
Chapter 13
Design and Control of an Energy-Saving
Robot Using Storage Elements
and Reaction Wheels

Makoto Iwamura, Shunichi Imafuku, Takahiro Kawamoto
and Werner Schiehlen

Abstract In this paper, we propose a concept for the design and control of an energy
saving robot utilizing springs and reaction wheels. Firstly, we examine the simulta-
neous optimization problem of spring parameters and trajectories with respect to the
energy consumption based on optimal control theory. We analyze the relationship
between the consumed energy and the robot cycle time, derive a condition for an opti-
mal energy efficient cycle, and propose a corresponding design method for springs.
After that, we consider the practical design problem to realize the proposed energy
saving manipulator concept. In order to verify the proposed method, a prototype
2DOF manipulator is developed by using linear springs and reaction wheels. The
experimental results show the effectiveness of the proposed energy saving manipu-
lator concept.

13.1 Introduction

In the manufacturing industry, machines and robots controlled by actuators are used
to increase productivity and achieve high quality products. However, these actuators
are consuming a great amount of energy accelerating and braking continuously.
Hence, saving the energy of such mechanical systems is a very important issue.

Existing methods for reducing the energy consumption of industrial robots in
manufacturing systems have been recently reviewed by Paryanto et al. [1]. There are
three main approaches found as follows.
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• Energy-efficient motion planning:

– Optimizing robot dynamics,
– Collision free motion planning,
– Smooth and time-optimal motion planning,
– Optimal robot control systems,
– Electrical energy exchange via internal DC bus.

• Optimal robot operation parameters:

– Experimental approach,
– Modelling and simulation approach,
– Combination of experiments and simulation.

• Scheduling robot operations:

– Optimal robot process sequences,
– Start–stop optimization,
– Optimizing robot cycle time.

Recuperated energy saving potential and approaches in industrial robotics were
considered by Meike and Ribickis [2]. These authors present experimental and sim-
ulation results for two complementary alternatives: a capacitive energy buffer on
the robot’s DC-bus and a novel approach, the robot EnergyTeam. The principle of
the robot EnergyTeam is a DC-bus merging among a various number of industrial
robot power controllers thus enabling a controlled energy flow among the robots that
decelerate and, therefore recuperate energy, and those that simultaneously require a
peak power supply for the acceleration.

A path planning approach for the amplification of electrical energy exchange in
multi axis robotic systems was presented by Hansen et al. [3]. The energy-based
system model includes the robot dynamics, mechanical and drive losses, as well
as the exchange of electrical energy. The nonlinear optimization problem is solved
using global methods, considering kinematical and dynamic limitations. Simulations
results are presented that prove the performance of the algorithm and demonstrate the
beneficial effect of electrical energy exchange.Minimum time criteria can be retained
if required and the approach is applicable to different multi axis manipulator types.

Resonant robotic systems were considered by Babitzky and Shipilov [4]. These
robotic systems include spring accumulators and use control design with minimal
energy consumption.

The standard task of industrial robots is a planned repetitive motion with a short
cycle time. Such periodic motions result in phases of high accelerations and decel-
eration featuring high energy losses. Therefore, local energy storage transforming
kinetic energy in reusable potential energy is attractive. Springs are reliable passive
mechanical components for energy storage. Methods for reducing the consumed
energy of controlled multibody systems by utilizing passive storage elements such
as springs have been recently examined, see Refs. [5–7].
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Fig. 13.1 Planar NDOF serial manipulator with storage springs

In this paper, we consider the case of a planar NDOF serial manipulator with
springs as in shown Fig. 13.1. Firstly, we analyze theoretically how to choose the
spring stiffnesses, spring mounting positions, and robot motion trajectories to maxi-
mize energy savings. Based on the results of the analysis, we propose a simultaneous
optimizationmethod of spring parameters and trajectories.We show the effectiveness
of the proposed method by numerical simulations.

