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Preface

This book includes state-of-the-art contributions in the field of multibody dynamics,
an area of computational mechanics aimed at studying the dynamic behaviour of
mechanical systems composed of several rigid or flexible bodies that are connected
to each other by joints and actuated by forces. Applications of multibody dynamics
are related to many fields of contemporary engineering, such as vehicle and railway
systems, aeronautical and space vehicles, robotic manipulators, mechatronic and
autonomous systems, smart structures, biomechanical systems, and
nanotechnologies.

Each book chapter contains a revised and extended version of a paper that was
presented at the ECCOMAS Thematic Conference on Multibody Dynamics 2015
held in the Barcelona School of Industrial Engineering, Universitat Politècnica de
Catalunya, on 29 June–2 July 2015. The selected works reflect the state of the art in
the application of multibody dynamics methodologies to different topics, namely,
formulations and numerical methods, efficient methods and real-time applications,
flexible multibody dynamics, contact dynamics and constraints, multiphysics and
coupled problems, control and optimization, software development and computer
technology, aerospace and maritime applications, biomechanics, railroad vehicle
dynamics, road vehicle dynamics, and robotics. The result is a comprehensive text
that covers fundamental and applied topics, which can serve as a reference hand-
book for senior researchers, doctoral students and engineers who aim to apply
multibody dynamics techniques to different fields of engineering and applied
physics.

The ECCOMAS Thematic Conference on Multibody Dynamics is an interna-
tional meeting held once every two years in a European country. Continuing the
very successful series of past conferences that have been organized in Lisbon
(2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb
(2013), the 2015 edition organized in Barcelona served once again as a meeting
point for the international researchers, scientists and experts from academia,
research laboratories and industry working in the area of multibody dynamics.
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The conference was organized by the Department of Mechanical Engineering
of the Universitat Politècnica de Catalunya (UPC) in Barcelona, and brought
together 360 participants from 35 countries spanning 5 continents. The total number
of presentations was 281, which were grouped in 5 parallel tracks giving a total
number of 65 sessions. Moreover, four keynote lectures were organized covering
the areas of robotics, biomechanics, vehicle dynamics, and design and control of
mechanical systems. Two awards to the best scientific contribution and the best
work by a young researcher were given during the closing ceremony of the
conference.

I would like to take this opportunity to thank the authors for submitting their
excellent contributions, the keynote lecturers for accepting the invitation and for the
quality of their outstanding talks, the awards and scientific committees for their
support to the organization of the conference, the session organizers for reviewing
all extended abstracts and selecting the awards nominees, and last but not least, the
local organizing committee for all the hard work that made the conference possible.
I am also grateful to ECCOMAS, the principal supporting institution; the other
international supporting organizations, IFToMM, IUTAM, JSME and KSME; and
Springer for accepting the publication of this book.

Barcelona Josep M. Font-Llagunes
January 2016
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Chapter 1
Numerical Integration of Underactuated
Mechanical Systems Subjected to Mixed
Holonomic and Servo Constraints

Peter Betsch, Robert Altmann and Yinping Yang

Abstract A new index reduction approach is developed for the inverse dynamics
simulationof underactuatedmechanical systems.Theunderlying equations ofmotion
contain both holonomic and servo constraints. The proposed method is applied to a
very general and versatile formulation of cranes. The numerical results demonstrate
the functional efficiency of the method.

Keywords Underactuated mechanical systems · Feedforward control · Inverse
dynamics · Differentially flat systems

1.1 Introduction

Wepresent a new approach to the inverse dynamics simulation of discretemechanical
systems. The proposed method is relying on the use of servo constraints for the
partial specification of the motion of mechanical systems (see, for example, [1–3]).
In particular, we focus on the specification of trajectories of specific points of a
multibody system such as the end effector of a robot.

The partial specification of the motion of a multibody system by means of servo
constraints typically leads to a problem formulation in terms of differential-algebraic
equations (DAEs). If minimal coordinates are used, the differential part of the DAEs
corresponds to the equations of motion while the algebraic part is related to the
servo constraints. The servo constraints enforce the desired motion along prescribed
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2 P. Betsch et al.

trajectories and thus specify the control outputs of the system. To determine the asso-
ciated control inputs required to steer the system such that the prescribed trajectories
are tracked, the DAEs need to be solved. In this way, a simulation approach to the
feedforward control of multibody systems can be realized.

In the special case of fully actuated multibody systems the simulation approach to
the inverse dynamics problem yields index-3 DAEs that can be integrated in analogy
to theDAEs corresponding to constrainedmechanical systems (see, for example, [4]).
However, the situation changes considerably if underactuated mechanical systems
are dealt with. In this type of systems the number of degrees of freedom exceeds
the number of controls. Examples of underactuated systems are cranes and flexible
multibody systems. The use of servo constraints in the context of underactuated
multibody systems leads to a broad diversity of servo constraint problems (see,
in particular, the recent papers [5–7]). One indicator of problem diversity is the
(differentiation) index of the underlying DAEs that typically ranges from three to
five and even higher. Consequently, to facilitate a stable numerical integration some
kind of index reduction approach needs to be applied.

In the present work we apply a specific index reduction technique called minimal
extension (see [8]). Index reduction byminimal extension is based on the introduction
of new algebraic variables alongwith the enlargement of theDAEs by appending time
derivatives of the constraints. In our previous work [9] we have shown that index
reduction by minimal extension can be applied very efficiently by exploiting the
specific structure provided by underactuated mechanical systems. In this connection
either minimal coordinates or redundant coordinates can be used. We verified that
our approach is a viable alternative to the projection method developed in [10].

We focus on the inverse dynamics of a family of crane models that are known
to belong to the class of differentially flat systems. We have shown in our previous
work [9] that in a first step the minimal extension approach can be used to lower the
index of the DAEs from five to three. In a second step the index can even be reduced
to one.

The goal of the present work is to extend the applicability of our index reduction
approach to mechanical models of underactuated systems that rely on arbitrarily
selected redundant coordinates. Specifically, in contrast to our previous work [9], the
number of holonomic constraints is not limited. Consequently, general crane formu-
lations such as those developed in [11] can now be included into the present index
reduction approach. Similarly, other rotationless formulations of multibody dynam-
ics such as natural coordinates or Cosserat-type descriptions in terms of directors
(including rigid bodies and nonlinear beams and shells) typically yield a large num-
ber of holonomic constraints. These formulations are now embraced as well by our
newly developed index reduction method.

An outline of the rest of our paper is as follows. In Sect. 1.2 we introduce the
general description of mechanical systems subjected to both holonomic and servo
constraints. In Sect. 1.3 we present index reduction byminimal extension and link the
present formulation to our previous work [9]. After the discretization in time of the
present DAEs in Sect. 1.4, a sample application is dealt with in Sect. 1.5. Eventually,
conclusions are drawn in Sect. 1.6.
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1.2 Inverse Dynamics of Underactuated Mechanical
Systems

We start with a general formulation of mechanical systems subjected to both holo-
nomic and servo constraints. In particular, we consider equations of motion of
the form

[
M1( p) 0

0 M2

] [
p̈
ẍ

]
=

[
f 1( p, ṗ)

f 2(x, ẋ)

]
+

[
BT

1 ( p)

0

]
u − GT ( p, x)λ, (1.1a)

0 = h( p), (1.1b)

0 = g( p, x), (1.1c)

x = γ . (1.1d)

The first row block in (1.1a) corresponds to the robot (or input) subsystem with
coordinates p ∈ R

n−a , whereas the second row block in (1.1a) corresponds to the
output subsystem with coordinates x ∈ R

a . The n redundant coordinates

q =
[

p
x

]
(1.2)

are subject to the holonomic constraints (1.1b) and (1.1c), with associated con-
straint functions h ∈ R

m1 and g ∈ R
m2 . The total number of holonomic constraints

is denoted by m = m1 + m2. Note that the constraint function h does not depend on
the output variables x. The Jacobian of the holonomic constraints assumes the form

G( p, x) =
[

H1( p) 0
G1( p, x) G2( p, x)

]
=

[
∂ ph( p) 0

∂ p g( p, x) ∂x g( p, x)

]
∈ R

m,n . (1.3)

The Lagrange multipliers associated to the m holonomic constraints are contained in

λ =
[
λ1

λ2

]
∈ R

m, with λ1 ∈ R
m1 , λ2 ∈ R

m2 .

Due to the presence of holonomic constraints, the configuration space of the con-
strained mechanical system under consideration is defined by

Q = {
q ∈ R

n | h( p) = 0, g( p, x) = 0
}

(1.4)

Throughout this work we assume that the constraints are independent. Consequently,
the constraint Jacobian G has full row rank and the discrete mechanical system under
consideration has n − m degrees of freedom.
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The servo constraints (1.1d) specify the desired trajectory of the load via the
prescribed function γ : I → R

a , where I = [t0, t f ] is the time interval of interest. In
the present workwe focus on underactuatedmechanical systems inwhich the number
of controls is smaller than the number of degrees of freedom, i.e., a < n − m.

The control inputs u ∈ R
a regulate the control forces acting on the robot subsys-

tem. In this connection B1 ∈ R
a,n−a denotes the input transformationmatrix. Besides

the constraint and control forces, additional forces acting on the system are contained
in the conjugate force vectors f 1 ∈ R

n−a and f 2 ∈ R
a . Similarly, the mass matrix

is split into the submatrices M1 ∈ R
n−a,n−a and M2 ∈ R

a,a .
Due to the presence of servo constraints the (differentiation) index of the DAEs

(1) often exceeds 3. For example, the application to (differentially flat) crane systems
typically yields an index of 5. Consequently, prior to the application of a numerical
integrator the index of the DAEs should be lowered. For that purpose, following our
previous work [9], we apply index reduction by minimal extension to the DAEs (1).

We emphasize at this point that in the above formulation the number of holonomic
constraints, m, is just restricted by m < n. This facilitates the arbitrary selection of
redundant coordinates best suited for the description and numerical simulation of the
specific inverse dynamics problem at hand.

1.3 Index Reduction by Minimal Extension

Guided by our previous work [9] we enlarge the system of DAEs (1) by appending
the first and second time derivative of the servo constraints. To maintain a square
systemwe introduce additional dummy derivatives x̂ := ẋ and x̃ := ẍ. Accordingly,
we arrive at

[
M1( p) 0

0 M2

] [
p̈
x̃

]
=

[
f 1( p, ṗ)

f 2(x, x̂)

]
+

[
BT

1 ( p)

0

]
u −

[
HT

1 ( p) GT
1 ( p, x)

0 GT
2 ( p, x)

] [
λ1

λ2

]
,

(1.5a)

0 = h( p), (1.5b)

0 = g( p, x), (1.5c)

x = γ , (1.5d)

x̂ = γ̇ , (1.5e)

x̃ = γ̈ , (1.5f)

Within this paperwe show that—provided certain assumptions apply—theminimally
extended system (5) has index 3. Typical applications are differentially flat crane
models where the index equals 5 in the original form. In our previous work [9] this
has been shown for the special case m ≤ a and M1( p) non-singular. Here we allow
that there are more holonomic constraints than servo constraints.



1 Numerical Integration of Underactuated Mechanical Systems 5

To guarantee the index-3 property of system (5), we state the following two
assumptions. The first assumption ensures, amongst others, that the number of holo-
nomic constraints depending on x is bounded by the dimension of x, namely a.

Assumption 1 The block GT
2 ( p, γ ) of the Jacobian G is of full rank and m2 ≤ a.

Furthermore, the dimensions satisfy

2a + m1 ≤ n and a < n − m.

The last inequality ensures that the the system is underactuated. Note that the two
previous assumptions already imply a ≤ n − m.

Within the proof of Theorem 1 below, we reduce and rewrite the equations such
that the resulting system is of index 3. This requires a certain matrix to be invertible
which we summarize in the following assumption.

Assumption 2 If Assumption 1 is satisfied, then there exists a matrix P2 ∈ R
a,a−m2 ,

whose columns span the null space of G2, i.e., G2( p, γ )P2( p, γ ) = 0. We define
z ∈ R

a−m2 by
z( p, γ ) := P T

2 ( p, γ )
(

f 2(γ , γ̇ ) − M2γ̈
)

(1.6)

and denote its derivative with respect to p by Z1( p, γ ) = ∂ p z( p, γ ). Then, with G1

and H1 from (1.3), we assume that the matrix

⎡
⎢⎢⎣

M1( p) −BT
1 ( p) HT

1 ( p)

Z1( p, γ ) 0 0
G1( p, γ ) 0 0

H1( p) 0 0

⎤
⎥⎥⎦ ∈ R

n+m1,n+m1 (1.7)

is invertible. Note that we do not ask the matrix M1( p) itself to be invertible.

With the two assumptions in hand we are able to formulate the following theorem.

Theorem 1 Given the Assumptions 1 and 2, the extended system (5) represents DAEs
with index 3.

Proof Asmentioned before, the idea of the proof is to reduce theDAEs (5) to a system
which has a similar structure as a constrained multibody system. Since the variables
x, x̂, and x̃ are directly given by the prescribed trajectory γ and its derivatives, they
may be eliminated from the system equations. Consider the second part of equation
(1.5a), namely

M2γ̈ = f 2(γ , γ̇ ) − GT
2 ( p, γ )λ2.

The full rank property of G2 together with m2 ≤ a from Assumption 1 then implies
that we can solve for λ2 by

λ2 = (
G2( p, γ )GT

2 ( p, γ )
)−1

G2( p, γ )
(

f 2(γ , γ̇ ) − M2γ̈
)
.
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With the matrix P2 ∈ R
a,a−m2 fromAssumption 2, which spans the null space of G2,

we define z( p, γ ) ∈ R
a−m2 as in (1.6). Note that this defines an algebraic constraint,

since it has to be satisfied
z( p, γ ) = 0.

In summary, the remaining variables have to satisfy the system

M1( p) p̈ = f 1( p, ṗ) + BT
1 ( p)u − HT

1 ( p)λ1, (1.8a)

0 = z( p, γ ), (1.8b)

0 = g( p, γ ), (1.8c)

0 = h( p) (1.8d)

with

f 1( p, ṗ) := f 1( p, ṗ) − GT
1 ( p, γ )λ2 = f 1 − GT

1

(
G2GT

2

)−1
G2

(
f 2 − M2γ̈

)
.

System (8) consists of n − a dynamic equations andm2 + m1 + (a − m2) = a + m1

constraints. Replacing the three constraints by their second derivatives, we can write
system (8) in the form

M̂

⎡
⎣ p̈

u
λ1

⎤
⎦ =

⎡
⎢⎢⎣

f 1( p, ṗ)

z2( p, ṗ, γ , γ̇ , γ̈ )

g2( p, ṗ, γ , γ̇ , γ̈ )

h2( p, ṗ)

⎤
⎥⎥⎦

Therein, M̂ denotes the matrix from (1.7) and z2, g2, and h2 are vector-valued
functions which include the remaining terms of the differentiation. Since M̂ is non-
singular by Assumption 2, a multiplication by its inverse from the left yields an ODE
for p and algebraic equations for u and λ1. Since only two differentiations were
necessary, system (8) and thus, also system (5) have to be (at most) of index 3. �

1.3.1 Reduction of the Number of Redundant Coordinates

We next connect the present formulation to our previous work [9]. To this end we
eliminate the holonomic constraints (1.5b) by reducing the number of redundant
coordinates from n to n = n − m1. This is possible if a mapping ϕ : Rn−a → R

n−a

can be found such that
p = ϕ( p) (1.9)

where p ∈ R
n−a denotes the new redundant coordinates. The mapping (1.9) has to

satisfy the constraints (1.5b) identically for arbitrary p ∈ R
n−a . Consequently,
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h(ϕ( p)) = 0 and H1( p)Dϕ( p) = 0 (1.10)

for p = ϕ( p). Premultiplying the first row block in (1.5a) by DϕT ( p) and taking
into account (1.9) and (1.10) yields the size-reduced DAEs

[
M1( p) 0

0 M2

] [
p̈
x̃

]
=

[
f 1( p, ṗ)

f 2(x, x̂)

]
+

[
B

T
1 ( p)

0

]
u −

[
G

T
1 ( p, x)

G
T
2 ( p, x)

]
λ2, (1.11a)

0 = g( p, x), (1.11b)

x = γ , (1.11c)

x̂ = γ̇ , (1.11d)

x̃ = γ̈ , (1.11e)

where

M1( p) = DϕT ( p)M1( p)Dϕ( p), (1.12a)

f 1( p, ṗ) = DϕT ( p)

(
f 1( p, ṗ) − M1( p)

d

dt

(
Dϕ( p)

)
ṗ,

)
(1.12b)

B
T
1 ( p) = DϕT ( p)BT

1 ( p), (1.12c)

g( p, x) = g( p, x), (1.12d)

G1( p, x) = G1( p, x)Dϕ( p), (1.12e)

G2( p, x) = ∂x g( p, x) (1.12f)

for p = ϕ( p). In this way the number of redundant coordinates is reduced by m1

such that the remaining coordinates are given by the n-dimensional configuration
vector

q =
[

p
x

]
(1.13)

Note that (1.11b) contains the m2 remaining holonomic constraints with associated
Lagrangemultipliers λ2 ∈ R

m2 in (1.11a). The configuration space of the constrained
mechanical system under consideration can now be expressed in the form

Q = {q ∈ R
n|g( p, x) = 0} (1.14)

The DAEs (11) lie at the heart of our previous work [9]. There it is shown that under
certain conditions (e.g. m2 ≤ a and M1( p) non-singular) the minimally extended
DAEs (11) attain an index reduction by two. In the case of differentially flat crane
models the original DAEs have index 5, whereas the index-reduced DAEs (11) (and,
correspondingly, the DAEs (5) as well) have index 3. It is further shown in [9] that a
second application of index reduction by minimal extension can achieve a reduction
to index-1 DAEs.
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1.4 Discretization

For the specific inverse dynamics problems dealt with in the next section the proposed
index reduction approach yieldsDAEs (5)with index 3. Due to the semi-explicit form
of the DAEs (5) we can expect the simple Euler-backward discretization to work well
(see Ascher & Petzold [12, Sect. 10.1.1]). The DAEs (5) can be recast in the form

M1( p) p̈ = f 1( p, ṗ) + BT
1 ( p)u − HT

1 ( p)λ1 − GT
1 ( p, γ )λ2 (1.15a)

0 = M2γ̈ − f 2(γ , γ̇ ) + GT
2 ( p, γ )λ2 (1.15b)

0 = g( p, γ ) (1.15c)

0 = h( p) (1.15d)

The DAEs (15) provide n − a differential equations (1.15a) along with a + m alge-
braic equations (1.15b) through (1.15d) for the determination of p ∈ R

n−a , u ∈ R
a ,

and λ ∈ R
m . Application of the Euler-backward method yields

pn+1 − pn = �tvn+1 (1.16a)

M1( pn+1)
(vn+1 − vn)

�t
= f 1( pn+1, vn+1) + BT

1 ( pn+1)un+1 − HT
1 ( pn+1)λ1n+1

− GT
1 ( pn+1, γ (tn+1))λ2n+1 (1.16b)

0 = M2γ̈ (tn+1) − f 2(γ (tn+1), γ̇ (tn+1)) + GT
2 ( pn+1, γ (tn+1))λ2n+1

(1.16c)

0 = g( pn+1, γ (tn+1)) (1.16d)
0 = h( pn+1) (1.16e)

In a typical time step of size �t = tn+1 − tn we seek approximations (•)n+1 to
(•)(tn+1) given the corresponding quantities (•)n as result of the previous step. For
the initial time step we require consistent initial values p0 and v0 that have to satisfy
g( p0, γ (t0)) = 0 and h( p0) = 0 along with

∂ p g( p0, γ (t0))v0 + ∂x g( p0, γ (t0))γ̇ (t0) = 0 (1.17a)

∂ ph( p0)v0 = 0 (1.17b)

The scheme (16) provides 2n + m − a algebraic equations for the determination of
pn+1, vn+1 ∈ R

n−a , un+1 ∈ R
a , and λn+1 ∈ R

m .

1.5 Sample Application: 3D Rotary Crane

We demonstrate the present approach with the inverse dynamics simulation of a
three-dimensional rotary crane. Previously, the crane under consideration has been
formulated in terms of 6 redundant coordinates (see [9, 13]) or 5 minimal coor-
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Fig. 1.1 The three-dimensional rotary crane in terms of n = 10 redundant coordinates

dinates (see [9, 14]). Alternatively, we now make use of the much more general
framework for the modeling of cranes in [11]. For this, we use n = 10 redundant
coordinates subjected tom = 5 holonomic constraints. The enlarged set of redundant
crane coordinates, see Fig. 1.1, is given by

p = [
x2 y2 x0 y0 L1 L2 L0

]T
(1.18)

and
x = [

x y z
]T

(1.19)

The last equation specifies the load (mass m) coordinates relative to a Cartesian
inertial frame. The load is connected to the hoisting winch 2 (Cartesian coordinates
x2, y2, z2 = 0, actuating torque M2, radius r2, moment of inertia J2) via a rope of
length L2. The position of the trolley (Cartesian coordinates x0, y0, z0 = 0, mass
m0) on the girder relative to the hoisting winch is given by L0. The trolley contains
a pulley (radius rw, moment of inertia Jw) and is moved along the girder under the
action of a second winch 1 (Cartesian coordinates x1, y1, z1 = 0, actuating torque
M1, radius r1, moment of inertia J1) whose position on the girder relative to the
hoisting winch 2 is fixed by the parameter α = 1

2 . The distance between winch 1 and
the trolley is given by L1. The holonomic constraints h( p) = 0 are given by
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h( p) =

⎡
⎢⎢⎣

1
2 ((x0 − αx2)2 + (y0 − αy2)2 − L2

1)
1
2 ((x0 − x2)2 + (y0 − y2)2 − L2

0)
1
2 (x2

2 + y22 − r2)
x2y0 − x0y2

⎤
⎥⎥⎦

Accordingly, m1 = 4. Note that the first two constraints link the coordinates L1 and
L0 to the position of the trolley and, respectively, winch 1 and winch 2. Moreover
the third constraint links the parameter r to the position of winch 2, and the fourth
constraint confines the relative motion of the trolley to the longitudinal direction
along the girder. The last holonomic constraint g( p, x) = 0 is specified by

g( p, x) = 1

2
((x − x0)

2 + (y − y0)
2 + z2 − (L2 − L0)

2)

and connects the load coordinates with the robot (or crane) coordinates. Accord-
ingly,m2 = 1. The total kinetic energy of themechanical system under consideration
assumes the form

T = 1

2
ṗ · M1 ṗ + 1

2
ẋ · M2 ẋ

in which the mass matrices corresponding to the robot coordinates and the load
coordinates are given by

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
M

m0

m0
J1
r21

+ Jw
r2w

− Jw
r2w

− Jw
r2w

J2
r22

+ Jw
r2w

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M2 =
⎡
⎣m

m
m

⎤
⎦

Here, the mass M is connected to the moment of inertia of the bridge relative to the
z-axis, Jb, via M = Jb

r2 . Further quantities needed in (1) are given by

BT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − y2
r2

0 0 x2
r2

0 0 0
0 0 0
1
r1

0 0
0 1

r2
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f 2 =
⎡
⎣ 0

0
−mg

⎤
⎦ , u =

⎡
⎣M1

M2

Mb

⎤
⎦



1 Numerical Integration of Underactuated Mechanical Systems 11

and

HT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(x0 − αx2) x0 − x2 −x2 −y0
α(y0 − α1y2) y0 − y2 −y2 x0

αx2 − x0 x2 − x0 0 y2
αy2 − y0 y2 − y0 0 −x2

L1 0 0 0
0 0 0 0
0 L0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, GT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

x − x0
y − y0

0
L2 − L0
L0 − L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, GT
2 =

⎡
⎣x0 − x

y0 − y
−z

⎤
⎦

Note that we have a = 3 control inputs given by the two winch torques M1, M2,
along with the torque Mb acting about the z-axis of the rotary crane.

1.5.1 Check of the Assumptions

In order to show that the 3D rotary crane with redundant variables fits into the given
framework, we need to check whether Assumptions 1 and 2 are satisfied.

Clearly GT
2 is of full rank if either x �= x0, y �= y0, or z �= 0. Note that this is

a reasonable assumption since otherwise the position of the trolley would be equal
to the position of the load. Furthermore, the dimensions satisfy n = 10, m1 = 4,
m2 = 1, and a = 3 such that

1 = m2 ≤ a = 3, 10 = 2a + m1 ≤ n = 10, 3 = a < n − m = 5.

For the second assumption, we need P2 ∈ R
a,a−m2 which spans the null space of G2.

Depending on the case whether x �= x0, y �= y0, or z �= 0, the projection P2 may be
given by

P2 =
⎡
⎣y0 − y z

x − x0 0
0 x0 − x

⎤
⎦ , P2 =

⎡
⎣y0 − y 0

x − x0 z
0 y0 − y

⎤
⎦ , or P2 =

⎡
⎣ z 0

0 z
x0 − x y0 − y

⎤
⎦ .

W.l.o.g. we assume in the sequel that z �= 0 which leads to

z = P T
2 ( p, γ )

(
f 2(γ , γ̇ ) − M2γ̈

) = −mg

[
x0 − x
y0 − y

]
− m

[
zγ̈1 + (x0 − x)γ̈3
zγ̈2 + (y0 − y)γ̈3

]
.

and thus,

Z1( p, γ ) = ∂ p z( p, γ ) =
[
0 0 −m(g + γ̈3) 0 0 0 0
0 0 0 −m(g + γ̈3) 0 0 0

]
.
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Since in this special case the matrices

[−BT
1 ( p) HT

1 ( p)
]

and
[
ZT
1 ( p, γ ) GT

1 ( p, γ ) HT
1 ( p)

]

are square, it is sufficient to show the invertibility of the two matrices in order to
prove that the matrix in (1.7) is invertible and thus, Assumption 2 is satisfied. A close
look at the matrices then shows that minimal extension reduces the system equations
of the 3D rotary crane to index 3 if the following conditions are satisfied:

z, L0, L1, L2 �= 0, L0 �= L2, g �= −γ̈3, x0x2 + y0y2 �= 0, x2
2 + y22 �= 0.

These conditions are met by realistic applications of the rotary crane.

1.5.2 Reduction of the Number of Redundant Coordinates

We next link the above formulation of the rotary crane to the original one (see [9,
13]) relying on the reduced set of crane coordinates (Fig. 1.2)

p = [
ϕ s l

]T
(1.20)

Fig. 1.2 The three-dimensional rotary crane in terms of a reduced set of n = 6 redundant coordi-
nates
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Here, the angle ϕ measures the rotation of the girder about the z-axis relative to the
x-axis, s specifies the position of the trolley on the girder, and l denotes the length
of the hoisting rope connecting the load with the winch contained in the trolley.
In contrast to the previous crane model the winch contained in the trolley is now
assumed to be actuated (torque Mw). The previous crane coordinates p in (1.18) can
now be expressed in terms of the reduced set of crane coordinates (1.20) giving rise
to the mapping p = ϕ( p) in (1.9). Accordingly,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
y2
x0
y0
L1

L2

L0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r cosϕ

−r sin ϕ

s cosϕ

s sin ϕ

s + αr
s + r + l

s + r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Dϕ( p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r sin ϕ 0 0
−r cosϕ 0 0
−s sin ϕ cosϕ 0
s cosϕ sin ϕ 0

0 1 0
0 1 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, the quantities in (12) can now be calculated in a straightforward way
leading to

M1( p) =
⎡
⎢⎣

Mr2 + m0s2 0 0
0 m0 + J1

r21
+ J2

r22

J2
r22

0 J2
r22

J2
r22

+ Jw
r2w

⎤
⎥⎦

and

f 1( p, ṗ) =
⎡
⎣−2m0sṡϕ̇

m0sϕ̇2

0

⎤
⎦ , B

T
1 ( p) =

⎡
⎢⎣
0 0 1
1
r1

1
r2

0

0 1
r2

0

⎤
⎥⎦ .

There remains one holonomic constraint (1.11b) which is given by

g( p, x) = 1

2
((x − s cosϕ)2 + (y − s sin ϕ)2 + z2 − l2) = 0.

We finally remark that the control inputs u := [Mb, Ft , Mw/rw]T conjugated to the

reduced crane coordinates (1.20) can be obtained from u = B
T
1 ( p)u. In particular,

Ft = M1

r1
+ M2

r2

Mw = rw

r2
M2

That is, the two winch torques M1 and M2 of the original model are linked to the
force Ft acting on the trolley and the winch torque Mw (cf. Fig. 1.2).
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1.5.3 Numerical Results

In the numerical simulation we make use of the same data as in [9, 14]. In particular,
the inertia parameters are given by m = 100, m0 = 10, Jb = 480, and M = Jb

r2 with
r = 4. Concerning the moment of inertia corresponding to the winches, we choose
Jw = 0.1, and J1 = J2 = 0. Moreover, rw = 0.1. The servo constraints are used to
prescribe a rest-to-restmaneuver of the load specified by γ (t) = γ 0 + (γ f − γ 0)c(t)
with γ 0 = [

5 0 −5
]
at t0 = 0 and γ f = [−2 2 −2

]
at t f = 20. The function c(t) is

composed of three phases,

c(t) =

⎧⎪⎨
⎪⎩

cI (t) for 0 ≤ t < 5,

cI I (t) for 5 ≤ t < 15,

cI I I (t) for 15 ≤ t ≤ 20

with

cI (t) = 1

τ − τ0

(
− 5t8

2τ07
+ 10t7

τ06
− 14t6

2τ05
+ 7t5

2τ04

)
,

cI I (t) = 1

τ − τ0

(
t − τ0

2

)
,

cI I I (t) = 1 + 1

τ − τ0

(
−5(τ − t)8

2τ07
+ 10(τ − t)7

τ06
− 14(τ − t)6

2τ05
+ 7(τ − t)5

2τ04

)
.

Using the reduced crane coordinates, the initial configuration of the rotary crane at
t0 = 0 is defined by p0 = [

0 5 5
]T
, while the initial load coordinates are given by

x0 = [
5 0 −5

]T
.
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Fig. 1.3 Rotary crane: Comparison between the numerical results (NUM) obtained with �t = 1
and the reference solution (REF) for the reduced crane coordinates p(t)
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Fig. 1.4 Rotary crane: Comparison between the numerical results (NUM) obtained with �t = 0.1
and the reference solution (REF) for the reduced crane coordinates p(t)
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Fig. 1.5 Rotary crane: Numerical results (NUM) for the extended crane coordinates p(t) obtained
with �t = 0.1

In Figs. 1.3 and 1.4, the numerical solution (NUM) is compared to the analyti-
cal reference solution (REF) obtained in [9]. It can be observed that the numerical
solution converges to the reference solution when the time step size is reduced. In
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Fig. 1.6 Rotary crane (formulation in terms of the extended crane coordinates p): Snapshots at
specific points in time

Fig. 1.7 Rotary crane (formulation in terms of the reduced crane coordinates p): Snapshots at
specific points in time

addition to that Fig. 1.5 displays the numerical solution for the extended crane coor-
dinates p. The two alternative formulations in terms of redundant coordinates ( p and
p, respectively) yield practically indistinguishable results. The simulated motion of
the rotary crane in terms of extended crane coordinates p is illustrated in Fig. 1.6 with
some snapshots at consecutive points in time. Similarly, snapshots obtained with the
formulation in terms of the reduced crane coordinates p are shown in Fig. 1.7.
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1.6 Conclusions

We have dealt with a general formulation of underactuated mechanical systems sub-
jected to both holonomic and servo constraints. It has been shown that index reduction
by minimal extension makes possible the numerically stable inverse dynamics sim-
ulation of such systems. In contrast to our previous work [9] the present formulation
does not restrict the level of redundancy of the coordinates used to model a spe-
cific mechanical system. Accordingly, truly rotationless formulations of multibody
systems such as natural coordinates are now encompassed by our index reduction
approach. The functional efficiency of the newly proposed method has been demon-
strated in the framework of a general formulation of cranes. The corresponding rota-
tionless formulation is characterized by constant inertia parameters and holonomic
constraints that are at most quadratic in the coordinates. In forward dynamics, this
type of formulation makes possible the design of structure-preserving integrators.
Structure-preserving integrators for the inverse dynamics simulation of underactu-
ated mechanical systems are not available yet. The present formulation is deemed to
provide a good foundation for the development of such integrators which will be the
goal of future work.
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Chapter 2
Enhancing the Performance of the DCA
When Forming and Solving the Equations
of Motion for Multibody Systems

Jeremy J. Laflin, Kurt S. Anderson and Mike Hans

Abstract This chapter provides an initial investigation into using the Graphics
Processing Unit (GPU) (or similar hardware) to execute the Divide-and-Conquer
Algorithm (DCA), which forms and solves the equations-of-motion for articulated
multibody systems. The computational time required to form and solve the equations-
of-motion of a simple n-length pendulum using the GPU is compared with a standard
serial CPU implementation, a rudimentary parallelization on the CPU using OpenMP,
and some combinations of the CPU and the GPU. The hybrid version uses the GPU for
a select number of levels in the recursive sweeps and uses an OpenMP parallelization
on a multi-core CPU for the remaining levels of recursion. The results demonstrate a
significant performance increase when the GPU is used despite recursive algorithms
being ill-suited to hardware designed for Single Instruction Multi-Data (SIMD).
This is largely due to the tree-type structure of recursive processes, with half of the
required operations being contained in the first level of recursion for a binary tree.

2.1 Introduction

Since computational performance is critically important for simulations to be used
as an effective tool to study and design dynamic systems, the computing perfor-
mance gains offered by GPUs should not be ignored. The GPU has been used to
increase the computational performance of many tasks necessary to simulate multi-
body systems [6, 10, 11, 15, 16]. Since the GPU is designed to execute a very large
number of simultaneous tasks (nominally SIMD), recursive algorithms in general,
such as the DCA, are not well suited to be executed on GPU-type architecture. This
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is because each level of recursion is dependent on the previous level. Therefore, all
tasks associated with the algorithm cannot be executed independently. The primary
issue is the amount of data transfer that must occur when moving from one level of
recursion to the next. However, the GPU can be leveraged to increase computational
performance when using the DCA to form and solve the equations-of-motion for
articulated multibody systems with a large number of degrees-of-freedom due to the
inherent tree structure of DCA.

Computational performance of dynamic simulations is highly dependent on the
nature of the underlying formulation and the number of generalized coordinates
used to characterize the system. Therefore, algorithms that scale in a more desirable
(lower order) fashion with the number of degrees-of-freedom are generally preferred
when dealing with large (N > 10) systems. However, the utility of using simulations
as a scientific tool is directly related to actual compute time. The DCA, and other
top performing methods, have demonstrated the desirable property of the required
compute time scaling linearly with (O(n)) with the number of degrees-of-freedom
(n) and sublinearly (O(log n)) when implemented in parallel. However for the DCA,
total compute time could be further reduced using parallel hardware, such as the
GPU, by exploiting the large number of independent operations involved in the first
few levels of recursion.

2.1.1 The DCA for Forming and Solving Equations
of Motion for Multibody Systems

The DCA was first introduced by Featherstone for both open-loop [5] and closed-
loop [4] topologies and was notable for the level of coarse-grain parallelism it could
achieve for unbranched systems. Additionally, there have been a number of mod-
ifications to the original method [1–3, 7–9, 13, 14, 17, 18]. The basic method is
reproduced herein using the notation of Mukherjee and Anderson [12].

The DCA consists of two recursive processes: assembly and disassembly. These
recursive processes take place using a hierarchical tree structure. The tree structure
is defined by the kinematic joints connecting the bodies of the system. Typically
the inboard and outboard joint of the body coincides with a reference point called a
handle. The inverse inertial properties of two adjoining parent bodies are combined
to represent a fictitious assembly (child body), see Fig. 2.1. This is possible because
the kinematics of the joint are known, which allows the constraint forces acting at the
connecting joint to be excluded from the equations-of-motion of the outboard handles
of the parent bodies (the handles of the child body). The relative motion between the
parent bodies is captured by an equation that describes the amount of motion happen-
ing in the directions of motion that are allowed by the joint, which are known. This
process is repeated until there is only one body, the root body (see Fig. 2.2). At this
point the boundary conditions are known and the equations-of-motion can be solved,
which do not contain any of the constraint forces acting at the non-terminal joints.
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Fig. 2.1 DCA kernel
operations: These kernels
both require that the motion
allowed by the kinematic
joint is mapped into a matrix
containing the unit vectors of
allowed motion (P), and a
matrix containing the unit
vectors of restricted motion
(D)

In general, a body of the system may possess any number of handles, though
the basic aspects of the method are most easily conveyed by discussing a chain
system. For such systems, each body possesses two handles that connect the body
to its inboard and outboard neighbors. The basic method involves writing the spatial
equations-of-motion corresponding to these two reference points (handles) Hk

i i =
1, 2 on each body, as

Ak
1 = ζ k

11Fk
1c + ζ k

12Fk
2c + ζ k

13, (2.1)

Ak
2 = ζ k

21Fk
1c + ζ k

22Fk
2c + ζ k

23, (2.2)

and

Ak+1
1 = ζ k+1

11 Fk+1
1c + ζ k+1

12 Fk+1
2c + ζ k+1

13 , (2.3)

Ak+1
2 = ζ k+1

21 Fk+1
1c + ζ k+1

22 Fk+1
2c + ζ k+1

23 . (2.4)
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Fig. 2.2 Divide-and-Conquer Algorithm

These bodies, Bodyk and Bodyk+1, connected by a kinematic joint j and therefore are
subject to the kinematic constraint

Pju̇ = Ak+1
1 − Ak

2 − Ṗju. (2.5)

Here, the P matrix is a property of the kinematic joint whose columns define the
unit vectors that are aligned with the directions of motion permitted by the kinematic
joint. Similarly, the D matrix is that whose columns define the directions of motion
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that are restricted by the joint. Ak
i , and Fk

i , are the spatial acceleration of, and force
on, handle i respectively and are defined as

Ak
i =

[
αααk

aaak
i

]
, (2.6)

and

Fk
ic =

[
τττ k

i
fff k

i

]
. (2.7)

The rotational acceleration of Bodyk is αααk , aaak
i is the translational acceleration of the

reference point Hk
i , and τττ k

i and fff k
i are the constraint torques and forces acting at

Hk
i , respectively. The ζ k

ij (i, j = 1, 2) terms are the spatial matrix representations of
the inverse inertial properties at the handles, while ζ k

i3 (i = 1, 2) contains applied
forces acting on the body and other velocity dependent terms. The resulting set of
equations, Eqs. (2.1)–(2.4), can be reduced by exploiting the fact that the constraint
forces are equal and opposite, i.e., Fk

2c = −Fk+1
1c , and that the kinematics of the

connecting joint are specified. Specifically, Eq. (2.5) describes the relative acceler-
ation between connecting bodies using the generalized acceleration u̇ along known
directions defined by the connecting joint partial velocity (mode of motion) Pj. The
equations-of-motion for the assembled fictitious pseudo-body Bodyk:k+1, at Hk

1 and
Hk+1

2 can be expressed as

Ak
1 = ζ k:k+1

11 Fk
1c + ζ k:k+1

12 Fk+1
2c + ζ k:k+1

13 (2.8)

and

Ak+1
2 = ζ k:k+1

21 Fk
1c + ζ k:k+1

22 Fk+1
2c + ζ k:k+1

23 (2.9)

by algebraically eliminating the constraint forces at the connecting joint. The result-
ing Eqs. (2.8) and (2.9) are of the same form as the equations-of-motion for the
handles of any generic body.

In the above equations, ζ k:k+1
ij represents the inertial quantities of the fictitious

pseudo-body resulting from the assembly of Bodyk and Bodyk+1. For the derivation
of the inverse inertial terms and the details of the assembly process, the reader is
referred to the work of Featherstone [4] or Mukherjee and Anderson [12]. This
assembly process is then repeated recursively, until only a single assembled pseudo-
body remains (root body), as shown in Fig. 2.2. This is possible because the form of
the equations-of-motion for the handles of an assembled body is indistinguishable
from the form of the equations-of-motion for the handles of a generic body. The
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assembly process yields the equations-of-motion associated with the two boundary
handles

A1
1 = ζ 1:n

11 F1:n
1c + ζ 1:n

12 F1:n
2c + ζ 1:n

13 (2.10)

and

An
2 = ζ 1:n

21 F1:n
1c + ζ 1:n

22 F1:n
2c + ζ 1:n

23 , (2.11)

which are written in terms of only the spatial inertial quantities of all bodies in the
system and the constraint forces acting at the two handles of the root body (boundary
handles).

The spatial accelerations of, and constraint forces acting at H1
1 and Hn

2 can now be
determined using the known boundary conditions. After determining these quantities,
the disassembly process begins, in which all unknown spatial accelerations of the
handles and constraint forces acting at all connecting joints are determined. This
recursive process determines the constraint forces acting at a joint in terms of the
constraint forces acting at the handles of the assembly, and the inertial properties of
the assembled body, as

Fk+1
1c = Wζ k

21Fk
1c − Wζ k+1

12 Fk+1
2c + Y . (2.12)

The terms W and Y are terms containing inertial properties from the assembly of
the two bodies, see Featherstone [4], or Mukherjee and Anderson [12] for derivation
of these terms. Once this constraint force acting at a joint is determined, the spatial
accelerations of the handles that are connected by this joint can be determined using
Eqs. (2.8) and (2.9). This allows the computation of the generalized acceleration (u̇)
at the joint using Eq. (2.5).

2.1.2 Potential Challenges Executing the DCA on the GPU

Because this algorithm is by nature a recursive one, at first it seems ill-suited to
run on the GPU architecture. This is because, by definition recursive algorithms
can not be completely parallelized and require a minimum number of sequential
operations. These sequential processes become problematic due to the potentially
high cost of data transfer from the CPU memory to the GPU device memory. The
lower connection speed is due to the physical arrangement of the CPU and the GPU
and the type of connections used, which is continually improving.

The recursion becomes problematic, for the DCA, because the number of floating-
point operations that need to be performed is low at the levels of recursion approach-
ing the root body. Therefore, there is potentially a large amount of computational
overhead in comparison to the number of floating-point operations that must be per-
formed. This is contrary to the purpose for which GPUs were designed, which is
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to produce a large amount of throughput. For this reason, it may seem that other
algorithms which may scale more poorly with the number of bodies in the system,
but can be more completely parallelized may achieve a lower compute time than the
DCA or other recursive algorithms.

Although data transfer time is a significant source of overhead, there are others
that are problematic for recursive algorithms, for example, kernel launch times and
synchronization. Kernel launch time is particularly problematic for the DCA because
the DCA consists of two operations, assembly and disassembly, which are each sep-
arate kernels and must be launched recursively. The recursive nature of the assembly
and disassembly processes also necessitates that the kernels are synchronized at each
level of recursion adding even more computational overhead.

2.1.3 Using the GPU Effectively With the DCA

Despite the apparent drawbacks of executing the DCA on the GPU, there are ways the
inexpensive and powerful computing resources offered by the GPU can be utilized
with the DCA. For large systems, there are a large number of independent assembly
and disassembly operations that occur in the levels near the leaf level of the recursive
tree. For a system of 2048 bodies the approximate operations counts for each level
of recursion are given in Table 2.1. By examining the number of kernel operations
(assembly and disassembly) necessary at each level of recursion, it is estimated that
50 % of the operations per kernel sweep are performed in the first level and 75 % are
performed in the first two levels of recursion. By performing only three of the twelve
levels of recursion on the GPU, 94 % of all the operations are parallelized. However,
performing only one level’s kernel operations on the GPU results in 50 % of the
operations per solve can be parallelized with the penalty of associated with only one
kernel launch and no synchronization penalty. Furthermore, 75 % of the operations
can be parallelized incurring the data transfer and synchronization penalties of only
one level of recursion in addition to the leaf level operations. As the system’s size
increases, using the GPU to perform the operations in these levels could allow much
larger problems to be investigated by effectively halving or quartering the original
problem seen by any CPU parallelization strategy.

By using the GPU in only the levels that have a relatively high number of parallel
operations, the computational overhead compared to the number of floating-point
operations is kept low. The CPU can then be used only for the remaining levels in

Table 2.1 Estimation of operations per level of recursion of the DCA

Level Leaf Leaf+1 Leaf+2 Leaf+3

Kernel operations 1024 1536 1792 1920

% Operations/Solve 50 75 88 94
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which there is a large number of sequential computations in comparison to a relatively
low number of floating-point operations per level. In this way the GPU can be used
to provide a large amount of throughput outweighing the overall overhead required.

Additionally, there are many ways that the data communication cost can be effec-
tively hidden and the impact on overall simulation time can be minimized. For just
one example of this consider a simulation of a bio-molecular system where coarse-
graining has resulted in an articulated multibody system. In such an example, the
data corresponding to the leaf level bodies can be transferred while computing the
electrostatic forces.

Since the impact of the data communication cost associated with approximately
50 % of the operations can be mitigated, the penalty of using the GPU for two levels
of recursion can be reduced to the cost of the data transfer between levels one and
two (∼1/4 of the overall data), the synchronization between the two levels, and the
second launch of the associated kernels.

Using the specifications of the known hardware it is possible to estimate whether
or not using the GPU is beneficial. The flow-chart, shown in Fig. 2.3, demonstrates
how this is performed for the DCA written as a recursive function. At each level of
assembly an estimation is made whether the GPU or CPU is more efficient. This is
repeated until all levels of assembly are completed, then the same estimation is made
concerning the disassembly and each level of recursion is disassembled.

Fig. 2.3 Using DCA on the
GPU: This figure describes
how the DCA, written as a
recursive function, can be
effectively implemented in a
way that uses the GPU only
when advantageous
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2.2 Implementation and Numerical Example

A simple numerical example was performed to investigate the computational advan-
tages of executing the DCA on GPU architecture. The equations of motion are formed
and solved using the DCA in a variety of parallel arrangements. The DCA is imple-
mented in serial and parallel on multi-core CPU using OpenMP to parallelize the
assembly and disassembly operations happening at each level. Other lower level
CPU parallelization implementations are possible and with more effort may yield
faster results. However, as a platform to investigate the scalability of the algorithm
on the GPU as compared to a parallel CPU implementation, OpenMP is sufficient.
The CPU was a Intel® Xeon® W3565 3.20 GHz having four cores.

The number of levels of recursive assembly, and subsequent disassembly was
selected a priori and arbitrarily. However, with some simple functions to measure
the data transfer time and kernel launch time the optimal number of levels for a
particular hardware combination could be approximately determined. This was not
performed because the information is specific to the hardware arrangement and is
of little interest to other users. The levels of the DCA that are performed using the
GPU were executed on a NVIDIA® Corporation GF108GL Quadro® 600. Therefore,
the NVIDIA® CUDA® platform was used for the parallel implementation of the
assembly and disassembly kernels.

2.2.1 Test Case

A multi-link pendulum, as shown in Fig. 2.4, was chosen as the test system to inves-
tigate how the computational time scales with the number of bodies using various
approaches to GPU-parallelization. Although this example is 2D, all matrices and
vectors are “full-sized” as they would be in the 3D case so that the data communi-
cation cost is nearly the same. The number of bodies was varied up to 2048. The
number of levels of recursion that were executed on the GPU was varied from zero to
all levels. For 2048 bodies this corresponds to eleven levels of recursive operations.
The pendulum was released from rest at qi = 0 for all i, and the simulation duration
was a single time-step.

q1

q2

q3

qn−1

qn
n2

n1

Fig. 2.4 Variable length pendulum test problem
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Fig. 2.5 Full time-step:
Serial run-time takes
approximately 400 ms while
the best hybrid solution takes
approximately 240 ms. The
OpenMP solution takes
approximately 325 ms

0
50

100
150
200
250
300
350
400
450

0 256 512 768 1024 1280 1536 1792 2048

C
om

pu
te

T
im

e
( m

s)
Number of Bodies (n)

Serial
All OpenMP
1 Level GPU
3 Level GPU
6 Level GPU

All GPU

Fig. 2.6 DCA solve time:
Serial run-time takes
approximately 210 ms while
the best hybrid solution takes
approximately 60 ms. The
OpenMP solution takes
approximately 140 ms
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So that the effects of executing the DCA on GPU-type hardware can be bet-
ter understood, the time to complete three different portions of the simulation are
measured. These are the total time to complete one time-step of the simulation, the
solve time of DCA, and the data transfer time. The total time to perform one time-
step including all data transfer and operations needed to update the inverse inertial
quantities for the next time step is shown in Fig. 2.5. The compute-time required to
complete the assembly and disassembly sweeps, in which the equations of motion are
formed and solved including determination of constraint forces acting at the joints,
is plotted versus the number of bodies in the system in Fig. 2.6. Lastly, the time to
transfer the necessary data to the device and then back to the host is shown in Fig. 2.7.

2.2.2 Results

Figure 2.5 demonstrates a decrease in computational time as compared to OpenMP
when executing the DCA on GPU architecture, even for a moderately large number
of bodies. Additionally, this figure also shows that parallelizing the assembly and
disassembly operations of the leaf level, provides the largest reduction in compute
time for this arrangement of 2048 bodies.

As the number of bodies increases, executing more levels of recursion provides
still further reductions in computational time, although at a decreasing rate. It can
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Fig. 2.7 Data transfer time:
Data transfer time takes
approximately 46 ms for all
levels of recursion, which
compares to 60 ms for solve
time and 240 ms for the full
time-step
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also be seen from Fig. 2.5 that executing all levels of recursion outperforms the
OpenMP solution near 512 bodies, which would mostly likely be reduced with a
more sophisticated NVIDIA® CUDA® implementation of the DCA assembly and
disassembly kernels. Conversely, this number may be increased with a more advanced
CPU parallelization implementation. Finally, it can be seen that the speed-up gained
from parallelizing all levels on the GPU is approximately double to that of the
OpenMP parallelization for 2048 bodies.

By comparing the DCA solve-time, shown in Fig. 2.6, with the total compute-
time of one time step, it can be seen that the DCA is approximately half of the total
time associated with each time-step. This could most likely be lowered with a more
thoughtful implementation of overhead operations required. Therefore, significant
reductions of the solve-time directly and meaningfully impact the overall simulation
time, which will only be more notable if other overhead is reduced. The solve time
for parallelizing all levels of recursion on the GPU is approximately half of the
solve-time compared to the OpenMP parallelization.

Additionally, the time required to transfer the data to and from the device, shown
in Fig. 2.7, is a significant portion of the solve time. When performing all levels of
recursion on the GPU, it can be seen that the solve-time is nearly entirely composed of
data transfer time. It can also be inferred from this figure that most of data transfer cost
is associated with initiating the transfer since the increase in compute-time related
to more bodies (data) is much less than the increase due to more data transfers.

