principles of phenotypic plasticity. This allows the individual to
produce different phenotypes from the same genotype, depending on the envi-
ronmental conditions [2]. In the plastic fitness predictors, the phenotype is con-
structed by including only selected subset of genes.

The predictor genotype is a constant-size circular array of pointers to ele-
ments in the training data. Its size is equal to the total number of fitness cases.
In order to produce the phenotype, the genes are read sequentially from specified
position (offset). The genotype may contain duplicate gene values. Therefore,
the gene with a value, which is already included in the phenotype, is skipped
in order to prevent duplicate fitness case in predictor. The reading stops after
it has processed the number of genes specified by the readLength variable. The
readLength value is determined by the flow of the candidate program evolution.

The offset is determined by an extra gene included in the genotype, evolved
by a special mutation operator, which adds a small Gaussian random number to
the current value. Figure 4 shows an example of phenotype construction when 6
out of 10 available genes are used.

The evolution of predictors is directed by the genetic algorithm (GA). The
crossover operator is modified so the split point is always selected within the
active part of the genotype, which increases phenotype diversity.

Fig. 4. Predictor phenotype construction with offset = 6 and readLength = 6.
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3.2 Predictor Size Adaptation

The predictor size is adapted through the readLength variable. Its value is
changed according to the latest development in the population of the candidate
programs. It can be observed that the population goes through various phases
as the population’s ability to adapt to the problem changes over the time. If
the ability is higher, the overall fitness increases towards better solutions, if it is
lower, the fitness remains almost constant. In this case the evolution probably
reached some local optimum.

The phase of evolution can be described in terms of the evolution speed which
we express as follows:

v =
Δfexact

ΔG
, (6)

where ΔG is the number of generations between two last fitness changes of CGP
population parent (top-ranked programs) and Δfexact is the difference of exact
fitness values of these parents. Although the evolution of programs is guided by
the predicted fitness, the speed can be negative, because it is calculated from
the exact fitness.

It is necessary to set the lower boundary of the predictor size. If the prediction
is based on only a few fitness cases (in extreme cases on only one fitness case),
over-fitting of predictors occurs. The prediction inaccuracy can be expressed as
the absolute difference between predicted and exact fitness:

I = |fpredicted − fexact | , (7)

In the case the prediction inaccuracy exceeds given threshold Ithr , the number
of fitness cases should be increased.

The readLength value is updated each time a new solution with better pre-
dicted fitness than parent individual is found. It can be also updated after a
user-specified number of generations during which a new solution is not found.
The evolution speed and prediction inaccuracy is updated and a corresponding
rule is selected. The rules are based on the following assumptions:

1. If the inaccuracy exceeds the threshold (I > Ithr ), the size is increased.
2. If the fitness remains unchanged (v ≈ 0), the predictor size is decreased,

which should help the evolution to leave a local optimum.
3. If the fitness decreases (v < 0), the evolution is probably leaving a local

optimum and decreasing the size can accelerate this process.
4. If the fitness increases (v > 0), the predictor size is increased to make the

prediction more accurate.

The purpose of these rules is to find the lowest possible predictor size while
the evolution still converges. The new readLength value is obtained by multipli-
cation of the previous value and a coefficient, which is selected using described
rules. Experimentally obtained values of the coefficients are specified in Sect. 4.2.
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4 Results

In this section, 5 symbolic regression benchmarks are introduced. Next, we
present experimental results, in particular the proposed predictor behaviour
and the comparisons of the proposed approach with the previously presented
approaches to coevolutionary and standard CGP.

4.1 Benchmark Problems

Five symbolic regression benchmark functions (F1 – F5, see Fig. 5) were selected
as training data sources for evaluation of the proposed method:

F1 : f(x) = x2 − x3, x = [−10 : 0.1 : 10]

F2 : f(x) = e|x| sin(x), x = [−10 : 0.1 : 10]

F3 : f(x) = x2esin(x) + x + sin
( π

x3

)
, x = [−10 : 0.1 : 10]

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x) − 1

)
, x = [0 : 0.05 : 10]

F5 : f(x) =
10

(x − 3)2 + 5
, x = [−2 : 0.05 : 8] .

To form the training data, 200 equidistant distributed samples were taken from
each function. Functions F1 – F5 are taken from [12] and all functions F1 –
F5 were used in order to evaluate coevolution of CGP and both directly and
indirectly encoded predictors [10,12].

Fig. 5. Symbolic regression benchmark functions used for evaluation.

4.2 Experimental Setup

The setup of the program evolution is used according to literature [12], i.e.
λ = 12, ni = 1, no = 1, nc = 32, nr = 1, l = 32, every node has two inputs
(i1, i2), Γ = {i1 + i2, i1 − i2, i1 · i2, i1

i2
, sin (i1), cos (i1), ei1 , log (i1)} and the

maximum number of mutations per individual is h = 8. The program fitness
function is defined as the relative number of hits (see Eqs. 3 and 4). For the
benchmarks, the user-defined acceptable errors ε are as follows: F1, F2: 0.5; F3:
1.5; F4, F5: 0.025. The acceptable number of hits is 96 %.
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Table 1. Rules used to adapt the readLength value.

Priority Condition Coefficient

1 I > Ithr 1.2

2 |v| ≤ 0.001 0.9

3 v < 0 0.96

4 0 < v ≤ 0.1 1.07

5 v > 0.1 1

The predictor size is adapted as follows: The readLength value is initialized
with 5 genes (the influence of the initial value is discussed in Sect. 4.3), its mi-
nimum is limited to 5 and the maximum is the total number of fitness cases.
The value is updated after a new top-ranked program is found, or after 5000
generations since last update. The new readLength value is given as readLength ·
coefficient . Experimentally obtained coefficient values are shown in Table 1. The
threshold Ithr = 15 is chosen. Conditions are set according to assumptions in
Sect. 3.2. If more conditions are fulfilled at the same time, the value is updated
according to the priority (see Table 1).

4.3 Ability to Adapt the Number of Fitness Cases

In order to confirm that the proposed algorithm is able to adapt the predictor
size on a given task, we plot the progress of the average number (out of 100
independent runs) of fitness cases in top-ranked predictor during the evolution
flow with respect to the initial predictor sizes. It can be seen in Fig. 6 that the
size converges to the similar value independently of an initial size and the final
predictor size differs for each benchmark.

The success rate is the same for each initial size setting. In the case of bench-
marks F1 – F3, a larger initial size leads to more fitness case evaluations required
to find an acceptable solution, see Fig. 6. This does not hold for benchmarks F4
and F5, where all settings lead to a comparable number of evaluations. The rea-
son is that the predictor size converges in approximately 105 generations, while
it takes much more time (approx. 3.7 · 106 generations) to find a satisfactory
solution (see Table 2), so the effect of different predictor size in the beginning
of the evolution is negligible. Note that a satisfactory solution for the bench-
mark F1 is found in less generations than it is necessary for the predictor size
to converge.

In general, it is advantageous to begin with a lower number of fitness cases
in predictor, which in some cases leads to a lower number of evaluations and
thus the design process acceleration. On the other hand, if the initial size is too
low to find an acceptable solution, it will be automatically increased without a
significant impact on the run time.
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Fig. 6. Different initial predictor sizes: The average number of fitness cases in predictors
and the number of fitness case evaluations necessary to find an acceptable solution.
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4.4 Predictor Behaviour

In this section, we discuss how a predictor selects a subset of training data
capable of guiding the evolution towards the satisfactory solution. We plot the
distribution of fitness cases selected by predictors during the whole coevolution-
ary process out of 100 independent runs. Figure 7 show the frequency of fitness
cases addressed by the top-ranked predictors during the coevolution flow. It can
be seen that for benchmarks F1 and F2 predictors focus more on peaks and
valleys than on flexes. On the other hand, in the case of F3 – F5, the samples
are well distributed over the data set. Considering all fitness cases addressed
by the predictor focused on the interesting regions (peaks and valleys) of the
training data, the predictor would represent the maximum error. Note that this
characteristic is desired in the Hillis’ competitive coevolutionary approach [4],
but is improper while requiring the predicted fitness corresponding to the exact
fitness. Furthermore, fitness cases addressed by the fitness predictors are vari-
able in response to the program evolution flow. The program evolution forces
the predictors to contain two types of fitness cases, some of them are easy, others
difficult, for a particular program.

Fig. 7. Frequency of fitness cases in predictors used for programs evaluations.
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4.5 Comparison of the Predictor Size

Indirectly encoded fitness predictors based on the principles of CGP (below
FP indir ) were proposed in order to overcome the problem with selection of the
most advantageous number of fitness cases used for fitness evaluation. In FP indir ,
the predictor size parameter is included in the fitness function. Most of the sizable
predictors are then rejected, but evaluated during the predictor training, which
results into wasted evaluations. In order to reduce the computational cost of
predictor fitness evaluations during the training, a limit of predictor size was
introduced. Then, the maximum size of fitness predictor evolved using FP indir

was 50 fitness cases.
The size of the proposed adaptive directly encoded predictors (FPadapt)

varies only a little in the following generations, depending on coefficients (see
Table 1). The number of fitness cases in the active predictor is thus changed only
in small steps and no limit of the predictor size is necessary.

Figure 8 shows the number of fitness cases in the top-ranked predictor during
the coevolution flow (left part of figures shows FP indir , right part FPadapt). In
general, the preferred number of fitness cases differs from benchmark to bench-
mark. It can be seen that for the benchmarks F1 and F2 (in which only some of
the first predictors are used) the preferred size of fitness predictor is the max-
imum value (50 fitness cases) for FP indir and near to the initializing value for
FPadapt approach (6 – 7 fitness cases). For the benchmark F3, the maximum

Fig. 8. Number of fitness cases in predictors used for program evaluations.



176 M. Wiglasz and M. Drahosova

Fig. 9. Relation between the exact fitnesses of top-ranked candidate program and the
size of predictor during a typical run for the F5 benchmark.

value is also preferred in FP indir approach (because the evolution of predictors
does not have enough time to adapt), but in FPadapt the preferred value is
between 7 and 12 fitness cases. Benchmark F4 is an example of how the limit of
the predictor size in FP indir could be restrictive. FPadapt predictor size is dis-
tributed around 52 fitness cases, whereas FP indir leads to predictors using 45 to
50 fitness cases and must not exceed 50. For benchmark F5, we can observe two
peaks (in 12 and 38 fitness cases) for FP indir predictors, but only one peak dis-
tributed around 25 fitness cases for FPadapt . Note that FP indir evolution allows
fast changes of predictor size in contiguous generations and thus cause skips
between distant values of predictor size in response to the program evolution
flow. Conversely, FPadapt evolution provides only small changes of predictor size
in contiguous generations. The FPadapt preferred predictor size, for benchmark
F5, lies between preferred predictor sizes of the FP indir approach, in the middle.

Although the average preferred size of predictor (out of 100 runs) in FPadapt

approach converges to the single value for a particular task, this trend is not so
obvious while analyzing a single run. During a single run, the predictor size
changes in response to the current development in the program population.
Figure 9 shows the exact fitness of top-ranked program and the number of fitness
cases in predictor used for program evaluation during a typical coevolutionary
run for the F5 benchmark. It can be seen that the predictor size is first increased
towards the preferred value and then it reacts on the development of candidate
program. In this example the evolution seems to have reached a local optimum
after approximately 8 ·105 generations which leads to decreasing of the predictor
size. Around generation 8.5 · 105 the fitness of top-ranked program drops signif-
icantly as the evolution left the local optimum and the number of fitness cases
starts to increase again, to increase accuracy of the fitness prediction.

4.6 Comparisons of Various Approaches to Fitness Prediction
in CGP

The proposed coevolution employing adaptive directly encoded fitness predictors
(FPadapt) is compared with the original fixed-size directly encoded predictors
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Table 2. Comparison of standard CGP (CGPSTD), coevolutionary CGP with directly
encoded constant-size (FPconst) and adaptive predictors (FPadapt) and coevolutionary
CGP with indirectly encoded CGP-based predictors (FP indir ). For each benchmark,
the best result is marked in bold font.

Algorithm F1 F2 F3 F4 F5

Success rate CGPSTD 100% 100% 91% 5% 27%

FPconst 100% 100% 100% 33% 43%

FPadapt 100% 100% 100% 99% 87%

FPindir 100% 100% 100% 100% 90%

Generations to converge CGPSTD 8.66 · 103 3.09 · 104 1.17 · 105 4.13 · 106 3.25 · 106
(median) FPconst 2.08 · 103 1.07 · 104 2.60 · 104 1.13 · 107 7.32 · 106

FPadapt 3.06 · 103 1.24 · 104 4.10 · 104 2.42 · 106 5.00 · 106
FPindir 1.00 · 103 2.25 · 103 4.11 · 104 1.47 · 106 1.74 · 106

Fitness case evaluations CGPSTD 2.09 · 107 7.45 · 107 2.82 · 108 9.96 · 109 7.84 · 109
to converge (median) FPconst 4.41 · 105 3.09 · 106 7.40 · 106 2.31 · 109 2.18 · 109

FPadapt 6.27 · 105 1.26 · 106 4.60 · 106 1.47 · 109 1.53 · 109
FPindir 7.43 · 105 1.60 · 106 1.90 · 107 8.05 · 108 8.78 · 108

(FPconst), indirectly encoded CGP-based predictors (FP indir ) and standard CGP
without coevolution (CGPSTD).

FPconst is used according to literature [12], i.e. 12 fitness cases in chromo-
some, 32 individuals in predictor population, 2-tournament selection, a single-
point crossover and the mutation probability 0.2. The same setup is used for
FPadapt , except the number of fitness cases, which is variable.

The algorithms are compared in terms of the success rate (the number of
runs, giving a solution with predefined quality), the number of generations and
the number of fitness case evaluations to converge (in order to compare the com-
putational cost). Table 2 gives the median values calculated of 100 independent
runs for each benchmark F1 – F5.

It can be seen in the Table 2 that both adaptive approaches, FPadapt and
FP indir , have the highest success rate in all benchmarks. The difference is in
the number of generations and fitness case evaluations required to converge.
As described in Sect. 4.4, the FPadapt uses fewer fitness cases than FP indir for
benchmarks F1 – F3. For benchmarks F1 and F2, this leads to a larger num-
ber of generations to converge using FPadapt compared to FP indir , fewer fitness
case evaluations have to be performed using FPadapt . This does not hold for the
benchmark F3, where the number of generations is similar for both approaches.
Nevertheless, for benchmarks F4 and F5, FP indir needs fewer fitness case eval-
uations to converge, but still comparable in the order of magnitude. The size of
fitness predictors in the FP indir approach is limited to 50 fitness cases, to reduce
larger predictor evaluations. However, FPadapt approach prefers, for benchmark
F4, more fitness cases in the predictor for this particular task (see Fig. 8), there-
fore the cost-reducing limit in FP indir approach might be restrictive for more
complex tasks.
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In comparison with both FPadapt and FP indir approaches, FPconst required
the lowest number of evaluations for the benchmark F1. In this case the satis-
factory solution is found before the predictor size can adapt. However, let’s note
that many experiments have to be performed to find the most advantageous size
of the predictor using FPconst approach for these benchmark tasks, while the
FPadapt and FP indir adjust the size of the predictor during each single run in
response to a particular task.

Finally, all three coevolutionary approaches beats CGPSTD in terms of num-
ber of fitness case evaluations to converge and thus accelerate the design process
performed by CGP.

5 Conclusions

We have introduced the use of coevolution of cartesian programs with a new
type of directly encoded predictors with the adaptive number of fitness cases.
The proposed fitness predictors employ phenotypic plasticity and are able to
modify the number of fitness cases used for program evaluation in dependence
on the phase of program evolution.

Applied to the 5 symbolic regression tasks, we have found the proposed app-
roach to outperform the original constant-size predictors, which use only 12
fitness cases for program evaluation, in terms of success rate and computational
cost, expressed as the number of fitness case evaluations required to converge. We
have shown that the proposed algorithm is able to adapt the predictor size on the
solved problem in response to the development in candidate program evolution.
As a result, it is possible to use coevolutionary CGP on a new task without the
time-consuming experiments aimed at finding the most advantageous predictor
size for the particular task.

Compared to coevolutionary CGP with indirectly encoded fitness predictors,
the proposed predictor evolution does not produce predictors with larger pre-
dictor sizes than necessary. This reduces the number of necessary fitness case
evaluations, while maintaining comparable program accuracy and robustness.

While symbolic regression is good to investigate the system behaviour, our
future work will be devoted to applying the proposed approach to more complex
problems, such as image filter design, and let the proposed approach and the
approach employing indirectly encoded fitness predictors compete in the field in
which the behaviour of the system is not so obvious.

The CGP has been applied to many different problem domains, predom-
inantly in evolutionary design and optimization of logic networks. Hence the
proposed approach will also be useful for evolvable hardware purposes and in
real-world applications.
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Castelli, M., Garćıa-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) Genetic Pro-
gramming. LNCS, vol. 9025. Springer, Heidelberg (2015)

11. Sikulova, M., Sekanina, L.: Acceleration of evolutionary image filter design using
coevolution in cartesian GP. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 163–172.
Springer, Heidelberg (2012)
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Abstract. Software testing is a key phase of many development method-
ologies as it provides a natural opportunity for integrating security early
in the software development lifecycle. However despite the known impor-
tance of software testing, this phase is often overlooked as it is quite
difficult and labour-intensive to obtain test datasets to effectively test
an application. This lack of adequate automatic software testing ren-
ders software applications vulnerable to malicious attacks after they
are deployed as detected software vulnerabilities start having an impact
during the production phase. Among such attacks are SQL injection
attacks. Exploitation of SQL injection vulnerabilities by malicious pro-
grams could result in severe consequences such as breaches of confiden-
tiality and false authentication. We present in this paper a search-based
software testing technique to detect SQL injection vulnerabilities in soft-
ware applications. This approach uses genetic programming as a means
of generating our test datasets, which are then used to test applications
for SQL injection-based vulnerabilities.

Keywords: Genetic programming · Search-based testing · SQL
injections

1 Introduction

Over the past few years, many organisations have rapidly adopted Web appli-
cations to solve increasingly complex business problems making them widely
available on the Internet. However, with this high usability comes the risk of
rendering such business applications a natural target to malicious minds. Appli-
cations available through Web browsers have become exponentially more vul-
nerable in recent years [5] due to a wide range of attacks such as buffer overflow
attacks, cross-site scripting, SQL Injection attacks and many others.

Among the top ten Web application vulnerabilities published by the Open
Web Application Security Project (OWASP) [14] are SQL Injection Attacks
(SQLIAs). In 2011, the National Institute of Standards and Technology’s
National Vulnerability Database [12] reported 289 SQL injection Vulnerabil-
ities (SQLIVs) in websites, including those of IBM, Hewlett-Packard, Cisco,
WordPress, and Joomla. In December 2012, security experts in SANS Institute
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reported a major SQL injection attack that affected approximately 160,000 web-
sites using Microsoft’s Internet Information Services (MS-IIS), ASP.NET, and
SQL Server frameworks.

An SQL injection is an attack in which malicious code is inserted into strings
that are later passed to an instance of the SQL Server for parsing and execution.
These types of attacks are particularly harmful as they could give attackers direct
access to the database thus enabling them to leak out very sensitive and confiden-
tial information with severe consequences for any organisation. More worrying
is that SQLIAs have now been documented for well over a decade [8] but still
remain an active method of attacks as a result of the lack of effective techniques
for detecting and preventing such attacks. Numerous techniques, such as defen-
sive programming and sophisticated input validation, have been proposed and
implemented to prevent some types of SQLIAs. However, such techniques have
proven incapable of withstanding new forms of SQLIAs as attackers continue to
find new exploits that can avoid the checks programmers put in place. Moreover,
defensive programming has proven to be very labour-intensive as it requires con-
stant interaction with testers therefore making it an expensive exercise in terms
of resources required.

Software testing is a key phase of many development methodologies as it
provides a natural opportunity for integrating security early in the software
development lifecycle. Inadequate testing of software applications during their
development renders these applications vulnerable attacks such as SQLIAs when
they are deployed into a live production environment. However despite the known
importance of software testing, this stage is often considered lightly as it could
be a laborious task. Most software development teams adopt a manual approach
in generating test cases thus limiting the number of test cases which could be
built and executed within the project’s budget.

Automated software testing techniques, such as Search-Based Software Test-
ing (SBST), are essential for the development of complex systems as they aim to
lower the cost of writing tests by enabling users to generate tests automatically.
We therefore present a new approach using SBST techniques for the detection
of SQLIVs in SQL-based database systems. This new approach will help solve
two of the biggest issues with existing SQLIA detection techniques; being fully
automated in terms of test case generation, it requires very little interaction with
testers, and it provides adequate levels of robustness and flexibility to deal with
new emerging patterns of SQLIA attacks.

The rest of the paper is organised as follows. In Sect. 2, we give an overview
of literature covering work related to the problem of test generation for SQLIVs.
In Sect. 3, we introduce the various types of SQLIAs and the technique they
each use. In Sect. 4, we introduce the design of the GP grammar corresponding
to SQLIAs. In Sect. 5, we define our anti-SQLIA system design and discuss its
implementation. Finally, in Sect. 6, we discuss the results obtained from the
implementation of the system and in Sect. 7 we conclude the paper.
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2 Related Work

A wide range of approaches have been proposed by researchers to address SQL
injection-based threats to Web applications. Appelt et al. [1] proposed a black-
box automated testing approach targeting SQLIVs, called U4SQLi. The app-
roach rests on a set of mutation operators that manipulate legitimate inputs to
create new test inputs to trigger new SQLIAs. With this approach, it is possible
to use a combination of different mutation operators to generate a wide range
of attacks and generate inputs that contain new attack patterns, thus increasing
the likelihood of detecting vulnerabilities. The approach follows a similar pat-
tern with our proposed approach in that it uses SBST to detect SQLIVs. The
difference is with the algorithm used, U4SQLi uses genetic algorithms whereas
in our case, we use grammar-based genetic programming.

Su et al. [17] propose a grammar-based approach to detect and stop queries
containing SQLIAs by implementing their SQLCheck tool. The proposed app-
roach tracks users’ input using a special symbol to mark the beginning and end of
each input string. This annotated query is called an augmented query. The main
idea is to forbid the augmented query from modifying the syntactic structure of
the rest of the query. This is achieved by constructing an augmented grammar
for this augmented query based on the grammar for a standard SQL statement.
At runtime, the augmented query is validated based on this grammar, and is
therefore rejected if it does not conform to the grammar.

Shahriar and Zulkernine [15], presented a mutation-based testing approach
for SQLIV testing. The authors proposed the use of nine injection operators that
inject SQLIVs in application source code. The nine mutation operators were
divided into two categories. The first category consists of four operators, which
inject faults into WHERE conditions of SQL queries, and the second category
consists of five operators, which inject faults into database API method calls.
These operators generate mutants, which can be killed with test data containing
SQLIAs. This approach is similar to the technique presented by Appelt et al. [1],
in that they both use mutants to test the presence of SQLIVs in SQL databases.
However, it differs from the approach of [1] in that the mutation is applied to the
source code of the application rather than the test input. Hence, it would not
adequately solve the problem, which we are trying to address in making testing a
less expensive process by automatically generating test cases, as it would require
high levels of user involvement to conduct testing using this approach.

Chan et al. [3] presented fault-based testing of SQL database applications.
This technique used seven mutation operators to represent faults of entity rela-
tionships model of a database driven application. These operators were used to
modify the cardinality of queries (e.g., replace “SELECT count (column1)” with
“SELECT count (column2)”), replace attributes with similar types (e.g., change
one column name with another of a similar data type) and replace participation
constraints (e.g., replace EXIST with NOT EXIST) and so on. Like the MUSIC
tool proposed by Shahriar and Zulkernine [15], this approach mutates the code
and not the test cases, and therefore it would not fulfil our desired goal of having
an automated way of generating test data to detect SQLIVs.



186 B. Aziz et al.

Shin et al. [16] proposed an approach for SQL injection vulnerability detec-
tion, automated by a prototype tool called SQLUnitGen. The tool combines
static analysis, runtime detection and automatic testing to identify input manip-
ulation vulnerabilities. Kosuga et al. [9] presented a technique named Sania, for
detecting SQLIVs during the development and debugging phases. Sania investi-
gates HTTP requests and SQL queries to try to discover SQLIAs by construct-
ing parse trees of intended SQL queries written by developers. Terminal leafs of
parse trees would represent vulnerable spots, which are filled by possible attack
strings. The difference between the initial parse tree and the modified parse
tree generated from user-supplied attack strings results in warnings of SQLIAs.
Both of [9,16] differ to our case as neither injects SQLIAs. There is also a high
level of user involvement in both of these approaches and therefore making them
inadequate for our objective, which is to automate the generation of test cases.

Ciampa et al. [4] proposed an approach to perform penetration testing of Web
applications. This approach differs to ours and many other existing tools in that
it does not randomly generate test data but relies on a knowledge base of heuris-
tics to guide the generation of test data. This is achieved by firstly analysing
the Web application with the aim of determining its hyperlinks structure and of
identifying its input forms. Then it starts seeding a series of standard SQLIAs
with the objective of letting the Web application report an error message. Such
standard attacks consist of a set of query strings that are not dependent on the
Web application. It then matches the output produced by the Web application
against an (extensible) library of regular expressions related to error messages
that databases can produce. It continues the attack using text mined from the
error messages with the objective of identifying likely table of field names, until
it is able to retrieve (part of) the database structure. A limitation of this app-
roach is that it depends on known SQL injection patterns to detect errors during
testing. This practice have sometimes proven insufficient to test an application
as it is incapable of handling unlearned or new attacks. Also there might be
a large number of different representations for the same pattern, for example,
using different encodings, which may not be captured in the knowledge base.

Tuya et al. [21] proposed a set of mutation operators for SELECT queries
and then tested the mutants using a set of queries drawn from the NIST SQL
conformance test suite [13]. They then perform further experiments, aimed at
reducing the cost of testing using two different approaches: reducing the num-
ber of mutants (selective mutation) and reducing the number of test cases (by
selecting the order in which mutants are killed). The number of test cases are
reduced by ordering mutants from the most difficult to the easiest to be killed.

SQL DOM was proposed by McClure and Kruger [11] as a way of automat-
ing the defensive coding testing technique since the manual approach has often
proven to be labour-intensive and error-prone. SQL DOM contains a set of classes
that enable automated data type validation and escaping. When using this tool,
developers provide their own database schema and construct SQL statements
using the SQL DOM API. The tool has proven to be quite useful when devel-
opers need to use dynamic queries instead of parameterised queries for greater
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flexibility. However, this solution could only be used with a new software applica-
tion under development, as it would require considerable amount of refactoring
to get it to work with legacy systems. However, our approach could easily be
adapted to any project as it entails black-box testing, which does not require
knowledge of the application code.

Thomas et al. [20] proposed an automated vulnerability removal approach,
which finds potentially vulnerable (dynamic) SQL statements in programs and
replaces them with parameterised SQL statements. Similar to the work of [11],
this approach is based on white-box testing requiring some knowledge of the
internal structure of the application.

Boyd et al. [2] proposed a tool called SQLrand, which prevents injection
attacks that contain keywords. Developers construct queries, which use ran-
domised keywords rather than the normal SQL keywords. This is different from
our work in that it only protects against attacks that contain SQL keywords, so
although an attacker may not be able to inject code containing keywords without
the secret key to randomisation, this approach would not prevent an attacker
from injecting other codes, which do not contain SQL keywords.

Finally, Halfond et al. [7] implemented the AMNESIA (Analysis for Monitor-
ing and Neutralising SQL Injection Attack) tool to detect and prevent SQLIAs.
The tool first scans the application code to identify hotspot points in the appli-
cation code that issue SQL queries to the underlying database. For each hotspot,
a model is built which represents all the possible SQL queries that may be gen-
erated at that hotspot. Calls are then added to the runtime monitor for each
hotspot in the application. If a generated query is not consumed by the query
model, then it is considered an attack.

3 SQL Injection Attacks (SQLIAs)

SQLIAs occur when an attacker exploits an SQLIV by changing the intended
logic underlying an SQL query through inserting new SQL characters or key-
words into the query. Here, we describe some common SQLIA examples, although
our approach is general enough to cover any other SQLIAs.

3.1 Tautologies

Tautology attacks are attacks where the attacker injects code into conditional
statements so that these would always evaluate to a logical True value. The
consequences of such attacks generally depend on how the result of a query
is used by an application. These types of attacks are generally used to bypass
authentication and to return all data in a particular table. For example, an
attacker could submit,

anything’ OR ’x=x

instead of a password in an input HTML form. The resulting SQL query becomes:

SELECT id FROM users WHERE username=’Joe’ AND password=’anything’ OR ’x=x’
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This transforms the entire WHERE clause into a tautology, which could return
every record in the users database.

3.2 Union Query

Union queries provide more flexibility in allowing legitimate queries to retrieve
additional information from the database. In such attacks, the attacker injects
a statement of the form UNION 〈injected query〉 to the original query. For
example:

’ Union Select cardNo FROM creditCards WHERE acctNo = 7909

when injected into the username field, modifies the original query to become:

SELECT id FROM users WHERE username = ’’ Union Select cardNo FROM

creditCards WHERE acctNo = 7909 -- AND password =

When this modified SQL query is executed by the application, the original
query would return null and the injected query returns the creditCard number
for the given account.

3.3 Piggyback Queries

Piggyback queries are similar to Union queries in that they append additional
queries to the original query. However unlike Union queries, the intention is not
to modify the original query but to just introduce new queries, which piggyback
on the original query. For example, in the case of our authentication query, an
attacker may submit the following query:

SELECT id FROM users WHERE username=’Joe’ AND password=’’;

drop table users;

which as expected, may result in the users table being dropped.

3.4 Malformed Queries

Malformed query attacks are used by an attacker to gather information about
the database. These attack types are often deployed in conjunction with other
SQLIAs such as Union and Piggyback queries, which require the attacker to
have some a priori knowledge of the database’s schema. Malformed queries take
advantage of error messages returned by an SQL server, for example the attacker
could inject,

convert(int,(SELECT top 1 name FROM sysobjects WHERE xtype=’u’))

into a pin input field for an authentication query. This would result in a new
malformed SQL query:
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SELECT id FROM users WHERE username = ’Joe’ AND password = ’xxx’ AND

pin = convert(int, (SELECT top 1 name FROM sysobjects WHERE xtype=’u’))

If we assume that the database is indeed an SQL Server, the error mes-
sage returned may be of the sort “Microsoft OLE DB Provider for SQL Server
(0x80040E07) Conversion failed when converting the nvarchar value ‘CreditCards’
to data type int”. This error message provides useful information to aid other
attacks, since it informs the attacker that in fact an SQL server is running at the
backend. Additionally, the second part of the error message reveals that the first
user-defined table in the database is actually ’CreditCards’. The attacker could
also use a similar approach to find all the columns in the table.

3.5 Inference Queries

The final type of SQLIAs we discuss here is called Inference queries, and these
are similar to malformed queries in that they allow the attacker to discover
information about the SQL database. With this type of attacks, code is injected
to allow the application to behave differently based on the results of a particu-
lar query. For example, if the attacker inputs the following two queries at two
different times,

’legalUser’ AND 1=0 - -’

’legalUser’ AND 1=1 - -’

then an original SQL query would be modified into two different versions,

SELECT id FROM users WHERE username=’legalUser’ AND

1=0 --’ AND password=" AND pin=0

SELECT id FROM users WHERE username= ’legalUser’ AND

1=1 -- ’ AND password="AND pin=0

Let us suppose the application is an insecure application. When the first
query is run, and since 1 = 0 is always False, the application will return a
login error. However, at this stage, it is impossible for the attacker to determine
whether the error message was actually the result of the application validating
the input correctly and blocking the attack attempt. If the attacker submits the
second query, which always evaluates to True, and there is no login error, the
attacker can confirm that the username parameter is indeed vulnerable.

