Chapter 4
Damage Losses Assessment Models

Abstract The chapter focuses on the definition of a loss function which has been
one of the first indicators used to determine resilience. Different models to evaluate
the damage losses are provided, approaching the problem in probabilistic terms
using fragility functions and analyzing the different type of uncertainties which
appear in the resilience assessment.

4.1 State of Art on Loss Assessment Models

One of the biggest challenges faced when a seismic event occurs on a structure is
to assess the magnitude of the effects caused by a catastrophic event in order to
quantify the damages and provide a recovery strategy. Starting from the assumption
that it is not possible to assess the aftermath of an earthquake until after it has
happened, it may be possible instead to approach the problem in probabilistic terms
and evaluate the losses through the use of numerical simulations. One of the inherent
problems with current structural design practice is that seismic performance is
not explicitly quantified. Instead, building codes rely on prescriptive criteria and
overly simplified methods of analysis and design that result in an inconsistent
level of performance. One way of quantifying earthquake performance that has
been proposed by research Aslani and Miranda (2005), is the use of economic
losses as a metric to gauge how well structural systems respond when subjected
to seismic ground motions. While society and building owners main concern is
the protection of life, there are other risks that have traditionally been ignored in
earthquake-resistant design, such as the control of economic losses or the definition
of an acceptable level of probability that a structure could maintain its functionality
after an earthquake. Advancements in Performance-Based Earthquake Engineering
(PBEE) methods have demonstrated the need for better quantitative measures of
structural performance during seismic ground motions and have improved method-
ologies for estimating seismic performance. In order to provide a comprehensive
discussion about this topic, it is convenient to follow the path taken by The Pacific
Earthquake Engineering Research (PEER) Center, who has conducted a significant
amount of research to address this need, by formulating a framework that quantifies
performance in metrics that are more relevant to stakeholders, namely, deaths (loss
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72 4 Damage Losses Assessment Models

of life), dollars (economic losses) and downtime (temporary loss of use of the
facility). The PEER methodology uses a probabilistic approach to estimate damage
and the corresponding loss based on the seismic hazard and the structural response.
The facility performance levels can be expressed qualitatively or quantitatively as
shown in Sect. 4.7. Qualitative performance levels are the current state of practice
and are related to the structural characteristics of the elements based on engineering
ad-hoc judgments. On the other hand, quantitative performance levels permit to
rigorously relate the performance levels of a facility to the structural characteristics
of the facility. Economic losses in a facility due to earthquakes could represent a
qualitative measure of seismic performance. It is useful to focus the attention on
a classification of the economic losses due to a seismic event, assuming that the
economic losses in a facility can be categorized as direct and indirect losses. Direct
losses are those closely associated with repair or replacement costs of building
components, whereas indirect losses are those resulting from the temporary loss
of function (downtime) of the facility. In order to express a correct prediction
of economic losses that may occur due to earthquake ground motions, it is first
necessary to make an accurate prediction of the response of the structure when
subjected to earthquake ground motions of different levels of intensity. One of the
possible solutions to reach the objective is to use a Probabilistic Seismic Hazard
Analysis (PSHA): a rational procedure through which it is possible to estimate the
annual probability of exceedance of spectral ordinates at a given site by taking into
account the location and seismicity of all possible seismic sources that can affect the
site. The next step would be a Probabilistic Seismic Structural Response Analysis
(PSSRA), which extends a PSHA to the estimation of the annual probability of
exceedance of the Engineering Demand Parameter (EDP). The use of response
history analyses applying accelerograms scaled at various levels of intensity to
investigate the response of structures at various levels of ground motion intensity
has been also referred to as “dynamic pushover analysis” (Luco and Cornell 1998)
or “incremental dynamic analysis” (Vamvatsikos and Cornell 2001).

4.2 Regional Seismic Losses Assessment Models (RSLA)
for Ordinary Buildings

Most of the research related to PBEE has focused on quantifying the possible risks
to individual buildings. However, parties interested in a group of geographically
distributed buildings, such as policy makers, insurers, practicing engineers working
in city planning and real-estate developers, need to make risk-informed decisions on
a regional or portfolio, rather than an individual building, basis (Liel and Deierlein
2012). For this reason, over the past decade, researchers have developed methods to
extend PBEE to assess the risk of earthquake-induced losses for groups of buildings
(hereafter referred to as “Regional Seismic Loss Assessment of buildings (RSLA)”).
These methods predict the expected loss, as well as the variation therein, recognizing
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that risk-informed decision-making depends upon quantifying the likelihood of
experiencing rare, but catastrophic levels of loss (Haimes 1998).

There are many sources of uncertainty affecting the prediction of earthquake-
induced regional losses, such as those associated with the characteristics of earth-
quakes, the properties of ground shaking at different sites, the building response and
capacity, the fragility of building components, the costs of repairing damage, etc.

Probabilistic regional seismic loss assessment method rely on Monte Carlo
simulation because of the elevated number of uncertainties and the lack of closed-
form solutions available to propagate them through the loss assessment process. This
amounts to repeating the loss assessment for different sets of probabilistically char-
acterized input random variables to develop a suite of “regional loss realizations”
from which statistics for the mean and variance in regional loss can be obtained.