2.3 Conclusions

Despite the obvious drawbacks to executing a recursive algorithm on GPU archi-
tecture, a significant reduction in compute-time was observed when doing so with
the DCA. For this implementation, the solve-time is reduced in half and the total
compute-time is reduced by approximately a quarter when comparing the OpenMP
and the best hybrid solution. This reduction in compute-time is due, for the most
part, to the large amount of independent operations that occur in the first levels of
recursion. Although a hybrid implementation using parallel processes on both the
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CPU and the GPU provide the lowest compute times for moderately sized systems,
the penalty for using the GPU exclusively becomes less important relatively quickly.
Therefore for very large systems, such as those encountered in biomolecular sim-
ulations where the number of degrees-of-freedom (n) easily exceeds 105, a hybrid
approach may not be worthwhile.

Although the total time reduction to simulate a time-step is not as large as the
solve-time reduction, it is still significant. The 25 % reduction in total-time demon-
strates that implementing the DCA on GPU-type hardware is a viable option to
achieve significant reduction in compute-time at low-cost. It also suggests that the
desirable solve-time scaling properties of the DCA (and other recursive methods)
may be preserved while significantly reducing the actual solve time using relatively
inexpensive resources.

Furthermore, with the new features available with state-of-the-art compute-
capability, such as dynamic parallelism, the penalty associated with using the GPU
can be dramatically reduced, if not eliminated. This is because with this new tech-
nology, threads can launch kernels and therefore the data does not need to travel
back to the host between levels of recursion. Additionally, threads can be launched
at varying degrees of resolution. This not only allows the obvious benefit of not
having to communicate back to the host device, but also allows the parallelism to be
performed in a more straightforward manner. For example, consider a topology of
many branches including various closed loops and other complex structures. Each
branch can be given to a thread which recursively launches other threads for each
nested structure until the final level of threads launches the ideal number of kernels
to parallelize the decomposed topology. This technology changes the way in which
recursive algorithms are thought to perform on the GPU.
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Chapter 3
Three-Dimensional Non-linear Shell Theory
for Flexible Multibody Dynamics

Shilei Han and Olivier A. Bauchau

Abstract In flexible multibody systems, many components are approximated as
shells. Classical theories, such as Kirchhoff and Reissner–Mindlin shell theories,
are based on a priori kinematic assumptions. While such approach captures the
kinetic energy of the system accurately, it cannot represent the strain energy ade-
quately. Indeed, three-dimensional elasticity theory indicates that the normal mater-
ial line will warp under load, leading to three-dimensional deformations and complex
stress states. To overcome this problem, a novel three-dimensional shell theory
is proposed in this paper. Kinematically, the problem is decomposed into a large
rigid-normal-material-line motion and a warping field. The strains associated with
the rigid-normal-material-line motion and the warping field are assumed to remain
small. Consequently, the governing equations of the problem fall into two categories:
the global equations describing geometrically exact shells and the local equations
describing local deformations. The geometrically exact shell equations are nonlinear,
two-dimensional equations, whereas the linear, local equations provide the detailed
distribution of three-dimensional stress and strain fields. A shell stiffness matrix is
found that reflects the effects of warping due to material heterogeneity and curvature.
Three-dimensional stress and strain fields are recovered from the two-dimensional
shell solution. The proposed approach is valid for anisotropic shells with arbitrary
through-the-thickness lay-up configuration undergoing largemotion but small strain.
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3.1 Introduction

Shells are structural components for which one dimension is far smaller than the
other two. Themidplane of the shell lies along its two long dimensions and its normal
extends along the shorter dimension. The shell’s thickness and material properties
are assumed to vary smoothly over its midplane surface. When the midplane surface
is planar, the shell is called a plate.

Numerous structures can be approximated as shells. The long, slender wings of an
aircraft canbe analyzed, to afirst approximation, as beams, but amore refined analysis
will treat the upper and lower skins of the wing as thin shells supported by ribs and
longerons or stiffeners. The same can be said about helicopter or wind turbine blades.
Buckling of the face sheets of wind turbine rotor blades is an important problem that
cannot be captured by beam models. This instability, however, will be captured by
shell models.

Solid mechanics theories describing shells, more commonly referred to as “shell
theories,” provide useful tools for the analysis of these commonly used structural
components. Although more sophisticated formulations based on three-dimensional
elasticity theory could be used to analyze shells, the associated computational burden
is often too heavy. Shell theories reduce the analysis of complex, three-dimensional
structures to two-dimensional problems. The main goal of the proposed theory is
to approximate the three-dimensional shell-like structure with a two-dimensional
model, while retaining an accurate representation of the local, three-dimensional
stress and strain fields through the thickness of the shell.

Several shell theories have been developed based on various assumptions that
lead to different levels of accuracy. One of the simplest theory is due to Kirchhoff
who analyzed the bending of thin plates. Shell theories based on Kirchhoff assump-
tions [1–3] are used in civil, mechanical, and aerospace applications, although shear
deformable theories, called “Reissner–Mindlin shell theories” [4–6], have also found
wide acceptance.

In many applications, shells are complex built-up structures. In aeronautical con-
structions, for instance, the increased use of laminated composite materials leads
to heterogeneous, anisotropic structures. Layers of anisotropic material are stacked
through the thickness of the shell. This new type of structural component prompted
the development of new plate and shell theories [7–9], often based on classical lam-
ination theory [10, 11].

Further refinements followed with the goal of capturing the intricate three-
dimensional stress field that develops under load, with special emphasis on inter-
laminar shear stresses. The various approaches fall into two categories: higher-order
and layer-wise shell theories. Higher-order shell theories assume higher-order dis-
placement fields for the entire normal material line [12–14]. In layer-wise theories
[15, 16], the displacement field of the normal material line for each layer is indepen-
dent of that of the others, with a simple C0 continuity condition at the layer bound-
aries. Although these approaches lead to higher accuracy, the number of unknowns
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increases considerably. A comprehensive review of the literature is given by Noor
and Burton [17].

Efficient shell models can be obtained more rigorously from three-dimensional
elasticity through dimensional reduction techniques that split the original prob-
lem into a two-dimensional analysis over the shell’s midplane surface and a one-
dimensional, through-the-thickness linear analysis. The shell’s stiffness matrix is a
by-product of the dimensional reduction process, which also enables the recovery of
three-dimensional stress fields. These approaches, derived from three-dimensional
elasticity theory directly, can handle laminated shells made of anisotropic composite
materials without increasing the total number of unknowns.

Asymptotic and multiscale analysis methods have been the tools of choice for
dimensional reduction. For shell problems, the thickness, denoted h, is typically
far smaller than a representative span-wise dimension, denoted a, and hence, the
aspect ratio, ε = h/a, is a small parameter. Consequently, the gradients of stress and
displacement components over the shell’s midplane surface are smaller than those
through its thickness. Asymptotic and multiscale methods expand the solution in
terms of the aspect ratio, leading to a rational decomposition of the three-dimensional
problem into two-dimensional equations over the shell’s midplane and a through-
the-thickness problem. Based on this approach, Friedrichs and Dressler [18] and
Kalamkarov [19] investigated isotropic and heterogenous plate problems, respec-
tively.

In theVariationalAsymptoticMethod (VAM)proposed byBerdichevsky [20, 21],
asymptotic analysis is applied to the energy functional. A unified theory based on
VAM, presenting both linear, one-dimensional through-the-thickness analysis, and
nonlinear, two-dimensional analysis over the shell’s midplane surface was further
refined by Sutyrin and Hodges [22, 23], and Yu et al. [24, 25]. The shell’s 8 × 8
stiffness matrix relating the eight deformation measures to the corresponding eight
stress resultants is a by-product of the linear, through-the-thickness analysis. Fur-
thermore, the strain field through the shell’s thickness can be recovered once the
strain measures are known.

More recently, Kim [26] proposed a finite element based asymptotic analysis for
generally anisotropic plate problems. The dimensional reduction process is based on
a formal asymptotic expansion, which splits the three-dimensional plate problem into
two sets of recursive equations: a set of one-dimensional local recursive problems
and a set of two-dimensional global recursive problems.

It is not necessary to use asymptotic expansion methods to tackle plate analy-
sis. Giavotto et al. [27] used a finite element based, semi-discretization approach to
solve beam problems presenting arbitrary cross-sectional geometries and material
properties. An adaptation of this approach to anisotropic, heterogeneous laminated
composite plates was proposed by Masarati and Ghiringhelli [28], who found solu-
tions of the three-dimensional equilibrium equations through the plate’s thickness.
These solutions then yield the plate’s compliance matrix and local stress fields can
be recovered.

The Representative Volume Element (RVE) approach is a common tool for mul-
tiscale analysis. Recently, Gruttmann and Wagner [29] used a through-the-thickness
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RVE to develop local/global plate and shell models. The displacement field of the
RVE is split into rigid normal material line and warping components. The local RVE
and global plate models are coupled at the lateral surfaces of the RVE. The coupled
governing equations of the two-scale model are solved simultaneously.

In a recent paper [30] by the authors, a dimensional reduction technique for plate
problems was proposed. A semi-discretization of the general equations of three-
dimensional elasticity was performed, defining the local model. The equations relat-
ing the stress resultants, the plate’s strain measures, and the warping field of the
normal material line were derived from a linear combination of the equations of the
local model, defining the global model. Based on a set of power series solutions,
the local problem for plate-like structures was reduced to the corresponding global
problem and local stress and strain fields can recovered from the global solution.

In this paper, the approach is extended to shells undergoing large displacements
and rotations. Kinematically, the problem is decomposed into a large rigid-normal-
material-line motion and a warping field. The strain measures associated with the
rigid-normal-material-line motion and the warping field are assumed to remain
small. Consequently, the governing equations of the problem fall into two categories:
the global equations describing geometrically exact shells and the local equations
describing local deformations. The geometrically exact shell equations are nonlinear,
two-dimensional equations, whereas the linear, local equations provide the detailed
distribution of three-dimensional stress and strain fields. A shell stiffness matrix is
found that reflects the effects of warping due to material heterogeneity and shell
curvature. Three-dimensional stress and strain fields are recovered from the two-
dimensional shell solution. The proposed approach is valid for anisotropic shells
with arbitrary through-the-thickness lay-up configuration undergoing large motion
but small strain.

The following assumptions are made: (1) the shell’s first and second fundamen-
tal forms remain constant over its midplane surface; (2) the shell’s thickness and
material properties are uniform over its midplane surface; (3) the shell undergoes
large motion but the strains and warping displacements remain small. Due to these
three assumptions, the governing equations of the problem can be cast into a set
of partial differential equations with constant coefficients. Although material prop-
erties remain uniform, heterogeneous, anisotropic materials can be accommodated.
For many practical problems, assumptions (1) and (2) might not be verified exactly
because the shell’s configuration and physical properties vary over its midplane sur-
face. For as long as such gradients remain small, the proposed approach should
provide good accuracy.

The paper is organized as follows: the kinematics of the problem and the gov-
erning equations of the Saint-Venant’s problem are presented in Sects. 3.2 and 3.3,
respectively. The reduction of the three-dimensional governing equations to shell’s
equations and recovery of three-dimensional stress fields are the focus of Sects. 3.4
and 3.5; numerical examples are presented in the last section.
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3.2 Kinematics of the Problem

Figure3.1 depicts a shell of thickness h, midplane surfaceS, and normalmaterial line
L, in its reference and deformed configurations. The volume of the shell is generated
by sliding line L over the shell’s midplane. A set of material coordinates is selected
as follows: curvilinear coordinate η1 and η2 describe curves within surface S and η3
is along line L. Point B is located at the intersection of the normal material line with
the shell’s midplane. Let r B(η1, η2) denote the position vector of point Bwith respect
to the origin of the reference frame, FI = [O, I = (ı̄1, ı̄2, ı̄3)].

In the reference configuration, material frame FB = [
B,B† = (b̄1, b̄2, b̄3)

]
is

defined, where unit vectors b̄1 and b̄2 are in the plane tangent to surface S at point B
and unit vector b3 is the normal to surface S at point B. Unit vectors b̄α are defined
as aαb̄α = ∂r B/∂ηα, where Lamé’s coefficients, aα = ‖ ∂r B/∂ηα‖, represent the
length of the tangent vectors. Throughout this paper, Greek subscripts are assumed
to take values of 1 to 2. For convenience, it is assumed that curvilinear coordinates η1
and η2 have been selected such that unit vectors b̄1 and b̄2 are mutually orthogonal.
Normal material line L is along unit vector b̄3 = b̃1b2.

Basis B† is a function of curvilinear variables ηα; the rotation tensor that brings
basis I to basis B† is denoted as R

0
(η1, η2). The motion tensor [31] that brings the

inertial frame FI to frame FB is

C
0
(η1, η2) =

[
R
0

r̃B R
0

0 R
0

]
. (3.1)

Fig. 3.1 Configuration of
the shell in its reference and
deformed configurations
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The components of the shell’s generalized curvature vector in its reference con-
figuration are then aαk̃ †

α = C−1
0
C
0,α

= −C−1
0,α

C
0
, where notation (·)† indicates ten-

sor components resolved in basis B†, and the second equality results from identity

C−1
0
C
0

= I . The explicit expression of the curvature vector is

k̃ †
α =

[
k̃†
α t̃†α

0 k̃†
α

]
. (3.2)

The associated generalized curvature vector is k †T
α

= {t†T
α , k†T

α }. It is verified easily
that aα t̄†α = RT

0
r B,α and aαk†

α = RT
0

R
0,α

. The components of the curvature vec-

tors are k†
1 = {−k†

12, k†
11, k†

13}T and k†
2 = {−k†

22, k†
21, k†

23}T , where aαaβk†
αβ = −b†

αβ ,

a1a2k†
13 = −∂a1/∂η2, and a1a2k†

23 = ∂a2/∂η1. The shell’s first and second funda-
mental forms are assumed to remain constant over its midplane surface and hence,
the partial derivatives of Lamé’s coefficients and curvature components k†

13 and k†
23

vanish. The components of the second fundamental form of the midplane surface are
denoted b†

αβ and defined as

b̄†T
3 dr B = b†

αβdηαdηβ . (3.3)

Clearly, b†
αβ = b†T

3 ∂2r†B/(∂ηα∂ηβ). For the remainder of this paper it is assumed

that curvilinear coordinates η1 and η2 define the lines of curvatures, i.e., κ
†
12 and κ†

21

vanish. The principal curvature are then k†
11 = 1/ρ1 and k†

22 = 1/ρ2, where ρ1 and
ρ2 are the principal radii of curvature.

3.2.1 The Reference Configuration

The position vector of an arbitrary material point P of the shell in its reference
configuration now becomes

r(η1, η2, η3) = r B(η1, η2) + η3b̄3. (3.4)

The associated base vectors are then

g
1

= ∂r B/∂η1 + η3∂b̄3/∂η1 = a1(1 + η3/ρ1)b̄1, (3.5a)

g
2

= ∂r B/∂η2 + η3∂b̄3/∂η2 = a2(1 + η3/ρ2)b̄2, (3.5b)

g
3

= b̄3. (3.5c)

The components of the base vectors resolved in basisB† are g†
i

= RT
0
g

i
, i = 1, 2, 3; in

the rest of this paper subscript i is assumed to take values of 1, 2, and 3. These results
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are recast in a compact form

g† = [
g†
1

g†
2

g†
3

] =
⎡
⎣a1χ1 0 0

0 a2χ2 0
0 0 1

⎤
⎦ , (3.6)

where two non-dimensional parameters were introduced χ1 = 1 + η3/ρ1 and χ2 =
1 + η3/ρ2.

3.2.2 The Fictitious Rigid-Normal-Line Motion

Figure3.1 shows the configuration of the shell in its deformed configuration. The
displacement field of thematerial line is decomposed into two parts: a fictitious rigid-
normal-material-linemotion (abbreviated as “rigid-normal motion”) and an arbitrary
warping field. The rigid-normal motion is characterized by five degrees of freedom
only, three displacements and two rotations, because the rotation of the normal line
about its own axis, called “drilling rotation,” is immaterial.

While the kinematics description does not require the drilling rotation, its intro-
duction allows the definition of a convected material frame in which strain and stress
tensors can be resolved conveniently. Furthermore, the shell becomes a Cosserat
solid described by displacement and rotation fields. Due to the fictitious rigid-normal
motion, material points B and P move to points Br and Pr, respectively, see Fig. 3.1,
and the convected material frame, FR = [BR,B∗ = (B̄1, B̄2, B̄3)], is defined. The
drilling rotation, to be selected later, allows the unambiguous definition of basis B∗
and rotation tensor R(η1, η2) brings basis B† to basis B∗. The shell’s midplane sur-
face is now SR and let r BR

be the position vector of point BR with respect to point O.
The motion tensor that brings frame FI to FR is now

C
R
(η1, η2) =

[
(R R

0
) r̃BR (R R

0
)

0 (R R
0
)

]
. (3.7)

The components of the shell’s generalized curvatures in its fictitious configuration
are then aαK̃∗

α = C−1
R
C

R,α
, where notation (·)∗ indicates tensor components resolved

in basis B∗. Clearly,

K̃∗
α =

[
K̃ ∗

α T̃ ∗
α

0 K̃ ∗
α

]
, (3.8)

where aαT ∗
α = (R R

0
)T r BR ,α

and aα K̃ ∗
α = (R R

0
)T (R R

0
),α. The associated gener-

alized curvature vector is K∗T
α = {T ∗T

α , K ∗T
α }. The following notation is introduced:

T ∗
αi denotes the i th component of array T ∗

α, while the components of the curvature
vectors are K ∗

1 = {−K ∗
12, K ∗

11, K ∗
13}T and K ∗

2 = {−K ∗
22, K ∗

21, K ∗
23}T .
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The virtual motion vector, δU , is introduced by analogy with the generalized
curvature vector as ˜δU∗ = C−1

R
δC

R
. Taking a derivative of virtual motion vector

yields ˜δU∗
,α = C−1

R,α
δC

R
+ C−1

R
δC

R,α
while taking a variation of generalized curvature

vector leads to aαδK̃∗
α = δC−1

R
C

R,α
+ C−1

R
δC

R,α
. Subtracting these two results then

yields ˜δU∗
,α/aα − δK̃∗

α = ˜δU∗K̃∗
α − K̃∗

α
˜δU∗

. When expressed in the vector form, this
leads to

δU∗
,α/aα = δK∗

α − K̃∗
αδU∗. (3.9)

These equation defines the transpositional relationships that links the partial deriva-
tives of the virtual motion and variation of generalized curvatures.

As proposed by Fox and Simo [32], the drilling rotation is defined by the following
constraint, to be enforced via a Lagrange multiplier,

T ∗
12 − T ∗

21 = 0. (3.10)

This constraint implies the equality of angles arccos(T T
1 B̄1) and arccos(T T

2 B̄2).
In the fictitious rigid-normal configuration, the position vector of material point

PR becomes

r PR
(η1, η2, η3) = r BR

+ η3 B̄3. (3.11)

The base vectors in the fictitious configuration, G Ri = ∂r PR
/∂ηi , now become

G R1 = ∂r BR
/∂η1 + η3∂ B̄3/∂η1 = a1

[
T 1 + η3K11 B̄1 + η3K12 B̄2

]
, (3.12a)

G R2 = ∂r BR
/∂η2 + η3∂ B̄3/∂η2 = a2

[
T 2 + η3K21 B̄1 + η3K22 B̄2

]
, (3.12b)

G R3 = B̄3. (3.12c)

The components of these base vectors resolved in basis B∗ are simply G∗
Ri =

(R R
0
)T G Ri , and can be recast in a compact form as

G∗
R

= [
G∗

R1 G∗
R2 G∗

R3

] = [
T ∗

1 + η3 K̃ ∗
1 ı̄3 T ∗

2 + η3 K̃ ∗
2 ı̄3 ı̄3

]
. (3.13)

3.2.3 The Deformed Configuration

The displacement field of the material line has been decomposed into two parts:
the rigid-normal motion and an arbitrary warping field, denoted u(η1, η2, η3), which
describes the displacement of material point P with respect to point PR, see Fig. 3.1.
Because the warping field is arbitrary, it also includes a rigid-body motion, and
hence, rigid-body motions are double counted. This ambiguity of the formulation
will be resolved later, based on physical arguments. In the deformed configuration,
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the position vector of a material point becomes

r P(η1, η2, η3) = r PR
(η1, η2, η3) + (R R

0
)u∗. (3.14)

The base vectors in the deformed configuration, Gi = ∂r P/∂ηi , now become

G1 = G R1 + (R R
0
)(a1 K̃ ∗

1u∗ + u∗
,1), (3.15a)

G2 = G R2 + (R R
0
)(a2 K̃ ∗

2u∗ + u∗
,2), (3.15b)

G3 = G R3 + (R R
0
) u∗

,3. (3.15c)

The components of these base vectors resolved in basis B∗ are G∗
i = (R R

0
)T Gi ,

and can be recast in a compact form

G∗ = [
G∗

1 G∗
2 G∗

3

] = G∗
R

+ G∗
W1

+ G∗
W2

, (3.16)

where matrices G∗
W1

and G∗
W2

represent the effects of warping

G∗
W1

= [
a1k̃∗

1u∗ + u∗
,1 a2k̃∗

2u∗ + u∗
,2 u∗

,3

]
, (3.17a)

G∗
W2

= [
a1κ̃

∗
1u∗ a2κ̃

∗
2u∗ 0

]
, (3.17b)

and κ
∗
α = K ∗

α − k†
α are the elastic curvatures. It is assumed that strain measures and

warping displacements are small and hence, second order terms such as κ̃
∗
1u∗ and

κ̃
∗
2u∗ are negligible. The base vectors in the deformed configuration now reduce to

G∗ ≈ G∗
R

+ G∗
W1

. (3.18)

3.2.4 Strain Components

The components of deformation gradient tensor in the mixed bases B∗ and B† are

F∗† = G∗g†−1 ≈ G∗
R
g†−1 + G∗

W1
g†−1 = F

R
+ E

W
, (3.19)

where the second equality expresses the additive decomposition of the deformation
gradient tensor into its components due to the rigid-normal motion, F

R
, and warping

deformation, E
W
. Introducing Eqs. (3.13) and (3.6), the rigid-normal components

become

F
R

= I +
[
(ε∗

1 + η3Q κ
∗
1)/χ1 (ε

∗
2 + η3Q κ

∗
2)/χ2 0

]
= I + E∗

R
, (3.20)
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where I is the identity matrix, matrix Q = [ı̄1 ı̄2 0], and arrays ε∗
α and κ

∗
α were

defined as

ε∗
α = T ∗

α − ı̄α, (3.21a)

κ
∗
α = K ∗

α − k†
α. (3.21b)

Arrays ε∗
α and κ

∗
α store the shell’s in-plane strain and curvature measures, respec-

tively, resulting from the rigid-normal motion.
The deformation gradient tensor now reduces to F∗† ≈ I + E∗

R
+ E

W
and the

corresponding components of Green-Lagrange’s strain tensor, denoted γ∗, are

γ∗ = 1

2
(F∗†T F∗† − I ) = 1

2
(E∗

R
+ E∗T

R
) + 1

2
(E

W
+ E T

W
) + h.o.t. (3.22)

For small strains, Green-Lagrange’s strain components are the sum of the strains due
to the rigid-normal motion, γ∗

R
= (E∗

R
+ E∗T

R
)/2, and those resulting from warping

deformation, γ∗
W

= (E
W

+ E T
W
)/2. It is convenient to collect the strain components

in an array, γ∗ = {γ∗
11, γ

∗
22, γ

∗
33, γ

∗
23, γ

∗
13, γ

∗
12}T and Eq. (3.22) then becomes γ∗ =

γ∗
R

+ γ∗
W
.

Equation (3.17a) yields the strains due to warping as γ∗
W

= v∗ + B u∗, where the
array of warping derivatives, v∗, is defined as

v∗ = bT
1

u∗
,1

a1
+ bT

2

u∗
,2

a2
, (3.23)

and matrices b
1
and b

2
are given by Eq. (3.62). Matrix operator B is defined as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −k†
13/χ1 k†

11/χ1

k†
23/χ2 0 k†

22/χ2

0 0 ∂/∂η3

0 −k†
22/χ2 + ∂/∂η3 0

−k†
11/χ1 + ∂/∂η3 0 0

k†
13/χ1 −k†

23/χ2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.24)

With the help of Eqs. (3.25), (3.13), and (3.18), the strains due to the rigid-normal
motion become γ∗

R
= g E∗, where matrix g is given in Eqs. (3.65) and (3.66) and

array E∗ stores the independent strain measures for the shell, defined as

E∗ = t
1
E∗
1 + t

2
E∗
2. (3.25)
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where aαE∗
α = K∗

α − k †
α
and matrices t

α
, are defined in Eq. (3.63) and (3.64). In

summary, Green-Lagrange’s strain components are

γ∗ = v∗ + B u∗ + g E∗. (3.26)

Taking variation of strain measures and introducing the transpositional relation-
ships (3.9), leads to

δE∗ = t
1
δE∗

1 + t
2
δE∗

2 = t
1
(δU∗

,1/a1 + K̃∗
1δU∗) + t

2
(δU∗

,2/a2 + K̃∗
2δU∗). (3.27)

3.2.5 Semi-discretization of the Displacement Field

Shell theory is characterized by two-dimensional differential equations governing
the displacement field assumed to be a function of the in-plane variables, η1 and η2,
only. In the above paragraphs, the displacement field has been treated as a general
vector field depending on three independent variables, η1, η2, and η3. To obtain a
two-dimensional formulation, the following semi-discretization of the displacement
field is performed,

u∗(η1, η2, η3) = N (η3)û(η1, η2), (3.28)

where matrix N (η3) stores the shape functions used in the discretization and array
û(η1, η2) stores the nodal values of the displacement field. Standard, one-dimensional
polynomial shape functions [33] are used here. Assuming that the shell’s normal
material line has been discretized using n nodes, matrix N (η3), of size 3 × 3n, stores
the appropriate combination of shape functions.

Equation (3.28) corresponds to a semi-discretization of the problem. The finite
element mesh extends over the shell’s normal material line only and the nodal val-
ues of the displacement components remain functions of the in-plane variables, η1
and η2. The shape functions depend on the through-the-thickness variable only, i.e.,
N = N (η3). The dependency of the nodal displacement components on the in-plane
variables is stated explicitly: û = û(η1, η2). The semi-discretization procedure leads
to a numerical treatment of the solution for variable η3 whereas the dependency of
the solution on variables η1 and η2 is treated analytically.

Introducing the discretization into Eq. (3.26) yields the components of Green-
Lagrange’s strain tensor as

γ∗ = H v̂ + B N û + g E∗, (3.29)

where array v̂ stores the nodal values of array v∗, andmatrix H , of size 6 × 6n, stores
the corresponding shape functions.
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3.3 Governing Equations

After deriving expression for the strain energy and work done by the externally
applied loads, the governing equations for the shell will be derived from the principle
of virtual work.

3.3.1 Strain Energy Expression

The strain energy stored in the shell is found as

A = 1

2

∫
v

γ∗TD∗γ∗ dv = 1

2

∫
η1,η2

a a1a2 dη1dη2, (3.30)

where D∗ is the 6 × 6 stiffness matrix for the material resolved in the mater-
ial basis and dv = a1a2χ1χ2dη1dη2dη3 is the differential volume element of the
shell. The strain energy density per unit area of the shell was defined as a =∫
η3

χ1χ2 γ∗TD∗γ∗dη3.
Introducing the discretized components of Green-Lagrange’s strain tensor given

by Eq. (3.29), the strain energy density becomes

a = 1

2
(v̂ + G E∗)T

[
M(v̂ + G E∗) + CT û

]
+ 1

2
ûT

[
C(v̂ + G E∗) + E û

]
,

(3.31)

where matrix G stacks the rows of matrix g for each of the nodes, and matrices M ,

C , and E are defined as

M =
∫

η3

H TD∗ H χ1χ2dη3, (3.32a)

C =
∫

η3

(B N )TD∗ H χ1χ2dη3, (3.32b)

E =
∫

η3

(B N )TD∗(B N ) χ1χ2dη3. (3.32c)

Given the distribution of material stiffness properties these matrices can be evaluated
by integration through the thickness of the shell. Matrices M , C , and E are of size
6n × 6n, 3n × 6n, and 3n × 3n, respectively.
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3.3.2 Rigid-Body Motion

Consider a rigid-body motion of the entire shell written as u = u R − η3 B̃3φR
, where

u R are the components of the rigid-body translation and φ
R

= {−φR2,φR1,φR3}
those of an infinitesimal rigid-body rotation. For convenience, the following rigid-
bodymotion array is introducedU T

R = {uT
R,φ

T
R
} and the nodal displacements become

u∗ = z U∗
R , where matrix z = [I ,−η3 ı̃3] is of size 3× 6 and U∗

R = C−1
R
U R stores the

components of the corresponding rigid-body motion resolved in frame FR . Because
arrayU R represents a rigid-bodymotion, its spatial derivatives vanish,U R,α = 0, and

hence,U∗
R,α = −aαK̃∗

αU∗
R , leading to û,α = −aα Z K̃∗

αU∗
R , wherematrix Z stacks the

rows of matrix z for each of the nodes.
If the warping field is selected to be a rigid-body motion, the associated strains

must vanish and Eq. (3.29) yields

γ∗
W

=
[
−H b̂

T

1
Z K̃∗

1 − H b̂
T

2
Z K̃∗

2 + B N Z
]
U∗

R =
[
−H G K∗ + B N Z

]
U∗

R = 0,

(3.33)

where the second equality results from identities (3.67) and matrix K∗ = t
1
K̃∗

1 +
t
2
K̃∗

2. Because the strains must vanish for arbitrary rigid-bodymotions, the bracketed

terms must vanish, H G K∗ = B N Z . Pre-multiplying this result by H TD∗ and

N T BTD∗, then integrating over the shell’s thickness yields two important matrix
identities

CT Z = M G K∗, (3.34a)

E Z = C G K∗. (3.34b)

3.3.3 Stress Resultants

Two sets of dual variables, denoted P̂1 and P̂2, are introduced

P̂1 = a1
∂a

∂û,1

= b̂
1
P̂, P̂2 = a2

∂a

∂û,2

= b̂
2
P̂, (3.35)

where array P̂ , of size 6n × 1, is defined as

P̂ = M(v̂ + G E∗) + CT û, (3.36)

and stores the nodal forces, as can be verified by introducing Eqs. (3.32a) and (3.32b)
into Eq. (3.36) to find P̂ = ∫

η3
H TD∗γ∗ χ1χ2dη3 = ∫

η3
H T τ ∗ χ1χ2dη3. Dual
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variables P̂1 and P̂2 are now interpreted as the nodal forces acting on faces nor-
mal to unit vectors B̄1 and B̄2, respectively, and summing up these forces through
the shell’s thickness yields the corresponding stress resultants

F∗
1 = Z T P̂1, F∗

2 = Z T P̂2. (3.37)

whereF∗
1 andF∗

2 are the stress resultant per length acting of the faces normal to unit
vectors B̄1 and B̄2, respectively. Stress resultantsF∗

1 and F∗
2 are not independent but

consist of a subset of the independent stress resultants stored in array F∗, defined as

F∗ = GT P̂. (3.38)

The choice of the independent stress resultants is discussed in AppendixB. It then
follows that

F∗
1 = tT

1
F∗, F∗

2 = tT
2
F∗. (3.39)

Introducing the nodal forces, Eq. (3.36), then yields

F∗ = (GT M G)E∗ + (M G)T v̂ + (C G)T û. (3.40)

This equation relate the stress resultants to the strain measures and nodal warping.
In the absence of warping, i.e., when û = v̂ = 0, this equation reduces to F∗ =
C∗

RM
E∗, where C∗

RM
= GT M G is the Reissner–Mindlin stiffness matrix. Indeed,

Reissner–Mindlin’s shell theory postulates that normalmaterial lines remain straight,
implying that its displacement field is captured adequately by the rigid-normalmotion
described by matrix G. The last two terms of Eq. (3.40) describe the change in
stiffness resulting from warping deformation. If the nodal warping, û, and their
derivatives, v̂, can be expressed in terms of the stress resultants, an equivalent stiffness
matrix of the shell can be found. The determination of the warping field is key to the
accurate evaluation of the shell’s stiffness matrix.

3.3.4 External Virtual Work

The material line is subjected to surface tractions q∗
t
and q∗

b
applied at the top and

bottom surfaces of the shell, respectively, and body force b∗(η3). The virtual work
done by these external loads is

δWE =
∫

η1,η2

[∫
η3

δu∗T b∗ χ1χ2dη3 + (δu∗T q∗χ1χ2)|t + (δu∗T q∗χ1χ2)|b
]

a1a2dη1dη2

=
∫

η1,η2

δûT Q̂ a1a2 dη1dη2. (3.41)
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The nodal load vector is found by introducing the discretized displacement field,
Eq. (3.28), to find Q̂ = ∫

η3
N T b∗ χ1χ2dη3 + (N T q∗χ1χ2)|t + (N T q∗χ1χ2)|b. The

virtual work per unit area of the shell is δwE = δûT Q̂.

3.3.5 Governing Equations

If the drilling rotation constraint, Eq. (3.10), is enforced via Lagrange multiplier λ,
the principle of virtual work states that

∫
η1,η2

{δa − δwE + δ[λ(T ∗
12 − T ∗

21)]}
a1a2dη1dη2 = 0. Introducing the strain energy density (3.31) and virtual work done
by the external loads (3.41) and integrating by parts leads to

∫
η1,η2

δûT
[
C(v̂ + G E∗) − ((a2b̂1

P̂),1 + (a1b̂2
P̂),1)/(a1a2) + E û

]

+ δE∗T
1 (F∗

1 + λL1) + δE∗T
2 (F∗

2 − λL2) + δλ(T ∗
12 − T ∗

21) a1a2dη1dη2 = 0,
(3.42)

where the boundary terms are omitted for clarity and L1 = {0, 1, 0, 0, 0}T and L2 =
{1, 0, 0, 0, 0}T .

In the statement of the principle of virtualwork,Eq. (3.42), the variationofwarping
displacements δû and of rigid-normalmotion δU∗, see Eq. (3.27), are not independent
because the warping field also includes a rigid-body motion, as discussed Sect. 3.2.3.
These variations, however, will be treated as independent and will yield two sets of
equilibrium equations: the global equations describing geometrically exact shells and
the local equations imposing through-the-thickness equilibrium. These two sets are
correct but not independent; integration of the local equilibrium equations through
the shell’s thickness yields the global equilibrium equations.

The local equilibrium equations are obtained by imposing the vanishing of the
coefficients of variation δû in the principle of virtual work (3.42), leading to

(a2b̂1
P̂),1

a1a2
+ (a1b̂2

P̂),2

a1a2
− C G E∗ − C b̂

1
ŵ,1

a1
− C b̂

2
ŵ,2

a2
− E ŵ = −Q̂,

(3.43)
Introducing the nodal forces from Eq. (3.36) and combing the resulting equations
with Eq. (3.40) leads to

M̆
11

X ,11

a2
1

+ M̆
12

X ,12

a1a2
+ M̆

22

X ,22

a2
2

+ H̆
1

X ,1

a1
+ H̆

2

X ,2

a2
− Ĕ X = −Y, (3.44)

where Lamé’s coefficients, aα, and curvatures, k∗
α, are assumed to remain uniform

over the shell’s midplane surface and arrays X and Y are defined as

X =
{

û
E∗

}
, Y =

{
Q̂
F∗

}
. (3.45)
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Linear system (3.44) is a hybrid system that combines the local equilibrium equations
expressed in terms the warping field with the global constitutive equation written
in terms stress resultants and strain measures. These combined equations plays a
central role because they link the local and global problems in a formal manner.
These combined equations are solved in both the dimensional reduction and stress
recovery processes.

Linear system (3.44) features NT = 3n + NE unknowns, where NE is the number
of independent strain measures, see Eq. (3.61). The following matrices, each of size
NT × NT , have been defined

M̆
11

=
[

M
11

0

0 0

]
, M̆

12
=

[
M

12
+ MT

12
0

0 0

]
, M̆

22
=

[
M

22
0

0 0

]
, (3.46a)

H̆
1

=
[

CT
1

− C
1

b̂
1
M G

−(b̂
1
M G)T 0

]
, H̆

2
=

[
CT

2
− C

2
b̂
2
M G

−(b̂
2
M G)T 0

]
, (3.46b)

Ĕ =
[

E C G

(C G)T GT M̄ G

]
, (3.46c)

where M
11

= b̂
1
M b̂

T

1
, M

12
= b̂

1
M b̂

T

2
, M

22
= b̂

2
M b̂

T

2
, C

1
= C b̂

T

1
, and C

2
=

C b̂
T

2
. Matrices M̆

11
, M̆

12
, M̆

22
, and Ĕ are symmetric whereas matrices H̆

1
and

H̆
2
are skew-symmetric.

The global equilibrium equations are obtained by imposing the vanishing of the
coefficients of variation δU∗ in the principle of virtual work (3.42), to find

(F∗
1 + λL1],1

a1
− K̃∗T

1 (F∗
1 + λL1) + (F∗

2 + λL2),2

a2
− K̃∗T

2 (F∗
2 − λL2) = −f∗,

(3.47)

where array f∗ = GT Q̂ represents the contributions of external loads. The six global
equilibrium equations (3.47) impose force and moment equilibrium along and about
unit vectors B̄i , respectively. The last equation, corresponding to rotational equilib-
rium about B̄3, reduces to λ = 0. This should be expected since constraint (3.10)
simply defines the drilling rotation.

Finally, drilling rotation constraint (3.10) is recovered from variation δλ in the
principle of virtual work (3.42).

3.4 Dimensional Reduction

The first goal of this paper is to obtain a set of reduced, two-dimensional equations for
shells. Equations (3.47) provide the global equilibrium equations for geometrically
exact shells, but constitutive laws are necessary to complete the formulation. These
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constitutive laws are of the form E∗ = S∗F∗, where S∗ is the shell’s compliance
matrix.

3.4.1 Particular Solution

First, a particular solution of the three-dimensional problem will be derived. For
the unloaded case, f∗ = 0, global equilibrium equations (3.47) admit the following
particular solution

F∗(η1, η2) = G(η1, η2)F∗
0, (3.48)

where F∗
0 = F∗(0, 0) and matrix G is given in Eqs. (3.68) and (3.69). This solution

corresponds to the case where the in-plane shearing and twisting resultants are con-
stant, while extension, transverse shearing, and bending resultants are cosine and
sine waves in the shell’s midplane surface.

The right-hand side of system (3.44) now becomes Y = I G F∗
0, where matrix

I = [0
NE×3n

, I
NE×NE

]T . The particular solution has a similar form, X = X F∗ =
X G F∗

0, where matrix X T = [W T , ST ] stores the warping, W , and strain measures,
S, induced by unit stress resultants, respectively.

Introducing these results into system (3.44) and imposing that it be satisfied for
any loading F∗

0 leads to the following set of algebraic equations

M̆
11
X T̃ 2

1 +
(

M̆
12

+ M̆
T
12

)
X T̃1 T̃2 + M̆

22
X T̃ 2

2 + H̆
1
X T̃1 + H̆

2
X T̃2 − Ĕ X = −I,

(3.49)

where a1T̃1 = G−1G
,1
and a2T̃2 = G−1G

,2
. Explicit expressions of matrices T̃1 and

T̃2 appear in Eqs. (3.70) and (3.71). Equation (3.49) split into the following three
recursive sets of equations,

Ĕ
[X 3 X 6 X 7 X 8 X 9

] = [I3 I6 I7 I8 X 9

]
, if ρ1 �= ρ2, (3.50a)

Ĕ
[X 3 X 6 X 7 X 8

] = [I3 I6 I7 I8

]
, if ρ1 = ρ2, (3.50b)[

K̆
1
+ j H̆

1
/ρ1

] (X 1 + jX 4

) =
(

M̆
11
X 6/ρ1 + I1

)
+ j

(
H̆

1
X 6 + I4

)
, (3.50c)[

K̆
2
+ j H̆

2
/ρ2

] (X 2 + jX 5

) =
(

M̆
22
X 7/ρ2 + I2

)
+ j

(
H̆

2
X 7 + I5

)
, (3.50d)

where arrays X i , I i , i = 1, 2, . . . , NE , are the i th column of matrices X and

I, respectively, j is the imaginary unit, j2 = −1, K̆
1

= M̆
11
/ρ21 + Ĕ , and K̆

2
=

M̆
22
/ρ22 + Ĕ .
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3.4.2 Compliance Matrix

Now that a particular solution of system (3.44) has been found, the associated local
strain distribution is obtained from Eq. (3.29),

γ∗ =
⎡
⎣H(

b̂
T

1
W T̃1
a1

+ b̂
T

2
W T̃2
a2

) + B N W + G S

⎤
⎦F∗ = LF∗. (3.51)

The corresponding strain energy density is then obtained by integration through the
thickness of the shell

a = 1

2
F∗TLT

[
M CT

C E

]
LF∗ = 1

2
F∗TS∗F∗, (3.52)

where matrix S∗, of size NE × NE , is the shell’s compliance matrix. The second
equality results from an energy equivalence condition: the strain energy computed
from the stress resultants should equal that computed based on a particular three-
dimensional solution of the problem. The compliance matrix defined by Eq. (3.52)
reflects the effects of warping due to material heterogeneity and shell curvature. The
constitutive laws now become

E∗ = S∗F∗. (3.53)

3.4.3 Discussion

The formulation of geometrically exact shells is now complete. It consists of equilib-
rium equations (3.47), constitutive laws (3.53), strain-displacement equations (3.25),
and the drilling rotation constraint (3.10). They are called “geometrically exact”
because they are valid for shells undergoing large motion but small deformation.
These equations were first derived by Fox and Simo [32] and similar developments
were proposed by Ibrahimbegović [34]. In these references, the shell’s normal mate-
rial line was assumed to remain straight and hence, the stiffness matrix they derived
was Reissner–Mindlin’s stiffness matrix, C∗

RM
= GT M G, see Eq. (3.40).

Although the present approach gives formally identical equations, important
differences exist. Indeed, the proposeddevelopments eliminate thekinematic assump-
tions associated with commonly used shell theories: the shell’s constitutive rela-
tionships were derived from three-dimensional elasticity and take into the effect of
warping due to material heterogeneity and shell curvature. These effects are reflected
in the compliance matrix given by Eq. (3.52). The key feature of the present approach
is linear system (3.44) that combines the local equilibrium equations expressed in
terms the warping field of with the global constitutive equation written in terms stress
resultants and strain measures.
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In contrast with higher-order and layer-wise theories, no additional unknowns
were introduced in the proposed approach. The computation cost of the present
method is identical to that of conventional shell theories. The evaluation of the
shell compliance matrix and the stress recovery are pre- and post-processing steps,
respectively.

3.5 Stress Recovery

The attention now turns to the recovery of the local stress and strain fields, which
depend on the details of the applied loading. The recovery process is based on the
two-dimensional shell solutions. In the reduction process, external loads need to
be taken into account. The combined local-global equations (3.44) will be solved
again to obtain warping and strain measures due to stress resultants and external
loads.

In the neighborhood of a point of the shell’s midplane surface, the unknowns and
right-hand side of equations (3.44) can be expanded as Taylor’s series up to orderO,

X =
O∑

k=0

αm
1 αn

2

m! n! X
(k)
m,n, Y∗ =

O∑
k=0

ηm
1 ηn

2

m! n!Y
(k)
m,n. (3.54)

where array X (k)T
m,n = {û(k)T

m,n E∗(k)T
m,n } stores the coefficients of the expansion of nodal

warping and strainmeasures and arrayY (k)T
m,n = {Q̂

(k)T

m,n
F∗(k)T

m,n } those of the expansion
of nodal external loads and stress resultants.

Introducing these expansions into the combined local-global equations (3.44) and
matching the coefficients of the monomials leads to the following equations

Ĕ X (O)
m,n = Y (O)

m,n , (3.55a)

Ĕ X (O−1)
m,n = Y (O−1)

m,n + H̆
1

X (O)
m+1,n

a1
+ H̆

2

X (O)
m,n+1

a2
, (3.55b)

Ĕ X (k)
m,n = Y (k)

m,n + H̆
1

X (k+1)
m+1,n

a1
+ H̆

2

X (k+1)
m,n+1

a2

+ M̆
11

X (k+2)
m+2,n

a2
1

+ M̆
12

X (k+2)
m+1,n+1

a1a2
+ M̆

22

X (k+2)
m,n+2

a2
2

. (3.55c)

Note the recursive nature of the equations where the solutions of systems (3.55a)
appear on the right-hand side of systems (3.55b), etc. Equations (3.55a) and (3.55b)
represent O + 1 and O independent linear systems, respectively, for the values of
indices m and n such that m + n = O and m + n = O − 1, respectively. Equa-
tion (3.55c) are valid for k = 0, 1, . . . , O − 2; each equations represents a total of
k + 1 linear systems for m + n = k. Because the stress resultants are in equilibrium,
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it is proved easily that the solvability conditions are satisfied for each of the sys-
tems (3.55).

Once the recursive solution is complete, the corresponding power series expansion
of the three-dimensional strains is found

γ∗ = G E∗(k)
m,n + b̂

T

1

û(k+1)
m+1,n

a1
+ b̂

T

2

û(k+1)
m,n+1

a2
+ B N û(k)

m,n. (3.56)

3.6 Numerical Results

The capabilities of the proposed analysis methodology will be demonstrated by
presenting three-dimensional stress and strain fields through the thickness of shells
made of anisotropic composite materials and comparing the predictions with exact
solutions. The strain energy density computed with the proposed compliance matrix
will also be evaluated.

3.6.1 Cylindrical Bending Problem

Figure3.2 shows a cylindrical composite shell undergoing bending. The midplane
of the shell is a cylindrical surface of radius Rm and its width is L = πRm/3. The
shell is of infinite length along unit vector b̄2 and is of thickness h = L/4. The shell
is simply supported along the two edges at θ = 0,π/3 and is subjected to distributed
transverse pressures pt (θ) = pb(θ) = p0/2 sin 3θ over the lower and upper surfaces
(for clarity, Fig. 3.2 only shows the loading acting over the top surface). The shell
consists of 4 plies, each of thickness tp = h/4, all made of the same material with
the following stiffness properties: longitudinal, transverse, and shear modulus are
EL/ET = 25, GLT /ET = 0.5, and GT T /ET = 0.2, respectively; Poisson’s ratios
are νLT = 0.25 and νT N = 0.25.

Two lay-up configurations are considered: case (a): [30◦,−30◦,−30◦, 30◦] and
case (b): [−60◦,−60◦, 30◦, 30◦]. The lay-ups start with the bottom ply and end with
the top ply; 0◦ fibers are aligned with unit vector b̄2 and a positive ply angle indicates
a right-hand rotation about b̄3.

Fig. 3.2 Configuration of
the cylindrical bending
problem
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In the proposed approach, a single four-node one-dimensional elementwas used to
model each ply and the investigation focused on the stress recovery process. Jing and
Tzeng [35] obtained an analytical solution of this problem and exact stress resultants
and their derivatives were obtained by integrating the exact three-dimensional stress
distribution through the shell’s thickness.

The distributions of non-dimensional stress components, σ̄αβ = h2σαβ/(p0L2),
σ̄α3 = hσα3/(p0L), and σ̄33 = σ33/p0, were evaluated through the thickness of the
shell at η1 = πRm/9. In the stress recovery process, the predictions of four expansion
orders, constant, linear, quadratic, and cubic, were compared to assess the conver-
gence of the proposed approach.

Figures3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 depict the through-the-thickness distribution
of non-dimensional stress components. The corresponding results for lay-up (b) are
presented in Figs. 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14. In these figures, the predictions
forO =0, 1, 2, and3 are indicatedwith symbols◦,�,�, and×, respectively,while the
exact solution is indicated by solid lines. ForO ≥ 2, the predictions of the proposed
approach are in close agreement with the exact solutions, demonstrating its good
convergence characteristics.

Fig. 3.3 Distribution of
stress component σ̄11,
case (a)

Fig. 3.4 Distribution of
stress component σ̄22,
case (a)
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Fig. 3.5 Distribution of
stress component σ̄12,
case (a)

Fig. 3.6 Distribution of
stress component σ̄33,
case (a)

Fig. 3.7 Distribution of
stress component, σ̄13,
case (a)

3.6.2 Spatial Bending Problem

The cylindrical composite shell shown in Fig. 3.15 undergoes spatial bending. The
midplane of the shell is a cylindrical surface of radius Rm and its length, width,
and thickness are L = Rm , b = πRm/3, and h = b/10, respectively. The shell is
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Fig. 3.8 Distribution of
stress component, σ̄23,
case (a)

Fig. 3.9 Distribution of
stress component σ̄11,
case (b)

Fig. 3.10 Distribution of
stress component σ̄22,
case (b)

simply supported along the four edges at θ = 0,π/3 and η2 = 0, L . Distributed
transverse pressures, pt (η1, η2) = pb(η1, η2) = p0/2 sin(η1/b) sin(η2/L) (does not
match figure), are applied over both top and bottom surfaces (for clarity, Fig. 3.15
only shows the loading acting over the top surface). The shell consist of 4 plies, each
of thickness tp = h/4. All four plies aremade of the samematerial with the following
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Fig. 3.11 Distribution of
stress component σ̄12,
case (b)

Fig. 3.12 Distribution of
stress component σ̄33,
case (b)

Fig. 3.13 Distribution of
stress component, σ̄13,
case (b)

stiffness properties: longitudinal and shearmoduli are EL/ET = 25,GLT /ET = 0.5,
and GT T /ET = 0.2, respectively; Poisson’s ratios are νLT = νT N = 0.25.

The lay-up configuration investigated here presents the following stacking
sequence, starting from the bottom ply, [0◦, 90◦

2, 0
◦]; 0◦ fibers are aligned with unit

vector b̄2 and a positive ply angle indicates a right-hand rotation about unit vector b̄3.
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Fig. 3.14 Distribution of
stress component, σ̄23,
case (b)

Fig. 3.15 Configuration of
the spatial bending problem

In the proposed approach, a single four-node one-dimensional element was used
to model each ply. Four sub-matrices of the proposed stiffness matrix, C∗ = S∗−1,
do not vanish: the 3 × 3 in-plane, 2 × 2 shearing, 3 × 4 in-plane/bending coupling,
and 4 × 4 bending stiffness matrices, denoted A

rd
, S

rd
, C

rd
, and D

rd
, respectively.