In theory, we can achieve zero energy consumption by our method, but in practice
the method can not be directly applied to a conventional manipulator since it utilizes
the free frictionless vibrations of the system. Therefore,we next consider the practical
design and control problems to realize the proposed energy saving robot concept. We
propose a designmethod that utilizes the linear springs and controlled reactionwheels
and develop a prototype 2DOF energy saving manipulator based on the method.
Finally, the effectiveness of the proposedmethod is verified through lab experiments.

13.2 Energy Saving Control Method Using Springs

This paper discusses the reduction of the energy consumption of SCARA robots by
adding springs to the joints as shown in Fig. 13.1. In this chapter, we consider the
simultaneous optimization problem of spring parameters and robot trajectories that
minimizes the energy consumption based on the optimal control theory.

13.2.1 Problem Formulation

The equations of motion of N -link serial horizontal manipulators equipped with
springs can be expressed as follows

M(θ)θ̈ + h(θ , θ̇) = −K (θ − θn) + u, (13.1)

where θ = [θ1, θ2, . . . , θN ] ∈ RN is the joint variable vector, M ∈ RN×N is the iner-
tia matrix, h ∈ RN is the vector of centrifugal and Coriolis forces, u = [u1, u2, . . . ,

uN ] ∈ RN is the vector of direct driving torques, K = diag[k1, k2, . . . , kN ] ∈ RN×N

is the rotational stiffness matrix, θn = [θn1, θn2, . . . , θnN ] ∈ RN is the vector of
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springmounting positions which is vanishing in Fig. 13.1. Here, we consider motions
between two points and rest at both ends, i.e.,

θ(0) = θ0, θ(t f ) = θ f , (13.2)

θ̇(0) = 0, θ̇(t f ) = 0, (13.3)

where θ0 and θ f are the initial and final configurations and t = t f is the robot cycle
time. The energy consumed by this motion can be estimated by the following cost
function

J =
∫ t f

0
f0(x, u)dt, f0(x, u) = 1

2
uT W u, (13.4)

where W ∈ RN×N is a positive definite symmetric matrix.
The problem considered in this section can be formulated as follows: Find u(t),

θ(t), θn and k = [k1, k2, . . . , kN ]T by minimizing the energy consumption (13.4)
subject to the initial and final conditions (13.2) and (13.3) for the system (13.1).

13.2.2 Theoretical Analysis of Minimum Energy Control

It is difficult to obtain analytical solutions of the problem formulated in Sect. 13.2.1
since the Eq. (13.1) has a strong nonlinearity. Hence, in this section, we analyze the
problem approximately by using the linearization and modal analysis techniques.

Firstly, we shift the reference point to the middle point of the initial and final
configurations in order to make the later calculations easy. We define θm = 1

2 (θ f +
θ0) and θ e = 1

2 (θ f − θ0), and shift the coordinates as θ̃(t) = θ(t) − θm , θ̃n = θn −
θm . This transforms the initial and final conditions to the symmetric form

θ̃(0) = −θ e, θ̃(t f ) = θ e, (13.5)
˙̃
θ(0) = 0,

˙̃
θ(t f ) = 0. (13.6)

And the equations of motion (13.1) is transformed to the following form

M̃(θ̃)
¨̃
θ + h̃(θ̃,

˙̃
θ) + K θ̃ = u + K θ̃n. (13.7)

If it is assumed that fairly strong springs are used, the spring forces become predom-
inant over the centrifugal and Coriolis forces. Therefore, we neglect these forces.
Additionally, we assume that the inertia matrix can be approximated at the middle
point θ̃ = 0 (θ = θm) as M(θm) = M̃(0) ≡ M̂ = const. Under these assumptions,
the following linearized equations of motion are obtained

M̂ ¨̃
θ + K θ̃ = u + K θ̃n. (13.8)
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Let us consider the free vibration system corresponding to Eq. (13.8) and calculate
the modal matrix Φ ∈ RN×N that satisfies

ΦT M̂Φ = I, ΦT KΦ = Ω2, Ω = diag[ω1, ω2, . . . , ωN ], (13.9)

where I is the identity matrix, ωi is the i th natural frequency arranged as ω1 < ω2 <