Regional loss studies aim at the estimation of economic losses for a large
number of buildings, while on the other hand the Building-specific loss estimation
studies aim at providing more accurate estimations of economic losses for specific
buildings located at specific sites. Regional methods do not provide the necessary
level of detail required by performance-based earthquake engineering (Aslani and
Miranda 2005), but they can be used when Resilience analyses want to be taken
at the regional level. Regional loss estimations attempt to quantify losses for a
large number of buildings within a specific geographic area. One of the first
investigations to explicitly consider the probabilistic nature of seismic-induced
monetary losses was the study by Whitman et al. (1973), which introduced the
concept of damage probability matrices into loss estimation methodology, where
damage ratios were used to describe the amount of estimated damage, and seismic
intensity was expressed as a function of Modified Mercalli Intensity (MMI), which
was the selected ground motion intensity measure. In 1992, the Federal Emergency
Management Agency (FEMA) and the National Institute of Building Sciences
(NIBS) began funding the development of a geographic information system (GIS)-
based on regional loss estimation methodology which eventually was implemented
in the widely-used computer tool (Hazus 2014). HAZUS is a natural hazard loss
estimation methodology implemented through PC-based Geographic Information
System (GIS) software developed under agreements with the National Institute
of Building Sciences (NIBS). HAZUS as well as the more recent regional loss
estimation studies have been conducted developing empirical fragility functions
for different classes of building constructions, different typologies of buildings and
for several time- and frequency-dependent ground motion parameters. More details
about the software can be found in Sect. 14.4.1.

4.3 Seismic Loss Assessment for Infrastructure Systems

In the past decades, research has been focusing on the response of a complex urban
lifeline system under external perturbations. Some approaches adopt analytical
system reliability frameworks to estimate the probabilities of complex system
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events (Dotson and Gobien 1979; Kang et al. 2008; Li and He 2002; Song and
Der Kiureghian 2003) while others rely on simulation models to estimate seismic
performance of a lifeline system (Hwang and Shinozuka 1998; Shinozuka et al.
2007; Werner et al. 2000). These approaches generally incorporate the vulnerability
of components represented by fragility curves in a system level analysis.

Analytical system reliability approaches evaluate statistical measures, such as
the probability of system events (e.g., availability of a path from a node to
another node) and their associated cut-sets. These approaches are flexible and
applicable to generic networks, but they are not applicable to large networks,
because the number of system events related to computation is an exponential
function of the size of networks, and additional measures beyond statistical ones
(e.g., imbalance between supply and demand in power grid and drivers’ delay in
transportation networks) are required to predict the functional loss of a system (Li
and He 2002; Hwang and Shinozuka 1998). On the other hand, simulation-based
approaches generally use system-specific flow analysis algorithms to compute
properties of interests in a system that cannot be obtained from system reliability
analysis. Although the simulation-based approaches can require a large number
of simulations to achieve acceptable accuracy, and computer run time can be
excessive, the obtained properties provide important information to social scientists
for quantifying socioeconomic impacts, which is beneficial in comprehensive pre-
disaster planning and consequence estimation.

4.4 Loss Function as Resilience Indicator

In statistics a loss function represents the a measure of the degree of inexactness
(generally the difference between the estimated value and the true or desired value).
Loss estimation has to be defined using damage descriptors that can be easily
translated in monetary terms and a series of parameter units that can be measured
or counted (e.g. the number of bridges available in a network, or the total length of
viable roads). The loss estimation procedure is by itself a source of uncertainty and
therefore the problem has to be taken into account in probabilistic terms. In fact,
earthquake losses are by nature highly uncertain, and assume a different value for
every scenario considered. Despite this, it is still possible to identify some common
parameters affecting those losses.

The loss function L; 7,z can be defined in general as a function of earthquake
intensity I and recovery time Tgg. The total losses can be divided into two types:
Structural losses (Lg), which occur “instantaneously” during the disaster, and Non-
Structural losses (Lys), which also have temporal dependencies.

L(l, Tre) = Ls(I) + Lns(1, Tre) 4.1)
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For simplicity, and Lyg are described in such a way that it is possible to express
the physical structural losses as ratios of building repair and replacement costs using
the following relation

n
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where P; is the probability of exceeding a performance limit state j if an extreme
event of intensity / occurs, I is also known as the fragility function; Cs; are
the building repair costs associated with a j damage state; I, are the replacement
building costs; r is the annual discount rate: #; is the time range in years between
the initial investments and the time of occurrence of the extreme event; §; is the
annual depreciation rate. The description of the different methodologies to build
fragility curves using performance limit states which might be also uncertain is
given in Sect.4.7.2. Equation (4.2) assumes that the initial value of the building
is affected by the discount rate, but the value also decreases with time according
to the depreciation rate §;, which may vary with time. The nonstructural losses Lyg
consist of four contributions:

. Direct economic losses Lys pe (or Contents losses);

. Direct Causalities losses Lys pc;

. Indirect economic losses Lys jz (or Business interruption losses);
. Indirect Causalities losses Lys sc;