The same holds for the stiffness matrix obtained from the Reissner–Mindlin theory,
denoted C∗

RM
. The in-plane stiffness matrices predicted by the two approaches are

A
rd

ET L
=

⎡
⎣1.180 0.023 0.0
0.023 1.303 0.0
0.0 0.0 0.050

⎤
⎦ ,

A
RM

ET L
=

⎡
⎣ 1.314 0.0336 0.0
0.0336 1.312 0.0
0.0 0.0 0.050

⎤
⎦ . (3.57)

While the two matrices differ, it is clear that the warping induced deformations taken
into account by the present approach have minimal effect on the in-plane stiffness
matrix. The same observations apply to the bending stiffness sub-matrix,

D
rd

10−6ET L3 =

⎡
⎢⎢⎣
1806 −20.75 0.0 0.0
20.75 334.2 0.0 0.0
0.0 0.0 41.73 41.67
0.0 0.0 41.67 41.73

⎤
⎥⎥⎦ ,

D
RM

10−6ET L3 =

⎡
⎢⎢⎣
1849 27.96 0.0 0.0
27.96 340.3 0.0 0.0
0.0 0.0 41.73 41.67
0.0 0.0 41.67 41.73

⎤
⎥⎥⎦ .

(3.58)
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Large discrepancies are observed for the coupling stiffness sub-matrix,

C
rd

10−6ET L3 =
⎡
⎣−2243 −141.5 0.0 0.0

−523.6 327.5 0.0 0.0
0.0 0.0 −20.9 20.8

⎤
⎦ ,

C
RM

10−6ET L3 =
⎡
⎣−1849 0.0 0.0 0.0

0.0 340.3 0.0 0.0
0.0 0.0 −20.9 20.8

⎤
⎦ .

(3.59)

Finally, the same warping deformations affect the shearing stiffness matrix drasti-
cally,

S
rd

10−2ET L
=

[
1.903 0.0
0.0 3.179

]
,

S
RM

10−2ET L
=

[
3.504 0.0
0.0 3.500

]
. (3.60)

As expected, warping induced deformations reduce the shell’s effective stiffness.
Because the configuration of the present problem is simple, Navier type solu-

tions [1] can be found easily using one single sine-wave or cosine-wave term only.
Such solutions were obtained based on two stiffness matrices: the stiffness matrix of
the proposed approach and that of Reissner–Mindlin’s theory. Table3.1 lists themag-
nitudes of the stress resultants and of the mid-point vertical displacement for these
two cases. Clearly, the predictions based on the proposed stiffnessmatrix are in closer
agreement with the exact solution of the problem derived by Fan and Zhang [36] than
those based on Reissner–Mindlin’s stiffness matrix.

The strain energy density at the point (η1 = πRm/9, η2 = L/3) was evaluated
based on the exact solution of the problem derived by Fan and Zhang [36] to find
a = 1/2

∫
L γ∗TD∗γ∗dη3 = 0.97969 p2

0L/ET . Next, the same strain energy was
evaluated based on the proposed stiffness matrix and the stress resultants of the

Table 3.1 Comparing the exact and Navier solutions

Exact Navier using C∗ Navier using C∗
RM

Values Difference (%) Values Difference (%)

N∗
1 /(p0L) 0.2727 0.2752 0.94 0.2341 −14.13

N∗
2 /(p0L) 0.3028 0.3051 0.76 0.2727 −9.93

N∗
t /(p0L) 0.3154 0.3178 0.77 0.2839 −9.97

Q∗
1/(p0L) 0.1673 0.1672 −0.05 0.1843 10.17

Q∗
2/(p0L) 0.0718 0.0710 −1.02 0.0678 −5.54

M∗
1 /(p0L2) 0.0524 0.0524 −0.02 0.0581 10.98

M∗
2 /(p0L2) 0.0195 0.0193 −1.13 0.0184 −5.97

M∗
12/(p0L2) −0.0035 −0.0035 −0.52 −0.0034 −3.04

M∗
21/(p0L2) −0.0032 −0.0032 −0.49 −0.0031 −2.47

ET u∗
3/(p0L2) 6.5133 6.5565 0.66 5.8053 −10.87
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associated Navier solution, leading to a = 0.98449 p2
0L/ET . Finally, when using

Reissner–Mindlin’s stiffnessmatrix and stress resultants of the correspondingNavier
solution, the same energy becomes, a = 0.95962 p2

0L/ET . The strain energy pre-
dicted by the proposed approach is in close agreement with its exact counterpart:
the 0.49% discrepancy is due to discretization and truncation errors. With Reissner–
Mindlin’s stiffness matrix, the error becomes 2.0%. Clearly, the stiffness matrix
predicted by the proposed approach should be used instead of its Reissner–Mindlin’s
counterpart as it captures the strain energy density more accurately.

Next, using the predictions obtained from Navier’s solution with the proposed
stiffness matrix, the local stress field at the point (η1 = πRm/9, η2 = L/3) was eval-
uated through the thickness of the shell. In the stress recovery process, the predictions
of four expansion orders, constant, linear, quadratic, and cubic, were compared to
assess the convergence of the proposed approach.

Figures3.16, 3.17, 3.18, 3.19, 3.20 and 3.21 depict the through-the-thickness
distribution of non-dimensional stress components, σ̄i j = σi j/p0. In these figures,
the predictions for O= 0, 1, 2, and 3 are indicated with symbols ◦, 	, 
, and ×,
respectively, while the exact solution by Fan and Zhang [36] is indicated by solid
lines. ForO ≥ 2 the predictions of the proposed approach are in close agreementwith

Fig. 3.16 Distribution of
stress component σ̄11

Fig. 3.17 Distribution of
stress component σ̄22
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Fig. 3.18 Distribution of
stress component σ̄33

Fig. 3.19 Distribution of
stress component σ̄12

Fig. 3.20 Distribution of
stress component σ̄13

the exact solutions, demonstrating its good convergence characteristics. Although the
shell equations were solved usingNavier’s solution, very accurate stress distributions
are recovered through the shell’s thickness using O ≥ 2.
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Fig. 3.21 Distribution of
stress component σ̄23

3.7 Conclusions

This paper has presented a novel approach to the analysis of shells. Kinematically,
the problem is decomposed into a rigid-normalmotion and awarping field. The strain
measures associated with rigid-normal motion and the warping field are assumed to
remain small. Consequently, the governing equations of the problem fall into two
categories: the equations describing geometrically exact shells and those describing
local deformations. The rigid-normal motion of geometrically exact shells is gov-
erned by nonlinear, two-dimensional equations, whereas a linear, one-dimensional
analysis provides the detailed distribution of three-dimensional stresses and strains.

Numerical examples have been presented to demonstrate the capabilities of the
analysis. In the proposed approach, the assumptions associated with commonly used
shell theories have been eliminated altogether. Yet, the predicted three-dimensional
stress distributions through the shell’s thickness compare favorablywith exact elastic-
ity solutions. In contrast with higher-order and layer-wise plate theories, the present
approach does not increase the number of unknowns used in shell theories. In fact,
the proposed approach can be used in conjunction with existing shell models, such
as those implemented in multibody analysis or commercial finite element packages.
It provides an improved stiffness matrix for the shell and furthermore, accurate,
through-the-thickness stress distributions can be obtained through a simple post-
processing operation.

Appendix A: Definition of Matrices

Many of the matrices defined in this paper express various quantities in terms of
the independent strain measures or stress resultants. The configuration of the shell
in its initial configuration affects number of independent parameters. In general, the
principal radii of curvature in the initial configuration differ, ρ1 �= ρ2, but in case of
a spherical shell, ρ1 = ρ2 = ρ, and hence, χ1 = χ2 = χ.
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For instance, if the radii of curvature differ, the independent strain measures
defined by Eq. (3.25) are E∗ = {ε∗

11, ε
∗
22, ε

∗
12 + ε∗

21, ε
∗
13, ε

∗
23,κ

∗
11,−κ

∗
22,−κ

∗
12 +

(ε∗
21 − ε∗

12)/(2ρ1),κ
∗
21 + (ε∗

12 − ε∗
21)/(2ρ2)}T . On the other hand, if the radii of curva-

ture are equal, E∗ = {ε∗
11, ε

∗
22, ε

∗
12 + ε∗

21, ε
∗
13, ε

∗
23,κ

∗
11,−κ

∗
22,−κ

∗
12 + κ

∗
21}T . In these

expression, ε∗
αi and κ

∗
αi are the i th components of array ε∗

α and κ
∗
α, respectively. It is

convenient to define

NE =
{
9, if ρ1 �= ρ2,

8, if ρ1 = ρ2,
(3.61)

Array E∗ is now of size NE × 1.
Matrices b

1
, and b

2
, of size 3 × 6, are defined as

b
1

= 1

χ1

⎡
⎣1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎦ , (3.62a)

b
2

= 1

χ2

⎡
⎣0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

⎤
⎦ . (3.62b)

Matrices b̂
1
and b̂

2
gather the corresponding Boolean matrices at each node.

If the radii of curvature differ, matrices t
1
and t

2
, of size NE × 6, are defined as

follows

t
1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 −1/(2ρ1) 0 −1 0 0
0 1/(2ρ2) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t
2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0

1/(2ρ1) 0 0 0 0 0
−1/(2ρ2) 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.63)

On the other hand, for equal radii of curvature, they become

t
1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, t

2
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.64)
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Next, for differing radii of curvature, matrix g, of size 6 × NE , is defined as

g(η3) = 1

χ1χ2

⎡
⎢⎢⎢⎢⎢⎢⎣

χ2 0 0 0 0 χ2η3 0 0 0
0 χ1 0 0 0 0 χ1η3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 χ1 0 0 0 0
0 0 0 χ2 0 0 0 0 0
0 0 χm 0 0 0 0 χ2η3 χ1η3

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.65)

where χm = (χ1 + χ2)/2. For equal radii of curvature, it becomes

g = 1

χ

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 η3 0 0
0 1 0 0 0 0 η3 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 η3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.66)

The following identities hold

g t
1

= bT
1

z, g t
2

= bT
2

z. (3.67)

For differing radii of curvature, matrix G, of size NE × NE , is defined as

G(η1, η2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 0 0 −S1 0 0 0 0 0
0 C2 0 0 −S2 0 0 0 0
0 0 1 0 0 0 0 0 0
S1 0 0 C1 0 0 0 0 0
0 S2 0 0 C2 0 0 0 0

(1 − C1)ρ1 0 0 S1ρ1 0 1 0 0 0
0 (1 − C2)ρ2 0 0 S2ρ2 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.68)

For equal radii of curvature, it becomes

G(η1, η2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 0 0 −S1 0 0 0 0
0 C2 0 0 −S2 0 0 0
0 0 1 0 0 0 0 0
S1 0 0 C1 0 0 0 0
0 S2 0 0 C2 0 0 0

(1 − C1)ρ 0 0 S1ρ 0 1 0 0
0 (1 − C2)ρ 0 0 S2ρ 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.69)

where Cα = cos(aαηα/ρα) and Sα = sin(aαηα/ρα).
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Finally, for differing radii of curvature, matrices T̃1 and T̃2, of size NE × NE , are
defined as

T̃1 = a1

ρ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 ρ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T̃2 = a2

ρ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 ρ2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.70)

For equal radii of curvature, they become

T̃1 = a1

ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ρ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T̃2 = a2

ρ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 ρ 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.71)

Appendix B: Stress Resultants

Stress resultants are integrals of the stress distributions through the thickness of the
shell. The force stress resultants are defined as

⎧⎨
⎩

N ∗
11

N ∗
12

N ∗
13

⎫⎬
⎭ =

∫
η3

⎧⎨
⎩

σ∗
11

σ∗
12

σ∗
13

⎫⎬
⎭χ2dη3,

⎧⎨
⎩

N ∗
21

N ∗
22

N ∗
23

⎫⎬
⎭ =

∫
η3

⎧⎨
⎩

σ∗
12

σ∗
22

σ∗
23

⎫⎬
⎭χ1dη3, (3.72)

where N ∗
11, N ∗

12, N ∗
21, and N ∗

22 are the in-plane forces and N ∗
13 and N ∗

23 the transverse
shear forces. The moment stress resultants are defined similarly

{
M∗

11
M∗

12

}
=

∫
η3

{
σ∗
11

σ∗
12

}
η3 χ1dη3,

{
M∗

21
M∗

22

}
=

∫
η3

{
σ∗
12

σ∗
22

}
η3 χ2dη3, (3.73)

where M∗
11 and M∗

22 are the bending moments and M∗
12 and M∗

21 the twisting
moments.The stress resultants acting on faces normal to unit vectors B̄1 and B̄2

are then collected into array F∗T
1 = {N ∗

11, N ∗
12, N ∗

13,−M∗
12, M∗

11, 0} and F∗T
2 =

{N ∗
12, N ∗

22, N ∗
23,−M∗

22, M∗
21, 0}, respectively.
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If the shell’s principal radii of curvature are equal, χ1 = χ2 and hence, N ∗
12 = N ∗

21
and M∗

12 = M∗
21. For differing radii of curvature, the nine independent stress resultants

are selected asF∗ = {N ∗
11, N ∗

22, (N ∗
12 + N ∗

21)/2, N ∗
13, N ∗

23, M∗
11, M∗

22, M∗
12, M∗

21}. For
equal radii of curvature, the eight independent stress resultants are selected as
F∗ = {N ∗

11, N ∗
22, N ∗

12, N ∗
13, N ∗

23, M∗
11, M∗

22, M∗
12}. Array F∗ is of size NE × 1. In the

selection of the independent stress resultants, the equation of equilibrium about unit
vector B̄3, M∗

12/ρ1 − M∗
21/ρ2 + N ∗

12 − N ∗
21 = 0, is used to eliminate one stress resul-

tant component.
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Chapter 4
On the Frictional Contacts in Multibody
System Dynamics

Filipe Marques, Paulo Flores and Hamid M. Lankarani

Abstract A comprehensive analysis on the use of different friction force models
on the dynamic simulations of multibody mechanical systems is investigated in this
work. In this context, some of the most relevant approaches for dealing with friction
available in the literature are revisited. In a broad sense, the friction models can be
classified into the statics and dynamics models, as they describe the steady-state
behavior or utilize extra state variable to capture the dynamic phenomena, respec-
tively. In this process, the main limitations and implications of the friction force
models are briefly analyzed. The dynamic responses of a single-mass one degree-
of-freedom system with permanent contact, as well as a multibody model of double
pendulum impacting the ground at its tip, are examined to analyze and compare the
various friction laws. The obtained results suggest that the prediction of the dynamic
behavior of multibody systems can strongly depend on the selection of the appropri-
ate friction model as well as frictional parameters.

Keywords Friction · Multibody dynamics · Contact forces · Stick-slip

4.1 Introduction

The dynamic analysis of multibody systems have been increasingly requiring accu-
rate techniques to model the contact interaction between different bodies, in which
the evaluation of the generated forces plays a relevant role. This work focuses on
different modeling techniques for the friction forces which are generally related
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to the resistance to the relative motion between contacting surfaces. Friction is a
highly complex phenomenonwhich is often overlooked due to typically lower impor-
tance when compared to the normal contact forces. However, friction occurs in all
real mechanical systems, even when some techniques are employed to minimize its
effects, such as, utilizing a pair of materials with low friction coefficient, improving
surface finishing, adding fluid lubricant, or using intermediary elements as bearings.
In most of the cases, the presence of friction forces is not desirable due to their
dissipative effects and wear production, although sometimes they are preponderant
for the desired operation of the system. Thus, the selection of the most appropriate
friction force model plays a crucial role in prediction of the dynamic performance
of multibody systems.

One of the first studies on friction appeared in the 16th century resulting from
Leonardo da Vinci’s work, who stated that the friction force is proportional to normal
load, opposes to the motion, and is independent of the contact area. This approach
was corroborated by Amontons [1]. Coulomb [2] established that friction was inde-
pendent of velocity magnitude, and developed the first friction model.

Coulomb friction law was the major precursor of the evolution of the friction
force models. However, this approach does not allow capturing different friction
phenomena which have direct influence on the dynamic response of the system. For
instance, this model is not continuous, which can introduce numerical instability
during a dynamic simulation. Thus, several friction models have been developed
over the years in order to obtain a better agreement with experimental data.

The properties of friction have been intensively studied and several conclusions
have been drawn about its main characteristics and dependencies. Some of the issues
which must be considered when modelling friction include static friction (stiction),
stick-slip, Stribeck effect, viscous friction, frictional lag, pre-sliding displacement
and break-away force, etc.

Several experimental works have proved that the friction at rest is higher than
the kinetic friction [3–5]. For that reason, the existence of two distinct coefficients
of friction is often considered, one for zero velocity and the other for when the
relativemotion occurs. During the relativemovement between different bodies, when
the velocity reduces, the friction force increases which may lead to the sticking
of the contacting surfaces. This phenomenon is the so-called “stick-slip” [6, 7],
which is overcome when the applied force is higher than the static friction force,
and consequently, the bodies start sliding. Rabinowicz [4] investigated the essence
of the static and kinetic coefficients of friction, and experimentally demonstrated
that the coefficient of friction can be described as a function of displacement, with a
maximum value for small displacements. This value defines the necessary force to
initiate the macroscopic motion and it is often called “break-away” force [4]. The
overcoming of this force establishes the boundary between the sticking and sliding
regimes. Johannes et al. [8] showed that this force is higher for low force rates.
Before reaching the break-away force, the contacting surfaces still have relative
motion, which is commonly called “pre-sliding” displacement. This phenomenon
consists of a small displacement with an elastic spring behavior which occurs for
any external tangential force applied between the contacting bodies [9, 10]. Based on
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the adhesion theory, one can state that the asperities of different bodies tend to adhere
due to the existence of compressive normal load. Therefore, when a tangential load is
applied, the rupture of the bond tends to occur. Before reaching the breaking point, the
asperities exhibit elastic, and posteriorly, plastic deformation which causes relative
displacement. The sticking regime ends when the external force is high enough to
break the junctions of asperities.

The use of two different coefficients of friction (static and kinetic) clearly suggests
that friction force is dependent on the relative velocity, for which it can only assume
two values. However, Stribeck [11] experimentally demonstrated that the transition
between static and kinetic modes is not discrete, but instead a continuous drop of
friction force for increasing velocities. This behavior can be noticed mainly for low
velocities, and is named “Stribeck effect”.

The friction force presents resistance to the change of friction state, which con-
sists on a delay to the velocity change [12]. This characteristic is frequently called
“frictional lag”, and introduces a hysteresis loop between friction force and velocity.
Bearing in mind the concept of Stribeck effect, the frictional lag produces lower
friction forces when the slip velocity is decreasing and vice-versa. This phenomenon
is particularly important for higher accelerations.

Starting from the Coulomb friction law, which is not capable of describing most
of the aforementioned effects, a wide range of friction models have been proposed
over the last few decades. In general, the models can be divided into three main
groups, phenomenological, physics-based and computational. In the former group,
the friction models are developed to fit the experimental observations and, therefore,
they can capture most of the frictional effects. The physics-based models attempt to
describe the interaction between two surfaces through the local physics to derive the
frictional behavior which is dependent on the material properties. Finally, several
models present discontinuities or singularities which can be a source of numerical
instability during the computations. In order to overcome these difficulties, some
researchers have been proposing new formulations, which have been shown to be
both accurate and efficient from computational point of view.

Another way to classify the friction models consists of dividing them into static
and dynamicmodels [13–16]. The first describes the steady-state behavior of friction,
which does not allow for capturing of the friction phenomena entirely. In contrast,
the second group uses extra-state variables to increase the complexity and flexibility
of the model in order to include the aforementioned phenomena.

Coulomb’s law is widely known and utilized due its simplicity and easiness to
implement. Thus, Coulomb’s friction law has been extended and modified by many
researchers [13, 17, 18]. In order to include the Stribeck effect, several authors pro-
poseddifferentmathematical expressions to describe that curve [12, 19–22], although
the exponential approximation presented by Bo and Pavelescu [23] is the most uti-
lized approach. Karnopp [24] proposed an approach in which the friction force is
evaluated as in the sticking phase within a velocity range. This model eliminates the
discontinuity at zero velocity, and is capable of capturing the stick-slip motion. In
order to overcome some numerical instability of Karnopp model, Leine et al. [25]
presented a new model, named switch model. Armstrong-Hélouvry et al. [26] pre-
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sented a survey of friction models, and introduced a seven parameter model. More
recently, Wojewoda et al. [27] proposed a model that describes the hysteretic behav-
ior of friction, and Awrejcewicz et al. [28] modeled the friction force as a function
of the external tangential force for low velocities.

By and large, the dynamic models emerged along with the need of capturing
some friction characteristics that the static models were not able to describe. Dahl
[29, 30] introduced the first dynamic model based on the stress-strain curve to model
the frictional behavior of ball bearings. Comparing with Coulomb friction law, both
models do not capture the stick-slip motion. However, the Dahl model presents better
response [31, 32], because it is capable of describing the pre-sliding displacement.
Most of the dynamic frictionmodels are based on the physical interaction between the
surfaces asperities, such as the bristle model [33], the reset integrator [33], the LuGre
[34], the Elasto-Plastic [35], among others [36–42]. Generally, these approaches
consider an extra state variable related to the bristles deflection.

Thus, the main goal of this work is to present and compare several friction force
models that can be utilized in the context of multibody systems formulations. In the
sequel of this process, themost relevant static and dynamic frictionmodels are briefly
characterized and compared. With the purpose of better identifying the similarities
and differences among the several friction models, two examples of application
are considered. First, a simple unconstrained one-dimensional mechanical system
is considered to illustrate the impact of the using of different friction approaches
on the dynamic response. Then, the interaction of a double pendulum with a plane
surface is utilized to analyze the behavior of the system with friction models in a
non-continuous contact situation.

4.2 Static Friction Models

This section presents several “static” friction force models frequently used in the
simulations of multibody mechanical systems. It must be stated that most of the
models exhibit a discontinuity of friction force when the relative velocity is zero,
which can cause difficulties in describing friction in a realistic manner.

4.2.1 Coulomb Friction

Coulomb presented the first friction model, in which the friction always opposes the
relative motion between contacting bodies, and that the magnitude of the friction
force is proportional to the normal contact force. This model depends on the relative
velocity direction, except for zero velocity where the friction force is a multivalued
function of the external tangential force. This model can described as [2]

F =
{

FC sgn (vT) if ‖vT‖ �= 0
min (‖Fe‖ ,FC) sgn (Fe) if ‖vT‖ = 0

(4.1)
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where
FC = μk ‖FN‖ (4.2)

in which FN is the normal force, FC is the magnitude of Coulomb friction, μk is the
kinetic coefficient of friction, Fe is the external tangential force, and vT is the relative
velocity of the contacting bodies. This model presents a dependence on the velocity
by the signum function,

sgn (vT) =
{ vT

‖vT‖ if ‖vT‖ �= 0
0 if ‖vT‖ = 0

(4.3)

where 0 is a null vector with the same dimensions as vT. Although this model is
quite straightforward to implement, it presents some difficulties since it does not
specify a friction force at zero velocity. Thus, this velocity dependence can originate
perturbations in the dynamic response of the system. Nevertheless, the Coulomb
friction law has been utilized quite often to simulate friction behavior for the sake of
simplicity, and since it requires only one input parameter; that is, the coefficient of
friction.

4.2.2 Coulomb Model with Stiction

Since the friction force at zero velocity is higher than the kinetic friction, several
studies have presented the necessity of introducing a friction model, which includes
two different friction coefficients. This modified Coulomb approach has a similar
behavior to Coulomb’s except in the vicinity of zero velocity. It is also a multivalued
function, but can reach a higher friction force, and can be described as follows [14]

F =
{

FC sgn (vT) if ‖vT‖ �= 0
min (‖Fe‖ , FS) sgn (Fe) if ‖vT‖ = 0

(4.4)

where

FS = μs ‖FN‖ (4.5)

in which FS is the magnitude of static friction, and μs is the static coefficient of
friction which is higher than the kinetic, μk. Although this model considers stiction,
in practice, it provides similar behavior when compared to Coulomb’s law, with an
oscillatory force for low velocities.

4.2.3 Coulomb Model with Viscous Friction

One of most common modification of Coulomb’s friction law deals with is the intro-
duction of viscous friction component. This effect can be modeled by using several
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approaches, although it is usually considered a linear relation between the relative
velocity and the friction force related to the viscosity of surface lubricants. Thus, a
friction model with viscous effect can be written as [14]

F =
{

FC sgn (vT) + FvvT if ‖vT‖ �= 0
min (‖Fe‖ , FC) sgn (Fe) if ‖vT‖ = 0

(4.6)

in which Fv is the viscous friction coefficient.

4.2.4 Model with Stribeck Effect

In contrast with theCoulombmodelwith stiction, the Stribeck effect [11] ensures that
the decrease from static to kinetic friction is a continuous process. Thus, the friction
force during relative motion is expressed as a continuous function of velocity as

F =
{

F (vT) if ‖vT‖ �= 0
min (‖Fe‖ , FS) sgn (Fe) if ‖vT‖ = 0

(4.7)

where F(vT) is an arbitrary function that depends on the relative velocity. This model
ensures that the friction force diminishes when the relative motion is initiated. Bo
and Pavelescu [24] introduced an exponential function, which is widely utilized to
describe the Stribeck effect and can be expressed as follows

F (vT) =
(

FC + (FS − FC) e
−

( ‖vT‖
vS

)δσ
)
sgn (vT) + FvvT (4.8)

where vS is the Stribeck velocity and δσ is a factor that relies on the geometry of
the contacting surfaces, which is often considered 2 as suggested by Armstrong-
Hélouvry [22]. This friction model takes into account the Coulomb, viscous, stiction
and Stribeck friction effects. However, it presents the same difficulty as the previous
approaches at zero velocity.

4.2.5 Karnopp Model

Since the aforementioned models are multivalued functions for zero velocity, their
static behavior cannot be captured during a simulation. To overcome this difficulty,
Karnopp [24] proposed a model where the velocity is considered zero, for a speci-
fied range. Thus, when the velocities are within this interval, the system’s state can
change and the model’s response will be the same as when the relative velocity is
zero. Karnopp model is usually used along with the Coulomb model and can be
expressed as

F =
{

F (vT) if ‖vT‖ > Dv

min (‖Fe‖ , FS) sgn (Fe) if ‖vT‖ ≤ Dv
(4.9)
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in which Dv is the tolerance for zero velocity. It is important to select a suitable range
of the null velocity. Nevertheless, this zero velocity interval does not comply with
the real behavior of the contact.

4.2.6 Threlfall Model

In most of the static models described earlier, the friction force at zero velocity
is multivalued, and is evaluated as a function of the external tangential force. In
order to simplify and ensure computational efficiency, several authors have proposed
alternative methods, which replace the discontinuity at zero velocity by a finite slope
model. Thus, Threlfall [17] presented amodel that avoids the discontinuity associated
with the Coulomb’s law, and is written as

F =
⎧⎨
⎩

FC

(
1 − e− 3‖vT‖

v0

)
sgn (vT) if ‖vT‖ ≤ v0

FC sgn (vT) if ‖vT‖ > v0
(4.10)

where v0 is a specified tolerance velocity. The resemblancewith the Coulomb friction
law increases with the decreasing of this tolerance velocity.

4.2.7 Bengisu and Akay Model

Bengisu and Akay [43] proposed an approach capable of modeling the Stribeck
effect, which can be defined as

F =
{(

−FS

v20
(‖vT‖ − v0)

2 + FS

)
sgn (vT) if ‖vT‖ < v0(

FC + (FS − FC) e−ξ(‖vT‖−v0)
)
sgn (vT) if ‖vT‖ ≥ v0

(4.11)

in which ξ should be a positive parameter representing the negative slope of the
sliding state. As with the previous model, when the slope at zero velocity is too
large, a small step size is needed to correctly capture the friction for low velocities,
which slows down the simulation. In addition, for velocities close to zero, the friction
force will always be low, irrelevant of the displacement.

4.2.8 Ambrósio Model

The above mentioned limitations associated with friction force’s discontinuity led
Ambrósio [18] to propose a modified Coulomb’s friction lawwhere the friction force
is defined as
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F =
⎧⎨
⎩

0 if ‖vT‖ ≤ v0
‖vT‖−v0

v1−v0
FC sgn (vT) if v0 < ‖vT‖ < v1

FC sgn (vT) if ‖vT‖ ≥ v1

(4.12)

where v0 and v1 are the tolerances for the velocity. This approach prevents the friction
force from changing direction when the relative velocity is close to zero and, there-
fore, it eliminates most of the numerical instability. However, it does not describe
the stick-slip motion.

4.2.9 Awrejcewicz et al. Model

Awrejcewizc et al. [28] developed amore complete and complex static frictionmodel
for dry contact which is dependent of both tangential force and relative velocity.
This model is governed by four different equations, one for sliding mode, two for
the transition from stick to slip modes, and one for sticking mode, as follows

F =

⎧⎪⎪⎨
⎪⎪⎩

F (vT) if ‖vT‖ > ε

FS sgn (Fe) if ‖vT‖ ≤ ε ∧ ‖Fe‖ > FS ∧ Fe · vT ≥ 0
(2A − 1) FS sgn (vT) if ‖vT‖ ≤ ε ∧ ‖Fe‖ > FS ∧ Fe · vT < 0
A (−Fe + FS sgn (vT)) + Fe if ‖vT‖ ≤ ε ∧ ‖Fe‖ ≤ FS

(4.13)
in which

A = ‖vT‖2
ε2

(
3 − 2

‖vT‖
ε

)

where ε is a velocity tolerance, and F(vT) is an arbitrary friction function for sliding
which depends on the velocity. The tolerance velocity defines the limit for sliding
state. Below this tolerance, the friction force is also calculated as a function of the
external tangential force.

Table4.1 summarizes the different approaches described earlier for the static fric-
tion models. It also includes the model parameters to be used as well as the curves
for the friction force versus slip velocity.

4.3 Dynamic Friction Models

This section includes some of the most relevant dynamic friction models. As
described earlier, in general, the static friction approaches have limitations in cap-
turing some friction phenomena, such as pre-sliding displacement, or frictional lag.
Thus, better alternatives should be examined, namely those available “dynamic fric-
tion” models, also named “state variable” models. In a simple manner, the dynamic
models use extra state variables together with the velocity to evaluate the friction
force.
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Table 4.1 Summary of static friction models

Coulomb [2] Coulomb with stiction [14] Coulomb w/viscous
friction [14]

Parameters: 1 (μk)

F

Tv

Parameters: 2 (μk and μs)

F

Tv

Parameters: 2 (μk and Fv)

F

Tv

Model with Stribeck
effect [23]

Karnopp [24] Threlfall [17]

Parameters: 4 (μk, μs, vs and
Fv)

F

Tv

Parameters: 3 (μk, μs and Dv)

Tv

F

Parameters: 2 (μk and v0)
F

Tv

Bengisu and Akay [43] Ambrósio [18] Awrejcewicz et al. [28]

Parameters: 4 (μk, μs, v0
and ξ)

F

Tv

Parameters: 3 (μk, v0 and v1)
F

Tv

Parameters: 3 (μk, μs and ε)

F

Tv

4.3.1 Dahl Model

The Dahl friction model [29] was developed with the aim of describing the friction
behavior of ball bearings. The basis of this solution is an analogy with the classical
stress-strain curve formaterials. Dahl observed that in brittlematerials, the difference
between the stiction and Coulomb friction is difficult to capture. Ductile materials,
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however, are more probable of having the stiction behavior, and then exhibiting a
decrease in the stress until Coulomb friction is reached. Moreover, the friction force
was shown to be dependent on relative velocity and displacement. Dahl model states
that when the contacting surfaces are subjected to stress, the friction force increases
until rupture occurs. In this context, the stress-strain curve can be described by a
differential equation as

dF

dx
= σ

∣∣∣∣1 − F

FC
sgn (vT)

∣∣∣∣
α

sgn

(
1 − F

FC
sgn (vT)

)
(4.14)

where F denotes the friction force, x is the displacement, FC is the Coulomb friction,
σ represents the stiffness coefficient, and α is a parameter that defines the shape
of the material curve. This parameter depends on the material, and usually varies
between 0 and 1 for brittle materials, and is higher than 1 for ductile materials. From
the analysis of Eq. (4.14), it can be stated that when F tends to FC, the derivative
tends to zero. Thus it can be concluded that the magnitude of the friction force does
not exceed FC.

Equation (4.14) can be transformed into a time derivative, and generalized for the
three-dimensional case. Since, typically, α is 1, Eq. (4.14) becomes

dF
dt

= σ

(
1 − F · sgn (vT)

FC

)
vT (4.15)

Introducing the state variable z, and assuming thatF =σz, Eq. (4.15) can bewritten as

dz
dt

=
(
1 − σ

FC
z · sgn (vT)

)
vT (4.16)

It can be observed from Eq. (4.16) that when the system reaches the steady state, the
friction force is

F = FC sgn (vT) (4.17)

which is in fact the Coulomb friction model.
It must be highlighted that the Dahl model is not capable of capturing the Stribeck

effect and stiction, since it is based on the dry Coulomb friction model with the
introduction of pre-sliding displacement through a new state variable, eliminating
the discontinuity at zero velocity.

4.3.2 Reset Integrator Model

Haessig andFriedland [33] proposed an evolution of theDahlmodel, which considers
that the friction force is originated by the elastic and plastic deformations of the
surface asperities. Each contact is modeled as a bond between two bristles. The reset
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integrator model does not allow for the bond to break, which means that when the
strain of a connection increases until reaching the rupture point, themodel ensures that
it is kept constant. This model uses the average of bristle deflection (z) to determine
the strain in the bond and to account the stiction, as follows

dz
dt

=
{

0 if ‖z‖ ≥ z0 ∧ z · vT > 0
vT otherwise

(4.18)

Similar to other friction models, the reset integrator model is also composed by
two state equations, one for sticking mode and another one for sliding mode. The
transition between those two phases occurs when the deflection reaches its maximum
value z0. This friction force can then be defined as follows

F =
{

σ0 (vT) (1 + a) z + σ1
dz
dt if ‖z‖ < z0

σ0 (vT) z0 sgn (z) if ‖z‖ ≥ z0
(4.19)

where σ1dz/dt is the damping term that introduces some physical meaning by having
damping oscillations and viscous friction effects, a denotes the coefficient pertaining
to the stiction, and σ0(v) is the contact stiffness. This friction force model presents a
discontinuity when the analysis changes between sticking and sliding situations.

4.3.3 LuGre Model

The LuGre model was originally proposed by Canudas de Wit et al. [34] and can be
considered as an extension of theDahlmodel [29]. Thismodel is capable of capturing
the Stribeck and stiction effects. In a simple way, this model considers friction as the
result of the interactions of the surfaces bristles. When a force is applied, the bristles
start to deform with spring behavior during the sticking phase. Then if the force is
sufficiently large, the bodies start to slip. The model follows as

dz
dt

=
(
1 − σ0

g (vT)
z · sgn (vT)

)
vT (4.20)

F = σ0z + σ1 (vT)
dz
dt

+ f (vT) (4.21)

where σ0 is the stiffness of the bristles, σ1(v) is the damping of the bristles which
can be set constant, or can be a function of velocity, f (v) is an arbitrary function that
describes the viscous effect and g(v) is an arbitrary function that accounts for the
Stribeck effect as

g (vT) = FC + (FS − FC) e
−

( ‖vT‖
vS

)2

(4.22)
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where FC is the Coulomb friction, FS is the static friction and vS is the characteristic
velocity of the Stribeck friction [21]. For f (v), typically a linear viscous friction is
considered, that is

f (vT) = σ2vT (4.23)

The effect of this term is quite important when there is a fluid lubricant or when the
relative velocities are high.

For a constant velocity, that is, when the system reaches the steady state (dz/dt =
0), the expression to the friction force can be reduced to

F = g (vT) sgn (vT) + f (vT) (4.24)

Thus, considering the Eqs. (4.22) and (4.23), it is possible to conclude that the steady-
state values of the LuGre model agrees with the static model defined by Eq. (4.8).

4.3.4 Elasto-Plastic Model

The elasto-plastic model was developed by Dupont et al. [35], and is based on the
division of the body displacement into two different components, the elastic and
plastic displacement. When the bodies are sticking, the plastic displacement remains
constant, while during the sliding phase, the elastic displacement is constant. The
friction force can be calculated in a similar way as in the case of LuGre model [34],

F = σ0z + σ1
dz
dt

+ σ2vT (4.25)

where σ0 is the contact stiffness, σ1 is the contact damping, and σ2 is viscosity
coefficient. The velocity of bristle deflection is given by

dz
dt

= vT

(
1 − α(z, vT)

σ0

g(vT)
z · sgn (vT)

)
(4.26)

in which the function α (z, v) is used to capture stiction, since it just allows elas-
tic displacement until the system reaches the break-away force. This function is
expressed as

α(z, vT) =
{

α(z) if vT · z ≥ 0
0 if vT · z < 0

(4.27)

with

α(z) =

⎧⎪⎨
⎪⎩
0 if ‖z‖ < zba

1
2

(
sin

(
π

‖z‖− zmax+zba
2

zmax−zba

)
+ 1

)
if zba < ‖z‖ < zmax

1 if zmax < ‖z‖
(4.28)
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where zmax is the maximum bristle deflection and zba is the break-away bristle deflec-
tion. The value of zmax can be determined based on the steady state friction, and the
relation zba/zmax ≈ 0.7 can be used to calculate zba [35].

4.3.5 Gonthier Model

Gonthier et al. [39] introduced a two-dimensional friction model based on LuGre
approach [34]. This approach considers a force from the bending of the bristles,
given by

Fbr = σ0z + σ1
dz
dt

(4.29)

where σ0 is the stiffness and σ1 is the damping coefficient. To ensure a smooth
transition between the stick-slip friction regimes, an auxiliary parameter is defined as,

s = e
−

( ‖vT‖
vS

)2

(4.30)

where vS is the Stribeck velocity. When the bodies are sticking, the deformation rate
will be equal to the relative velocity, while for sliding, the resultant friction force
will approach the Coulomb friction force, FC.

dz
dt

= svT + (1 − s)

(
1

σ1
FC − σ0

σ1
z
)

(4.31)

Coulomb friction has always the velocity direction and can be approximated by

FC = FCdirε (vT, vε) (4.32)

where dirε(v, vε) returns the unit vector with velocity direction, and it smooths the
vector oscillations for velocities under a certain tolerance, vε , to diminish the dis-
continuities in velocity direction. This tolerance velocity is considered vε = 0.01 vS.

dirε (vT, vε) =
⎧⎨
⎩

vT
‖vT‖ if ‖vT‖ ≥ vε

vT
vε

(
3
2

‖vT‖
vε

− 1
2

(
‖vT‖

vε

)3
)

if ‖vT‖ < vε

(4.33)

This approach includes a temporal lag associated with the dwell-time dependence.
To capture that phenomenon, a new state variable is defined as

ṡdw =
{

1
τdw

(s − sdw) if s − sdw ≥ 0
1
τbr

(s − sdw) if s − sdw < 0
(4.34)
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where τdw is the dwell-time dynamics time constant, and τbr = σ1/σ0 is the bristle
dynamics time constant. The time constants should be set according to the desired
time delay, a large one for sticking, and a small time delay for sliding. Thus, the
maximum friction force can be defined as

Fmax = FC + (FS − FC) sdw (4.35)

where FC and FS are the magnitude of Coulomb and static friction, respectively.
Thus, the friction force can be expressed as

F =
{

Fbr + σ2vT if ‖Fbr‖ ≤ Fmax

Fmax sgn (Fbr) + σ2vT if ‖Fbr‖ > Fmax
(4.36)

where σ2 is the viscous damping coefficient. The use of this model results in a set of
ordinary differential equations that are quite stiff at low relative velocities and cannot
be solved using explicit ODE solvers.

4.3.6 Liang Bristle Model

This bristle friction model [42] is an extension of the model presented in [33] to
the three-dimensional space. The average deflection of the bristles is represented by
a linear spring, which can stretch and rotate, and it is constrained to the tangential
plane of the contact. Thus, for each individual contact, the friction force can be
calculated as

F = kbs (4.37)

where kb is the bristle stiffness and s is the average bristle deflection and can be
expressed as

s(t) =
⎧⎨
⎩

s(t0) +
t∫

t0

vT(t)dt if ‖s‖ < smax

smax
vT

‖vT‖ if ‖s‖ ≥ smax

(4.38)

where t0 is the starting time of the contact, t is the current time and smax is the
maximum bristle deflection that can be defined as

smax =
{

skmax = FC
kb

if ‖vT‖ > vd
ssmax = FS

kb
if ‖vT‖ ≤ vd

(4.39)

where vd is a threshold velocity, which represents the numerical boundary between
the sticking and sliding regimes. Thus, there is amaximumvalue for bristle deflection
for sticking (ssmax) and another for sliding (sk max).
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The major drawback of this model is related to the transition of the sticking
regime to the sliding regime. This is because it corresponds a sudden decrease of
the maximum value of the average bristle deflection, which can result in an abrupt
change of the friction force. To stabilize the friction force, the Eq. (4.37) can be
modified through the introduction of a damping term; i.e.,

F = kbs + cbṡ (4.40)

where cb is the bristle damping coefficient. When the model reaches the steady-state
in the sliding mode, the friction force will be equal to Coulomb friction force. In the
sticking mode, the friction force will be higher, and equal to the static friction.

Table4.2 summarizes a brief comparison among the six different dynamicmodels,
and the friction phenomena that each model captures are listed individually.

Table 4.2 Comparison of dynamic friction models

Model Features taken into account

Dahl [29] • 3 Parameters (μk, σ and α)

• Pre-sliding displacement
• Coulomb friction

Reset integrator [33] • 4 Parameters (μk, μs, σ0 and σ1)

• Pre-sliding displacement
• Stiction

LuGre [34] • 6 Parameters (μk, μs, vs, σ0, σ1 and σ2)

• Pre-sliding displacement
• Stiction
• Stribeck effect
• Viscous friction
• Frictional lag

Elasto-plastic [35] • 6 Parameters (μk, μs, vs, σ0, σ1 and σ2)

• Pre-sliding displacement
• Stiction
• Stribeck effect
• Viscous friction
• Frictional lag

Gonthier et al. [39] • 7 Parameters (μk, μs, vs, σ0, σ1, σ2 and τdw)

• Pre-sliding displacement
• Stiction
• Stribeck effect
• Viscous friction
• Frictional lag

Liang et al. [42] • 5 Parameters (μk, μs, vd, kb and cb)
• Pre-sliding displacement
• Stiction
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4.4 Comparison of Results for Illustrative Examples

In this section, two demonstrative application examples are considered, namely, the
classical 1-DOF spring-mass system and the double pendulum impacting the ground.
The main goal of this section is to analyze and discuss the influence of the use of
different friction force models on the dynamics response of multibody systems.

4.4.1 Single DOF Mass-Spring Model with Permanent
Contact

The classical 1-DOF spring-mass system is utilized as a numerical example of appli-
cation, which allows for the analysis and comparison of the different friction models
(see Fig. 4.1a). This model is widely used as benchmark for validation of friction
models [6, 13, 25, 33, 39, 44], and it consists of a block with mass m, which is
positioned on a conveyor belt. The belt is moving with a constant velocity. The block
is connected by a spring element with stiffness ks. The system dynamics is governed
by the differential equation

F = ksx + mẍ (4.41)

The simulation parameters for the spring-mass system are listed in Table4.3. The
specific parameters associated with each friction model were extracted from the
literature and listed in Table4.4. Initially, the block is located at the origin of the xy
coordinate system, and its velocity is the same as that of the belt.

Figure4.1b–d shows the global results obtained from the simulations with differ-
ent friction models. In order to keep the analysis simple, the friction approaches are
grouped into three classes, namely “static models without stiction”, “static models
with stiction”, and “dynamic models”. The behavior of the system is quantified by
the plots of the block position, relative velocity and friction force values. The results
are shown for 20 s of simulation.

Regarding the static models without stiction, they present a sticking phase related
to the initial conditions, since the spring force magnitude is lower than the Coulomb
friction force. The fact of having an exact zero relative velocity at the beginning of the
simulation avoids any numerical instability for themodels with a discontinuity at null

Table 4.3 Simulation parameters for the spring-mass model

Parameter Value Parameter Value

Mass of the block (m) 1kg Time step (
t) 0.00005s

Velocity of the belt (vb) 0.1m/s Simulation time 20s

Spring stiffness (ks) 2N/m Integrator algorithm Runge–Kutta 4th order
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Table 4.4 Parameters considered for the different friction models

Parameter Symbol Value Parameter Symbol Value

Static coefficient of
friction

μs 0.15 Tolerance velocity
(Awrejcewicz)

ε 0.001m/s

Kinetic coefficient of
friction

μk 0.1 Stiffness coefficient σ 105 N/m

Coefficient of
viscosity

Fv 0.1Ns/m Stiction coefficient a 0.5

Stribeck velocity vs 0.001m/s Stiffness coefficient σ0 105 N/m

Geometry factor δσ 2 Damping coefficient σ1
√
105 Ns/m

Tolerance velocity
(Karnopp)

Dv 0.001m/s Coefficient of
viscosity

σ2 0.1Ns/m

Tolerance velocity
(Threlfall, Bengisu
and Akay)

v0 0.001m/s Dwell-time constant τdw 2s

Factor for curve shape ξ 50s/m Bristle stiffness kb 50,000N/m

Tolerance velocity
(Ambrósio)

v0 0.0001m/s Threshold velocity vd 0.001m/s

Tolerance velocity
(Ambrósio)

v1 0.001m/s Bristle damping cb 80Ns/m

velocity, as in the case of theCoulombmodel and theCoulombwith viscous approach.
Since these models have a constant Coulomb friction force, or sometimes lower for
velocities close to zero, the block exhibits a spring-like behavior. From the analysis
of Fig. 4.1b, it can be observed that the results corresponding to the Coulomb with
viscous friction shows a distinct behavior, since the viscosity introduces a damping
effect in the block oscillations.

For the static models with stiction, the differences are more evident on the sys-
tems’ response. Both simulations with Coulomb with stiction and Stribeck friction
models present numerical instability, as it can be observed in the friction force plot of
Fig. 4.1c. This phenomenon is associated with the changes in the velocity direction.
The Coulomb model with stiction is capable of reaching the static friction only at
the first peak, and because of the initial velocity, it does not stick again. Karnopp and
Awrejcewicz models have similar behavior, and present the well-defined stick and
slip phases. As the model with Stribeck friction is the only one with viscous friction
component, it has faster cycles comparing with the other approaches.

Analyzing the dynamic models, it is possible to observe that Dahl’s model is
the only one that does not capture the stick-slip phenomenon. From Fig. 4.1d, the
remaining models can be divided into two groups, the first includes the LuGre,
Elasto-Plastic and Gonthier, and the second one includes the Reset Integrator and
Liang. The difference in the dynamics corresponding to these models behavior is
caused by presence of a viscous component in the first set of models. Figure4.2a,
b show the plots of the friction force versus displacement and friction force versus
relative velocity for the dynamic friction approaches. Comparing these models with
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Fig. 4.2 Dynamic models behavior: a Friction force versus displacement; b Friction force versus
relative velocity

Rabinowicz’s work [4], it can be stated that LuGre, Elasto-Plastic and Gonthier’s
present the friction force as a function of displacement with a similar shape. During
the pre-sliding displacement phase, the slope of the friction force is directly related
to the stiffness coefficient of each model (see Fig. 4.2a). In contrast with the static
models, the dynamic approaches do not change the force direction with the change of
velocity direction, as can be observed in Fig. 4.2b. This behavior is similar to the one
obtained in [45]. The Reset Integrator, Elasto-Plastic, and LuGre (to some extent)
seem to exhibit an increase of the friction force before sticking. In turn, the Liang’s
model shows more instability in velocity, before reaching the sticking phase.

4.4.2 Double Pendulum Impacting Ground

In the previous example, the friction models were analyzed and compared for a sys-
tem with permanent contact. However, a system with impacts might cause different
dynamic responses due to its nonlinear response. In order to study that influence,
a double pendulum colliding with the ground is considered here. In Fig. 4.3, the
configuration of the double pendulum immediately before the impact is illustrated.
The revolute joints were modeled through kinematic constraints [46] and, in the end
where the impact occurs, a spherical shape (r = 0.05m) was considered to make the
contact detection process easier. Table4.5 presents the inertia properties and initial
conditions of each body used in this example.

The collisions between arm 2 and ground produces high normal force levels.
Since the friction force is proportional to the normal load, it is required to have
an accurate evaluation of normal forces to perform a correct modelling of friction.
For this example, the normal forces are calculated using the compliant force model
proposed by Lankarani and Nikravesh [47]. This model is based on Hertzian theory,
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Fig. 4.3 Double pendulum
configuration
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Table 4.5 Properties of the bodies for double pendulum simulation

Parameter Arm 1 Arm 2

Length (L) 1m 1m

Mass (m) 1kg 1kg

Moment of inertia (J) 1/12kg.m2 1/12kg.m2

Angular position (θ) 252◦ 240◦

Angular velocity (θ̇ ) 1 rad/s 1 rad/s

and takes into account the energy dissipation through the inclusion of a damping
term. Thus, the contact force can be written in the following form

FN = Kδn

[
1 + 3

(
1 − c2e

)
4

δ̇

δ̇(−)

]
(4.42)

where K is the contact stiffness, n is an exponent that defines the degree of nonlin-
earity, ce is the coefficient of restitution, and δ̇(−) is the initial impact velocity. The
contact stiffness K is evaluated from the material properties of the pendulum and
ground to be both steel, and the radius of contact r of arm 2 as

K = 2
√

r

3
(
1−ν2

E

) (4.43)
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For this model, only four friction force models are considered, namely, the Coulomb
law [2], model with Stribeck curve [23], Dahl model [29] and LuGre model [34].
The parameters for friction models are the same used in the Sect. 4.4.1, and are listed
in Table4.4. The properties for the normal contact force model are presented in
Table4.6. The selection of a small time step is required due to the using of dynamic
frictionmodels, since they include the resolution of differential equationswhich need
to have small increments.

In this study, the simulations were performed with data provided until the first
impact ends. The results are gathered in Table4.7, which include the impact duration,
maximumnormal force,maximum friction force, and variation ofmechanical energy.

As expected, the results show that the inclusion of friction in the dynamic analysis
of the system has a significant effect on its response. The variation of mechanical
energy indicates that friction is one of the most important source of impact energy
dissipation, since the frictionless impact dissipates almost three times less energy.
Another important issue is that including friction has some effect on the normal
contact force, while different friction models almost have no influence on the motion
in the normal direction. Although the Stribeck model includes static friction which
gives a higher maximum friction force compared to Coulomb, it does not affect in
the dissipation of energy.