4 Design of the GP Grammar

In this section, we propose our automated technique for detecting SQLIVs. The
technique applies the concept of Genetic Programming (GP) to evolve legitimate
inputs to create new inputs, which could trigger SQLIAs in an application under
test. The proposed technique is driven by an evolutionary computation system
called ECJ [10], a framework that supports a variety of evolutionary computa-
tion techniques such as genetic programming and genetic algorithms. The ECJ
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framework was chosen as it is based on a well-engineered structure, which makes
heavy use of Java inheritance, abstraction and pattern-oriented design, has great
flexibility, with nearly all classes (and all of their settings) dynamically deter-
mined at runtime by a user-provided parameter file. This means it is possible to
support common functions of GP such as population initialisation, fitness, selec-
tion and variation operators without requiring additional user-written code.

We now discuss the preparatory steps for defining our ECJ-based GP.

4.1 Terminal Sets

Terminal (and function) sets, specify the language used to evolve programs used
in GP. A terminal set represents the leaves of the parse tree, which corresponds to
the program inputs and it typically consists of variables, constants and functions
with no arguments. Our implementation included only one terminal node called
X, which holds an alphanumeric string. X is the program external input, a string
which will be evolved to generate SQL injection test cases. This node could be
used as a child for each of the seven internal nodes defined in the function set.

4.2 Functions Sets

Function sets are the interior nodes of the parse tree of the GP. They are usually
all the functions allowed in the program and are driven based on the nature of
the problem domain. Our function set contains a total of seven functions. These
functions are classified into two broad categories based on the purpose of the
functions; i.e. whether they are behaviour-changing or syntax-repairing. The def-
inition of these functions was inspired by previous mutation testing frameworks
by Appelt et al. [1], matching six of the mutation operators defined in [1].

Behaviour-Changing Functions. An SQLIA occurs when an attacker changes
the intended effect of an SQL query by inserting new SQL keywords or operators
into the query. This class of functions from our function set are intended to evolve
our legitimate inputs with SQLIAs to take advantage of vulnerabilities in an appli-
cation. Although there are a wide variety of behaviour-changing attacks, we have
restricted this function set to three examples, which represent the most forms of
simple SQLIAs. These examples include the AND, OR and SEMI funcitons. The
OR function accepts one input and appends “OR x=x” to the end of the input
where x could be a random number or any string enclosed in quotes. For the AND
function, it accepts one input and appends “AND x=y” to the end of the input,
where x and y could be different random numbers or strings enclosed in quotes.
When this resulting output is added to the WHERE clause of an SQL query, it
changes the behaviour of the query so that it always evaluate to False therefore no
records are returned. Finally, SEMI accepts one input and appends a semicolon
“;” followed by an additional SQL statement. When this resulting string is added
to the WHERE clause of the SQL query, it changes the behaviour of the query by
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including a new and distinct query that piggybacks itself to the original one. We
show the relationship between SQLIAs and these functions in Table 1.

Table 1. SQL injection attacks and proposed functions

Attack Function

Tautologies OR

Union queries SEMI

Piggybacked queries SEMI

Inference attacks AND

Malformed queries OR, SEMI, AND

Syntax-Repairing Functions. An SQLIA attempt will only be successful if
the resulting query is syntactically correct. Often, malicious inputs may cause
SQL syntax errors to appear when these are combined with the original SQL
statements, which hinder attempts to undermine the system. Therefore, this next
class of functions, PARA, CMT, QUOTE and DoubleQUOTE, evolve inputs
with the goal of repairing SQL syntax errors when these are encountered. Such
functions are not used on their own, but in combination with the behaviour-
changing functions. First, we define PARA as a function that accepts a valid
input and appends a closing parenthesis to the end of the input. This is often
needed as sometimes the input provided is inserted within parenthesis used as
a parameter in an SQL function call or within a nested SELECT statement.
In such cases, a vulnerability can only be exploited if the opening parenthesis is
matched with a closing one. Next, the CMT function adds an SQL comment (i.e.
double dashes −− or a hash character #), ensuring that anything which follows
the comment is not executed. The QUOTE function accepts one input and adds
a single quote (’) to the end of the input. This is usually necessary for string
inputs, which are enclosed in quotes in the predefined SQL statement. Finally,
DoubleQUOTE accepts a single input and adds a double quote (”) to the end of
the input. This is usually necessary for string inputs, which are usually enclosed
in quotes in the SQL statement.

4.3 Fitness Function

Whilst the first two preparatory steps define the primitive set for the GP, and
therefore indirectly define the search space that the GP will explore, these two
steps are unable to instruct the GP system about which elements or regions of
the search space are good. This is the task of the fitness measure, the most dif-
ficult and most important concept of genetic programming. The fitness function
determines how well a program is able to solve the problem. It varies greatly
from one type of program to the next. In our GP implementation, the fitness of
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an individual is assessed by determining the number of possible injection types
that this individual could generate when inserted into the WHERE clause of an
SQL query and calculating the sum of all those injection types.

Fitness =
∑

(1/(1 + S)) (1)

where S is the number of different injection types found in one individual. The
more injections generated the smaller the fitness value and the fitter the indi-
vidual is. If an individual reaches a fitness of 1, it means the generated string is
likely to possess a syntactical error and would therefore not result in an SQLIA,
whereas a fitness of 0 represents a definite SQLIA.

4.4 Parameters

The fourth preparatory step specifies the control parameters for the run. The
most important control parameter is the population size. Most of the parameters
defined in the koza.params seem adequate for our implementation. The impor-
tant parameters inherited by koza.params are as follows.

Initialisation. Our implementation used Koza’s halfBuilder technique to create
the initial population. HalfBuilder is essentially a mixture of grow and full tech-
nique, with a ramp from 2 to 6 inclusive. The ramp is essentially an initial
random number between 2 and 6 inclusive, which is the maximum tree size.

Selection. In our implementation, tournament selection was used for selecting
individuals with a tournament size of 7. Tournament selection is a technique
whereby a number of individuals are chosen at random from the population,
then they are compared with one other to determine which will be the parent.

Operators. Our implementation used a mixture of mutation, reproduction and
crossover to evolve our inputs.

4.5 Termination and Solution Designation

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run. In our implementation, the criterion
was the maximum number of generations to be run. The single individual was
harvested and designated as the result of the run, which was returned as the
solution to our problem domain.

5 System Design and Implementation

Our testing system consists of three main components: An AntiSQLInjection
tool, an ECJ-based test generator and a vulnerable Web service. Our AntiSQLIn-
jection tool uses heavily an open source tool called General SQL Parser [6] that
functions as a database proxy, which serves to intercept communications between
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the target system and its database in order to identify if an input is potentially
harmful or not. On the other hand, the Web service in this case was the subject
application, i.e. SuiteCRM [19]. We next outline how various components were
implemented to map our problem to the ECJ framework.

Figure 1 shows the key components of our testing system.

Fig. 1. Components of our system showing data flows

5.1 Representation of Individuals

When setting-up a GP problem in ECJ, we begin by defining the individuals
and the species that they belong to. Species available in ECJ vary from inte-
ger vectors, to object lists and trees. An evolutionary run in ECJ would allow
one population an unlimited number of sub-populations containing an array of
the defined individuals, the species and fitness functions. Here, individuals are
defined as SQL injected input strings. The implementation used Abstract Syntax
Trees (ASTs) to represent our individuals, as this is able to hold an arbitrary
number of inputs. Our AST was defined using the built-in ECJ facility for defin-
ing and generating ASTs.

The tree structure in ECJ is typically defined by its types, tree constraints,
node constraints and a function set, which were all specified in the parameters
file. The tree constraints contain data elements shared by the tree. This includes
the definition of the tree, its return types and function set. The type essentially
defines all the possible node types, which could be found in a tree. ECJ’s type
objects are of two kinds: atomic types and set types. An atomic type is just a
single object (in fact, it is theoretically just a symbol) [10]. A set type is a set of
atomic types. Node constraints define what nodes can be children of other nodes
and how many children each node could have. The function set is used to link
the node constraints and their implementation in the Java class files.

We identified four atomic types and one set type:

– strValue: this type holds a string value, used as a terminal node
– intValue: this type holds an integer value, used as a terminal node
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– syntax : this type is the output of a string where a syntax-repairing function
is applied, hence, it is the return value of a syntax-repairing function

– behaviour : this type is a string where a behaviour-changing function is applied,
hence, it is the return value of a behaviour-changing function

– before-or-after : this is a set type with two members, strValue and syntax. This
would serve as a child to any behaviour changing function

The node constraints for our tree structure when applied to a GPNode would
describe three properties of the node: Number of children, the type of children
and the type of the parent of the children. Our tree consists of tree nodes rep-
resenting the function sets ()behaviour-changing and syntax-repairing), which
were implemented as java class files in the ec.app.sqli package. Their entries in
our parameter files are as follows, along with their respective constraints:

# We have one function set, of class GPFunctionSet

gp.fs.size = 1

gp.fs.0 = ec.gp.GPFunctionSet

# We call the function set "f0"

gp.fs.0.name = f0

# We have seven functions in the function set. They are:

gp.fs.0.size = 7

gp.fs.0.func.0 = ec.app.sqli.X

gp.fs.0.func.0.nc = nc0

gp.fs.0.func.1 = ec.app.sqli.Or

gp.fs.0.func.1.nc = nc1

gp.fs.0.func.2 = ec.app.sqli.And

gp.fs.0.func.2.nc = nc1

gp.fs.0.func.3 = ec.app.sqli.Cmt

gp.fs.0.func.3.nc = nc3

gp.fs.0.func.4 = ec.app.sqli.Quote

gp.fs.0.func.4.nc = nc2

gp.fs.0.func.5 = ec.app.sqli.Para

gp.fs.0.func.5.nc = nc2

gp.fs.0.func.6 = ec.app.sqli.Semi

gp.fs.0.func.6.nc = nc1

5.2 Evaluation and Fitness

After the representation of an individual is defined, the ECJ framework requires
the user to define a problem, which evaluates individuals and assigns fitness
values to them. As was mentioned earlier, the behaviour of each node type is
defined in a separate Java class with a single crucial method overridden:

public void eval(final EvolutionState state,

final int thread, final GPData input, final ADFStack stack,

final GPIndividual individual, final Problem problem)

{DoubleData rd = ((DoubleData)(input));

children[0].eval(state,thread,input,stack,individual,problem);

rd.x = rd.x +" or 1=1";}
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The method is called when the GPNode is being executed in the course of exe-
cuting the tree. The execution proceeds depth-first like the evaluation of a stan-
dard parse tree. The eval() method has several arguments fairly straightforward
to understand. The GPData argument is a simple data object passed around
amongst the GPNodes when they execute one another. This is how data is
passed from one node to another. The GPData object is defined in the parame-
ter file as eval.problem.data = ec.app.sqli.StringData. During evaluation, our
GPData object passes through the tree. The object contains a simple string “x”.
Therefore, when this object arrives at the “OR” node, it becomes the case of
simply retrieving x and concatenating it with “OR 1=1”, which is then returned,
so that the value could then be used by some other syntax-repairing function.
The result of the syntax-repairing function is the return value of the tree, which
is stored in a text file and serves as the generated test case for our GP run. This
process will be done based on the maximum number of runs we have specified
in our parameters file.

Like most other grammar-based evolutionary GP systems implemented using
the ECJ framework, our implementation uses KozaFitness. This is a fitness func-
tion that stores an individual’s fitness. In KozaFitness, standardised fitness and
raw fitness are considered the same (there are different methods for these, but
they return the same thing). Standardised fitness f ranges from 0.0 inclusive
(the best) to infinity exclusive (the worst). Adjusted fitness converts standard-
ised fitness, using the formula adjf = 1/(1 + f), into a scale from 0.0 exclusive
(worst) to 1.0 inclusive (best). Our standardised fitness, which is passed to the
ECJ system was derived from the definition of 1 earlier in Sect. 4.3.

6 Results and Analysis

There is no standard benchmark application for testing the existence of SQLIVs.
However we evaluated the effectiveness of our approach on one open source sys-
tem called SuiteCRM [19]. SuiteCRM provides a software suite for the man-
agement of popular customer relationships. The application was implemented
using PHP, with a MySQL backend database, and provides a SOAP-based Web
Service API. The use of this application was motivated by related work [1], in
which a version of SugarCRM [18] was used to evaluate the mutation testing
approach proposed in [1]. Our evaluation approach is based on the following:

1. First, we identify the distinct list of injectable parameters for the collection of
Web services from our subject application. We define an injectable parameter
as an input parameter to a Web application whose value is used to build part
of a query that is sent to the database. We identified a total of 4 injectable
parameters that are being used across the 26 Web services.

2. We identify legitimate inputs for each of the injectable parameters so that
these are passed to our GP tool to generate SQLIAs, which will used to test
for SQLIVs.

3. We create a repository of SQL statements for each injectable parameter to
mimic a similar structure to what exists in the subject application.
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4. We generate test cases from our GP tool from the legitimate inputs identified
for each parameter in 2.

5. And finally, we use test cases obtained from our GP tool and run these through
our AntiSQLInjection tool for each injectable parameter to conduct our tests.

Though most of the run parameters were already predefined by inheriting the
Koza parameter file, it is worth mentioning here the values used for each para-
meter during a GP run, as shown in Table 2.

Table 2. GP experiment parameters

Parameter Value

Population size 1024

Generation size 50

Crossover rate 90 %

Mutation rate 10 %

Selection method Tournament selection

Tournament size 7

Number of runs 20

During the experiment evaluation, we investigated the first research ques-
tion, the effectiveness of our technique in detecting and preventing SQLIAs. The
evaluation did not include all parameters of the subject application as it would
have taken a substantial amount of time to execute every parameter. The focus
therefore was only on the vulnerable parameters which were already identified
in a related work [1]. Starting with two legitimate inputs for each parameter,
our GP system generated 2048 malicious inputs for each such parameter. These
malicious inputs were then applied using the AntiSQLInjection tool. For each
parameter, we tracked the number of inputs, which were able to exploit the
vulnerability in our subject application. The test results are shown in Table 3.

Table 3. Results of our SQLIA tests

Operation Parameter Successful Unsuccessful Syntax

(Flagged) (Unflagged)

get entry list query 136 261 1651

get entry list order by 202 690 1257

search by module assigned user id 56 1233 778

get relationships related module query 478 115 1455

get entries count query 145 343 1560

set relationships value 1203 0 845
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The table shows for each parameter of our chosen subject the number of
unsuccessful attacks (Unsuccessful), the number of successful attacks (Success-
ful), and the number of our generated inputs, which resulted in a syntax error
and would therefore not be successful in launching an attack. As the table shows,
our tool was able, for all vulnerable parameters of our subject application, to
successfully create test cases, which would enable us to exploit vulnerabilities of
the application.

Whilst our tool was able to launch successful attacks for all parameters, we
did note an exceptionally high number of inputs resulting in syntax errors. This
could perhaps be corrected in the future by having stricter type constraints
on our GP implementation. We also noted a significant number of syntactically
correct, yet un-flagged inputs. With further investigation we discovered that this
was an issue related to the AntiSQLInjection tool and not our GP system as when
these same inputs were applied directly to our subject application, they were able
to cause successful attacks. This implies a weakness in the implementation of the
AntiSQLInjection tool, where it is sometimes unable to identify attack patterns.

7 Conclusion and Future Work

We presented a GP-based approach for automatically generating test cases for
the detection of SQLIAs. Our approach is general in the sense that it is capa-
ble of generating any malicious SQL query possible to construct based on the
syntax of SQL commands. We demonstrated how our solution can be imple-
mented using open source toolkits and we discussed the results against a subject
application, namely SuiteCRM [19]. For future work, we would like fine-tune
our implementation to obtain better rates of syntactic errors in the generated
test cases, which would improve the performance of our tool. We would also like
to widen the set of functions used in generating SQLIAs, including functions
related to other forms of SQL-based attacks such as cross-site scripting.
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21. Tuya, J., Suárez-Cabal, M.J., De La Riva, C.: Mutating database queries. Inf.

Softw. Technol. 49(4), 398–417 (2007)

http://www.sqlparser.com
https://cs.gmu.edu/ eclab/projects/ecj/
https://cs.gmu.edu/ eclab/projects/ecj/
https://nvd.nist.gov
http://www.itl.nist.gov/div897/ctg/sql_form.htm
http://www.itl.nist.gov/div897/ctg/sql_form.htm
https://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf
https://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf
https://www.sugarcrm.com
https://suitecrm.com


Grammar Design for Derivation Tree
Based Genetic Programming Systems

Stefan Forstenlechner(B), Miguel Nicolau,
David Fagan, and Michael O’Neill

Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland
stefan.forstenlechner@ucdconnect.ie,

{miguel.nicolau,david.fagan,m.oneill}@ucd.ie

Abstract. Grammar-based genetic programming systems have gained
interest in recent decades and are widely used nowadays. Although
researchers normally present the grammar used to solve a certain prob-
lem, they seldom write about processes used to construct the grammar.
This paper sheds some light on how to design a grammar that not only
covers the search space, but also supports the search process in finding
good solutions. The focus lies on context free grammar guided systems
using derivation tree crossover and mutation, in contrast to linearised
grammar based systems. Several grammars are presented encompassing
the search space of sorting networks and show concepts which apply to
general grammar design. An analysis of the search operators on different
grammar is undertaken and performance examined on the sorting net-
work problem. The results show that the overall structure for derivation
trees created by the grammar has little effect on the performance, but
still affects the genetic material changed by search operators.

Keywords: Grammar design · Derivation trees · Genetic programming

1 Introduction

Grammars are an important representation in computer science, especially for
programming languages and compilers. Grammars have gained popularity in
genetic programming (GP) over time as they overcame some of traditional GP’s
limitations. Grammar based genetic programming is widely used nowadays [14].
A search space for a problem in GP can easily be defined with a grammar and
even problem specific information can be added to bias the search in a certain
region [18,27]. Much research has been conducted on different grammars that
can be used in GP to solve certain problems. Nevertheless, how to design a
grammar for GP remains an under explored research area. McKay et al. wrote
in a survey about grammar-based genetic programming [14]:

“While experienced practitioners of each representation form have some
tacit understanding of how to choose grammars, there is little explicit

c© Springer International Publishing Switzerland 2016
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knowledge. More explicit knowledge may lead to more structured method-
ologies (and interactive software support) to incrementally find good rep-
resentations for new problem domains, and even to partial or complete
automation of the process.”

However some limited studies have been undertaken, including Whigham
[27], Hemberg [6], Murphy [17] and Nicolau [19].

This paper makes a step towards analysing grammar design and how it influ-
ences the search process. Section 2 gives an overview of how grammars have been
used in evolutionary systems. Section 3.3 explains the experimental setup. The
results are presented and discussed in Sect. 4. Finally, conclusion is presented in
Sect. 5 as well as possible future work.

2 Grammars in Evolutionary Systems

2.1 Grammar Guided Genetic Programming

Many different grammar based genetic programming system have been intro-
duced. The broad term Grammar Guided Genetic Programming (GGGP) will
be used in this paper to address these systems.

Some important GGGP systems are mentioned in this section. Whigham’s
CFG-GP system [27] uses a context-free grammar to specify the syntax of solu-
tions. He also defined specialized crossover and mutation operators for the search.
The search operators manipulate the derivation trees that are created when a
sentence is derived from a grammar.

Another well-known grammar-based system is grammatical evolution (GE),
which also uses CFGs normally in Backus-Naur Form (BNF) [5,22], but has also
been adapted to employ other grammars mentioned below.

In contrast to CFG-GP, GE uses an integer string as representation instead of
the derivation tree. A mapping process is used to generate a derivation tree from
the linear representation, which describes the phenotype. The search operators
used in GE primarily operate on the integer string. Other systems integrated
context-sensitive grammars into GP [25], logic grammars [8,28], tree adjoining
grammars [7,16], attribute grammars [1]. Also shape grammars have been used
for design by O’Neill et al. [21].

Depending on the grammar used, it might provide special features; context
free grammars, for example, can be used to interpret non-terminals differently
in different contexts.

Major benefits of GGGP systems are that the closure property is implicitly
given by the grammar similar to strongly typed GP [15] and bias can easily be
incorporated into the grammar. Bias is often an unwanted property of repre-
sentations or operators. In grammars bias can be used as an advantage [27]. A
grammar can be adapted to influence the search based on a priori knowledge
about a problem. Bias can be subtle, by increasing the frequency of a symbol
in a grammar or more definite by forcing a certain structure on all problems.
For example, the first few bits of a binary string can be defined to be all zeros.
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The risk of bias is that the grammar might not cover the whole search space or
worse that the global optimum is not even in the search space any more [14].

GGGP systems can be classified by their representation into tree based gram-
mar guided and linearised grammar guided systems. This paper mainly focuses
on tree based genetic programming systems, but differences to linearised repre-
sentations about grammar design are mentioned.

2.2 Grammar Design

GGGP systems can be used similar to fixed and variable length GAs [23] as
well as a generalization of GP, as shown by Whigham in his thesis [27]. A vari-
able length GA representation for binary strings in BNF can be achieved by a
grammar, as shown in Fig. 1.

<string> ::= <string><bit> | <bit>

<bit> ::= 0 | 1

Fig. 1. Variable length GA like representation for binary strings in BNF.

A fixed length representation in BNF is not more difficult than a variable
length representation, but more rules are required, as for every position in the
representation a separate rule has to be created, as shown in Fig. 2. A single
rule with one production with a fixed number of <bit> non-terminal symbols
could be used, but then crossover in a derivation tree based system could only
change single bits. A linearised grammar guided system like GE can represent
this grammar with exactly the same number of integers as bits are in the rep-
resentation, because the mapping process only uses an integer when deciding
which production to choose. As all rules except <bit> have only a single rule,
exactly n (number of stringparts) integers are needed. In a derivation tree based
system, crossover can only exchange subtrees with the same symbol, therefore
the structure of the derivation trees non-terminal symbols will never change.

<stringpart0> ::= <stringpart1><bit>

<stringpart1> ::= <stringpart2><bit>

...

<stringpartN> ::= <bit>

<bit> ::= 0 | 1

Fig. 2. Fixed length GA representation for binary strings in BNF.

Standard GP consists of a function and terminal set, with the important
property of closure, which means that every function has to be capable to eval-
uate any possible input it gets. Any GP representation with a function set
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<tree> ::= f1 tree ... tree | f2 tree ... tree | ... | fx tree ... tree

| t1 | t2 | ... | ty

Fig. 3. General standard GP grammar in BNF.

f1, f2, ..., fx and terminal set t1, t2, ..., ty can be represented with the general
grammar in Fig. 3. Note that any function can have an arbitrary number of
inputs and that only a single rule is required to represent the function and ter-
minal set of GP due to the closure property.

For a detailed discussion about grammars for GA and GP representations as
well as the schema theorem for such grammars, see Whigham’s thesis [27].

2.3 Structure in Grammars

Creating variable length derivation trees requires direct or indirect recur-
sion in a grammar as shown in Sect. 2.2. A direct left recursion, e.g.
<rule> ::= <rule><part> | <part> does that trick. <rule> and <part> can
be replaced with any rule like <string> and <bit> see Fig. 1, <code> and <line>
such as Santa Fe Ant Trail problem [22], <for> and <code> for program synthe-
sis [20], <design> and <component> for creating designs [13], <int constant>
and <number> for integer constant creation [4], etc.

If a derivation tree is drawn that has been created by this rule, it is more
similar to a “list” than a tree, as depicted in Sect. 3.2 for a similar grammar
in Fig. 6. It will be a list of <part> non-terminals. The reason is that it only
expands in one direction (unless there is an indirect recursion from <part> to
<rule>). The question about this fairly commonly used rule is, if it should be
expressed in another way. As the operators applied to the derivation tree are tree
based, the grammar might improve the search if it would express more tree-like
structures as in standard GP. For this purpose, we choose a problem, described
in Sect. 3.1, which can be expressed with a short grammar. Multiple grammars,
discussed in Sect. 3.2 are presented. All of them cover the search space for the
problem, but present different properties.

3 Experimental Setup

3.1 Sorting Network

For the grammars and the experiments in this study we use the sorting network
problem [10,24]. The reason why we choose this problem is that it is a real-world
problem and simple grammars can be written which cover all possible solutions.
At the same time a grammar for sorting networks has properties that apply to
other grammars and can be generalized from.

A sorting network can be seen as a sorting algorithm in hardware with a fixed
number of inputs and outputs. The output of a sorting network is the input in
sorted order. The sorting network consists only of wires and comparator modules.
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Comparators take two wires as input and swap the values of these wires if they
are not in the correct order, otherwise they return the input.

When drawing a sorting network, the wires are represented as straight lines
and the comparator modules are connections between the wires. An optimal
sorting network with four inputs is shown in Fig. 4. It is important to notice
that the order of the connections makes a difference. For example, if you would
put the last connection (on the right side) before the first connection, the sorting
network would not return correct values for all inputs.

0

1

3

2

3

2

0

1

3

2

1

0

3

2

1

0

Fig. 4. Sorting network with four inputs and five comparators.

A sorting network has three properties. The number of inputs, the size or
number of connections and its depth. The depth is the number of steps it takes to
complete the network. One step can execute multiple comparisons at once, if the
comparisons are independent of each other, which means they do not depend on
the output of the other comparisons in the same step. For example, the network
in Fig. 4 has 4 inputs, 5 connections and is of depth 3.

Testing the correctness of sorting networks is a computational expensive task.
Fortunately not all possible combinations of inputs have to be tested, which
would result in a runtime complexity of n!. The zero-one principle [9] says that
if all combinations of 0, 1 as inputs are sorted correctly by a network, all other
arbitrary values will be sorted correctly. This reduces runtime complexity to 2n.

3.2 Experimental Grammar Design

In this section we present multiple grammars which can be used in GGGP
systems to evolve sorting networks. The phenotype the grammars create are
lists with an even amount of numbers and at least one pair of numbers, e.g.
0 2 1 3 0 1 2 3 1 2 represents the sorting network in Fig. 4. Therefore, a grammar
needs a recursive rule to create arbitrary amount of pairs of numbers and always
has to append two numbers to the phenotype at once.

Section 2.3 showed a common grammar used to address such a grammar
design problem, but this grammar may hinder the search operators by forcing
them to exchange large parts of individuals, due to the list like structure of the
derivation trees. To address this issue, we assume that grammars that describe
more tree like structures, may be beneficial to find optimal solutions, as deriva-
tion tree based operators can exchange variable amounts of genetic material
anywhere in an individual.
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The grammars are context free grammars and written in (BNF). Note that
all grammars have a rule <node>, which can be expressed as a number from
0 − 3 as the sorting network presented in Sect. 3.1 and for reasons of simplicity.
Depending on the number of inputs of the network this rule has to be adapted.

Grammar 1 (G1). A simple grammar is depicted in Fig. 5. The first production
of <snet> is a left recursion and the second production stops the recursion, as
shown in Sect. 2.3. In both productions two non-terminals <node> are used so
that two numbers are added in every recursion step. This grammar consist of
only two rules and one production which creates the structure of the derivation
tree. An example of a derivation tree created with G1 is shown in Fig. 6. The
derivation tree has more in common with a list of pairs of numbers than a tree.
The rule <snet> is only responsible for creating the structure or more specifically
the length of the list.

<snet> ::= <snet> <node> <node> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 5. Simple grammar, which works similar to a list (G1).

<snet>

<snet>

<snet>

<snet>

<snet>
<node> 2

<node> 1

<node> 3

<node> 2

<node> 1

<node> 0

<node> 3

<node> 1

<node> 2

<node> 0

Fig. 6. Grammar 1 derivation tree for the optimal sorting network with four inputs,
see also Fig. 4.

Crossover can only exchange single numbers, if applied to <node>. If applied
to <snet> all pairs of numbers from the first parent will be in the child up to
the crossover point, where all the pairs of numbers from the second parent will
be inserted. In case of the phenotype, subtree crossover on G1 is similar to
single-point crossover in genetic algorithms, limited to crossover after an even
amount of numbers. It is not possible to exchange sorting network comparisons
somewhere in the middle of a list of numbers with subtree crossover in G1.
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Grammar 2 (G2). The next grammar is very similar to G1, see Fig. 7. Again
the structure the derivation tree creates, looks more like a list than a tree. The
difference to G1 is that every pair of numbers is encapsulated in a separate rule
<nodes>, which represents a single compare operation.

<snet> ::= <snet> <nodes> | <nodes>

<nodes> ::= <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 7. Simple grammar, which works similar to a list with the benefit that pairs of
nodes can be exchanged (G2).

The benefit of G2 is that crossover can exchange a single compare opera-
tion between parents, even if located in the middle of the list of comparisons.
Mutation can also replace a comparison, whereas in G1 it either changes a single
number or every number after the mutation point in the tree, which can be very
destructive.

Grammar 3 (G3). A grammar that can generate more tree-like derivation
structures is shown in Fig. 8. Additionally to the left recursion, its complement
a right recursion has been added, as well as production that can have two child
<snet> nodes. Therefore, binary trees can be created with G3. Note that every
production of <snet> also creates a pair of numbers. An example of a derivation
tree created with G3 is shown in Fig. 9.

The benefit of G3 is that the tree structure provides subtree crossover with
more possibilities for crossover points. Instead of operating on a “list”, where

<snet> ::= <snet> <node> <node> | <node> <node> <snet>

| <snet> <node> <node> <snet> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 8. Tree-like grammar, where every production contains a pair of nodes (G3).

<snet>

<snet>

<node>

2

<node>

1

<node>

3

<node>

2

<snet>

<snet>

<node>

1

<node>

0

<node>

3

<node>

1

<snet>

<node>

2

<node>

0

Fig. 9. Grammar 3 derivation tree for the optimal sorting network with four inputs,
see also Fig. 4.
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crossover takes the first part of the first parent and the second part from the
second parent, crossover on G3 can exchange any number of compare-exchange
operations anywhere in the tree. Furthermore, mutation might not be as destruc-
tive as in G1 and G2 any more, because smaller subtrees might be mutated
instead of the whole tail of a “list”.

Grammar 4 (G4). The fourth grammar provides the same tree structure as
G3, but with the same modification that has been added in G2. A separate
rule <nodes> has been added which encapsulates a pair of numbers, to easily
exchange a single compare operation anywhere in the tree (Fig. 10).

<snet> ::= <snet> <nodes> | <nodes> <snet>

| <snet> <nodes> <snet> | <nodes>

<nodes> ::= <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 10. Binary tree-like grammar, where every node contains a pair of nodes and a
pair of nodes can be exchanged individually (G4).

Grammar 5 (G5). The last grammar is short and simple, but it can also
create binary trees. It does not need a separate rule <nodes> to exchange single
comparisons, because every pair of nodes can already be exchanged on its own
when their parent node is exchanged (Fig. 11).

<snet> ::= <snet> <snet> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 11. Binary tree-like grammar. Nodes are not in the structure of the tree and pairs
of nodes can still be exchanged individually (G5).

G5 probably provides the easiest and most readable way to create binary
trees with a grammar. Additionally, it can easily be adapted to any n-ary trees
by adding any number of non-terminal <snet> as production to the rule <snet>.