AW N =

They are all function of the recovery period. Nonstructural direct economic
losses Lys pe(y are obtained for every non-structural component k used in the
affected system via a formulation similar to Eq. (4.1). The total non-structural direct
economic losses are obtained using a weighted average expression as

N
Lpp (1) = (Z Wi Lys.pE k (U) Nis (4.3)

k=1

where Lyspgi(l) is the non-structural direct economic losses associated with
the component k, Nys is the total number of non-structural components in the
buildings and wy is an importance weight factor associated with each non-structural
component in the building, that have to be considered in the general model. Direct
causalities losses Lys pc are measured as a ratio of the number of damaged items N;n
and the total number of items presented before the event N,,,. In the particular case of
loss estimation for a building, it can be the ratio between the number N;, of injured
people (including deaths) over the total number N,,, of people in the building.

Nin

Lyspc(l) = N
tot

4.4)
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The indirect economic losses Lyse(l, Trg) are time dependent. Because of
the different forms these losses can take, they are the most difficult to quantify
among the post-earthquake losses. For example, they mainly consist of business
interruptions, relocation expenses, rental income losses, etc. Losses of revenue, both
permanent and temporary, can be the consequence of damage suffered by structures
and contents; this aspect is fundamental and must be taken into account during
evaluations of lifelines. A good example may be the structural damage due to the
collapse of a bridge span in a major highway. This event generates direct losses, as
well as indirect losses subsequent to the loss of revenues as a consequence of impact
on the traffic to businesses served. In other cases, there may be some indirect losses
due to the disruption that can be more significant than the direct losses. Starting
from these considerations, a model is evaluated in which losses due to business
interruption should be modeled considering both the structural losses, and the time
necessary to repair the structure Tgg (Scott and Stephanie 2006). Those quantities
are related because the recovery time Tgg increases with the extent of structural
damage Lg(/). In addition, indirect causalities losses L;c belong to the group in
Eq. (4.4).

So, in summary the total non-structural losses Lys can be expressed as a
combination of the total direct losses Lys p and the total indirect losses Ly ;.

Direct losses Lys p and indirect losses Lys ; are also expressed as combination of
economic (Lys e , Lys.pe) and casualties (Lys jc , Lys.pc) losses as follows

Lys = (Lns.p + a1Lys.1) 4.5)

where
Lys.p = Lyg'pp(1 4+ apcLys.oc) (4.6)
Lys; = Ly§ ;5(1 + aucLys.ic) 4.7

and where «; is the weighting factor related to indirect losses, apg is a weighting
factor related to construction losses in economic terms; oy is a weighting factor
related to general business interruption; apc, ojc are the weighting factors related
to the nature of occupancy (i.e. schools, critical facilities, density of population).
These weighting factors are all determined by socio-political criteria (i.e. cost
benefit analyses, emergency functions, social factors, etc.). In the end, Lg and Lyg
are summed together to obtain the total loss function. The loss function can be
used as possible resilience indicator that is time dependent, because it includes
the immediate losses caused by the disaster and the post disaster losses with
change through the time. However to have a complete description of resilience it
is necessary to define the restoration process which is described in the next Chap. 5.
Before moving in the description of the recovery models it is necessary to define the
different methodologies to determine the probability P; of exceeding a performance
limit state.
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4.5 State of the Art on Fragility Curves