· · · < ωN where some of the lowest may vanish. We make the coordinate trans-
formation q = Φ−1θ̃ (qn = Φ−1θ̃n) and define the state vectors x = [xT

1 , xT
2 ]T =

[qT , q̇T ]T . Then, the following state equations are found

ẋ1 = x2 (≡ f 1(x, u)), (13.10)

ẋ2 = −Ω2x1 + ΦT u + Ω2qn (≡ f 2(x, u)). (13.11)

The initial and final conditions are expressed as

x1(0) = −qe, x1(t f ) = qe, (13.12)

x2(0) = 0, x2(t f ) = 0, (13.13)

where qe = Φ−1θ e.
Next, let us introduce an adjoint vector ψ = [ψT

1 ,ψT
2 ]T and define the Hamil-

tonian as follows

H = f0 + ψT
1 f 1 + ψT

2 f 2 = 1

2
uT W u + ψT

1 x2 + ψT
2 (−Ω2x1 + ΦT u + Ω2qn).

(13.14)
Then, the optimal control is derived from the condition ∂ H/∂u = 0 as

u = −W−1Φψ2. (13.15)

SubstitutingEq. (13.15) intoEq. (13.14), theHamiltonian along the optimal trajectory
is given by

H = ψT
1 x2 − ψT

2 Ω2x1 − 1

2
ψT

2 ΦT W−1Φψ2 + ψT
2 Ω2qn. (13.16)

From Eq. (13.16), the canonical equations of Hamilton can be derived as follows

ẋ = ∂ H/∂ψ = Ax + Bψ + cn, (13.17)

ψ̇ = −∂ H/∂x = −AT ψ, (13.18)

where

A =
[

0 I
−Ω2 0

]
, B =

[
0 0
0 −ΦT W−1Φ

]
, cn =

[
0

Ω2qn

]
. (13.19)
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By solving the differential equations (13.17) and (13.18) under the boundary
conditions (13.12) and (13.13), we obtain the optimal solution that minimizes the
energy consumption. However, it is difficult to obtain the closed-form analytical
solution of these equations since they are coupled due to the term ΦT W−1Φ in the

matrix B. In contrast, choosing the weighting matrix as W = M̂
−1

results in the cost
function of mechanical power and allows to decouple these equations by the property
ΦT W−1Φ = ΦT M̂Φ = I . Therefore, in the following, we analyze this case.

Let us denote the initial value of adjoint vector as ψ(0), then the solution of
Eq. (13.18) reads

ψ(t) = e−AT tψ(0). (13.20)

By using Eq. (13.20), the solution of Eq. (13.17) is derived as

x(t) = eAt x(0) + eAt
∫ t

0
e−Aτ Be−AT τ dτψ(0) + eAt

∫ t

0
e−Aτ dτ cn. (13.21)

If the final condition x(t f ) is specified, ψ(0) can be computed from Eq. (13.21) as
follows

ψ(0) =
[∫ t f

0
e−At Be−AT t dt

]−1

×
[

e−At f x(t f ) − x(0) −
∫ t f

0
e−At dt cn

]
.

(13.22)
Then, by substituting this ψ(0) into Eq. (13.20), ψ2(t) is obtained as

ψ2(t)=[ψ21(t) ψ22(t) . . . ψ2N (t)]T , (13.23)

ψ2i (t)= 2ω2
i {sinωi (t f − t)−sinωi t}

sinωi t f −ωi t f
qei + 2ω2

i {sinωi (t f − t) + sinωi t}
sinωi t f + ωi t f

qni ,

(13.24)

where qei and qni is the i th element of qe and qn respectively. From Eq. (13.15),

W = M̂
−1
, and Eq. (13.23), the optimal control u(t) can be computed by

u(t) = −M̂Φψ2(t). (13.25)

Furthermore, by Eq. (13.25) and W = M̂
−1
, the cost function can be expressed as

J = 1

2

∫ t f

0
uT (t)M̂

−1
u(t)dt = 1

2

∫ t f

0
ψT

2 (t)ψ2(t)dt,

=
N∑

i=1

2ω3
i (1 + cosωi t f )