Derivation Tree Sizes. As grammars define the structure of the derivation
trees, they also define the number of nodes and the depth of derivations trees
needed to form a solution. In the grammars above, a pair of numbers represents a
comparison operation in a sorting network. The minimum number of nodes and
the minimum depth required for representing a certain number of comparisons
is given in Table 1, which will be used in Sect. 3.3. Note that every production
will be treated as a single node with one child node for every non-terminal in
the production. This does not change the behaviour of the derivation trees or
search operators, but decreases the number of nodes in a tree.
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Table 1. Minimum number of nodes and minimum depth for each grammar given a
certain number of comparisons (c)

Grammar Number of nodes Depth

G1 3 ∗ c c + 1

G2 4 ∗ c c + 2

G3 3 ∗ c �log2(c + 1)� + 1

G4 4 ∗ c �log2(c + 1)� + 2

G5 4 ∗ c − 1 �log2(c)� + 1

Grammar Design Details. The grammars presented in this section have been
written concerning the derivation tree they will create and how search operations
which use the derivation tree might behave on them. These grammars can also be
used by other GGGP systems which have a linear representation like GE, but
keep in mind that systems with a linear representation do behave differently.
For example, G1 and G2 should yield the same results in GE, because the rule
nodes that has been added, has only one production rule. The mapping process
in GE automatically replaces non-terminals with its production rule, if only one
is available. The same applies for G3 and G4.

One additional change that may improve the grammars would be to change
the rule <nodes> to all possible comparisons for a given number of inputs of
a sorting network as depicted in Fig. 12. All given grammars can represent all
combinations of pairs of numbers which are n2. If only all possible compare-
exchange operations are used, then it reduces the number of pairs to n2−n

2 ,
because duplicates can be removed (for example, 0 1 and 1 0 represent the same
operation). And pairs with the same number twice are ignored as comparisons
with the same input would not do anything. It might still be beneficial to allow
one pair with the same number or an empty production of <nodes>, so that a
compare-exchange operation can be deleted.

<nodes> ::= 0 1 | 0 2 | 0 3

| 1 2 | 1 3

| 2 3

Fig. 12. All possible comparisons in a sorting network with four inputs.

This and further optimizations of the rule <nodes> have not been investi-
gated, because they would be problem specific, whereas changing the structure
of the derivation tree through the grammar and encapsulating non-terminals
into new rules can be used in any grammar.
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3.3 Experiments

The experiments performed for this paper have been executed with HeuristicLab
[26] and a plugin which we added that can be found on GitHub1.

Two experiments are performed on the grammars presented in Sect. 3.2. As
the grammars define different structures, the derivation tree operators, crossover
and mutation, may behave differently. They are going to add and remove different
amounts of genetic material and choose other nodes to exchange material.

Experiment 1. The first experiment is to analyse the grammars and the dif-
ference of genetic material that gets exchanged between individuals depending
on the grammars. One time we only use crossover, the second time we only
use mutation and the last time we use both operators. No evaluation is per-
formed and selection is done randomly as we are only interested how the search
operators behave. In all three cases we use 100 % probability for crossover and
mutation. The derivation trees are limited to 50 compare-exchange operations
for this experiment, see Table 1 for the number of nodes.

Experiment 2. In the second experiment, we want to know if any of the gram-
mars has a performance advantage over the others. Therefore, fitness is measured
and tournament selection is used. We choose a sorting network with twelve inputs
as problem to compare the grammars. The optimal number of comparators is
not yet known, but it has been proven that it lies between 37 to 39 comparators
[2]. Due to the zero-one principle the 12 input sorting network has 4096 training
cases. As fitness function we minimize the number of incorrect sorted inputs plus
the number of used comparators divided by 100, as in Koza et al. [11]. Therefore,
the main objective will be to sort the inputs correctly and the subsidiary goal is
to minimize the size of the sorting network. We limit the maximum number of
comparators to 59, which is 1.5 times the upper bound rounded up.

General Settings. The settings of the experiments are summarized in Table 2.
The differences between the experiments are marked with superscripts.

The initialisation of the individuals is done with the Probabilistic Tree-
Creation 2 (PTC2) [12], because PTC2 gives us the possibility to limit the
number of nodes of the initial trees and not only the depth. Setting a max depth
for the initialisation, like it is done for ramped half-and-half initialisation and
also grow or full method, would not give a fair comparison between the gram-
mars. The grammars produce different structures and therefore derivation trees
can have completely different amount of nodes for a certain depth, which would
make it impossible to compare the results. Additionally, Daida et al. [3] showed
that standard GP with binary trees searches rather sparse than dense trees.
Therefore, we decided to define the number of compare-exchange operations
that are allowed and calculated the required number of nodes in a derivation
tree for every grammar. So we set the number of nodes for every experiment
individually depending on the grammar, according to Table 1. Therefore, the
1 https://github.com/t-h-e/HeuristicLab.CFGGP.

https://github.com/t-h-e/HeuristicLab.CFGGP
https://github.com/t-h-e/HeuristicLab.CFGGP
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Table 2. Experimental parameter settings. 1Experiment 1. 2Experiment 2.

Parameter Setting

Runs 1001, 502

Generations 100

Population size 1000

Population initialisation PTC2 [12]

Tournament size 7

Internal crossover probability 0.9

Mutation probability 100 %1, 5 %2

Elite size 01, 12

Maximum compare-exchange operations 501, 592

structure of the derivation tree is not limited by depth and arbitrary trees only
limited by the number of nodes can be created.

4 Results

This section presents the results of the experiments. Note that no fitness eval-
uation was used in experiment one, because only the behaviour of the search
operators was observed.

4.1 Experiment 1

Changing grammars to more tree-like structures has an obvious effect on
crossover and mutation, which is that smaller amounts of genetic material can be
exchanged as Fig. 13 shows. The plots for the experiments where only crossover
or mutation was used are omitted, as they are quite similar. The only differ-
ence is that the trees are shrinking over time in the experiments where only
crossover is used. The reason is that the trees are limited by a maximum num-
ber of nodes. When crossover selects a subtree from the second parent, it has
to select a subtree which does not violate this limit. Therefore, the chance of
creating an overall smaller tree is more likely, when the tree is already rather big.
But the size of the trees stabilizes after 30 generations. When using mutation
only, the same amount of genetic material is removed and added again. In the
case of using crossover and mutation, this phenomena is only observed up to the
tenth generations, but crossover continues to remove more genetic material than
it is adding. Mutation counteracts crossover by adding more material.

In the case of G1, crossover and mutation take place on <snet> most of the
time, as this is the node which is most frequent in the trees. The most frequent
exchanged symbols by crossover with G2 are <snet> and <nodes>. The frequency
of <nodes> is slightly higher as there is always one more <nodes> than <snet>
non-terminal. For G3, G4 and G5, it is obviously <snet> and the child node
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Fig. 13. Genetic material added and removed when using crossover and mutation.

(from the second parent) is mostly <node> <node>. The reason is that crossover
chooses uniformly from all nodes in the tree and therefore smaller trees are more
likely to be selected, as there is a higher amount of smaller subtrees. Because we
use Koza’s crossover where a probability is used to decide whether an internal
node or a leaf node should be chosen, with a 90 % probability for internal nodes.
As crossover still favours smaller subtrees, <node> <node> gets exchanged most
frequently. For mutation there is no such probability, which explains why leaf
nodes are changed more frequently.

The first experiment showed that crossover on grammars which create tree-
like structures can exchange smaller amounts of genetic material between indi-
viduals. Mutation changes smaller amounts as well. The use of the extra rule
<nodes> had also on effect on the change of genetic material, see e.g. G1 and
G2 in Fig. 13, but not as much as the tree-like structure.

4.2 Experiment 2

When we look at the results in Table 3, we can see that G2, G4 and G5 are
doing better than G1 and G3. G2 and G4 have the extra rule <nodes> to be
able to exchange comparators individually, which G5 can also do without that
extra rule. The tree structure of the grammar seems to give G3 a slight advantage
over G1, but the difference is not statistically significant, similar to the difference
between G4 and G2. Although G5 also has a tree structure, it is not doing better
than G2.

A more difficult sorting network with 14 inputs is used to repeat the same
experiment with G2, G4 and G5, to check if it might create a statistically
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Table 3. Results for sorting networks with 12 inputs with the average best fitness,
standard deviation, median, best individual and success ratio over 50 runs.

Average best fitness ± Std dev Median Best Success ratio

G1 82.604 ± 42.794 77.58 18.56 0 %

G2 31.851 ± 21.662 26.58 0.58 4 %

G3 65.600 ± 47.892 51.57 14.58 0 %

G4 23.528 ± 15.472 19.57 0.53 8 %

G5 34.130 ± 28.255 28.59 0.55 2 %

significant difference. The results, shown in Table 4, are very similar. On the
one hand, G4 was again doing slightly better. On the other hand, G5 is doing
worse than G2. So there is no way to say that the tree structure improves the
results.

Table 4. Results for sorting networks with 14 inputs with the average best fitness,
standard deviation, median and best individual over 50 runs. No correct sorting network
was found.

Average best fitness ± Std dev Median Best

G1 769.833 ± 303.508 724.74 256.74

G2 245.515 ± 143.939 214.75 26.77

G3 575.554 ± 300.543 539.76 102.75

G4 230.196 ± 119.649 201.76 8.73

G5 297.675 ± 197.856 224.75 40.75

After examining the results from the experiments, we noticed that the main
reason G2, G4 and G5 are doing better is that they can exchange comparators
individually. The Koza style crossover favours internal nodes over leaf nodes,
but that does not change the fact that smaller trees are exchanged more often.
Therefore single comparators are exchanged quite frequently when using these
grammars, whereas leaf nodes rarely get exchanged. So we performed an addi-
tional experiment where crossover was changed to select nodes in the tree with an
equal probability to see the effect of exchanging even smaller bits of information.
The results are shown in Table 5. Now that single nodes can be exchanged more
frequently, the results have completely changed and improved for all grammars.

Using crossover which selects from all nodes with equal probability is useful
for this specific problem as single numbers are exchanged frequently. If more rules
are used which created bigger subtrees in the non-recursive part, this crossover
might have a negative effect.

Experiment 2 indicates that the structure of the grammar has only little
influence in performance, as G2 shows similar results as G4 and G5. Adding the
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Table 5. Results for sorting network with 12 inputs with subtree crossover that chooses
from all nodes in the tree with equal probability.

Average best fitness ± Std dev Median Best Success ratio

G1 9.719 ± 8.621 8.58 0.50 20 %

G2 11.809 ± 11.209 8.58 0.53 22 %

G3 11.767 ± 12.827 8.58 0.53 18 %

G4 12.725 ± 11.410 11.56 0.53 16 %

G5 13.286 ± 11.907 11.55 0.52 16 %

extra rule <nodes> improved the performance, because it encapsulated a small
piece of information for the problem and was exchanged more often than leaf
nodes. Changing the crossover improved the performance on the sorting network
problem, but for grammars where the non-recursive part might express a deeper
derivation tree, it might not have any effect.

5 Conclusion and Future Work

This paper presented some general concepts on how to design a grammar, espe-
cially possibilities on how to write grammars that produce variable length pheno-
types, so that the derivation tree does not become “list-like”. The grammars were
analysed in terms of the behaviour of the applied search operators. Crossover
and mutation were able to exchange arbitrary amounts of genetic material within
these trees in grammars that created tree-like structures. The second set of
experiments analysed the impact of grammar design for tree based GGGP on
performance on sorting networks, particularly in the definition of recursive rules
for derivation tree based operators. Although the Koza style crossover helps
exchange bigger amounts of genetic material, it interferes with the search in this
problem instance. If Koza’s crossover should be used for tree based grammar
guided GP systems, cannot be inferred by these experiments alone. It might be
beneficial for problems which create bigger subtrees in the non-recursive part of
a grammar.

Nevertheless, the results of the experiments showed that the structure of
the underlying derivation tree created by a grammar seems to have no or only
little effect on the search given the search operators employed in this study, if
the grammar is not biased towards certain solutions and the language of the
grammars is equivalent. This conclusion can be seen positive, as this means that
no particular attention has to be paid to this aspect, when designing grammars.

Further investigation is needed, if grammars with non-recursive parts that
create bigger subtrees than the rule <nodes>, show the similar results.

Acknowledgments. This research is based upon works supported by the Science
Foundation Ireland, under Grant No. 13/IA/1850.
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Abstract. We develop a tree-based genetic programming system capa-
ble of modelling evolvability during evolution through machine learning
algorithms, and exploiting those models to increase the efficiency and
final fitness. Existing methods of determining evolvability require too
much computational time to be effective in any practical sense. By being
able to model evolvability instead, computational time may be reduced.
This will be done first by demonstrating the effectiveness of modelling
these properties a priori, before expanding the system to show its effec-
tiveness as evolution occurs.

Keywords: Genetic programming · Evolvability · Meta-learning ·
Artificial neural networks

1 Introduction

Genetic Programming (GP) [17] would be more effective and efficient if we could
select based on how individuals may contribute to evolutionary processes, not
solely based on their fitness. In other words, it would be useful to select individ-
uals that may contribute more to the fitness of future generations, individuals
that are more evolvable. Evolvability indicates the capacity of an individual
to improve its fitness [1]. We opt to define evolvability as the probability of a
mutation operation resulting in a strictly positive fitness change, the reasoning
for which is detailed in Sect. 3. However, it is expensive to measure; it is com-
putationally impractical to measure evolvability for individuals and then use
evolvability to aid selection processes.

Biologically, evolvability has been defined as the ability of a population to
respond to selection [5]. In his review of other works, Pigliucci [23] comes the
conclusions that evolvability, however it may be defined, itself evolves, but there
is a lack of evidence to see if this is caused by natural selection or other evo-
lutionary mechanisms. Wilder & Stanley [32] show adaptive processes in gene
regulatory networks produce evolvability individuals, but divergent processes
produce evolvable populations. Altenberg [2] notes that evolutionary computa-
tion brought about more biological-based evolutionary interest in evolvability;
evolvability in organisms was simply presumed to exist. Altenberg further notes
that there were 170 papers published in 2013 alone that mention the evolution
of evolvability. Evolvability in genetic programming refers to the ability of an

c© Springer International Publishing Switzerland 2016
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individual or population of programs to produce higher fitness individuals [1].
To encourage more evolvable programs, it would be beneficial to quantify evolv-
ability, and exploit these quantities when judging fitness. Kattan & Ong [16]
use Bayesian inference to adjust fitness functions in order to encourage evolv-
ability. Using genotype-phenotype or genotype-fitness mappings could also prove
beneficial to the study of these properties [19]. Properties related to evolvabil-
ity and robustness, such as self-repair, may emerge in artificial systems without
modifying the underlying systems to encourage their emergence [22].

We model evolvability using GP properties that are computationally inex-
pensive to generate, and, once such models are developed, evolvability may be
calculated and utilized in the GP selection process to improve evolution. This is
accomplished by generating properties related to evolvability, as well as evolv-
ability itself, a priori for a specific problem, then developing a machine learning
model for evolvability. Evolvability may then be calculated during evolution. GP
may be utilized to solve the problem while predicting evolvability values for indi-
viduals, which may then be used to influence selection. Section 2 reviews related
literature, Sect. 3 describes the problem domain, the system to be used, and the
risks in regard to the applicability of the method. Section 4 describes the specific
problem parameters that are examined, the design of the experiments that are
conducted, presents the results, and discusses the results and future work.

2 Related Work

In genetic programming, to maximize fitness, we favour programs that currently
have greater fitness. There are various selection methods [17,24] that apply vary-
ing amounts of selection pressure. However, selection is inherently driven by
differences in fitness. This process does not directly consider structural proper-
ties of programs, such as bloat [25]. Instead, selection is meant to allow more
desirable structural properties, which allow greater fitness, to emerge [3]. The
process further ignores how changes in genotype changes the phenotype [7],
how this affects fitness, and how this might skip optima in the fitness search
space [27]. Evolvability is related to these structural properties; by analyzing
their interrelatedness, we should gain insight to improve genetic programming
by accommodating them, in lieu of ignoring them, by measuring and selecting
for evolvability. Basset et al. [4] postulate bloat occurs because offspring are not
effectively inheriting the phenotype traits from their parents. The notion is that
ideally, we want to perform a cross-over on the phenotype, not the genotype.

Altenberg [1] describes a method of measuring evolvability through a trans-
mission function, deriving a formula that describes the probability that a popu-
lation (not an individual) will produce an individual that has greater fitness than
any in the existing population. Essentially, one considers all possible results of
genetic operations on all individuals in a population, and computes the probabil-
ity that an individual will be produced whose fitness surpasses that of the existing
population. This is an intuitive method of measuring evolvability; an individ-
ual is highly evolvable if its potential offspring are more likely to be more fit.
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It also requires extensive computations; instead of conduction one genetic oper-
ation on an individual, we need to conduct all possible operations, on each
individual. Then, each fitness case needs to be evaluated for each such oper-
ation. Thus, measuring evolvability in this way would require many orders of
magnitude more computational effort than standard GP.

Pragmatically, exhaustive searches to measure evolvability can be improved
upon by using sampling or estimation [29]. This is much more computationally
feasible, but the same question is posed when using exhaustive search; why not
simply keep the resulting most fit individual? Sampling still adds a significant
computational burden, as sufficient samples are required to estimate evolvabil-
ity, but even adding a single sample doubles the computational time required in
standard GP. As such, evolvability is too computationally expensive to measure
directly. Instead, current literature efforts to exploit evolvability do so indirectly,
without having to measure it, such as defining new evolvability metrics [28] and
characterizing evolvability’s relatedness to other properties [12]. There has been
some success in determining how much to select for evolvability, but only under
limited circumstances [30]. Li et al. [18] have had success balancing fitness selec-
tion with diversity metrics, using multi-objective optimization. Multi-objective
approaches using Pareto dominance or hypervolume indicators, with various
objective criteria, are well-studied in the literature, generally targeting concepts
related to evolvability, such as diversity, rather than evolvability itself [9,26].

3 Approach

An extendible synthetic domain will be most useful for this work. White et al.
[31] propose a set of benchmark problems to replace ageing, simple problems.
Among the list of new synthetic, extendible problems is the order tree problem
[13]. A synthetic, extendible problem such as the order tree problem allows for
tunable problem difficulty, thus the conditions under which the use of evolvability
is most beneficial may be more easily examined.

An order tree domain may be defined as having a size of n. Function nodes
and terminal nodes take on values of whole numbers on a range of [0, n − 1].
Function nodes all take two arguments. The fitness of a solution is calculated
in a top-down fashion. A node will add 1 to the total fitness of the solution if
its numeric value is strictly greater than its parent’s numeric value, and, in the
restricted version of the order tree problem, only if the parent is also adding to
the total fitness of the solution. Thus, the optimal solution is an ordered tree,
where the root is the functional node valued at 0, its children are valued at 1,
and so on. The order tree problem is useful because the difficulty is tunable
to n, where difficulty may be increased by increasing n, thus increasing our
functional and terminal set. Furthermore, node dormancy is easily determined
as a by-product of fitness evaluation. Problem difficulty may be further tuned
by adjusting how much fitness is contributed by each node; by weighing higher-
valued nodes more greatly (i.e., by increasing fitness greater than 1 for any given
node) the fitness structure may be changed. This alters the fitness landscape, and
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encourages higher-valued nodes to be selected, even though this interferes with
finding the optimal solution. A more evolvable solution would still favour lower-
valued nodes. This allows for tuning the desirability of evolvability. Tuning the
order tree problem in these two ways will demonstrate the problem conditions
for the effectiveness of the proposed system.

This work will focus on one representation of GP, tree-based representation,
and the modelling of evolvability a priori. This will indicate if modelling evolv-
ability is viable, and may be extended to dynamically built models, and data
and model sharing between related problems. Eventually, the goal is apply the
system to real-world problems where GP is known to excel relative to other
algorithms or human efforts, in order to obtain better solutions more quickly.
There are many ways to expand after initial efforts in controllable problems are
shown to be functional; it may be certain classes of problems are more receptive
to the methodology, alternate GP representations may be preferred, or certain
structural properties are much more significant than others, and each of these
may not be independent with another.

As we are concerned with modelling evolvability, structural properties of
individuals in GP which may be easily measured (that is, without a significant
increase in computational resources) are of interest. There can be significant sec-
tions of individuals in GP which, in addition to not affecting fitness, provide no
change in output, regardless of input. These sections are referred to as introns
in GP literature. Introns may be categorized by their behaviour; Nordin et al.
[21] propose several categories. They are categorized based on whether their
lack of contribution of fitness is due to the fitness cases themselves, or apply to
the entire problem domain, and whether cross-over operations can introduce a
change in fitness. Identifying all introns is computationally expensive. However,
it is computationally inexpensive to identify a certain type of intron, that occurs
when a code section is never executed for any fitness case; these are dormant
sections [14]. In tree-based or cartesian GP, these nodes are referred to as dor-
mant nodes, and can account for the majority of the nodes, around 90 %-95 %
[14,20]. Despite the apparent uselessness of dormant sections of code, dormancy
is helpful; if dormant nodes are detected and removed, performance actually
suffers, and more generations are required to reach comparable solutions [14].
Locality is another structural property in GP, relating to evolvability, robustness,
and genotype-phenotype mappings. A problem has high locality if neighbouring
genotypes correspond to neighbouring phenotypes [7]. High locality problems
are generally easier to solve. Low locality indicates a more rugged search space,
which indicates a more difficult search. Furthermore, the ruggedness describes
how robust and evolvable the search space is [8,15,27,29]. Neutral genetic oper-
ations represent plateaus on the search space. Evolvability and robustness act as
counterparts; steep inclines indicate great fitness gains moving toward optima,
but also great fitness losses moving away from optima. There is motivation to
organize all the structural properties together, to analyze their interactions, for
they all affect problem difficulty, the efficiency of the search, and the efficacy of
the search.
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We propose a narrower scope of tree-based GP. We further limit to algo-
rithms available in the Waikato Environment for Knowledge Analysis (WEKA),
an accessible machine learning software suite [10]. This would allow for rapid
experimentation on a number of different algorithms, as well as some convenient
visualization and analytical tools that may yield insight into the nature and
relatedness of the structural properties of the individuals. The predicted evolv-
ability of an individual shall be used to guide the selection process in various
ways, to find the most beneficial usage of evolvability. Such a system would only
indicate that, with enough data generated a priori for a specific problem, models
for structural properties could be built which can benefit evolution.

4 Experimental Design and Results

We design and implement a tree-based GP system that records measurements of
evolvability by sampling, along with records of other structural properties, such
as dormancy, per every generation that occurs during evolution. Further, we
model evolvability using these records, then exploit their predicted values dur-
ing evolution, in order to develop a faster and more efficient GP system. This
shall be accomplished by modifying an existing tree-based GP system to track
and record additional structural elements, for specific problems. Once generated,
evolvability will be modelled using machine learning algorithms. These models
will be incorporated into the existing tree-based GP system, to predict evolvabil-
ity without the need to sample them. Then, the predicted values will be used to
guide selection beyond the standard fitness measurements. Initially, we consider
the various structural properties of solutions generated by genetic programming
for a small parity problem, and a contrived regression problem consisting of
a single input variable. Once this system is verified to yield improvements in
solution accuracy and efficiency for these simpler problems, the system will be
modified further to develop models for evolvability as evolution actually occurs.

We modify a minimalist version of Open BEAGLE, referred to as BEAGLE
Puppy [6]. Open BEAGLE is an evolutionary computation framework, developed
in C++. BEAGLE Puppy utilizes the core GP algorithms of Open BEAGLE,
but is simpler to modify for our purposes, since it is minimalist. It contains
a tree-based GP implementation of simple parity and regression problems. Our
methodology requires editing the selection process, additional tracking of various
statistics (such as dormancy), sampling for evolvability, and eventually, dynamic
modelling of evolvability. These are easier to implement by editing core GP algo-
rithms. Furthermore, we are afforded more flexibility by working with a lesser
amount of code. Another advantage is working with an efficient object-oriented
language. To sample for evolvability, more fitness cases need to be evaluated,
which is already the most computationally intensive part of GP. Object-oriented
code allows for more easily reusable code; as we expand into more difficult prob-
lem domains, we can reuse our efforts building simpler ones.

Modelling evolvability, however, requires faster machine learning algorithms
than evolutionary computation provides. These are provided by a machine learn-
ing suite, the Waikato Environment for Knowledge Analysis (WEKA) [10].
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This implementation can be expanded to allow models to be generated by WEKA
as evolution occurs. The accuracy of these models can be monitored until they
are sufficiently accurate, in order to stop sampling evolvability, and instead, pre-
dict it. Sampling may still be interleaved to ensure the models remain accurate.

4.1 Sampling Accuracy

This subsection describes the effectiveness of altering the fitness mechanism of
standard GP to consider evolvability in various ways. This will demonstrate the
effectiveness of using sampled evolvability to improve GP. The significance of
evolvability on selection will be monitored, so the optimal amount of selection can
be used. Once the necessary conditions for the effectiveness of using evolvability
in selection has been determined, it can be used to gauge the effectiveness of
modelling evolvability.

Calculating precise evolvability is computationally infeasible for practical
genetic programming. Instead of calculating all possible results of all possible
genetic operations for any given individual genetic program, we elect to instead
conduct sampling, where a random subset of all possible genetic operations are
applied. Sampling can approximate the precise calculation of evolvability for a
fraction of the computational cost. How many samples are necessary to produce
a reasonable approximation of the correct evolvability, such that selection errors
will occur less than 5 % of the time? How accurate must the approximation be
to achieve an improvement when using evolvability to guide selection?

In order to answer these questions, we must first define more experimental
parameters. Several evolvability metrics exist. We opt to define evolvability as the
probability of a mutation operation resulting in a strictly positive fitness change.
This may differ from other metrics in two ways: probability of change instead of
magnitudes of change, and excluding neutral changes. Preliminary experiments
indicated that selecting for the probability of a positive fitness change were more
productive than when neutral changes were included. Similarly, they indicated
that using probabilities instead of average magnitude of fitness change were more
productive. Mutation operations are considered, in order to evaluate evolvability
of individuals without considering how the gene pool of the population would
affect measurements, as it would measuring evolvability using cross-over opera-
tions. More samples are required to achieve a good approximation if we consider
the average magnitude of change of fitness. Furthermore, selecting for greater
positive magnitude of fitness change will heavily bias evolution toward lower
fitness individuals, as they have the greatest capacity for fitness improvement.
We discount neutral changes, as this encourages a bias toward large trees in the
order tree problem, as they have many possible neutral mutations. Considering
neutral changes to be equivalent to positive ones encourages robustness, but not
evolvability.

To determine how many samples are necessary to achieve a reasonable
approximation of evolvability, we conduct the following experiment. We vary
the number of samples while keeping other experimental conditions consistent,
and compare the sampled evolvability to the strongest approximation (using the
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Table 1. Evolutionary parameters for varying the number of samples.

Population Size 50 Crossover Probability 0.9

Tournament Size 3 Probability of Non-Terminal Crossover 0.9

Min Initial Depth 3 Standard Mutation Probability 0.05

Max Initial Depth 6 Mutation Max Regen Depth 2

Max Depth 6 Swap Mutation Probability 0.05

Initial Grow Probability 0.5 Probability to Mutate a Function Node 0.5

largest sample size). Even for a smaller order tree problem, it is still computa-
tionally infeasible to calculate the correct evolvability. By selecting for fitness,
higher fitness individuals are more likely to occur. If we select for evolvability,
more evolvable individuals are likely to occur.

The experimental parameters are shown in Table 1. 10000 runs with different
random seeds are completed for standard GP, and 1000 runs for everything
else. The max depth was raised for the 7th and 8th order tree problems. These
parameters are consistent throughout the experiments in this work. We define
the mean absolute error of evolvability as follows:

MAE =
1
n

∗
n∑

k=1

|e′
k − ek| (1)

where n is the number of runs, e′
k is the measured evolvability for 1000 samples,

and ek is the measured evolvability of the indicated number of samples.
Figure 1 shows that a reasonable approximation for evolvability occurs when

the number of samples is about 100. Similar experiments for higher order tree
problems show that holds true. Since the purpose of evolvability for this system
is to be used with an altered fitness function in order to guide selection, the
required accuracy of sampling and modelling evolvability is proportional to the
actual influence evolvability has on selection. Therefore, it is necessary to choose
precisely how evolvability will guide selection in order to determine how many
samples are sufficient to ensure accurate selection. This can be evaluated by

Fig. 1. Mean Absolute Error of Evolvability for number of samples compared to 1000
samples.
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using the modified fitness function, and compare which individuals are selected
when using a reduced number of samples (or a model) for evolvability with
individuals selected using a large number of samples. Discrepancies indicate that
an individual was incorrectly selected.

4.2 Selection of Evolvability

We need to determine how to select for evolvability. To determine the optimal
selection amount, we conduct the following experiment. We vary the standard
GP selection mechanism by using the sampled evolvability in various ways, while
keeping other experimental conditions consistent. There are several methods to
guide selection with evolvability. One is a threshold for fitness; if fitness of two
individuals falls within a specific threshold, then we select the one with greater
evolvability. Another is a weighted sum; we sum the fitness and evolvability,
each weighted by a specified amount, and select individuals according to their
weighted sum. We can allow a generational modifier for using a weighted sum;
as the number of generations increase, we select less strongly for evolvability.
Using a weighted sum and a generational modifier, we have, formally:

F ′ =

[
(f + e∗p(gmax−g)

gmax
) if g < gmax

f otherwise

]
(2)

where F ′ is the adjusted fitness function, f is the standard fitness function, e is
evolvability, p is the weight parameter, gmax is the maximum generation para-
meter, and g is the current generation. This translates to the fitness function
being modified by the probability of a change being positive multiplied by the
weight parameter for the initial population, and where this modifier linearly
approaches zero as the generation increases. Upon reaching zero, the modifier
becomes zero for the remaining generations, rendering evolvability uninfluen-
tial. This is desirable because evolvability should become less significant as the
number of generations increase, as standard fitness approaches optimal values.
Maximizing standard fitness becomes the only goal when evolution completes.
Eventually, we would just want to select for standard fitness. We conduct experi-
ments for different Order Tree problems under varying selection pressures (vary-
ing the weight and maximum generation parameters). The other experimental
parameters are identical to the previous experiment, as shown in Table 1.

Figures 2, 3, and 4 shows the average maximum fitness as the generation
increases, for a subset of the tested problems, for clarity. This indicates that
using modified fitness functions that use evolvability in addition to standard
fitness outperform using standard fitness functions alone. They indicate the gen-
eral appropriate proportion of evolvability to use for selection, indicated by the
better performing selection pressures. Furthermore, using a greater weight para-
meter is still useful, provided that a maximum generation parameter is specified,
so fitness becomes more dominant as individuals approach higher fitness values.
Using extreme values for a weight parameter, even tempered by small maximum
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Fig. 2. Fitness over generation for varying selection pressures, for the Order Tree 4
(left) and 5 (right) problem. ‘p’ indicates the evolvability weight, and ‘g’ indicates the
gmax value. Error bars indicate the 95 % confidence interval of standard error of the
mean. SGP refers to standard genetic programming.

Fig. 3. Fitness over generation for varying selection pressures, for the Order Tree 6
problem.

Fig. 4. Fitness over generation for varying selection pressures, for the Order Tree 8
problem.

generation parameter, did not produce fit results. For the higher difficulty prob-
lems, a greater emphasis on evolvability improves the results. We also note that
selection based on pareto-dominance, where fitness and evolvability are the two



224 B. Fowler and W. Banzhaf

Table 2. Probability of an incorrect selection comparing 100 samples with 1000 samples
under various modified fitness functions over 100 runs.