Awareness of the potential seismic hazard and the corresponding vulnerability of
structures affecting urban areas that created serious economic and social impact
have been increasing following recent earthquakes. The prediction of structural
damage is critical for the evaluation of the economic losses in earthquake regions
and it should be estimated with an acceptable degree of credibility, in order to
mitigate potential losses dependent on the seismic performances of structures.
Performance can be characterized through fragility functions that express the condi-
tional probability that the building or a component is in, or exceeds, a particular
damage state. Major efforts were made in the past in defining, evaluating and
quantifying the fragility of structures, following different strategies and approaches.
Various studies used Monte Carlo simulations to calculate fragility functions related
to a specified structural model, such as Hwang and Huo (1994), Fukushima et al.
(1996), Shinozuka et al. (2000a), Karim and Yamazaki (2001), and Kafali and
Grigoriu (2005). Other studies developed empirical fragility functions using damage
records resulting from past earthquakes, such as Basoz and Kiremidjian (1997)
and Shinozuka et al. (2000b). Reinhorn et al. (2001) developed an analytical
procedure to evaluate fragility of inelastic structures based on spectral response-
capacity analysis and a probabilistic estimate of dynamic response. Karim and
Yamazaki (2001) developed an analytical approach for constructing fragility curves
of piers of bridges, using nonlinear dynamic response of an equivalent single degree
of freedom model of the pier obtained by static pushover analysis. Gardoni et al.
(2002) developed a methodology to construct probabilistic capacity models of
structural components using a Bayesian approach where the originality of their
method consisted in adding correction terms that explicitly describe the inherent
systematic and random errors to existing deterministic models already available
in literature. However, the developed model can be only applicable to structural
systems that have geometry and material properties within the range of observations
used to assess the model. Ramarmoorthy et al. (2006) developed fragility curves
to assess the seismic vulnerability of a generic two stories reinforced concrete
frame using a Bayesian methodology that takes into account aleatoric and epistemic
uncertainties. Chaudhuri and Hutchinson (2006) presented an analytical evaluation
of fragility curves for a range of rigid, sliding dominant equipment mounted on
bench surfaces. In their study, the authors included the uncertainties of friction
coefficient and supporting characteristics separately. Goulet et al. (2007) presents
a state-of-the-art seismic performance assessment where fragility curves are used
to evaluate probabilities of component damage. The emphasis of this study is
on the estimation of the expected annual losses and the uncertainties involved in
the evaluation of this decision variable, while less effort is made in presenting
the procedure of evaluating the fragility curves. Porter et al. (2007) summarized
six procedures to evaluate experimental fragility functions, which are considered
in the development of a standard for (ATC-58), however not all the procedures
available in literature are addressed. More recently, Williams et al. (2009) presented
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a decision-making methodology to evaluate the benefit of seismically retrofitting
existing structures, focusing on the effect of loss reduction, investment return period
and retrofitting costs on the feasibility of seismic retrofitting and evaluating the
probability of failure combining the conditional probability with the probability
of occurrence of a seismic event. Although several works are referenced in this
introduction, the survey is by no means comprehensive and it is presented here to
highlight several distinct techniques. The limit of the approaches above is that they
cannot be verified by laboratory testing, because such verifications require multiple
physical models, brought to failure, which are prohibitively expensive and of long
duration. Recently FEMA (2007) proposed a standard protocol developed for ATC-
58 to evaluate performance of structural and nonstructural components that tries to
solve the economical constraints of laboratory specimens by using multiple initial
assumptions.

4.6 Analytical Formulation

Seismic fragility functions represent the probability that the maximum response
R(x,1,1) = {Ry,.....,R,} of a specific component, structure, or family of
structures, exceeds a threshold Rys(x,7) = {Rysi,....Rps,} associated with a
desired limit state, conditional on the earthquake intensity measure, I. The response
R and the response thresholds Ry are functions of the same structural/nonstructural
properties of the system X, the ground motion intensity / and the time ¢. In the
formulation, it is assumed that the response threshold R;g(x) does not depend on
the ground motion history, while the ith response R;(X,1,t) of any component or
structure is represented by its maximum value over the duration of the response
history, R;(x, I). The detailed description of dependence of the response, R(x, I), on
x and /, and the dependence of the response threshold Ryg(x) on x will be omitted
in the following formulation for simplicity of presentation. Additionally, the chapter
follows the standard convention of denoting random variables in capital letters and
constants in lowercase letters. With these assumptions, the general definition of
fragility FRLS based on earthquake intensity / can be written as

FRLS (l) = P(R, Z rLSi| 1 = l) (48)

where R; = ith random variable of the response that can be either a deformation
quantity, such as interstory drifts, or a force quantity, such as bending moment or
shear force, or a combination thereof, or any other measure of damage for which
adequate capacity models exist (Badillo-Almaraz and Cimellaro 2006); ris; =
response threshold, or limit state, related to a certain functionality or damage; I =
earthquake intensity measure, which can be represented by PGA = Peak Ground
Acceleration; PGV = Peak Ground Velocity; PVS= Pseudo Velocity Spectrum;
MMI = Modified Mercalli Intensity scale etc.; and i = a given earthquake intensity
value. Even though the earthquake intensity measures above have mostly been used
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in seismic fragility analysis, a definition of fragility based on earthquake hazard
(e.g. return period 7, of a given earthquake event, annual probability of exceedance
A, etc.) can also be valuable because seismic hazard curves or maps are generally
represented using the return period of the design earthquake. Therefore, in this
chapter seismic fragility curves are developed as a function of the return period by
utilizing the probability density function interpolation technique (Cimellaro et al.
2006; Yi et al. 2007). In order to find the expression of fragility curves as function
of the earthquake hazard, two assumptions are necessary: (i) the structural responses
are log-normally distributed under earthquake ground motions corresponding at the
same probability of exceedance in Eq. (4.8); (ii) the seismic hazard curves of the
structural responses are described by the following expression (Cornell 1996):

A= H(rps)iy = PR > ris)y,, = 1/T, = Ko - 15" 4.9)

where A = average annual frequency of exceedance of a given response threshold;
H(-) = seismic hazard curve function; 7, = return period between two exceeded
response thresholds, Ky and K; = parameters representing the seismic hazard curve.
The estimate of A is a function of the geometry and material properties of the specific
structure and therefore it needs to be estimated for each specific building.