ωi t f − sinωi t f
q2

ei +
N∑

i=1

2ω3
i (1 − cosωi t f )

ωi t f + sinωi t f
q2

ni , (13.26)
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where we use the fact that ΦT M̂Φ = I . In the above equation, it is easily confirmed
that

2ω3
i (1 − cosωi t f )

ωi t f + sinωi t f
≥ 0. (13.27)

Hence it is understood that the optimal spring mounting position that minimizes J is
always qni = 0(i = 1, 2, . . . , N ), i.e., qn = 0 (θn = θm). Therefore in the following,
we analyze the problem by setting qn = 0.

It should be noted that some of ωi might be zero depending on the structure of
the stiffness matrix K . By using the L’Hospital’s theorem, we can get

lim
ωi →0

2ω3
i (1 + cosωi t f )

ωi t f − sinωi t f
= 24

t3f
. (13.28)

Hence, the relationship between the minimum value of the energy consumption J
and the robot cycle time t f including the case ofωi = 0 can be summarized as follows

J (t f ) =
N∑

i=1

Ji (t f ), (13.29)

Ji (t f ) =
⎧⎨
⎩

2ω3
i (1+cosωi t f )

ωi t f −sinωi t f
q2

ei (if ωi �= 0)
24
t3f

q2
ei (if ωi = 0).

(13.30)

Equations (13.29) and (13.30) show that the total consumed energy of horizontal
manipulators with springs can be reasonably understood as the sum of the consumed
energy corresponding to the each mode.

The optimal trajectory in modal coordinates q(t) is derived by substituting ψ(0),
Eqs. (13.12) and (13.13) into Eq. (13.21) as follows

x1(t) = q(t) = [q1(t) q2(t) . . . qN (t)]T , (13.31)

qi (t) = −qei cosωi t − qei
(ωi t cosωi t − sinωi t)(1 + cosωi t f )

sinωi t f − ωi t f

− qei
ωi t sinωi t sinωi t f

sinωi t f − ωi t f
. (13.32)

Then, the optimal trajectory in physical coordinates θ(t) can be obtained by θ(t) =
θm + Φq(t) where θm is the middle position of the robot configuration as used for
Eqs. (13.5) and (13.6).
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Fig. 13.2 Planar 2DOF
manipulator
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13.2.3 Validation of the Obtained Optimal Solution

The analytical solution obtained in the previous section is based on the linearized
equations of motion (13.8). Hence, we should examine the influence of the nonlin-
earity ignored in the analysis. Therefore, in this section, we compare the analytical
solution with the numerical one considering the full nonlinear dynamics by a gen-
eral purpose optimal trajectory planning algorithm for multibody systems [8]. Here
we consider the planar 2DOF manipulator shown in Fig. 13.2 as an example. The
parameters used for the simulation are given in Table13.1.

The equations of motion of the planar 2DOF manipulator with springs can be
expressed as

Table 13.1 Parameters of the 2DOF manipulator

Link i 1 2

Length li (m) 0.250 0.160

Center of mass si (m) 0.125 0.080

Mass mi (kg) 14.25 10.00

Moment of inertia I1 (kgm2) 0.430 0.244
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Fig. 13.3 Energy
consumption J (without
springs)

[
I1 + I2 + 2m2l1s2 cos θ2 + m2(l21 + s22 ) + m1s21 sym.