The LuGre model presents more distinct results for all the parameters in Table4.7
when compared to the remaining models. It is observed that LuGre model is highly
affected by the rapid changes of state that happen during impact situations. Thus,

Table 4.6 Parameters used to evaluate normal force model

Parameter Symbol Value Parameter Symbol Value

Contact
stiffness

K 3.44 ×
1010 N/m3/2

Coefficient of
restitution

ce 0.9

Exponential
coefficient

n 1.5 Time step 
t 1 × 10−8 s

Table 4.7 Simulation outputs for different friction force models

Model Impact duration
(s)

Maximum
normal force (N)

Maximum
friction force (N)

Variation of
mechanical
energy (J)

Frictionless 2.0339 × 10−4 13,534 0 0.05216

Coulomb 1.9874 × 10−4 12,395 1239.5 0.14199

Stribeck 1.9874 × 10−4 12,395 1474.2 0.14199

Dahl 1.9627 × 10−4 12,395 1239.5 0.14166

LuGre 2.3638 × 10−4 12,257 5721.9 0.13615
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Fig. 4.4 Comparison of
friction force for different
models in the double
pendulum impact

it results in a higher value for the friction force and for the impact duration. The
time history of the friction force is represented in Fig. 4.4, and it is again shown that
LuGre model has substantial variations. This plot also shows a smooth increase of
friction force for the Dahl model.

4.5 Concluding Remarks

Acomparative study of some of themost relevant friction forcemodels formultibody
systems dynamics has been presented and analyzed in this work. In the sequel of
this process, the main characteristics, advantages and limitations of the static and
dynamic friction force models were also discussed. To perform a comparative study
of the dynamic response of the discussed models, a 1-DOF spring-mass model and
a double pendulum with ground impact were utilized as demonstrative examples of
application.

The Coulomb friction law was the major precursor of the evolution of the friction
force models. This model, however, was shown to have a huge inability in captur-
ing different friction phenomena. These phenomena have a direct influence on the
dynamic response of the systems. To mitigate the differences between the reality and
friction modeling, robust models must be taken into account to appropriately model
general multibody systems.

As it was expected, the friction models present more significant differences at the
accelerations level, mainly when there are changes in the velocity direction. Since
the main differences between the friction models occurs for small relative velocities,
the time integrator and the time step should be carefully chosen in order to be able
to correctly capture those differences.
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To sum up, the choice of a friction model to implement in a dynamic simulation
is not an easy task. Nevertheless, in order to have more complex friction models, it
is in general necessary to introduce larger number of parameters to fully define the
physics of the friction phenomena. This study illustrates that in order to correctly
model, analyze and simulate frictional behavior inmultibody systems, an appropriate
friction model must be adopted.
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Chapter 5
Modeling and Simulation of a 3D Printer
Based on a SCARA Mechanism

Eduardo Paiva Okabe and Pierangelo Masarati

Abstract This work presents a dynamic simulation of four arms SCARA (Selective
Compliance Articulated Robot for Assembly) mechanism used in 3D printers in an
multidisciplinary free software. Different extruder heads, motor supply voltage and
microstepping strategies were simulated to show their impact on the construction
of the printed part. To do the complete analysis of the printer, it is necessary to
simulate the workflow to print a part. The steps of this workflow are part modeling,
G-code generation, G-code translation, inverse kinematic analysis, motion transla-
tion and dynamic analysis. After accomplishing these steps, the computation of the
positioning error completes the analysis. The simulation showed that the microstep-
ping strategy had the greater influence on the construction of the part. The extruder
mass became particularly relevant when the voltage was reduced. Simulation of the
complete system also showed that electrical andmechanical components can be inte-
grated in one model, although the behavior of components of one domain can restrict
the simulation performance of the entire system.

5.1 Introduction

Nowadays companies have been facing shorter and shorter time-to-market cycles.
Their success is strictly related to their ability to conceive new products and services.
In this environment, the application of new tools to accelerate the innovation process
is fundamental to rapidly develop new products. The computational tools for product
development linked to the manufacturing design helped to forge the “digital fabri-
cation” concept. The basis of this concept is the application of software for three
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dimensional modeling (CAD), computational simulation (CAE), the code genera-
tion (g-code) for CNC machines (CAM—computer aided manufacturing) and rapid
prototyping process.

One of the most popular methods of rapid prototyping is the fused deposition
method (FDM). It was developed in the end of the 1980s; its basic operation is to
add melted plastic directly to the model through an extrusion head. The prototype
is built by layers; therefore, the extruder head has to perform a series of repetitive
motions until the layer is finished, before moving to the next one. The deposition
process has to be relatively fast to assure the adhesion of the new layers on top of
the former ones. The control of the motion of the deposition head along with the
extrusion speed is fundamental to make the process precise and accurate.

Themost commonmechanism employed tomove the deposition head is the gantry
(Cartesian) mechanism. However, other types of mechanism such as Delta (parallel)
and SCARA (parallel, redundant, selectively compliant) [6, 20] have been adopted
in open source 3D printers because their fabrication and assembly is usually simpler
and faster than Cartesian mechanisms. In fact, the latter usually require a more
complex support frame. The reduced inertia of the mechanism is another advantage
over gantry mechanisms, which makes increased deposition head speed possible and
allows the construction of thin wall parts.

TheSCARAconcept (SelectiveComplianceArticulatedRobot forAssembly)was
first introduced in Japan in 1979 [22], and this robot arm was designed to move fast
in the horizontal plane with some compliance, essentially lumped in the joints, and
with high stiffness regarding vertical motion [21]. It has a small footprint compared
to cartesian robots, which renders it very useful to operations in restricted spaces.
This kind of mechanism uses vertical axis joints, therefore, the motors do not have
to compensate gravity as a Delta geometry robot has to. It can use smaller motors,
which minimizes the power needed to hold its position [3].

The multibody simulation of SCARA robots are usually performed as a way to
verify their behavior with different setups of actuators and controllers. Padhy [16]
developed a dynamic model of a SCARA robot based on Newton–Euler equations.
He developed forward recursion equations to compute velocities and accelerations
of each link, and backward equations to calculate forces and moments on the end
effector. The third link coupled to the end of the second link has a z-translation and
a rotation about this axis, therefore, its inertia was added to the second link in order
to make the calculations easier.

Fumio [5] developed a simple dynamic model of a SCARA robot with a harmonic
drive to estimate the dynamic parameters, and compare the computer model to the
experimental setup. The proposed rigid body model estimated the torque within
10% of error; however, this value increased to 30% in lower speed operation, when
friction was more significant. Inertia parameters were well estimated, due to the high
acceleration which eases the inertia measurement.

Das and Dülger [4] developed a mathematical model of a SCARA robot using a
Lagrange formulation of the robot mechanism and a mathematical model of a DC
servomotor driven by a PD controller. The simulation was compared to experimental
results that demonstrated a close behavior, although the authors did not provide the
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error measurement. They applied inverse kinematics to convert the desired trajectory
into servomotor rotations.

Pigani and Gallina [17] developed a model of a three link SCARA mechanism
actuated by cables. The three link was adopted instead of the two link approach,
because the inertia to make small movements is lower, therefore, the tension applied
to the cables is also lower. Themain problem faced by this kind of configuration is the
oscillation, since the mechanism is under-constrained. The mechanism performance
improved when damping elements were incorporated in it.

The four arms design (five bar mechanism) as shown in Fig. 5.1 has been chosen
to be selectively more rigid and stable compared to the traditional two arms concept,
which improves precision on micro movements [24]. Another interesting feature of
the four arms design is that both motors can be attached to the support structure,
whereas in the traditional two arms configuration one of the motors must be attached
to the elbow of the robotic arm.

Inverse kinematics plays an important role on the analysis of SCARAmechanism,
since themovement of itsmanipulator has to be translated tomotor rotations. It can be
applied to model calibration as used by Joubair et al. [8], who developed a kinematic
model, where they could identify twelve geometric parameters through the error
analysis of five positions. This model was linearized and the Jacobian matrix was
employed to calculate the parameters through inverse kinematics.

Another application to the inverse kinematics was presented by Kalra et al. [9],
whodeveloped an algorithm to solve themultimodal (multiple configurations) inverse
kinematics problem. They applied the simulations to a SCARA robot to identify the
optimumstrategy, usingmultiple forward kinematic solutions and a genetic algorithm
to optimize the problem. This strategy showed interesting results because it presented
approximated solutions, even when the final position was not feasible.

The inverse kinematics of a simple SCARA robot armwas applied in the develop-
ment of a virtual model by AlMashhadany [1]. The robot trajectory could be verified
through its implementation in a “virtual reality” environment.

Another aspect of SCARA robots that has been investigated in recent years is
the motion control. Sprenger et al. [23] developed a SCARA robot to balance an
inverted pendulum. The inverse and forward kinematics were formulated in order

Fig. 5.1 Deposition
mechanism composed by
four arms

stepper 
motor 1

stepper 
motor 2

deposition 
headrevolute 

joints
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to test the control strategy. The control was tested on robot equipped with harmonic
drives, and the geometric nonlinearities were calculated by the inverse kinematics,
while the other errors were managed by a dynamic compensation.

Hermle andEberhard [7] proposed a new control strategy and applied to a SCARA
robot with one flexible arm. This arm was modeled by finite element and further
reduced. The flexible arm was the one of the manipulator, which performs the z-
translation. It was incorporated into the multibody model through generalized coor-
dinates. Applying the proposed control strategy with optimized parameters allowed
the control of the trajectory and the point-to-point motion.

Visioli and Legnani [26] compared the use of different control strategies to track-
ing control of the trajectory of a SCARA robot. The single-loop PID controller
worked close to the robot resolution in low-speed trajectories. The dynamic model
based controller had a better performance in high speed, that can be improved with
the addition of a neural network to compensate model errors.

VanHelvoort et al. [25] tested a control of a four arms SCARA robot using a linear
fractional transformation applied to an experimental setup. It generated a fourth order
model that was validated through a computer simulation and an experiment in time
and frequency domains.

Amiri-M et al. [2] proposed a controller of a SCARA robot using a quantitative
feedback theory. To test the controller, they developed an inverse kinematics model
that was coupled to the dynamic model of the robot. They concluded that one of
the problems is associated to the cross coupling effect between joint which certainly
makes the movement more nonlinear.

In a 3D printer, the arms are driven by stepper motors, which decreases the need
of feedback control, particularly in low speed operation. This represents a cheaper
solution compared to servomotor [4] or harmonic drives [5, 23], which are commonly
used in industrial robots.

To simulate the behavior of the SCARA mechanism associated to a set of stepper
motors, a model was assembled on the free multibody software MBDyn [12]. The
motor model proposed by Morar [13] was implemented in a user-defined module
and further integrated in the complete mechanism model.

MBDyn features an inverse kinematic and dynamic analysis which is particularly
interesting for the study of this kind of mechanism, since it translates the desired
trajectory of the deposition head into joint rotations, including the case of redundant
mechanisms, providing an estimate of the required torques.

Figure5.2 shows the workflow of the simulation performed to analyze the mech-
anism.

Head 
Trajectory

Inverse
Kinematics

Motion
Discretization

Dynamic
Simulation

Fig. 5.2 Workflow of the dynamic analysis of the mechanism
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The first step is to model the part that is going to be fabricated in a solid modeler.
Then, a slicing software, such as Slic3r [18], is employed to generate the G-code
program. This program tells the printer how it should move to build the part layer
by layer. This slicing software takes into consideration some machine limits such as
maximum printable dimensions, number of extrusion heads, maximum speed and
resolution.

Normally, the firmware of the printer has to translate the desired motions of
the deposition head into a sequence of motor steps. In this work, a Python script
interprets the G-code generated, and provides the correct displacement, velocity and
acceleration of the deposition head to the MBDyn’s inverse kinematic analysis.

At the end of the inverse kinematic analysis, a file is generated with the rotation
of each arm, which can be directly translated into the motion of the stepper motors.
Another script interprets the continuous movement provided by the former analysis
into discrete steps that need to be performed by each of the motors. This phase is
called motion discretization; it yields a file with time and direction of each step.

The dynamic simulation of the model considers rigid arms, but the stepper motors
are modeled to show their influence on the dynamic behavior of the deposition mech-
anism. Even though the discrete motions are relatively close to the actual trajectory
to be followed by the deposition head, the inertia of the components and the stepper
motor behavior deviates the motion of the deposition head with respect to the desired
path.

5.2 Methodology

The SCARA based printer is a mechanical/electrical system that can be formulated
as a system of Differential-Algebraic Equations (DAE) [12]:

Mq̇ − β = 0

β̇ +
(

∂φ

∂q

)T

λφ +
(

∂ψ

∂q̇

)T

λψ =
∑

f (q, q̇, t) (5.1)

φ (q, t) = 0

ψ (q, q̇, t) = 0

whereM is the inertiamatrix,β is the vector ofmomentum andmomentamoments,q
is the generalized position vector,φ is the system of holonomic constraint equations,
ψ is the system of non-holonomic constraint equations, vectors λφ and λψ collect
the Lagrange multipliers respectively associated with the holonomic and the non-
holonomic constraints, f is the vector of external loads, and ˙(♣) represents the time
derivative of (♣).

Dynamic systems on MBDyn are based on nodes, in analogy with displacement-
based Finite Element algorithms. Nodes provide degrees of freedom; they can be
associated to different physical domains, such as mechanical, hydraulic, thermal and
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electrical. This structure makes it easier to integrate heterogeneous components of
the same machine in one simulation.

For example, the stepping motor model presented in this work integrates dynamic
structural and electric nodes in one element, which simulates the interaction between
mechanical and electrical domains.

Constraints, forces, voltages and currents have to be applied on, or imposed to,
nodes; thus, they become part of themodeled system. This is accomplished by adding
two sets of equations to variables associated with each node. The first set is used in
the assembly of the system of equations (5.1), and the second set is used during the
nonlinear solution phase, if it is necessary, and it requires the analytical determination
of the Jacobian matrix of the Eq.5.1.

5.2.1 Stepper Motor Formulation

The formulation of the steppermotor requires a combination of electric and structural
nodes. The electric nodes receive the voltage coming from the stepper driver, which
is controlled by a input signal that provides the step information (time and direction).

A stepper motor can have multiple phases; each phase has to be associated with
an electric node, which has the following equation [13]:

εk = Vk − R · ik − L
dik
dt

− ek = 0 (5.2)

where Vk is the voltage applied by the stepper driver to the phase k, R is the resistance
of the winding connected to this phase, ik is the current in the circuit of this phase,
L is the winding inductance of phase k, dik

dt is the time derivative of the current, and
ek is electromotive force induced.

The electromotive force ek varies with the angular velocity of the stepper rotor:

ek = Km · sin (Nrθz + θ0k) · ωz (5.3)

whereKm is themotor constant,Nr is the number of pole pairs, θz is the rotor rotation,
θ0k is the angular position of the kth winding in the stator, and ωz is rotation speed
of the rotor.

The electromagnetic torque is applied to the structural nodes; its magnitude is
calculated according to the formula:

Te =
s∑

k=1

Km · sin (Nrθz + θ0k) · ik (5.4)

where Te is the electromagnetic torque, n is the number of phases, and ik is the phase
current.
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The torque generated by the motor is applied to the rotor and, therefore, there is
a corresponding reaction moment in the motor stator. The structural nodes attached
to the rotor and the stator are defined in absolute coordinates, thus the torque has to
be transformed from local to global coordinates:

C1 = −R1rkTe

C2 = −C1 (5.5)

R1r = R1R̃1

where C1 is the vector of the moment applied to the stator node, k = {0 0 1}T is a
unit vector pointing along direction Z (third coordinate), C2 is the moment applied
to the rotor node, R1 is the orientation matrix associated to the stator node, and R̃1

is the relative orientation matrix of the motor in relation to the stator node.
The Jacobian matrix is used by the implicit integration method employed by

MBDyn. Therefore, its calculation is necessary for the analysis of the model. A
perturbation can be applied to the Eq.5.2 to determine the component to be included
into the Jacobian matrix of the complete system:

δεk = δVk − Rδik − Lδ

(
dik
dt

)
− δek = 0 (5.6)

The voltage Vk is defined by the stepper driver and, therefore, its value is known
and its virtual value δVk is equal to zero. The perturbation of the electromotive
force is:

δek = Km (Nr cos (Nrθz + θ0k)ωzδθz + sin (Nrθz + θ0k) δωz) (5.7)

where the perturbation of the rotation speed ωz is:

δωz = kT δRT
1r (ω2 − ω1) + kT RT

1r (δω2 − δω1)

= kT RT
1r [(ω2 − ω1)×] δg1 + kT RT

1r (δġ2 − ω2 × δg2 − δġ1 + ω1 × δg1) (5.8)

= hb0kT RT
1r [(ω2 − ω1) ×] δġ1

+ kT RT
1r ((1 − hb0 [ω2×]) δġ2 − (1 − hb0 [ω1×]) δġ1) (5.9)

whereω1 andω2 are respectively the angular velocity of the stator and the rotor nodes,
g1 and g2 are respectively the vector of virtual Cayley-Gibbs-Rodriguez parameters
associated to the rotation of the stator node and the rotor node, h is the time step, and
b0 is a constant that depends on the integration method [12].

The rotation angle θz is determined by the orientation matrices of the rotor and
stator nodes:

θ = ax
(
exp−1

(
RT

1rR2
))

(5.10)

θz = k · θ
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where θ is the vector of the Euler parameters that represents the relative orientation
between rotor and stator, (♣T ) represents the transposed of (♣), ax is the inverse of the
operator that generates the cross productmatrix, exp−1 is the operator that determines
the Euler parameters from an orientation matrix, and R2 is the orientation (rotation)
matrix associated to the rotor node.

The perturbation of the rotation angle δθz can be obtained through the perturbation
of the orientation matrices [11]:

δθz = kTΓ (θ)−1 RT
1r (θ2δ − θ1δ) (5.11)

= hb0kTΓ (θ)−1 RT
1r (δġ2 − δġ1) (5.12)

where Γ (·) is the differential operator associated to the exponential map, θ2δ is the
vector of virtual rotation of the rotor node, and θ1δ is the virtual rotation of the stator
node.

The perturbation of themoment applied to the rotor node can be used to determine
the perturbation of the stator node, thus:

δC1 = δR1r [3] Te + R1r [3] δTe

R1r [3] = R1rk (5.13)

δTe = Km

n∑
k=1

(sin (Nrθz + θ0k) δik + Nr cos (Nrθz + θ0k) ikδθz)

Applying the updated-updated method [12], i.e. incrementally expressing rota-
tions from their predicted value, such that the unknown rotation only accounts for
the correction contribution, the virtual rotation term can approximated by:

δR1r [3] Te = −R1r [3] Te × δg1 (5.14)

Using the Eq.5.14, and replacing the virtual perturbation of the parameters with
their virtual velocities, the Eq.5.13 can be rewritten as:

δC1 = −hb0 [R1r [3] Te×] δġ1 + R1r [3] hb0Km

n∑
k=1

(
sin (Nrθz + θ0k) δ

dik
dt

+ Nr cos (Nrθz + θ0k) ikkT Γ (θ)−1 RT
1r (δġ2 − δġ1)

)

= −hb0 [R1r [3] Te×] δġ1 + R1r [3] hb0Km

n∑
k=1

(
sin (Nrθz + θ0k) δ

dik
dt

)

+ hb0Km

n∑
k=1

(Nr cos (Nrθz + θ0k) ik) · R1r [3] ⊗
(

kT Γ (θ)−1 RT
1r

)
(δġ2 − δġ1) (5.15)
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The Jacobian matrix can be written using Eqs. 5.6 and 5.15:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
∂C1
∂ġ1

] [
∂C1
∂ġ2

] [
∂C1

∂
di1
dt

]
. . .

[
∂C1

∂ din
dt

]
[

∂C2
∂ġ1

] [
∂C2
∂ġ2

] [
∂C2

∂
di1
dt

]
· · ·

[
∂C2

∂ din
dt

]
[

∂ε1
∂ġ1

] [
∂ε1
∂ġ2

] [
∂ε1
∂

di1
dt

]
. . .

[
∂ε1
∂ din

dt

]
...

...
...

. . .
...[

∂εn
∂ġ1

] [
∂εn
∂ġ2

] [
∂εn

∂
di1
dt

]
· · ·

[
∂εn

∂ din
dt

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.16)

where the partial derivatives of the moment applied to the stator node:

∂C1

∂ġ1
= −hb0Km

n∑
k=1

(Nr cos (Nrθz + θ0k) ik) · R1r [3] ⊗ (
kTΓ (θ)−1 RT

1r

)

−hb0 [R1r [3] Te×]

∂C1

∂ġ2
= hb0Km

n∑
k=1

(Nr cos (Nrθz + θ0k) ik) · R1r [3] ⊗ (
kTΓ (θ)−1 RT

1r

)

∂C1

∂ dik
dt

= R1r [3] hb0Km sin (Nrθz + θ0k)

And the partial derivatives of the moment applied to the rotor node:

∂C2

∂ġ1
= −∂C1

∂ġ1
∂C2

∂ġ2
= −∂C1

∂ġ2
∂C2

∂ dik
dt

= −∂C1

∂ dik
dt

The partial derivatives of the circuit equation of phase k are:

∂εk

∂ġ1
= hb0KmNr cos (Nrθz + θ0k)ωzkTΓ (θ)−1 RT

1r

− Km sin (Nrθz + θ0k) kT RT
1r (hb0 [(ω2 − ω1)×] − (1 − hb0 [ω1×]))

∂εk

∂ġ2
= −hb0KmNr cos (Nrθz + θ0k)ωzkTΓ (θ)−1 RT

1r

+ Km sin (Nrθz + θ0k) kT RT
1r (1 − hb0 [ω2×])

∂εk

∂ dik
dt

= −hb0R − L



102 E.P. Okabe and P. Masarati

5.2.2 Stepper Driver Formulation

The stepper driver is responsible for translating the signal coming from a computer or
a controller into voltage of each motor phase. Different waveforms can be generated
by the driver, and they play an important role on the motor’s behavior. Full step
waveform generates the maximum rated torque of the motor and rotates a full step.
If the motor has 100 steps per full rotation, this means that size of one full step is
equal to 3.6◦.

Microstepping waveforms are the form of getting smaller movements of motor
at the cost of reducing the holding torque. It is a common strategy applied to open
source 3D printers to improve their resolution, because it has small cost and it is
very effective. For example, dividing a full step into 16 microsteps, it is possible to
achieve a much smaller step of 0.225◦ using the same motor with 100 steps per full
rotation.

Basically, there are two digital signals transmitted to an actual stepper driver:
step and direction. The level of each one determines if the motor has to move and
its direction. To mimic this behavior, the stepper driver was formulated using the
following equation:

Vk = Vmax · sin
(

πS

cm · n
+ φo − k · φd

n − 1

)
(5.17)

where Vk is the voltage applied by the stepper driver to the phase k, Vmax is the
maximum voltage applied to the motor (rated tension), S is the driver input signal,
cm is number of microsteps, n is the number of phases, φ0 is the phase offset, k is the
number of the phase (from 1 to n), and φd is the phase difference between phases.

The digital signals, step and direction, were translated to the variable S. To move
one step forward the current value of S should be increased by one (Si+1 = Si + 1),
and to move backward it should be decrease by one (Si+1 = Si − 1).

For instance, if S is equal to 1, and it has to move one step forward, S has to be
changed to 2. To go another step forward, S has to be changed to 3. If otherwise, the
motor has to move one step backward, and the current S is 2, it has to be changed
to 1.

To apply the Eq.5.17 to generate full step (cm = 1) and half step (cm = 2)
waveforms, the following condition expression has to be applied:

if |Vk| > Vthreshold then Vk = Vmax
Vk

|Vk| else Vk = 0

where Vthreshold is the threshold tension (e.g. Vthreshold = Vmax × 10−6).
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Fig. 5.3 Stepper motor system

5.2.3 Integration of the Elements of Different Domains

Themathematicalmodel of each part has to be integrated in the system; then, the com-
plete simulation can be run. Themain entities of integration are the elements, because
they provide the equations that express the interaction between domains. Figure5.3
shows the system of one stepper motor, where the discrete motion constitutes the
system input that is calculated from the inverse kinematic analysis. The stepper driver
transforms the input signal into tension on the electric nodes that represent the motor
phases.

The steppermotor is connected to electric and structural nodes; therefore, it relates
electrical and mechanical subsystems. This is a two way connection, which is shown
by Eqs. 5.2 and 5.4, where voltage and current of the electric nodes generate torque
between rotor and stator, and the position of the rotor influences the current that is
consumed by the motor.

The “body” elements are connected to the structural nodes of the stepper; they
attribute the inertia to the rotor and the stator. These nodes are constrained by a “total
joint” [11], that allows the relative rotation of the rotor inside the stator. This joint
completes the modeling of the stepper motor in the MBDyn.

Arm 1

Arm 2

x

y

Fig. 5.4 SCARA model (left) and examples of the printed part (right)
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5.3 Results

Figure5.4 shows a diagram of the machine developed in this work. The motion of
the stepper motors is transmitted to concentric shafts by a set of pulleys. The upper
end of the shafts is connected to the arms of the SCARA mechanism in the origin
point of the coordinate system. The ends of both arms are connected to the extrusion
head, thus the combined motion of each motor makes the head to move in the xy
plane. The motion of the deposition bed (table) is performed by other stepper motor,
which only moves when the deposition of a new layer of the model needs to start.

The use of concentric shafts is away to avoid a locking position during the printing
process. The locking position occurs when the arm segments connected to the head
form an angle of 180◦.

Table5.1 shows some parameters used in the simulation. The motor model is
based on a high torque two phase hybrid stepping motor (NEMA23), that has 200
steps per turn (=1.8◦ step) and a holding torque of 90N·cm. The pulley sets that
connect each stepper motor to its respective arm have a gear ratio of 1:7.5, which

Table 5.1 Scara printer parameters

Part Parameter Value

Arm (one segment) Mass 0.184kg

Moment of inertia Ixx 3.07 × 10−5 kg/m2

Moment of inertia Iyy 6.2 × 10−4 kg/m2

Moment of inertia Izz 6.4 × 10−4 kg/m2

Length 200mm

Deposition head (lighter
version)

Mass 0.12kg

Moment of inertia Ixx 4.52 × 10−5 kg/m2

Moment of inertia Iyy 4.52 × 10−5 kg/m2

Moment of inertia Izz 1.35 × 10−5 kg/m2

Deposition head (heavier
version)

Mass 0.5kg

Moment of inertia Ixx 6.21 × 10−4 kg/m2

Moment of inertia Iyy 2.05 × 10−3 kg/m2

Moment of inertia Izz 5.21 × 10−4 kg/m2

Stepper motor Rotor mass 0.07kg

Rotor moment of inertia 5.4 × 10−6 kg/m2

Number of phases 2

Winding inductance 10mH

Winding resistance 7.4�

Number of teeth Nr 50

Motor constant Km 0.04 · Nr

Viscous friction 0.5kg·rad/s
Step size 1.8◦

Reduction (motor to arm) Gear ratio 1:7.5
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reduces the maximum speed, but improves the system precision. To make the motion
even finer, the stepper driver adopts a microstepping strategy of 1/16th step, thus the
motor original step is divided by 16, which yields a step of 0.1125◦, and a final arm
rotation of 0.015◦ (2.618 × 10−4 rad).

All the segments of both arms have the same length (200mm), which is a little
longer than RepRAP Morgan (150 to 170mm) [6]. Each segment was modeled as a
rigid body, that is connected to other segments by “total joint” elements that mimic
revolute joints. The element “gear joint” [15] connects motors and arms, and is able
to reproduce the mechanical reduction of the set of pulleys.

The extruder head was also modeled as a rigid body; two versions were simulated.
The “lighter” version is based on a hot end composed by a heater and a radiator. Due
to its low inertia, this model is usually adopted in smaller 3D printers, that have less
powerful motors, so they can move the head with less effort. The “heavier” version
is a complete extruding system [19] that includes the feeding mechanism, thus it can
pull the filament directly to the hot end, which allows a much better control of the
extrusion flow.

Figure5.4 (right) shows the part chosen to have the manufacturing process simu-
lated. It is a simple cylinder with a closed bottom. The STL model of the part was
converted by the software Slic3r [18] into G-code, which is compatible to all 3D
printers based on the RepRap project. The G-code was translated to the extrusion
head movement by a Python script based on the Marlin firmware [10]. This algo-
rithm limits the speed in the intersections using a trapezoid strategy, i.e., the machine
accelerates the extruder until it reaches the nominal speed determined in the G-code
file; when it approaches an intersection, where the motion direction usually changes,
the machine needs to decelerate to the established intersection speed. This strategy
reduces the error caused by sudden changes of direction, where the inertia continues
to push the system into the original direction.

This script generates a trajectory for the extruder, that is used by the inverse
kinematic analysis of MBDyn to convert the extruder motion into joints rotation.
The resulting joint rotation is processed by a second Python script that transforms
the rotation in steps and their directions, corresponding to the movement that needs
to be accomplished by each motor. This script must consider the reduction between
arm and motor, and the strategy defined in the stepper driver. It also considers what
motor position is closest to the position required by the trajectory. The generated files
are the inputs to each one of stepper motor systems used in the dynamic simulation
of the SCARA printer.

The simulation of the printer produces the data regarding the dynamic behavior
of all components. The final objective of this work is to verify the impact of the
printer parameters on the part construction. To this end, the simulated motion of the
extruding head must be compared with the planned trajectory with the help of an
error function. This function can be calculated using the approach adopted in [14],
where the positioning error εpos is the distance between the planned and the actual
position of the extruding head:
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εpos =
√(

xactual − xplanned
)2 + (

yactual − yplanned
)2

(5.18)

The coordinate z is not considered in the calculation, because it represents the
movement of the deposition bed, which is slow and is only performed upon comple-
tion of each layer.

The distribution of the error can be determined by clustering the errors between
the planned and the actual position for every time instant calculated in the simulation.
The number of occurrences (frequency) is normalized by the total number of steps
of the simulation.

The process of manufacturing of the chosen part takes 274.8 s, which includes the
initial positioning of the head and a previous deposition, that is usually employed
to verify whether the extruder is working correctly. MBDyn took about 12min to
run the simulation on Core i7 (2670). A variable time step strategy was adopted;
most of the time step was 10−3 s. The simulation required an average of 2.8 Jacobian
evaluations per step.

5.3.1 Extruder Head

In the first two simulations, the voltage supplied to the motors was set to 12V. This
voltage enables the motors to work with a higher torque; therefore, errors should be
lower when compared to lower supply voltages.

Figure5.5 shows the trajectory deviation of the printer using the lighter extruding
head and a stepper supply voltage of 12V. The biggest deviations in trajectory occur
in the three highlighted areas. They are related to the accelerations or decelerations
from high speed displacements, which occur when the deposition is finished in a
particular area and the head has to be quickly repositioned to a new deposition area.

Figure5.6 shows the error distribution curve (left) and the trajectory deviation
in Area 1 (right) using the lighter extruding head and a stepper supply voltage of
12V. The error distribution shows that most of positioning errors fall between 0 and
100µm with a average of 46.1µm.

Figure5.7 (left) shows that for the heavier head the error distribution is very
similar to the distribution presented in Fig. 5.6, which means that the motor torque
is enough to hold the increase of the head inertia. There is a slight change in the
average error (47.4µm), but considering that the head mass increased four times, it
is worth changing the extruder with a heavier version and gain more control over
the deposition flow. Figure5.7 (right) confirms that increasing the mass had little
influence on the positioning error.

Figure5.8 compares the performance of both extruders in the areas denoted by
Fig. 5.5. Although the trajectories are not identical, the deviation amplitudes are quite
similar. The heavier model seems to take longer to reach the position determined by
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Fig. 5.5 Trajectory deviation of the machine with the lighter head (0.12kg) and a stepper supply
voltage of 12V

the stepper motor. Another problem is that the motion of the stepper motor is discrete
(by steps), thus the trajectory does not always coincide with the motor rotation.
This problem is mitigated by the transmission reduction and microstepping, but not
eliminated.
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Fig. 5.7 Error distribution (left) and trajectory deviation in Area 1 (right) of the machine with the
heavier head (0.5kg) and a stepper supply voltage of 12V
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Fig. 5.8 Comparison between the lighter and the heavier extruder (left Area 2; right Area 3)

5.3.2 Stepper Voltage Supply

The results show that the voltage supply is enough to overcome an increase of the
extruding head, therefore, it is interesting to verify what happens if the voltage
supplied by the stepper driver is decreased. The two simulations of this section uses
5V instead of 12V, with the same head models.

The distribution of the error shows a higher frequency in the range of 30–60µm
in Fig. 5.9 (left), when it is compared to the simulations using 12V. The average error
is also higher (48.2µm), which reveals that less voltage is translated to less torque
to control the motion of the extruder.

Figure5.10 (left) shows that the increase of the mass takes to larger errors, which
is indicated by the increase of the frequency in the range from 100 to 220µm.
The biggest errors increased from 0.8 to 1.2mm in the same transition points of
the previous simulations. The influence of the heavier extruder in the trajectory
deviation can be noticed when comparing Figs. 5.9 (right) and 5.10 (right). This can
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Fig. 5.9 Error distribution (left) and trajectory deviation in Area 1 (right) of the machine with the
lighter head (0.12kg) and a stepper supply voltage of 5V
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Fig. 5.10 Error distribution (left) and trajectory deviation in Area 1 (right) of the machine with
the heavier head (0.5kg) and a stepper supply voltage of 5V

be explained by the fact that inertia plays a greater influence on the head movement,
and the stepper motors cannot provide the necessary torque to control the movement.

Figure5.11 shows that the deviation of the heavier extruder has a larger amplitude
than that of the lighter one. The detail of Area 3 (Fig. 5.11—left) shows that the error
increases when there is a change of the motion direction, which is visible when the
head is moving to the next filling line.

5.3.3 Microstepping

Adopting smaller microsteps is a form to get higher resolution, however, less holding
torque is available to control the mechanism position. To verify if it has some effect
on the model of the SCARA printer, the strategy of microstepping was changed
decreasing the microstep to 1/32th of a step, i.e. each step is half of the size of the
simulations presented in the former sections. To highlight the effect of torque loss
the supply voltage was kept at 5V.



110 E.P. Okabe and P. Masarati

 0.294

 0.295

 0.296

 0.297

 0.298

-0.143 -0.142 -0.141 -0.14 -0.139 -0.138

di
sp

la
ce

m
en

t Y
 [m

]

displacement X [m]

planned lighter heavier

 0.272

 0.273

 0.274

 0.275

 0.276

 0.277

-0.134 -0.133 -0.132 -0.131 -0.13 -0.129

di
sp

la
ce

m
en

t Y
 [m

]

displacement X [m]

Fig. 5.11 Comparison between the lighter and the heavier extruder (left Area 2; right Area 3)

Figure5.12 shows the distribution of the error using smaller microsteps, and it
can be noticed that the higher frequency is now in the range of 0–50µm, as opposed
to 0–100µm gotten of a microstep size of 1/16th. The shape of the distribution
changed from Figs. 5.9 and 5.10 indicating that the effect of microstepping is not
linear, although most of the errors fall in half of the former range.

The maximum errors were approximately 1.1mm to the lighter head and 1.3mm
to the heavier head, which indicates a small increase in the error in the movement
transitions that can be related to the torque loss of this new microstepping strategy.

Figure5.13 shows that except in the transition point, the trajectory of both extrud-
ers is closer to the planned one. The top section of Area 1 and the right inferior section
of Area 2 (Fig. 5.13) highlight the difference in the construction of the cylinder wall
when comparing them to Fig. 5.13.
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Fig. 5.12 Error distribution of the machine with the lighter head (left) and the heavier head (right)
using a 1/32th step
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Fig. 5.13 Comparison between the lighter and the heavier extruder (left Area 2; right Area 3)

5.3.4 Results Summary

Table5.2 shows the trajectory deviation for different voltages, head masses and
microstepping strategies. The combination of lowvoltage, heavier extruder and larger
microstep showed the worst performance of all simulations. The sample standard
deviation of the error in this case is twice the best configuration (lighter head and
smaller microstep).

It can also be noticed that increasing the motor torque by using a higher voltage
can be a good solution to compensate heavier extruders. However, the best solution
to improve the printer resolution, in this case, was to decrease the microstep size to
1/32th.

Table5.3 shows the power supplied by the driver to the stepper motor. The power
supplied when voltage is set to 12V is five times higher than the 5V supply, which
means that a more powerful driver is needed when the system operates at higher
voltages. Open source printers usually adopt stepper drivers (e.g. A4988) that can
deal with an average current of 1A with peaks of 2A, which is less than it is required

Table 5.2 Trajectory deviation

Supply voltage (V) Head mass (kg) Microstep size Extruding head deviation (µm)

Mean Standard deviation

5 0.12 1/16 48.2 26.5

5 0.5 1/16 58.7 42.2

12 0.12 1/16 46.1 22.7

12 0.5 1/16 47.4 24.5

5 0.12 1/32 19.7 20.2

5 0.5 1/32 30.3 27.8
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Table 5.3 Power supplied by the stepper driver

Supply
voltage (V)

Head mass
(kg)

Microstep
size

Motor 1 (W) Motor 2 (W)

Mean Maximum Mean Maximum

5 0.12 1/16 3.41 13.03 3.39 13.08

5 0.5 1/16 3.41 13.34 3.40 13.11

12 0.12 1/16 19.52 41.07 19.49 43.55

12 0.5 1/16 19.52 40.55 19.49 44.06

5 0.12 1/32 3.41 13.06 3.40 13.15

5 0.5 1/32 3.41 13.38 3.40 13.14

by the lighter configuration (13W→ 2.6A). In this case, the speed has to be limited,
otherwise, the overcurrent protection system would cut the motor tension.

Adopting a smaller microstep did not take to a significant increase of the power
supplied by the stepper driver, which indicates that a driver with a strategy with
smaller steps is better than a more powerful one in this case.

5.4 Conclusions

The modeling of the 3D printer based on a SCARA mechanism showed that it is
possible to use a multidisciplinary platform to simulate a coupled problem. Besides
that, MBDyn was also used to generate the control sequence of each stepping motor
through the inverse kinematic analysis.

To simulate the printer motors, a mathematical model of a hybrid stepping motor
was implemented inside MBDyn, along with a stepper driver to control the motor
motion. Although it is not easy to determine the analytical Jacobian matrix of these
mathematicalmodels, the advantage of having a smooth and relatively fast simulation
overcomes the problems to implement it.

Electrical and mechanical components are usually hard to integrate, especially
when the model incorporates digital components, such as the motor driver. Sudden
changes of the input signal causes high frequencies that the differential solvers do
not manage easily. The combination of the nonlinear solver of the implicit solver and
a variable time step seemed to solve the problems of mixing components of different
domains that operate at different rates.

The 3D printing process adds a level of difficulty to the simulation, because the
modeling of the part to be built and its translation to machine movements require a
previous knowledge of the equipment and material to be printed, and they change
the way this translation is made.

The simulation of dynamic behavior of the printer helps to understand what can
be changed to the design of this machine. For instance, the effect of increasing the
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mass of the extruder head can be overcome by increasing the stepping motor supply.
However, the driver must be capable of providing enough power to feed the stepper,
otherwise, the driver protection system cuts the current introducing a perturbation in
the motion.

Another conclusion of this work is that adopting a stepper driver that works
with smaller microsteps can be more effective to improve the printer resolution than
increasing the supply voltage.
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Chapter 6
Structure Preserving Optimal Control
of a Three-Dimensional Upright Gait

Michael W. Koch and Sigrid Leyendecker

Abstract The optimal control of human locomotion requires simulation techniques,
which handle the contact’s establishing and releasing between foot and ground. In
this work, our aim is to optimally control the human upright gait using a structure
preserving variational integrator, whereby different physiologically motivated cost
functions are chosen and the obtained results are analysed with regard to the gait
of humans. Thereby, the implemented three-dimensional rigid multibody system
enables us to model forefoot as well as heel contact. The contacts between feet and
ground are modelled as perfectly plastic impact and the orientation of the contact
forces prevent penetration of the ground. To guarantee the structure preservation and
the geometrical correctness, the non-smooth problem is solved including the contact
configuration, time and force, in contrast to relying on a smooth approximation of the
contact problem via a penalty potential. The applied mechanical integrator is based
on a discrete constrained version of Lagrange-d’Alembert principle, which yields a
symplectic momentum preserving method (see Leyendecker et al., Optim Control
Appl Methods 31:505–528, 2009, [31] for details).

6.1 Introduction

The human environment consists of a large variety of mechanical and biomechanical
systems, in which different types of contact can occur. The occurring adhesion and
friction are essential to guarantee the functionality. A lot of mechanical safety systems
utilise adhesion like the falling protection of lifts or the climbing security equipment.
But friction is also necessary to enable the function of mechanical systems, like belt
drives and braking systems. Biomechanical literature is often focussed on the function
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and structure of the human locomotor system in combination with the foot-ground
contact, whereby cyclic walking movements come to the fore [14, 46]. Here, we are
interested in the upright bipedal gait. In contrast to movements with rolling wheels
or crawler drives, the simulation of human locomotion requires the knowledge of
how the contact establishing and releasing between forefoot respectively heel and
ground works and how the motion sequence changes due to the contact conditions.
The investigated contact formulation covers the theory of perfectly plastic contacts
(e.g. see [24]), which means that the foot stays in contact with the ground for a certain
time.

The straight posture of the homo sapiens’ gait is a characteristical attribute of
the human species, whereby the evolution of the human gait results from an anthro-
pological optimisation process. Initiated by climbing down from trees and leaving
forests, the survival in velds necessitates a physical adaption. The results are reflected
by the kind of human motion and by the physique: An upright gait shows benefits
such as a distinct all-round visibility, it reduces the water loss as a consequence
of evaporation and allows the possibility to use tools and weapons in the struggle
to survive (further details are specified in [51]). In palaeoanthropology, the upright
gait is appreciated as a key event of the human evolution with great changes of the
anatomy: The human skeleton is optimised for bipedal walking with the result of an
efficient and economical locomotion. In the human environment, the possibility to
walk on different terrains is used to overcome different levels by stairs or ladders as
noticed in [16].

In biomechanical literature, the focus is often on analysing and simulating the
upright gait in conjunction with muscle models for the actuation like in [3, 21,
25, 34], whereas in robotics the aim is to develop bipedal robots with the humanlike
capability to move in various circumstances (compare [11, 14, 15, 35]). In the area of
computer graphics, a specific challenge is to create realistic movements for the virtual
characters in video games or movies. According to the different research interests,
a large variety of models exists to study bipedal walking. The models in the field of
biomechanics range from a simple spring mass systems [23]—explaining the basic
dynamics of walking and running—to complex biomechanical multibody systems
with corresponding muscle models in [13]. As described in [16], these models are
primarily used to investigate the acting forces within the body, but not to generate
motions. In computer graphics, a lot of research is addressed to synthesise plausible
motions. Another further interesting point is that in [44, 47] optimisation techniques
are used to find a transition between two pre-recorded motions to obtain a complete
movement sequence (see [16]).

A large variety of biomechanical as well as robotics literature is concerned with
the human locomotor system. This has several reasons, such as a certain fascination
with a model and its simulation and analysis of the human locomotor system and
transformation of humanlike properties on technical systems like humanoid robots.
An important result of the upright gait is that the upper extremities have no supporting
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functions during the locomotion. Consequently, these extremities undertake the task
of a complex and versatile gripper tool. Humanoid robots have become very pop-
ular in research and it is no longer the primary goal to reproduce only the human
movement and grasping apparatus, but rather modelling of an emotional humanoid
body language (see [17, 26, 39]). Another aspect is that robots can undertake testing
tasks as realised e.g. for military protective clothing by the humanoid PETMAN and
illustrated on [10]. This humanoid robot reproduces the human movement capability
of the torso, the lower and upper extremities. It furthermore simulates human body
temperature and sweating. Target of all these works is to reproduce the emotional
and physiological characteristics of a real human.

In robotics, the geometry and the actuation of locomotor systems are crucial
for efficient and enduring movements. From the comprehension of human walking
motion as well as other humanlike movements, new ideas and approaches arise, which
can be transferred in the fields of robotics, for high-tech prostheses or orthopaedic
devices. Hereby several usages are thinkable like the support of nursing staff or
personalised rehabilitation exercises for patients with movement restrictions. Human
gait, jumping and running motions or rising from a chair are exemplarily examined
in [1, 21, 22, 25, 34, 41, 42]. One aim of all these cited references is to actuate
the multibody system by adequate muscles models—often 1-dimensional Hill-based
muscle models are applied. These models yield only the magnitude of the acting
muscular force. Consequently, the real existing three-dimensional complex anatomy,
i.e. the distribution of muscle fibres and the interaction with other muscles, bones
and human tissue, can only be reproduced rudimentarily by these Hill-type muscles.
Occasionally, this simple 1-dimensional kind of actuation is scoffingly illustrated as
‘marionette-actuation’, see [45].

Despite all these considerations, the attention in this work in context of the walking
movements is focused on the contact formulation between foot and ground as well as
on the optimised motion sequence itself—this concerns the transition from a double
contact to a single contact phase and vice versa. Particularly important in connection
with the contact modelling is the prevention of an artificial fixing of the contact point
at the ground, which involves the correct orientation of the contact forces and the
adhesion forces with strict observance of Coulomb’s static friction law. As a result of
these restrictions, the contact modelling has a dominant role in the simulated human
movements. In an analogous manner as done for the monopedal jumper model in
[27], the walker model is only actuated in the hip, knee and ankle joints by torques,
which means that no external actuation is planned.

Walking differs from running by the feet’s contact sequence: Walking is char-
acterised by switching between single and double support phases while running
movements alternate between single support and flight phase. In simpler walking
models, the double support phase is often ignored, but herein it is an essential part of
the motion sequence. Another aspect concerns the three different contact possibili-
ties of each foot during the walking motion: namely, we differentiate between fore-
foot, heel and double contact. Finally, the optimisation of humanlike bipedal walking
requires the correct consideration of the single and double support phases and also the
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different contact scenarios for each foot. The reduction to an armless bipedal walker
represents the minimal multibody system to simulate humanlike upright gait. Hence,
the walker consists of an upper body representing the human torso and each leg con-
sists of three rigid bodies, which represent thigh, calf and the foot. The inclusion of
the feet leads to movements that differ from those considered e.g. in [16] with point
feet.

The aim of this work is to compute physically valid and humanlike walking
movements by using the DMOCC approach, which means that the dynamics of the
multibody system is discretised by the variational integrator introduced in [30–32,
36] and the resulting discrete equations of motion serve as equality constraints for the
optimisation problem in which different physiologically motivated cost functions are
tested. In contrast to forward and inverse dynamic simulations, neither the trajectory
nor the control sequence has to be exactly known for the walking system, because an
optimal trajectory and the corresponding actuation is determined by the optimisation
process with regard to the specific objective function. The optimally controlled walker
allows actuation in the hip and the knee joints as well as in the two ankle joints, such
that a physiologically motivated cost function is minimised. In the numerical solution,
a direct transcription method is used to transform the optimal control problem into
an optimisation problem being constrained by the fulfilment of discrete equations
of motion, boundary conditions and path constraints, see e.g. [28, 53]. The walking
motions are subdivided in two phases and they are called single and double support
phases. To avoid an artificial restriction of the optimisation problem’s phases by
prescribing the time of contact establishing or releasing, variable time steps are used,
wherefore the necessary scaling parameters are part of the optimisation parameters.

Section 6.2 describes briefly the multibody formulation in redundant coordi-
nates and introduces a corresponding actuation force formulation. The symplectic
momentum consistent variational integrator and the null space method with nodal
reparametrisation, which reduces the numerical effort, are introduced in Sect. 6.3.
Section 6.4 covers the optimal control problem and explains shortly the transforma-
tion into a finite dimensional optimisation problem. The bipedal walker model is
described in Sect. 6.5 and the discrete equations of motion corresponding to the per-
fectly plastic contact in the variational approach are given. In Sect. 6.6, the general
human gait sequence is described and in Sect. 6.7, the discrete constrained optimisa-
tion problem is formulated. The results for the bipedal walking with respect to four
different physiological cost functions are presented before concluding the paper.

6.2 Rigid Multibody Configuration and Actuation

In this work, a rotation free formulation introduced in [7] for rigid bodies and in [6]
for rigid multibody systems is used to describe the time-dependant configuration and
to simulate the dynamics. The αth rigid body is specified by a configuration vec-
tor qα(t) ∈ R

12 composed by the placement of its center of mass ϕα(t) and the
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body-fixed right-handed director triad dα
i (t) for i = 1, 2, 3. This director triad

specifies the body’s orientation in space and has to stay orthonormal during the
motion in the considered time interval [t0, tN ], which is guaranteed by six so-called
internal constraints for each body, summarised in gint(q) = 0 ∈ R

mint .
In multibody systems, the rigid bodies are interconnected by different types of

joints, e.g. revolute or spherical joints, and the resulting constraints are summarised
in an external constrained vector gext(q) = 0 ∈ R

mext . The interconnections of rigid
bodies as well as their rigidity gives rise to a scleronomic and holonomic constraint
function g(q) = [

gint(q) gext(q)
]T ∈ R

m on the redundant configuration variable q ∈
R

k , where k equals 12 times the number of bodies. The multibody systems are
actuated directly by the independent generalised forces and torques τ ∈ R

k−m and
the resulting k-dimensional redundant actuation f (q) ∈ R

k can be computed via
f (q) = BT (q) · τ with the input transformation matrix BT (q) ∈ R

k×(k−m). Note that
the transformation matrix depends on the rigid bodies’ interconnection and it is
described in detail in [31].

6.3 Structure Preserving Integration for Constrained
Mechanical Systems

The dynamics of time-continuous mechanical systems can be described using the
Lagrangian or Hamiltonian formalism—in this work, discrete Lagrangian mechanics
is used to derive a structure preserving integrator, see e.g. [38], and the constrained
mechanical system is considered in a configuration manifold Q ⊆ R

k with the time-
dependent configuration vector q(t) ∈ Q. Corresponding to the approach in [31], the
constrained version of the Lagrange-d’Alembert principle is discretised using the
time nodes {t0, t1 = t0 + Δt, . . . , tn = t0 + nΔt, . . . , tN = t0 + NΔt}, where N ∈ N

is the number of time intervals and the discrete configurations qn ≈ q(tn) approx-
imate the continuous trajectory. Similarly, λn ≈ λ(tn) approximates the Lagrange
multipliers λ(t) ∈ R

m. As usual in the context of discrete variational mechanics,
the discrete Lagrangian Ld : Q × Q → R approximates the action integral of the
continuous Lagrangian. Finally, the discrete Lagrange-d’Alembert principle requires
stationarity of the resulting augmented action sum, i.e.