In order to determine the fragility function based on earthquake hazard H, it
is necessary to determine the probability density function (PDF) of an arbitrary
maximum structural response, R;, at a given annual probability of exceedance.
Therefore, it is assumed that the maximum structural response R is log normally
distributed and expressed as follows

1 _ (l“(r)_”llllR)z
2"1111(2 r 2 0

fx(r) = | rowgy2m ¢ (4.10)

0 elsewhere

where my,g and oj,g are the log-mean and the log-standard deviation values,
respectively. According to Eq. (4.10), the two seismic hazard curves of the median
(mg) and deviated (o) values of the response R are expressed as follows:

—Kim

AmR = H(rLS)lyr = P(mR > rLS)lyr = KO,m *Trg (41 1)
—K; mo
Aog = H(ris)1yr = P(0g = r15)1,, = Koo *7pg - (4.12)

where Ko, Kim, Koo and K;, = constants of the median mp and the deviated
o values, respectively, which are calculated using linear regressions. The log-mean
my,g and the log-standard deviation oy, values are related to the median mg and the
deviated ok values through the following expression:

mg = "R gp = "RTOIR 4.13)
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Therefore, the log-mean my,g and the log-standard deviation oy,g values at a given
annual frequency of exceedance (or return period #,) are given by the following
expression:

(1,) Ly ! (4.14)
My r) = (o] .
ik Kl,m g tr ‘ KO,m

1 1
t,) = 1 4.15
OinR ( ,) Ming + Kio 0og (tr ; KO,U) ( )

Back-substituting Egs. (4.14) and (4.15) into Eq. (4.10), the PDF of the max-
imum structural responses corresponding to a given annual frequency A or return
period . is obtained as follows:

(In (r) — mung (t,.))2
- 2
ferpy=1—1 o 20ut) r=0 (4.16)

sthr

0 elsewhere

Finally, the definition of fragility based on earthquake hazard H is given by the
following integral:

FRLS (tr) = P(R, = I"le'| T, = tr) = /fR (r, tr) dr “4.17)

rLS

where the hazard is given by the return period, 7, of a given earthquake event.
It is important to mention that there is not a one-to-one correspondence between
earthquake intensity, /, and earthquake hazard, H as shown in Fig. 4.1.

In fact, different values of earthquake intensities / (PGA, PGV, PVS, S, and
etc.) can correspond to a unique earthquake hazard (e.g. 7, the annual frequency of
exceedance A etc.).

The advantage of the second formulation in Eq. (4.17), with respect to Eq. (4.8),
is that it takes into account directly the uncertainties of occurrence in estimating
the earthquake intensity parameters I at the site. Therefore, in professional practice,
buildings are designed according to a given return period 7, that is related to a
given earthquake event. It is possible to directly use the expression of fragility
function given in Eq. (4.17) for evaluating directly the probability of functionality,
or damage, of the system. The details about the method for generating fragility
curves according to Eq. (4.17) are given in the following paragraphs. When the
number of response parameters to be checked is n, the definition of fragility given
in Eq. (4.17) can be written in the following form:

FRLS (tr) =P <U (R, = rLSi) |Tr = tr) = /fR (r, tr) dr (418)
i=1 rLs
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Fig. 4.1 Earthquake intensity versus earthquake hazard fragility curves

where the first right term of Eq. (4.18) is the conditional probability based on the
earthquake hazard of the multi-component response exceeding a multidimensional
limit state. When the problem is reduced to a bi-dimensional case considering
for instance, displacements and accelerations at a specific story of a building, the
fragility curve in Eq. (4.18) can be determined using the following expression:

}(Tr=f,)=(P((A = Drs)U(Z=Ass)| Tr=1,)=P ((A=Dps)| T, =1,) +

+P ((Z2A1)| T, =t1,) — P((A=Drs) (Z2Aw)| T, =1,))
(4.19)

where A = a random variable representing the displacement response, Z = a ran-
dom variable representing the acceleration response, D; g = displacement threshold,
Aps = acceleration threshold and (A > Dyy) and (Z > Ajg) are assumed to be
two independent events. The response of the structure can be visually represented
for two variables by a “bell surface” (Bruneau and Reinhorn 2007) where the
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Fig. 4.2 Response domains t
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x-axis is the spectral displacement S, the y-axis is the pseudo-spectral acceleration,
designated here as S, and the z-axis is the probability of occurrence (Fig. 4.2). This
surface is the joint probability density function of the response expressed in terms of
the two variables, the maximum spectral displacement S; and the maximum spectral
acceleration S, that are assumed to be log-normally distributed.

4.7 Definition of Performance Limit States

4.7.1 Multidimensional Performance Limit State Function

The evaluation of fragility requires a definition of a threshold vector R, g, represent-
ing the given limit state. The response vector R and the threshold vector R; s being
used in the estimation of fragility must have the same components (e.g. acceleration,
drift etc.). Usually, the components of the threshold vector are assumed mutually
independent. However for various systems in a structure or substructure, combi-
nations of mutually dependent components, such as accelerations, displacements,
drift, velocities, etc., can represent their limits of functionality, or damage. The
generalized Multidimensional Threshold Limit State (MTLS) function provides a
tool that allows consideration of these dependencies among different components
of the threshold vector related to different quantities. The MTLS function g(R, Rys)
for the case in which n different types of response parameters are considered
simultaneously can be defined in n-dimensional form by the mathematical “surface”