I2 + m2(s22 + l1s2 cos θ2) I2 + m2s22

][
θ̈1
θ̈2

]

+
[ −m2l1s2 sin θ2(2θ̇1θ̇2 + θ̇2

2 )

m2l1s2 sin θ2θ̇
2
1

]
=−

[
k1 0
0 k2

][
θ1−θn1

θ2−θn2

]
+

[
u1

u2

]
. (13.33)

As an example, we consider the motion under the initial and final conditions
θ0 = [−30,−30]T deg, θ f = [30, 30]T deg. Figure13.3 shows the comparison
between the analytical solution and the numerical one for the casewithout spring, i.e.,
k = [k1, k2]T = [0, 0]T Nm/rad. Obviously, short robot cycle times are very energy
consuming. The centrifugal and Coriolis forces become larger as the moving speeds
become faster, the difference between the two becomes larger as t f becomes shorter.
However, we can confirm that the difference converge to zero as t f is longer, i.e., the
moving speeds become slower. Figure13.4 shows the comparison for the three cases
of k = [k1, k2]T = [30, 0]T , [0, 30]T , [30, 30]T Nm/rad. If fairly strong springs are
used, the spring forces become predominant over the centrifugal and Coriolis forces.
Therefore, we can observe that both results are well coinciding everywhere. Since
the analytical solution is well approximating the characteristics of the exact one, it is
proposed that the analytical solution obtained in the previous section can be used for
analysis and design of planar manipulators with springs. Furthermore, Fig. 13.4 indi-
cates that for cycle time t f less than 1s the energy consumption may be considerably
reduced by properly chosen springs.

13.2.4 Optimal Robot Cycle Time

In this subsection, we derive a condition for an optimal robot cycle time t f . If some
ωi become zero, an optimal robot cycle time t f does not exist since J has the terms
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Fig. 13.4 Energy
consumption J (reduced by
proper springs)

that decrease monotonously with t f , see Eq. (13.30). Therefore, in the following,
we discuss the case that all ωi are non-zero. If we consider t f as the quantity that
may take any value, H(t f ) = 0 should be satisfied from the transversality condition.
Moreover, since Eq. (13.16) does not contain t explicitly, ∂ H/∂t = 0, it holds H =
const along optimal trajectories. Hence the condition H(0) = 0 should be satisfied.
By substituting the Eqs. (13.12) and (13.13), qn = 0, and ψ(0) into Eq. (13.16), one
can get

H(0) = ψT
2 (0)Ω2qe − 1

2
ψT

2 (0)ψ2(0) =
N∑

i=1

−2ω5
i t f sinωi t f

(ωi t f − sinωi t f )2
q2

ei . (13.34)

FromEq. (13.34), it follows that H(0)=0 is satisfied if sinωi t f = 0 (i =1, 2, . . . , N )

or equivalently
ωi t f = riπ (i = 1, 2, . . . , N ), (13.35)

where ri is an integer. When the condition (13.35) is satisfied, the second and third
term of Eq. (13.24) vanishes and the optimal trajectory in modal coordinate reduce
to harmonic vibrations

x1(t) = q(t) = [q1(t) q2(t) . . . qN (t)]T , (13.36)

qi (t) = −qei cosωi t. (13.37)

And by substituting Eq. (13.35) into Eqs. (13.29) and (13.30), the cost function can
be expressed as

J =
N∑

i=1

Ji =
N∑

i=1

2ω3
i (1 + cos riπ)

riπ
q2

ei . (13.38)
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From Eq. (13.38), it is understood that Ji takes the maximum 4ω3
i q2

ei/riπ if ri is an
even number and vanishes if ri is an odd number. Hence, J takes the global minimum
if all ri are odd number resulting in the minimum value of zero.

13.2.5 Optimal Design Method for Springs

In this section, we consider the problem to design the spring stiffnesses k =
[k1, k2, . . . , kN ]T that make the consumed energy minimum for a specified time
t∗

f . Firstly, from Eq. (13.35), the natural frequencies ωi read as

ωi = riπ/t∗
f (i = 1, 2, . . . , N ), (13.39)

where all ri should be selected to be odd number so that all Ji takes the minimum.
Moreover, ri should satisfy r1 < r2 < · · · < rN since we assumed that ω1 < ω2 <

· · · < ωN . The spring stiffnesses k = [k1, k2, . . . , kN ]T should be determined as they
satisfy the following characteristic equations

det[K − ω2
i M̂] = 0 (i = 1, 2, . . . , N ). (13.40)

Let us define the error vector e = [e1, e2, . . . , eN ]T where ei = det[K − ω2
i M̂].