Order p g Mean selection error

4 7 10 0.34495 %

5 10 N/A 2.6304 %

6 5 N/A 3.6288 %

7 10 N/A 4.338 %

8 20 40 0.34230 %

objectives, produces worse results than standard GP. A subset of all the tested
values for varying selection pressures are shown, for clarity.

We see in Table 2 that under the varying selection pressures, that using 100
samples for evolvability differs from using 1000 samples less than 5 % of the time.
The tested selection pressures were some of the top performing selection methods
for their order of problem, as shown in the previous experiments. Establishing a
performance baseline for evolvability selection pressure allows us to proceed to
modelling evolvability.

4.3 Modelling of Evolvability

Once the effectiveness of using sampled evolvability has been demonstrated and
the evolvability selection methods have been evaluated, we must now build a
model for evolvability and demonstrate its effectiveness. Firstly, we must describe
the attributes we use to build the machine learning models for evolvability. We
record a number of attributes associated with individuals. These include gen-
eration, tree height, tree size, functional & terminal frequency, number of dor-
mant nodes, dormancy ratio, previous standard fitness, fitness change, and stan-
dard fitness. These may all be recorded for each individual without significant
computational costs beyond standard fitness calculation. These attributes were
subjected to attribute significance testing using WEKA, using the correlation-
based filter method Correlation-Based Feature Selection [11], and further tests
on WEKA classifiers. The most significant attributes were determined to be gen-
eration, size, function frequency, terminal frequency, number of dormant nodes,
previous fitness, and fitness.

WEKA offers rapid use of many machine learning classifiers. In order to build
a model, we must provide training data and choose a classifier. We can generate
training data by running standard GP with the addition of evolvability sam-
pling and selection; this will produce individuals which will be similar to those
that will occur when using the model system, ensuring the models will be more
accurate in practice. We can evaluate the effectiveness of the different models
for evolvability by comparing the mean absolute error between them, also com-
paring this with the mean absolute error of the evolvability by varying number
of samples. Various experiments indicated that a number of machine learning
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Table 3. Probability of an incorrect selection comparing a multilayer perceptron model
constructed with a varied number of training instances (themselves constructed under
a varied number of evolvability samples) with 1000 evolability samples under the 4th
Order Tree problem using the p7 g10 fitness function over 1000 runs.

Samples Training instances Mean selection error

1000 2000 0.487524 %

1000 4000 0.488446 %

1000 8000 0.483173 %

1000 40000 0.460605 %

models were appropriate for this task, having similar mean absolute error rates.
We select the multilayer perceptron (an artificial neural network) for verifying
the effect of the number of training instances and number of evolvability samples
are required for acceptable mean absolute error rates. Acceptable mean absolute
error rates are those which indicate that erroneous selection will occur less than
5 % of the time. We do this by varying the number of training instances, and the
amount of evolvability samples used to generate those instances, and measuring
the frequency of selection error compared with 1000 samples of evolvability.

Once the conditions required for acceptable selection error rates have been
determined, we test the system by comparing the top performing selective condi-
tions in each order tree problem, compared with standard GP and the improve-
ments made by using sampled evolvability, to indicate that modelling evolvabil-
ity and modifying the standard fitness function, we can improve GP. This will
indicate that modelling evolvability is viable.

We see in Table 3 that relatively few training instances are required to build
an accurate model of evolvability. Very few selection errors are made when the
evolvability used to train the model is accurate; that is, when a large number of
samples of evolvability are taken to generate the model. We see in Fig. 5 that the
models perform sufficiently well in practice. They are a statistical improvement
over standard GP, and fare about as well as sampled evolvability. Even as few as
1000 training instances can build a successful model. Since a training instance
is generated for each individual in the population for each generation, a single
run with these settings generates 5000 training instances.

In Figs. 6, 7, 8 and 9 we see that this trend holds in higher Order Tree
problems; modelling evolvability offers a statistically significant improvement
over standard GP, and performs about as well as using samples to calculate
evolvability. Using models built 1000 samples of evolvability even performs better
than continually sampling evolvability 100 times for each individual.

In conclusion, we have demonstrated the necessary amount of evolvability
sampling to generate a sufficiently accurate calculation of evolvability. We have
further demonstrated how evolvability may be used to modify the standard
fitness function, in order to encourage the selection of evolvable individuals,
and how this may generate an overall increase in standard fitness. We have
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Fig. 5. Fitness over generation for ANN models built from various amounts of training
instances and various amounts of evolvability samples for the Order Tree 4 problem. ‘s’
indicates the number of evolvability samples, and ’I’ indicates the number of training
instances.

Fig. 6. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 5 problem.

Fig. 7. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 6 problem.

Fig. 8. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 7 problem.
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Fig. 9. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 8 problem.

demonstrated how many instances and samples are required to build a suffi-
ciently accurate model of evolvability, in order to predict it to guide selection.
Finally, we have shown that modelling evolvability and using it in selection allows
for a similar improvement in overall fitness than simply sampling for evolvability.
The additional number of evaluations required to sample evolvability to guide
selection is prohibitive. The extra computational time required to predict evolv-
ability using an external program is prohibitively computationally expensive, as
well. Furthermore, its use is limited in this experiment by gathering training
instances a priori. However, the results demonstrate that predicting evolvability
from relatively few training instances with a relatively few number of samples
still leads to improved fitness. This indicates the viability of modelling evolvabil-
ity in order to improve genetic programming. In future work, the system will be
modified to generate training instances for evolvability periodically while evolu-
tion occurs, in order to build and update models for evolvability periodically, so
that more performance gains can be achieved. This work lays a foundation for
the success of such a system.

References

1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances
in Genetic Programming, pp. 47–74 (1994)

2. Altenberg, L.: Evolvability and robustness in artificial evolving systems: three per-
turbations. Genet. Program. Evolvable Mach. 15(3), 275–280 (2014)

3. Banzhaf, W.: Genetic Programming and Emergence. Genet. Program. Evolvable
Mach. 15(1), 63–73 (2013)

4. Bassett, J.K., Coletti, M., De Jong, K.A.: The relationship between evolvability and
bloat. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation. GECCO 2009, NY, USA, pp. 1899–1900. ACM, New York (2009)

5. Flatt, T.: The evolutionary genetics of canalization. Q. Rev. Biol. 80(3), 287–316
(2005)
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Abstract. SMT solvers include many heuristic components in order to
ease the theorem proving process for different logics and problems. Han-
dling these heuristics is a non-trivial task requiring specific knowledge
of many theories that even a SMT solver developer may be unaware of.
This is the first barrier to break in order to allow end-users to control
heuristics aspects of any SMT solver and to successfully build a strat-
egy for their own purposes. We present a first attempt for generating
an automatic selection of heuristics in order to improve SMT solver effi-
ciency and to allow end-users to take better advantage of solvers when
unknown problems are faced. Evidence of improvement is shown and
the basis for future works with evolutionary and/or learning-based algo-
rithms are raised.

Keywords: SMT · Strategy · Z3 · Learning · Tuning · Evolutionary
algorithm · Search-based software engineering

1 Introduction

Optimization tools have played a fundamental role in many fields of Software
Engineering during the last fifteen years. The application of various optimization
techniques in order to solve specific software engineering problems and improve
software performance is now a common practice. The concept of Search-Based
Software Engineering (SBSE) has been introduced and lead Mark Harman to
define a challenge [6] entitled “Search for strategies rather than instances”. This
challenge aims at avoiding to use specific software engineering optimization algo-
rithms to solve given instances of specific problems, but rather to look for more
global strategies. Moreover, another related purpose is to handle efficiently new
unknown problems that share properties with already identified problem classes.
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In theorem proving, SAT modulo theory (SMT) is a generalization of the
famous satisfaction problem SAT for logical formulas over one or more theories:
Booleans variables may be replaced by formulas expressed over different theories
or data structures (e.g. real arithmetic, arrays...) in order to validate a logical
formula. The following formula is such an example ∃a, (a < 10 ∨ a = 10 ∨ a >
10) ∧ 2a = 20 where a is an integer. Therefore, SMT solvers need to combine
several heuristic algorithms to improve proof efficiency when facing different
problems. However, combination of heuristics selected for a given problem (class
of problems) may be inefficient for an unexpected problem. Hence, de Moura
and Passmore [9] defined the Strategy challenge in SMT solving, whose goal is
to propose theoretical and practical tools allowing end-users to exert strategic
control over heuristic aspects of high-performance SMT solvers. End-users may
then generate their own selection of heuristics in order to solve their own prob-
lems, without depending on: (1) the built-in heuristics included during the solver
building process, (2) the selection of a SMT solver that better suits a specific
problem, and (3) the performance of solvers for problems that solvers designers
did not have in mind. Note that most of the time, end-users do not have the
required knowledge in order to use properly all the heuristics features in SMT
solvers. This lack of knowledge is the starting point of our work, whose aim is to
automatically generate solver strategies. It corresponds to the automatic selec-
tion and ordering of the heuristics processes in order to check the satisfiability of
a SMT formula. Improving solver strategies should improve the solver efficiency
but also should allow the end-user to handle identified classes of problems.

Therefore, this paper attempts to automatically generate strategies to
improve performance of the SMT solver Z3 [8], one of the current well-known
SMT theorem provers. Inspired by previous works on parameter setting [7,10],
we use here an evolutionary algorithm (EA) to achieve the strategy tun-
ing/configuration. Given a strategy pattern, the EA aims at adjusting some
components as well as some numerical parameters of the strategy.

2 Strategies and SMT Logics

2.1 Strategies

In SMT, the notion of strategy is still hard to define. According to [9], we may
define a strategy as: a set of heuristics processes that helps to reduce the search
space and/or the way how it is explored in order to find well-known solvable
instances in a set of problems. The aim of a strategy is to guide the prover when
searching for proof of satisfiability. Figure 1 presents a simplified grammar that
summarises the strategy language of Z3. There are 4 terminal elements:

1. A Solver (Tactic) checks the satisfiability of the problem. Any solver can be
defined as:

S : Φ × Π → I (1)

where Φ is the set of all SMT goals, Π is the set of all parameters vectors,
and I = {sat, unsat, unknown, timeout, fail} is the set of possible return
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1 strategy = (tactical <tactics>) | solver

2 <tactics> = (tactical <tactics>) |

3 <tactics> <tactics> |

4 <tactic>

5 <tactic> = probe | heuristic | solver

Fig. 1. Z3 Strategy Language Grammar.

values for a solver. The application of a solver S using its own parameter
vector α ∈ Π to a goal G ∈ Φ is defined as:

S(G,α) = i ∈ I (2)

2. A Heuristic (Tactic) transforms the problem into a sequence of subproblems.
Any heuristic can be defined as:

H : Φ × Π → Φn × Ω (3)

where Ω is a satisfiability model or an unsatisfiability proof converter from
the generated subgoals to the original goal. Let Λ be the set of all satisfiability
models or possible unsatisfiability proofs for each G ∈ Φ. Ω can be defined as:

Ω : Λn → Λ (4)

We define the application of a heuristic H with parameter vector α ∈ Π to a
problem or goal G as:

H(G,α) = G1, G2, . . . , Gn ∧ Ω(G1, G2, . . . , G3) (5)

3. A Probe (Tactic) checks if in its current state the problem has some property.
Let Σ be the set of all possible probes and J = {true, false} be the set of
Boolean truth values. A probe is formalized as:

P : Σ → J (6)

A probe P applied to a goal G is defined as:

P (G) = j ∈ J (7)

4. Tacticals are combinators that define how tactics are applied (e.g., time-out,
parameter set, behavior according to problem properties) and/or combined.
Using a tactical over a set of tactics generates a new complex tactic. Tacticals
are defined as:

C : 2T → T (8)

where T is the set of all tactics. We define a tactical C over a set of tactics τ as:

C(τ) = t ∈ T (9)
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A strategy is a set of tactics structured by combinators (i.e., tacticals). At least
one solver must be used in the strategy in order to always generate a satisfiabil-
ity result. Semantically, Z3 does not make any difference between the different
terminal types. Since they can be considered as tactics, they are processed sim-
ilarly. All tactics are also seen as a set of constraints. Moreover, when a set of
constraints is applied to a problem or goal, a subproblem set is always returned.
Satisfiability states or Boolean values presented above are indeed the translation
of the returned subproblem. Figure 2 presents semantics rules for Z3. Note that
a goal is a set of SMT formulas together with their attributes. Then, a tactic is
applied to a goal in order to return one of the following subproblem set.

goal = formula sequence × attribute sequence
tactic = goal → return
return = empty → model

| false → proof
| goal → goal sequence × modelconv × proofconv
| fail

modelconv = model sequence → model
proofconv = proof sequence → proof

Fig. 2. Semantics rules in Z3 theorem prover

1. Empty Set : when a tactic determines if a problem or goal is satisfiable, an
empty set is returned. Other tactics applied to this set also return the empty
set. This set is related to the sat value that Z3 prints when it terminates
the analysis of a problem. This value is associated to a model that proves the
satisfiability of the problem.

2. False set : if the tactic computes an unsatisfiable problem/goal, a false set is
returned. This set is similar to empty set but for the unsat value and is also
associated to a proof.

3. Goal set : when a tactic is applied to a problem, the returned subproblem can
be:
(a) the original problem G, if the applied tactic does not change initial goal;
(b) or a new subset G′.

4. Fail set : if the tactic does not have all requirements to properly work, a fail
set is returned and the original goal is not processed. This may have two
consequences:
(a) it leads to a global fail result if tactics are joined by conjunction. Z3

interprets it as an unknown result.
(b) it skips the failing tactic if tactics are joined by disjunction, using the

next tactic over the original problem or goal G.

Finally, modelconv and proofconv are converters which allow the prover to design
a proof for (un)satisfiability from the subgoals set to the original goal. At the



234 N. Gálvez Ramı́rez et al.

end of the execution, if a final sat or unsat result could not be inferred from all
the subgoals, Z3 interprets this as unknown or as timeout (if the global time-out
was reached).

Syntactically, there exist two ways to apply a strategy (see Fig. 3). In the first
case (Fig. 3a), if the end-user strategy is not successful, the default Z3 strategy
is applied. In the second case (Fig. 3b), the Z3 default strategy is completely
replaced by the end-user strategy. Since we want to create new alternatives to
the Z3 default strategies, we use the second syntax in order to automatically
generate and evaluate strategies.

1 <Problem header and assertions>

2 (apply strategy)

3 (check-sat)

(a) Conjunction between a new strategy
and Z3 default strategy.

1 <Problem header and assertions>

2

3 (check-sat-using strategy)

(b) Replacing Z3 default strategy with a
new strategy.

Fig. 3. Z3 syntax to apply strategies.

Example 1. Figure 4 shows a simple problem with a strategy defined using the
SMT-LIB language. Line 1, an integer variable a is declared; the next two lines
are assertions which represent the following goal declaration:

G = ∃a : {(a < 10 ∨ a = 10 ∨ a > 10) ∧ 2a = 20}

In this problem, one probe, two heuristics tactics, and two solver tactics are
applied in a linear conjunctive order strategy (between lines 5 and 11). The
solver interprets the strategy as follows:

1 (declare-const a Int)

2 (assert (or (< a 10 ) (= a 10) (> a 10))

3 (assert (= (* 2 a) 20))

4 (check-sat-using

5 (and-then

6 (fail-if not(is-ilp))

7 simplify

8 split-clause

9 (try-for sat 100)

10 (using-params smt :random-seed 100)

11 )

12 )

Fig. 4. Simple problem in Integer Arithmetic Modulo Theory with an end-user strategy.



Towards Automated Strategies in Satisfiability Modulo Theory 235

1. At line 6, the probe is-ilp checks if the problem is in an Integer Linear
Programming (ILP) form. The result of the probe will be processed by the
tactical fail-if as fail if the probe result is true, or as the original goal if it
is false. Therefore, using the negation of the probe, (not is-ilp) allows to
apply the designed strategy only when the goal is in ILP form.

2. The first applied heuristic (simplify, line 7), reduces the problem and gives
the following subgoal:

G′ = ∃a : {(¬(a ≥ 10) ∨ a = 10 ∨ ¬(a ≤ 10)) ∧ a = 10}

3. The heuristic split-clause (line 8) splits disjunctions into a subgoal set,
and returns the following:

G′
1 = ∃a : {¬(a >= 10) ∧ a = 10}

G′
2 = ∃a : {a = 10 ∧ a = 10}

G′
3 = ∃a : {¬(a <= 10) ∧ a = 10}

4. The solver sat (line 9) cannot modify any subproblem within the timeout
of 100 ms specified in the tactical try-for, therefore, it returns its input
subgoal set.

5. The last tactic smt (line 10) modifies and solves the whole set, and returns
the following set: G′

1 = false,G′
2 = empty,G′

3 = false. The use of the
tactical using-params allows to change the default value of the random seed
generating a new parameter vector for the smt solver.

The tree in Fig. 5 sketches the application of the strategy tactics. At the end,
Z3 can rebuild the original disjunctive problem and returns an empty set as the
final result. Finally, the translation of this subset is the expected sat output.

Fig. 5. Strategy application into the linear arithmetic modulo arithmetic example.
Numbers over arrows refer to line numbers of tactics of the example of Fig. 4.

The language for end-user strategy design is also found in the source code
of the Z3 (default) strategies. Therefore, there exists a common structure for
end-users and developers that could be optimized in order to improve software
performance and to satisfy both expectations.
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2.2 SMT Logics

The SMT-LIB provides an extensive set of benchmarks and defines common
standard processes. The SMT-LIB standard (version 2.5) defines concepts,
formal languages, and a command (script) language [1]. It also introduces the
concepts of Theories and Logics in order to classify problems. A problem belongs
to a logic; a logic refers to some theories; and a theory is a specific set of symbols
that define a well-known system (i.e. theory of integers, real numbers, arrays,
etc.). In [13], a summary of the current recognized logics by SMT-LIB could be
found. These logics define the set of problem classes and benchmarks used for
research purposes by the SMT community.

In this work, we focus on two basic logics related to Linear Arithmetic: Integer
(LIA) and Real (LRA) numbers. The generated strategies are also applied to their
quantifier free versions: QF LIA and QF LRA.

3 Evolutionary Algorithm

Inspired by previous works on parameter tuning [10,12], our Evolutionary Strat-
egy Generator (ESG) is an evolutionary algorithm which automatically selects
tactics within a predefined structure in order to build a strategy for a SMT-LIB
logic. ESG goal is to generate a strategy that improves the solving process for a
set of instances rather than for a single problem. We designed a static strategy
skeleton based on the Z3 default strategy for LIA and LRA logics. The strategy
skeleton defines the structure of an individual that is used in the population
later. Figure 6 shows individual strategy skeleton as a tree. Fixing all tacticals
values, we define an individual of type X as an array x with m+n genes, where:

1. ∀i ∈ {1, · · · ,m}, xi are heuristics; and
2. ∀j ∈ {m + 1, · · · ,m + n}, xj are tuples, each with a solver and its time-out.

Fig. 6. Individual skeleton of type X: A set of m heuristics is applied, and then the
satisfiability is checked up to n solvers.
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The sub-tree starting in the or-else tactical is used to check the relevance of the
(non-present) heuristics tactics in the selected logics. Therefore, we can define a
new individual of type Y as an array y with n genes, where:

1. ∀i ∈ {1, · · · , n}, yi are tuples, each with a solver and its time-out.

Two ESG are considered according to the two types of individuals, type X
which includes heuristics, and type Y that uses only solvers. An initial population
with s individuals is generated. The size of the population s is defined as the
maximum number of possible candidate values that a gene could have.

After creating the initial population, the algorithm iterates the application
of two classic variation operators at each cycle: Wheel-Crossover and Gen-
Mutation. The Wheel-Crossover is a generalized uniform recombination operator
where the value of each gene of the new individual is randomly picked from a
randomly selected parent of the population. This new individual replaces the
worst individual of the current population. The mutation operator is applied
to this new individual and modifies the value of a randomly selected gene by a
random value from its domain. Again it replaces the second worst individual of
the population if its evaluation is better.

The fitness function is based on the number of solved instances from the
benchmark set. We also add the time consumed to solve them as an additional
criterion. Each individual fitness evaluation is performed over the whole selected
instance set. The fitness function is:

h(Δ, γ) = (1 − γ)f(Δ) − γg(Δ); γ ∈ {0, 1}; ∀Δ ∈ {X,Y } (10)

where:

1. f(Δ): number of instances solved using the strategy generated for the indi-
vidual of type Δ.

2. g(Δ): time elapsed in instances solved using the strategy generated for the
individual of type Δ.

Our goal is to maximize the number of solved problems from a set that belongs
to a specific logic, or to minimize the time consumption when the amount of
solved problems are the same between different individuals. We could define our
fitness comparison function between individuals of the same type as:

c(Δ,Δ′) = Max{h(Δ, γ), h(Δ′, γ)}; with γ =
{

0, if f(Δ) 
= f(Δ′)
1, if f(Δ) = f(Δ′) (11)

Algorithm 1 summarises the ESG procedure. The version based on individ-
uals of type X is the full version ESG-full, and the one based on Y is the
solver-only version ESG-solver.

4 Experimental Setup

We perform several experiments in order to evaluate our strategy generators. All
tools are implemented in C and interact with Z3. All experiments were run on
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Algorithm 1. Evolutionary Strategy Generator, ESG
Input: SMT-LIB logic set of instances, Strategy skeleton
Output: Optimized Strategy
1: Generate Initial Population, Population
2: repeat
3: Child = Wheel-Crossover(Population)
4: Replace Worst Population Individual by Child
5: Mutated-Child = Gen-Mutation(Child)
6: if Mutated-Child is better than Second Worst Population Individual then
7: Replace the Second Worst Population Individual by Mutated-Child
8: end if
9: until Ending criterion

a workstation with the following specifications: Pentium (R) Dual-Core E5300
at 2,6 Ghz CPU, 8 GB at 800Mhz of RAM, OS Ubuntu 14.04 LTS x64. The
theorem prover is Z3 4.4.0 stable, and the compiler is gcc 4.8.4.

Instances. The instances were extracted from 2014 SMT-LIB benchmarks1. As
mentioned before, we focus on LIA and LRA logics for the strategy generation,
and we also tested the generated strategies in the quantifier free versions of both
logics (QF LIA and QF LRA). Unlike SMT-COMP, we used complete benchmarks
of the selected logics. Hence, we include results on the problems whose satisfia-
bility is not known. The best obtained results were compared with the default
performance of Z3 on the same instances. Table 1 shows the characteristics of
each selected instance set.

Table 1. SMT-LIB Logics: Selected sets of instances characteristics.

SMT-LIB logic Strategy generation Strategy testing Instances with

Known results Unknown results

LIA ✓ ✓ 46 0

LRA ✓ ✓ 171 450

QF LIA ✗ ✓ 4862 1279

QF LRA ✗ ✓ 1474 208

Strategies Generators. As explained before, two kinds of ESG were devel-
oped. Both generators build strategies for each selected logic using the following
problem subsets: (1) all instances with known final results, and (2) all instances
with unknown final results. A cross-validation process will also be performed
when a subset is hard to handle, allowing to generate potentially better strate-
gies without consuming resources by checking all instances subset. The subsets

1 Experiments ran before 2015 SMT-LIB benchmarks were released.
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used for this purpose are (1) a decile from all instances with known final results,
and (2) a decile from all instances with unknown final results. To identify which
set is used, we renamed the ESG used for the cross-validation process as CESG-
full and CESG-solver, following the same nomenclature used in Sect. 3.

Parameters. Our ESGs include several values that have to be set. For the static
skeleton parameters we select m = 10 for the maximum size of heuristics tactics
and n = 5 for the maximum size of solvers tactics. These values were selected
arbitrarily and based on the size of the default Z3 strategies for selected logics:
they avoid building too complex strategies (size), but allow enough interesting
combinations of heuristics and solvers. Possible values for tuning heuristics and
solvers values are :

1. Heuristics: skip, simplify, simplify mod., ctx-simplify, ctx-simplify mod.,
solve-eqs, elim-uncnstr, lia2sat, propagate-ineqs, split-clause.

2. Solvers: fail, sat, smt, qe-sat, qe-smt, qflia/qflra.

Despite the use of well-known tactics, it is necessary to explain the following
points:

1. In heuristics values, simplify mod. and ctx-simplify mod. are modified versions
of simplify and ctx-simplify respectively. Both tactics have modified parame-
ter vectors. lia2sat is a conjunction of heuristics and not a single one. All this
values could be found in the Z3 default strategies.

2. In solvers values, qflia and qflra are Z3 built-in solvers for quantifier-free
linear arithmetic logics (QF LIA and QF LRA respectively), we select them to
check if they could be useful in the strategies generated for their quantified
version logics.

3. If a heuristic or tuple (solver and its time-out) value is consecutively repeated
two or more times, it will be decoded as a single application reducing the
strategy size.

4. Finally, time-out for solvers is proportionally tuned w.r.t. the per instance
global time-out set.

Table 2 shows the global time-out per instance used in strategy generation
and testing execution processes. The first two time-outs are set for generate and
test strategies, allowing check how strategies change when available time resource
is incremented by an order of magnitude. The last value is set for strategy testing
under 2014 SMT-COMP rules. Also, it is not used in the strategy generation
process because it would have taken an unexpected time in each run. Finally,
because all ESGs include stochastics characteristics, experiments were executed
ten times with different random seeds values.

5 Results

In this section, we analyze the results obtained using the automatically gen-
erated strategies against Z3 default strategies in the selected SMT-LIB logics.
The generated strategies can be found in [3], while Z3 default strategies can be
reviewed in Z3 theorem prover source code.
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Table 2. Strategies Generation and Testing: Global time-out per instance.

Time-out [s] Strategy generation Strategy testing

1 ✓ ✓

10 ✓ ✓

1500 ✗ ✓

5.1 LIA Benchmarks Set

We started running experiments in the easiest instance set. Table 3 shows results
of three different strategies applied.

Table 3. LIA Benchmarks Set: Results with different strategies on instances with
known results.

Instance time-out [s]

Strategy 1 10 1500

Z3-default 46 0,48 46 0,48 46 0,48

ESG-full 46 0,34 46 0,34 46 0,34

ESG-solver 46 0,33 46 0,33 46 0,33

solved time[s] solved time[s] solved time[s]

We can observe that all strategies help to solve the whole set, but automat-
ically generated strategies outperform Z3 default strategy with a 29,2 % and
a 31,3 % time reduction, being the strategy generated by ESG-solver the best.
Since there is no performance variation when changing the random seed, we
could treat this subset as deterministic. Therefore, there is not a significant dif-
ference between both automatically generated strategies. Cross-validated ESGs
were not applied because the sample is small and the set is easily solved. Finally,
this set does not include instances with unknown results.

5.2 LRA Benchmarks Set

Although the increase of sample size, strategies used to solve LRA subset with
known results have a similar behaviour as with the LIA set, including the deter-
ministic performance. As shown in Table 4, all strategies help to solve the entire
subset. Again, automatically generated strategies outperforms Z3 default strat-
egy, reducing solving time between 12,3 % and 15,0 %. In this subset, ESG-solver
is slightly better than ESG-full, but the difference is not significant. Using the
same criteria as in LIA set, it was not necessary to apply cross-validated ESG.

As Table 5 shows, face LRA subset with unknown results was a completely
different challenge. No strategy helps to solve the entire subset. ESG-full and
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Table 4. LRA Benchmarks Set: Results with different strategies on instances with
known results.

Instance time-out [s]

Strategy 1 10 1500

Z3-default 171 1,30 171 1,33 171 1,33

ESG-full 171 1,14 171 1,14 171 1,13

ESG-solver 171 1,14 171 1,13 171 1,13

solved time[s] solved time[s] solved time[s]

Table 5. LRA Benchmarks Set: Results with different strategies on instances with
unknown results.

Instance time-out [s]

Strategy 1 10 1500

Z3-default 384 18,00 392 59,20 409 5281,68

ESG-full 386 22,82 409 167,40 428 6953,94

ESG-solver 391 25,52 410 225,01 431 8055,69

CESG-full 384 17,70 403 119,07 414 6083,98

CESG-solver 376 21,60 398 81,81 425 7235,55

solved time[s] solved time[s] solved time[s]

ESG-solver strategies considerably outperform Z3 default strategy performance,
helping to solve between 46,3 % and 53,7 % of unsolved instances. Nevertheless,
both ESG strategies consume between one and four days in order to provide
an optimized strategy. Therefore, cross-validation ESGs were applied in order
to find better strategies with a limited time budget. CESG-full and CESG-
solver strategies outperform Z3 default strategy in two of three scenarios. Cross-
validated strategies help to solve between 10,3 % and 39,0 % of the unsolved
instances using Z3 default strategy.

A slight difference is observed between full strategies and solver-only strate-
gies. Figure 7 shows solver performance using strategies generated using different
random seeds. In both cases, we could check that all means and most of the solv-
ing distributions are allocated around higher values when using full strategies.
However, most of the best values correspond to solver-only strategies. Full strate-
gies provide a more stable solving process and reduce the influence of random
values, benchmark size or selection process.

Finally, Table 6 shows the statistical results of two-tailed Wilcoxon signed-
ranked test with significance level of 0.01 applied between full and solver-only ver-
sions of each ESG. Used data correspond to all results obtained in all three global
time-out limits, matching them in pairs depending on their execution properties.
We could observe that there is no significant difference between ESG-full and
ESG-solver and CESG-full is significantly better than CESG-solver (despite no
reaching the best results).
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(a) All-instance based strategy generation
using different random seeds.

(b) Cross-validation strategy generation us-
ing different learning sets.

Fig. 7. Results distribution on LRA instances with unknown results.

Table 6. Wilcoxon Signed-Rank test comparing ESG versions: full and solver-only.

ESG 1 ESG 2
∑

N.Ranks
∑

P.Ranks Ties Z-value p-value

ESG-full ESG-solver 201,0 150,0 4 -0,648 0,516

CESG-full CESG-solver 287,5 63,5 4 -2,845 0,004

In conclusion, strategies including heuristics produce a more stable and bet-
ter average performance than strategies without heuristics. Also, influence of
strategies with heuristics in solver are also statistically equal or better than the
influence of strategies without heuristics.

5.3 QF LIA Benchmarks Set

Table 7 shows comparisons on QF LIA logic using Z3 default strategy and the
generated strategy with best result in LIA logic. In both tables we can see that
the default strategy is overwhelmingly better than the one generated with LIA
and applied to QF LIA. This huge difference is due to:

1. The Z3 default strategy found in Z3 for QF LIA is a complex system designed
by de Moura and Olney Passmore in order to prove the importance of the
strategies in the performance of solver [9]. This strategy is based on the huge
knowledge of two of the most recognized researchers in the SMT community.
The goal of this work is to try to find an automatic process that could have
similar efficiency.

2. The best strategy generated for LIA logics is learned from a little sample in
comparison with both QF LIA subsets. Therefore, is really unlikely to obtain
good results using strategies generated from a non-generalizable sample.
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Table 7. QF LIA Benchmarks Set: Comparison between default strategy and best
found in LIA logic set.