n R\ M
g R, Ryg) = (—’) -1 (4.20)
; Rys,i

where R; = ith component of the response vector (e.g. drifts, accelerations, forces,
velocities, etc.); R s; == ith component of the threshold vector, representing the
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one-dimensional (1D) limit states and N; = interaction factors determining the shape
of the n-dimensional surface. The limit state defining the boundary between desired
and undesired performance corresponds to g = 0. When g < 0 the structure is safe,
while when g > 0 the structure is not safe (undesired performance). The relation
among different thresholds’ parameters can be determined through calibration of
the MTLS function that is obtained using probabilistic analysis, or engineering
judgment based on field reconnaissance data collected after an earthquake or derived
from laboratory tests. The model can also be continuously updated as soon as more
data are available using the Bayesian approach proposed by Gardoni et al. (2002)
and adding correction terms to the proposed limit state function. The MTLS function
can be used “locally” to describe the limit state of a single nonstructural component
(e.g., scientific equipment, piping and utility systems, etc.) or “globally” to describe
the limit state of a part of a sub-structural system (e.g. building story level) or
to describe the entire building structure including its nonstructural components.
This model can be used to construct fragility curves considering different response
parameters (e.g. forces, displacements, velocities, accelerations etc.) combined in
a unique fragility formulation. In the proposed formulation, the limit states can be
considered either linear or nonlinear dependent, or independent. All these options
can be formulated as particular cases of the more general case, with a suitable choice
of the parameters involved. In bi-dimensional form, the MTLS function in Eq. (4.18)
can be seen in Fig. 4.2 and expressed by the following equation:

A\ D\
RRis) = [ — ) -1 421
ey = ()4 (2) az

where Ars and D;g = acceleration and drift limit thresholds, respectively; A and
D = peak acceleration and displacement response, respectively; N, and N, =
coefficients determining the shape of the limit state surface. The thresholds Ay,
Dy and the coefficients N, and N, are determined from either (1) field investigations
after an earthquake or from (2) laboratory experiments. The first procedure implies
collecting past earthquake field data (Shinozuka et al. 2000a,b). Damage data are
related to drifts and they can be determined by field observations, while acceleration
thresholds can be determined in the field only when the building is monitored
with accelerometers. However, other types of damage data can be determined from
laboratory experiments (e.g. number of tiles that fell out of a suspended ceiling)
(Badillo-Almaraz and Cimellaro 2006; Retamales et al. 2006). The advantage of
the latter procedure is that a range of earthquake intensities can be applied in a
controlled fashion to the structure of interest, and inter-story drifts, accelerations, or
other parameters, can be monitored and measured more accurately than in the field.
However, both methods require multiple outcomes (e.g. structural collapses), which
are prohibitively expensive in costs (in laboratory experimental tests) and human
lives (in real earthquakes). Therefore, such limit thresholds would have to be derived
by numerical analyses using basic engineering principles and rules of mechanics.
When the MTLS function is calibrated, A;s and D;g can be assumed as either
random variables, or deterministic quantities, either dependent or independent.
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Fig. 4.3 Threshold limit states: (a) drift threshold limit state; (b) acceleration threshold limit case;
(c) independent acceleration and inter-story drift limit states; (d) velocity limit state

All cases can be considered as particular realizations of the general Eq. (4.18). The
two-dimensional (2D) MTLS function in Eq. (4.19) is considered for illustrative
purposes. For example, the most common and simplest form of performance
function considers only the drift as one-dimensional threshold and it can be obtained
assuming A;g = oo; therefore Eq. (4.19) becomes

D\

g(R,Ryg) = (—) -1 (4.22)
Dys

where D = displacement response; Dy = displacement threshold that can be

either a deterministic or a random variable (Fig.4.3). In order to be safe, g < 0

implies D < Dyg. Alternatively, if acceleration limit state is given, then this can be

determined assuming D;s = oo, therefore Eq. (4.19) becomes

A\
g (R, Rys) = (A—) -1 (4.23)
LS
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As shown in Fig.4.3b where A = acceleration response; A;s = acceleration
threshold that can be either a deterministic or a random variable. In order to
be safe, g < O implies A < A;s. The shape of the performance function is
useful for nonstructural components such as acceleration sensitive equipment (i.e.
computers, electric devices, lab equipment, etc.). Damage to this type of nonstruc-
tural components has gained significant attention following recent earthquakes,
because in essential facilities like hospitals, failure of such equipment may hinder
emergency response immediately after an earthquake. Most of these components
are short and rigid and are dominated by a sliding-dominated response (Chaudhuri
and Hutchinson 2006). The case in which both accelerations and inter-story drifts
thresholds are considered as independent limit states can be determined from the
generalized MTLS function in Eq. (4.19) by imposing N = N, /N, = oo (Fig. 4.3¢c)

(R,R )—(i)oo—i-(g)—] 4.24)
s Ty = Arg Dy '

In fact, if A/Ars < 1 then ; therefore Eq. (4.24) reduces to

D
g(R,Rpg) = — —1 (4.25)
Dys

that corresponds to the inter-story drift limit state given in Eq. (4.24). By imposing
the safety condition (g < 0) in Eq. (4.24), then, therefore Eq. (4.24) becomes
the acceleration limit state given in Eq. (4.23). On the other hand, assuming a
linear relationship between acceleration and inter-story drift limit states for N =
Na/Nb = 1, a velocity limit state is obtained, as shown in Fig. 4.3d.