δSd = δ

N−1∑
n=0

[
Ld(qn, qn+1) − 1

2
(tn+1 − tn)

(
gT (qn) · λn − gT (qn+1) · λn+1

)]

+
N−1∑
n=0

[
f −

n · δqn + f +
n · δqn+1

] = 0

for all variations
{
δqn

}N

n=0 and {δλn}N
n=0 with δq0 = δqN = 0. This leads to the (k +

m)-dimensional constrained forced discrete Euler–Lagrange equations
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D2Ld(qn−1, qn) + D1Ld(qn, qn+1) − GT
d (qn) · λn + f +

n−1 + f −
n = 0 (6.1)

g(qn+1) = 0, (6.2)

for n = 1, . . . , N − 1. Here Gd = 1
2 (tn+1 − tn−1)

∂g(qn)

∂q
denotes the (m × k)-

dimensional Jacobian matrix of the constraints, and f −
n = 1

2 (tn+1 − tn)BT (qn) · τ n,
respectively f +

n−1 = 1
2 (tn − tn−1)BT (qn) · τ n−1 are called discrete redundant actua-

tion forces. In [38] it is shown that due to the variational derivation, the discrete tra-
jectory inherits certain characteristic geometric properties (see e.g. [4, 37, 40]), from
the continuous system and the numerical integration is thus called structure preserv-
ing. In particular, the discrete trajectories preserve a discrete symplectic form and are
consistent in momentum maps (discrete Noether theorem). The latter means that in
the presence of symmetry in the discrete Lagrangian, the corresponding momentum
maps (e.g. linear or angular momentum) are conserved exactly along the discrete tra-
jectory. In presence of non-symmetrical potentials like gravity or of external forces,
the momentum map changes only and exactly according to the gravitational or to the
external forces. Due to these structure preservation properties, the integrator is called
symplectic momentum scheme. A further benefit of this mechanical integrator is the
good energy behaviour, this means that there is no numerical gaining or dissipation
of energy.

According to [5, 6], we apply the discrete null space method to reduce the dimen-
sion of the constrained forced discrete Euler–Lagrange equations (6.1) and (6.2). The
discrete null space matrix P

(
qn

) ∈ R
k×(k−m) fulfils the property Gd

(
qn

) · P
(
qn

) = 0
and premultiplying Eq. (6.1) by the transposed null space matrix, the constraint forces
and thereby the Lagrange multipliers vanish. The resulting k-dimensional system is
called reduced forced discrete Euler–Lagrange equations. In a further step, the mini-
mal dimension of the system can be achieved using the vector of incremental gener-
alised coordinates un+1 ∈ U ⊆ R(k−m) to reparametrise the configuration vector qn+1
in the neighbourhood of qn. The nodal reparametrisation function Fd : U → Q

qn+1 = Fd(un+1, qn)

fulfils the constraint conditions and therefore Eq. (6.2) becomes unnecessary. Finally,
the number of unknowns and thereby the numerical effort is reduced by the formula-
tion in discrete generalised coordinates ud = {un}N

n=0 and discrete generalised forces
and torques τ d = {τ n}N−1

n=0 . The dimension of the discrete equations of motion is
reduced to k − m.

PT
(
qn

) · [
D2Ld

(
qn−1, qn

) + D1Ld
(
qn, Fd

(
un+1, qn

))
+ 1

2
BT (qn) · [

(tn − tn−1)τ n−1 + (tn+1 − tn)τ n
] ] = 0 (6.3)
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6.4 Optimal Control Problem

The goal of an optimal control problem is to determine the optimal state trajectory
and force field for a holonomically constrained system, which moves from the initial
state q(t0) = q0, q̇(t0) = q̇0 to a final state q(tN ) = qN , q̇(tN ) = q̇N . The investigated
system fulfils the equations of motion and at the same time the objective functional

J(q, q̇, f ) =
tN∫

t0

C(q, q̇, f ) dt

is minimised, where the integrand C(q, q̇, f ) : TQ × T∗
q Q → R is a given cost func-

tion. The optimal control problem is solved using a direct transcription method,
which transforms it into a constrained optimisation problem. The discrete objective
function approximates the integral of the continuous cost function and the discrete
constrained optimisation problems reads

min
ud ,τ d

Jd(ud, τ d) = min
ud ,τ d

N−1∑
n=0

Cd(un, un+1, τ n)

subject to the constraints given by the reduced discrete equations of motion of the
symplectic momentum scheme in Eq. (6.3). In addition to the discrete equations of
motion of the specific mechanical integrator, further constraints, like initial condi-
tions, final conditions or periodic boundary conditions and possible equality and
inequality path constraints—specified in detail in Sect. 6.7—can be imposed.

6.5 Humanoid Bipedal Walker Model

The simulation of humanoid walking requires an adequate reproduction of the human
locomotor system, whereby especially movement abilities at the hip, knee and ankle
joint are absolutely necessary to generate a natural gait. It is clear that pelvis, vertebrae
as well as swinging arms play an important rule in human walking [12, 33, 43]. The
swinging arms of the opposite side of the body in respect to the swinging lower limbs
reduce the angular momentum of the human body and enable a better balancing of
the rotational motion caused by the motion of the legs. However, as a simplification
in this work, their dynamics are summarised in a torso represented by a rigid body as
done before e.g. for the monopedal jumper model in [27] or as for the bipedal walker
model in [3]. The aim of this model reduction is to strictly investigate the dynamics
of the lower extremities with respect to different cost functions in conjunction with
a realistic contact establishing and releasing sequence. Therefore, we reduce our
model to a minimal level of detail which enables us to effectively investigate and
evaluate the described research goals.



122 M.W. Koch and S. Leyendecker

The human upright gait is analysed by using an elementary model consisting
of seven rigid bodies, whereby each of the legs is modelled by three rigid bodies
as illustrated in Fig. 6.1. The shape of the bodies is characterised by the inertia
parameters given Table 6.1. The right and left leg are absolutely identically and the hip
and ankle are modelled as a spherical joint. Thigh and calf are connected via revolute
joints, where the unit vectors n2 and n5 in the right and left thigh represent the axis of
rotation. Consequently, the locomotor system consists of six connected rigid bodies
and a seventh body summarises the human torso. The constrained multibody system
is described by the configuration variable q ∈ R

84, composed by the placement of the
rigid bodies’ centres of mass and their right-handed director triads. As a result of the
rigid body formulation, mint = 42 internal constraints are present. The consideration
of the anatomical joints cause mext = 22 external constraints and therefor the k = 84-
dimensional system is restricted by 64 holonomic constraints. Corresponding to the

Fig. 6.1 Seven link simplified bipedal walker and its generalised coordinates

Table 6.1 Physical quantities of the human torso, thigh, calf and foot are taken from [2]

Physical quantity Torso Thigh Calf Foot

Mass (kg) 33.9946 6.5233 2.6857 0.8372

Moment of inertia

Ie1e1 (kg · m2) 1.6194 0.1137 0.0391 0.0034

Ie2e2 (kg · m2) 1.0876 0.1158 0.0393 0.0030

Ie3e3 (kg · m2) 0.3785 0.0225 0.0029 0.0007

Length (m) 0.6644 0.4582 0.3753 0.2433

Center of mass from proximal centroid (m) 0.3470 0.1779 0.1943 0.1368
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k − m = 20 degrees of freedom, the generalised coordinates of the seven link model
read

u = [
uUP θUP θR

H θR
K θR

A θL
H θL

K θL
A

]T ∈ R
20,

whereby uUP and θUP represent the translation respectively the rotational motion of
the upper part of the human body. The walker model is only actuated in the hip, knee
and ankle joints of both legs by

τ = [
τR

H τR
K τR

A τ L
H τ L

K τ L
A

]T ∈ R
14,

which means only internal actuation torques are applied and the system is underac-
tuated.

To allow the different contact scenarios during the walking sequence, two contact
points are necessary to model the two single contact phases (forefoot contact (FC),
respectively heel contact (HC)) as illustrated in Fig. 6.2 and the complete contact
support phase, at which the forefoot and the heel are in contact with the ground.
Table 6.2 contains geometric quantities of the seven-link walker model, whereby
ρHC and ρFC point from the centre of mass of the foot to the heel respectively
forefoot contact point and vector ρA points to the ankle. In contrast to the jumper
model in [27], where the thigh is fixed in the middle of the torso bottom, the right leg
is connected with the upper part of the body at ρR

H pointing from the torso’s centre of
mass to the hip joint—and due to the bilateral symmetry, the left thigh is fixed at ρL

H .

Fig. 6.2 Visualisation of the forefoot (FC) and heel contact (HC)

Table 6.2 Geometrical quantities of the feet on the basis of the results from [2] and the hips position
described by the torso’s centre of mass

Geometrical quantity (m) e1 e2 e3

Height of ankle 0 0 0.0635

Foot breadth 0 0.0915 0

ρA −0.0644 0 0.0502

ρHC −0.1030 0 −0.0133

ρFC 0.1403 0 −0.0133

ρR
H 0 −0.0936 −0.2398

ρL
H 0 0.0936 −0.2398
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According to the human anatomy, the motion capabilities of the different joints are
limited by inequality path constraints which are part of the optimal control problem,
see Sect. 6.7. As said before, the hips are modelled as spherical joints, whereby the
principal axes of rotation coincide with the global coordinate system. The rotation
around the sagittal axis e1 and around the longitudinal axis e3 is restricted to a
range of ±30◦. For the hips’ extension, the maximum ankle is set to 30◦, while the
range of the flexion motion is assumed to be 120◦. The human knees are modelled
as revolute joints and the previously introduced unit vectors n2 and n5 specify the
anatomical transversal axes. In this work, the knees’ flexion condition restricts the
motion to 120◦ and the extension ankle is set to 0◦ such that the super extension is
prevented. In contrast to the real human ankle joint, the motions of the upper and
lower ankle are summarised at a single spherical joint. The rotation around the axes
e1 and e3 is set to ±30◦, the dorsal extension and the plantar flexion at the sagittal
plane is constrained to 30◦ respectively 50◦. All the anatomical joint limitations are
summarised as hanat(q) < 0 ∈ R

8.

6.6 Human Walking Gait

This section describes the sequence of human gait as a problem with multiple sub-
sequent motion phases—see Fig. 6.3—based on a multibody system model and the
achieved forward locomotion is a result of the lower extremities’ movement (com-
pare to [35]). The human gait is defined as bipedal, forward propulsion of the human
body’s centre of gravity and during the motion alternate sinuous movements of differ-
ent body parts are observable. The different gait patterns are the result of differences
in the movements of the lower extremities concerning velocity, forces, kinetic and
potential energy and especially the changes of contact between foot and ground. Nat-
ural gaits are classified as meander, walk, jog, run and sprint with increasing order
of speed [48]. Generally, the natural gaits are designed to propel a person in forward
direction, but they can also be adopted for lateral movements.

We are interested in the walking movement along a straight line and it is assumed,
that the right and left steps are identical such that periodicity constraints on the
posture, the velocities and actuation can be defined. Analogous to the compass gait
in [32], a mirror function in conjunction with a mirror plane is introduced to guarantee
that the final state is a mirrored image of the initial state and it is displaced in walking
direction, compare the left and right photo of Fig. 6.3. The mirror plane is placed in
the middle of both heel contact points and it is spanned by the vertical unit vector
and the walking direction. Let mirr denote the mirror function, then it is possible to
model the periodicity constraints for the legs as mirror images of the configurations
and control variables in the form

q0 = mirr
(
qN

)
, q1 = mirr

(
qN+1

)
, τ 0 = mirr (τN ) (6.4)
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Fig. 6.3 Photographies of human walk cycle for a single step and illustration of the support phases

At this point it should be mentioned that instead of the configuration based mirror
conditions of the time nodes in Eq. (6.4), the periodic boundary conditions can also
be realised by mirror images of the leg’s configurations and the conjugate momenta
at the boundary time nodes, as it is illustrated in Fig. 6.4. According to the sequence
of forefoot and heel contact releasing and establishing in Fig. 6.3, the human gait
motion has to be modelled in a correct order in the continuous optimal control
problem as well as in the discrete optimisation problem. In both cases, the double
support phase represents the essential challenges of the human walking phases due to
the occurring closed loop conditions. Compared with running, the walking movement
is characterised by the chronology of single and double support phases and thus at
any given time at least one foot is in contact with the ground: no flight phase occurs
as can be observed in running motions. As illustrated in Figs. 6.3, 6.4 and 6.5, the
optimal control problem of the half gait cycle is discretised using N time nodes and
the gait cycle starts with single support whereby the right foot is in full contact. For
the optimisation we assume that the heel contact at the right foot is released at the
node number NR

ξ and the double support phase is initiated by left heel contact at the
time node NL

ι . Then, the left legs forefoot gets in contact with the ground at node
NL

ζ , thus the second part of double support is realised: namely, the left foot is in full
contact while at the same time the right foot is in forefoot contact with the ground.
The double support phase ends at node number NR

κ , at which the forefoot contact of
the right foot is released.
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Fig. 6.4 Illustration of the gait cycle periodicity and the motion sequence of the discrete optimal
control problem with periodic boundary conditions

Fig. 6.5 Illustration of the characteristical configurations at the transition between two contact
phases for a half gait cycle

6.7 Optimal Control of the Bipedal Walker

The constrained optimisation problem is formulated in terms of generalised coordi-
nates ud and the actuation torques τ d . In case of free motion (no contacts occur),
the dynamical system is restricted by the internal and external constraints in order to
model the rigidity of the bodies and the structural composition of the multibody sys-
tem itself and the dynamic is described by a 20-dimensional system of equations. In all
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five walking sections, the same relative nodal reparametrisation is used to update the
configuration in dependence of the generalised coordinates. The equations of motion
during the walking phases are premultiplied with the appropriate single respectively
full contact discrete null space matrices to eliminate the constraint forces including
the contact forces. Contacts between the feet and the ground are modelled as per-
fectly plastic contact and the orientation of the contact forces prevent penetrating the
ground. As a result of the different contact scenarios during the walking phases, the
contact Lagrange multipliers are determined in a post-processing process via

λ�,n = RT
�(qn) · [

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +
n−1 + f −

n

]
,

where

R�(qn) = GT
�(qn) · (

G�(qn) · GT
�(qn)

)−1
for � = FHC, HC, FC,

which is formulated with the discrete Jacobian matrix G�(qn) of the seven-link model
for the active contact scenarios (full contact (FHC), forefoot contact (FC) and hell
contact (HC)). Furthermore, during the double support phases, the Coulomb’s static
friction law has to be fulfilled at the contact points. Consequently two inequality
constraints are necessary.

The determination of the respective null space matrices for the double support
phase is avoided by taking a similar approach as for the transfer of contact at the
compass gait in [32]. The first part of the double support phase is characterised
by the forefoot contact of the right leg and by the heel contact of the left leg
as illustrated in Fig. 6.4. At first, the Euler–Lagrange equations are premulti-
plied by the transposed discrete null space matrix RPFC to eliminate the con-
tact forces at the right forefoot. Afterwards we premultiply the partially reduced
equations of motion again by the following projection matrix LQHC ∈ R

17×17 with

LQHC = I −
(

LGHC · RPFC

)T ·
((

LGHC · RPFC

)
·
(

LGHC · RPFC

)T
)−1

· LGHC · RPFC . (6.5)

At the second part of the double support phase—forefoot contact on the right
foot and full contact on the left leg—the equations of motion are premultiplied
at first by LPT

FHC and then by the matrix RQFC ∈ R
14×14 given by

RQFC = I −
(

RGFC · LPFHC

)T ·
((

RGFC · LPFHC

)
·
(

RGFC · LPFHC

)T
)−1

· LGFC · RPFHC .

(6.6)
Due to the unknown switching times between the different walking sequences, four
scaling parameters summarised in σ = [

σ1 σ2 σ3 σ4
]T ∈ R

4 are required and they
are also part of the optimisation variables. It is necessary to mention that the scaling
parameter σ1 is used twice, namely at the single support phases at the beginning and
at the end of the optimisation problem. These parameters enable the optimiser to
shorten or extend each walking phase inside the scaling limits. Finally, the discrete
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constrained optimisation problem of the half cycle gait for the chosen conditions
reads

min
ud ,τ d ,σ

J(ud, τ d, σ ) =
N∑

n=0

C(un, τ n, tn, tn+1)

subject to the reduced forced discrete equations of motion of the

• single support phase with full contact in
[
t0, tξ

]
for the right foot (ε = R) and in

[tκ , tN ] for the left foot (ε = L)

εPT
FHC(qn) · [

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +
n−1 + f −

n

] = 0
εgFHC(qn+1) = 0

• single support phase with forefoot contact in
]
tξ , tι

[
for the right foot

RPT
FC(qn) · [

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +
n−1 + f −

n

] = 0
RgFC(qn+1) = 0

• double support phase with forefoot contact of the right foot and heel contact of
the left foot in

[
tι, tζ

]
LQHC · RPT

FC(qn) · [
D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +

n−1 + f −
n

] = 0
RgFC(qn+1) = 0
LgHC(qn+1) = 0

• double support phase forefoot contact of the right foot and full contact at the left
leg in

]
tζ , tκ

[
RQFC · LPT

FHC(qn) · [
D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + f +

n−1 + f −
n

] = 0
RgFC(qn+1) = 0

LgFHC(qn+1) = 0

• periodic boundary conditions (6.4) are summarised by

b(q0, q1, qN , qN+1, τ 0, τN ) = 0

• path constraints for [t0, tN ]

heq(qn) = 0 hineq(qn) < 0

• anatomical angle conditions of the different joints for [t0, tN ]

hanat(qn) < 0
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• path constraints single support

– full contact for n = 1, . . . , NR
ξ and n = NR

κ + 1, . . . , N − 1
right leg n = 1, . . . , NR

ξ − 1
√(

λ1
FHC,n

)2 +
(
λ2

FHC,n

)2 − μ0|λ3
FHC,n + λ6

FHC,n| < 0 ∧ λ3
FHC,n < 0 ∧ λ6

FHC,n < 0

right leg n = NR
ξ

λ4
FHC,n = λ5

FHC,n = λ6
FHC,n = 0 ∧

√(
λ1

FHC,n

)2 +
(
λ2

FHC,n

)2 − μ0|λ3
FHC,n| < 0 ∧ λ3

FHC,n < 0

left leg n = NR
κ + 1, . . . , N − 1

√(
λ1

FHC,n

)2 +
(
λ2

FHC,n

)2 − μ0|λ3
FHC,n + λ6

FHC,n| < 0 ∧ λ3
FHC,n < 0 ∧ λ6

FHC,n < 0

– forefoot contact for n = NR
ξ + 1, . . . , NL

ι − 1
right leg

√(
λ1

FC,n

)2 + (
λ2

FC,n

)2 − μ0|λ3
FC,n| < 0 ∧ λ3

FC,n < 0

• path constraints double support

– single/single contact for n = NL
ι , . . . , NL

ζ − 1
left foot √(

λ1
HC,n

)2 + (
λ2

HC,n

)2 − μ0|λ3
HC,n| < 0 ∧ λ3

HC,n < 0

right foot
√(

λ1
FC,n

)2 + (
λ2

FC,n

)2 − μ0|λ3
FC,n| < 0 ∧ λ3

FC,n < 0

– single/full contact for n = NL
ζ , . . . , NR

κ

left leg n = NL
ζ , . . . , NR

κ√(
λ1

FHC,n

)2 +
(
λ2

FHC,n

)2 − μ0|λ3
FHC,n + λ6

FHC,n| < 0 ∧ λ3
FHC,n < 0 ∧ λ6

FHC,n < 0

right leg for n = NL
ζ , . . . NR

κ − 1
√(

λ1
FC,n

)2 + (
λ2

FC,n

)2 − μ0|λ3
FC,n| < 0 ∧ λ3

FC,n < 0

right leg n = NR
κ λ1

FC,n = λ2
FC,n = λ3

FC,n = 0

• scaling parameters

σ LB ≤ σ ≤ σ UB.
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The duration of each phase is scaled by its appropriate scaling parameter, whereby
due to the periodicity the scaling parameter σ1 is used twice, namely at the single
support phases at the beginning and at the end of the optimisation problem. Analogous
to the optimisation of the jumping movement in [27], the scaling parameter bounds
σ LB, σ UB yield a lower and upper limit of the manoeuvre time for the half step.
The characteristical configurations representing the switching points between the
different contact phase are depicted in Fig. 6.5 during a half gait cycle.

6.7.1 Numerical Results for the Half Gait Cycle

The optimal control problem of the half gait cycle is discretised using N = 16 time
nodes and the time nodes separating the different gait phases are chosen as NR

ξ =
3, NL

ι = 9, NL
ζ = 11 and NR

κ = 12. The choice of the optimal periodic boundary
configurations is left to the optimiser. Besides the anatomical constraints for both
legs, the adherence of Coulomb’s static friction law generates further inequality
constraints (with a static friction coefficient μ0 = 0.7). The allowed stiction range
is symbolised by the cross hatched in the following illustrations Figs. 6.9, 6.14, 6.19
and 6.24 in which the contact Lagrange multipliers are plotted over time.

The basic time step of Δt = 0.0250 s is used to discretise the half gait cycle,
where each scaling parameter for the different manoeuvre phases is bounded between
0.5 ≤ σ1, σ2, σ3, σ4,≤ 1.5. The optimisation problems are solved in MATLAB using
the sqp algorithm of the fmincon function and a numerical accuracy is set to
10−8. Finally, the initial guess is a 568-dimensional vector, which consist of 340
discrete generalised coordinates, 224 generalised internal actuation torques and the
four scaling parameters. The optimisation problem is solved for the objectives of
minimal specific control effort, minimal specific torque change, minimal specific
kinetic energy and minimal specific jerk. As mentioned in context of the bipedal
compass gait in [32], the objective function per step length sl ∈ R in e2-walking
direction is called specific objective function. At first, we choose the widely used
criterion of minimal control effort [8, 29] per step length, which can be formulated
as

Jd (ud, τ d, σ ) = 1

2sl (ud, τ d)

N−1∑
n=0

(tn+1 − tn) |τ n|2, (6.7)

to achieve a minimally exhausting motion. Another objective function accounts the
minimisation of change in torques per step length during the simulation (see [36, 49,
52]), and reads

Jd (ud, τ d, σ ) = 1

2sl (ud, τ d)

N−1∑
n=0

(tn+1 − tn)

∣∣∣∣ τ n+1 − τ n

(tn+1 − tn)

∣∣∣∣
2

. (6.8)
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The physiological motivation for this criterion is based on two different aspects:
the first one states that the arbitrary fast change in torques is physiologically not
possible and secondly one reduces the control interventions of the central nervous
system. Hence, the resulting smooth evolution of actuation torques is probably more
realistic than that resulting from the criterion of minimal control effort. In addition
to the criteria of minimal control effort and minimal torque change in (6.7) and (6.8)
respectively, a third aim is to optimise bipedal walking with minimal kinetic energy
(similar to [9, 18–20, 46, 50]). The objective function of kinetic energy is formulated
using the constant symmetric mass matrix M and the projected conjugate momentum
Qp+

n (being consistent with the holonomic constraints on momentum level see [31]),
thus the specific objective function is given as

Jd (ud, τ d, σ ) = 1

2sl (ud, τ d)

N∑
n=1

(tn+1 − tn)
((Qp+

n

)T · M−1 · Qp+
n

)
,

with the projection matrices Q(qn) corresponding to the different gait phases similar
to the projection matrices in (6.5) and (6.6). A physiological motivation for this
objective function is that a motion consuming as little energy as possible can be
practised over a longer period of time. Additionally, the optimisation problem is
solved for minimal jerk per step length, this objective function is given as

Jd (ud, τ , σ ) = 1

2sl (ud, τ d)

N∑
n=2

(tn − tn−1)
(

s
′′′
n

)T · s
′′′
n ,

with s
′′′
n being the third derivative of the trajectory. The discrete jerk is calculated with

finite differences and the criterion is formulated in relative generalised coordinates
of all joints

s
′′′
n =

s
′′
n+ 1

2
− s

′′
n− 1

2

1
2 (tn+1 − tn−1)

= 1
1
2 (tn+1 − tn−1)

( un+1

tn+1−tn
− un

tn−tn−1

tn+1 − tn
−

un
tn−tn−1

− un−1

tn−1−tn−2

tn − tn−1

)
.

Generally, the criterion of minimal jerk is chosen to yield uniformly accelerated
motions.

Note that during the different walking phases we distinguish between full, forefoot
and heel contact sequences and the different occurring contacts are symbolised by the
corresponding contact Lagrange multipliers (λFHC ∈ R

6, λFC ∈ R
3 and λHC ∈ R

3).
Consequently, twelve different contact Lagrange multipliers are the result of the sim-
ulated half gait cycle. To avoid a confusing evaluation of the contact Lagrange mul-
tipliers, we decide to introduce the forefoot respectively heel related Lagrange mul-
tipliers foreλC ∈ R

3 and heelλC ∈ R
3. According to each walking phase—highlighted

via different shades of grey—and with the knowledge of the investigated course of
motions, it is easy to analyse which kind of contact is present and to read off the
computed contact forces.
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6.7.1.1 Minimal Specific Control Effort

In Fig. 6.6, some snapshots are depicted to represent the essential configurations of the
bipedal gait for the criterion of minimal control effort per step-length. A step length
of 0.5877 m is achieved and a control effort of 8.8282 × 103 (Nm)2 s is calculated
for the half gait cycle inclusive the two time nodes of the subsequent half gait cycle
to formulate the periodic boundary conditions (see Fig. 6.4). Thereby it is necessary
to mention that the control effort of each leg is weighted by the vector

wI = [√
10 1

√
10 1

√
10 1

√
10

]T ∈ R
7 for I = L, R.

These weighting coefficients are useful to scale the generalised actuation torques
with respect to the walking direction in e2-direction. According to the weighting
coefficients, the actuation in e1, e3-directions are premultiplied by a factor larger than
one and consequently the control effort around these actuation directions increase.
This implies for the optimisation problem that actuations in e2-direction should be
preferred and actuations around the e1, e3-directions are penalised.

The side-view in Fig. 6.6 illustrates that the trajectory of the swing foot is divided
into a take-off, a contact-less swinging and a landing phase. The take-off phase starts
as soon as the heel contact is realised and is continued until the forefoot contact
is released. At the moment the forefoot contact is released, the swinging phase is
initialised and ends when the heel contact is established again. The landing phase
ranges until the foot is in full contact. The optimised solution shows that the swinging
foot is raised up until the maximal level is achieved, afterwards the swinging foot’s
remaining momentum as well as gravity is used to propel the foot in forward direction
until the heel hits the ground, see Fig. 6.7.

The swing phases, the single and the double support phases of each foot are
highlighted using different shades of grey in order to evaluate the actuation sequence
and the Lagrange multipliers over time in an efficient manner. The grey dashed lines
represent switching points between two different contact phases of each foot while

Fig. 6.6 Minimal specific control effort: snapshots of the optimised bipedal motion
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Fig. 6.7 Minimal specific control effort: evolution of the feet centre of mass’ trajectory coordinates
during a gait cycle

the black dashed line describes the end of the half gait cycle. This procedure is also
applied for the other specific objective criteria.

The actuation torques are illustrated over time in Fig. 6.8 and it is particularly
noticeable that the leg is mainly actuated by torques around the desired e2-direction.
This behaviour is expected (not only due to the weighting components), because the
step-length is measured in e1-direction and consequently a higher actuation around
the e2-axis yields to a larger step-length. Furthermore, the actuation of the hip joint
at the stance foot and the knee joint of the swing leg guarantee the observed walk-
ing propulsion and the uplifting motion, see the optimised torque evolution in e2-
direction.

The scaling parameters are computed as σ = [
0.5058 0.9261 1.3803 0.5273

]T

and consequently a period of time for a half step of about 0.2970 s results, whereby
a double support over a period of 0.0822 s results which correlates to 13.83 % of the
gait cycle. Consequently, the optimiser shortens the double support phase compared
to the observed period of real human walking, see also [16]. As indicated by the third
scaling parameter, the period of double support with forefoot contact of the right leg
and heel contact of the left leg is enlarged, while the last part of the double support
is shortened by a scaling parameter of 0.5273.

The corresponding contact Lagrange multipliers for both legs are depicted in
Fig. 6.9. Particular striking is that this optimised motion has two phases in which
the contact force plays a dominant role, namely at first as soon as the left heel
touches the ground and secondly during the single support phase with full contact.
This behaviour can probably be explained by the fact that during the single support
phase, the swinging leg is moved in forward direction and simultaneously the foot
without contact is lifted up. Afterwards, the foot’s potential energy is transformed in
a forward motion, which ends with the heel-ground contact. As visualised in Fig. 6.9,
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Fig. 6.8 Minimal specific control effort: actuation torques of the left and right leg during the half
gait cycle

Fig. 6.9 Minimal specific control effort: evolution of the contact Lagrange multipliers of the left
and right leg during the half gait cycle

the cross hatched areas represent Coulomb’s static friction law (μ0 = 0.7), which is
part of the inequality constraints of the optimal control problem.

The evolution of the angular momentum L and of the different energy terms are
depicted in Fig. 6.10. The left-hand side shows that the walker moves primarily in the
(e1, e3)-plane, because L1 and L3 are almost zero. This behaviour is accentuated by
the evolution of the feet trajectory in e2-direction of Fig. 6.7 which is small compared
to the motion in e1 and e3-direction. On the right-hand side of Fig. 6.10, the energy
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Fig. 6.10 Minimal specific control effort: evolution of the angular momentum (left) and the kinetic,
potential and total energy (right) during the half gait cycle

evolution is illustrated over time, whereby kinetic energy is considerably greater than
the potential energy, which is in comparison to the kinetic energy nearly constant.
This is due to the small vertical movement of the walker during the bipedal gait.

6.7.1.2 Minimal Specific Torque Change

The criterion of minimising the change of torques per step length yields smoother
evolutions of the joint actuations, see Fig. 6.13, and a step-length of 0.6450 m results.
The torque change for the optimised gait is computed to 1.8875 × 105 (Nm)2 s−1. The
optimised motion sequence has certain resemblances to the results of minimal control
effort per step length, especially the trajectories during the swing phases before the
heel contact is established. Some differences of the trajectories are observable after
the take-off phase of the swinging leg, because the leg is more bent and consequently
the foot is raised higher than when using specific control effort. Subsequently, the
potential energy is transformed into a forward motion with a step-length of about
9 % larger then when using the previous objective criterion. This described behaviour
is depicted in Fig. 6.11 as well as in the lower row of Fig. 6.12 for the trajectory in
e3-direction.

Analogue to the results of monopedal jumping in [27], higher control forces result
in comparison to the specific minimal control effort, especially at the ankle joint of
the leg which is in contact with the ground. The complete manoeuvre takes place
in 0.5001 s and time is scaled by the vector σ = [

1.0726 1.5000 1.4457 0.6024
]T

which indicates that the optimiser extends all walking phases with the exception of
the double support with one foot in full contact. For this cost function, the double
support phase corresponds to 18.46 % of the gait cycle and lies inside the range of
double support for a realistic human motion, see [16].
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Fig. 6.11 Minimal specific torque change: snapshots of the optimised bipedal motion
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Fig. 6.12 Minimal specific torque change: evolution of the feet trajectory coordinates during a gait
cycle

The evolution of the different joint torques are given in Fig. 6.13, herein also the
above noticed actuation characteristics are observable. For this cost function, we
chose the following scaling vector

wI = [
1 1 1 1

√
10 1

√
10

]T
for I = L, R,

to increase the ankle’s influence around the e1 and e3-direction on the whole motion.
This is done to reduce slight motions of the feet in the (e1, e2)-plane. Another inter-
esting fact is illustrated in Fig. 6.12, where the trajectory of the ankles’ e2-coordinate
is depicted over time: namely, in contrast to the motion for the criterion of minimal
control effort per step-length, resulting in relatively small ankle motions. The evo-
lution of the e3-coordinate over the walking time shows the higher lifting motion.
Subsequently, the achieved potential energy is transformed to a swinging motion in
forward direction.
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Fig. 6.13 Minimal specific torque change: actuation torques of the left and right leg during the half
gait cycle

Fig. 6.14 Minimal specific torque change: evolution of the contact forces of the left and right leg
during the half gait cycle

The evolution of the actuation seems more realistic if one considers the fact that an
arbitrary change in torques and muscles is physiologically not possible. As mentioned
before, during the walking motion, the knee is primarily actuated and the actuations
in e1- and e2-direction is comparatively small. This is an interesting behaviour and
it justifies the previously chosen scaling vector. The associated Lagrange multipliers
for both feet are plotted in Fig. 6.14 and it is particularly noticeable that the actuation
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Fig. 6.15 Minimal specific torque change: evolution of the angular momentum (left) and the kinetic,
potential and total energy (right) during the half gait cycle

sequences during the forefoot contact phase of the stance-foot cause a higher contact
force than for the result of minimal control effort per step length. The fulfilment of
the Coulomb’s static friction law has a restrictive influence on the local solution.

On the left-hand side of Fig. 6.15, the evolution of angular momentum is plot-
ted and according to the walking sequence, the different single support phases
and the double support are visible. The angular momentum components L1 und
L3 slightly oscillate and are significantly smaller than the component perpendicular
to the (e1, e3)-walking plane. The right-hand side of Fig. 6.15 depicts kinetic, poten-
tial and total energy. We notice a qualitatively similar evolution as seen when using
minimal control effort, but the kinetic energy is nearly 50 % lower than before due
to the longer walking time interval.

6.7.1.3 Minimal Specific Kinetic Energy

The optimised motion for the criterion of minimal specific kinetic energy is com-
pletely different from the results for the two previous cost functions on basis of the
actuation torques. The most pronounced difference concerns the trajectory of the
swinging leg, which is lifted up as little as possible—the feet’s center of mass is
always below a height of 0.2 m (see Fig. 6.16). The kinetic energy sum for a step-
length of about 0.6338 m is computed to 41.2256 J s. That mans that the optimiser
extends all walking phases according to σ = [

1.5000 1.5000 1.4889 1.4724
]T

,
which is in all four cases exactly or almost the maximum scaling parameter. Con-
sequently, the walking motion takes more than 0.5988 s. Another interpretation of
this cost function is that we are interested in the minimal velocity per step-length,
because the kinetic energy is directly proportional to the walking speed. With regard
to this interpretations it is clear that a longer walking time results and the legs move
primarily in e1-direction to achieve a larger step length.
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Fig. 6.16 Minimal specific kinetic energy: snapshots of the optimised bipedal motion
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Fig. 6.17 Minimal specific kinetic energy: evolution of the feet trajectory coordinates during a gait
cycle

The feet’s trajectory over time is illustrated in Fig. 6.17 and comparatively large
rotational motions at the ankle joints can be observed which lead to the results
illustrated in Fig. 6.17 by the trajectory in e2-direction. This can be explained
by the fact that due to the small mass of the feet the resulting kinetic energy
is small. Analogue to the motion for minimal control effort, the feet move out-
wards during the swing phase and also a slight horizontal motion can be noticed
(Figs. 6.18 and 6.19).

As a result of the different walking behaviour, the standing leg is primarily actuated
in e2-direction at the ankle joint during the forefoot contact. The applied actuation
torques at the hip and knees have a subordinate role. Due to the lower energy during
the walking motion, the contact Lagrange multipliers are smaller than observed
before, whereby the Coulomb’s static friction law is also satisfied. Figure 6.20 depicts
the evolution of the angular momentum and the energy during the optimised half gait
cycle. The different walking phases are substantially less marked than for the criteria
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Fig. 6.18 Minimal specific kinetic energy: actuation torques of the left and right leg during the
half gait cycle

Fig. 6.19 Minimal specific kinetic energy: evolution of the contact forces of the left and right leg
during the half gait cycle

before and the right-hand plot side reflects that the chosen cost function is minimising
the kinetic energy. The potential energy is even smaller than before due to the minimal
lifting up motion of the swinging leg. The resulting kinetic energy is substantially
lower than for the other criteria.
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Fig. 6.20 Minimal specific kinetic energy: evolution of the angular momentum (left) and the kinetic,
potential and total energy (right) during the half gait cycle

6.7.1.4 Minimal Specific Jerk

The last criterion which is discussed in this context minimises the jerk of the walker
motion per step length. A step-length about 0.6247 m results and the function value
is given by 1.6851 × 108 m2

s5 . Comparing the trajectories of Figs. 6.11 and 6.21, the
resulting foot trajectories are similar, whereby in case of a minimal jerk, the whole
motion looks smoother. In contrast to the solution for minimal specific torque change,
the optimiser extends all four phases. A walking time of 0.5326 s arises and the
double support phase corresponds 18 % of one gait cycle. The optimiser extends the
movements by using the scaling vector σ = [

1.4668 1.0903 1.4987 1.4957
]T

.
Figure 6.22 confirms the comments respective to the similarities of both cost

functions, because the evolution of the e1-coordinates as well as the e2-coordinates
are very similar to those in Fig. 6.12. Also for this criterion, the feet’s trajectory
is pointing outward during the swing phases. Only the vertical motion looks like a
compromise of minimal specific control effort and minimal specific torque change
(Fig. 6.23).

Fig. 6.21 Minimal specific jerk: snapshots of the optimised bipedal motion
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Fig. 6.22 Minimal specific jerk: evolution of the feet trajectory coordinates during a gait cycle

Fig. 6.23 Minimal specific jerk: actuation torques of the left and right leg during the half gait cycle

A completely different picture results if we focus on the actuation torques. The
hip joints as well as the knee joints are actuated in the range ±100 Nm, whereby
especially the knee actuation reminds at the torque sequences of the criteria mini-
mal specific torque change and minimal specific kinetic energy. Another common
property between minimal energy and minimal jerk concerns the comparatively large
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actuation of the stance foot’s angle joint in e2-direction. In the post-processing step,
the resulting contact Lagrange multipliers are evaluated and depicted for both feet
in Fig. 6.24. When reviewing the evolution of the contact Lagrange multipliers, it
becomes evident that the computed contact Lagrange multipliers can be observed to
lie between the contact force for minimal torque and minimal kinetic energy. A larger
heel shock is similar to the minimal torque change and during the forefoot contact of
the single support phase, the same influence of the ankle actuation becomes apparent
as observed for the minimal kinetic energy solution.

Figure 6.25 visualises on the left-hand side the evolution of angular momentum.
On the right-hand side the different energy terms are plotted over time. The angular
momentum in e2-direction is very similar to the results in Fig. 6.15 and the influence
of each walking phase is easily recognised. On the right-hand side, the kinetic, the
potential and the total energy are depicted, whereby a qualitatively similar evolution
of the different energies can also be observed as in the case of the other cost functions.
Consequently, the qualitatively energy evolution is characteristic for the human walk,
but the amount of energy depends on the chosen cost function.

Fig. 6.24 Minimal specific jerk: evolution of the contact forces of the left and right leg during the
half gait cycle
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Fig. 6.25 Minimal specific jerk: evolution of the angular momentum (left) and the kinetic, potential
and total energy (right) during the half gait cycle



144 M.W. Koch and S. Leyendecker

6.8 Conclusions and Outlook on Future Work

In this work, a multibody system, which consists of seven rigid bodies, is used to
investigate the bipedal upright gait in a optimal control simulation. The investi-
gated multibody system is deliberately kept simple to purely analysing the changing
dynamical behaviour during the bipedal walking with feet. The contact between the
feet and the ground during the support phases is modelled by a perfectly plastic con-
tact formulation. The optimal control problem of the human gait is solved by a direct
transcription method to transform it into an optimisation problem, whereby the goal is
to minimise the cost function per step length. The dynamics of the multibody system
is discretised using a variational integrator with the described structure preserving
properties. The influence of the different specific objective functions is investigated.
Especially the optimised solution of specific kinetic energy shows great correspon-
dence to human walking and corroborates the thesis that the human’s upright gait
is an anthropological optimised solution of walking with minimal kinetic energy—
namely with great perseverance. These similarities to real motions accentuate the
DMOCC’s potential on future work. For this purpose, several options are possible:
comparison with measured walking motions using the motion capturing method and
the identification of possible weighting components for the specific cost functions.
Further purposes may be to investigate the influence of swinging arms and to enable
motion capabilities inside the model’s backbone. Furthermore it might be interesting
to optimise the bipedal gait along an inclined plane or to investigate climbing stairs.
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Chapter 7
Robotran-YARP Interface: A Framework
for Real-Time Controller Developments
Based on Multibody Dynamics Simulations

Timothée Habra, Houman Dallali, Alberto Cardellino, Lorenzo Natale,
Nikolaos Tsagarakis, Paul Fisette and Renaud Ronsse

Abstract Multibody dynamics simulation is widely used for prototyping and test-
ing controllers. However, the transfer of controllers initially developed in simulation
to real mechatronics platforms requires updating the code in order to interface with
physical sensors and actuators. Due to this strong coupling with specific hardware,
the controller re-usability is often severely compromised. In the present contribution,
we solve this issue by adding a middleware between the controller and the controlled
platform (either real or simulated). This framework decouples the controller from
the hardware, allows fast controller developments and eases collaborations on large
scale projects. Moreover, it offers the possibility to simultaneously control the real
and the simulated robot from a unique controller. This paper presents the interface
of the Robotran dynamic simulator with the YARP middleware. Robotran lever-
ages symbolic generation of the multibody equations to provide fast and accurate
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simulations of multibody systems. The speed and accuracy of Robotran make it
possible to test real-time controllers in a realistic simulation environment. This frame-
work is illustrated with applications using the COMAN and WALK-MAN humanoid
robots.

7.1 Introduction

Simulation tools are widely used in prototyping and testing new technologies. By
providing a safe and controllable testing environment, they allow fast and cheap
software prototyping. In fields such as robotics or vehicle dynamics, mechanical
platforms are not always available for controller testing. Indeed, the mechanical
design of first prototypes requires time and resources. Moreover, the few platforms
usually built up are often subject to repair or maintenance. In addition, running
untested controllers turns out to be potentially dangerous for both the operators
(injuries) and hardware (damages). In this context, multibody dynamics simulation
is a tool being particularly appealing for the development of controllers for complex
mechanical systems.

Nevertheless, porting a controller initially developed in simulation to a real device
is not straightforward. It typically requires to adapt the format of the input and
output signals of the controller to the actual actuators and sensors. Furthermore, in
a real setup, the communication and synchronization between the physical sensors,
processors, and actuators must be handled. Hence the controller must also interface
with the different communication protocols being used. Not only time consuming
and error prone, this coupling between the high-level controller and the mechatronic
hardware severely impacts the reusability and lifespan of the code. The code stays
with a specific mechatronic platform and usually gets obsolete as soon as the hardware
changes. This interfacing issue is thus an obstacle to the efficient use of dynamic
simulators for controller developments.

Interestingly, an interfacing burden is also faced in robotics when updating a robot
hardware or reusing some code initially developed for another robot. Each time a
piece of hardware (e.g. sensors, actuators) is changed, the controllers become out-
dated and need to be modified. This is particularly burdensome in modern projects
deploying advanced devices being constantly improved and updated, especially
within the research community. To tackle this problem, the use of a so-called “mid-
dleware” emerged as a suitable solution to enhance code modularity and to encourage
code reuse and collaborations across projects. Applying the principles of a middle-
ware from robotics to dynamic simulators may help to solve the interfacing problem
mentioned above.

The principle of a middleware consists in moving all of the code specific to the
hardware into an intermediary software lying between the controllers and the robot,
namely the middleware (see Fig. 7.1). This software manages the communication
between the controllers and the actual device. It provides the controllers with an
interface to read sensors and drive actuators. Thus, the controllers become totally
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(a)

(b)

Fig. 7.1 Blue rectangles represent the piece of code being specific to the hardware. a Controllers
directly commanding the robot, with their hardware-specific code. b Controllers interfaced with a
middleware and having no hardware-specific code

independent of the hardware. People developing controllers can then focus on their
algorithm and are set free from the interfacing with the device. The lifespan of the
code is then extended as it does not need to be modified when some pieces of hardware
are updated or changed. By decoupling the controllers from the robot hardware, it
further allows a unique controller to work with different pieces of hardware (e.g.
joint encoders) as long as they are properly interfaced with the middleware.

This approach can also be applied with a multibody simulator. Indeed, from a
controller perspective, a multibody simulator can be seen as a collection of virtual
hardware (actuators and sensors). Therefore, as for any physical device, the virtual
hardware of a simulator can be interfaced with a middleware that takes care of
matching the relevant input/output signals. Then, without changing a single line of
code, the very same controller can work with the simulator and with the real robot.

Over the years, several middleware frameworks were developed. Generic mid-
dleware like CORBA,1 Ice2 or ØMQ3 provide complete communication backbones
and are widely used to communicate through the internet network. However, they
are rarely employed in robotics. Firstly, they are not easy to adopt by non-experts.
Secondly, they lack specific components for robotics such as interfaces for sensors
and actuators. For that reason, middleware being specific to robotics appeared, such
as Player [5], ROS [29], Orocos [3], YARP [25], Orca [24], OpenRDK [4], Mira [10]
or LCM [18] to mention just a few.

1http://www.corba.org/.
2http://www.zeroc.com/ice.html.
3http://www.zeromq.org/.

http://www.corba.org/
http://www.zeroc.com/ice.html
http://www.zeromq.org/
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Player [5] is a hardware abstraction layer for robotic devices. It implements
drivers for a large collection of sensors and robots. The Stage simulator is also
interfaced with Player and offers to simulate a population of mobile robots in 2D
[15]. It is not intended to simulate multibody dynamics but rather to test planning
algorithms.

ROS [29] can be seen as the evolution of the Player/Stage framework. It was
launched in 2007 and has gained a wide audience ever since. It is interfaced with the
Gazebo simulator [21] which was initiated as a 3D complement to Stage. Not only a
middleware, ROS also provides a rich array of toolboxes and packages for robotics
developed among a large community. ROS defines some standard message formats
for sensors and provides interfaces for controllers. The Player drivers can be used in
ROS.

Orocos middleware [3] builds its communication around CORBA. It is popular in
robotics for its kinematics and dynamics library (KDL) that can be easily integrated
into controllers. Orocos direct dynamics module in addition with a time integrator can
be used to create a custom simulator [12]. However, contacts with the environment
are not included in this scheme. Orocos can also connect to the Gazebo simulator
through ROS.

YARP middleware [25] is mainly used in humanoid robotics, and most notably
for the iCub platform [26]. For such a kind of robot with many actuators and sensors,
YARP facilitates the code modularity by abstracting the hardware through interfaces.
It can be extended with device drivers to be compatible with a variety of sensors and
actuators. Originally, a dynamic simulator based on Open Dynamics Engine (ODE)
was developed for the iCub [32]. However, it was not generic enough to simulate
other robots. Therefore, a plugin to use YARP with Gazebo was also developed [17].

For more details about the different middleware used in robotics, the interested
reader can refer to the following surveys [22, 27].

Currently, the multibody research community is not sufficiently connected with
the robotics research community. In this regard, we believe that the adoption of
middleware in the multibody domain could facilitate collaborations. This would be
beneficial for both robotics and multibody researchers. On the one hand, roboticists
would gain access to the state-of-the-art in multibody dynamics simulators. Indeed,
the middleware interface would guarantee an effortless transfer of their controllers to
new simulators. A strong current trend in robotics is to use simulators being initially
developed for video games, like ODE and Bullet [19]. These simulators are primarily
targeting fast computation with results being visually-plausible rather than physically
correct. Therefore, adoption of simulators from the multibody community should
improve the accuracy of the simulations. On the other hand, the multibody community
could improve the code modularity and reusability, and more generally, enhance
collaborations using software development techniques coming from robotics.

This work presents the interfacing of the Robotran multibody dynamics sim-
ulator [8] with the YARP middleware [25]. Similar interfaces between middle-
ware and simulators already exist: for example YARP with Gazebo [17] and ROS
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with Gazebo.4 The Gazebo simulator is attractive and widely used in the robotics
community because it allows to model complex world and vision sensors. Moreover,
Gazebo and ROS communities are large, active, and partly overlap. However, none
of these existing solutions is satisfying enough to get accurate simulation in realistic
scenarios while remaining faster than real-time. This demanding tradeoff in terms
of computational speed and simulation accuracy is an incentive for using Robotran.
Indeed, thanks to its symbolic formalism, Robotran can generate for any given rigid
multibody model, its corresponding equations of motion in a form specifically tai-
lored for fast computation. By removing the unnecessary arithmetic operations of
a model, Robotran yields an optimal form of the kinematic and dynamic equations
and of the associated routines [8].

Importantly, the user should not lose the flexibility offered by the middleware
by being forced to use a single simulation environment. Therefore, a controller
developed with the Robotran-YARP interface remains totally compatible with the
Gazebo-YARP interface. Indeed, since the Gazebo-YARP and Robotran-YARP plu-
gins implement all the same drivers, the same controllers can also work with both.
This is precisely the objective of a middleware. Also, YARP has the capability to
interoperate with ROS. Therefore, our interface is also compatible with software
being developed by the ROS community.

The presented approach remains general and can be followed for other multibody
simulators and other middleware. Robotran was selected as the dynamic simulator
for its speed and accuracy provided by its symbolic formalism. YARP was chosen for
its openess and interoperability (e.g. fully compatible with ROS). The corresponding
code is open source and publicly available.5

This chapter is structured as follows. Section 7.2 outlines the main features and
implementation of the YARP middleware. Section 7.3 presents the drivers imple-
mented to interface Robotran with YARP. Then, Sect. 7.4 details some applications
enabled by the proposed framework. To illustrate how the proposed framework can
be used for controllers of complex mechatronic systems, examples with the COMAN
[33] and WALK-MAN [11] humanoid robots are given. Finally, Sect. 7.5 gives a brief
conclusion.

7.2 YARP Middleware

A major problem in robotics is that controllers can quickly get entangled with the
platform they are running on and the devices they are controlling. Moreover, many
modules are typically used to control a robot. Managing the inter-module commu-
nication can quickly become intractable and time consuming. In that context, the
YARP robotics framework has been developed to help reduce the time spent doing
infrastructure-level programming rather than actual research [13, 25].

4http://www.wiki.ros.org/gazebo_ros_pkgs.
5In public repositories https://www.gitlab.robotran.be/walkman.

http://www.wiki.ros.org/gazebo_ros_pkgs
https://www.gitlab.robotran.be/walkman
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Fig. 7.2 Overview of the control framework of the WALK-MAN robot. It represents a typical
example of the modules being used to control the humanoid robot performing the tasks of the
DARPA robotics challenge

7.2.1 Motivation

A typical example of a middleware utility is raised in the WALK-MAN project,
aiming at developing a humanoid robot able to support rescue teams by perform-
ing activities in the most hazardous disaster zones6 (e.g. Fukushima nuclear plant).
Example of tasks to be achieved are those proposed at the recent DARPA Robot-
ics Challenge, such as valve turning, stairs climbing or debris removal.7 These tasks
require integration of multiple modules of perception, locomotion and manipulation.
An overview of this high level control framework is presented in Fig. 7.2.

This type of collaborative research project requires various modules to be devel-
oped and shared among multiple research groups located in different countries (in
this case Italy, Switzerland, Germany and Belgium). During the first months of the
project, the WALK-MAN robot was designed. Consequently, the first software devel-
opments were performed in simulation or by using other humanoids robots (e.g. the
COMAN [33]). Last but not least, some controllers and software tools previously
developed in other projects were expected to be reused.

Without using a middleware, all of the software developments and integration
achieved in a time period of 18 months would have been impossible.