Then, the problem here becomes to find k that satisfies

e(k) = 0. (13.41)

Solving this nonlinear equation, e.g., by Newton–Raphson method, we can obtain
the optimal spring stiffnesses k that minimizes the energy consumption.

Especially, for the case of 2DOFmanipulator, we can calculate the optimal spring
stiffnesses analytically as follows. Since N = 2, from the characteristic equations
det[K − ω2

i M̂] = 0 (i = 1, 2), two equilateral hyperbolas can be obtained

k2 = c2i
k1 − ai

+ bi (i = 1, 2), (13.42)

where ai = m̂11(riπ/t∗
f )

2, bi = m̂22(riπ/t∗
f )

2, ci = m̂12(riπ/t∗
f )

2, and m̂i j is the i j th

element of matrix M̂. From these two equations, k1 can be calculated analytically as
follows

k1 =
A+ B− − C+C− ±

√
(C+)2(C−)2 − 2A− B−(c22 + c21) + (A−)2(B−)2

2B− ,

(13.43)
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where A+ = a2 + a1, A− = a2 − a1, B− = b2 − b1, C+ = c2 + c1, C− = c2 − c1.
Then, by substituting k1 into Eq. (13.42), k2 can also be obtained.

We can achieve the minimum energy control of planar robot manipulators by
adding the springs with optimal stiffnesses to the joint at the optimal mounting
positions θm .

13.2.6 Application Example

In this section, the proposed optimal design method for springs is demonstrated
for the planar 2DOF manipulator shown in Fig. 13.2. As in the Sect. 13.2.3, we
consider the motion under the initial and the final conditions θ0 = [−30,−30]T

deg, θ f = [30, 30]T deg. Here we assume that the robot cycle time is specified
as t∗

f = 1s. Firstly, we select ri in Eq. (13.39) as r1 = 1, r2 = 3, then the natural
frequencies become ω1 = π , ω2 = 3π rad/s. Let us first set the spring stiffnesses as
k = [k1, k2]T = [30, 30]T Nm/rad. Though the consumed energy J corresponding
to this spring stiffnesses is included in Fig. 13.4, we show it again on a different
scale with J1 and J2 for the first and second mode in Fig. 13.5. Since the minimum
of J1 and J2 do not coincide, J is not vanishing. Therefore, we optimize the spring
stiffnesses. FromEqs. (13.42) and (13.43), the optimal values of spring stiffnesses can
be obtained as k = [k1, k2]T = [21.854, 14.182]T Nm/rad. The consumed energy J
corresponding to this spring stiffnesses is shown in Fig. 13.6 with J1 and J2. We
can observe that the minimum of J1 and J2 coincides at t∗

f = 1s and therefore J
is vanishing at t∗

f = 1s. In Fig. 13.6, the minimum value of J corresponding to the
case without spring, i.e., a conventional robot manipulator, is also shown. We can
confirm that the consumed energy is strongly reduced at the design point t∗

f = 1s.
This proves the effectiveness of the proposed method.

Fig. 13.5 Energy
consumption J before
optimization
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Fig. 13.6 Energy
consumption J after
optimization

13.3 Design and Control of Energy Saving Manipulator

The energy saving control method using springs proposed in the Chap.2 utilizes nat-
ural modes of vibration of the system. On the other hand, existing robot manipulators
have direct drive or geared motors at the joints and therefore free vibrations do not
occur. Therefore, the proposed method cannot be directly applied to conventional
manipulators. Hence in this chapter, we consider the practical design problem to real-
ize the proposed energy saving manipulator concept. We develop a prototype 2DOF
manipulator to validate realizability and effectiveness of the proposed method.