4.7.2 Uncertainties of Limit States

The PLS represent the level of response for a certain functionality limit, or for
a specific damage condition. The limits of functionality or of damage depend on
mechanical properties, such as strength and deformability, which are in themselves
uncertain and therefore in literature are available Bayesian approaches that properly
account for all the most relevant uncertainties (Gardoni et al. 2002). Unfortunately,
current engineering practice in developing fragility curves is still based on deter-
ministic PLS, usually obtained from scientific/engineering laws, observational data
from laboratory experiments or field investigations, design standards, engineering
experience, subjective judgment and etc. The main reason for this choice is justified
by the fact that the uncertainty in the earthquake load is considerably larger than the
uncertainty in the PLSs themselves. In this section, PLSs are considered as random
variables, and are defined in terms of both inter-story drifts and accelerations,
since the functionality and the failure modes in the case study (presented later) are
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governed by both. Several cases are considered for the estimation of the fragility
related to specific PLS, assuming that the limit thresholds are random variables.
For simplicity of explanation, only two response parameters are considered: inter-
story drift and floor acceleration. It is assumed that the peak responses have a
lognormal distribution, which is used to model positive random variables, following
Clough and Penzien (1993). Additionally, Cimellaro et al. (2009) have verified
the assumption comparing different PDF (normal, Gumbel, and log- normal) for
different structural configurations and results showed that the lognormal distribution
is the best fit for the response distribution. For each case, different assumptions
are made regarding the random variables considered. An analytical solution is
formulated to calculate the probability of exceeding a certain performance limit
state, given the probability distribution function of the response and of the limit
states. The simplest case is where the inter-story drift threshold d is considered as
a deterministic quantity, and is compared with the random variable §T of the inter-
story drift response that takes only positive values and is assumed to be log-normally
distributed as follows

(0 (8) —my)’

fA (8) = m -e 2UA2 8 = 0 (426)
A

0 elsewhere

In this case the fragility function describing the probability of exceeding the
given performance limit state d is

d
Fu(t,) =P(Azd|T,=t1)=1—Fad) =1- /fA(S)dS 4.27)
0

Instead, if the inter-story drift threshold is also a random variable that takes
only positive values (but it is assumed independent from A), then the fragility
function describing the probability of exceeding the given performance limit state
D in Eq. (4.27) becomes

Fp(t,) =P(A=D|T, =1,) = P( >1)=PY=1)=1-Fy()

Lo

=1- [ Fo)Fa(1 - w)du; (4.28)
0
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where

yu [oe] yu

Fy(y) = / / Fa(8)fo () dSdu = / Folu) / fa(8)dSdu
0 0 0 0

— [ fotwFat- wa (4.29)
0

where u# and § = auxiliary variables; y = specific real number of a real value
random variable Y. If both the drift response A and the acceleration response Z
are considered in the formulation, then these two variables are assumed dependent
random variables because generally for every type of structure, experimental obser-
vations seem to confirm this assumption. For example for linear SDOF systems, the
following relation holds

S =4 (4.30)
1)

where @ = 27 /T is the circular frequency of a SDOF of period 7. Based on this

relationship, the problem is reduced from two-dimensional to one-dimensional:

Fry(t,) =P(A=2dUZ=a|lT,=1)=P(A>2dU A0’ 2d|T, =1,) =
=P(A=min(d.a/w’)|T, =1,) = 1 — Fa(min(d.a/w?)) =
min(d.a/a)z)

=1- f fa (8)dS 4.31)
0

The probability of exceeding the limit state can be evaluated when the probability
density functions of inter-story drift f4(§) is known. Both parameters of the density
functions can be calculated using the maximum likelihood method. While in the
two cases shown above, the inter-story drift performance limit state d and the
acceleration performance limit state a were considered deterministic quantities, they
can also be assumed as random variables log-normally distributed as discussed
previously. It is assumed that the acceleration response Z and the displacement
response A are related in the elastic range, so that the relation A = Z/w? holds,
while the performance limit state of inter-story drift D and acceleration A are
assumed independent random variables. This assumption is reasonable because,
nonstructural components such as electronic devices (e.g. computers, etc.) for
example, that are acceleration sensitive, cannot be related to the building PLSs
that are typically displacement sensitive. In order to simplify the formulation, two
new non-dimensional random variables X = A/D and Y = Z/A, are assumed.
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In this case, the probability of exceeding the given performance limits state can be
expressed as

A zZ
Fr(t)=P(A=DUZZA|T,=1)=P Tt
N—— S——
X Y
A A A ®*D A
=p| = z1uL=1|r,=|=P| = =1U = oz =1 | =
D £ D A D
N—— [C] N—— N——
X X X
A A A . A
=Pl = 21U = =——|T,=¢ |=P(x=min(1,—= ) |T,=1, | =
D D 2D w?D
N—— N——
X X