Instance time-out [s]

Result Strategy 1 10 1500

known Z3-default 2459 564,61 3510 4577,60 4668 59183,88

LIA-ESG-best 1757 353,59 2525 3765,99 4398 288502,85

unknown Z3-default 566 131,51 693 612,93 1063 41305,20

LIA-ESG-best 256 21,43 288 179,43 701 197151,57

solved time[s] solved time[s] solved time[s]

5.4 QF LRA Benchmarks Set

Table 8 shows comparison on QF LRA using Z3 default strategy and the strat-
egy with best result found in LRA logic. The results in this logic set are com-
pletely favorable to the strategy found in LRA. It outperforms Z3 default strategy
in all scenarios, helping to solve under 2014 SMT-COMP rules 49,6 % of the
unsolvable instances with known results and 65,9 % of unsolvable instances with
unknown results. The success of the automatically generated strategy could be
explained by:

Table 8. QF LRA Benchmarks Set: Comparison between default strategy and best
found in LRA logic set.

Instance time-out [s]

Result Strategy 1 10 1500

known Z3-default 933 70,21 1043 432,89 1343 66401,28

LRA-ESG-best 936 65,24 1095 894,41 1409 41903,69

unknown Z3-default 105 3,99 108 20,13 126 13021,12

LRA-ESG-best 105 3,69 111 42,35 180 18977,01

solved time[s] solved time[s] solved time[s]

1. In this set there is not a complex default strategy in Z3 but only a modified
version of the default solver tactical (smt).

2. The sample size of the LRA logic set is big enough to check if its properties
are related to this logic.

This results raised basis for new ideas which are to design an incremental auto-
matic generation of strategies for a set of related logics, where a strategy from
an easier logic could be part of a harder logic, i.e.,. the real arithmetic family
(QF RDL, QF LRA, LRA, QF NRA and NRA).
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6 Related Work

To our best knowledge, no work directly addresses the automatic generation
of strategies in SMT. However, there are several works in different areas that
could be revisited in order to generate new interesting research topics in SMT
community. Mark Harman analyzes why Evolutionary Algorithms are so much
used in SBSE [5]. For instance, let us mention the improvement of the MiniSAT
solver by Genetic Programming [11].

Hyperheuristics [2] are also clearly related to our work, as they can be defined
as heuristics to generate heuristics. The general concept of autonomous search
[4] aims at providing tools and methods for helping end-users to use solving and
optimization techniques with a minimum amount of expert knowledge. Within
this scope, parameter tuning has been widely addressed in the evolutionary com-
putation and optimization communities [7,10,12].

7 Conclusion and Future Work

In this work, we present an automatic strategy generator that allows us to
improve performances of the Z3 theorem prover on two selected SMT-LIB log-
ics (LIA and LRA), as well as for a close related logic (QF LRA). Even if the
training time normally takes days as in the LRA with unknown results subset,
a cross-validation automatic generator of strategies was also applied to improve
default performance, which constitutes an alternative option when a huge set
of benchmarks has to be solved. Interesting results have been obtained showing
that more improvements could still be expected. In future work, we will turn to
genetic programming or grammatical evolution algorithms in order to consider
more complex strategies.
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Abstract. Recently, a new notion of Geometric Semantic Genetic Pro-
gramming emerged in the field of automatic program induction from
examples. Given that the induction problem is stated by means of func-
tion learning and a fitness function is a metric, GSGP uses geometry
of solution space to search for the optimal program. We demonstrate
that a program constructed by GSGP is indeed a linear combination
of random parts. We also show that this type of program can be con-
structed in a predetermined time by much simpler algorithm and with
guarantee of solving the induction problem optimally. We experimentally
compare the proposed algorithm to GSGP on a set of symbolic regres-
sion, Boolean function synthesis and classifier induction problems. The
proposed algorithm is superior to GSGP in terms of training-set fitness,
size of produced programs and computational cost, and generalizes on
test-set similarly to GSGP.

Keywords: Automatic program induction · Geometric semantic genetic
programming · Solution space

1 Introduction

Recently in the field of automatic program induction from examples, a new
branch of Genetic Programming (GP) called Geometric Semantic Genetic Pro-
gramming (GSGP) [18] arose. GSGP involves program semantics, meant as
a vector of program outcomes produced in the effect of its execution on the
given sample program inputs (fitness cases). The key idea behind GSGP is to
define fitness function by means of a metric, where the first metric argument
is semantics of a program under assessment and the second one is the opti-
mal target semantics. This formulation causes fitness landscape to take shape of
a cone, with the target semantics in the apex [24,25,27]. GSGP uses specialized
search operators that utilize this conic shape to efficiently search the program
space. Theoretical analyses have showed that each application of the geometric
operators is characterized by beneficial expected improvement of fitness [17] and
guaranteed pessimistic bound on change of fitness [25].

Nevertheless, GSGP has crucial design drawback that causes each offspring
to be bigger than its parent(s). GSGP crossover leads to exponential growth
c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 246–260, 2016.
DOI: 10.1007/978-3-319-30668-1 16
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and GSGP mutation to linear growth of programs over the course of evolution.
The size of the produced programs may put the use of GSGP in real world
applications under a question. This state of affairs changed, when Castelli et al.
[2] proposed graph-like encoding of tree programs to efficiently store overgrowth
programs in memory. This allowed use of GSGP in many real-world applications
[2–4,15,30,31], however the obtained programs are still oversized.

We demonstrate that a final program produced by GSGP implements, indeed,
a linear combination of programs from the initial population, i.e., can be con-
sidered as an linear combination of random parts. We show that qualitatively
equivalent results can be achieved by much simpler means than GP. We address
all three problem domains, for which GSGP was designed: symbolic regression,
Boolean function synthesis and classifier induction [18]. We propose an exact
algorithm, that guarantees reaching the optimum, in opposition to GSGP, which
as a stochastic metaheuristics does not guarantee this. What is more, the exact
algorithm produces smaller programs and in shorter time than GSGP.

2 Problem Statement and Solution in Geometric
Semantic Genetic Programming

A program p ∈ P is a function that maps a set of inputs I into a set of outputs
O, which we denote by o = p(in), where in ∈ I and o ∈ O. We consider only
deterministic programs that feature no side effects, nor memory persistent across
executions. Semantics s ∈ S is a vector s = [o1, o2, ..., on], where ∀oi ∈ O and S
is a semantic space (a vector space). Semantic mapping is a function s : P → S,
with property s(p1) = s(p2) ⇐⇒ ∀ip1(ini) = p2(ini). In other words, semantics
s(p) of a program p is a vector of p’s outputs when executed on a fixed set of
inputs I ⊂ I, i.e., s(p) = [p(in1), p(in2), ..., p(inn)], ini ∈ I.

In GSGP program induction problem Π = (t, f) is an optimization problem,
where t is the target semantics, and f is a metric, such that f(p) = ‖t, s(p)‖. The
aim of program induction problem is to synthesize program p∗, which semantics
equals t, i.e., t = s(p∗) and f(p∗) = 0. Note that Π is stated in terms of learning
function h : I → O.

GSGP attempts to solve the abovementioned problem by initializing popu-
lation of random programs, e.g., using ramped half-and-half [9], then iteratively
searches the program space using geometric operators defined below (definitions
come from [18]).

Definition 1. Given a parent program p, r-geometric mutation is an operator
that produces offspring p′ in a ball of radius r centered in p, i.e., ‖s(p), s(p′)‖ ≤ r.

Definition 2. (Algorithms for geometric mutation) Symbolic regression:
Given parent arithmetic program p, an offspring is a program p′ = p + r · (m1 −
m2), where m1 and m2 are random arithmetic programs that output values in
range [0, 1]. Boolean: Given Boolean parent program p, an offspring is a pro-
gram p′ = m ∨ p with probability 0.5, p′ = m ∧ p otherwise, where m is a
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random minterm. Classifier: Given parent classifier p, an offspring is a pro-
gram p′ = IF cond THEN c ELSE p, where cond is a random condition that is
true only for a single combination of attributes and c ∈ O is a random class.

Definition 3. Given parent programs p1, p2, geometric crossover is an operator
that produces offspring p′ in a segment between p1 and p2, i.e., ‖s(p1), s(p2)‖ =
‖s(p1), s(p′)‖ + ‖s(p′), s(p2)‖.
Definition 4. (Algorithms for geometric crossover) Symbolic regression:
Given parent arithmetic programs p1, p2, an offspring is a program p′ =
mp1 + (1 − m)p2, where m is a function that returns values in range [0, 1].
Boolean: Given Boolean parent programs p1, p2, an offspring is a program p′ =
(p1∧m)∨(m∧p2), where m is a random Boolean program. Classifier: Given par-
ent classifiers p1, p2, an offspring is a program p′ = IF cond THEN p1 ELSE p2,
where cond is a random condition.

In the essence geometric operators conduct linear transformation of parents,
which we formalize below:

Definition 5. A linear combination over a field is an expression of elements
from this field multiplied by constants and added together. Symbolic regres-
sion: Field elements are real numbers; + (arithmetic addition) and · (arith-
metic multiplication) meet axioms of addition and multiplication, respectively.
Boolean: (GF (2) field) Field elements are 0 and 1; ⊕ (xor) and ∧ (and)
meet axioms of addition and multiplication, respectively. Classifier: Field ele-
ments are Boolean 0 and 1, classes c1, c2, ... and null � (no decision); � and �

meet axioms of addition and multiplication, respectively. IF is composition of �

and �: IF cond THEN c1 ELSE c2 ≡ cond � c1 � cond � c2.1

Lemma 1. An offspring p′ obtained from parent p using r-geometric mutation
is a linear combination of p and an other random program.

Proof. The proof comes from Definition 2, each offspring’s formula combines
p with other parts using only addition and/or multiplication by a constant
(e.g., weight). Symbolic regression: p′ is addition of p and program r · (m1 −
m2). Boolean: by expanding p′ = m ∨ p to p′ = m ⊕ p ⊕ m ∧ p, p′ is addition of
p, m and program m ∧ p, or by transforming p′ = m ∧ p to p′ = p ⊕ m ∧ p, p′ is
addition of p and a program m ∧ p. Classifier: IF term is a weighted addition
of c and p, where respective weights for c and p are either 0 and 1, or 1 and 0,
depending on cond’s Boolean value.

Lemma 2. An offspring p′ obtained from parents p1 and p2 using geometric
crossover is a linear combination of p1 and p2.
1

� for two Booleans is equivalent to ∨, for two classes outputs the one with lower id,
for a class and � outputs this class, otherwise �. � for two Booleans is equivalent
to ∧, for two classes outputs the one with greater id, for 1 and a class outputs this
class, otherwise �. We omitted full tables of these functions for brevity.
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Proof. Proof comes from Definition 4, each offspring’s formula combines p1 and
p2 with other parts using only addition and/or multiplication by a constant
(e.g., weight).Symbolic regression: p′ is weighted addition of p1 and p2, where
m and (1 − m) are weights. Boolean: by transforming p′ = (p1 ∧ m) ∨ (m ∧ p2)
to p′ = (p1 ∧ m) ⊕ (m ∧ p2), p′ is weighted addition of p1 and p2, where m and
m are weights. Classifier: IF term is a weighted addition of p1 and p2, where
respective weights for c and p are either 0 and 1, or 1 and 0, depending on cond’s
Boolean value.

Theorem 1. A program produced by GSGP in any generation after the initial
one is a linear combination of programs from the initial population and other
random programs.

Proof. Let Pg denote population and Mg set of random functions added by
geometric operators in generation g ∈ N≥1. Proof by induction: each program
p2 ∈ P2 is linear combination of programs p1 ∈ P1 and m1 ∈ M1 by Lemmas 1
and 2. A program pi ∈ Pi is a linear combination of programs pi−1 ∈ Pi−1 and
random programs mi−1 ∈ Mi−1. By commutativity of linear combinations each
program in Pi is a linear combination of programs in P1 and M1,M2, ..,Mi−1.

This leads to the straightforward conclusion that if the initial population
consists of randomly generated programs, e.g., using ramped half-and-half [9],
in the essence a program produced by GSGP is a linear combination of random
parts. However, linear combination of, or even interpolation2 using random parts
can be done analytically with guarantee of constructing the optimal program p∗.

3 Function Learning Using Linear Combination

In this section, we show how to interpolate points from different semantic spaces:
R

n, {0, 1}n and {c1, c2, ..., ck}n to obtain the optimal program p∗.
To interpolate given function h : I → O using random program parts, two

conditions have to be met:

1. Set of semantics S of random program parts must be linearly independent,
2. Target t must be expressible by linear combination of semantics from S.

The first condition is there, because the set of semantics that can be expressed
by linearly combining the semantics from S is exactly the same like for S with
linearly dependent semantics discarded. The second condition is the necessary
one to solve the program induction problem Π. The above conditions can be
met by making S a basis of semantic space S.

Below, we present Linear Combination (LC) algorithm. Although the general
idea behind LC is maintained across domains, a particular realization is domain-
dependent. For each domain, we divide the presentation of LC into two parts:
2 The distinction between linear combination and interpolation is made to emphasize

that linear combination is any weighted sum of programs, while interpolation is
a weighted sum that goes through the certain points.
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a way of constructing a basis, and a way to interpolate given set of points. Note
that the presented algorithm is naive, and cannot be considered optimal in any
sense, except that it is guaranteed to solve program induction problem Π.

3.1 Symbolic Regression

Basis Construction

Theorem 2. Let S = R
n, and I ⊆ I be a set of program inputs on which

semantics of a program is calculated, |I| = n. Then, ini ∈ I is a vector of
inputs. Basis of S is set S of semantics of programs p1, p2, ..., pn given by the
formula:

pi = e−i(x−ini)·(x−ini), (1)

where x is a vector of program arguments and · is dot product of vectors.

Proof. Proof comes from linear independence of exponential functions e−iy(x),
where y(x) is a non-constant function.

The term −i (negative integer) in the exponent in Eq. (1) makes sure that
pis are linearly independent, and the dot product causes the entire formula to
equal 1 only for x = ini.

Interpolation. Interpolation of h using abovementioned programs can be done
by solving the following system of linear equations:

[s(p1) s(p2) ... s(pn)]w = t,

where w is a vector of weights to be calculated and t is the target. The solu-
tion can be found, e.g., using Gaussian elimination [7] in O(n3) time. Then, the
optimal program p∗ is given by:

p∗ =
n∑

i=1

wipi. (2)

The programs pi, for which wi = 0 can be omitted from the sum to keep final
program size at bay.

Example 1. Consider programs with two arguments x = [x1, x2]T . Let set of
program inputs I = {[1, 2]T , [3, 4]T , [5, 6]T} and target t = [7, 5, 3]T . Then, the
basis consists of pis given by equations:

p1 = e−1([x1,x2]−[1,2])·([x1,x2]−[1,2]) = e−1((x1−1)2+(x2−2)2)

p2 = e−2([x1,x2]−[3,4])·([x1,x2]−[3,4]) = e−2((x1−3)2+(x2−4)2)

p3 = e−3([x1,x2]−[5,6])·([x1,x2]−[5,6]) = e−3((x1−5)2+(x2−6)2)
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Next, by solving the system of linear equations:
⎡

⎣
1 1.13 × 10−7 2.03 × 10−42

3.35 × 10−4 1 3.78 × 10−11

1.27 × 10−14 1.13 × 10−7 1

⎤

⎦w =

⎡

⎣
7
5
3

⎤

⎦

and we obtain weights: w = [6.99, 4.99, 2.99]T . A weighed sum of the basis
programs is the final one: p∗ = 6.99p1 + 4.99p2 + 2.99p3.

3.2 Boolean Function Synthesis

Basis Construction

Theorem 3. Let S = {0, 1}n, and I ⊆ I be a set of program inputs on which
semantics of a program is calculated, |I| = n. Then, ini ∈ I is a vector of inputs.
Basis of S is set S of semantics of programs p1, p2, ..., pn given by the formula:

pi =
n∧

j=1

yj (3)

yj =

{
xj inij
— ——
xj inij

,

where xjs are program arguments.

Proof. Each program pi outputs 1 for only one setting of xjs. Thus, each seman-
tics s(pi) is a vector of all, but one 0s, and the only non-zero locus is different
for each s(pi).

In other words, each pi is a minterm, where each argument xj is negated if
vector of inputs ini is 0 on locus j. This causes pi to return 1 only for x = ini.

Interpolation. The program p∗ that interpolates h using pis is given by the
formula:

p∗ =
n∨

i=1

yi (4)

yi =

{
pi ti

0 otherwise.

In other words, for each locus i in t, if ti equals 1, pi is a part of alternative in p∗,
and p∗ is a disjunctive normal form. Zeros can be dropped from the alternative
for simplification.

Example 2. Consider programs with two arguments x = [x1, x2]T . Let set of
program inputs I = {[1, 0]T , [0, 1]T , [1, 1]T } and target t = [1, 0, 1]T . Then, the
basis consists of pis given by equations:



252 T.P. Pawlak

Algorithm 1. Construction of the optimal program p∗ in classifier induction.
Pick(P ) picks an element from set P , pis and condis are defined in Eq. (5).
1: P = {p1, p2, ..., pn}
2: while |P | �= 1 do
3: pi ← Pick(P )
4: pj ← Pick(P\{pi})
5: pk ← IF condi THEN pi ELSE pj

6: condk ← condi ∨ condj

7: P ← P\{pi, pj} ∪ {pk}
8: return p∗ ∈ P

p1 = x1x2

p2 = x1x2

p3 = x1x2

By substituting pis in Eq. (4) we obtain the final program: p∗ = x1x2 ∨ x1x2.

3.3 Classifier Induction

Basis Construction

Theorem 4. Let S = {c1, c2, ..., ck}n, and I ⊆ I be a set of program inputs on
which semantics of a program is calculated, |I| = n. Then, ini ∈ I is a vector
of inputs. Basis of S is set S of semantics of programs p1, p2, ..., pn given by
formula:

pi = IF condi THEN ti ELSE �, (5)

condi =
n∧

j=1

(xj = inij)

where xjs are arguments, ti is a class at locus i in t, and � is a ‘null’ (no
decision) symbol.

Proof. Each program pi outputs a class c ∈ {c1, c2, ..., ck} for only one setting
of xjs. Thus, each semantics s(pi) is a vector of all, but one �s, and the only
non-zero locus is different for each s(pi).

In other words, condi is a logical conjunction of comparisons of arguments
xj to the respective inputs in vector ini.

Interpolation. The programs p1, p2, ..., pn should be treated as a set of decision
rules, where each one is executed against given example data. Thanks to the
construction of basis shown in Eq. (5), at most one pi actually outputs a class.
Algorithm 1 shows how to merge p1, p2, ..., pn into a single program p∗ using
only IF instructions. The algorithm begins with a set of all programs P . Then,
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in a loop it picks two programs pi and pj from P . Next, the algorithm merges pi
and pj into a one program pk using IF instruction and creates condition condk
for pk that may be used in merges in further loops. The program pk replaces pi
and pj in the set P . The loop terminates when P contains only one program,
which is finally returned. Time complexity of the algorithm is O(n).

Example 3. Consider programs with two arguments x = [x1, x2]T . Let set of
program inputs I = {[a, b]T , [c, a]T , [b, c]T } and target t = [c1, c2, c1]T . Then, the
basis P consists of pis given by equations:

p1 = IF x1 = a ∧ x2 = b THEN c1 ELSE �
p2 = IF x1 = c ∧ x2 = a THEN c2 ELSE �
p3 = IF x1 = b ∧ x2 = c THEN c1 ELSE �

Next, we run Algorithm 1. First, we pick programs p1 and p2 and combine them
into p4 = IF x1 = a ∧ x2 = b THEN p1 ELSE p2, and define new condition
cond4 = cond1 ∨ cond2. Then, we remove p1 and p2 from P and add p4. In the
second iteration of the algorithm’s loop we pick p3 and p4 and combine them
into p5 = IF x1 = b ∧ x2 = c THEN p3 ELSE p4. Finally, we remove p3 and p4
from P and add p5. Since p5 is the only remaining program in P , p5 becomes
the final program p∗.

4 Experiment

4.1 Setup

We compare LC to GSGP to verify which algorithm provides more desirable
characteristics: lower training- and test-set error, smaller size of programs and
less computational cost.

Table 1 presents benchmark problems that come from [13,16,27]. In univari-
ate symbolic regression 20 Chebyshev nodes3 [1] and 20 uniformly picked points
in the given range are used for training- and test-sets, respectively. For bivariate
these numbers amount to 10 for each variable and Cartesian product of them
constitutes a data set. In Boolean domain training-set incorporates all inputs and
there is no test-set. For classifier benchmarks statistics of data set are presented
in Table 1.

Table 2 shows parameters of evolution. Values not presented there are set
to ECJ defaults [12]. We do not involve any simplification procedure for the
produced programs. LC is run once for each problem, since it is deterministic.
Presented CPU times are obtained on Intel Core i7-950 CPU and 6GB DDR3
RAM running in x64 mode under control of Linux and Java 1.8. The times
exclude calculation of statistics.
3 Points given by xk = 1

2
(a+b)+ 1

2
(b−a) cos( 2k−1

2n
π), k = 1..n, where [a, b] is the range

of training set, and n is number of data points. Using Chebyshev nodes minimizes
the likelihood of Runge’s phenomenon [29].
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Table 1. Benchmark problems.

Symbolic regression benchmarks

Problem Definition (formula) Variables Range Size

R1 (x1 + 1)3/(x2
1 − x1 + 1) 1 〈−1, 1〉 20

R2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) 1 〈−1, 1〉 20

R3 (x6
1 + x5

1)/(x4
1 + x3

1 + x2
1 + x1 + 1) 1 〈−1, 1〉 20

Kj1 0.3x1 sin(2πx1) 1 〈−1, 1〉 20

Kj4 x3
1e

−x1 cos(x1) sin(x1)(sin
2(x1) cos(x1) − 1) 1 〈0, 10〉 20

Ng9 sin(x1) + sin(x2
2) 2 〈0, 1〉2 100

Ng12 x4
1 − x3

1 +
x2
2
2

− x2 2 〈0, 1〉2 100

Pg1 1/(1 + x−4
1 ) + 1/(1 + x−4

2 ) 2 〈−5, 5〉2 100

Vl1 e−(x1−1)2/(1.2 + (x2 − 2.5)2) 2 〈0, 6〉2 100

Boolean benchmarks

Problem Instance Variables Size

Even parity Par5 5 32

Par6 6 64

Par7 7 128

Multiplexer Mux6 6 64

Mux11 11 2048

Majority Maj7 7 64

Maj8 8 128

Comparator Cmp6 6 64

Cmp8 8 256

Classifier benchmark

Problem Attributes Classes Training Test

Cancer 9 2 457 226

Table 2. Parameters of evolution.

Symbolic regression Boolean domain Classifier induction

Number of runs 30

Population size 1000

Fitness function L2 metric L1 metric Classification error

Termination condition At most 50 generations or find of a program with fitness 0

Instructions x1, x2, +, −, ×, /, x1, x2, ..., x11,
b x1, x2, ..., x9, c1, c2, if

sin, cos, exp, loga nand, nor
a log is defined as log |x|; / returns 0 if divisor is 0.
b The number of inputs depends on a particular problem instance.
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Table 3. Average and 95 % confidence interval of fitness of the best of run program
on training set.

0.00 ±0.00 2.71 ±0.27

0.00 ±0.00 0.50 ±0.06

0.00 ±0.00 0.19 ±0.02

0.00 ±0.00 0.35 ±0.01

0.00 ±0.00 0.96 ±0.03

0.00 ±0.00 0.65 ±0.04

0.00 ±0.00 0.37 ±0.02

0.00 ±0.00 1.25 ±0.08

0.00 ±0.00 1.03 ±0.02

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.13 ±0.12

0.00 ±0.00 1.13 ±0.37

0.00 ±0.00 132.33 ±11.25

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.00 ±0.00

0.00 ±0.00 0.05 ±0.01

0.00 ±0.00 17.25 ±0.83

0.00 ±0.00 3.20 ±0.05

0.00 ±0.00 0.67 ±0.01

0.00 ±0.00 0.51 ±0.01

1.15 ±0.00 2.25 ±0.07

0.26 ±0.00 5.85 ±0.05

0.11 ±0.00 2.11 ±0.01

15.60 ±0.00 7.34 ±0.07

3.63 ±0.00 3.35 ±0.02

0.51 ±0.00 0.04 ±0.01

4.2 Results

Table 3a presents average and 95% confidence interval of the best of run fitness.
Since LC is guaranteed to construct the optimal program, it achieves 0 fitness
and 0 confidence interval in each problem. In turn, GSGP is able to find the
optimum only in 6 out of 19 problems. Wilcoxon signed rank test results in
p-value of 1.66 × 10−3, thus LC is statistically better than GSGP.

Table 3b shows average and 95% confidence interval of test-set fitness of the
best of run program on training-set. In 4 out of 10 problems LC achieves 0 fitness
and is better than GSGP in 7 out of 10 problems. Wilcoxon test results in p-
value of 0.13, thus at significance level α = 0.05, the difference of generalization
abilities of LC and GSGP is insignificant.

Table 4a compares numbers of nodes in programs produced by LC and GSGP.
In all 19 problems LC produces programs smaller by 1 up to 14 orders of mag-
nitude than GSGP. Wilcoxon test results in p-value of 3.82 × 10−6, which only
confirms our observation that LC produces smaller programs. Note that the
numbers of nodes are equal in LC programs for all univariate, and all bivariate
except Vl1 symbolic regression problems, respectively. This comes from the way
how LC constructs the final program: basis for all problems with the same num-
ber of variables is exactly the same, only weights of the sum in Eq. (2) differ. LC
program in Vl1 is smaller, because some of the weights in Eq. (2) are zero and
the respective program parts are dropped.
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Table 4. Average and 95 % confidence interval of:

> 104

259.00 ±0.00 1016 ±1015

259.00 ±0.00 1015 ±1015

259.00 ±0.00 1016 ±1015

259.00 ±0.00 1015 ±1015

259.00 ±0.00 1015 ±1015

2099.00 ±0.00 1016 ±1015

2099.00 ±0.00 1015 ±1014

2099.00 ±0.00 1015 ±1014

1448.00 ±0.00 1015 ±1015

199.00 ±0.00 104 ±1327.87

479.00 ±0.00 106 ±105

1119.00 ±0.00 1015 ±1015

215.00 ±0.00 1016 ±1015

6776.00 ±0.00 1016 ±1015

1049.00 ±0.00 105 ±104

1719.00 ±0.00 105 ±6049.50

419.00 ±0.00 2467.60 ±350.10

2399.00 ±0.00 106 ±105

106 ±0.00 1016 ±1015

0.03 ±0.00 1.13 ±0.02

0.03 ±0.00 1.13 ±0.03

0.03 ±0.00 1.17 ±0.03

0.02 ±0.00 1.18 ±0.04

0.03 ±0.00 1.20 ±0.03

0.08 ±0.00 1.37 ±0.04

0.08 ±0.00 1.38 ±0.04

0.09 ±0.00 1.34 ±0.03

0.08 ±0.00 1.36 ±0.05

0.04 ±0.00 0.31 ±0.01

0.06 ±0.00 0.46 ±0.01

0.06 ±0.00 0.74 ±0.07

0.05 ±0.00 1.06 ±0.17

0.79 ±0.00 3.75 ±0.22

0.08 ±0.00 0.49 ±0.01

0.13 ±0.00 0.52 ±0.02

0.05 ±0.00 0.32 ±0.01

0.07 ±0.00 0.53 ±0.02

0.19 ±0.00 25.89 ±0.44

Last, but not least, Table 4b shows average and 95% confidence interval of
CPU time required to finish the run. In each problem, LC run takes less than
0.8 second and is faster than the GSGP run. In contrast, GSGP requires 1 or 2
orders of magnitude more time, depending on a problem. Wilcoxon test reports
p-value of 3.82 × 10−6, hence LC is significantly faster than GSGP.

5 Discussion

GSGP builds overgrowth programs [18,27] that, due to its size, are difficult to
interpret by humans, require a lot of a storage memory and possibly execute
longer than smaller semantically equal programs. Since program simplification
is NP-hard in general [5], it is doubtful that any simplification procedure can
reduce programs produced by GSGP (cf. Table 4a) to a human-interpretable size.
Additionally, a program built by GSGP is a linear combination of the given pro-
gram parts. This means that virtually any, random, unrelated conglomerates
of instructions can be synthesized, and combined together using constant coef-
ficients. The progress of evolution in GSGP is limited to adaptation of these
coefficients, leaving the given program parts intact. This limits also the pro-
gram’s ability to properly model a relation of input and output hidden in the
training data, thus to properly operate on previously unseen data.
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The presented LC algorithm also constructs a program using a linear com-
bination of arbitrarily synthesized program parts. This means that LC and
GSGP share some of the drawbacks of this way of constructing programs,
e.g., overfitting to the training data. Nevertheless, LC has advantages over GSGP.
LC is two-step, deterministic and exact algorithm, i.e., it guarantees construction
of the optimal program w.r.t. the given program induction problem in a poly-
nomial time. On the other hand, GSGP iteratively and stochastically combines
given programs, to gradually converge to the optimum, without a guarantee of
reaching it or terminating. This difference makes the final programs constructed
by LC smaller than by GSGP in all our experiments.

LC is a naive approach that does not go beyond a toy example. In the field,
there are many methods that construct either linear, or non-linear models that
perform and generalize well in the considered class problems. For instance, in
symbolic regression one can use Fast Function Extraction heuristic [14] or even
assume a specific model and use one of classic regression or interpolation meth-
ods for it. In Boolean domain, the common approach is to use Karnaugh map
minimization [8] that obviously produces smaller programs than LC. In classifier
induction domain, one can use, e.g., decision trees or probabilistic classifiers [6].

This wide range of simple well performing methods, inclines us to claim that
GSGP is overkill for problems of program induction stated as learning of function
h : I → O.

Where Is GSGP Useful? Though, it is important to say, that GSGP is not
entirely doomed to fail. We can distinguish at least two features that makes
GSGP useful in certain situations.

First, consider target to be unknown and fitness function to be black-box that
fulfils requirements of metric. All algorithms discussed in the previous section,
except GSGP, require access to the target. This is because GSGP operators con-
duct strictly syntactic manipulations that have well-defined impact on program
semantics, however the semantics itself is not used by the geometric operators.

Second, GSGP can be split into broad theoretic framework with multiple
achievements in the recent years [17,19–21,24–26] and algorithms of geometric
operators. The main weakness of GSGP lies not in the former, but in the latter
ones. GSGP theory does not define how to build offspring using parent pro-
grams, it only poses requirements to be met by the offspring (cf. Definitions 1
and 3). It is the algorithms are responsible for building linear combination of
random program parts, code growth and poor generalization. To the date, we
do not have other algorithms than the presented in Definitions 2 and 4 that fulfil
requirements of Definitions 1 and 3. However, there were multiple attempts to
create approximate algorithms that on average or in the limit can fulfil these
requirements, e.g., [10,11,22–24,28]. Nevertheless, future work is need in design-
ing new exact algorithms for geometric operators that do not construct offspring
by linearly combining parents.
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6 Conclusions

Program induction problem in Geometric Semantic Genetic Programming is
stated by means of learning function h : I → O. We demonstrated that GSGP
in an attempt to solve this problem constructs a linear combination of random
parts, however GSGP is not guaranteed to solve this problem optimally in finite
time. We showed that the linear combination of random program parts can be
constructed by much simpler means than GSGP with guarantee of solving the
problem optimally. The optimal program is smaller than these of GSGP, and time
consumed by the proposed algorithm is shorter and predetermined (polynomial).

This, does not preclude practical use of GSGP, however a future work has
to be done to put GSGP on the right track. We need new algorithms for GSGP
operators that fulfil definitions of geometric operators (cf. Definitions 1 and 3),
but do not operate by linearly combining parent programs in offspring.

Acknowledgements. This work is funded by National Science Centre Poland grant
number DEC-2012/07/N/ST6/03066.