7.2.2 Middleware Principle

The key idea of a middleware is to extract the hardware-controller interface out of
the controller code itself. As shown in Fig. 7.1, all of the hardware dependent code

6See http://www.walk-man.eu/.
7http://www.theroboticschallenge.org/.

http://www.walk-man.eu/
http://www.theroboticschallenge.org/
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is handled by the middleware. The different controllers are then totally “agnostic”
with respect to the actual hardware being used.

The hardware dependent codes, known as the device drivers, manage the direct
operation of the hardware devices. It can be for example the code requesting the
joint position measured by an encoder communicating through an I2C bus. It can
also be the code sending a desired voltage command through a CAN bus to the power
electronics driving a DC motor. Thus, for every actuator or sensor communicating
with the controller, a driver must be implemented. All of the drivers of a specific
platform are gathered in the middleware.

In order to keep the controllers flexible to hardware changes, device interfaces
are used between the user controllers and the middleware. They consist of hardware
abstraction layers for families of devices. The idea is to provide a unique interface for
all the devices having the same functions, regardless of the technology they rely on
(see Fig. 7.3). The user control algorithms are blind with respect to the actual devices
being used on the robot. The only relevant information they depend on is the type
of interface being available on the mechatronic platform. For example, the encoder
interface can be used for any sensor providing a measurement of the joint position. If
an upgrade of the platform requires to replace optical encoders by magnetic encoders,
the controllers are not affected. Programmers can write the higher-level application
code independently of the specific hardware of a particular platform in a particular
configuration.

This abstraction through device interfaces is actually borrowed from classic com-
puter operating systems. For example, a computer software can use an interface for
the clicking devices. The interface makes it unnecessary to re-install all computer
applications after plugging in a mouse or when using a new touch screen. Instead,
it is simply required to have the correct drivers for these devices while they have to
comply with the same interface.
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Fig. 7.3 Different devices of the same family, Type A Motor and Type B Motor are controlled by
the same controller. Each motor has its own driver but both drivers implement the same interface
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7.2.3 Implementation

Practically in YARP, the device interfaces consist of Application Programming Inter-
face (API) used to control actuators and read sensors data. They are implemented in
C++ as abstract base classes with a set of virtual methods. So, each type of sensor (e.g.
joint position encoders) is associated to a set of interfaces specifying the collection
of functions available to access the data (e.g. getEncoder()). Similarly, each type of
actuator (e.g. a joint DC motor) is associated to interfaces specifying the functions to
control it (e.g. positionMove(ref)). For more details about YARP interfaces, see [13].

Following the object oriented programming paradigm, device drivers are children
of the device interface classes. So for each device interfaced with YARP, a driver
should implement the corresponding interface classes. Drivers of different devices
belonging to the same family can implement the same interface. This allows different
types of encoders to implement the same encoder interface and thus to be compatible
with the same controller. As written above, this architecture makes the controller be
device agnostic: it knows the interface functions, but does not need to know which
specific device implements them. The controller should only fulfill the requirements
regarding the type and format of the data it gets or needs to send. So each device
can implement interfaces when appropriate, with the requirement of being compliant
with the specifications, e.g. regarding the unit (degrees for angular positions, Newton
for forces, etc.). This guarantees that the controller can work with any platform
implementing its interfaces, as illustrated in Fig. 7.3.

In addition, for each interface, YARP implements generic network proxy devices
allowing the remote execution of the same code. Therefore, different controller pieces
can run on different machines. Thus, controllers on a user laptop can be interchange-
ably connected to the physical mechatronic platform or to a simulator with no neces-
sity to recompile the program. This offers for instance to rely on the specific advan-
tages of specialized computers for specific computations (e.g. for vision or intensive
computation).

7.3 Robotran-YARP Drivers

Since a simulator can be seen as a virtual robot, it is possible to implement drivers for
the simulated devices. This was performed for the Robotran simulator, as described
in this section. This implementation allows to test controllers in simulation and then
to port them to the real robot without changing a single line of code. Figure 7.4
illustrates an example of this structure with the COMAN humanoid robot.

Robotran is particularly tailored to fast and accurate multibody dynamics sim-
ulations [30]. To challenge the capacity of Robotran to produce fast and accurate
simulations, the proposed interface aims at testing robotic platforms and controllers
involving large dynamical contributions (e.g. locomotion, whole-body control).
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Fig. 7.4 Robotran-YARP control framework. The user control algorithm calls the interfaces func-
tions without knowing what device is behind. The real robot and the one simulated with Robotran,
have their own drivers implementing these interfaces. The very same controller can then be used
with both the real and the simulated robot

Consequently, the drivers for actuators and for the sensors measuring dynamics (i.e.
torque sensors rather than cameras) are implemented in the Robotran environment.

7.3.1 Control Board Driver

On a real robot, control boards are electronic boards supervising the joints actuation.
A control board often embeds a joint control algorithm implemented at the firmware
level. Different control modes are usually available (e.g. position or torque control).
As displayed in Fig. 7.5, this low-level control algorithm drives the actuator and
receives a feedback from the joint encoder. If available, it can also acquire a torque
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Fig. 7.5 The control board is a key bridge between the high-level controller and the actual joints.
It contains a low-level controller directly controlling the actuators
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feedback from a joint torque sensor. These low-level joint controllers can usually be
decoupled from the high-level control algorithms. While the high-level controllers
(e.g. locomotion algorithm) run on a central on-board PC, the low-level controllers
(e.g. torque control) directly run on the electronic boards. Typically, high-level algo-
rithms do not directly drive the motors but rather send references (position, veloc-
ity, torque, etc.) to control boards that will, in turn, drive the motors (see Fig. 7.5).
Therefore, a control board driver receives reference commands from the user con-
trol algorithm and translates it into commands being specific to the low-level joints
controller.

The control board driver is thus in charge of several devices and implements many
device interfaces. The main interfaces implemented for the Robotran control board
driver are:

• IEncoders: returns the joints position, velocity and acceleration.
• IOpenLoopControl: sends a voltage command to the DC motors in open loop (with-

out feedback control). This mode thus bypasses the low-level controller mentioned
above, allowing feedforward control.

• IPositionControl: controls the joint position. It can implement either a PID control
(stiff mode) or a joint impedance control (compliant mode).

• IVelocityControl: controls the joint velocity. It can implement either a PID control
(stiff mode) or a joint impedance control (compliant mode).

• ITorqueControl: controls and measures the joint torque.
• IControlMode2 and IInteractionMode: select respectively the control mode (posi-

tion, velocity, torque, open loop) and the interaction mode (stiff or compliant).
• IPidControl and IImpedanceControl: control respectively the low-level PID con-

troller gains and the virtual impedance stiffness and damping.
• IAmplifierControl: feeds back the electrical current in the motors.

In order to make the simulation environment compatible to the real hardware, two
add-ons were implemented in the Robotran simulation suite (and more particularly
the devices presented in Fig. 7.5). These add-ons are generic in the sense that they can
be reused for different Robotran multibody models by adapting some configuration
files.

The first add-on consists of joints controllers mimicking the firmware low-level
controllers of the real robot. This allows to specify for each joint the desired type
of control (position, torque, impedance and open-loop). The PID gains can also be
modified through this module.

The second add-on consists in a compliant actuator model, which is particularly
useful to simulate compliant robots like COMAN [33] and WALK-MAN [6]. It
provides the constitutive laws of a DC motor and the mechanical model of a series
elastic actuator (SEA). This model is combined with the multibody dynamics through
the Robotran user derivatives feature. The latter allows integration of the additional
differential equations of the DC-motor and the joint compliance together with the
set of multibody dynamic equations. All the details can be found in [7, 34].

Based on these add-ons, the Robotran Control Board Driver is implemented. At
each simulation time step, joints position, velocity and torque are read by the driver
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and sent to YARP. The desired joints position or torque are then received from YARP
and sent to the Robotran low-level controller.

7.3.2 Force-Torque Sensor Driver

A 6-axis force-torque sensors measure the wrenches acting on a body, i.e. the 3 force
components (Fx , Fy , Fz) and the 3 torque components (Tx , Ty , Tz) expressed in a
body fixed frame.

On a real robot, this type of sensor is typically made of strain gauges capturing
small deformations. In Robotran, this can be simulated by means 6 locked joints at
the sensor location. The Lagrange multipliers computed by Robotran provides the
force or torque being required to keep these joints locked [30]. Assuming that the
body deformation due to the strain gauge stretching are negligible, this technique is
a good approximation for modelling this sensor.

This driver thus implements the IAnalogSensor interface which outputs 6 values
representing the forces and torques components.

7.3.3 IMU Sensor Driver

An Inertial Measurement Unit (IMU) measures the orientation, velocity and accel-
eration of a body.

This physical sensor usually combines accelerometers and gyroscopes [9].
In the simulation environment, the same information can be retrieved using the

Robotran forward kinematics module [30]. Placing a Robotran sensor at the same
location as the IMU sensor provides position, orientation, velocity and acceleration
of this point in space. Note that Robotran provides the body orientation by means of
a rotation matrix. It must be converted into Euler angles to comply with the YARP
format.

In summary, this driver implements an IAnalogSensor interface which outputs the
orientation, the angular velocity and the linear acceleration of a body.

7.3.4 Clock Driver

This driver gets the simulation time in order to synchronize the controllers with the
simulation environment. Such a driver is thus specific to the simulation environment,
and does not exist in the physical counterpart. Indeed, a simulated time clock is not
always constant. It might run faster or slower than real time. If the controllers and
the simulator are not synchronized, they will display unrealistic behaviors. All the
interconnected systems should thus follow the same clock managed by the simulator
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clock driver. This driver distributes the clock through the network to all the involved
machines and applications. Note that this does not prevent fast simulators like Robo-
tran to run tests of real-time controllers even faster than real time. Indeed, running
the simulator clock faster than real-time is possible, as long as all interconnected
systems stay synchronized.

Moreover, the Robotran library provides a tool to control the simulation time.
The clock can be artificially slowed down in order to carefully observe the device
behavior during highly dynamical events, for example, an impact with the ground or
an object. Moreover, this central clock even offers to rewind a simulation backward
in time, a feature that proves to be very useful when debugging.

7.4 Applications

The Robotran-YARP framework offers a wide range of applications. Its standardized
interface enhances the code reusability and eases the transfer of a controller from
a simulation environment to an experimental setup. Moreover, it can be used to
simultaneously run a controller on the simulator and on the experimental setup.
Finally, the use of a middleware can also facilitate the benchmarking of multibody
simulation tools. These different examples are detailed in the sections hereunder.

7.4.1 Code Reusability

YARP clearly specifies the interface of the control modules. To (re)use a control
module, the only request is to connect it to the correct inputs-outputs through the
corresponding YARP communication ports. This “plug and play” architecture eases
the software reuse across projects.

As an example of module reusability, Fig. 7.6 shows the Robot Motor Gui module
controlling the simulated COMAN. This YARP module implements a graphical user
interface to interact with the control boards. It offers to test different low-level joint
controllers. It is interesting to note that, at the time this module was written, no
interface between YARP and Robotran existed. Nevertheless, as the module was
designed to be compliant with YARP, it could be reused in Robotran simulated
platform without any modification. Moreover, this module was initially developed
for another robot, namely the iCub [26] and was imported here without changing a
single line of code, despite a very different hardware. This illustrates the potential of
code reusing and cross-projects collaboration brought by our framework.
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Fig. 7.6 The COMAN humanoid simulated in Robotran is controlled by a classical YARP-module,
the “Robot Motor GUI” through the control board interface

7.4.2 Code Transfer

Our framework further allows to seamlessly transfer a module from simulation to real
hardware and vice versa. Thanks to the middleware decoupling, the controllers do not
need to be recompiled when switching from one environment to the other (simulated
or physical). Furthermore, this seamless transfer to simulation makes possible to
write regression tests in order to verify that patches or new developments do not
modify the expected behavior of the robot software. Controller testing can thus be
automated, as prescribed by the software continuous integration methodology [14].

As represented in Fig. 7.7, a squatting task was run on both Robotran and the real
WALK-MAN robot in order to compare the simulated model of WALK-MAN with
experiments. The position, torque and the 6 DoF force torque sensor data were logged
for comparison. The data is presented for 30 s where the robot squats down by 30 cm
and returns to its initial posture every 7 s, completing a full cycle. In terms of position
tracking, once the low-level PID controllers are properly tuned, a suitable tracking
performance is obtained. Regarding the knee torques, there are some differences
between the simulation data and the experimental results. The experimental data is
more oscillatory. This is due to parasitic movements in the other joints, while this is
better controlled in the simulation. Also the average torque profile is slightly higher
in the experiment. This is due to unmodelled shock absorbing plastic covering the
robot body and to electrical wires and electronic boards adding weight to the actual
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Fig. 7.7 Squatting task performed by a simulated and real WALK-MAN robot. The leg joints are
controlled in position to move the robot from the standing up to the squatting posture. Top left figures
show the real and simulated robots in the squat posture. Top right figure represents the evolution of
the position tracking of the Hip joint. Bottom left figure represents the measurement of the vertical
force in the foot sensor. Bottom right figure compares the experimental and the simulated torque in
the knee joint

robot, while this extra weight was not initially captured in the model. This difference
is indeed reduced after adjusting the modelled torso weight, as shown in the figure.
Note that a better prediction should likely require an extended system identification
for refining the model.

7.4.3 Parallel Execution

On top of that, the simulation can also run in parallel to the real robot (see Fig. 7.8).
Indeed, the modular interface of the middleware offers to simultaneously control a
real robot and a simulated one (the commands being duplicated).

This offers the possibility to add an internal model in the control scheme, i.e.
a framework with a strongly bio-inspired ground [20]. As sketched in Fig. 7.9, an
internal model consists in a dynamic simulator receiving a copy of the commands
sent to the real platform. It can then predict the state of the robot. Such a model
provides a particularly useful tool to perform state estimation, model identification
and predictive control [2, 16, 23, 31].
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Fig. 7.8 Real and simulated COMAN humanoid controlled in parallel by a unique controller

Fig. 7.9 Control scheme using a forward internal model (in red, in our case represented by the
simulator block). The internal model receives a copy of the command and predicts the expected
sensory output. This information can then be used for system identification and state estimation
(Adapted from [31])

Among others, we plan to use this tool in the next future to support robotic
teleoperation with low bandwidth and noisy communication channels between the
robot and its operator.
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7.4.4 Benchmarking

Finally, our framework can also be used to support the benchmarking of multibody
simulators. Indeed, in the same way a controller can be transferred from a simulated
to a real robot, a benchmark test could be transferred from a simulation environment
to another. Provided that the simulators are interfaced with the same middleware,
any benchmarking test could be performed with no adaptation of the controller code.
Following this approach, it is guaranteed that the benchmark is performed in the
same conditions for all the simulators under test. This is similar to the benchmarking
in [1, 28] using a physics abstraction framework to switch from one simulator to
another.

7.5 Conclusion

In conclusion, a clean interface between Robotran and YARP was developed in a
generic and open source library. The use of a middleware interfaced with a multibody
simulator offers many advantages for software development.

Firstly, the YARP middleware provides all the tools being necessary to create
modular projects. It decouples the high level controllers from the controlled platform
(real or simulated). This modularity eases the creation, maintenance and reuse of the
software modules. This naturally supports collaborations and enhances the code
durability.

Secondly, the integration of a dynamic simulator provides a powerful testing
environment. It allows to perform early and regular tests in a safe and cheap environ-
ment. It is important to recall that, in the proposed framework, the code tested in the
simulation environment is exactly the same as the one ported to the real platform.
Interestingly, the bugs can further be replicated! This testing capability is key to
produce high quality software modules.

Finally, the adoption of middleware among multibody research groups could
tighten the link with robotics researchers: the middleware being the glue between
the multibody simulation environments of the ones and the high level controllers of
the others.

The modularity and testing capabilities enabled by our framework were suc-
cessfully implemented with the WALK-MAN and COMAN robots. Fast software
prototyping could thus be achieved thanks to the reusability brought by the YARP
interface. Moreover, the transfer of a controller tested in a simulation to the real plat-
form is now straightforward: the exact same code can run in simulation or on a real
experimental setup. More advanced applications such as the parallel execution of the
same controller in both the simulation and in the actual robot are also possible. This
allows to perform state estimation and online system identification, i.e. two features
being critical for robots working in unknown environments. We also envisioned that
this framework could be used for the benchmarking of multibody simulators.
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Future works will consist of further extending the collection of robots available
to other platforms, like the iCub humanoid robot [26]. We also plan to use it to
perform online system identification of the robots and its environment. Drivers for
other sensors might also be implemented (tactile sensors, camera, etc.).

The proposed framework allows to improve and foster software developments
among large collaborative projects such as the WALK-MAN project. We hope it can
benefit to other research consortia. Therefore, we released the open source code of
the Robotran-YARP plugin together with the simulators of the COMAN and WALK-
MAN humanoids in a public repository (https://www.gitlab.robotran.be/walkman).
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Chapter 8
Wheel-Ground Modeling in Planetary
Exploration: From Unified Simulation
Frameworks Towards Heterogeneous,
Multi-tier Wheel Ground Contact
Simulation

Roy Lichtenheldt, Stefan Barthelmes, Fabian Buse
and Matthias Hellerer

Abstract Today’s growing scientific interest in extraterrestrial bodies increases the
necessity of extended mobility on these objects. Thus, planetary exploration systems
are facing new challenges in terms of mission planning as well as obstacle and soil
traversability. In order to fit the tight schedules of space missions and to cover a large
variety of environmental conditions, experimental test setups are complemented by
numerical simulation models used as virtual prototypes. In this context we present an
integrated simulation environment which allows for using different available contact
models, ranging from simple but real-time capable approximations based on rigid-
body modeling techniques up to very accurate solutions based on Discrete Element
Method (DEM). The models are explained and classified for their applications. For
this work, a one-point Bekker based approach (BCM) and the so-called Soil Contact
Model (SCM), which is a multi-point extension of the Bekker–Wong method taking
soil deformation into account, are used for further analysis. These two contactmodels
are applied for homogeneous simulations with only one type of contact model for all
wheels as well as for a heterogeneous multi-tiered simulation with different contact
models for the wheels. It will be shown that the multi-tiered approach enhances the
simulation result accuracy compared to the results of a homogeneous model with a
low level of detail while speeding up the simulation in comparison to a homogeneous
higher-tier model.
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8.1 Introduction

In order to further understand the formation of planets and our solar system, plane-
tary science requires extended mobility for the exploration of extraterrestrial bodies.
Therefore, the locomotion sub-systems enabling planetary exploration are facing new
challenges in terms of durability and mission planning as well as obstacle and soil
traversability. Testing in the actual environmental conditions is often very expensive
and time-consuming or not even possible. Additionally, environmental conditions on
the site of operation are often uncertain and not well-known beforehand. To cover
this large variety of parameters for optimizing the locomotion sub-system and fit
the tight schedules of space missions, experimental test setups are more and more
complemented by numerical simulation models.

In this context we present the DLR Rover Simulation Toolkit (RST) which is an
integrated simulation environment dedicated to the design of planetary rovers. For
the wheel-ground contact, the RST uses an in-house developed Contact Dynamics
Library (CDL) with a unified interface and modular design. This enables a straight
forward implementation of rover locomotion system models including seamless
switching between contact models with very different level of detail. The contact
models range from simple but real-time capable approximations based on rigid-
body modeling techniques via penetration and soil deformation approaches to very
accurate but slow particle-based methods. Having these different techniques avail-
able in one environment allows us to directly compare results of different tier models
amongst each other. Furthermore, running different contact models within one loco-
motion system model, which we call heterogeneous simulations, is exploited in this
work. Our in-house Soil Contact Model (SCM), which was previously verified in
[1], is the highest tier model that is still computationally efficient enough to use it
in multi-body dynamics simulations. It is thus used as reference for the comparison
of homogeneous lower-tier and multi-tiered heterogeneous wheel ground contacts
in this work. A first feasibility study of this method was carried out in [2] and is the
basis for this work. In this chapter the description of the framework and the con-
tact models is enlarged. Due to changes in the contact detection, the expected time
savings are accomplished and furthermore an in-depth analysis of new simulation
results is conducted with an improved scenario.

The simulation framework is presented in Sect. 8.2. Details of the different contact
models as well as a comprehensive comparison of their capabilities and applicability
are given in Sect. 8.3. Heterogeneous contact modeling is the main idea of this work
and is presented in Sect. 8.4. Alongside the explanation of the approach, a description
of the virtual test setup used for evaluation is given. Simulation results and their
discussion are shown in Sect. 8.5.



8 Wheel-Ground Modeling in Planetary Exploration 167

8.2 The DLR Rover Simulation Toolkit (RST) for Modelica

Modelica is a multi-physics, object oriented modeling language [3]. Base objects
in multiple physical domains are defined by equations and interfaces, which more
detailed components such as specific motors or mechanical parts can inherit from.
This enables the modularity that is essential for the core part of this work while
the numerous types of base objects enable modeling and subsequent simulation of
complex multi-physics systems.

The RST is a Modelica library covering all relevant physical subsystems of a
planetary rover, such as drivetrains, sensors and electrical systems. As shown in
Fig. 8.1, other custom or commercial libraries like the DLRVisualization Library [4]
are used together with RST components.

As the RST is especially focused on the locomotion and in particular on the
wheel-ground contact, a dedicated Contact Dynamics Library (CDL) is used. This
custom in-house library contains contact models with very different capabilities and
applications which are described in more detail in Sect. 8.3. The contact models
have a common interface (cf. Fig. 8.1), i.e. they require the position, velocities and
orientation from themulti-body system (MBS) and respond with resulting forces and

Fig. 8.1 Structure chart of the overall simulation framework, showing the interaction between its
different parts
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torques. The use of the CDL transfers its variablity in contact modeling for different
applications to the RST. These applications comprise but are not limited to high level
mission demonstration, optimization of kinematic aspects, phase 0/A studies (cf.
EuropeanCooperation for SpaceStandardization) for planetary explorationmissions,
simulation-based forensic engineering, controller design and Hardware-/Software-
in-the-loop (SIL/HIL) simulations.

8.3 Wheel-Ground Contact Models

In this section the wheel-ground contact models included in the Contact Dynamics
Library (CDL) are presented and theirmain features, applications aswell as advances
compared to the state of the art are shown. In the end of the section a systematic com-
parison of themodels with respect to typical simulation tasks in planetary exploration
is given.

8.3.1 Rigid Body Contact—RBC

The simplest simulations of multi-body systems in conjunction with contact dynam-
ics are typically based on rigid bodies only. While neglecting many effects of real
world objects, the results are still sufficiently accurate formany applications focusing
on the body movement. The big advantage of this approach is the short simulation
time required: with modern desktop computers even large and complex contact sce-
narios can be simulated in real-time.

8.3.2 Methods

A rigid body is defined as an idealized, perfectly non-deformable object, independent
of the external forces acting upon it. General constrained connections, joints and
contacts alwaysmaintain their imposed constraints and hard impacts between objects
cause instantaneous object speed changes to avoid any penetration. In reality the
contact between two hard objects deforms both objects, even if only slightly, for a
very short time before they flex back to their original form, separating the two objects.
Since this effect happens within such a very short period of time, one might only be
interested in the result of this contact, namely the change to the objects movement,
due to the contact.

For a rigid body simulation only the impulse of a contact, is calculated and then
reapplied to the objects, thereby instantaneously changing their velocity. For further
details refer to [5–7]. This principle may be used to directly calculate the speed of the
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two objects, right after a collision happened between them, according to the Impulse
based collision law, modeling the dissipation by the coefficient of restitution.

The coefficient of restitution ε ∈ [0, 1] depends on the material of the two objects
involved. A value of 0 is called a perfect inelastic collision, a value of 1 corresponds
to the perfect elastic collision.

Persistent contacts are modeled, similar to joints, as constraints on the possible
relative movement. However, they only limit the movement in one direction. This is
typically formulated as a Linear Complementarity Problem [8]:

μ = Aλ + b (8.1)

μi ≥ 0 ∀i (8.2)

λi ≥ 0 ∀i (8.3)

0 =
∑

i

μiλi (8.4)

μ, λ, b ∈ R
n; A ∈ R

n×n; i ∈ [1, n]N
Applied to the contact modeling this means: either the relative force is larger than
zero and the relative acceleration is zero, that is when the object surfaces are in touch,
or the relative acceleration is larger than zero and the relative force is zero, when the
objects are separating [9].

While dynamic friction may easily be incorporated into this approach as a force
acting against the relative tangential motion of the objects, static friction is more
challenging. The most common solution to this, and the one implemented here, is an
approximation of the friction cone by a symmetric polyhedron [7].

8.3.3 Application

Rigid body models are one of the simulation techniques used most often in the
computer animation and gaming industry. However, for scientific simulations its
accuracy imposes certain limitations that need to be considered.

In the context of wheel ground contact simulations this technique is not applica-
ble to the contact with soft soil, yet it is well suited for the contact between rigid
wheels and a hard surfaces. In a heterogeneous simulation environment, the high
computational efficiency of this model can therefore be used to quickly simulate the
contact of wheels with stones in the ground.
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8.3.4 Visco-Elastic Model—VEM

The foundation of the Visco-elastic model is that at the single point of collision a vir-
tual spring-damper—also named Kelvin-element—is introduced. By attaching the
spring-damper to the contact points of the overlapping bodies, deformation imposed
forces are modeled. The difference between the non-penetrating rigid-body model
and this penetration-based model is depicted in Fig. 8.2.

Fig. 8.2 Rigid-Body model and penetration model for Wheel-ground contact simulations—Left
side impulse transfer, right side virtual spring damper elements

8.3.5 State of the art

In many non-scientific applications this approach is used with spring-damper para-
meters that are not representative for the objects involved but rather chosen in a way
that the result gives a qualitative agreement to reality while maintaining numerical
stability at larger time steps. Obviously this scaling approach is not suitable for a
scientific simulation [9]. Besides a physical parameterization, more complex and
realistic simulations may also incorporate the penetration volume and non-linear
spring-damper characteristics (cf. [10]).

For the accurate modeling of real objects, sufficiently high spring and damper
constants are required. During the simulation of several stiff bodies colliding, a very
small integration time-step is required for the numerical stability of the resulting stiff
system. Even for unconditionally stable integration schemes the penetration change
during one step can lead to extremely high separating forces during the next step,
causing unrealistic behavior if the time-steps are too large [7].

8.3.6 Methods

In the Contact Dynamics Library we use a spring-damper element based on penetra-
tiondepthwhich can either be configured as a linear spring anddamper or non-linearly
based on Bekker’s parameters (cf. Sect. 8.3.8) at critical damping in conjunction with
Lehr’s damping fraction. For the tangential contact force a Coulomb frictionmodel
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with optional static friction based on a non-linear function of the relative movement
speed is implemented. This approach avoids the need for the common regularization
using further Kelvin elements. The contact detection is based on the DLR Visual-
ization Library and uses the same contact detection technique as shown in Sect. 8.3.8.

8.3.7 Application

Visco-Elastic models are popular where the simulated scene either isn’t too complex
and simulation speed is crucial or wherever the detailed evolution of contact forces is
a required result and simulation time does not matter. Sufficient computational speed
is achieved as long as the configuration is not too stiff as described in Sect. 8.3.4. The
results are typically more accurate than those of the rigid-body simulation, especially
if at least one of the involved bodies is comparatively soft. If realistic stiffness values
are used in conjunction with non-linear spring-damper elements, high accuracy can
be achieved by sacrificing computational efficiency [11]. The model is neither based
on terramechanic considerations nor on impulse exchange, hence it is not the first
choice for wheel-soil interaction focused simulations. However, with the correct
parameterization this method can be used for some applications e.g. mission scenario
demonstration to simulate both the hard contacts ofwheelswith rocks and for soft soil
contacts maintaining a certain limited sinkage. For such applications the accuracy
may be sufficient and its computational efficiency makes it a reasonable choice.

8.3.8 Bekker Based Contact Model—BCM

The main idea of the Bekker based Contact Model (BCM) is to provide the funda-
mental terramechanical effects on soft, sandy soils with low computational effort.
The contact forces and torques are computed based on a single wheel reference point
and a plane describing the contact situation to the actual surface. The wheel is solely
described by a set of geometrical parameters, i.e. no point cloud or surface model is
used. By applying the well known Bekker–Wong theory [15], BCM can be used in
scenarios where specialized terramechanical effects like rutting or multipass can be
neglected but effects like the sinkage behavior, slip or the maximum traction force
cannot.

8.3.9 State of the art

Bekker’s base model is best known for its role in the design of the Lunar Roving
Vehicle [12], but has found popularity in the development of planetary exploration
rovers. A similar implementation, a part of the ARTEMIS (Adams-based Rover
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Fig. 8.3 Concept of BCM with an infinitesimal contact patch in green, the estimated soil plane in
blue, the forward θ1 and backward θ0 contact angle as well as the control variables θ ∈ [θ0, θ1] and
ξ ∈ [0, bw]

Terramechanics and Mobility Interaction Simulator), was presented by Trease and
the group of Iagnemma [13, 14]. The shown implementation was used to analyze the
MER (Mars Exploration Rover) mobility. Like BCM these models are mainly based
on the semi-empirical relations developed by Bekker in the 1950s with modification
by [15]. Since Bekker’s theory only describes the relation between sinkage and
normal pressure it is commonly combined with Janosi and Hanamoto’s extensions
to Mohr–Coulomb failure criterion which is also described in [15].

8.3.10 Methods

In BCM the reaction forces and torques are calculated by evaluating the resulting
normal and shear stress for single contact patches on the wheel surface in relation to
the simplified soil plane (Fig. 8.3). Additionally, force reactions on the grouser faces
and tips as well as the wheel sides are considered.

The soil is described by the Bekker parameters n, kc, kφ , the angle of internal
friction φ, the macroscopic cohesion c, its bulk density ρ as well as three BCM
specific parameters: Vj used in the Janosi–Hanamoto implementation of the shear
stress and η, Vθ describing the contact geometry and its velocity dependency. The
wheel is described by the radius rw, width bw, the grouser number ng and height hg.

BCM assumes a exponential reduction of the backward contact angle θ0 with
a maximum reduction of ‖θ0‖ = η‖θ1‖ (see Fig. 8.3). The assumed contact area
spanned by [θ0, θ1] × [0, bw] is dived into smaller patches of the size A = rw dθ dξ .
The total reaction force and torque is calculated by integrating over θ and ξ . The
normal pressure σ acting on each contact patch is based on Bekker pressure sinkage
relation [15] with b being equivalent to the wheel width bw.



8 Wheel-Ground Modeling in Planetary Exploration 173

Fig. 8.4 Contact plane estimation in BCM implemented using the line surface contact detection
provided by the DLR Visualization Library. With the search direction in red, the detected contact
points and normals in white as well as the estimated soil plane in blue

σ =
(

kc

b
+ kφ

)
zn (8.5)

The shear stress τ acting on each contact patch is calculated by reducing themaximum
shear stress τmax

τ = τmax sgn

(
dj

dt

) (
1 − e−‖dj/dt‖/Vj

)
(8.6)

This shear stress(τ )-shear velocity
(
dj
dt

)
relationship is derived from the shear stress

(τ )—shear displacement ( j) relationship originally developed by Janosi–Hanamoto
which proposes an exponential relationship [15]. The used maximum shear stress
τmax is the result of the Mohr–Coulomb failure criterion

τmax = c + σ tan φ. (8.7)

Forces acting on grouser and the wheel sides are based on Rankine’s passive earth
pressure [16]

σp = γs z Nφ + q Nφ + 2 c
√

Nφ, with Nφ = tan2
(

π

4
+ φ

2

)
, γs = ρ g. (8.8)

Figure8.4 shows a visualization of the algorithm used to reduce the contact geometry
to a plane. The algorithm is based on line surface contact detection provided by the
DLR Visualization Library [4]. The contact plane is fitted into the detected contact
points, contact normals, and thewheel normals correspondingwith the contact points
using a least squares optimization.
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8.3.11 Application

Themodel is suitable wherever fast simulations covering the basic effects of terrame-
chanics are required. Thus, it is most applicable for virtual prototyping in control, as
used in the feasibility study for the DLR-SR robotic single wheel testbed [17].

8.3.12 Soil Contact Model—SCM

Up to this point the soil did not actually deform. However, one very important effect
for the simulation of planetary rovers is the plastic deformation of soil caused by
the wheels. In our simulation framework we use the SCM (Soil Contact Model)
algorithm for the simulation of soft soil contact forces and plastic deformation of
the soil. SCM is a in-house developed, highly specialized, three dimensional, novel
extension of the well known Bekker–Wong method based on [1, 18].

8.3.13 State of the Art

Similar to BCM, SCM is based on Bekker’s theory and incorporates several exten-
sions. In earlier implementations of SCM by Krenn [1, 18] the soil deformation was
implemented similar to [19]. Another implementation of discretized Bekker model
using soil deformation is shown in [13, 20]. An alternative approach to cover soil
deformation in empirical soil models is shown in [21], by using locally spawned
particles for the displaced soil volume.

8.3.14 Method

Analogously to the previously introduced models, SCM is based on surface contacts
for both wheel and soil. In contrast to the single point contact models, which use
the soil surface only for contact detection, SCM calculates reaction forces and the
soil deformation by mapping the wheel nodes onto a discretized soil grid. Therefore,
only the soil nodes in contact with the wheel grid are used. The normal and shear
stress calculations are modular. In this context a normal model based on Bekker’s
theory [15] is used. The shear model uses an implementation of Mohr–Coulomb
failure criterion with extensions by Janosi–Hanamoto [15].

In order to cover plastic soil deformation and thus rutting, as visualized in Fig. 8.5,
the distribution of the soil displaced by the wheel is based on flow. A novel approach
based on theoretical soil mechanics is used to deposit the distributed soil onto the
surrounding nodes. Afterwards an erosion algorithm is applied to all modified nodes
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to ensure that the angle of repose is abided. Thus, landslides induced around the
wheels can be covered by SCM’s plastic soil deformation.

Using this approach, SCM enables to cover the main effects of terramechanics
and soil deformation, namely bulldozing, rutting, multipass and slip sinkage in the
environment of multi-body dynamics in an efficient way. Therein multipass and
rutting are covered mainly geometrically and were recently enhanced. While the
volume of disposed soil and its strength are influenced by a plasticity parameter, the
soil parameters themselves remain unchanged.

Summarizing the main features of the enhanced SCM are:

• Surface contact with arbitrarily shaped objects,
• Z-Buffer contact detection for each node,
• contact pressure calculation for node in contact,
• modular normal and shear stress models (for example using Bekker–Wong theory
and Mohr–Coulomb failure criterion),

• coverage of dynamic slip sinkage,
• plastic soil deformation covered by compaction and displacement,
• soil displacement and compaction by theoretical soil mechanics, flow field and
erosion algorithm,

• simultaneous contact of multiple objects,
• and parallelization.

8.3.15 Application

labelsec:app3
SCM has been successfully used in the simulation of planetary rovers [18] and

the evaluation of its control using multi-body dynamics [22]. A first verification of
the model was carried out in [18] for models of pressure sinkage tests, as well as full-
system scale tests. Further validation is currently performed using the DLR-RMC
single wheel test facility.

Fig. 8.5 SCM for Wheel-ground contact simulations including terrrain deformation and rutting
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8.3.16 Discrete Element Method—DEMETRIA

The most detailed models are based on particle methods, i.e. the Discrete Element
Method (DEM). These methods allow to model regolith directly as granular matter
without the need of empirical relations.

However, even for modern powerful computers, simulations using the real grain
size is still not feasible.

8.3.17 State of the Art

The Discrete Element Method (DEM) was first announced by Cundall and Strack
[23]. In the recent years the method was widely adapted, improved and used bymany
researchers ([24–26] a.o.). In order to model real soils, the most important adaptions
are the coverage of the grain shape by either complex contact geometries, e.g. [26–
28] or resistance torque laws, e.g. [24, 29, 30]. Additionally, the mapping of the
particle parameters to real soils was only partially solved (e.g. [24]) or carried out
by calibration [28, 31, 32]. Other fields of research try to improve the computational
efficiency of themethod [33, 34] or dealwith the calculation of hard, non-penetrating,
contacts [34–36] (see also Sect. 8.3.1).

In application for planetery rover wheels, DEM has been used in order to identify
influences of wheel design parameters [25], the wheel performance in lunar envi-
ronment [28] or to analyze NASA’s Mars Exploration Rover (MER) wheel in towed
configuration [26]. Another application forwheeled vehicles is shown in [37] focused
on military offroad vehicles.

8.3.18 Method

DEM is based on inter-particle contact reaction and the solution of the equations
of motion for every single particle in the simulation domain. Thereby the con-
tact laws applied are crucial for the accuracy of the simulation results. In order to
allow for precise but still efficient simulations, the DLR-SR particle dynamics frame-
work “DEMETRIA” (Discrete ElementMethod Enabled Terramechanics Interaction
framework), based on the particle simulator Pasimodo [38], is modeling the parti-
cle shape by additional rotation geometries. By using one of these two dimensional
geometries per rotation axis, an equivalent 3D rotation primitive is formed [39]. Fur-
thermore, the framework features a systematic particle scaling and a priori parameter
estimation [40] as well as dynamic boundaries. These boundaries are moved together
with the tool and minimize the active number of particles by loading and deleting
particles on the fly [11]. For the macroscopic contact to the wheel, the same contact
laws as for inter-particle interaction are applied. However, a different parameter set is
used, since the material interface is different as well. In the end, the contact reactions
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Fig. 8.6 Wheel-soil interaction in the particle-basedwheel-soil Interactionmodel showingprinciple
effects of soil deformation in terramechanics

are summed up and applied to the macroscopic wheel body. For the framework’s
main features and advantages the reader should refer to [40–42].

8.3.19 Applications

DEMETRIAwas successfully applied to simulation of planetary roverwheels, exem-
plifying running surface optimization potential [43]. The basic effects like rutting,
bulldozing and dynamic sinkage, of a certain wheel surface geometry are exempli-
fied in Fig. 8.6. Additionally, it was applied to InSight’s [44] subsurface locomotion
system—a self impelling nail nicknamed “the Mole”: The HP3-Mole [45] was sim-
ulated using co-simulation of particle-based soil and the MBS mechanism model
[42] and influences of the outer shape on the performance were shown [46]. This
co-simulation is based on TCP/IP connection between the simulators and could be
usedwith the RST in the sameway. The particle-based soil models have been verified
and validated using several kinds of material tests, usually used for characterization
of soils [11, 47]. In addition to that the HP3-Mole’s co-simulation results are vali-
dated against deep penetration tests with an error in predicted penetration depth of
less than 16% [11]. The DEM wheel models have been checked for their qualitative
behaviour in worst-case soil conditions and are currently being validated using the
DLR-RMC single wheel test facility.

However, due to the high demand on computation time and power, DEM is not
suitable for the simulations of long trajectories at full vehicle level. Thus, these
models are mainly used in order to investigate and understand the low-level effects of
the interaction and thereby to enrich more efficient models. Hence the particle-based
models will not be used for further investigations in this article, but are considered
for future heterogeneous wheel-ground contact studies.
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Table 8.1 Comparison of used models of the Contact Dynamics Library

Rigid body Penetration based

VEM BCM SCM DEM

Wheel stone contact + + + n/a n/a − −
Wheel soft soil contact n/a − − − + + +
Computational efficiency + + + + + − − −
Considered effects − − + + + +
Soil scalability n/a + + + + − − −
Multiple contacts + + + + + + + + +
Soil deformation n/a n/a n/a + + +
Wheel description S-mesha rw,bw rw,bw,nGr,hGr P-cloudb S-mesha

2nd body description S-mesha S-mesha S-mesha E-mapc PFVd

aSurface mesh
bPoint cloud
cElevation map
dParticle filled volume

8.3.20 Systematization of the Contact Models

One main advantage of the Contact Dynamics Library (models see Sects. 8.3.1–
8.3.16) is that it enables easy exchange of the contact models. In order to determine
which model to use for which application, a high-level overview of the models
including a comparison of their characteristics is given in Table8.1. It is pointed out
that this table can only give a very general idea whereas for details the sections above
need to be consulted. In typical scenarios in planetary exploration like the contact
with deformable sandy soils or hard stones, each model features a certain level of
detail for the application. As BCM and SCM are tailored to cover the soft soil contact
only, they are not suitable for the application in wheel stone contacts. VEM andDEM
are capable of covering this problem class using a different set of parameters—in
both cases stones are bodies with a finite stiffness. However, rigid body approaches
are most suitable for wheel stone contact, as the real deformation is negligible.

In terms of wheel sand contact, the number of considered effects is proportional
with the complexity of the model. Thus DEM features the highest level of detail,
due to the relocation based soil deformation. Scalability mainly depends on the
discretization and dimension of the models. Thus VEM and BCM being one/two
dimensional models scale best, whereas SCM and DEM being 2.5 and 3D methods
slow down drastically with bigger domain sizes. Further effects add to the worse
scaling behavior.

The row ‘multiple contacts’ indicates the scalability for multiple contact objects.
All models but DEM scale linearly with the number of these objects. Hence, DEM
is less suitable for full vehicle simulations than lower-tier methods, because of the
excessive amount of computation time needed. Soil deformation is covered by the
farther detailed terramechanics approaches only. Therein, SCM covers the soil defor-
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mation by semi-empirical approaches, whereas DEMdirectly covers the deformation
by grain relocation.

In SCM and DEM the wheel description is based on surface meshes described
by vertices (nodes) and faces (elements) whereas in the other models a parametric
description is used. Anyway, the surfacemeshes of thewheels are generated using the
same parametric description, with certain limitations in terms of grouser geometry
etc. for the purely parametric descriptions. The soil or general contact partner is
described by surface meshes for rigid body, VEM and BCM as well. Only SCM,
using equidistant and structured elevation maps and DEM using a particle filled
volume described by position and orientation of each individual, are using different
discretization approaches.

8.4 Heterogeneous Wheel-Ground Contact

The framework of the Rover Simulation Toolkit together with the Contact Dynamics
Library enables using different contact models within one systemmodel. This feature
is used e.g. for the simulation of a rover traveling over sandy terrain with additional
rocks embedded in the sand (cf. Fig. 8.7). For that scenario very heterogeneous con-
tact models like SCM for the sand-contact and rigid body or the visco-elastic model
for the rock-contact are used.

Besides this application which is motivated by different contact properties, a
heterogeneous simulation may also be used to get a good trade-off between fast
simulation and high level of detail. An example for such an approach is explained in
the following and simulation results are shown in Sect. 8.5.

Fig. 8.7 DLR-RMC
Lightweight Rover Unit
(LRU) [48, 49] in rough
terrain, wheel-sand contact
modeled with SCM,
wheel-rock contact modeled
with VEM
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tilted contact plane
for BCM rear wheel

m 50kg SCM front wheel

SCM rut

Fig. 8.8 The test setup with BCM’s contact plane detection in the SCM rut

8.4.1 Approach

As outlined in Sect. 8.3 and especially in the comparison in Table8.1, different con-
tact models have distinct capabilities and profoundly different computation times.
Knowing these specifications, coupling fast and slowmodels can drastically improve
simulation times compared to homogeneous higher-tiermodelswith acceptable influ-
ence on the result accuracy. To achieve that, each wheel’s contact model needs to
cover the major individual effects of its interaction with the ground. The leading
wheels of a planetary rover are usually driving through untouched and potentially
loose and uncompacted soils. Thus, their model needs to not only cover the current
sinkage and reaction forces, but also the soil displacement causing additional resis-
tance due to bulldozing, as well as the generation of ruts. These ruts can lower the
trailing wheel’s driving resistance and at the same time apply higher lateral guidance
forces. In order to cover the rutting, SCM (cf. Sect. 8.3.12) is used for the rover’s
leadingwheels, whereas the trailingwheels aremodeled one tier lower as single point
Bekker (cf. Sect. 8.3.8) in order to study the approach’s reasonableness. The other
models presented in Sect. 8.3 will not be used in this feasibility study, but may be
considered for following investigations in the field of heterogeneous wheel ground
contact. Figure8.8 shows the main effect of the proposed heterogeneous contact
which is to use SCM’s deformed soil for the contact detection of the trailing wheels
instead of the undeformed terrain. Thereby it will be shown that the force character-
istics caused by the rut of the leading wheel correspond closely to a simulation with
SCM for all wheels.

The influence of the used soil simulant’s compressibility on the soil parameters for
the trailing wheels is neglected in this first study. Moreover, the same soil parameters
are used for both SCM and BCM where applicable.
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Table 8.2 Parameters of the multi-body system, the wheel, the soil and the scenario in general

Parameter Value

Wheel base 0.6m

Location of point mass 10cm above wheel axes (cf. Fig. 8.8)

Mass of point mass 50kg

Free DoFs All but the rotation about longitudinal rover
axis

Rotational velocity of rear wheel steering [−0.8 rad
s , 0.8 rad

s ]
Rotational velocity of the wheels 1 rad

s

Wheel diameter dw 250mm

Wheel width bw 125mm

Grouser height hGr 10mm

Number of grousers nGr 12

Mass of one wheel 2kg

Soil density ρ 1896 kg
m3

Angle of internal friction φ 36.7◦

Cohesion c 66.5pa

Bekker parameter1 kc −2.86 × 106(N/m)n+1

Bekker parameter1 kφ 2.47 × 108(N/m)n+2

Bekker parameter1 n 2.49

Size of the soil plane 3m×1m with 10mm resolution (for SCM)
1The used Bekker parameters are the result of the fitting method described in [50] and do not
necessarily directly correspond with physical soil properties

Table 8.3 Simulation variables used for assessment and their corresponding objectives

Variable Objective

CPU time factor kCPU Compare computation time

Tractive force Fx Evaluate traction and its distribution on the front/rear wheel

Lateral force Fy Evaluate guidance effect of the rut

z-position z Evaluate the influence of the rut on the sinkage

Trajectory in the x–y-plane Visualize impact of all above on the movement of the wheels

8.4.2 Virtual Test Setup

In this section, the test setup used for comparing the results of the different approaches
in Sect. 8.5 is presented and choices and assumptions that were made are explained.
Detailed parameters of the setup are given in Table8.2 and the quantities that are
used for evaluation are presented in Table8.3.

The multi-body system For this study of heterogeneous wheel-ground contact mod-
eling of a rover, we are mainly interested in effects of the rear wheels driving through
ruts that where created by the front wheels. Using symmetry in conjunction with suit-
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able boundary conditions we may simplify a four wheeled rover to only one front
and one rear wheel which are connected by a rigid link and have a point mass located
in between them (cf. blue body in Fig. 8.8). This assembly is able to move freely in
all but the rotational degree of freedom about its longitudinal axis. Additionally, both
wheels can be actuated, i.e. rotated about their local wheel axis and the rear wheel
can be steered, i.e. rotated about its local z-Axis. The parameters can be found in
Table8.2.

The soil is a soil simulant for Martian regolith the so-called MSS-D. Its parameters
were characterized using the DLR-RMC Bevameter in conjunction with the cor-
responding identification approach [50]. The parameter set is filed with the name
RMCS-2. MSS-D was developed to simulate Martian regolith in terrestrial tests.
Therefore, it mainly consists of fines and quartz sand. In addition to these soil para-
meters, both SCM and BCM feature a set of supplementary parameters which are
chosen using physical and empirical assumptions. Additionally, the parameter choice
made ensures comparability of the homogeneous simulations behavior. From a geo-
metric point of view, a 3m × 1m plane with a mesh resolution of 1cm × 1cm is
used for SCM and another one with a reduced mesh resolution of 3cm × 3cm for
BCM. The latter choice has an effect for the contact plane detection in the rut of a
SCMwheel, only. The different resolutions were found to ensure a good compromise
between computational effort and result quality It is pointed out that the lower soil
resolution for BCM is only possible because—in contrast to SCM—the geometry is
solely used for calculating the current contact plane (see Sect. 8.3.8).

The wheels have a cylindrical shape with twelve grousers and beyond that a smooth
surface; the parameters are summarized in Table8.2.

The scenario In order to investigate the effects of ruts of the leadingwheel, a scenario
wherein the trailing wheel enters, escapes and crosses the trajectory of the leading
wheel is chosen. The traces of bothwheels aswell as the setup itself and the dimension
in x-direction can be seen in Fig. 8.9. Therefore, the two wheels start aligned and
travel with the same constant rotational velocity. Shortly after entering the rut of the
leading wheel, the trailing wheel is steered with a constant rotational velocity for a
short distance and thereby escapes the rut. Subsequently, the trailing wheel is steered
back again, with a constant rotational velocity such that it crosses the trace of the

rear wheel trace

front wheel trace

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 x m

xz

y

Fig. 8.9 Traces of front and rear wheel
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Fig. 8.10 Virtual test scenario to evaluate the tractive performance of different rovers: SCM-SCM
(left), Heterogeneous SCM-BCM (middle), BCM-BCM (right),

leading wheel. The timing of all steering commands in the simulation is based on
position thresholds in the global x-direction of the rear wheel.

The software For all shown simulations, Dymola 2016 RC-2 with a development
version of the DLR Visualization library [4] and the Contact Dynamics Library is
used. Furthermore, an explicit 4th order Runge–Kutta fixed step solver (rkfix4 in
Dymola) with a time step size of Δt = 1ms is used. As the integration scheme
does neither feature A-stability [51] nor step size control, the choice of the time
step is constrained by the maximum eigen frequency of the system. A linearization
of the contact stiffness according to Bekker’s equations (cf. Sect. 8.3.8) yields an
eigen frequency of 76.5Hz and thus a maximum time step size of 26ms. This yields
a safety factor of >10 for Δt = 1ms. The choice of the solver itself is based on
experience for a good trade-off between result quality and computational effort.

In order to check the consistency and the applicability as well as the potential
speed up of the heterogeneous wheel ground contact modeling, a homogeneous
simulation for each contact model is performed first. Figure8.10 shows the single-
tiered homogeneous, as well as the heterogeneous setups. For this evaluation the
quantities and their respective evaluation objectives are listed in Table8.3.

Since the objective of thiswork is to compare the coverage of basic terramechanics
effects, the forces are normalized with respect to the maximum value of the longitu-
dinal front wheel force of the homogeneous SCM simulation (for better readability
of the plots, the force peaks at the start of the wheel rotation is not considered for
this maximum value). These normalized values are noted as (..)0 in the following
passages. The results of the described tests are shown in Sect. 8.5.

8.5 Results

In this section we discuss the impact of the proposed heterogeneous contact simula-
tions (cf. Sect. 8.4). Therefore, we compare the accuracy of the simulation results as
well as the demand in computation time of the homogeneous BCM and the hetero-
geneous simulation to the reference homogeneous high-tier SCM simulation. The
values that are used for comparison are summarized in Table8.3. These values are
common quantities for tractive performance tests in planetary rover locomotion. All
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forces are plotted in a local wheel coordinate system where the z-direction is co-
directional with the global z-direction. The x- and y-axes are rotated with the wheel
steering angle such that the x-axis points in the wheel’s longitudinal direction at all
times. Note that due to this rotation the forces in x- and y-direction only sum up to
zero all together (i.e. not separated in x- and y-direction) for a stationary movement.
The high frequency noise observable in the SCM force is a result of the soil dis-
cretization. Due to the uniform distribution and high frequency the effects can be
neglected in this context.