—1—Fy (min (1, w%)) —1— /fD (u) F (min (1, %) u) du (4.32)
0

Hence, for the evaluation of the exceedance probability in this case, only the
probability density function of the inter-story drift response and the probability
density function of the inter-story drift limit state are required. In case that inter-
story drift performance limit state, D, and the acceleration performance limit state,
A, are nonlinearly related through Eq. (4.21), then the probability of exceedance the
MTLS function is obtained by substituting Eq. (4.21) in Eq. (4.32)

Fs(t)=P(A2dUZzal|l,=1,)=P(A2dUAw’ 2 a|T, =1,) =
=P(A=min(d,a/0’)|T, =1,) =
=1- FA (Il’llIl (d,ALs/Q)z (1 — (D/DLs)N))) =
min(d.Azs /02 (1—(D/Drs)))

=1- / fa(8) d8 (4.33)

0

The advantage of this formulation is that a limit state can be expressed as function
of the other components, once the coefficients of the model have been calibrated;
in this case, only a single parameter is needed to limit both displacements and
accelerations. Once the probability of exceeding the PLS is computed analytically,
the procedure can be repeated again for different intensity measures, generating the
fragility curves using the procedure described in the next section.
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4.8 Generation of Fragility Curves

In this section, the method for generating fragility curves uses the return period as
the intensity measure to take into account the ground motion parameter I at the site,
it is described in the following steps:

Step I: for a given value of earthquake hazard H (e.g., return period Tr of an
earthquake event), consider n synthetic or real earthquake records.

Step II: analyze the structural system under each of the earthquake records
generated in Step I that is consistent with the given hazard level. Compute the
maximum pseudo spectral acceleration (PSA) and spectral displacement (Sd)
response for every structural and nonstructural component at each story level.
Note that nonstructural components are assumed rigid and rigidly connected to
the structure for the particular case study considered.

Step III: estimate the mean and the standard deviation from the § response
samples of Step II and evaluate the lognormal PDF of § the response distribution.
Step IV: evaluate the probability of exceeding, using the analytical expressions
given in previous paragraphs, for the case when uncertainties in the limit states
are taken in account. The limit states considered are partly dictated by structural
safety (displacements) and partly dictated by functionality (accelerations) at each
floor level and they are defined as “story PLS.”

Step V: repeat Steps I to IV for different hazard levels and locate all the points
corresponding to the different probability P of exceeding the limit state in the
plane of probability of exceeding versus earthquake hazard. The number of
hazard levels (represented by the return period of the earthquake event), available
for design in the USGS database (Petersen et al. 2014), is usually four, which
is equal to the number of points available to determine the fragility curves as
function of the return period.

Step VI: fit the points obtained in Step V using the lognormal cumulative distri-
bution function. The fragility function is described by the following equation:

Fr(y) = @ [% In (y/ey)} y=0 4.34)

where @ = standardized cumulative normal distribution function; 9_\, = median
of y; and B = standard deviation of the natural logarithm of y. A straightforward
optimization algorithm based on chi-square y?> goodness-of-fit test allows the
estimation of the optimal parameters of the lognormal distribution (6, and B).
Step VII: repeat Steps I to VI for every story level and develop floor fragility
curves. Then, the performance level of the most critical story is suggested to
represent the global PLS for the structure.

The reason of the choice in Step VII is justified by the fact that in reality, most

structures are a combination of series and parallel systems (Nowak and Collins
2000): structures may not fail when a single member fails, but they can fail
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before all members fail. In a complex structural system like a hospital, structural
and nonstructural components interact with each other, therefore identifying series
and parallel systems may be difficult. However, the problem can be simplified
assuming the hospital is a series system that demonstrates a weakest link system,
because failure of the system corresponds to failure of the weakest element in the
system. The proposed approach with respect to other methods available in literature
(e.g., Zion method described by Kennedy and Ravindra (1984)) addresses PLSs as
functions of combined multiple structural parameters and also allows consideration
of dependencies among different limit thresholds and uncertainties in the limit states
themselves. Therefore, the proposed approach can be considered as an alternative
method for describing the vulnerable behavior of nonstructural components that are
sensitive to multiple parameters, like partition walls that are drift sensitive during
the earthquake in the initial vibration cycles but become acceleration sensitive as
cantilever type structures, when they disconnect from the top boundary. Another
example of nonstructural components that are sensitive to both accelerations and
drifts are the piping systems. The disadvantage of the proposed method is that is
based on nonlinear time history analysis coupled with Monte Carlo simulations that
are used to characterize the demands in terms of their joint density function fp(d)
where d =generic demand parameter. Therefore, the proposed approach may be
prohibitive for complex structural systems where excessive computational demand
is required.

4.9 Concluding Remarks

The chapter describes different types of loss assessment models to evaluate regional
seismic losses of both ordinary buildings and infrastructures. Then attention shifts
toward the definition of a loss function which has been one of the first indicators
used to define disaster resilience. Different models to evaluate the damage losses are
provided, approaching the problem in probabilistic terms using fragility functions
and analyzing different types of uncertainties which appear in the resilience
evaluation such as the uncertainties in the limit states.
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