References

1. Burden, R., Faires, J.: Numerical Analysis. Cengage Learning (2010). http://books.
google.pl/books?id=Dbw8AAAAQBAJ

2. Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F.,
Maccagnola, D.: An efficient implementation of geometric semantic genetic pro-
gramming for anticoagulation level prediction in pharmacogenetics. In: Correia, L.,
Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer,
Heidelberg (2013)

3. Castelli, M., Henriques, R., Vanneschi, L.: A geometric semantic genetic program-
ming system for the electoral redistricting problem. Neurocomputing 154, 200–207
(2015). http://www.sciencedirect.com/science/article/pii/S0925231214016671

4. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance
concrete strength using genetic programming with geometric seman-
tic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013).
http://www.sciencedirect.com/science/article/pii/S0957417413004326

5. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical
Computer Science. Formal Models and Sematics, vol. B, pp. 243–320 (1990)

6. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press, New York (2012)

7. Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Statistics and
Computing. Springer, New York (1998). http://opac.inria.fr/record=b1098288

8. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593–599 (1953)

9. Koza, J.R.: Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, Cambridge (1992).
http://mitpress.mit.edu/books/genetic-programming

10. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: Raidl, G., et al. (eds.) Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation. GECCO 2009, pp. 987–994. ACM, Montreal, 8–12
July 2009

http://books.google.pl/books?id=Dbw8AAAAQBAJ
http://books.google.pl/books?id=Dbw8AAAAQBAJ
http://www.sciencedirect.com/science/article/pii/S0925231214016671
http://www.sciencedirect.com/science/article/pii/S0957417413004326
http://opac.inria.fr/record=b1098288
http://mitpress.mit.edu/books/genetic-programming


Geometric Semantic Genetic Programming Is Overkill 259

11. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles
of semantics and homology in recombination operators. Genet. Program. Evolvable
Mach. 14(1), 31–63 (2013)

12. Luke, S.: The ECJ Owner’s Manual - A User Manual for the ECJ Evolution-
ary Computation Library, zeroth edition, online version 0.2 (edn.), October 2010.
http://cs.gmu.edu/eclab/projects/ecj/docs/

13. Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and
prognosis via linear programming. Oper. Res. 43, 570–577 (1995)

14. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology.
In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory
and Practice IX. Genetic and Evolutionary Computation, pp. 235–260. Springer,
New York (2011). http://trent.st/content/2011-GPTP-FFX-paper.pdf

15. McDermott, J., Agapitos, A., Brabazon, A., O’Neill, M.: Geometric semantic
genetic programmingfor financial data. In: Esparcia-Alcázar, A.I., Mora, A.M.
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Abstract. A common approach in Geometric Semantic Genetic Pro-
gramming (GSGP) is to seed initial populations using conventional,
semantic-unaware methods like Ramped Half-and-Half. We formally
demonstrate that this may limit GSGP’s ability to find a program
with the sought semantics. To overcome this issue, we determine the
desired properties of geometric-aware semantic initialization and imple-
ment them in Semantic Geometric Initialization (Sgi) algorithm, which
we instantiate for symbolic regression and Boolean function synthesis
problems. Properties of Sgi and its impact on GSGP search are verified
experimentally on nine symbolic regression and nine Boolean function
synthesis benchmarks. When assessed experimentally, Sgi leads to supe-
rior performance of GSGP search: better best-of-run fitness and higher
probability of finding the optimal program.

Keywords: Geometric semantic genetic programming · Semantic ini-
tialization · Population

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [16] exploits the spatial
properties of program semantics in order to improve the effectiveness of program
synthesis. The operators proposed within this branch of genetic programming
(GP) have well-understood effects in terms of program behavior on tests, and
some of them even guarantee producing programs with semantics that remain
in certain geometric relationship with the parent(s). As a result, the dynamics
of a GSGP search process is in general more predictable than for conventional
GP, GSGP methods are often superior in terms of performance [3,4,16,20,23]
and lend themselves conveniently to theoretical analysis [17–20,22].

The majority of research effort in GSGP focuses on search operators, which
is not surprising given that successful program synthesis is directly contingent on
them. However, like in case of other evolutionary computation algorithms, the
performance of GSGP depends also on the starting point of a search process, i.e.,
on the contents of the initial population. It is often assumed that the exploratory
capabilities of evolutionary search weaken that dependency. This claim can be
however questioned in GSGP, because of the mentioned above more predictable,
more ‘directional’ and targeted behavior of search operators.

c© Springer International Publishing Switzerland 2016
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Our case in point in this study is the convergent character of semantic geomet-
ric crossover (Sgx). The exact variant of this search operator [16] is guaranteed
to produce an offspring with semantics located in the segment connecting par-
ents’ semantics. This, as we showed in [20], implies that for a GP run equipped
with Sgx only, the set of all semantics that can be reached in a search process is
determined by the initial population. A scenario in which the initial population
precludes arriving at the program with desired semantics (the target) is plausi-
ble, and the odds for it grow with the dimensionality of semantics (the number
of tests (fitness cases)). This risk was largely ignored in past studies on GSGP, in
part due to widespread use of mutation along with crossover. Nevertheless, this
effect deserves better understanding. Also, as we will argue further, it may be
worth addressing this issue even if mutation accompanies crossover as a search
operator.

The main contribution of this study is the observation that an alternative
(to mutation) remedy to Sgx’s high susceptibility to initial conditions is to con-
struct the starting population more carefully. We propose Semantic Geometric
Initialization (Sgi), a semantically aware initialization method that designs the
initial population with the search target in mind. A population initialized with
Sgi is guaranteed to make the target semantics achievable with Sgx. Sgx, due
to its stochastic nature and oblivion to target, is still not guaranteed to syn-
thesize the correct program when initialized with Sgi; however, such a success
becomes much more likely, as we demonstrate in experimental part of this study.

The following Sect. 2 briefly introduces the necessary formalisms. Section 3
uses that formal framework to identify the problem signaled above, i.e., that
initial population imposes strict constraints on the set of semantics that can be
reached with Sgx. Section 4 presents the Sgi algorithm and justifies its design.
Section 5 argues that Sgi is fundamentally different from population initializa-
tion methods proposed in the past (including the semantic-aware ones), and
Sect. 6 demonstrates Sgi’s usefulness empirically on a suite of well-known GP
problems. Section 7 discusses the main results, and Sect. 8 summarizes this study
and outlines the potential follow-up directions.

2 Background

We define a program p ∈ P in a programming language P as a function that maps
a set of inputs I into a set of outputs O, which we denote by o = p(in), where
in ∈ I and o ∈ O. We consider only deterministic programs that feature no side
effects, nor memory persistent across executions. Semantics s ∈ S is a vector
s = [o1, o2, . . . , on] ∈ On, where we refer to On as semantic space (a vector
space), and oi corresponds to ith element in a given n-tuple of program inputs
from In that defines the considered program synthesis task. Semantics s(p) of
a program p is a vector of p’s outputs when executed on a fixed set of inputs
I ⊂ I, i.e., s(p) = [p(in1), p(in2), . . . , p(inn)], ini ∈ I.

The concept of semantics allows reasoning about program behavior in terms
of n-dimensional spaces. Each program has a well-defined semantics, i.e., a point
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in semantic space On. The desired outputs given by a specific synthesis problem
uniquely determine a point t in that space called target (or target semantics).
If a fitness function happens to be a metric (which is almost always the case in
GP), the fitness landscape defined over On is a unimodal cone with the apex in
t [22]. These properties open the door to defining spatial relationships between
program semantics, and investigating whether particular search operators obey
them or not and what is the impact of those properties on the efficiency of
search. The concepts of particular importance here are geometric mutation and
geometric crossover.

Definition 1. Given a parent program p, an r-geometric mutation is an opera-
tor that produces an offspring p′ with semantics s(p′) in a ball of radius r centered
in s(p), i.e., ‖s(p), s(p′)‖ ≤ r.

Definition 2. Given parent programs p1, p2, a geometric crossover is an opera-
tor that produces an offspring p′ with semantics s(p′) in a segment between s(p1)
and s(p2), i.e., ‖s(p1), s(p2)‖ = ‖s(p1), s(p′)‖ + ‖s(p′), s(p2)‖.

A crossover operator with the above property has the ideal ‘mixing’ charac-
teristics: the semantics of the offspring is located ‘in between’ of parents’ seman-
tics. This is in stark contrast to the highly unpredictable semantics of programs
produced by conventional search operators (see, e.g., the arguments in [11]).

The quest for practical algorithms that implement geometric search opera-
tors lasted for several years. Among others, multiple approximately geometric
crossovers have been proposed [10–12,20,23,24]. The breakthrough came with
publication of [16], where exact versions of geometric crossover and mutation
have been proposed, defined as follows for particular domains.

Definition 3. (Algorithms for geometric mutation, Sgm) Symbolic regres-
sion: Given parent arithmetic program p, an offspring is a program p′ =
p+ r(m1 −m2), where m1 and m2 are random arithmetic programs that output
values in range [0,1]. Boolean domain: Given Boolean parent program p, an
offspring is a program p′ = m ∨ p with probability 0.5, p′ = m ∧ p otherwise,
where m is a random minterm.

Definition 4. (Algorithms for geometric crossover, Sgx) Symbolic regres-
sion: Given parent arithmetic programs p1, p2, an offspring is a program p′ =
mp1+(1−m)p2, where m is a random arithmetic program that returns values in
range [0,1]. Boolean domain: Given Boolean parent programs p1, p2, an off-
spring is a program p′ = (p1 ∧ m) ∨ (m ∧ p2), where m is a random Boolean
program.

3 The Problem

The Sgm and Sgx operators are geometric by construction: the offspring is
guaranteed to be geometric with respect to parents in the sense of Definitions 1
and 2. Expectedly, they deliver superior search performance in all domains, as
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shown experimentally in [16] and further studies. However, Sgm is the key to
that success: it is indispensable for good performance, while Sgx used alone
sometimes fails to converge to the sought program [16,23].

The reason for this state of affairs is the ‘centripetal’ character of Sgx, which
can produce only the offspring with semantics in the segment connecting parents’
semantics. On one hand, this is highly desirable given that fitness landscape in
semantic space is unimodal: an application of Sgx to any pair of solutions in
that space is guaranteed to produce an offspring with attractive properties – for
instance for fitness and operator’s metric being Euclidean distance, an offspring
that is not worse that the worse of the parents [22]. On the other hand however, if
Sgx is the only search operator used for program synthesis, the set of semantics
achievable from a given initial population P ⊂ P is limited to the convex hull
spanning the semantics of programs in P , since that convex hull incorporates all
segments between semantics of all pairs of programs in P . Formally (cf. [20]):

Theorem 1. Consider a population P1 of programs and a search process that
starts from P1 and uses Sgx to generate subsequent generations of programs.
A program having semantics t can be achieved in that search process iff the convex
hull of P1 includes t.

Proof. Let Pg be population in generation g ≥ 1, Cg be convex hull of semantics
of programs in Pg. For all given pairs of parent programs p1, p2 ∈ Pg, a semantics
s(p′) of an offspring p′ is included in a segment of s(p1) and s(p2) that in turn
is included in Cg. The set of all offspring Pg+1 ⊆ Cg constitutes a population
of generation g + 1. By the non-decreasing property of convex hull, Cg+1 ⊆ Cg.
By induction, Cg+1 ⊆ Cg ⊆ ... ⊆ C1. Hence, semantics t can be achieved in
generation g iff t ∈ Cg ⊆ C1.

The choice of ‘t’ as the symbol denoting the semantic in question is not
incidental: the above theorem applies in particular to the target, with profound
consequences. If t happens to be located outside the convex hull, applications
of Sgx to P , regardless how many, cannot lead to a program with semantics t.
Unfortunately, this is relatively likely for populations initialized in conventional,
semantic-unaware ways. For instance, for symbolic regression, the semantics of
programs generated by means of the popular Ramped Half-and-Half (Rhh)
method [9] tend to initialize programs with relatively simple semantics, typi-
cally clustered around the origin of coordinate system of semantic space [13]. A
target located far away from that origin is likely to be outside the convex hull
and thus unreachable by the actions of Sgx.

This observation, though rarely formalized in the above way in past literature,
was one of the reasons for using mutation operators alongside with Sgx (the
other reason being Sgx’s propensity to produce large programs). The natural
operator of choice is in this context Sgm, as it is provably capable of reaching
the target from arbitrary starting location in semantic space (even when used
alone; see the semantic stochastic hill climber in [16]). However, it may require
multiple iterations and by this token produce large programs. In the following,
we propose an alternative way of making target achievable for Sgx.
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4 Semantic Geometric Initialization

In the light of Sect. 3 it becomes evident that the target becomes reachable for
Sgx once it belongs to the convex hull spanning the semantics of programs in
initial population. In this section, we propose Semantic Geometric Initialization
(Sgi), a method that achieves that goal by means of semantic- and geometry-
aware population initialization.

Algorithm 1. Calculation of a set of semantics such that their convex hull in
On encloses the target t. popsize is desired population size.
1: function Wrap(t, popsize)
2: S = ∅ � Output set
3: n = |t| � Dimensionality of semantic space
4: I = {1, . . . , n} � Indices of all dimensions
5: k = 1 � Number of dimensions to change in t
6: while k ≤ n do
7: for I ′ ∈ (I

k

)
do � I ′ = k-element combination of dimensions

8: for b ∈ {0, 1}k do � b = combination of directions on dimensions in I ′

9: s ← t
10: for i ∈ I ′ do
11: if bi = 1 then
12: si ← AddOne(ti)
13: else
14: si ← SubtractOne(ti)

15: if s �∈ S then
16: S = S ∪ {s}
17: if |S| = popsize then
18: return S
19: k ← k + 1

20: return S � |S| < popsize, population is not filled

The input to the method is the target t. The algorithm proceeds in two steps:

1. Use the function Wrap (Algorithm 1) to generate a set of semantics S ⊂ On

such that the convex hull of S encloses target t, i.e., t ∈ C(S),
2. For each semantics si ∈ S, synthesize a program p such that s(p) = si.

The realization of each step is domain-dependent. For the first step we provide an
abstract Algorithm 1 that will be specialized in the following for symbolic regres-
sion and Boolean function synthesis domains. It calculates set of semantics that
wrap t in their convex hull in On semantic space. The algorithm iteratively con-
structs new semantics by modifying k components (dimensions) of the target t.
For each subset of k components of t, the algorithm attempts to construct 2k

semantics by applying to these components all combinations of two domain-
dependent functions: AddOne and SubtractOne. We gather the resulting
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semantics in the output set S while discarding duplicates. We start with k = 1
and increment it each time all k-component sets have been considered.

For the symbolic regression domain, we define AddOne and Subtrac-
tOne functions using arithmetic operations:

AddOne(tai
) ≡ tai

+ 1 SubtractOne(tai
) ≡ tai

− 1

The Wrap algorithm, when instantiated with these functions and invoked
with popsize ≥ 2, is guaranteed to construct a set of semantics S such that
t ∈ C(S). In other words, there exists a dimension i of t and semantics s1 and
s2, such that s1i < ti < s2i and ∀j �=is

1
j = tj = s2j . Thus, under any metric, t is

included in the segment between s1 and s2 – a degenerated case of a convex hull.
Concerning program synthesis, for each semantics s ∈ S calculated by

Algorithm 1, Sgi constructs a program using multivariate polynomial interpola-
tion as described in [26]. The set of points used in interpolation comes from the
set of program inputs in ∈ I on which program’s semantics is to be calculated
and corresponding components of s, i.e., (ini, si), k = 1, . . . , n.

For the Boolean function synthesis, the definitions of AddOne and Sub-
tractOne are Boolean counterparts of the above arithmetic operations, limited
to the corners of the unit hypercube {0, 1}n. Since there are only two values in
Boolean domain: 0 (false) and 1 (true), the Boolean addition of 1 results in 1
(i.e., q ∨ 1 ≡ 1), the Boolean subtraction of 1 results in 0 (i.e., q ∧ 0 ≡ 0) for any
term, and the functions reduce to constants:

AddOne(tai
) ≡ 1 SubtractOne(tai

) ≡ 0

For popsize ≥ 2 Wrap is guaranteed to include the target t in C(S), because
there exists a dimension i of t and semantics s1 and s2, such that s1i = ti �= s2i
or s1i �= ti = s2i and ∀j �=is

1
j = tj = s2j . Sgi synthesizes the Boolean programs pi

for semantics si ∈ S using the following formula:

pi =
∨

j=1..n : tj=1

yj , where yj =
∧

k=1..n

{
xk if injk
— ——
xk if injk

, (1)

where injk is a value of kth variable of jth input used to calculate semantics, yj
is a minterm that is 1 for jth input and xk is kth program argument.

5 Related Work

To our knowledge, Sgi is the first semantic and geometric population initializa-
tion method in GP, however not the first semantic method of this kind.

Looks in [13] proposed Semantic Sampling (Ss) heuristic that produces a pop-
ulation of semantically unique Boolean programs with uniformly distributed pro-
gram sizes. Ss partitions a population into bins by program size and fills them
up to assumed capacity by semantically unique programs. Sgi differs from Ss
in its awareness of geometry of semantic space. Also, Sgi can operate in any
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Table 1. Parameters of evolutionary algorithms.

Symbolic regression Boolean domain

Number of runs 30

Population size 1000

Termination condition 50 generations or fitness = 0

Selection method Tournament selection of size 7

Fitness function L2 metric L1 metric

Instructions x1, x2,+,−,×, /, sin, cos, exp, loga x1, x2, . . . ,b and, or, nand, nor
a log is defined as log |x|; / returns 0 if divisor is 0.
b The number of inputs depends on a particular problem instance

Table 2. Benchmark problems.

Problem Definition (formula) Variables Range Size

S
y
m
b
o
li
c
re
g
re
ss
io
n

R1 (x1 + 1)3/(x2
1 − x1 1)1+ 〈−1, 1〉 20

R2 (x5
1 − 3x3

1 + 1)/(x2
1 1)1+ 〈−1, 1〉 20

R3 (x6
1 + x5

1)/(x
4
1 + x3

1 + x2
1 + x1 + 1) 1 〈−1, 1〉 20

Kj1 0.3x1 sin(2πx1 1) 〈−1, 1〉 20
Kj4 x3

1e
−x1 cos(x1) sin(x1)(sin

2(x1) cos(x1) − 1) 1 〈0, 10〉 20

Ng9 sin(x1) + sin(x2
2 2) 〈0, 1〉2 100

Ng12 x4
1 − x3

1 +
x2
2
2

− x2 2 〈0, 1〉2 100

Pg1 1/(1 + x−4
1 ) + 1/(1 + x−4

2 2) 〈−5, 5〉2 100

Vl1 e−(x1−1)2/(1.2 + (x2 − 2.5)2) 2 〈0, 6〉2 100

Problem Instance Variables Size

B
o
o
le
a
n
d
o
m
a
in Even parity

2355raP
4666raP
82177raP

Multiplexer
4666xuM
84021111xuM

Majority
4677jaM
82188jaM

Comparator
4666pmC
65288pmC

domain for which the AddOne and SubtractOne functions can be defined
(and efficiently computed).

Beadle and Johnson [1] proposed Semantically Driven Initialization (Sdi)
that fills population with semantically unique programs. Sdi was designed for
Boolean and artificial ant problems and uses a reduced ordered binary deci-
sion diagram or a sequence of ant moves, respectively, as the representation of
program’s semantics. Like Ss, Sdi does not engage geometric considerations.

An approach called Behavioral Initialization (Bi) was proposed by Jackson [7].
Bi is a wrapper onRhh that accepts a program created byRhh if it is semantically
unique in the population being initialized. Although domain-independent, Bi is
oblivious to geometry of the semantic space.
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Pawlak proposed Competent Initialization (Ci) [20] for symbolic regression
and Boolean domains. Ci repetitively invokes Sdi and accepts (i.e., adds to the
population) the created program if its semantics expands the convex hull of the
semantics of programs already present in the population. Ci is geometric in the
limit of population size approaching infinity, but in contrast to Sgi does not
guarantee including the target in the convex hull.

6 Experimental Verification

We compare Sgi to Ramped Half-and-Half (Rhh) [9] – the arguably most com-
mon population initialization method in GSGP and in GP in general. We run
two groups of GSGP setups, with Sgi and with Rhh as the initialization opera-
tor, to determine the advantages and disadvantages of using Sgi. In both groups,
we consider a setup with Sgx [16] as the only search operator to verify whether
inclusion of the target in the convex hull of the initial population increases Sgx’s
ability of reaching it (cf. Sect. 3). The second setup in each group uses both Sgx
and Sgm [16], in a configuration that is most commonly practiced in GSGP.
In addition, we run a canonical control setup, with Rhh and traditional non-
semantic search operators. Overall, there are thus five setups:

SgiX – Sgi accompanied with Sgx only,
SgiXM – Sgi with Sgx and Sgm in proportions 50 : 50,
RhhX – Rhh with Sgx only,
RhhXM – Rhh with Sgx and Sgm in proportions 50 : 50,
RhhTxTm – Rhh with tree crossover and tree mutation [9] in propor-
tions 90:10.

Table 1 sums up the parameter settings; other parameters are set to ECJ [14]
defaults.

We compare the setups on nine uni- and bi-variate symbolic regression prob-
lems, and nine Boolean function synthesis problems. The problems come from
[15,23] and are summarized Table 2. In univariate symbolic regression problems,
20 Chebyshev nodes1 [2] are used for training, and 20 uniformly sampled points
for testing. For bivariate problems 10 values are picked in analogous way for each
input variable and the Cartesian product of them constitutes a data set. Points
are selected from the ranges shown in the table. For the Boolean benchmarks,
training sets enumerate all combinations of inputs and there are no testing sets.

Training Set Performance. Figure 1 and Table 3 present average and
.95-confidence interval of the best-of-generation and the best-of-run program,
respectively. Both Sgi* setups begin from a relatively low fitness of about 1
in all problems in both problem domains. This phenomenon originates in the

1 Points given by xk = 1
2
(a+b)+ 1

2
(b−a) cos( 2k−1

2n
π), k = 1..n, where [a, b] is the range

of training set, and n is number of data points. Using Chebyshev nodes minimizes
the likelihood of Runge’s phenomenon [25].
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Fig. 1. Average and .95-confidence interval of the best-of-generation fitness.
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Table 3. Average and .95-confidence interval of the best-of-run fitness. Last row
presents the averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 0.02 ±0.00 0.02 ±0.00 2.62 ±0.20 1.05 ±0.08 0.24 ±0.07

R2 0.02 ±0.00 0.02 ±0.00 0.53 ±0.06 0.26 ±0.02 0.20 ±0.03

R3 0.02 ±0.00 0.02 ±0.00 0.18 ±0.02 0.14 ±0.01 0.04 ±0.01

Kj1 0.02 ±0.00 0.02 ±0.00 0.34 ±0.02 0.29 ±0.02 0.08 ±0.02

Kj4 0.02 ±0.00 0.02 ±0.00 0.95 ±0.03 0.79 ±0.03 0.26 ±0.04

Ng9 0.11 ±0.01 0.11 ±0.01 0.59 ±0.05 0.39 ±0.03 0.24 ±0.06

Ng12 0.12 ±0.01 0.12 ±0.01 0.37 ±0.02 0.33 ±0.02 0.35 ±0.04

Pg1 0.09 ±0.00 0.10 ±0.00 1.31 ±0.08 1.00 ±0.06 0.28 ±0.08

Vl1 0.16 ±0.01 0.14 ±0.01 1.03 ±0.03 0.93 ±0.02 0.42 ±0.08

Par5 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 5.57 ±0.56

Par6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 17.93 ±0.90

Par7 0.00 ±0.00 0.00 ±0.00 0.17 ±0.19 0.10 ±0.11 47.77 ±1.22

Mux6 0.00 ±0.00 0.00 ±0.00 1.40 ±0.34 1.27 ±0.37 4.63 ±0.72

Mux11 0.00 ±0.00 0.00 ±0.00 125.50 ±9.63 132.33 ±11.25 122.73 ±6.43

Maj7 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.20 ±0.62

Maj8 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.67 ±0.32

Cmp6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.40 ±0.41

Cmp8 0.00 ±0.00 0.00 ±0.00 0.03 ±0.06 0.00 ±0.00 11.93 ±1.08

Rank: 1.89 1.72 4.08 3.36 3.94

Table 4. Post-hoc analysis of Friedman’s test on Table 3: p-values of incorrectly judging
a setup in a row as achieving better best-of-run fitness than a setup in a column.
Significant values (p < 0.05) are visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm
SgiX 0.000 0.020 0.000

SgiXM 0.997 0.000 0.006 0.000
RhhX

RhhXM 0.567 0.748
RhhTxTm 0.999

RhhTxTm

SgiX RhhX

SgiXM RhhXM

construction of AddOne and SubtractOne formulas that cause the initial
population to consists of multiple programs at distance 1 from the target. These
superior starting conditions are especially evident in Boolean domain, where the
programs produced by Rhh in the initial generation are 1–2 orders of magnitude
worse than those produced by Sgi.

In symbolic regression problems GSGP clearly benefits from Sgi. We
observe steep improvement of fitness in the first ten generations that gradu-
ally slows down and finally stops after about 20 generations. The initial rate of
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Table 5. Probability and .95-confidence interval of success over problems. Problems
that were not solved at least once are not shown. Last row presents the averaged ranks
of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

Ng9 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.07 ±0.09

Par5 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Par6 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Par7 1.00 ±0.00 1.00 ±0.00 0.90 ±0.11 0.90 ±0.11 0.00 ±0.00

Mux6 1.00 ±0.00 1.00 ±0.00 0.17 ±0.13 0.23 ±0.15 0.00 ±0.00

Mux11 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Maj7 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.03 ±0.06

Maj8 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.53 ±0.18

Cmp6 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.30 ±0.16

Cmp8 1.00 ±0.00 1.00 ±0.00 0.97 ±0.06 1.00 ±0.00 0.00 ±0.00

Rank: 2.58 2.58 3.08 2.92 3.83

Table 6. Post-hoc analysis of Friedman’s test on Table 5: p-values of incorrectly judging
a setup in a row as having higher probability of success than a setup in a column.
Significant values (p < 0.05) are visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm
SgiX 1.000 0.503 0.827 0.001

SgiXM 0.503 0.827 0.001
RhhX 0.119

RhhXM 0.984 0.029
RhhTxTm

RhhTxTm

SgiX RhhX

SgiXM RhhXM

improvement is slower for RhhX and RhhXM, which gradually improve in the
first 5–8 generations and then saturate. In Boolean domain both Sgi* setups
find the optimum in 1–2 generations, while Rhh* GSGP setups need 10–25
generations to solve all problems, except for multiplexers.

There is no noticeable difference in generational characteristic between both
Sgi* setups. In contrast, both Rhh* GSGP setups differ noticeably: RhhXM
fares better in most symbolic regression problems. In the Boolean domain,
there are no significant differences. Best-of-generation fitness of RhhTxTm is
in between those of the GSGP setups for greater part of runs for the symbolic
regression problems, and worse than all GSGP setups for the Boolean problems.

Friedman’s test [8] on the best-of-run fitness signals significant differences
between setups (p = 9.68×10−6), so we conduct post-hoc analysis with symmetry
test [6]. Table 4 presents the p-values for the hypothesis that a setup in a row is
better than a setup in a column, and the graph of significant outrankings. The
setups initialized with Sgi are significantly better than all other setups.

Table 5 presents the empirical probability of solving problems by particu-
lar setups, which we define as achieving best-of-run fitness lower than 2−23
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Fig. 2. Median and .95-confidence interval of test set fitness of the best-of-generation
program on training set.

Table 7. Median and .95-confidence interval of test set fitness of the best-of-run pro-
gram on training set. Last row presents the averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 18.40 ±0.00 18.40 ±0.00 17.53 ±0.25 18.39 ±0.12 0.21 ±0.07

R2 3.38 ±0.00 3.38 ±0.00 3.29 ±0.08 3.34 ±0.02 0.10 ±0.06

R3 0.71 ±0.00 0.72 ±0.00 0.66 ±0.02 0.69 ±0.01 0.03 ±0.02

Kj1 0.56 ±0.00 0.56 ±0.00 0.51 ±0.02 0.52 ±0.02 0.18 ±0.04

Kj4 2.66 ±0.00 2.66 ±0.00 2.24 ±0.03 2.25 ±0.04 1.38 ±0.89

Ng9 6.08 ±0.00 6.08 ±0.00 5.91 ±0.06 6.02 ±0.03 0.16 ±0.07

Ng12 2.21 ±0.00 2.21 ±0.00 2.10 ±0.02 2.13 ±0.03 0.19 ±0.06

Pg1 7.55 ±0.00 7.55 ±0.01 7.37 ±0.10 7.45 ±0.19 3.79 ±0.90

Vl1 3.62 ±0.01 3.62 ±0.01 3.38 ±0.04 3.37 ±0.06 0.80 ±0.57

Rank: 4.44 4.56 2.11 2.89 1.00
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Table 8. Post-hoc analysis of Friedman’s test on Table 7: p-values of incorrectly judging
a setup in a row as achieving better test set fitness than a setup in a column. Significant
values (α = 0.05) visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm
SgiX 1.000

SgiXM
RhhX0.015 0.009 0.835

RhhXM0.226 0.166
RhhTxTm0.000 0.000 0.569 0.083

RhhTxTm

SgiX RhhX

SgiXM RhhXM

Table 9. Average and .95-confidence interval of number of nodes in the best of run
program. Values ≥ 104 are rounded to an order of magnitude. Last row presents the
averaged ranks of setups.

Problem SgiX SgiXM RhhX RhhXM RhhTxTm

R1 1017 ±1016 1017 ±1016 1014 ±1014 1014 ±1014 103.73 ±13.76

R2 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 69.90 ±12.79

R3 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 123.37 ±16.20

Kj1 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 115.70 ±11.87

Kj4 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 127.37 ±14.44

Ng9 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 65.07 ±10.01

Ng12 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 52.50 ±12.88

Pg1 1017 ±1016 1017 ±1016 1015 ±1014 1015 ±1014 77.07 ±10.70

Vl1 1017 ±1016 1017 ±1016 1014 ±1014 1015 ±1014 97.23 ±13.71

Par5 199.00 ±0.00 199.00 ±0.00 104 ±1905.85 104 ±1458.59 321.80 ±26.53

Par6 694.90 ±25.58 700.10 ±20.84 106 ±105 106 ±105 353.27 ±34.98

Par7 1458.30 ±42.05 1461.20 ±42.64 1015 ±1015 1015 ±1015 378.27 ±39.02

Mux6 354.30 ±5.46 354.63 ±9.73 1015 ±1015 1016 ±1015 186.13 ±30.18

Mux11 9563.97 ±18.39 9416.97 ±219.98 1016 ±1014 1016 ±1015 159.13 ±19.26

Maj7 1400.20 ±23.91 1401.30 ±24.95 105 ±104 105 ±104 406.13 ±35.64

Maj8 1739.00 ±0.00 1739.00 ±0.00 105 ±5010.51 105 ±5096.79 313.20 ±34.53

Cmp6 579.77 ±13.04 578.87 ±9.58 1899.90 ±294.67 2350.37 ±354.01 245.73 ±25.83

Cmp8 2949.40 ±9.08 2892.53 ±38.50 1014 ±1014 105 ±105 249.87 ±38.20

Rank: 3.28 3.61 3.17 3.83 1.11

Table 10. Post-hoc analysis of Friedman’s test on Table 9: p-values of incorrectly
judging a setup in a row as producing smaller programs than a setup in a column.
Significant values (α = 0.05) visualized as outranking graph.