13.3.1 Design of Energy Saving Manipulator

In Chap.2, we consider a horizontal manipulator model equipped with rotational
springs as shown in Fig. 13.1 or Fig. 13.7a, respectively. However, for the rotational
spring it is usually difficult to adjust its stiffness and mounting position, and so
we impose in our experimental setup rotational stiffness between neighboring links
by using two linear springs and a special spring holder as shown in Fig. 13.7b. We
denote by kti the linear spring stiffness, lti the distance between the joint and spring
mounting point on the holder, then the applied torque Ti by springs about a joint can
be approximated as

Ti = −2kti l
2
ti sin θi cos θi � −2kti l

2
tiθi (≡ −kiθi ). (13.44)

From the above equation, it is understood that we can convert linear spring stiffness
kti to corresponding rotational spring stiffness ki by

http://dx.doi.org/10.1007/978-3-319-30614-8_2
http://dx.doi.org/10.1007/978-3-319-30614-8_2
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Fig. 13.7 Structure of
proposed energy saving
robot, a mathematical model,
b practical design

(a)

(b)

ki = 2kti l
2
ti . (13.45)

Next, let us consider the installation position of actuators. Since the proposed
method utilizes the free vibration of the system, all joints must be able to rotate freely.
Therefore, we will not install motors at the joints, instead, we introduce controlled
reaction wheels at an arbitrary point on the link and add driving torques from them
as shown in Fig. 13.8.

The equations of motion of the links and the reaction wheels in Fig. 13.8 can be
derived as follows

Mθθ θ̈ + MT
φθ φ̈ + h = −K (θ − θn), (13.46)

Mφθ θ̈ + Mφφφ̈ = τ , (13.47)

where θ = [θ1, θ2, . . . , θN ]T is the vector of joint variables, φ = [φ1, φ2, . . . , φN ]T

is the vector of rotation angles of reaction wheels, Mθθ , Mφθ , Mφφ are the inertia
matrices, h is the vector of centrifugal and Coriolis forces, τ = [τ1, τ2, . . . , τN ]T

Fig. 13.8 Structure of proposed energy saving robot
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is the vector of driving torques of reaction wheels, K = diag[k1, k2, . . . , kN ] is the
stiffness matrix, θn is the vector of spring mounting positions.

By eliminating φ from Eqs. (13.46) and (13.47), and defining M ≡ Mθθ −
MT

φθ M−1
φφ Mφθ ,u≡ −MT

φθ M−1
φφτ , then the following equations ofmotion are obtained

M θ̈ + h = −K (θ − θn) + u. (13.48)

Since Eq. (13.48) has the same form as Eq. (13.1), the energy saving control method
proposed in the Chap.2 can be directly applied to this novel energy saving manipu-
lator systems.

13.3.2 Control of Energy Saving Manipulator

From Eqs. (13.36) and (13.37), the minimum energy trajectory between the initial
position θ0 = [θ10, θ20, . . . , θN0]T and the final position θ f = [θ1 f , θ2 f , . . . , θN f ]T

can be expressed as

θ(t) = θm + Φq(t)(≡ θd(t)), (13.49)

q(t) = [−qe1 cosω1t,−qe2 cosω2t, . . . ,−qeN cosωN t]T . (13.50)

Theoretically, if wemove the links to the position θ0 by applying the external torques
for the first time only, then repetitive movement between θ0 and θ f can be achieved
continuously without any additional input torque u. However, practically, due to the
existence of friction and air resistance, the link motions attenuate gradually with
time. Hence, let the desired trajectory θd(t) be given by Eq. (13.49), and following
feedback controller is introduced

u = M{θ̈d − α(θ̇ − θ̇d) − β(θ − θd)} + K (θ − θn). (13.51)

By substituting Eq. (13.51) into the equations of motion (13.48), it can be seen that
the behavior of the error vector e(t) ≡ θ(t) − θd(t) is governed by the equation

ë(t) + αė(t) + βe(t) = 0, (13.52)

where α and β are constant matrices that guarantee asymptotic stability. Equa-
tion (13.52) means that θ(t) converges to θd(t), which means that proposed energy
saving control method is realized.

http://dx.doi.org/10.1007/978-3-319-30614-8_2
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Fig. 13.9 Top view of the
prototype 2DOF manipulator