8.5.1 Detailed Description of Observed Effects
in the Different Setups

The longitudinal and lateral forces as well as the z-position of all three setups are
shown in Fig. 8.12, top. Thereby, the z-position denotes the position of the wheel
center above the undeformed ground level. It is pointed out again that all four force
plots are normalized with respect to the maximum longitudinal force of the front
wheel (the peak in the beginning is not taken into account since it is not of particular
interest here andwould shrink the rest of the plots). The trajectories in the x–y-plane of
the front (solid lines) and rear (dashed line) wheels are shown in Fig. 8.12, bottom. In
the following paragraphs the plotted results are explained in detail whereas a shorter
overall summary of these results is given in Sect. 8.5.2. For better readability, the
following abbreviations are used:

SxS homogeneous SCM model—both wheels SCM
BxB homogeneous BCM model—both wheels BCM
SxB heterogeneous model—front wheel SCM, rear wheel BCM

Also, the whole scenario can be divided into five main sections which are labeled
with the letters A-E in the following and in Fig. 8.12:

A Start of the wheel rotation and stationary driving.
B The rear wheel enters the rut of the front wheel and subsequently drives in it.
C The rear wheel is steered to δ = 0.8 rad and quits the rut.
D The rear wheel is steered back to δ = −0.8 rad and crosses the rut.
E Stationary driving of both wheels, each in its own lane.

0–0.1m, acceleration of the rover (A): There is a positive peak in front and rear wheel
x-forces when the wheel starts to rotate. This is due to the correlation of high slip
velocity and high shear stress. After the first 10cm the plotted quantities seem to have
reached a stationary state in all three models. However, to reach that state, SxS and
SxB show a shift of the traction force to the rear wheel. This originates from dynamic
wheel loading, i.e. a higher normal force on the rear wheel due to the inertia resulting
from the point mass. It can also be seen that SxB transfers even more traction force
to the rear wheel. This effect occurs due to the BCM simulated rear wheel being able
to develop a higher traction force compared to the SCM front wheel. The latter also
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shows increased bulldozing and hence lifting forces. This lifting of SCM-modeled
wheels can also be seen in the z-position plot.

0.1–0.35m, stationary driving (A): All three models show a stationary condition,
as rear and front forces are both almost canceled out. Looking at the z-position it can
be seen that the sinkage is higher for SCM modeled wheels than for the BCM ones.
This effect occurs due to differences in elastic and plastic deformation of the soil in
the two models. However, the effect is beyond the scope of this work and will be
subject of future research.

0.35–0.65m, rear wheel entering the rut (A-B): SxS and SxB both show a shift
in the traction force distribution due to the rear wheel entering the rut of the front
wheel. In SxS however, the rear wheel needs to traverse a bit of compacted soil first
which leads to increased resistance at the rear wheel and a higher traction force at the
front wheel accordingly. The BCM simulated rear wheel of SxB is able to perceive
geometric changes only, which are very low for the region right before entering the
rut. Hence, only SxB shows the pushing effect on the rear wheel when entering the
rut. This effect can be observed in the Fig. 8.12 (top) as a shift of the tractive force
to the rear wheel. By analysis of the z-position it can be seen that the rear wheel
approaches the z-position of the SCM wheel by rolling down into the rut. BxB in
contrast does not change from its stationary condition in any of the quantities, due
to the non-existent rut of the front wheel.

0.65–0.9m, stationary driving in rut (B): The rear wheel drives stationary in the
track of the front wheel. Besides the sinkage, all models deliver similar results.

0.9–1m, rear wheel steering (C): Constant steering angluar velocity (δ̇ = 0.8 rad)
until an angle of δ = 45◦ is reached. All models show the changing force distrib-
utions in the x–y-plane, i.e. the traction force of the front wheel increases. This is
compensated by a higher resistance of the rear wheel both in longitudinal (x) and
lateral (y) direction. Note that in the first instance of steering the wheels are still
almost aligned and thus no lateral force due to a steered rear wheel is exerted. Rather
a small lateral force in the opposite direction of the pulling is created by the steering
itself. This effect is covered by all model combinations, although SxS shows a higher
magnitude of the effect. In contrast to the other models the BCM rear wheel in SxB
starts to climb out of the rut, whereas the SxS rear wheel even digs in a little deeper
when the steering velocity is applied. SxS’s higher lateral force (cf. (Fy)0 in Fig. 8.12,
top) and higher sinkage together result in a first small difference in the x–y-trajectory,
i.e. the SCM rear wheel shows a delay in its y-position.

1–1.1m, rear wheel quitting the rut (C): In both SxS and SxB the resistance force
at the rear wheel increases because it needs to drive out of the rut. In contrast, BxB’s
forces remain at the level that is given by a pure geometric correlation. To be more
precise, the force distribution of longitudinal and lateral forces of front and rear
wheel are given solely by the steering angles of front and rear wheel. The BCM
rear wheel of SxB continues climbing out of the rut and reaches an even higher z-
position than for BxBwhich is caused by the piled soil around the SCM front wheel’s
rut. However, since the SxB rear wheel needs to climb up the complete sidewall of
the rut, it shows a stronger guidance in y-position compared to both homogeneous
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Fig. 8.11 The homogeneous
SCM configuration at rear
wheel position 1.2m where it
starts steering back

simulations. This effect can be observed in the x–y-trajectory in Fig. 8.12 (bottom)
where the rear wheel of SxB starts to diverge in the y-position from the other two.

1.1–1.2m, constant conditions (C): For this position range the forces of SxS and
SxB converge towards the BxB results. However, the period of constant steering
angle is not quite long enough for the former two to reach the BxB results.

1.2–1.4m, rear wheel steering (D): The rear wheel is steered back to δ = −45◦
with δ̇ = −0.8 rad

s which leads to a corresponding change in the force distributions
for all models. The z-position plot shows that the SxS rear wheel starts digging in as
soon as the steering is applied at 1.2 m (cf. description of 0.9–1m). As shown in the
x–y-trajectory plot at the corresponding position this is not due to the rut of the first
wheel since the rut is not reached yet, see Fig. 8.11. Thus, this lowering in z-position
is pure sinkage due to the added resistance by steering. At 1.3m the rear wheel is
aligned with the front wheel again, which can be seen in the tractive forces of front
and rear wheel being close to zero for a short distance. The SxS rear wheel even
continues to sink in for about 4cm after the alignment of the wheels was reached
at 1.3m. This considerable difference in sinkage leads to major differences in the
forces in [1.3m, 1.4m], too. It can be seen that the SxS rear wheel is experiencing
an increased resistance in both lateral and longitudinal direction. In this part the SxB
result is even farther apart from the reference SxS than the simpler BxB. That can
be seen looking at the rear wheel of SxB, which shows even lower resistance forces
than BxB. This difference can be explained using the z-position plot: The rear wheel
of SxB slides down the sidewall into the rut of the SCM front wheel and pushes the
front wheel.

1.4–1.6m, rear wheel crossing the rut (D): In the SxB case the rear wheel needs to
climb up the steep sidewall of the rut again. Thereby, it exerts an increased guidance
force which results in a significantly lower gradient of the x–y-trajectory in Fig. 8.12
(bottom). The steep slope additionally causes the longitudinal resistance force being
higher for this case. All together this leads to a significantly increased traction force
on the front wheel. In contrast to that behavior, SxS starts to overcome the rather high
force shift of its rear wheel that was explained above. As soon as the front wheel rut
is reached, the rear wheel is driving on pre-compressed soil which also supports to
lower its resistance force immediately.
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Table 8.4 Factors for
computation time

Model Computation time factor

BCM 1

SCM 2.3

Heterogeneous 1.5

>1.6m, stationary driving (E): All three setups reach a similar stationary force
distribution. Due to the differences described above, the trajectories continue to
deteriorate. I.e. the whole rover steering angle of SxB is shifted compared to the
homogeneous simulations. This is mainly an effect of the higher guidance force of
the front wheel’s rut on the rear wheel.

The intention of the heterogeneous contact modeling is to reduce computation
time while covering as many details in the simulation result as possible. Hence,
additionally to the result accuracy, the computation time is compared in Table8.4.
Factors for the computation time are introduced which represent the computation
time of each setup normalized with the computation time of the BxB case, kmodelX

CPU =
tmodelX
CPU

/
tBCMCPU . It can be seen that SxS takesmore than twice the time compared toBxB

whereas the SxB time is slightly better than the mean of SxS and BxB. Compared
to the results in [2], we execute our contact search for the BCM wheels on a small
patch of the surface only, which is deformed by the SCM front wheel. This leads to
a major speedup of the heterogeneous model as was expected in [2]. Furthermore,
due to a different scenario, modified contact models and a different solver the SCM
is, compared to BCM, not as slow as it was in the previous work. Also consider
that the simulations shown, where computed on a standard office PC. The simulation
time would probably differ for other configurations e.g. due to SCM’s recently added
multi-threading capabilities.

8.5.2 Interpretation of the Results

The detailed explanation of all observable effects is given in Sect. 8.5.1, this short
section is intended to briefly summarize the results and give an interpretation and
implications for the different models/setups.

• For mission planning or similar applications where the position is the required
result and variables only matter in their order of magnitude, a homogeneous
BCM simulation provides adequate and sufficiently precise results. Moreover,
the homogeneous BCM results for the wheel’s trajectory are even closer to the
reference SCM solution than the heterogeneous ones. This is caused due to the
effects described after the next bullet point. Hence, the benefit of using farther
detailed models for these applications should always be evaluated beforehand.

• BCM can neither model rutting of wheels nor changes in parameters for multi-
pass simulation. If the effect of these ruts on the wheel forces is important, the
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Fig. 8.12 Forces in longitudinal and lateral direction, z-position as well as the trajectory in
x-plane of the front and rear wheels. (SxS: homogeneous SCM, BxB: homogeneous BCM, SxB:
heterogeneous)



8 Wheel-Ground Modeling in Planetary Exploration 189

heterogeneous approach offers results that are very close to a homogeneous high-
tier simulation while saving a considerable amount computation time. The saved
time might be crucial in many applications in planetary exploration, e.g. due to
tight schedules or for simulation based forensic-engineering [52].

• The main differences between the homogeneous high-tier SCM and the heteroge-
neous SCM/BCM forces result from the fact that BCMor—to bemore precise—its
contact detection is only able to detect and react on geometrical changes of the
front wheel’s rut. Hence, it needs to climb comparatively large sidewalls when
crossing a rut compared to SCM digging through the sidewalls. Thus SCM does
not need to lift the whole rover as much as BCM.

• Independent from the scope of this work, the sinkage of BCM and SCMwas found
to be different by approximately 25%. This will be subject to further investigation
within the currently ongoing model validation campaign using our DLR-RMC
single wheel test facilities.

To conclude this section, it should be mentioned again that none of the used models
has undergone a in-depth validation yet, as this is one of our currently ongoing
projects. However, in this work SCM is used as a reference for two reasons: First it is
partially verified by previous analysis and second it is able to cover the most effects
of the two models used. Since the scope of this section is to compare the qualitative
capability of modeling certain effects of wheel-soil contact using homogeneous and
heterogeneous approaches and study their qualitative effects on a rover, this approach
is applicable and does not require in-depth validation a-priori.

8.6 Conclusion

In the article we presented the integration of wheel ground contact models with
different level of detail in a unified simulation framework to allow for appropriate
simulation of the various tasks in planetary exploration. Furthermore, this integra-
tion enables multi-tiered heterogeneous wheel ground contact modeling in a unified
manner.

By usage of our single-point (BCM) andmulti-point (SCM)Bekker-based contact
models this approachwas exemplified in order to achieve a speed up of the simulation
compared to the homogeneous higher-tier SCMmodel. In the chosen planetary rover
locomotion scenario, the computation time was decreased considerably while main-
taining almost the same level of accuracy. Additionally, drawbacks and limitations
of the approach were pointed out. Due to usage of SCM deformed surface patches
of limited size in BCM’s contact detection the speed up of the heterogeneous model
is in the expected range in contrast to the results presented in [2].

As simulants, like MSS-D, which are mainly based on fines feature excessive
compressibility, a next step will be the investigation of multi-pass effects in pre-
compressed ruts in compressible simulants. Additionally, further validation of the
single models as well as investigations will be performed. Moreover, in order to
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allow a deeper insight in the potential speed up, rovers with increasing number of
wheels, featuring leading wheel’s SCM contact and lower-tiered contacts for the
trailing wheels, will be compared in future work. It is expected that the benefit of the
increased accuracy of the soil interaction models is decreasing with a higher number
of the multi-passes.
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Chapter 9
Intervention-Autonomous Underwater
Vehicle Multibody Models for Dynamic
Manipulation Tasks

Roberto Conti, Riccardo Costanzi, Francesco Fanelli, Enrico Meli,
Alessandro Ridolfi and Benedetto Allotta

Abstract Freefloating autonomousunderwatermanipulation is still anopen research
topic; an important challenge is offered by dynamic manipulation, where the vehi-
cle maintains relevant velocities during manipulation tasks. To develop new control
architectures, a precise modelling of the mechanisms involved in the manipulation
tasks is needed. The focus of this paper is the multibody modelling and the control
of an Intervention-Autonomous Underwater Vehicle (I-AUV). An accurate model of
the whole system has been developed, including vehicle-fluid interaction. A suitable
3D contact model has been developed for the contact between the gripper and the
object to bemanipulated. A control strategy for the whole I-AUV system is proposed,
comprising a suitable grasp planning strategy. Finally, an evaluation of the I-AUV
control system performances have been carried out.

Keywords Multibody models ·Underwater manipulation ·Autonomous underwa-
ter vehicles

9.1 Introduction

Nowadays Autonomous Underwater Vehicles (AUVs) are quite widespread.
These vehicles can undoubtedly lead to substantial economic and technological ben-
efits. In the technical evolution of the AUVs the following important topics are still
characterized by many open problems: the dynamic performances and the control
of the vehicle, the mobile tele-manipulation of a single vehicle (with relevant vehi-
cle velocity) and the cooperation among vehicles. In this paper, the modelling and
the control architecture of an AUV specifically thought for the underwater mobile
manipulation, usually called I-AUV (Intervention-AUV), are described.

Currently, a considerable number of operations in sea-rescue, research andmainte-
nance of oil rig appliances, got ahead usingUnmannedUnderwaterVehicles (UUVs),
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need manipulation capacity to be concluded successfully [1–7]. In a such scenario,
most of the intervention missions at high depths are faced up by remotely controlled
vehicles equipped with one or more robotic arms (Intervention-ROVs), represent-
ing until today the standard technology in that field [8]. The ROVs for assistance,
which can be teleoperated for long periods, are usually controlled with a master-
slave approach [5, 6]. This kind of strategy has some limitations: the operator must
be skilled with special type of training, underwater communication is often diffi-
cult and a significant delay in the control loop can be present. To overcome these
limitations, many researchers are now focused on what appears as the AUV natural
evolution, i.e. the autonomous underwater vehicles equipped with manipulator arms,
the I-AUVs [4, 7–15].

One important contribution to the development of the state of the art of the
I-AUV is due to TRIDENT, an European project lasting for 3 years and started
in 2010 [4, 16]. The aim of TRIDENT was the development of new methodologies
to complete manipulation assistances in non-structured underwater environments,
through a cooperative team composed of an AUV equipped with a robotic arm at
7 degrees of freedoms (DOFs) and an ASC (Autonomous Surface Craft): the latter
is an autonomous surface vehicle, whose aim is to replace, in the application near
to the coast, the support ship with crew necessary to the running of the AUV. In
March 2014 PANDORA project [17] has demonstrated free floating grasping and
valve turning in tank. However in both cases the vehicle is in a hovering phase and
not in “mobile navigation”. In fact, autonomous underwater robotic manipulation
with free-floating base is far from reaching an industrial product. This is particularly
true in the framework of dynamic manipulation, where relevant vehicle velocities
are required (in contrast with hovering manipulation).

Concerning control strategies, the problem is still open as well. Vehicle-
manipulator decoupled control strategies have been mostly studied until now, which
independently control the AUV and the robotic arm [8, 15]; these strategies offer
simpler hardware and software implementation and require less knowledge of the
system parameters compared to arm-vehicle coupled control techniques [2, 8].

In this paper, a detailed 3D multibody model of the I-AUV system (vehicle, arm,
gripper, object to be manipulated and fluid interaction [1, 18]) has been developed to
test the proposed control strategy. Moreover, a suitable 3D contact model has been
developed for the contact between the gripper and the object to be manipulated. For
what concerns the control technique, a decoupled vehicle-manipulator strategy has
been employed [2, 8]. This kind of techniques offers simpler hardware implementa-
tion and is more robust against the knowledge of the system parameters with respect
to arm-vehicle coupled strategies. In addition, exploiting the hand kinematics, the
control of the gripper has been further decoupled from the arm control: this way, the
performances of the I-AUV are improved while maintaining higher vehicle veloc-
ities. Furthermore, a grasp planning algorithm, based on optical cameras [19], is
proposed.

The models and the control architecture have been validated simulating a suitable
test case using the software Matlab�. The proposed techniques, after further tests,
will be used in opportune hardware tests in the framework of existing projects such
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as the Italian research project SUONO (Safe Underwater Operations iN Oceans)
and the European research project ARROWS, coordinated by the MDM Lab of the
University of Florence, to obtain initial experimental results [20].

9.2 I-AUV Multibody Modelling

9.2.1 I-AUV Description

The vehicle possesses 6 DOFs and is equipped with a manipulator arm, which is
assumed to be a serial robot with 7 DOFs. On top of the wrist a 6-DOFs gripper
is mounted: the latter has 3 fingers, each one composed of 2 phalanxes connected
by rotational joints. The reference frames are shown in Fig. 9.1, linked to each rigid
body and used to calculate the hydrodynamic terms.

9.2.2 I-AUV Kinematic and Dynamic Model

The analysis of the I-AUV model has been divided into two parts, separating the
study of the vehicle model from the analysis of the manipulation system (i.e. the
arm and the gripper). Geometrical and physical data have been set according to
technical literature [21–23]. In this context, it is assumed that the gripper is rigidly
connected to the robotic arm. The models are completely developed in Matlab-
Simulink� environment.

SNAME notation has been used [1]; hence, the kinematic model of the AUV is
defined in terms of η and ν vectors. η represents the position

(
η1

)
and the orientation(

η2

)
written in the fixed reference frame < n >; ν include the linear (ν1) and the

angular (ν2) velocities described into the body reference frame< b >. Both the fixed
and the body reference frames use the NED directions.

The relations between η̇ and ν can be written using the following expression:

η̇ = Jn
b (η2) ν, (9.1)

Fig. 9.1 Structure of the I-AUV, equipped with a robotic arm and a gripper
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where

Jn
b (η2) =

[
Rn

b (η2) 03×3

03×3 Tn
b (η2)

]
. (9.2)

Rn
b(η2) is the rotation matrix between frame < n > and frame < b >, and Tn

b (η2) is
the transformation matrix between angular velocity and the time derivative of Euler
angles (and its form depends on the particular choice of Euler angles).

The dynamic model of the vehicle is defined as follows [1]:

MRBν̇ + CRB(ν)ν = τH(ν, νC) + g(η) + τ , (9.3)

where MRB and CRB(ν) are, respectively, the mass matrix and the Coriolis and cen-
trifugal effect matrix. g(η) and τ are the contribution due to the gravity effects
and the external forces and moments (due to the motors and to the interaction with
the arm) applied to the vehicle as to the body reference frame < b >. These con-
tributes are referred to the rigid body characteristics. Instead, the hydrodynamic
effects τH(ν, νC) are partially decoupled from the dynamical equation in order to
use the classical multibodymodelling techniques. In particular, buoyancy and hydro-
dynamic effects are introduced into the model by means of generalized Lagrangian
forces applied to each body of the multibody system. From the classic equation of
motion for an underwater vehicle [1] and the absolute velocity ν written in the body
reference frame ν = νr + νc (where νr is the relative velocity and νc is the current
velocity), the following expression for τH(ν, νC) can be extracted:

τH = −MAν̇r + CRB (νr) νc + CRB (νc) νr

+ CRB (νc) νc − CA (νr) νr − D (νr) νr . (9.4)

where MA is the added mass matrix due to the fluid viscosity, CA is the Coriolis
and centrifugal added effects, and D (νr) is the damping matrix. The interaction
among the different system bodies and the fluid has been modelled by means of
appropriate CFD analyses [1, 18, 24, 25]; the mathematical coupling between the
multibody model and the fluid equations has been efficiently performed through the
toolbox SimMechanics�. In particular, as regards the CFD analyses, ANSYS� CFX
software has been used to evaluate the elements of the matrices MA, CA and D (νr)

for different values of ν, ν̇ and for different motions of the vehicle.
It is useful to express the forces and moments by dimensionless coefficients, to

use them in any condition of similarity. Concerning the effects of the hydrodynamic
resistance, the elements of the damping matrix D (νr) are evaluated expressing the
forces and torques through the following six dimensionless parameters:

• front, lateral and vertical drag coefficients:

CDx = Fx
1
2 ρaAf v2

CDy = Fy
1
2 ρaDLv2

CDz = Fz
1
2 ρaDLv2
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• roll, pitch and yaw resistance coefficients:

CMx = Mx
1
2 ρaAf D3ω2 CMy = My

1
2 ρaDL4ω2 CMz = Mz

1
2 ρaDL4ω2

where the used symbols are: speed v, angular velocity ω, frontal area Af , diameter
D, fluid density ρa, length L, and Fi, Mi are force and moment (all of them acting on
the i axis). The geometrical and physical characteristics of the vehicle are based on
the literature and are defined in Table9.1.

The I-AUV is provided of a robotic arm with 7 DOFs installed on the bow of the
vehicle, in the middle of its lower part. For the kinematic model of the robotic arm
(Fig. 9.2), the joint coordinates q = [θ1 θ2 . . . θ7]T and the end-effector pose x =
[x y z φ θ ψ]T are defined. According to the Denavit–Hartenberg (D–H) approach,
Table9.2 collects the D–H parameters extracted for the arm. The main kinematic
equations used to entirely describe the redundant manipulator are respectively, for
the direct kinematics and for the differential kinematics:

T 0
7 = T 0

7 (q) (9.5)

Table 9.1 I-AUV data Characteristic Value

Degrees of freedom 6

Length 0.8m

Breadth 0.6m

Height 0.4m

Mass in air 100kg

Fig. 9.2 Arm kinematic scheme
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Table 9.2 Denavit–Hartenberg parameters of the arm

Link ai (m) αi (rad) di (m) ϑi (rad)

1 0 π/2 −0.05 θ1

2 0 π/2 0 θ2 + π
2

3 0 −π/2 0.15 θ3

4 0 π/2 0 θ4

5 0 −π/2 0.15 θ5

6 0 π/2 0 θ6

7 0 0 0.05 θ7

ve =
[

ṗe
ωe

]
= Jq̇, (9.6)

where T 0
7 ∈ R

4x4 is the homogeneous transformation matrix between the base ref-
erence frame < 0 > fixed to the AUV and the end-effector reference frame < 7 >,
q ∈ R

7x1 is the vector of the joint variables, ṗe is the time derivative of the end-
effector position and q̇ is the time derivative of the joint coordinates q. The redundant
DOFs are used to solve secondary tasks (e.g. the avoidance of the singularity or the
minimization of the kinetic energy) [2].

The dynamic model of the robotic arm is simulated through the multibody tech-
niques described before, in which each rigid body is modelled as follows:

Mi
l ν̇

i
l + Ci

l (ν
i
l)ν

i
l = τ i

H(ν i
l, ν

i
lC) + gi(ηi

l) + τ i
l, (9.7)

where Mi
l represents the mass matrix, Ci

l (ν
i
l) is the Coriolis and centrifugal effect

matrix of the ith link. gi(ηi
l) and τ i

l are respectively the contribution due to the grav-
ity effects and the external forces (i.e. the torques of the actuators and the force
arising from the interaction with the adjacent links) applied to the link (Table9.3).
The ith link characteristics define these contributes. As described before, the hydro-
dynamic effects τ i

H(ν i
l, ν

i
lC) are partially decoupled from the dynamic equation in

order to use the classical multibody techniques to solve the problem. In particular,
these actions have been implemented in each body belonging to the I-AUV system
(vehicle, links of the arm and gripper); the simulated effects include hydrostatic and
hydrodynamics effects due to the added masses, drag and lift forces and buoyancy
effects, implemented similarly to Eq. (9.4).

9.2.3 Gripper Multibody Model

A 3Dmodel of the gripper is shown in Fig. 9.3. Each finger consists of two rotational
joints connecting the hand to the first phalanx and the two phalanxes. A spherical
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Table 9.3 Arm and forearm data

Parameter Value

Length 0.15m

Diameter 0.025m

Mass 2.315kg

Inertia (body frame)

Ixx 7.23 × 10−4 kgm2

Iyy 0.0047kgm2

Izz 0.0047kgm2

Fig. 9.3 Three-dimensional model of the gripper with the 3D contact model

tip is rigidly connected to the second phalanx. Using the D–H convention, the point
where the first phalanx connects to the hand is the origin of reference frame 7 (for
each finger), while the middle point of the finger is the origin of frame 8 and the end
of the second phalanx is the origin of frame 9. Axis directions are chosen so that a
positive value for D–H parameter θ corresponds to finger’s opening. The reference
frame 7′, visible in Fig. 9.3, which is the frame attached to the end effector of the
arm, is tied to the frame 7′′ (palm of the hand) by a constant transformation matrix;
the same applies for the fingers’ frames 7 with respect to the palm frame. Finally, a
frame is attached to the end of each fingertips, rotated by 45◦ with respect to the axis
of the second phalanx. These frames are the end-effector (ee) frames of each finger.
Mass and inertia values of the hand and the fingers are shown in Table9.4.

Each finger is locally equivalent to a planar 2-DOFs manipulator, whose kine-
matics have been used; D–H parameters for one finger are reported in Table9.5. The
dynamic model of a finger in joint space is expressed by the well known relation

B(q)q̈ + C(q, q̇) + g(q) + JT
f he = τ f , (9.8)
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Table 9.4 Gripper data

Parameter Hand Phalanx

Length 0.1m 0.05m

Diameter 0.05m 0.01m

Mass 1.5433kg 0.0309kg

Inertia (body frame)

Ixx 4.82 × 10−4 kgm2 3.87 × 10−7 kgm2

Iyy 0.0015kgm2 6.62 × 10−6 kgm2

Izz 0.0015kgm2 6.62 × 10−6 kgm2

Table 9.5 Denavit–Hartenberg parameters of the finger

Link ai (m) αi (rad) di (m) ϑi (rad)

8 0.05 0 0 θ8

9 0.05 0 0 θ9

where B is the inertia matrix, C(q, q̇) and g(q) include centrifugal, Coriolis and
gravitational effects, Jf is the finger Jacobian matrix, he ∈ R

6×1 is the vector of
forces/torques due to interactions with the environment and τ f are the joint torques.
As for the vehicle and the arm, multibody modelling techniques have been used for
the gripper.1

Contact model

This section describes the model that simulates the contact between the spherical
tips of the gripper’s fingers and the object to be manipulated. The contact model has
the following features [26]:

• contact point: it is assumed that there is a single contact point;
• hard finger contact: tangential forces arise due to friction;
• 3D model: even if the model has been created to govern the contact of the specific
test case, its geometrical background is easily adaptable to different cases; thus, it
is a complete three-dimensional model.

Figure9.3 presents the notation used in themodel: co,Ro denote the pose of the object
in the inertial frame; pf , po and vf , vo represent the position and the velocity of the
contact points on the fingertip and on the object, respectively. D = pf − po is the
distance between the contact points, and N is the contact normal (pointing outwards
the object); finally, let s = vo − vf denote the sliding between the surfaces in contact
(i.e. the difference between the contact points velocities).

The algorithm can be divided into two steps: firstly the position of the contact
points is determined, along with their (vectorial) distance D; if there is penetration

1In Fig. 9.3 two reference frames are visible on every finger joint; one is attached to the link, while
the other shows the orientation when joint coordinate θ is zero. If all joints coordinates are zero,
fingers are stretched.
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Table 9.6 Contact model
parameters

Parameter Value

Elastic coefficient kn = 10000kg/s2

Damping coefficient cn = 100kg/s

Static friction coefficient μs = 0.5

Kinetic friction coefficient μk = 0.3

Friction curve parameter k = 5

(i.e. ρ = DT N becomes negative), the contact forces are computed according to the
model presented in the following section [27].

Hardfinger contact has been considered: three components of force are transmitted
at contact; one is normal to the surface, while the others are frictional (tangential)
forces. Normal force follows a spring-damper model: let

sN = sT N (9.9)

denote the value of the component of the sliding vector alongN; then, normal contact
force on the object is given by

fN = (knρ − cnsN )N, (9.10)

for kn > 0, cn > 0. The tangential force is composed of static and kinetic friction;
the friction coefficient μ follows the law:

μ(||st||) = μk + (μs − μk)e
−k||st ||, (9.11)

where st = s − snN is the tangential sliding,μs > μk are the static and kinetic friction
coefficients and k > 0 is a tunable parameter. Tangential force exerted on the object
is then:

ft = −μ||fN || st

||st|| . (9.12)

Finite slope can be assumed for μ(||st||) for small sliding values, to avoid chattering
problems during simulations. As a contact between two steel surfaces has been
considered, the chosen contact parameters [28] are reported in Table9.6.

9.2.4 Camera Model

During the grasp planning phase a pose estimation algorithm based on optical sensors
(cameras) has been used, which gives the position of the center of mass of the object
co and its orientation Ro with respect to the arm; thus, it is necessary to give a
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mathematical model of such sensors. In this context, the pinhole model has been
used: this model offers a high computational efficiency [29].

9.3 I-AUV Control

The control system has to make sure that the system can autonomously reach the
object to be manipulated and execute the planned task on it.

It has been assumed that all the DOFs of the system are controlled. Actuating
forces and torques and their variations have been limited by means of saturations
and rate limiters, to simulate the presence of a real actuator [1, 30–32]. At the same
time, navigation sensors have been modelled [33].

I-AUVs’ control techniques can be divided into two categories [8]. A first set
simultaneously controls the vehicle and the manipulation system [14], subjugating
the first to the latter. The second set of techniques makes use of a decoupled approach
[15, 34]: the arm manipulates the object while the vehicle tracks its own reference
trajectory; the effects of one subsystem on the other are considered as disturbances.

Because of its simplicity and robustnesswith respect to unknownparameters of the
system, the second approach has been chosen. Moreover, exploiting the kinematics
of the gripper, the control of the fingers has been further decoupled from the control
of the arm: once the desired pose for the fingertips is known, it is indeed possible to
univocally determine, from purely geometrical considerations, the desired pose of
the arm’s end effector.

A block diagram of the control architecture is shown in Fig. 9.4. Filled lines
represents physical interactions, while dashed lines stand for functional dependence.
The global trajectories of the system’s components must permit the manipulation of
the object; the dotted line connecting the vehicle’s and the manipulator’s trajectory
planning blocks indicates that, even if the two references are virtually independent
because of the adopted decoupled strategy, the AUV’s trajectory must allow the arm
to reach the object.

Indeed, thewhole control system follows a “backward strategy”: duringmanipula-
tion, the contact points on the object are computed by the grasp planning algorithms;
then, a suitable smooth trajectory that takes the fingertips on such points is gener-
ated. The positional control of the fingers is in charge of following this trajectory
closely. The geometrical decoupling algorithm allows the computation of the refer-
ence trajectory of the arm, which is kinematically controlled. Finally, an admissible
reference trajectory for the AUV is generated, and a SISO PID control is applied to
each DOF of the vehicle [1].
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Fig. 9.4 Control architecture of the I-AUV

9.3.1 Trajectory Generation of the Manipulation System

The contact points on the object surface constitute the desired values of the reference
trajectory; the desired orientation is chosen so that the approach axis of a fingertip
frame points inwards the object [35]. The reference trajectory is generated as convex
combination of initial and final pose. Let us consider position trajectory generation
first: let x denote the generic (scalar) position variable; its desired trajectory is then
chosen as

x(t) = λ(t)xi + (1 − λ(t))xd, (9.13)

where xi and xd represent the initial and the desired value of x and λ(t) is a parameter
that continuously (and with continuous derivatives) varies from 1 to 0. This ensures
a smooth transition between the initial and the desired values. The continuity of the
trajectory is maintained even if the desired value xd varies with time.

For orientation trajectory generation, initial and desired orientations are expressed
as unit quaternions qi and qd [36]; then, Spherical Linear intERPolation (SLERP) is
applied, in order to compute a constant angular velocity rotation:
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q(t) = sin (1 − λ(t)) θ

sin(θ)
qi + sin(tθ)

sin(θ)
qd, θ = cos−1 (

qT
i qd

)
. (9.14)

While the I-AUV is patrolling, searching for the object to be manipulated, the arm
is kept at rest position. It is assumed that a camera is mounted on the palm of
the gripper. Supposing that the shape of the object is known a priori, as soon as
the object enters the field of view of the camera the POSIT algorithm (Pose from
Orthography and Scaling with ITerations [37] can be executed to obtain an estimation
of the pose of the object itself. Then, the arm’s reference trajectory is changed so
as to ensure that the object is kept inside the field of view of the camera all the
time. During manipulation, the arm’s reference trajectory is obtained by means of
a geometrical algorithm that determines the pose of the end effector of the arm
from the knowledge of the fingertips pose. The solution is unique, and the solving
process is composed of just a few steps. To overcome the problem of obtaining exact
values for the hydrodynamic coefficients of the arm (whereof only an estimation is
available), a kinematic control has been preferred to a dynamic control strategy. A
Closed Loop Inverse Kinematic Control (CLIK) has been chosen [38], exploiting the
arm’s redundancy to keep the manipulator far from singularities.

9.3.2 Trajectory Generation of the AUV

As the definition of dynamic manipulation implies, the AUV never stops during the
execution of the task; furthermore, the vehicle must constantly keep the object inside
the arm and gripper workspace so as the manipulation takes place.

The AUV is controlled by means of a decoupled PID strategy: six PID controllers
have been used, one for each degree of freedom of the vehicle [1]. The control law is:

uth
AUV = H†uAUV , (9.15)

where
uAUV = Jn

b τPID + g(η), (9.16)

being τPID a 6 × 1 vector of PID action on the pose error eη. Jn
b is the AUV Jacobian

matrix, g(η) a term of gravity compensation, and H† is a generalized pseudo-inverse
of the propeller matrix H [1], which maps the vector of thruster forces S into the
vector of forces/torques acting on the vehicle:

τ = HS. (9.17)

In the considered case, S = [S1 S2 S3 S4 S5 S6]T ; hence, the propeller matrix is square
and it has the form:
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Fig. 9.5 Description of the performed manipulation task

Table 9.7 Simulation data

Test case parameters Cylinder parameters

AUV cruising
speed

Acceleration time Acceleration
profile

Radius 2.5cm

0.1m/s 5 s Trapezoidal Length 6cm

0.2m/s 5 s Trapezoidal Density 7860kg/m3

0.25m/s 5 s Trapezoidal Mass 926g

H =
[

v1 v2 v3 v4 v5 v6

Pm1 × v1 Pm2 × v2 Pm3 × v3 Pm4 × v4 Pm5 × v5 Pm6 × v6

]
, (9.18)

where Pmi for i = 1–6 is the propeller position vector in body reference frame and
vi for i = 1–6 is the unitary vector of the thrust direction.

9.4 Numerical Simulations

In this section, the dynamic behaviour of thewhole I-AUV systemhas been simulated
during the execution of a predefined dynamic manipulation task (whose scheme is
presented in Fig. 9.5).

The task consists of grasping a cylindrical object lying on the sea floor, and it is
composed of the following steps:

• the I-AUV, starting from rest, accelerates for 5 s until steady-state speed is reached;
• as soon as the cylinder enters the field of view of a camera mounted on the palm of
the gripper (eye-in-hand configuration), the reference trajectory is changed so as to
align the camera focal axis with the line connecting the palm of the gripper to the
position of the center of mass of the object (estimated by the POSIT algorithm);
this way, the cylinder is kept inside the field of view of the camera all the time;

• when a threshold distance between the gripper and the object is reached, the arm
is lowered and the gripper grasps the cylinder;

• the cylinder is lifted and carried as the arm reaches a final “rest” configuration (i.e.
the cylinder carried vertically under the bow of the vehicle).
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It is worth noting that the AUV never stops during the execution of the task, which
is a fundamental requirement for a correct dynamic manipulation task.

For the ease of reading, reported data (unless stated otherwise) are expressed in
an inertial reference frame whose x axis is aligned with the forward direction of the
vehicle, z axis is directed toward the sea surface, and y axis forms a right-handed
coordinate system. Without loss of generality, the origin of this frame is chosen
coincident with the initial position of the center of mass of the AUV. The object lies
on the sea floor at about −0.6m under the vehicle (initial depth). The described task
has been simulated using Matlab-Simulink� software. A fixed step solver (ODE5-
Dormand-Price) has been chosen to increase affinity with real hardware.

Three simulations have been carried out, at different vehicle’s speeds: 0.1, 0.2
and 0.25m/s; this makes possible the analysis of the effect of increasing speed on
the performances of the control system. Table9.7 summarizes the main parameters
of the simulations and the cylinder properties. At higher speed, the I-AUV fails to
execute the task correctly; however, this is not due to a control architecture fault, but
to the physical length of the links of the arm which impose a limit on the window of
time allowed for manipulation.

Figure9.6 reports the three-dimensional trajectory of the vehicle, the gripper, the
fingertips and the object obtained during the fastest simulation.

Figure9.7 shows the behaviour of the AUV during the three simulations: the error
along the direction of forward motion is very small, its value increasing with the
speed of the vehicle: this is because the AUV always accelerates for 5 s, thus higher
steady-state speed equals higher acceleration values,which decrease the performance
of the PID controller. Y-motion, roll and yaw angular errors are neglectable. Initial
errors on the z-axis motion and on the pitch angle, not affected by speed, are due
to the total buoyancy of the system: while the vehicle has positive buoyancy (1%),
the arm and the gripper tend to sink the I-AUV; in addition, since the manipula-
tion system is mounted centrally on the front side of the AUV, it has the effect of
leaning the vehicle forward. However, these errors are kept small and rejected in
time.

Arm position errors, visible in Fig. 9.8, are expressed in a local coordinate system
whose origin coincides with the shoulder of the manipulator and whose initial orien-
tation is the same as the inertial frame. Aside from the initial error (due to gravity),
Fig. 9.8 shows that the error increases as the AUV moves faster; however, it is kept
small during the execution of the manipulation task. Fingertips position errors are
very similar to the arms ones, thus they are not reported.

Figure9.9 shows the position of the center of mass of the cylinder on each axis.
Plots have been divided according to x, y and z coordinates. It is clearly visible
the time when the object is grabbed and then lifted (motion on the x and z axis,
respectively); transversal motion is neglectable (Table9.8).
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Fig. 9.6 3D trajectory

Fig. 9.7 Pose error of the AUV
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Fig. 9.8 Position error of the arm

9.5 Conclusion

This paper describes a detailed multibody model of an I-AUV to study a suitable
control architecture for manipulation tasks. In particular, to better analyse the effec-
tiveness of the multibody models, the most challenging autonomous manipulation
(dynamicmanipulation) has been considered.Dynamicmanipulation denotesmanip-
ulation tasks executed while the vehicle maintains relevant velocities, further com-
plicating the execution of the mission due to the dynamic interaction between the
AUV and the manipulator. A complete multibody model of the I-AUV system has
been derived, including interaction with the fluid and contact with the object to be
manipulated. The I-AUV is controlled by means of a decoupled vehicle-manipulator
strategy, further decoupling the control of the gripper exploiting the hand kinematics.

Different relative speeds between the I-AUVand the object, in the same simulation
scenario, have been simulated with satisfying results, showing how the developed
multibody models and the adopted strategy allow the execution of the task. As con-
cerns future investigations, different simulation scenarios are required to establish
the maximum velocity that can be maintained during the manipulation phase. Fur-
ther improvements are scheduled, with special attention given to data acquisition and
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Fig. 9.9 Cylinder position

Table 9.8 Minimum AUV
speed

Nominal speed Minimum speed

0.1m/s 0.08m/s

0.2m/s 0.17m/s

0.25m/s 0.22m/s

to autonomous calculations, before the application of the proposed strategy in the
framework of the Italian project SUONOand of the FP7European projectARROWS.
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Chapter 10
Development of a Musculotendon Model
Within the Framework of Multibody
Systems Dynamics

Ana R. Oliveira, Sérgio B. Gonçalves, Mamede de Carvalho
and Miguel T. Silva

Abstract Human movement is the result of a complex and synergistic interaction
between the musculoskeletal and the central nervous system. As result, muscles con-
tract coordinately to produce forces that are transmitted by tendons to the skeletal
system, causing its movement or keeping its pose. Often neglected in current mus-
cle models, the elastic properties of tendons play a significant role in the dynamic
interaction between the muscular and skeletal systems, influencing the force trans-
mission, energy storage and transfer, and joint control. The aim of this work is to
present in detail the necessary steps to incorporate a musculotendon model in the
framework of a multibody systems dynamics formulation. A methodology to com-
pute the musculotendon forces and activations is presented based on the use of a
Hill-type muscle model assembled in series with a spring-like element defined ac-
cording to the elastic properties of the tendon. The proposed methodology can be
applied, without significant changes, to both inverse and forward dynamic analyses
of biomechanical systems. Three daily activities with different levels of musculo-
tendon recruitment are analyzed from an inverse dynamics perspective. The selected
activities are walking, running and jumping. Themovement data characterizing these
activities were acquired experimentally in a movement laboratory. A 3D biomechan-
ical model of the human body, described with natural coordinates and encompassing
43 musculotendon actuators per leg, is proposed to assess the performance of the
presented musculotendon model and of its incorporation on the referred multibody
dynamics framework. The influence of the introduction of a compliant tendon model
on the produced muscle forces and activation patterns is analyzed in face of those
same results produced by the same biomechanical model defined with infinitely stiff
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(or rigid) tendons. Results revealed that the introduction of the tendon model allows
muscles to work, predominantly, on their optimal configuration as the dynamic equi-
librium generated between muscle and tendon prevents the muscle from support all
musculotendon deformation. This not only reduces the activations needed to perform
the required contractile forces but it also considerably prevents the development of
non-physiological passive forces.

Keywords Musculotendon model · Tendon model · Hill-muscle model · Contrac-
tion dynamics · Multibody dynamics · Motion analysis

10.1 Introduction

Last decades have been marked by a large number of works researching on the na-
ture of human movement. This growing interest is related with the positive impact
that such knowledge can have in different research and application areas from which
biomechanics, health and sports sciences, and robotics are here highlighted. Under-
standing the specificities of the normal and abnormal movement is, thus, essential to
develop novel solutions that allow the improvement of human performance and the
quality of life in the presence of impairment.

Humanmovement is the result of an intricate process involving the musculoskele-
tal and the central nervous system (CNS). A complex pattern of electric signals—
neural stimuli—generated at CNS level, results in a synergistic contraction of muscle
fibers that induces forces, which are transmitted by tendons to the skeletal system,
causing movement or maintaining pose. As such, the study of musculotendon activ-
ity is of great interest for the scientific and medical community alike, as it allows for
better understanding the contribution of specific musculotendon groups to a given
movement [1], thus providing insight to the design of customized orthotic and pros-
thetic solutions (e.g. functional neuromuscular stimulation systems [2]), or other
assistive devices.

Tendons mediate the interaction between muscular and skeletal systems, influ-
encing the force transmission, energy storage and transfer, joint control, movement
dynamics and accuracy [3]. Moreover, due to their intrinsic viscoelastic properties,
tendons have an important role in the prevention of muscle injuries, behaving as a
mechanical buffer that avoids excessive elongations of muscle fibers [4]. Hence, the
development of non-invasive computermethods based onmusculoskeletal modelling
in which tendons are also considered is of particular interest as these methodologies
enable the analysis of the dynamics underlying these interactions and their influence
on movement.

Several mathematical models have been presented to characterize the dynamics
of muscle tissue, standing out the ones proposed by Huxley [5] and Hill [6]. Based
on the physiological structure of muscles, Huxley-type models estimate the mus-
cles forces considering the cross-bridges between the actin and myosin filaments.
Although these models present a strong physiological component, each muscle is



10 Development of a Musculotendon Model 215

ruled by a set of differential equations, one per cross-bridge, substantially increasing
the computational complexity required to solve the problem [7]. On the other hand,
Hill-type muscle models focus on the mechanical behavior of the muscle, consid-
ering, in most of cases, only one differential equation per muscle. As result, the
computational effort is not as high as in the Huxley model, making this type of
models suitable for analyze or simulate biomechanical models described with large
number of musculotendon actuators [7].

Regardless of the large amount of studies utilizing computational muscle models,
few discuss tendon action. Some works consider tendon as an infinitely stiff (or
rigid) element, with a fixed length, being contraction dynamics supported solely
by the muscle actuator. Regarding this approach, Thelen et al. refer that this fact
could explain the non-physiological muscle strains and forces observed in some of
these works [4]. When compliant (or non-rigid) tendons are considered, almost all
methodologies found in literature implement or adapt the model proposed by Zajac
[8], in which pure elastic properties are considered for the tendon andmusculotendon
dynamics is described by a first order differential equation. There, a detailed analysis
of the mechanical properties of the tendon is presented, discussing the relations
between tendon force, tendon stress and tendon strain. The referred work addresses
also a theoretical base to develop a dimensionless linear model that allows for the
computation of the principal muscle- and tendon-related parameters, considering the
use of aHill-typemusclemodel to describemuscle contraction dynamics. Since then,
this model has become the standard methodology for the study of musculotendon
dynamics, being present in most studies that consider compliant tendons [4, 9–14].

Millard et al. analyzed the forces produced by three different musculotendon
models: one considering rigid tendons and two describing tendons as compliant
elements (the equilibrium model and the damped equilibrium model) [10]. Results
showed that the compliant models presented similar responses, with force patterns
denoting higher physiological meaning than those obtained with the rigid tendon
model. Additional analyses on the computational effort concluded that although
slower than the rigid model, the damped equilibrium model was in fact faster than
the (solely elastic) equilibrium model, particularly in the presence of low activation
levels.

It is therefore the objective of this work to present, in a comprehensive manner, a
methodology to incorporate a musculotendonmodel that takes into account the influ-
ence of the tendon on muscle contraction in the framework of a multibody systems
dynamics formulation. The proposed methodology can be applied both in forward
and inverse dynamics analyses of large biomechanical systems. The musculotendon
unit is based on the theoretical model proposed by Zajac [8] and is described by a
Hill-type muscle model assembled in series with an elastic element representing the
mechanical properties and behavior of the tendon.

The proposed methodology was implemented in APOLLO, a three-dimensional
multibody dynamics analysis software with natural coordinates developed in-house
[15]. The performance of the methodology is assessed by applying it to the analysis
of three daily activities with different levels of tendon recruitment: walking, running
and jumping. For this purpose a biomechanical model with 43 musculotendon units
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per leg is utilized. The influence of the tendon on muscle contraction dynamics is
also analyzed by comparing the obtained results (activations, musculotendon forces
and lengths) with a musculotendon model in which the tendon is modelled assuming
rigid properties, i.e. the length of the tendon is considered constant and equal to its
respective slack length [16]. Discussion and conclusions are presented in face of the
obtained results.

10.2 Methodology

10.2.1 Musculotendon Model

Physiological muscle contraction begins with the generation of a neural stimulus
by the CNS that travels through the motor neuron until it reaches the neuromuscu-
lar junction of the target muscle fiber. When the neural stimulus reaches the axon
terminal, a group of neurotransmitters—acetylcholine—is released resulting in the
generation of an action potential on the muscle cell and, consequently, inducing its
contraction on a process that is referred to as activation dynamics. The muscle con-
traction process itself can be explained by the sliding-filament theory, where the actin
filaments are pulled by the myosin filaments through cross-bridges formed between
the actin binding sites and the myosin heads [17]. The force developed by the muscle
is a function of the amount of overlap of these two protein filaments in a process that
is referred to as contraction dynamics [18].

The computational musculotendon model should also contemplate these complex
dynamic processes as these confer extended physiological relevance to the model
and results. Hence, the computational model should include an activation dynamics
block, which describes the transformation of a neural excitation uM(t) in the respec-
tive muscle activation aM(t) and a contraction dynamics block that corresponds to
the conversion of the muscle activation aM(t) into musculotendon force (F MT ), as
schematically represented in Fig. 10.1 [1, 7].

From the computational point of view the activation block models the physio-
logical delay that exists between the neural stimulus uM(t) and the generation of
the muscle activation aM(t), also referred to as electromechanical delay (EMD) [7].
This delay is the result of the time that takes the propagation of the neural signal
through the neuron and the duration of the biochemical cascade of events resulting
in the excitation of the muscle fiber. This physiological process can be modeled
as a first order system but the solution of such systems, particularly in inverse dy-
namic analysis, requires the use of an optimization strategy different from the one
adopted in this work, i.e., the solution of the inverse dynamics problem considering
the EMD requires the use of a dynamic optimization strategy that globally opti-
mizes for multiple points in time in order to encompass the effect of the EMD in
the solution. In this work, a static optimization strategy was adopted instead and
the optimization is carried out locally for a single point in time, which allows the
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Fig. 10.1 Musculotendon dynamics: The activation dynamics block governs the transformation of
the neural excitation uM(t), produced by CNS, into an activation state of the muscle tissue aM(t),
while the conversion of aM(t) into musculotendon force FMT(t) is governed by the contraction
dynamics block considering the actual state (length and contraction velocity) of the musculotendon
actuator

simulation of contraction dynamics but excludes the inclusion of activation dynamics
and the simulation of the EMD. Examples of classical muscle activation models can
be consulted in [7, 8]. Other works addressing artificial activation models can also
be found in literature. These models are of particular interest as they allow to un-
derstand the response of the muscle to external signals, such as functional electrical
stimulation (FES) profiles [19]. Such knowledge enables the design of biomedical
solutions customized for a particular subject and neuromuscular disorder [2].