SgiX SgiXMRhhXRhhXMRhhTxTm
SgiX 0.970 0.828

SgiXM 0.993
RhhX1.000 0.916 0.711

RhhXM
RhhTxTm0.000 0.000 0.001 0.000

RhhTxTm

SgiX RhhX

SgiXM RhhXM
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(the difference between 1.0 and the closest IEEE754 single precision number).
Both Sgi* setups solve all Boolean problems, while the setups using Rhh for
population initialization do not solve Mux11 in any run, and do not always solve
the other 3 out of 9 Boolean problems. The probabilities are a bit higher for
the setup that uses mutation. On the other hand, in symbolic regression, none
of the GSGP setups solved any of problems and only Ng9 problem is solved by
RhhTxTm. Friedman’s test (p = 6.73 × 10−4) and post-hoc analysis in Table 6
show that both Sgi* setups and RhhXM are better than RhhTxTm, however
the evidence is too weak to conclude about the differences between Sgi and Rhh
in GSGP.

Test-Set Performance. Figure 2 and Table 7 present the median and .95-
confidence interval of test-set fitness of the best-of-generation and the best-of-run
program on the training set, respectively. All GSGP setups significantly overfit
to training data: the test set fitness quickly increases in early generations and
remains high for the rest of runs. The values are slightly worse for the Sgi*
setups. This observation is consistent with previous studies, [20,23] and can be
attributed to the well-known bias-variance dilemma [5] in machine learning. The
use of Sgi leads to better adaptation to training data, and thus reduces bias.
That in turn increases the variance of performance on the unknown test data, and
makes GP more prone to overfitting. The conventional RhhTxTm setup is the
only one that generalizes well to the test set. Friedman’s test (p = 2.18 × 10−5)
and post-hoc analysis in Table 8 confirm: RhhTxTm and RhhX are better than
both Sgi* setups.

Program Size. Table 9 presents the average and .95-confidence interval of the
number of nodes in the best-of-run programs. The exponential growth of Sgx’s
offspring is clearly visible in the data. For the setups that involve that operator,
we report the total number of nodes/instructions in ‘unrolled’ trees. The actual
number of unique program nodes held in memory is many orders of magnitude
lower, because a given program may refer to its ancestor programs multiple times,
due to the ‘aggregative’ nature of exact semantic operators (see Definitions 3
and 4).

In contrast, RhhTxTm produces programs smaller than 500 nodes. For the
setups initialized with Sgi, it is worth noting that they produce large programs
only for problems that they failed to solve in some of runs (cf. Table 5). For
the remaining problems, the average number of nodes in a program is smaller,
however still bigger than of RhhTxTm. An exception is Par5 problem, for
which both Sgi* setups produce the smallest programs. Fortunately, use of Sgi
increases the probability of success and thus rises the likelihood of producing
small programs. Friedman’s test (p = 2.74 × 10−6) and post-hoc analysis in
Table 10 confirm that RhhTxTm produces smallest programs, but there is no
sufficient evidence to reveal the differences between the remaining setups.
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7 Discussion

The results presented above clearly corroborate the importance of population
initialization for GSGP. In particular, the geometric and semantic-aware initial-
ization offered by Sgi brings to zero the differences of the setups that use and
do not use Sgm (i.e., SgiX and SgiXM), on virtually all performance indicators
(fitness, test-set performance, program size). In other words, the convex hull of
semantics built around the target by Sgi makes the use of Sgm optional. We
hypothesize that this characteristics may be convenient in scenarios where Sgm
is slow at traversing search space, and where Sgx may be better in that respect.
Concerning low generalization capabilities, they are not due to Sgi, but are com-
mon to all setups that involve Sgm and Sgx, and reveal the more fundamental
problem of semantic geometric GP, i.e., its inherent lack of bias resulting in high
variance [5] (Sec. 6).

A vigilant reader might have noticed the seemingly paradoxical feature of the
proposed initialization technique. Sgi employs exact techniques to synthesize the
programs that support the convex hull around the target (multivariate polyno-
mial interpolation for the symbolic regression domain and disjunctive normal
forms for the Boolean domain). Then it relies on heuristic GP search to synthe-
size the program that solves the original task, i.e., has semantics in the target. It
does not take long to realize that the above exact techniques could be directly
used to synthesize the sought program, without using GP altogether.

Note however that the above paradox applies to the entire domain of GP, and
not only to Sgi or this particular study. Our goal was to verify the relevance
of geometric and semantic-aware initialization for search conducted by means
of GSGP, and the empirical evidence gathered here confirms the theoretical
suppositions. We explore the possibility of one-step construction of a perfect
program from a population in another study published in this very volume [21].

Sgi offers certain advantages for program size in the Boolean domain. As it
follows from Table 9, GSGP starting from traditionally initialized populations
(with Rhh) may grow monstrously large programs before reaching the target
(even when using Sgm, which is known to increase program size only by fixed
factor in every application, compared to the exponential growth of Sgx). When
an initial population forms a convex hull around the target, a few moves of Sgm
and/or Sgx may be sufficient to solve a synthesis task. We hypothesize thus that
the positive impact of Sgi is not only due to its convex hull property, but also
due to the proximity of the initial population to the target.

8 Conclusions

We have brought theoretical evidence that the possibility of finding a program
with the optimal semantics by GSGP running solely geometric crossover depends
on whether the convex hull spanning the programs in the initial population
includes the search target. Experimental verification has shown that the above
is true also for GSGP equipped with crossover and mutation. The commonly used
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Rhh initialization does not provide this guarantee. To overcome this problem,
we provided the Sgi algorithm that seeds the initial population with programs
that form an appropriate convex hull.

Further work is needed to develop Sgi for other domains than those consid-
ered in this paper, e.g., for the categorical one. Another interesting research topic
is the influence of the initial distribution of programs’ semantics on the analo-
gous distributions in subsequent populations and search performance. Last but
not least, the convex hull property is only the necessary condition to reach the
target. It remains an open question how to efficiently prevent GSGP operators
from losing the target from the population’s convex hull.
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Abstract. We apply methods of genetic programming to a general prob-
lem from software engineering, namely example-based generation of spec-
ifications. In particular, we focus on model transformation by example.
The definition and implementation of model transformations is a task
frequently carried out by domain experts, hence, a (semi-)automatic app-
roach is desirable. This application is challenging because the underlying
search space has rich semantics, is high-dimensional, and unstructured.
Hence, a computationally brute-force approach would be unscalable and
potentially infeasible. To address that problem, we develop a sophis-
ticated approach of designing complex mutation operators. We define
‘patterns’ for constructing mutation operators and report a successful
case study. Furthermore, the code of the evolved model transformation
is required to have high maintainability and extensibility, that is, the
code should be easily readable by domain experts. We report an evalua-
tion of this approach in a software engineering case study.

Keywords: Model transformations · Mutation operators · Software
engineering

1 Introduction

A well-known challenge in genetic programming is to find appropriate combina-
tions of a genetic representation and genetic operators [9,13]. The choice of a
genetic representation usually depends on the particular problem. The genetic
representation can have a considerable impact on the task difficulty and con-
sequently on the performance of the evolutionary approach [5,8]. Besides sim-
ple direct encoding a number of sophisticated approaches have been reported,
such as generative representations [5,8] that try to leverage regularities in the
problem, developmental representations [1], gene regulatory networks [3,4], and
grammatical evolution [14]. Once an appropriate genetic representation is found
the genetic operators are expected to be effective. For example, the encoding
c© Springer International Publishing Switzerland 2016
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should be robust to mutation such that a mutated individual has roughly the
same fitness (cf. causality, local search) [13]. Criteria for a good genetic repre-
sentation include completeness (any solution can be encoded) and closure (any
genotype represents a meaningful solution) [7].

In the following, we apply genetic programming to a problem from software
engineering. We argue that for our domain finding an appropriate combination of
a genetic representation and genetic operators is particularly difficult especially
concerning closure and the effect of neutral mutations. We apply evolutionary
algorithms to the software-engineering problem of ‘model-to-model transforma-
tions’. Model here means formal representations of software (e.g., finite state
machines, UML class diagrams) and the transformation is the process of con-
verting an instance of one model to the corresponding instance of another model.
The input is pairs of corresponding example instances of both models. The out-
put should be an algorithm that transforms these examples but hopefully also
generalizes to correctly transform instances not seen before (cf. supervised learn-
ing). These examples are assumed to be provided by a domain expert. This is
the problem of (semi-)automatic, example-based generation of model-to-model
transformations, which otherwise requires a human transformation designer.

Applying genetic programming to the example-based generation of model
transformations imposes mainly two challenges that are also relevant for the
field of genetic programming itself. First, it is difficult to find an appropriate
genetic representation for the transformations, because the associated search
space is loaded with rich semantics. The search space does not show regularities
that could be represented easily, instead most model transformation steps create
interdependencies between operations, and the search space is unlimited in its
size. The options of how to relate elements of instances from different models are
manifold and context-dependent. Hence, any trivial approach generates a vast
number of semantically incorrect instances in a combinatorial explosion.

Second, the search space is discrete, high-dimensional, and there is always a
vast number of options for what the evolutionary operators should change. Here,
the design of the mutation operator requires special attention and is challenging
because the semantics should be respected. Otherwise, there is a combinatorial
explosion of possible offspring that could be generated by mutations. Even worse,
most of these mutations are neutral in terms of fitness because the mutations
are either without effect or generate semantically meaningless transformations.
Based on our experience it seems that no simple solution based on different
representations exists.

In addition to the motivation for an approach, that pushes towards closure,
there are the requirements of readability and maintainability of the generated
transformation code. We want to allow for an optional semi-automatic approach
and to generate model transformations that are easily understood by a domain
expert. The problem of automatically generating model transformations is very
complex and hence we expect that final changes by a domain expert are useful
or possibly even required.
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In this paper we present our approach to the challenges of finding appropriate
genetic representations and of designing appropriate mutation operators for the
application of example-based model-to-model transformations. Our main idea
is to design a number of different mutation operators that ensure meaningful
changes to the genome. To guide the design of these operators we define, what
we call, ‘transformation patterns’. Next we explain the application and related
work, followed by a description of our approach, and a discussion of the results.

2 Model Transformations by Example and Related Work

In software engineering many problems require tedious manual tasks which is also
true for model-to-model transformations. Their design requires domain experts
to create transformation rules, which allow to convert between different model
types. This task is especially relevant, when designing software systems with the
model driven development methodology.

Model Transformations by Example as Task. The starting point for a model-
transformations-by-example problem is a domain specific language which is close
to the problem domain, but semantically far from the technical solution. There-
fore, a transformation from the domain-specific model to a more technical model
is required. Creating these transformations manually is difficult. Hence, automat-
ing the creation of model-to-model transformations is desirable. One approach to
define the transformation problem is to provide example instances for both mod-
els. This is called model transformation by example (MTBE) [10]. Depending
on the definition not only example instances are provided, but also information
about their relations. In our approach only the examples are required, because
providing additional information is challenging in complex scenarios.

The search space for our evolutionary algorithm is the infinite set of all pos-
sible model-to-model transformations. A transformation relates elements of the
one model to elements of the other model. and must conform to a common
model language called ‘Meta Object Facility’1. All transformations are based
on the Meta Object Facility. Roughly, this language defines classes with prop-
erties and associations which relate classes. The search space is large because
instance of a class and property can be transformed to instances of associations,
instances of properties, etc. Instances can be of type string which means that
transformations might be required to concatenate several strings correctly to
implement the right naming convention etc. In addition, a transformation might
be required to depend on information of a particular instance which means that
decision-making is required at runtime.

The example presented in Fig. 1 shows a transformation on the model
level. Both models describe the same behavior. On the left, the instance of a
hierarchical-state machine is shown. It has states (e.g., Machine Off), transi-
tions (e.g., Switch on), and composite states that can contain nested states. The
state machine and each composite state require an initial state. Machine off is
1 OMG – MOF http://www.omg.org/spec/MOF/2.4.1/, 2015/09/09.

http://www.omg.org/spec/MOF/2.4.1/
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Fig. 1. Transformation scenario with example models and indicated relations, a
hierarchical-state machine is transformed into a flat-state machine.

the general initial state and Ready is the initial state of the composite state
Machine On. On the right, the flat state machine is shown, which models the
same behavior without composite states. A correct transformation has to solve
several tasks here. There are simple transformation steps, for example, all non-
composite states (Machine Off, Ready, Operating) are transformed directly. That
is, however, not possible for composite states and their initial states. Transitions
pointing to composite states are transformed into transitions pointing to the
composite state’s previous start state. Switch On points to Machine On but
should point to Ready. Also, transitions originating from previous composite
states are transformed into a transition for each previous inner state. Switch
off originates from Machine On. Thus, the transformation has to create a tran-
sition Ready/Switch off originating from Ready and Operating/Switch off from
Operating. For this transformation also a string concatenation is required for the
transition labels. The correct, context-dependent choice needs to be made out
of multiple possible transformations for transitions.

In the technical terms of the software-engineering community the instance
of a state machine Ma is called a model and the set of all possible state
machines MMa is called a meta-model (see Fig. 2). Hence, the overall task here
is to generate a generic MMa → MMb transformation that transforms instances
of the meta-model MMa into instances of the meta-model MMb. Following the
MTBE methodology, a domain expert provides one or more example instances
Ma of MMa with expected output M∗

b conforming to MMb. Hence, we have a
challenging MTBE that provides little information as guidance. The search space
grows fast with problem size. The main challenge is to handle these large search
spaces and to enable the convergence on a suitable solution. Also no practicable
generic approach to the problem of model-to-model transformation exists. Only
transformation languages have been developed that focus on particular aspects
of different domains. Hence, we have to define our own approach to structure
the search space and allowed changes to genotypes.
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Fig. 2. Problem and requirement definition, generation of maintainable MMa → MMb

transformations using semantically identical input/output pairs; definition of extensible
algorithm and design method for creating extensions.

We require our evolutionary approach to create MMa → MMb transforma-
tions based on given meta-models MMa and MMb. It is guided by manually
created (Ma, Mb) example pairs. Due to the complexity of model-to-model trans-
formations, the evolutionary algorithm cannot be guaranteed to always converge
on an appropriate solution. Hence, we require our approach to be extensible by
providing generic extension parameters. A design method for creating extensions
must be defined. It guides the algorithm developer to solve this challenging task.
Generated MMa → MMb transformations might not be complete solutions and
should therefore be maintainable by a transformation developer. A duration
of evolutionary runs of a few hours is acceptable. We investigate two example
scenarios derived from representative software engineering problems. The first
scenario is to transform a simplified Unified Modeling Language (UML) class dia-
gram2 to a relational schema. In the second scenario hierarchical-state machines
are transformed into flat-state machines.

Related Work. An overview over work that is related to our application, model
transformation by example, is provided by Kappel et al. [10]. Here, we limit our
discussion to two closely related approaches. We follow the approach by Faunes
et al. [6] and Baki et al. [2] and apply genetic programming to derive a model
transformation from examples. An initial population is created randomly using
predefined patterns to generate model transformations. In order to evaluate the

2 OMG – UML http://www.omg.org/spec/UML/2.4.1/, 2015/09/09.

http://www.omg.org/spec/UML/2.4.1/
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resulting model transformations, they are executed on the source models given
in the examples. As fitness function, the difference between the produced output
(transformed source model) and the expected output (given target model) is cal-
culated. In contrast to our work, Faunes et al. apply both a crossover operator
and a mutation operator, and explicitly create a control flow in their model trans-
formations. Our approach to the control flow is simpler as it is controlled by the
execution engine. Their algorithms are based on a self-defined, simple transforma-
tion language. However, this language is used internally whereas the actual output
conforms to a rule language. This output language does not reflect all concepts of
the transformation language in a comprehensible way. Hence, the created trans-
formations are not maintainable. The genetic operators are based on the inter-
nal language and have the capability to use all aspects of this language to create
transformations. Due to the complexity of the search space and the combinatorial
explosion of applicable changes to the genotype, their evaluation results indicate
that the algorithms are likely to operate on neutral fitness landscape areas fre-
quently. Complex transformations like the concatenation of property values are
not supported. Due to the complexity of model-to-model transformations and the
lack of a precise, generic problem definition, a fully generic approach is difficult.
Going beyond these two works [2,6], we focus additionally on the extensibility and
adaptability of our approach and the generated model-to-model transformations.
Since convergence on a complete solution is not guaranteed, the evolved transfor-
mation should be readable and maintainable by a human developer.

Kessentini et al. [11,12] apply a variation of particle swarm optimization to
find an optimal model transformation based on the given examples. This app-
roach derives a target model directly from the source model without producing
any model transformation rules. The approach tests different transformation pos-
sibilities and evaluates their fitness based on the given examples. In comparison,
the advantage of our approach is the explicitly produced model transformation,
which can be understood and refined by the modeler.

3 GP Approach to Evolve Model-to-Model
Transformations

First, we explain the general concept followed by explanations of major parts of
the solution. Figure 3 gives an overview of our general approach. The transforma-
tions are encoded in a special language called ‘Epsilon Transformation Language’
(ETL)3, which is a regular programming language with standard control state-
ments such as if-then-else and for-loops. This design decision is fundamental
to provide maintainable solutions because it is a domain specific language tar-
geted at humans. The search space is defined by the infinite set of all possible
transformations representable by ETL. Due to the high complexity of our prob-
lem domain, we simplified the meta-meta-model language Meta Object Facility
(MOF) to limit the number of possible transformations that are representable in

3 Eclipse Foundation – ETL http://www.eclipse.org/epsilon, 2015/09/09.

http://www.eclipse.org/epsilon
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our approach. Thereby, our genetic representation does not satisfy the complete-
ness requirement [7] and also the number of possible meta-models is limited. The
simplified MOF is the foundation for the systematic construction of the repre-
sentative transformation scenarios. For example, solution D in Fig. 3 is a valid
transformation but cannot be represented by our simplified MOF. Still, our sim-
plified MOF can be incrementally extended towards the complete MOF.

Fig. 3. Schematic representation of search space, our divide-and-conquer approach.

Following the standard GP approach, the genetic operators of the GP algo-
rithm could be simple operations on trees because transformations conforming to
the ETL could be represented as an abstract syntax tree (AST). However, such
a common transformation language is similar to general purpose programming
languages in terms of complexity. Here, many of these tree operations would
generate changes that are neutral to fitness, that is, they could not be distin-
guished based on the fitness function. Instead, our approach is based on subsets
of the ETL and the genetic operators are carefully defined to limit the possible
changes. The design of the genetic operators is guided by what we call transfor-
mation patterns. Therefore, not all potential solutions are reachable for a given
scenario. In Fig. 3, only solutions A1 and A2 can be generated by our approach.
The idea of the transformation patterns is to create well-defined transformation
concepts and to avoid the generation of incomprehensible solutions. For example,
a transformation developer might easily extend transformation B1 (an incom-
plete but partially correct solution candidate) into B2 (a complete solution). In
general, any transformation can be reached by manual modifications (e.g., C2).
However, the idea of our approach is that only small changes should be necessary
to implement a reasonable semi-automatic system.

A major design goal of the transformation patterns is to help in limiting the
search space. We try to decrease the size of neutral areas in the fitness landscape
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by forcing genetic operators to implement changes of transformations that also
change the fitness. For an overview of the defined transformation patterns see
Fig. 4(a). The pattern structure is derived from the simplified meta-meta-model
language MOF. Thus, the general pattern categories are Class Transformation,
Property Transformation, and Association Transformation. Some patterns are
based on other patterns’ results as seen in Fig. 4(a). For example, a property
is part of a class, hence, a Property Transformation reuses classes transformed
within the Class Transformation. This set of patterns serves as a starting point
and will be refined and extended in future research.

In Fig. 4(b) we give an example of a transformation pattern, namely ‘One-
to-One Object.’ It implements the mutation to achieve simple 1:1 transforma-
tions. In general, a pattern describes the selected elements on the left-hand side
which are used from the input meta-model MMa and the created elements in
the output meta-model MMb. In the presented example, the pattern transforms
a single instance of Source into a single instance of Target and copies the value
of the Name property. Every pattern by definition results in at least a pair of an
add-mutation (i.e., adds a 1:1 transformation) and a remove-mutation (i.e.,
removes a 1:1 transformation).

Fig. 4. An overview over the transformation patterns and an example.
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Based on this generic concept of transformation patterns multiple mutation
operators are generated depending on features of the meta-models and models.
In certain situations hundreds or even thousands of different mutation operators
might be possible choices for the evolutionary algorithm. However, depending
on the transformation and the mutation, the options of applicable mutation
operators might not be evenly distributed over the different mutation types that
were generated from different transformation patterns. This might introduce
a bias if not handled differently. Therefore, we introduced mutation selection
strategies to handle this challenge. We use two strategies. First, we use simple
random selection. Second, we use a two-step random selection process that selects
a mutation type followed by selecting a particular mutation instance.

A major goal of the pattern and mutation design is to ensure the maintain-
ability of the generated transformations. This is achieved by adding constraints
within the refinement step of the design process which reduce the probability of
a combinatorial explosion. Redundant applications must be prohibited. In the
above example, neither Source nor Target may be of a type which is already part
of the MMa → MMb transformation. Defining several transformation processes
that operate on the same elements several times within one transformation
decreases readability and also creates unnecessary mutation instances. The sec-
ond application of a mutation operating on already transformed elements might
create contradictions. The results of such transformations depend on execution-
flow specifics of the transformation execution engine, which are nontrivial and
hence should be irrelevant to understand the evolved transformations.

4 Implementation and Example

Next we give a short description of our implementation, the setup of experiments
for the evaluation, and we discuss an example of an evolved transformation.

Implementation and Setup for Experiments. In order to implement and ana-
lyze our evolutionary algorithm we developed a modular algorithm framework
based on the Eclipse Modeling Framework (EMF)4 and Java 8. It includes a rela-
tional evaluation database with a graphical front-end. This enables the algorithm
developer to quickly evaluate the impact of changes within the transformation
pattern, the fitness function and other configurable aspects. Our evaluation is
based on two example scenarios: the previously introduced transformation of
hierarchical-state machines into flat-state machines and the transformation of a
simplified UML class diagram model into a simplified relational schema model.
UML is a common language to describe the structure of software systems inde-
pendently from the technical realization. Relational schema models are used to
describe structures of database systems. Hence, the transformation enables a
software designer to define an implementation-independent structure which is
then transformed into a specific structure automatically. This is a realistic and
common scenario in software engineering.
4 Eclipse Foundation – EMF http://www.eclipse.org/emf/, 2015/09/09.

http://www.eclipse.org/emf/
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Fig. 5. Simple transformation scenario with a UML class diagram (left) and the equiv-
alent relational schema (right).

Evolved Example. In Fig. 5 we give a simple example of a UML class diagram to
a relational schema transformation scenario. The example is limited to simple
1:1 transformations only. The class diagram consists of a package ‘Vehicles’, the
classes ‘Car’ and ‘Engine’, as well as an association between them. The relational
schema has a database schema ‘Vehicles’, the tables ‘Car’ and ‘Engine’, and a
foreign-key in table ‘Car’ which points to the table ‘Engine’.

The example shown in Fig. 5 is one of the examples that our algorithm gets as
input to evolve a general transformation. The example contains an instance of a
UML class diagram and an instance of a relational schema along with the correct
transformations. For both UML class diagrams and relational schemas we also
have so-called meta-models (as discussed above) that describe the space of all
possible instances. The reduced UML class diagram meta-model shown in Fig. 6
consists of a ‘UmlPackage’ that contains ‘UmlClasses’ and ‘UmlAssociations’.
Classes may be associated to other classes, hence, a ‘UmlAssociation’ has a
‘Source’ and ‘Target’ association.

The simplified relational schema meta-model is shown in Fig. 7 with a ‘Rela-
tionalSchema’ containing ‘RelationalTables’. RelationalTables may refer to other
RelationalTables via a ‘RelationalForeignKey’ with an association named ‘Ref-
erencedTable’. In difference to the UML class diagram, the ‘ForeignKey’ is only
associated to the owning ‘Table’ and not to the ‘RelationalSchema’.

Fig. 6. UML class diagram – simplified meta-model
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Fig. 7. Relational schema – simplified meta-model

A hand-coded transformation that converts any instance of the UML class
diagram meta-model to the appropriate instance of the relational schema meta-
model is presented in Listing 1.1. This is just one valid transformation but there
are many other possible solutions. Listing 1.1 contains three rules, one for each
MOF class (i.e., boxes in Fig. 6). All rules have a mapping for the ‘Name’
property. Additionally, ‘UmlClass To RelationalTable’ maps the associated
‘UmlPackage’ of the ‘UmlClass’ to the corresponding ‘RelationalSchema’ of the
created ‘RelationalTable’ with the keyword ‘equivalent’. The rule ‘UmlAssocia-
tion To RelationalForeignKey’ contains mappings for the ‘Source’ and ‘Target’
to the corresponding properties of the relational schema.

1 rule UmlPackageToRelationalSchema

2 transform umlPackage : Source!UmlPackage

3 to relationalSchema : Target!RelationalSchema {

4

5 relationalSchema.Name = umlPackage.Name;

6 }

7

8 rule UmlClassToRelationalTable

9 transform umlClass : Source!UmlClass

10 to relationalTable : Target!RelationalTable {

11

12 relationalTable.Name = umlClass.Name;

13 relationalTable.Schema = umlClass.Package.equivalent();

14 }

15

16 rule UmlAssociationToRelationalForeignKey

17 transform umlAssociation : Source!UmlAssociation

18 to relationalForeignKey : Target!RelationalForeignKey {

19

20 relationalForeignKey.Name = umlAssociation.Name;

21 relationalForeignKey.OwnedByTable = umlAssociation.Source.equivalent();

22 relationalForeignKey.ReferencedTable=umlAssociation.Target.equivalent();

23 }

Listing 1.1. Example of hand-coded UML class diagram to simple relational schema
model-to-model transformation in concrete syntax of ETL.
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(a) UML class diagram example instance

(b) Relational schema example instance that is semantically identical
to (a)

Fig. 8. Example instances of a UML class diagram and a relational schema.

The example shown in Fig. 5 is very simple. A slightly more complex instance
of the UML class diagram meta-model along with its semantically identical
instance that conforms to the relational schema meta-model is given in Fig. 8.

Before we discuss the results in the next section, we give an example of
an evolved transformation for the UML-class–relational-schema transformation
problem in Listing 1.2 that was obtained by using our approach with the above
examples as input. The sequence of stepwise improvements, in which the code
was created by applying six mutations, is color-coded (note that also the initial
population is created from ‘empty’ individuals by mutations). A few of these
mutations are initially neutral. For example, the third mutation (lines 6 and 7)
introduces a transformation for ‘referencedBy’ which has no effect without the
respective ‘UmlAssociation2RelationalForeignKey’ rule. That rule is then added
by the next mutation which also increases the fitness. Such improvements, that
have no immediate effect but prepare beneficial mutations, could be detected
with a more sophisticated fitness function. However, we want to keep the fitness
function conceptually simple and base fitness only on the transformation prod-
uct. When comparing Listing 1.2 with the hand-coded transformation shown in
Listing 1.1 we notice a similar approach but also a difference in how the reference
to the table is defined in the transformation of associations to relational foreign
keys. Still, the evolved transformation is correct.
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1 rule UmlClass2RelationalTable

2 transform sourceUmlClass : Source!UmlClass

3 to targetRelationalTable : Target!RelationalTable {

4

5 targetRelationalTable.Name = sourceUmlClass.Name;

6 targetRelationalTable.ReferencedBy =

7 sourceUmlClass.incomingRelations.equivalent();

8 targetRelationalTable.ForeignKeys =

9 sourceUmlClass.outgoingRelations.equivalent();

10 }

11

12 rule UmlPackage2RelationalSchema

13 transform sourceUmlPackage : Source!UmlPackage

14 to targetRelationalSchema : Target!RelationalSchema {

15

16 targetRelationalSchema.Name = sourceUmlPackage.Name;

17 targetRelationalSchema.Tables = sourceUmlPackage.Classes.equivalent();

18 }

19

20 rule UmlAssociation2RelationalForeignKey

21 transform sourceUmlAssociation : Source!UmlAssociation

22 to targetRelationalForeignKey : Target!RelationalForeignKey {

23

24 targetRelationalForeignKey.Name = sourceUmlAssociation.Name;

25 }

Listing 1.2. Evolved transformation that correctly transforms simple UML class dia-
grams to simple relational schemas; the code was generated by genetic programming
in the sequence: lines 1-5, 12-16, 6-7, 20-25, 17, and 8-9.

5 Results

We have tested a vast number of different parameter settings of the evolutionary
algorithm. Configurable options are, for example, the selection strategy (e.g.,
roulette wheel, tournament), the replacement strategy, and the fitness function.
Including both scenarios, about 103 different configurations were tested in total.
For each configuration 50 independent evolutionary runs were done. Overall, this
results in about 5 × 104 populations with a total of 3 × 108 individuals, a total
runtime of about 32 days and 27 GB of data. Based on a comparison between
the number of obtained correct solutions (model-to-model transformations that
are correct with respect to the examples) and the required runtime, we identified
the best configuration. 55 % of all configurations identified at least one correct
solution. A configuration, that is optimized for runtime but affords intermediate
unsuccessful evolutionary runs, returns a solution after about 42 min. A bigger
number of evaluations allowed for 9 solutions after 3.7 h in a sequence of evolu-
tionary runs. Figure 9 shows the fitness of 50 evolutionary runs over generations
for the best system configuration. This configuration with a population size of
100 and 100 generations shows good quality in all 50 populations. The fitness
saturates after an expected initial steep increase. Many of the evolved incom-
plete transformations are close to a correct solution and easily readable. Hence,
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Fig. 9. Fitness over generations of 50 independent evolutionary runs. Execution ter-
minates when a solution is found, which decreases the number of populations.

they could be extended manually to solve the scenario completely and correctly.
The results could, of course, also be improved with more computational power.

In order to optimize the approach, we also tested different fitness functions.
The fitness function has to evaluate the performance of an individual that is
transforming a provided example instance Ma to the desired instance Mb. This
is done by comparing so-called ‘object graphs’ (i.e., directed graphs represent-
ing such instances, cf. data modeling) of the individual’s output M∗

b and the
desired instance Mb. The best results were achieved with the following compar-
ison approach. First, the graphs of Mb and M∗

b are compared to identify how
many objects, properties, and associations are transformed correctly. Second,
this information is used to calculate the ratio of correct matches compared to
the expected matches for each of the three categories. The creation of wrong
objects is avoided by imposing penalties. The score from the three categories are
accumulated using configurable weights. The ability to partially match transfor-
mations of objects is important to avoid bootstrapping problems.

1 rule State2State

2 transform sourceState : Source!State

3 to targetState : Target!State {

4 targetState.Name = sourceState.Name;

5 targetState.FlatStateMachine =

6 sourceState.HierarchicalStateMachine.equivalent();

7 }

Listing 1.3. Generated Transformation Fragment – simple 1:1 transformation from
the state of a hierarchical-state machine to the state of a flat-state machine

As previously stated, the automatically created transformations often need to
be maintained manually, which is an important requirement. Listing 1.3 shows a
fragment of a typical generated transformation. It is a simple 1:1 transformation
from the state of a hierarchical-state machine to the state of a flat-state machine.
In general, we focus on readability by assembling comprehensible identifiers and
ensuring a properly structured code. For example, the rule name State2State
reflects the general purpose, as well as the variables pointing to the sourceState
of the Ma model and targetState of the Mb model. With our transformation
patterns we define constraints that avoid the creation of solutions that lack
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comprehensibility. We also have implemented a cleanup mechanism that removes
ineffective code from the transformations to increase readability.