Fig. 13.10 Side view of the
prototype 2DOF manipulator

13.3.3 A Prototype 2DOF Manipulator and Experimental
Results

To validate the proposed energy saving control method, and practical design and
control approach, we develop a protptype 2DOF manipulator. The developed energy
saving manipulator is shown in Figs. 13.9 and 13.10. The main specifications of the
experimental setup are in Tables13.2, 13.3 and 13.4. In this experimental device,
reaction wheels are driven by DC motors and installed such that their rotational
center coincide with the joint axes. The rotary encoders are used to obtain rotational
angles of the links. And the electro-magnetic breaks are equipped to the joints so
that we can keep holding the links at an arbitrary positions.
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Table 13.2 Parameters of the 2DOF energy saving manipulator

Link i 1 2

Length li (m) 0.2500 0.2250

Mass mi (kg) 0.8097 0.6747

Moment of inertia Ii (kgm2) 0.0062 0.0037

Table 13.3 Parameters of the reaction wheel

Reaction wheel i 1 2

Mass mwi (kg) 0.0484 0.0484

Moment of inertia Iwi (kgm2) 2.767 × 10−5 2.767 × 10−5

Table 13.4 Parameters of the motor

Motor i 1 2

Mass mdi (kg) 0.0750 0.0750

Moment of inertia Idi (kgm2) 9.250 × 10−6 9.250 × 10−6

As an example, let us consider the repetitive movement between θ0 = [0, 0]T

deg and θ f = [60, 60]T deg. The robot cycle time between two points are set as
t∗

f = 2 s. If we choose ri as r1 = 1, r2 = 3, the optimal rotational spring stiff-
nesses can be obtained as k = [k1, k2]T = [0.374, 0.085]T Nm/rad fromEqs. (13.42)
and (13.43). By using Eq. (13.45), k is converted to the linear spring stiffnesses
as kt = [kt1, kt2]T = [18.706, 4.237]TN/m. Then we adjust the linear spring stiff-
nesses of the experimental device as close as possible to the optimal values. After
that we conduct trajectory tracking control experiments by using the control law of
Eq. (13.51). Figures13.11 and 13.12 show the results of the trajectory tracking test
for the 1st and 2nd joint angles respectively. In these figures, dotted line shows the
optimal (reference) trajectory calculated by Eqs. (13.49) and (13.50), and solid line
shows the actual trajectory measured by encoders. From these figures, it can be seen
that the tracking error is fairly small and trajectory tracking is almost achieved. Fig-
ures13.13 and 13.14 show the driving torques of 1st and 2nd actuators respectively.
In these figures, the solid line shows the reaction wheel driving torque of proposed
energy saving manipulator and dotted line shows the joint driving torque required by
the conventional manipulator to perform the same task. Let us compare the energy
consumption of the proposed and the conventional manipulators by the following
cost function

J (t) = 1

2

2∑
i=1

∫ t

0
u2

i (t̃)dt̃ . (13.53)
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Fig. 13.11 Angle versus
time (joint 1)

Fig. 13.12 Angle versus
time (joint 2)

Figure13.15 shows the result. The value of J (t f ) for the proposed manipulator was
10.57, in contrast for the conventional manipulator was 173.5. It turns out that the
energy consumption is reduced by 94% in the experiment. In theory, see Sect. 13.2.6,
we could show 100% reduction by optimization but 94% is still an excellent number.
This result proves that the proposed concept is effective and it can strongly reduce
the energy consumption.
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Fig. 13.13 Torque versus
time (actuator 1)

Fig. 13.14 Torque versus
time (actuator 2)



296 M. Iwamura et al.

Fig. 13.15 Comparison of
energy consumption

13.4 Conclusions

In this study, we considered a method for reducing energy consumption of planar
robot manipulators by adding springs to the joints and utilizes the potential energy
effectively. Firstly, we proposed a simultaneous optimization method for springs and
trajectories based on the optimal control theory. Then, we discussed the practical
design and control problems to realize the proposed energy saving manipulator con-
cept. Finally, we developed a 2DOF energy saving manipulator prototype and show
the effectiveness of the proposed method through experiments.
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