As stated above, the two main challenges for this approach are the definition
of an appropriate genetic representation and the design of the mutation opera-
tors that limit the effect of a combinatorial explosion because there is always a
vast number of options for possible changes by the mutation operator. A main
issue is the large number of changes that are neutral to the fitness which would
generate large neutral plateaus in the fitness landscape and limit our evolution-
ary algorithm to a mere random search. As an indicator for neutrality we do a
simple fitness landscape analysis and measure the effect of all possible mutations
for a selection of 20 individuals from populations of a single evolutionary run
for generations 1, 50, and 100, see Fig. 10. The results show that despite our
efforts in decreasing the number of neutral mutations, the number of mutations
without effect on the fitness are still very frequent. If we would use less complex
mutation operators, the number of neutral mutations would be even higher and
the proportion of improving mutations would probably be lower. Overall, this
measurement confirms our hypothesis on the challenges in this application.

Fig. 10. Analysis of mutation effects, change in fitness for all applicable mutations for
the top-20 individuals of generations 1, 50, and 100. Based on a single evolutionary
run with 100 generations and a population size of 100; note logarithmic scale.

6 Conclusion

We have reported the successful application of genetic programming to the
problem of model transformations by example. The challenges of developing an
appropriate genetic representation and of designing useful mutation operators
were addressed. Our focus is on the design of transformation patterns to define
complex mutation operators. Our hypothesis is that a sophisticated approach is
required due to special properties of the search spaces, such as the vast number
of semantically incorrect instances and of possible changes to instances that are
neutral to the fitness function. Also our experience with this system indicates
that there is no simple genetic representation that could deal with this challenge.
The idea of designing a set of sophisticated mutation operators is to limit the
number and extent of neutral plateaus in the fitness landscape. Our hypothesis
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is also supported by measurements of mutation effects shown in Fig. 10. Our
methodology has potential to generalize to other domains with search spaces of
similar structure. Our future work will be to apply this approach to other prob-
lems of software engineering such as requirements specification by examples.
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Abstract. Evolutionary algorithms have been widely used to optimise
or design search algorithms, however, very few have considered evolving
iterative algorithms. In this paper, we introduce a novel extension to
Cartesian Genetic Programming that allows it to encode iterative algo-
rithms. We apply this technique to the Traveling Salesman Problem to
produce human-readable solvers which can be then be independently
implemented. Our experimental results demonstrate that the evolved
solvers scale well to much larger TSP instances than those used for
training.

Keywords: Iterative algorithms · Cartesian Genetic Programming ·
TSP

1 Introduction

Designing effective search algorithms for difficult problems has long been an
intensive field of study in computer science [13]. Evolutionary algorithms have
been used to optimise or design search algorithms and it is typical for such
algorithms to operate on a human-designed template in which new operations
are generated at fixed points in the template. Very few have evolved loop-based
control flow and attempted to answer John Koza’s question:“Is it possible to
automate the decision about [...] the particular sequence of iterative steps in
a computer program?” [16]. Such control flow can be implemented either via
iteration or recursion. Recursive approaches to various problems of program
induction have been presented in Yu and Clack [43] and Alexander [1] but we
are not aware of any direct applications to search problems.

In this paper, we introduce a novel and extended form of a well-known graph-
based form of Genetic Programming, Cartesian Genetic Programming (CGP), to
encode iterative algorithms. The original motivation for using hyper-heuristics
is that they do not require skilled practitioners. The use of CGP is significant in
this regard, since it doesn’t require knowledge of specialized bloat-handling tech-
niques. We apply this technique to the well-known Traveling Salesman Problem

c© Springer International Publishing Switzerland 2016
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(TSP), a problem domain which has been extensively studied in mathematics
and computer science and is often used to benchmark new techniques. Various
search algorithms such as Iterative Local Search, Memetic Algorithms, Parti-
cle Swarm Optimization, Ant Colony algorithms and other novel metaheuristics
have solved a wide variety of TSP benchmark instances that have often less than
2000 cities [10,14,29]. We use iterative CGP to generate new TSP algorithms:
the quality of an algorithm during the evolution process is determined by a small
training set of TSP instances ranging between 200 and 800 cities. Subsequently
algorithms are validated on larger unseen instances varying in level of complex-
ity. The easiest instances have 30 cities but the most challenging contain just
under 25,000 cities. The contributions of the work presented here are three-fold:

1. Previously CGP has encoded as a data-flow diagram, in which information
flows through the graph from inputs to outputs [25]. For this work, CGP has
been adapted to provide a flowchart which represents an iterative algorithm
using “Decision”, “Process” and “Terminal” elements.

2. Both instruction ordering and iterative control flow are evolved: groups of
instructions can be repeated. The resulting algorithms find good solutions to
unseen TSP instances.

3. CGP is used to generate hybrid search algorithms using combinations of local
search and binary crossover. We evolve human-readable algorithms that can
reach optimal TSP solutions and can be directly translated into other pro-
gramming languages.

2 Optimisation of Algorithms

The goal is to improve some aspects of an algorithm in order to solve problems
more efficiently or with fewer resources. It is useful to distinguish here between
two distinct search spaces: we use the term problem solutions to refer to elements
of the underlying problem space (e.g. permutations in the case of the TSP) prob-
lem and the algorithm solution to the generated algorithms. Early approaches in
this area have been referred to as “automatic programming systems” [16]. The
problem solutions are obtained using a solver generated by a technique such as
Genetic Programming (GP). Research in this area [3,16] has largely focused on
results in terms of the performance on the underlying search problem, rather
than human-readability of the algorithms themselves. More recently, a variety of
search methods have been used to automatically configure algorithms via para-
meter optimization [12,20]. The latest approaches in this area are increasingly
general (e.g. [21,22]), allowing entire component configurations to be treated as
a parameter hierarchy. However, parameter tuning is still currently a rather lim-
ited way to optimise an algorithm. The evolution of iterative control flow with
CGP offers a more general approach and additionally provides human-readable
output without the need for explicit parsimony pressure to combat expression
bloat.

A graph-based form of Genetic Programming (GP) has automated machine
code with basic loops. This technique was promising, but it has not yet been
applied to higher level programming languages [41].
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The generation of search algorithms can be considered within the context of
hyper-heuristics, which are defined as “a search method or learning mechanism
for selecting or generating heuristics to solve computational search problems”
[5]. Hyper-heuristics can be selective or generative. The popular conception of
selective hyper-heuristics is exemplified by the Hyflex framework, in which
the selection is performed (via an opaque domain barrier [5]) from a collection
of pre-existing operators (heuristics). There are number of alternative hyper-
heuristic frameworks to Hyflex (e.g. [36,37]), including selective frameworks
with a less-restrictive notion of the domain barrier [4,38]. In contrast to the
selective approach, generative hyper-heuristics create new operators [32] and
tend to use nature-inspired mechanisms (such as Learning Classifier Systems or
GP) to discover better quality algorithms. This can result in algorithms capable
of addressing an entire class of problems [30]. What both approaches have in
common is to combine human-designed search components in new ways with
the goal of outperforming any individual components. A detailed review of the
state-of-art in hyper-heuristics can be found [5,28]. Ryser-Welch et al. [33] and
Ross [31] complement these reviews by focusing specifically on hyper-heuristic
frameworks.

The automated design of sizeable algorithms without any external help is
beyond the state-of-the art. Suitably expressive algorithms may never termi-
nate or have over-long computations. It is therefore useful to consider an algo-
rithm search-space as consisting or both feasible and infeasible algorithms [16].
When algorithm design is automated, these unwanted occurrences are usually
prevented via some forms of constraint. For example, [17,18,21,35,42] restrict
the structure of an algorithm to prevent unfeasible sequences being discovered.
Syntactic rules control the pattern of the primitives that are combined to form
the algorithm-solutions. The body of a loop, the initialisation step, the update
step, and sometimes the termination criteria are influenced by evolution. For
instance, [39] evolves the body of the loop of ant algorithms using Grammatical
Evolution; these algorithms are human readable and strictly restricted to the
syntactic rules. Although some good results have been obtained from many of
these techniques, the resulting algorithms can be very challenging to understand.
In some cases, the chosen algorithm representation (e.g. GP tree) can cause bloat
during the evolution, resulting in very large complex algorithms. Other algorithm
generation schemes do not express all three elements of a looping construct or
restrict the algorithm-solutions to a limited collection of primitives. In the next
section, we describe how an extension of CGP can take advantages of proper-
ties of this graph-based GP, to relax strict syntactic rules to produce compact
iterative algorithms.

3 Iterative Cartesian Genetic Programming

We describe an extension of CGP to the generation of iterative algorithms. In
contrast to ‘traditional’ GP, which operates on expression trees, CGP uses a
directed acyclic graph. An integer-based encoding scheme is used to define a
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two-dimensional grid, representing the adjacency matrix of a set of user-defined
nodes. A characteristic of CGP is that it encodes both active and inactive nodes.
Inactive nodes are nodes that are not on any paths connecting inputs to out-
puts; in Fig. 1 the output connects to node 4, but node 5 is inactive (shaded in
gray). Nodes may be activated or deactivated during evolution. Each node has
a function gene indexing a primitive operation in a user-specified look-up table.
Nodes are connected in a feed-forward manner from either a previous node or a
program input, using at least one node input. The output genes can connect to
any previous nodes or program inputs. The identification of all the active nodes
starts from the nodes pointed to by the output genes and continues until an input
is reached. All the active nodes are then processed from left to right. In Fig. 1,
the decoding step identifies the active nodes 1,2,3 and 4; these are executed in
ascending order (i.e. 1,2,3 and 4). The CGP-graph has a fixed length, but the
number of active nodes can be anything from zero to the number of nodes (see
Fig. 1). Unlike other Genetic Programming techniques, CGP has been shown not
to bloat [24,40].

Fig. 1. This CGP graph encodes an algorithm made of 4 primitives, with 1 input and
1 output. All these active nodes (in white) constitute the “process” elements of the
flowchart.

A directed graph can fully encode an iterative program: we call this an iter-
ative CGP graph. This allows a cycle to be formed so that loops are possible.
The stopping criterion, the iterative update step and the body of the loop are
all alterable by evolution. To accomplish this it is necessary for every node to
have at least four different types of genes:

Feed-forward. connections are standard feed-forward CGP connection genes.
They connect the input to the current node with either a previous node or a
program input. We refer to these nodes as process nodes as they represent a
process element of the flowchart.

Branching. connections can point to a previous node, a program input, itself,
or a suitable subsequent node. They are connection genes which determine
the boundaries of the body of a loop and split a CGP graph into smaller sub-
sequences. The first operation in the sub-sequence is the operation determined
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by the function gene of the current node. The last operation in the sub-
sequence is the operation defined by the node pointed to by the branching
gene of the current node. In these cases we refer to the current node as
a decision node by analogy with a node in a flowchart which represents a
“decision” element.

Function. genes are as in standard CGP and encode a primitive operation. Their
values correspond with a function look-up table.

Condition. genes represent the stopping criteria of loops. A condition look-up
table provides a set of Boolean primitives, these indicate whether a loop exits
(and control subsequently moves to the next node following the last loop
node) or continues to execute the next node inside the loop.

Fig. 2. An iterative CGP graph encodes an algorithm made of 8 primitives starting at
node 1 and ending at node 10. Nodes no 4, 5 and 11 are non-coding genes, these are
shaded in gray.

The distinction between decision and process nodes plays an important role
in the decoding process of an iterative CGP graph. First all the active nodes are
identified (by working backwards from the outputs), then the decision nodes are
placed so that branching can happen during the decoding process; the index of
the decision node is inserted after the last active node of the body of the loop.
For example in Fig. 2, all the active nodes are executed in the following order:
1,2,3,6,7,2,8, 1,9,10. Also it is assumed that upon the second call of node 1,
condition no 2 is also met, causing program execution to move to the next node
(9) after the loop terminates at node (8).

1. When an iterative CGP graph does not encode any loops the value of any
branching gene is free to point to any nodes and program inputs.

2. For any nodes inside an existing loop, their branching genes can only connect
to node with a higher index that is inside the current loop or any previous
nodes and program inputs. In Fig. 2, the branching gene of nodes 3, 4, 5, and
6 can be valid if its value is lower than the index of the node. It can also point
to the right to a node with an index lower than 7.

3. For any nodes outside an existing loop, their branching genes can connect to
a node that is outside any existing loops. A valid value for the branching gene
of node 1 can only point to the input or nodes 9, 10 or 11.
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Algorithm 1. The (μ+λ) evolutionary strategy used by both versions of CGP.
Often there is one parent (μ) and four offspring (λ)

1: Randomly generate individual i
2: Select the fittest individual, which is promoted as the parent (algorithm)
3: while solution is not found or the generation limit is not reached do
4: Mutate the parent to generate offspring
5: Generate the fittest algorithm using the following rules:
6: if offspring has a better or equal fitness than the parent then
7: offspring is chosen as fittest
8: else
9: The parent remains the fittest

10: end if
11: end while

CGP generally uses a (1+λ) evolutionary strategy (this is shown in
Algorithm 1). Either point or probabilistic mutation is traditionally used,
crossover is not. If an offspring has an equal or better fitness than the parent it is
promoted to the next generation [25]. Two basic grammatical rules ensure that
either only nested loops are created or new loops do not overlap. This is ensured
during the initialization of the iterative CGP population and the mutation of
parents to produce new iterative CGP offspring.

4 Discovery of Iterative TSP Solvers

The goal of these experiments is to gain insight into how hybrid metaheuris-
tics can be discovered with iterative CGP. We ran our generated algorithms
on the TSP instances from well-known benchmarks1. The settings of Iterative
CGP for the all the tests are given in Table 1. Our proposed method evolves
merely a sequence of heuristics, but repeated sub-sequences (or loops). At the
end of this process, a generated algorithm can then be extracted, and if desired,
re-coded in some conventional programming language. Subsequently, the gener-
ated algorithms are evaluated in an independent process using an unseen test.
The upper-level process is problem-domain independent and the specialised TSP
heuristics used in the lower-layer are described in the next sub-section.

4.1 The Travelling Salesman Problem

This combinatorial problem seeks the shortest possible route that visits each
of a list of cities exactly once and returns to the first city, i.e. a Hamiltonian
1 d1291, u2152, usa23505 and d18512 are benchmarks from the well-known TSPLIB.

The remaining instances are benchmarks from real-life geographical data; these
are wi29, dj38, qa194, zi929, ca4663, ym7663, ja9874, gr9882, sw24978. All these
instances can be found at http://www.math.uwaterloo.ca/tsp/world/countries.html
and http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html.

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html


300 P. Ryser-Welch et al.

Table 1. Experimental parameters for iterative CGP

Parameter Value

Length (no of nodes) 300

Levels-back (no of nodes) 100

Levels-forward (no of nodes) 100

Program inputs 1

Program outputs 1

μ + λ 1 + 1

Mutation rate 0.10

Generations 1500

cycle on n cities. A route is are referred to as a tour and is typically represented
as a permutation on n elements. The problem is naturally represented with a
complete weighted graph G = (V,E). Each edge of E defines the link connecting
the cities and their weight indicates the distance between two cities u and v;
these are retrieved by the distance function d(u, v). The length of a tour is given
by the sum of its edge weights. For training purposes, we wish to combine the
results across multiple problem instances of different sizes, so we therefore use
the popular normalized measure of relative error as the fitness value of a TSP
solution. This uses the best tour length that is known a priori, using the formula
(tourlength− knownoptimum)/ knownoptimum.

A wide variety of TSP-specific operators have been examined in the liter-
ature. Lin-Kernighan heuristics are the most studied methods for solving this
problem effectively. In these, k edges are deleted and subsequently re-assembled
to construct the sub-paths of a new tour with a lower minimum weight [11,19].
Traditionally those are often referred as k-opt heuristics. For example, when
k = 2, edges between two pairs of cities are reconnected in a different way to
obtain a new shorter tour. Solutions obtained from genetic operators (e.g. PMX,
as below) can be further improved by local search [10]. Operators given below
include those taken from recent work which merged a local search operator with
genetic search [14], along with well-known crossover and mutation operators.
Table 2 shows all the primitives we will be using for our experiments.

– Order Based Crossover (OX) chooses a subtour in one parent and imposes
the relative order of the cities of the other parent [6].

– Partially-Mapped Crossover (PMX) copies an arbitrary chosen subtour
from the first parent into the second parent, before applying minimal changes
to construct a valid tour [8,9].

– Voting Recombination Crossover (VR) uses a randomized Boolean vot-
ing mechanism to decide from which parents each city is copied from [23].

– Subtour-Exchange Crossover (SEC) preserves randomly selected sub-
tours from both parents to construct one new offspring [15].
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– Edge-Assembly Crossover (EAX) assembles sub-tours together by build-
ing intermediary permutations. Each of these permutation are repeatedly
minimised [26]

– Stem-and-cycle ejection Crossover (SCX) unusually asexually repro-
duces before improving the child solution using a “Stem-And-Cycle” Local
Search approach [14].

– Insertion Mutation (IM) moves a randomly chosen city in a tour to ran-
domly selected place [7].

– Exchange Mutation (EM) swaps two randomly selected cities [2].
– Scramble Mutation (SM) rearranges a random subtour of cities [6].
Hyflex applies this mutation operator on a subtour and on the whole tour.

– Simple Inversion Mutation (SIM) implements a 2-opt Lin-Kernighan
heuristic.

– 3-point Inverstion Mutation (3IM) implements a 3-opt heuristic [14].

4.2 Automatic Design of Hybrid Metaheuristics

In our experiments, operators provided by the Hyflex cross-domain hyper-
heuristic framework2,3 were chosen (see Table 2) as described in previous
research [34]. The parameters for our generated metaheuristic were set to 2
offspring, 2 parents, and a maximum of 500 evaluations. The search depth for
local search controls the number of iterations used in a local search operators;
following preliminary experiments, it was set to 0.89. The intensity of mutation
(which defines the numbers of cities shuffled in a permutation) was similarly
set to 0.8. These standard parameters tune the performance in general of local
searches and mutation operators for any problem domain provided in Hyflex.
These parameters are standard choices for the Hyflex system.

Tables 2 and 3 provide the heuristics and termination criterion for the gener-
ated TSP solvers. For Conditions 2 and 3, the evolution is split into two stages:
each phase uses half the available evaluations Condition 4 stops the search when
all the evaluations have been used or no shorter tour has been found in the last
50 generations.

A predefined template (Algorithm 2) guarantees that the generated algorithm
initializes and evaluates a population of permutations, before selecting parents
(lines 1 to 3 of Algorithm2). The code in lines 4 to 21 execute the iterative
algorithm defined by the active nodes of an iterative CGP graph. The last line
enforces that shorter tours are promoted in the population before the algorithm
ends its run (see line 22 of Algorithm2). The remaining lines apply the heuris-
tics of the active process and branching nodes (see lines 4 and 23). The ‘goto’
statements can either jump to the start of a loop, the next heuristics (if there is
one) or the first when the stopping criterion is met, or to the first heuristic of
the metaheuristic.

2 http://www.asap.cs.nott.ac.uk/external/chesc2011/.
3 http://www.hyflex.org/chesc2014/.

http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.hyflex.org/chesc2014/
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Table 2. Function set: list of TSP
heuristics used as primitives.

Index TSP heuristics

0 InsertionMutation()

1 ExchangeMutation()

2 ScrambleWholeTourMutation()

3 ScambleSubtourMutation()

4 SimpleInversionMutation()

6 2-OptLocalSearch()

7 Best2-OptLocalSearch()

8 3-OptLocalSearch()

9 OrderBasedCrossover()

10 PartiallyMapCrossOver()

11 VotingRecombinationCrossOver()

12 SubtourExchangeCrossover()

13 ReplaceLeastFit()
SelectParents()

15 RestartPopulation()

Table 3. Condition set: Boolean
primitives chosen for the stopping
criterion.

Index TSP heuristics

1 Number of evaluations > 0

2 The evaluations fall in the
first half of the evolution

3 The evaluations fall in the
second half of the
evolution

4 Number of evaluations > 0 or
no improved neighbouring
solutions are available

The testing phasewas performed onTSP lib instances pr299, pr439 and rat7834

having 299, 439 and 783 cities respectively. It is well-known that hyper-heuristic
evaluation is computationally expensive, so this small subset of instances was cho-
sen for their diverse clustering of cities. The fitness measure used for generated
solvers during the training phase is obtained by averaging the relative error values
obtained for these instances; each run had a budget of 500 evaluations. The fitness
measure for testing is the relative error of the instance under test.

5 Experimental Results

Algorithms 3 and 4 show the best iterative algorithms evolved by iterative CGP.
As discussed above, the first three lines and the last instruction of these algo-
rithms are part of the template described in Algorithm 2. The remaining instruc-
tions of the algorithms were generated during the decoding phase of the iterative
CGP graphs.

Algorithm 3 resembles a memetic algorithm; evolution has re-discovered a
similar algorithm to the most effective sequential algorithm evolved in our pre-
vious research [34]. In fact, lines 6 to 8 cancel out the effect of restarting the
population p, if no shorter tour has been found in 50 generations, then the popu-
lation is initialized again. However the newly-created TSP solutions are replaced
immediately by the offspring (t); if and only if the length of their tour is shorter
than the new generated individuals in population p.

Algorithm 4 applies two loops that are carried out during the first half of the
evolution and fewer evaluations are required. The first loop can be perceived as
4 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Algorithm 2. Template for a hybrid meta-heuristic, with main structure (line
4 to 21) being evolved by an Hyper-Heuristic algorithm.
1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t ← SelectParents();
4: {Start of code generated by Iterative CGP}
5: goto the first active node
6: while Not the end of of evolved sequence of heuristics do
7: if The current node is a process node then
8: Apply the heuristic on t or p
9: goto the next active node

10: else
11: if the current node is a decision node and the last node a loop then
12: goto the first node of the loop
13: end if
14: StoppingCriterion ← apply condition of the currentNode
15: if StoppingCriterion is false then
16: Apply the heuristic on the t or p
17: Go to the next active node
18: else
19: Go to the first node after the loop
20: end if
21: end if
22: end while
23: {End of code generated by Iterative CGP}
24: p ← replaceLeastF it(t, p)

redundant, but its purpose is to execute only once two Lin-Kernighan operators;
one before and one after searching more thoroughly. This occurs in a nested
loop, constructed with the Best2-OptLocalSearch() to reduce the length of the
tour, before applying ExchangeMutation heuristic. This heuristic should prevent
the 3-opt-LocalSearch() finding no available neighbouring solutions and then
finding the same local optima again. These new offspring then replace the least
fit individuals in the population p.

Algorithms 3 and 4 were translated from their iterative CGP graph form
and coded as TSP solvers in the programming language JavaTM. The same
primitives were retained, but a different set of benchmarks was used for testing.
As observed above, hyper-heuristics are notoriously computationally expensive
and a representative subset (having different distributions of cities) was chosen
so to allow the experiments to be performed within a reasonable time. After some
initial experiments, we set our number of evaluations to 6000, so that the search
can be performed in a reasonable amount of time. We are aware the search is
likely to be short, however, it would be just a matter of increasing the evaluations
to solve more instances. For direct comparison, the best performing sequential
TSP solver obtained from previous research [34] and the memetic algorithm due
to Özcan [27] were also coded in Java. Both algorithms apply the same set of
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Algorithm 3. This algorithm is the outcome of applying Algorithm 2 on the
iterative graph in Fig. 2
1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t ← SelectParents();
4: {Start of code generated by Iterative CGP}
5: while Number of evaluation left > 0 do
6: t ← 3-OptLocalSearch(t)
7: p ← restart population
8: p ← replaceLeastFit(t,p)
9: t ← SelectParents()

10: t ← ExchangeMutation(t)
11: end while
12: {End of code generated by Iterative CGP}
13: p ← replaceLeastF it(t, p)

Algorithm 4. This algorithm is the outcome of applying Algorithm 2 on the
iterative graph in Fig. 2
1: p0 ← GenerateInitialSolution();
2: p0 ← EvaluatePopulation();
3: t ← SelectParents();
4: {Start of code generated by Iterative CGP}
5: while The evaluations fall in the first half of the evolution (node 1) do
6: t ← 3-OptLocalSearch(t) (node 1)
7: while The evaluations fall in the first half of the evolution (node 2) do
8: t ← Best2-OptionLocalSearch(t) (node 2)
9: t ← ExchangeMutation(t) (node 3)

10: t ← 3-OptionLocalSearch(t) (node 4)
11: p ← replaceLeastFit(t, p) (node 5)
12: t ← SelectParents() (node 5);
13: end while
14: t ← SimpleInversionMutation(t) (node 6)
15: end while
16: t ← 3-OptionLocalSearch(t) (node 7)
17: t ← OrderBaseCrossover(t) (node 8)
18: {End of code generated by Iterative CGP}
19: p ← replaceLeastF it(t, p)

operators, with statistical comparison provided in Table 4, which gives the mean
of the best obtained tour lengths over 30 runs and the mean relative error (and
its standard deviation) from the best-known tour length.

We can see in Fig. 3 the evolution has constructed algorithms that enhance
the strength and ameliorate the weaknesses of the heuristics and conditions listed
in Tables 2 and 3. Both algorithms start their search with 3-Opt-LocalSearch,
to reduce dramatically the length of the tours generated during the initializa-
tion process. In Fig. 3, the search descends sharply from around a relative error
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Fig. 3. A comparison of the four algorithms during the search for an optimum tour for
the benchmark D1219

approximately around 0.20 from the known minimum to a relative error around
0.11 from generation 0 to 1. Hence it appears that evolution has rediscovered
some elements of the template applied in Ryser-Welch et al. [34].

The iterative and the sequential algorithms achieved the best average fit-
ness overall with a small standard deviation. For most benchmarks, the iterative
algorithm scales well, finding good solutions to some benchmarks larger than the
instances used during the training phase. Algorithm3 has found the best solu-
tions for the instances d1291, ym7663, usa13509 and sw24978; these instances
are particularly hard to solve. Algorithm4 uses many fewer evaluations; the ter-
mination criterion stop the loop when half of the evaluations have been used.
The algorithm has found better tours than the sequential algorithms for the TSP
instances d1291, zi929, ja9874 and usa13509.

We applied the Mann-Whitney U nonparametric test (for p = 0.05) to all
pairs of algorithms, the results of which are in Table 5. The symbol = indicates
that there is no significant difference between (the results of) Alg A and Alg B,
> denotes that Alg A is significantly better than Alg B and < that Alg A is sig-
nificantly worse than Alg B. In general, Algorithms 3 and 4 have found better or
similar tours than related previous work [34]. Our approach has generated some
iterative metaheuristics that have higher scalability than the best performing
sequential TSP solver obtained from this previous research.
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Table 4. Mean values of TSP solutions on 30 independent runs. The optimum value
was either found by using Concorde or Lin-Kernighan

TSP instance Known optimuma Iterative Alg

no 3

Iterative Alg

no 4

Ryser-Welch 2015 Ozcan 2004

wi29 27,603 27,603 27,603 27,603 30,704

relative error 0.000 0.000 0.000 0.001

standard dev. 0.000 0.000 0.000 0.068

dj38 6,656 6,656 6,656 6,656 7,044

relative error 0.000 0.000 0.000 0.002

standard dev. 0.000 0.000 0.000 0.112

qa194 9,352 9,369 9,560 9,378 9,361

relative error 0.002 0.022 0.004 0.001

standard dev. 0.001 0.008 0.001 0.021

zi929 95,345 96,472 99,996 97,283 118071

rel. error 0.011 0.048 0.019 0.240

standard dev. 0.004 0.009 0.004 0.019

d1291 50,801 56,264 58,562 58,562 58,750

relative error 0.081 0.112 0.121 0.200

standard dev. 0.008 0.009 0.029 0.011

u2152 64,253 67,064 69,827 68,732 78,692

relative error 0.043 0.086 0.069 0.223

standard dev. 0.006 0.014 0.017 0.015

ca4663 1,209,319 1,277,495 1,331,639 1,304,901 1,547,992

relative error 0.056 0.101 0.079 0.284

standard dev. 0.004 0.024 0.015 0.022

ym7663 238,314 260,199 267,905 266,738 266,738

relative error 0.091 0.124 0.119 0.281

standard dev. 0.021 0.023 0.033 0.022

ja9874 491,924 533,304 555,201 564,581 625,035

relative error 0.084 0.128 0.147 0.276

standard dev. 0.018 0.033 0.046 0.011

gr9882 300,899 327,118 334,135 334,642 383087

relative error 0.087 0.110 0.112 0.273

standard dev. 0.018 0.022 0.021 0.023

usa13509 19,982,859 21,083,162 21,465,644 21,320,901 25,109,189

relative error 0.055 0.074 0.066 0.251

standard dev. 0.007 0.010 0.011 0.012

d18512 645,238 671,752 676,486 674,104 790,769

relative error 0.041 0.048 0.044 0.225

standard dev. 0.003 0.002 0.002 0.013

sw24978 855,597 912,915 927,663 928,355 1,075,056

relative error 0.066 0.084 0.085 0.256

standard dev. 0.008 0.012 0.012 0.011
aThese tours are considered to be the best known and can be found at http://www.

math.uwaterloo.ca/tsp/world/countries.html and http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/STSP.html

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
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Table 5. Comparison of TSP solvers via Mann-Whitney U, p = 0.05.

Instance Alg3 vs Alg4 Alg3 vs Ryser-Welch [34] Alg4 vs Ryser-Welch [34]

wi29 = = =

dj38 = = =

qa194 > = >

zi929 > > <

d1291 > > =

u2152 > > >

ca4663 > > <

ym7663 > > <

ja9874 > > >

gr9882 > > =

usa13509 > > <

d18512 = = <

sw24978 > > =

6 Conclusion

We have presented a novel approach to evolving metaheuristics, which generates
new metaheuristic variants containing evolved looping constructs. We evolved
two novel TSP solvers and applied them to benchmark instances of the Travelling
Salesman Problem. We show that not only that the method can produce human-
readable algorithms (our sequence of operations was readily re-coded in Java),
but it can also rediscover effective algorithms and generate new ones. The results
of our experiments are promising: from a small training set, solutions equal or
close to the actual known optima have been found for the benchmark instances
under test. Our next step will be to apply this type of evolutionary hyper-
heuristic to other problem domains as well to generate new hybrid metaheuristics
and to demonstrate the generality and scalability of the proposed method. For
example, personnel scheduling, vehicle routing and numerical optimisation will
be considered with a larger range of instance sizes, allowing the potential of this
technique to be fully evaluated.
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21. López-Ibánez, M., Stützle, T.: The automatic design of multiobjective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)



Iterative Cartesian Genetic Programming 309
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32. Ross, P., Schulenburg, S., Maŕın-Blázquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: GECCO 2002, Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 942–948.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)

33. Ryser-Welch, P., Miller, J.F.: A review of hyper-heuristic frameworks. In: Proceed-
ings of the 50th Anniversary Convention of the AISB, London, 1–4 April 2014

34. Ryser-Welch, P., Miller, J.F., Asta, S.: Generating human-readable algorithms for
the travelling salesman problem using hyper-heuristics. In: GECCO Companion
2015, Proceedings of the Companion Publication of the 2015 on Genetic and Evo-
lutionary Computation Conference, pp. 1067–1074. ACM, New York, NY, USA
(2015). http://doi.acm.org/10.1145/2739482.2768459

35. Shirakawa, S., Nagao, T.: Graph structured program evolution with automatically
defined nodes. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 1107–1114. ACM (2009)
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