The contraction dynamics block models the process of generating an effective
musculotendon force (FMT), considering the state of the muscle (i.e., its length and
contraction velocity) and a given activation level aM(t). Depending on the type of
dynamic analysis, the activation level can be a known value, prescribed as input to the
simulation in the case of forward dynamic analysis, or an unknownvalue to determine
as the result of an inverse dynamic analysis. Hill-type muscle models are a common
approach to model contraction dynamics since they allow the characterization of
the dynamic behavior of the muscle tissue with only one differential equation per
muscle, this way reducing the computational effort required to solve the problem
and enabling large-scale muscle simulations [7]. As represented in Fig. 10.2, the
musculotendon model is generically described as a muscle actuator composed by a
contractile element (CE) and a passive element (PE) assembled in series with a spring
element of stiffness K T, representing the tendon. The muscle actuator is angled by
a pennation angle (α) to accommodate oblique muscle insertions. The pennation
angle describes the angular orientation that muscle fibers present with respect to the
aponeurosis, the internal portion of the tendon (Fig. 10.2a). The model assumes that
all fibers that constitute a given muscle are parallel, straight, coplanar and present the
same length (l M ). Additionally, it is also considered that the musculotendon element
does not present mass or friction [8, 10].

Computationally, musculotendon lines of action (or lines of pull) are modeled as
extensible lines with origin and insertion points connected to different elements rep-
resenting the skeletal bones. Lines of action mediate the origin and insertion points
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Fig. 10.2 The musculotendon model: a anatomical illustration of a unipennate muscle (muscle
inserts obliquely into the tendon); b schematic representation of a unipennate musculotendon unit
(muscle fibers considered as straight and parallel lines with equal length and orientation, attached
to the tendon at the oblique aponeurosis region); c detailed representation of musculotendon unit
considering the Hill-type element and the elastic tendon element

of the muscle actuator and can be defined as a collection of straight line segments
angling at specific via points [20] or utilizing dedicated algorithms, which allowmus-
cles to wrap around different types of geometrical obstacles representative of body
segments or other biological structures [21]. The length of these lines, designated
as musculotendon length (l MT ), varies in time according to the kinematics of the
movement under analysis and its calculation is performed by the multibody dynam-
ics formulation, for each time step, considering the respective biomechanical model
under analysis. Geometrically, and taking in consideration Fig. 10.2c, the musculo-
tendon length is defined as the sum of the tendon length (lT ) and the muscle fibers
length (l M ), taking into account the pennation angle as represented in Eq. (10.1).

l MT = lT + l M cos(α) (10.1)

The muscle contractile element (CE) is assembled in parallel with a passive element
(PE). The CE produces a force (F M

C E ) that depends on the peak isometric active force
that the muscle can produce (F M

o ), on its activation level (aM ) that ranges from 0
(fully relaxed muscle) to 1 (fully activated muscle), and on the values of the force-
length ( fl(l M)) and force-velocity ( fv(vM)) relationships (see Fig. 10.3a, b), which
are dimensionless functions that describe the ability of the muscle to produce active
contractile force taking in consideration its state (length and contraction velocity).
The PE is included to represent the passive elastic properties of the muscle tissue,
generating a force (F M

P E ) that depends solely on the muscle elongation.
Accordingly, the force developed by a muscle actuator (F M ) can be defined as

the sum of the forces generated by these two elements [15, 22]:

F M = F M
C E + F M

P E = fl(l
M) fv(v

M)F M
0 aM + F M

P E (l M) (10.2)
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Fig. 10.3 Dimensionless muscle and tendon force properties: a muscle active and passive force-
length relationship (fully activated muscle); b muscle force-velocity relationship (fully activated
muscle); c tendon force-strain curve (adapted from [8]); d Tendon force-stretch curve (adapted
from [8])

where the dimensionless force-length and force-velocity relationships are defined as:

fl(l
M) = e
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fv(v
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0

π

4 tan−1(5) + 1 vM > 0.2vM
0

(10.4)



220 A.R. Oliveira et al.

and the passive element force is defined as:

F M
P E (l M) =

⎧⎪⎨
⎪⎩
0 l M < l M

0

8 F M
0

l M
0

(
l M − l M

0

)3
l M
0 ≤ l M ≤ 1.63l M

0

2F M
0 l M > 1.63l M

0

(10.5)

It should be noted that the expressions presented in Eqs. (10.3)–(10.5) are not unique
as other similar or equivalent ones can be found in the literature that perform the
same function and provide similar results [7, 23, 24].

An important aspect of this muscle model, is that the calculation of the muscle
force (F M ), for a specific muscle, depends solely on the values of four main muscle-
specific parameters (optimal muscle fiber length (l M

0 ), muscle maximum shortening
velocity (V M

0 ), optimal muscle fiber pennation angle (α0) and peak isometric muscle
active force (F M

0 )) and on the dimensionless relationships for force-length and force-
velocity that describe the state-dependent nature of muscle force production.

Regarding the tendon, as this element is placed in series with the muscle element,
the force developed by the musculotendon actuator is influenced by the dynamic
equilibrium that is established between both components. The elongation of the
tendon will affect directly the length of the muscle fibers, resulting in different values
of force produced by the two force elements of the muscle actuator (CE and PE).

The influence of the tendon on the equilibrium depends on its mechanical prop-
erties, which encompass structural and material properties. When the stress-strain
relationship (σ T (εT )) is analyzed for the tendon, three distinct regions are observed
in the curve (see Fig. 10.3c): the toe region, where for low strains (εT � 2%) the
value of the tendon tangent modulus of elasticity (ET = dσ T /dεT ) increases non-
linearly with the strain; the linear region, where the stress increases linearly with the
strain (and ET presents a constant value of approximately 1.2GPa); and the failure
region, where for values of strain near 10% the tendon enters in rupture [8]. It should
be noted that the tendon strain (εT ) is defined as the tendon stretch (�lT ) per unit
of tendon slack length (lT

s ), i.e., εT = �lT / lT
s . The tendon slack length (lT

s ) is the
length above which the tendon begins to produce force and the tendon stretch is
defined as �lT = (lT − lT

s ).
The tendon element is commonly defined as a spring-like component with a con-

stant stiffness K T that depends on the physiological elastic properties of the tendon
and towhich is associated a relationship between tendon stress and stretch. A relevant
aspect that should be highlighted in the present implementation is the dimensionless
characteristic assumed to exist between the tendon force and the tendon strain and
stretch, represented in Fig. 10.3c, d respectively. The use of such approach implies
two assumptions: the first is that the elastic properties of the tendon are based on
generic tendon material properties (taken from the stress-strain curve); the second is
that when the tendon force is equal to the peak isometric active force of the muscle
(F T = F M

0 ), which occurs for tendon strains (εT
0 ) near 0.033, the tendon specific

stress (σ T
0 ) is equal to 32MPa, independently of the tendon being modelled, i.e., the

tendon specific stress is musculotendon-independent [8].
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Considering the normalization of the tendon stress by the tendon specific stress
(σ̃ T = σ T /σ T

0 ), it is possible to define a generic relationship between σ̃ T and εT

that, with the exception of the tendon slack length (lT
s ), is independent of specific

tendon characteristics. This relation enables also to obtain directly the normalized
tendon force (F̃ T = F T /F M

0 ), as its value is equal to σ̃ T [8]:

σ̃ T = σ T

σ T
0

= F T /AT

F M
0 /AT

= F̃ T (10.6)

A dimensionless relationship between force and strain in the tendon, as represented
in Fig. 10.3c, can also be obtained from Eq. (10.6). Modelling the toe working region
as an exponential function, it becomes possible to derive a generic expression that
reflects this relation [9, 23]:

F̃ T =
⎧⎨
⎩

F̃ T
toe

eK̃ T
toe −1

(
e

K̃ T
toe

εT

εT
toe − 1

)
εT ≤ εT

toe

F̃ T
toe + K̃ T

lin

(
εT − εT

toe

)
εT > εT

toe

(10.7)

with:

K̃ T
lin = 1 − F̃ T

toe

εT
0 − εT

toe
(10.8)

where F̃ T
toe and εT

toe are respectively the values of force and strain above which it
is assumed that the tendon presents a linear behavior. The values for these two
parameters vary in literature, ranging from 0.015 to 0.02 for εT

toe and 0.30 to 0.33
for F̃ T

toe [8, 9, 23]. Regarding K̃ T
toe, it represents a shape factor that controls the

curvature of the exponential function, while K̃ T
lin adjusts the slope of the linear region,

computed assuming the condition F̃ T = 1 when εT
toe = 0.033. Defining values for

F̃ T
toe and K̃ T

toe, the remaining parameters of Eq. (10.7) can be calculated considering
a continuity condition between the two branches of the equation. For the current
work, the values presented in [9] (K̃ T

toe = 1.3796 and F̃ T
toe = 0.3086) are considered,

yielding values of 0.0152 for εT
toe and 38.8427 for K̃ T

lin.
A disadvantage of this modelling procedure is the poor estimation of tendon stress

for low values of strain, resulting in a wide range of values for (εT
0 ). This fact is a

direct consequence of the high compliancy that tendons present for low levels of
stress. Zajac considers that since the energy stored in these situations is very small,
these differences are assumed to be embraced in the estimation of lT

s [8].
Regarding the total force produced by the musculotendon actuator, due to the

fact that muscle and tendon are assembled in series (as depicted in Fig. 10.2c), the
resultantmusculotendon actuator force is equal to the force transmitted by the tendon,
which is, by its turn, equal to the force produced by the muscle, projected onto the
line of action of the tendon:

F MT = F T = F M cos(α) (10.9)
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The dynamic behavior of the musculotendon model can be described by a first order
differential equation that relates the variation of the tendon force (F T ) with the
tendon velocity (vT ) and stiffness (K T ) [8, 9]:

dFT

dt
= K T dlT

dt
= K T vT (10.10)

The normalized tendon force (F̃ T ) is obtained rewritten Eq. (10.10) in its dimension-
less form:

dF̃
T

dt
= K̃ T ṽT (10.11)

with:
K̃ T = K T 1/F M

0

1/ l M
0

∼= 30
l̃ T
s

ṽT = vT 1
vM
0

(10.12)

where K̃ T and Ṽ
T
represent respectively the dimensionless tendon stiffness and the

normalized tendon velocity. From the analysis of the dimensionless tendon force-
stretch curve depicted in Fig. 10.3d, the value of K̃ T can be estimated considering the
slope of the respective curve (∼30/l̃ T

s ). This relation assumes that for all working
regions, the normalized tendon force varies linearly with the tendon stretch [8].
The tendon velocity (vT ) can be defined in terms of the musculotendon contraction
velocity (vMT ) and muscle contraction velocity (vM ), through the differentiation of
Eq. (10.1) with respect to time:

vMT = vT + vM cosα − l M α̇ sin α (10.13)

Previous equation presents a dependency onα and α̇ (the pennation angular velocity).
For the calculation of the latter, the constant isovolume assumption is considered [8]:

lW = l M
0 sin α0 = l M sin α (10.14)

This approximation considers that a constant relation exists between muscle length
andpennation angle and that such relation is equal to themusclewidth (lW ),which can
be calculated from the optimal muscle fiber length (l M

0 ) and optimal pennation angle
(αo). For this assumption to be valid, the musculotendon model should consider that
aponeurosis thickness increases from the internal to external portion, as represented in
Fig. 10.2a, b, such that all fibers are parallel and equal in length [8, 10]. The derivative
of Eq. (10.14) with respect to time yields in an expression for the pennation angular
velocity:

α̇ = −vM sin α

l M cosα
(10.15)
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which can be substituted in Eq. (10.13) to obtain a simplified expression for the
tendon actuator velocity:

vT = vMT − vM

cos(α)
(10.16)

From the analysis of previous equation, it can be seen that the calculation of the
tendon velocity (vT ), which is needed for the calculation of the derivative of the
tendon force as expressed in Eq. (10.11), requires the previous calculation of vMT ,
vM and α. While the musculotendon contraction velocity (vMT ) can be retrieved
from the kinematics of the system, which are managed at the level of the multibody
dynamics solver, the values of the muscle velocity (vM ) and pennation angle (α) are
themselves influenced by the state of the tendon, fact that brings an additional level
of complexity to the problem. The procedure adopted in this work to calculate these
variables is included on the musculotendon model used to integrate the differential
equation describing the tendon dynamics (Eq. (10.10)). This model is schematically
represented in Fig. 10.4 and the necessary steps for its implementation described
hereafter.

Considering that Eq. (10.11) is integrated as an initial value problem (IVP) using
a direct integration (DI) method, the musculotendon model requires as input, for the
present time step, the values of the normalized tendon force (F̃ T

a ) for a fully activated
state of the muscle (i.e., with aM = 1), and the length (l MT ) and contraction velocity
(vMT ) of the musculotendon actuator. The purpose now is to calculate, also for the
present time step, the derivative of the normalized tendon force for a fully activated

state of the muscle ( ˜̇F T
a ) that once integrated in time provides the value of the tendon

normalized force (F̃ T
a ) for the next time step. It should be noted that this integration

step is required independently of the type of dynamic analysis being performed (i.e.,
forward or inverse). Regarding the estimation of the initial values for normalized
tendon force (F̃ T

a ), this can take advantage of the underlying multibody solver and,
hence, discussed in the next section.

In order to enable the calculation of the muscle velocity and pennation angle, the
tendon length and the contractile and passive muscle forces must be firstly deter-
mined. The first step comprehends the determination of the tendon length taking into
account its own elastic properties (as depicted in Fig. 10.3c, d). The normalization
of tendon slack length by the optimal fiber length, denoted by l̃ T

s , defines the com-
pliance of the tendon. The influence of the tendon in the musculotendon actuator
can be predicted from the value of l̃ T

s . Low values of l̃ T
s denote stiff (rigid) tendons

(l̃ T
s ≤ 1), while higher values indicate compliant tendons (l̃ T

s > 1) [8]. Rigid tendons
are treated as inextensible elements with lengths that do not change over time and, as
so, their velocity is set to zero. On the other hand, the length of a compliant tendon
varies according the normalized musculotendon force that acts on the system. Its
value can be computed using the inverse function of the force-strain curve, depicted
in Fig. 10.3c and presented in Eq. (10.7) [8, 9]:
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Fig. 10.4 Flowchart describing themusculotendonmodel: methodology used to compute the deriv-
ative of the normalized tendon force and remaining model parameters for current time step
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lT (F̃ T ) =
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The second step comprises the estimation of the pennation angle by applying
the muscle constant isovolume assumption described by Eq. (10.14). Substituting
Eq. (10.1) in Eq. (10.14) yields an expression dependent of lT and l MT :

α = tan−1 lw

l MT − lT
(10.18)

The muscle length (l M ) can now be calculated by means of Eq. (10.1) and, with its
value, the calculation of fl(l M) and F M

P E (l M), as indicated in Eqs. (10.3) and (10.5),
can also be carried out.

The next step comprehends the calculation of the muscle contraction velocity
(vM ). First, Eq. (10.2) is solved for the force-velocity relationship fv(vM). Then,
using Eq. (10.9), the force of the contractile element can be expressed as a function
of F̃ T and of the passive element force (F M

P E ) calculated previously, resulting:

fv(v
M) = F M

C E

fl(l M)F M
0 aM

=
(

F̃ T

cos(α)
F M
0 − F M

P E (l M)

)
1

fl(l M)F M
0 aM

(10.19)

A fact that steams directly from the observation of Eq. (10.19) is the possibility of
appearing three numerical singularities when α → π/2, aM → 0 and f1 → 0. A
simple approach to mitigate this problem considers the definition of boundaries for
these variables, so that these singularities are never reached, i.e., α < π/2, aM > 0
and f1 > 0. Millard et al. reported that the use of these conditions can result in a
numerical stiff problem, particularly when these limits are approached, increasing
substantially the time required in the integration step [10]. In order to avoid the ap-
pearance of these singularities and recalling that the aim of the present procedure is
the calculation of the derivative of the normalized tendon force for a fully activated

state of the muscle ( ˜̇F T
a ), maximum activation (aM = 1) is assumed for the calcula-

tion of fv(vM), and limits are set for the maximum pennation angle (α < cos−1(0.1))
and for the minimum muscle force-length relationship ( fl > 0.1) [10].

Muscle contraction velocity is now calculated inverting the force-velocity rela-
tionship curve. For computational reasons, Eq. (10.4) is best-fitted by a sigmoid curve
and solved with respect to the muscle contraction velocity, yielding:

vM( fv) = vM
0

(
0.15 log

(
fv

− fv + 1.572

)
− 0.08

)
(10.20)

The final step comprehends the calculation of the derivative of the normalized tendon

force for a fully-activated state ( ˜̇F T
a ), combining Eqs. (10.11), (10.12) and (10.16):
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˜̇F T
a = K̃ T

vM
0

(
vMT − vM

cosα

)
(10.21)

The value of ˜̇F T
a is now ready to be numerically integrated, allowing to estimate F̃ T

a
for the next time step. This integration step can be done simultaneously with the
integration step of the multibody dynamics solver in a process that is described in
the following section.

10.2.2 Incorporation of the Musculotendon Model
in a Multibody Dynamics Framework

The incorporation of the musculotendonmodel in a general multibody formulation is
carried out considering musculotendon forces as external forces, which are included
in the equations of motion of the system (EoM) as equivalent generalized forces
(gMT ), applied over the generalized coordinates describing the biomechanical model
[15, 25]:

Mq̈ + �T
qλ = gext + gMT = gext +

nm∑
i=1

ĝMTi
C E aMi cos(αi ) +

nm∑
i=1

gMTi
P E cos(αi )

(10.22)

where M, q̈, �T
q and λ represent the global mass matrix, the vector of generalized

accelerations, the Jacobian matrix of the kinematic constraints and the vector of La-
grangemultipliers respectively. Vectors ĝMT i

C E and gMT i
P E represent, for musculotendon

i , the generalized contractile muscle force vector for a fully-activated muscle state
and the generalized passive muscle force vector respectively. Vector gext represent
all other generalized external forces applied over the biomechanical system.

When the musculotendon model is utilized in a forward dynamics simulation, the
model allows for the calculation of the forces generated in the different elements
of the Hill-type muscle model and tendon as well as their actual state (lengths and
contraction velocities), given as input the state of the musculotendon element (l MT

and vMT ), the prescribedmuscle activations (aM ) and the normalizedmusculotendon
force for a fully activated muscle state (F̃ T

a ) for the current time step. The muscu-

lotendon force is applied as an external force in the EoM of the system and ˜̇F T
a is

calculated for each actuator. Then ˜̇F T
a is fed into the integrator, along with the veloc-

ities (q̇) and accelerations (q̈) of the system in the current time step, which are then
integrated together to yield the state of the system and musculotendon model for the
next time step, as represented in Fig. 10.5a.

When applied in an inverse dynamics analysis (see Fig. 10.5b), the model allows
for the calculation of the forces produced by the contractile and passive elements,
considering as input the system kinematics and F̃ T

a computed also for the current



10 Development of a Musculotendon Model 227

Fig. 10.5 Incorporation of the musculotendon model in a multibody dynamics formulation: a
forward-dynamics simulation; b inverse-dynamics analysis

time step. From the input variables the musculotendon model calculates the state

of all the elements of the musculotendon actuator as well as the value of ˜̇F T
a that

is numerically integrated to obtain the value of F̃ T
a for the next instant. The forces

produced by the musculotendon actuators will be applied in the EoM as external
forces.

As the muscle activations are unknown, the system dynamics and the muscle-
related variables are estimated by means of a static optimization step that, for the
current time, calculates the optimal set of activations that minimizes a specified
physiological based criterion. The activations calculated for the previous time step
are used as an initial approximation for the optimization procedure.
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The optimization problem for the calculation of themuscle activations is stated as:

Find : λ̄ =
{

λ

aM

}

Minimize : �(λ̄)

Subject to :
⎧⎨
⎩

Mq̈ + �T
qλ − (gext + gMT ) = 0

λlb ≤ λ ≤ λub

0 ≤ aM ≤ 1

(10.23)

where λ is the optimization vector composed by the vector of state variables (λ) and
by the vector of control variables (aM), and �(λ̄)is the objective function expressing
the physiological criterion to minimize (e.g. metabolic energy, muscle stress, muscle
fatigue, among others). The minimization of the objective function is carried out
subjected to the fulfillment of the set of in/equality optimization constraints that
include the EoM of the system, written in the homogeneous form, and lower and
upper bounds for the state and control variables. A detailed description of the applied
optimization methodology can be consulted in [11, 15].

Once the activations are determined, the muscle and tendon forces as well as
muscle and tendon states can be calculated and updated for the current time step
and the analysis may proceed for the next time step. It should be noted that with
these updated values, a new optimization step can be carried out to obtain new
optimized activations, in an iterative process that comes to an end when the residual
of activations, between previous and actual iteration, is within a user specified value.
Although it is expected that this process would improve the biomechanical relevance
of the results, it also significantly increases the computational effort and execution
computational times, due to the extra optimization steps, and, therefore, was not
implemented in the present work.

For both types of dynamic analyses (forward and inverse), an initial estimation of
F̃ T

a is required to compute the initial tendon length (lT ) or vice-versa. Since both these
values are usually absent in the first time step, the adopted procedure to obtain this
initial estimation was to consider rigid tendons with lengths equal to the slack length
and consequently with null tendon velocities. This allows the initial estimation of
the musculotendon state and, consequently, the initial estimation of F̃ T

a . An iterative
optimization procedure, similar to the one referred previously, can be considered that
corrects the initial estimation of F̃ T

a by feeding back its value into the musculotendon
model but this time considering compliant tendons. This correction procedure was
not implemented in this work.

10.3 Results and Discussion

The methodology presented before was incorporated in APOLLO, a three-
dimensional multibody dynamics software, described with natural coordinates, de-
veloped in-house [15]. The human articulated biomechanical model, represented in
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Fig. 10.6 Biomechanical
model (lower limbs + HAT)
applied in the inverse
dynamic analysis of the three
selected movements: a 3D
representation of the
kinematic structure of the
biomechanical model; b
representation of the 86
musculotendon actuators
used in the lower limbs
muscle apparatus

Fig. 10.6a, composed by 12 segments (2 three-segment feet, 2 shanks, 2 thighs, 1
pelvis and 1 HAT) was constructed. The model makes use of 20 rigid bodies, defined
with 25 points and 29 unit vectors, and allows a total of 27 degrees-of-freedom. In
order to represent in detail the muscle apparatus of the lower limbs, 86 musculoten-
don actuators (43 per leg) were integrated, as represented in Fig. 10.6b, considering
the muscle and tendon parameters presented in [26].

The behavior of the presented musculotendon model was evaluated by applying
it to the analysis of the musculotendon dynamics of the biomechanical model for
three different activities: walking, running and jumping. The choice of movements
had in consideration the different levels of tendon recruitment that are expected for
these activities. The acquisition of the experimental data for the three movements
was performed in the Laboratório de Biomecânica de Lisboa (Lisbon Biomechanics
Laboratory) at Instituto Superior Técnico.Amale subject (23years old, 76kg, 1.78m)
with no history of gait disorders was recruited among the university students to
perform the selected movements. The subject was informed of the objectives of the
study and informed consent was obtained. The acquisition of kinematic data made
use of a three-dimensionalmotion capture system, composed by 14 infrared reflective
cameras (Qualisys ProReflex MC1000). The sagittal view of the three reconstructed
movements is represented in Fig. 10.7.

Three force plates (AMTI OR 6-7-1000, 508mm × 464mm) were used to ac-
quire the ground reaction forces (GRF). Markers kinematics and GRF were acquired
synchronously using Qualisys TrackManager 2.9 software. The sampling frequency
was set to 100Hz for the IR cameras and 1000Hz for the force plates. The marker
set protocol was designed to allow the acquisition of the six DOFs of each rigid
body, considering for that 56 passive markers placed in the anatomical landmarks
suggested in [27]. A detailed description of the protocol and biomechanical model
can be found in [11]. A set of 10 valid trials were acquired for each activity. The
statistical treatment was performed using MATLAB software.
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Fig. 10.7 Movements kinematics and respective phases: a walking b running c jumping

In order to study the influence of the tendon in the musculotendon model, the
output of the analysis for the three activities is comparedwith the results obtainedwith
a model in which the tendons are considered infinitely stiff, i.e. with constant length
equal to the slack length. Due to the large amount of data, the results presented in this
work will focus only on the principal muscles that constitute the antagonist muscle
groups responsible for controlling ankle plantar flexion (gastrocnemius lateral (GL)
and medial (GM) and soleus) and ankle dorsiflexion (tibialis anterior (TA), extensor
digitorum longus (EDL) and extensor hallucis longus (EHL)). The results obtained
for the remaining muscle apparatus can be consulted in [11].

In general, patterns of force and activation, generated by the model with compli-
ant tendons, are consistent with the performed movements. The analysis of the gait
results (Fig. 10.8a, b) for the triceps surae group allows the observation of a peak
of force and activation during the mid-stance (∼30–50% of gait cycle (GC)) and
pre-swing (∼50–60% of the GC) phases. It is known that the mid-stance is charac-
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terized by a storage of elastic energy [28], which can be identified by observing the
increase of musculotendon force in these muscles. The stored energy is posteriorly
released during the push-off phase (40–60% of the GC). This phase is also charac-
terized by a concentric contraction of these muscles that plantar flexes the ankle and
propels the body forward. This sequence of events is also observed in the force and
activation curves for this phase. The results also show an increase of force and acti-
vation values until approximately 40–50% of GC, followed by a decrease during the
last moments of the propulsion phase. Moreover, similar curves are obtained when
the activation patterns are compared with electromyographic (EMG) data [28]. For
instance, the analysis of the EMG signal for the triceps surae muscles shows also a
peak between the 30–50% of GC, in line with the powered plantar flexion that occurs
during propulsion. A consistent pattern of recruitment is also observed in the running
and jumping movements (as depicted in Fig. 10.8c–f). The phases characterized by
energy storage and concentric contraction present also the expected variations in
the musculotendon force and activation (running: 10–40%, jumping: 20–45%). A
consistent peak of force and activation is also observed in the jumping movement
during the recovery phase (see Fig. 10.8e, f for 80–100% of cycle). This phase is
characterized by an eccentric contraction of the triceps surae muscles to absorb the
energy of the impact and control the dorsiflexion motion that occurs until both feet
are flat.

The force and activation curves for the dorsiflexors group present also consistent
patterns with the performed motions. The analysis of the tibialis anterior dynamics
during the gait (Fig. 10.9a, b), allows to observe a peak of force and activation in the
first instants of the cycle (0–10% of GC), while the ankle is plantar flexing. This
eccentric contraction allows to counteract the effect of the resultant ground reaction
forces, which are in this phase located in a posterior position to the ankle joint,
controlling it and avoiding an abrupt plantar flexion (foot slap) usually observed in
subjects suffering from weakness of the foot and ankle dorsiflexors [28, 29]. This
effect can also be observed in the force and activation curves obtained for running
(Fig. 10.9c). During approximately the first 25% of the cycle, an activation of the
TA is observed in order to assist the controlled plantarflexion of the ankle after the
contact of the foot with ground. Other expected peaks are also observed in the TA
activation curve during the swing phase of the gait cycle (Fig. 10.9a, b). In this event,
the TA is active to support the foot in the air ensuring a safe toe clearance and a
dorsiflexed foot that guarantees an initial contact made with the heel. The analysis
of the activation patterns for jumping movement (Fig. 10.9e) allows also to observe
an action of dorsiflexor muscles, essentially to ensure body equilibrium and ankle
joint control during propulsion generation (10–60%).

Comparative analysis of the results produced by the compliant tendon model with
those obtained by the rigid tendon model shows significant differences on the pattern
and magnitude of the force and activation curves. The model with rigid tendons
presents non-physiological muscle forces caused by the passive component of the
Hill-typemodelmore frequently than its counterpart (e.g. Figs. 10.8b, d, e and 10.9d).
On the other hand, the comparison between the forces produced by the contractile
elements and themusculotendon forces for the compliant model (Figs. 10.8a, c, e and
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Fig. 10.8 Muscle force (solid line), contractile muscle force (dashed line) and muscle activation of
the triceps surae group obtained using the compliant (left) and rigid (right) models: a, b walking;
c, d running and e, f jumping
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Fig. 10.9 Muscle force (solid line), contractile muscle force (dashed line) and muscle activation of
the dorsiflexor muscles group obtained using the compliant (left) and rigid (right) musculotendon
model: a, b walking; c, d running and e, f jumping



234 A.R. Oliveira et al.

10.9a, c, e) shows small differences, indicating that passive forces are almost non-
existent in thismodel.Moreover, despite presenting lower values of contractile forces,
the activations for the rigid tendon model are higher. This fact is understandable
since as the muscle is working away from its optimal length (l M

0 ), it requires a higher
activation level to achieve the same contractile force. For instance, the magnitudes
of the contractile forces obtained for the gastrocnemius medialis for the gait example
are respectively 500N for an activation of 0.4 (compliant model) and 135N for an
activation of 1.0 (stiff model).

The results also show that the inclusion of a compliant tendon influences the
contractiondynamics of themuscle by avoiding its excessive extension.This behavior
was also expected since modelling the tendon as an elastic element prevents the
muscle actuator to be the only one to mediate all the length variations experienced
by the musculotendon element. Results indicate that the influence of modelling the
tendon as an elastic element is as much important as the level of muscle recruitment
and forces involved (ex: running and jumping).

10.4 Conclusions

A musculotendon model was presented that allows the determination of the forces
produced by the several components of the model as well as their respective state.
The process of incorporating the model in a multibody dynamics formulation was
also explained both for inverse and forward dynamic analysis of multibody systems.

It is important to note that the inclusion of the tendon element in muscle models
increases considerable the complexity of the problem to solve, as the force developed
by themusculotendon element is influenced by the dynamic equilibrium that is estab-
lished between the two elements. Instead of considering only algebraic equations to
describe muscle contraction dynamics [15], tendon modelling requires the solution
of a first order system that relates the force developed by this element and its velocity.
An intricate step required for the solution of this problem was the calculation of the
muscle actuator velocity, which is needed to evaluate the tendon velocity bymeans of
the inverse force-velocity relationship. Besides requiring the activation state for that
time step, the inverse function is also susceptible to the appearance of singularities,
which can turn the system in a numerical stiff problem.

To avoid this problem, particularly in the inverse dynamic analysis in which the
muscle activations are unknown, the methodology proposed in this work considers
the system in a full-activated state. Independently of the type of analysis, the max-
imum available force in tendon, and consequently the maximum force that can be
developed by themuscle actuator, is computed for each time step, being then updated
by the prescribed activations if the model is run in a forward dynamics simulation or
optimized if applied in an inverse dynamics perspective. For the computation of the
maximum available force, the model requires the kinematics of the musculotendon
actuator and the normalized tendon force for a fully activated state, which needs to be
previously determined. The presented musculotendon model allows also to calculate
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the derivative of the normalized tendon force for a fully activated state, which, when
fed in the integrator, enables the calculation of the normalized tendon force for a
fully activated state for the next time step.

The performance of the musculotendon model presented in this work was ex-
amined by applying it in the inverse dynamic analysis of three daily activities with
different levels of tendon recruitment: walking, running and jumping. The model
outputs were compared with a rigid musculotendon model. The force and activation
curves were consistent with the performed movement and the respective EMG pat-
terns. The comparison of the results obtained for the two musculotendon models,
rigid and compliant, indicates a clear influence of the tendon in the musculotendon
contraction dynamics for all the studied movements. In general, the inclusion of a
compliant tendon allows muscle to work nearer its optimal zone, as variations on
the musculotendon element are not supported solely by the muscle actuator, avoid-
ing also non-physiological passive forces resultant of the excessive extension of the
muscle component.

It is important to note that representing the tendon as a spring element in which
the stiffness is only dependent of lT

s and F M
0 presents some limitations. Despite

allowing its application to large scale analysis, the musculotendon actuator is not
tendon-specific. The material properties (εT

0 and σ T
0 ), which are used to define the

dimensionless tendon force-stretch/strain relationship, were obtained from reason-
able values from a range of experimental data. However, the proposed model can
be adapted to a specific tendon through the definition of a force-stretch relation-
ship dependent on its material properties [8]. Moreover, besides all the assumptions
described in Sect. 10.2, the current model does not account for adaptations of the
force-length and force-velocity curves or on the isometric active muscle force as the
result of the muscle activation history [8, 30, 31]. Other conditions, such as tem-
perature [32] or fatigue [33], which proved to influence also the muscle contraction
dynamics, are not considered by the proposed methodology. However, it is possible
to found in literature some works discussing methodologies to account for variations
in these conditions (e.g. muscle history [31] and fatigue [34, 35]).

Static optimization methodologies were applied in the solution of the muscle
redundancy problem. Although the adaption of the presented methodology to the use
of dynamic optimization techniques will certainly increase the computational time,
it will also improve the relevance of the results, as it will allow to consider activation
dynamics and account for the electromechanical delay between the generation of the
neural signal and the muscle contraction.

A final remark to refer that it is well know that musculotendons present a vis-
coelastic behavior [36]. To include that characteristic in the presentmodel, a damping
term needs to be included that will allow to consider some energy dissipation, which
is known to occur in these systems.

In conclusion, despite increasing the complexity of the problem to solve, results
showed that the inclusion of tendons in the calculation of muscle forces renders
results with higher physiological relevance, suggesting that its use should not be
neglected, even in the study of slower movements such as walking.
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Chapter 11
Numerical and Experimental Study
on Contact Force Fluctuation
Between Wheel and Rail Considering Rail
Flexibility and Track Conditions

Saki Ienaga, Yoshiaki Terumichi, Kazuhiko Nishimura
and Minoru Nishina

Abstract In the present study, we propose an analytical model with a multibody
system considering three-dimensional wheel/rail contact geometry and ballasted
track characteristics. Suppression of contact force fluctuation between the wheel and
rail is desirable from the viewpoint of ensuring running safety, track maintenance,
ride comfort, and minimizing the impact of factors such as noise on the surrounding
environment. In the present paper, we investigate the effects of the support charac-
teristics of ballasted track on the interaction between vehicles and tracks. Numerical
simulations and experiments are carried out for railway vehicle motion under a wide
range of ballasted track rigidities. Using the proposed numerical model, we obtain
analysis results that are consistent with experimental results under two different
track conditions: one simulating ordinary ballasted track characteristics and one that
provides sufficient space between sleepers and ballasts. The proposed numerical
simulation can accurately analyze vehicle motion running over ballasted track by
considering the interaction between the vehicle and the track.
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11.1 Introduction

Railways are used worldwide as a transportation system that has minimal impact
on the environment. Numerous studies have investigated the running safety and
ride comfort of railways. These studies have investigated the coupled vibration of
vehicle/track motion based on the contact between wheels and rails [1–6].

In particular, suppressing fluctuations in the contact force between wheels and
rails leads to reduced oscillation of vehicles and reduced dynamic loads on the tracks
[7, 8]. However, continuous observation of contact force fluctuations generated dur-
ing the running of railway vehicles and derivation of the vibration characteristics
related to the vehicle and track state require a great deal of effort. Interpreting the
measurement results for vehicle motion is not easy because there are numerous fluc-
tuation factors involved, vehicle running conditions are not always stable, and limi-
tations exist in performing frequency analyses of the transient response. In contrast,
numerical simulations enable us to freely set the conditions for vehicles and tracks
and to understand their behavior continuously and simultaneously [9–11]. Therefore,
numerical simulations are an effective method of clarifying the mechanism that gives
rise to fluctuations in the wheel/rail contact force. Modeling and formulation with
high accuracy are important when numerically analyzing the complex motion in the
vehicle/track system.

In the present study, we investigate the mechanism of contact force fluctuations
through both numerical and experimental approaches. The modeling and formula-
tion of a vehicle and track system are performed considering the three-dimensional
wheel/rail contact geometry and the flexibility of the track from the viewpoint of
multibody dynamics. Numerical simulations using the proposed model are carried
out for vehicle motion under various track-support conditions. Experiments are per-
formed under identical conditions, and the obtained results are used to improve the
accuracy of the numerical simulation results.

11.2 Modeling and Formulation

The modeling and formulation for a railway vehicle and track are discussed in this
section. In order to construct a multibody system considering three-dimensional
motion, the equations of motion are described without simplifications such as a lack
of in-plane motion calculations or the linearization of angular displacements. We
propose a vehicle/track model that includes the wheel/rail contact model shown in
Fig. 11.1.
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Fig. 11.1 Analytical model. a Front view. b Side view

11.2.1 Vehicle Model

The vehicle model is shown in Fig. 11.2. The vehicle model consists of one car
body, two bogie frames, and four wheelsets with two wheels in each. These are
regarded as rigid bodies connected by springs and dampers. Thus, the vehicle model
is a coupled vibration system of seven rigid bodies. Each body has six degrees of
freedom (DOFs): longitudinal displacement Xi , lateral displacement Y i , vertical
displacement Zi , yaw angle ψ1, roll angle φi , and pitch angle θ i . Angles φi , θ i ,
and ψ i are rotational angles about the body coordinate axes xi , yi , and zi , which
originate at the center of gravity of body i . The superscript indicates the particular
body: i = C, B1, B2, W 1, W 2, W 3, W 4, where C, B, and W refer to the car body,
the bogie frame, and the wheelset, respectively. The connecting elements between the
bogie frame and the wheelset are eight primary suspensions, each consisting of three
springs (k1X , k1Y , k1Z ) and three dampers (c1X , c1Y , c1Z ). The connecting elements
between the car body and the bogie frame are four air suspensions, each consisting of
three springs (k2X , k2Y , k2Z ) and a damper (c2Z ); two lateral stoppers and dampers,
each consisting of a spring (k3Y ) and a damper (c3Y ); four yaw dampers (c4X ); and
two traction devices, each consisting of two springs (k5X , k5Z ). The subscriptsX ,
Y , and Z indicate the longitudinal, lateral, and vertical directions, respectively. The
forces of the lateral stopper (k3Y ) and the vertical spring of the traction device (k5Z )

act as extra forces only if the displacement of the car body relative to the bogie frame
exceeds the clearances. To account for the strong nonlinearities of the springs caused
by large vehicle motions, modeling of the nonlinearities is introduced as follows:

(a) With respect to the relative motion of the bogie frame and the wheelset, the
longitudinal and lateral stiffness of the primary suspension increases (k1Xs , k1Y s)

if the relative displacement becomes large due to the nonlinearity in the laminated
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Fig. 11.2 Vehicle model

rubber in the suspension, and the vertical stiffness of the primary suspension
increases (k1Z ) if the vertical relative displacement is larger than the clearance
due to the stopper between the bogie frame and the wheelset;

(b) With respect to the relative motion of the car body and the bogie frame, the
vertical stiffness of the air suspension increases (k2Zs) if the downward relative
displacement is larger than the clearance inside the air suspension.

11.2.2 Track Model

The track model is shown in Fig. 11.3. The track model consists of rails, sleepers, and
ballasts connected to each other by springs and dampers. In the track model, the rails
are treated as flexible beams by applying an absolute nodal coordinate formulation
(ANCF) [12–14]. In the ANCF, the global position vector of an arbitrary point on the
element can be described using the global shape function and the nodal coordinates
as follows:

r = S(x, y, z)e (11.1)
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Fig. 11.3 Track model. a Front view. b Side view

where S is the global shape function, and e is the vector of the element nodal
coordinates. The global shape function S is given by

S = [S1I S2I S3I S4I S5I S6I S7I S8I] (11.2)

S1 = 1 − 3ξ 2 + 2ξ 3, (11.3)

S2 = le
(
ξ − 2ξ 2 + ξ 3

)
, (11.4)

S3 = le (η − ξη) , (11.5)

S4 = le (ζ − ξζ ) , (11.6)

S5 = 3ξ 2 − 2ξ 3, (11.7)

S6 = le
(−ξ 2 + ξ 3) , (11.8)

S7 = leξη, (11.9)

S8 = leξζ (11.10)

where ξ = x/le, ζ = y/le, and η = z/le are the displacements of an arbitrary point
(x, y, z) from the origin in the undeformed reference configuration, and le is the
length of the element. The nodal coordinates are defined as nodal displacements and
slopes that are determined in the undeformed reference configuration as follows:

e = [
(r)T (∂r/∂x)T (∂r/∂y)T (∂r/∂z)T

]T
(11.11)

This method yields a constant mass matrix derived from the kinetic energy of the
element and a nonlinear stiffness matrix derived from the strain energy.

The rails are supported by concrete sleepers placed at specific intervals. The sleep-
ers are regarded as rigid bodies, each of which has three DOFs: lateral displacement
Y sl , vertical displacement Zsl , and roll angle φsl . These bodies are connected to the
rails and ballasts elastically. The ballasts are regarded as lumped masses with vertical
displacement Zba and form three layers that are elastically connected to the sleepers
and the subgrade.
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Fig. 11.4 Test track model with unsupported sleepers

11.2.3 Track Model Under a Wide Range
of Support Rigidities

In order to investigate the effect of the support rigidity of the ballasted track, a
numerical analysis is performed for a vehicle running over track with extreme changes
in support stiffness or damping. As shown in Fig. 11.4, we simulate the following
three sections of ballasted track support.

Section A: The track has regular support rigidity.
Section B: The boundary area between sections A and C. This section has lower

support stiffness and damping than section A.
Section C: The support stiffness and damping are removed.

In section C, in which the sleepers are completely unsupported by ballasts, track
rigidity is reduced. This leads to track irregularity because rail deformation increases
due to cyclic loading of the running vehicles. In section B, which is situated before
and after section C, rails are deformed in the upper direction, and a gap is generated
between sleepers and ballasts, as shown in Fig. 11.5. In this model, the length of
section B equivalent to three sleepers, and the support force in section B simulates
the gap due to the track irregularity and the reduced track rigidity at the boundary.
Moreover, (a) the support force does not act unless the rail displacement reaches the
gap size zd , and (b) the support stiffness and damping coefficients are set to values
smaller than those in section A. Therefore, the support force between sleepers and
ballasts Fs Z and the support force among ballasts FbZ are formalized as follows:

Fs Z =

⎧⎪⎨
⎪⎩

0 (|zs − zba| < zd)

CB · ks Z {(zs − zba) − zd} + CB · cs Z (żs − żba) (zs − zba >= zd)

CB · ks Z {(zs − zba) + zd} + CB · cs Z (żs − żba) (zs − zba <= −zd)

(11.12)

FbZ =

⎧⎪⎨
⎪⎩

0 (|zba| < zd)

CB · kbZ (zba − zd) + CB · cbZ żba (zba >= zd)

CB · kbZ (zba + zd) + CB · cbZ żba (zba <= −zd)

(11.13)
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where ks Z and cs Z are the stiffness and damping coefficients between the sleeper
and the ballast, respectively; kbZ and cbZ are the stiffness and damping coefficients
among the ballasts and zs , respectively; and zba is the vertical displacement of the
sleeper and the ballast. Moreover, CB is the coefficient of the decrease in the support
stiffness and damping and is set to 0.5, and zd is the length of the gap between
sleepers and ballasts in section B and is set to 1.0 mm.

11.2.4 Wheel/Rail Contact Model [15–17]

The normal contact force between the wheel and the rail is defined using Hertz’s
contact theory [18] as the elastic contact model. The normal contact force is defined
by the amount of elastic deformation of wheel and rail, δn . The normal contact force
is given as follows:

N = −Kcδ
3/2
n − Ccδ̇n |δn| (11.14)

where Kc is the Hertzian contact stiffness, and Cc is the damping coefficient. The
damping force is modified by including the factor |δn| so that the contact force is
zero when the indentation is zero. The amount of elastic deformation between wheel
and rail δn is given as

δn = n̂R · (rW
P − rR

P) (11.15)

where rW
P is the global position vector of the contact point on the wheel, rR

P is the
global position vector of the contact point on the rail, and n̂R is the normal unit vector
at the contact point on the rail. Tangential forces are defined as creep forces based
on a FASTSIM algorithm known as Kalker’s nonlinear theory while the vehicle is in
motion [19–21].

In order to precisely calculate the contact force, the three-dimensional contact
geometry including the wheel and rail profiles should be considered. The contact
geometry is modeled by surface parameters that describe the location of the contact
point and define the wheel and the rail profiles. The four parameters for one contact
point are as follows: sW

1 is the lateral parameter on the wheel cross section, sW
2 is

the circumferential parameter of the wheel, s R
1 is the longitudinal parameter for the

rail, and s R
2 is the lateral parameter on the rail cross section. These parameters are
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shown in Fig. 11.6. Using these parameters, the rolling radius (profile of the wheel
cross-section) can be written as a function of sW

1 , f W (sW
1 ), and the profile of the rail

cross-section can be written as a function of s R
2 , f R(s R

2 ).

s = [
sW

1 sW
2 s R

2 s R
2

]T
(11.16)

We adopt a contact algorithm that calculates contact points between wheels and rails
for every time step in the kinematic analysis. In the contact position analysis, when
two rigid bodies come into contact, two types of nonconformal kinematic contact
conditions must be satisfied. First, the vector between two contact points on the two
surfaces intersects the contact surface at right angles. Second, the two contact surfaces
must have the same tangent planes at the contact points. These two conditions define
the following four constraint equations, which are required in order to describe the
nonconformal contact between the wheel and rail:

E(sW , sR) =

⎡
⎢⎢⎣

tR
1 · (rW

P − rR
P

)
tR
2 · (rW

P − rR
P

)
tW
1 · nR

tW
2 · nR

⎤
⎥⎥⎦ = 0 (11.17)

where tW
1 and tW

2 are the tangents of the wheel, and nR is the normal to the surface
of the rail at the contact point. For a given set of wheel/rail generalized coordinates,
Eq. (11.17) is solved iteratively by the Newton–Raphson algorithm to determine the
surface parameters. This iterative process continues until convergence is achieved.

11.2.5 Formulation of Motion Equations

The equations of motion for the vehicle-track system use the generalized Newton–
Euler equations, which are written in matrix form as follows:
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MC q̈C = QC
f + QC

v (11.18)

MBi q̈Bi = QBi
f + QBi

v (11.19)

MWi q̈Wi = QWi
f + QWi

c + QWi
v (11.20)[

MR j CR j T

eR j

CR j
eR j 0

] [
eR j

λR j

]
=

[−QR j
k − QR j

c − QR j
s + QR j

I
γ R j

]
(11.21)

MSi q̈Si = QSi
s + QSi

I (11.22)

MBai q̈Bai = QBai
s − QSi

I (11.23)

where superscript i denotes the body number, Mi is the generalized mass matrix,
qi is the generalized coordinates, and Qi

v is the generalized force vector including
inertia forces and gravitational force. The generalized external force vectors are as
follows: Qi

f is the spring and damper force, Qi
c is the wheel/rail contact force, Qi

k is
the rail elastic force, Qi

s is the track support force, and Qi
I is the gravitational force.

Moreover, CR j
eR j is the Jacobian matrix for the constraint of the track support, and

λR j is the Lagrange multiplier.

11.3 Experiment

In the present study, railway vehicle running experiments are performed under a
local change in track rigidity. The wheel/rail contact forces and rail displacements
are measured while the vehicle runs over the track.

11.3.1 Experimental Method

Figure 11.7 shows the setup of the experiment. The test line consists of an acceleration
section, a test section, and a deceleration section in order to reproduce a real main
line. In the test section, sufficient space is provided between the sleepers and ballast-
supporting rails and the total length of the space is variable. During the experiment,
the test vehicle is pulled from a state of rest by an accelerating truck, and is released
by decelerating the truck before the test section.

The test vehicle consists of two real bogies and a car body, on which weights are
mounted to adjust the wheel load, and an air tank for operating the air springs in
order to reproduce real vehicle motion. However, the distance between the centers
of the bogies in the test vehicle is shorter than the distance in an actual vehicle in
consideration of the vehicle weight and the truck acceleration performance.

In the experiments, the wheel loads, lateral pressures, and vertical displacements
of the rails are measured. The wheel loads and lateral pressures are obtained by
converting the strains generated in each wheel. The relation between strain and load
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Accelerating truck

Running directionTest section

Fig. 11.7 Test track and test vehicle

is known in advance. The vertical displacements of the rails are measured with laser
displacement sensors. The sensors are installed in the foundation in such a way as
to prevent them from moving with the rails. The sensors measure the amount of
displacement by laser irradiation of reflecting plates installed on the rails.

11.3.2 Experimental Results

11.3.2.1 Rail Displacement

Figure 11.8 shows the experimental results for the vertical displacements of the rail
under two track support conditions: (a) the vehicle passes over section A, which has
regular support rigidity, at 40 km/h, and (b) the vehicle passes over section C, which
has five sleepers that are unsupported by ballasts, at 45 km/h.

The time history response waveforms of the rail displacements differ greatly
because of the difference in track rigidities. The maximum displacements of the rail
at section C are approximately 10 times larger than those at section A.



11 Study on Contact Force Fluctuation Between Wheel and Rail 249

0 1 2 3
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2

V
er

ti
ca

l d
is

pl
ac

em
en

t 
[m

m
]

Time [s]

0 1 2 3
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

V
er

ti
ca

l d
is

pl
ac

em
en

t 
[m

m
]

Time [s]

(a) (b)

Fig. 11.8 Experimental results for the vertical displacements of the rail. a Passing over section A
at 40 km/h. b Passing over section C at 45 km/h
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Fig. 11.9 Three positions of the first wheelset on the track

Figure 11.9 shows three positions of the first wheelset on the track. Positions I, II,
and III indicate the position at which the first wheelset is located over sleepers Nos.
1,3, and 5, respectively. Figure 11.10 shows the rail displacement for each sleeper in
positions I, II, and III.

The deformation process of the rail as the vehicle travels is shown in Fig. 11.10.
For section A, which has regular track rigidity, the shape of the deformation of the
rail vary widely with the position of the first wheelset. On the other hand, for section
C, which has reduced track rigidity, the deformation shapes of the rail are similar for
each position, especially for positions II and III.
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Fig. 11.10 Experimental results for the vertical displacements of rail arrangements I, II, and III. a
Passing over section A at 40 km/h. b Passing over section C at 45 km/h

11.3.2.2 Contact Force

Figure 11.11shows the experimental results for the wheel load while the vehicle
passes over section A, which has a regular support rigidity, and section C, which has
three or five sleepers that are unsupported by the ballasts.

Although high frequencies associated with measurement noise and track irregu-
larities are observed in the experimental results, the wheel load fluctuation caused
by the change in track rigidity at section C is observed.

In the experimental results shown in Fig. 11.11a, the wheel load caused by the
reduced track rigidity of section C changes only slightly. This is because, at low
speeds, such as 20 and 25 km/h, the wheel load fluctuates depending primarily on
track irregularities.

As shown in Fig. 11.11b, wheel load fluctuations are caused by the reduced track
rigidity of section C. The wheel load fluctuates remarkably after section C.
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Fig. 11.11 Experimental results for the wheel loads. a 20, 25 km/h. b 40, 45 km/h
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11.4 Numerical Results

In order to investigate the effects of the support characteristics of the ballasted track,
numerical simulations are carried out using the proposed analytical model. For the
purpose of validation, the numerical results are compared with the results of vehicle
running experiments.

11.4.1 Numerical Parameters

Table 11.1 lists the specifications for the numerical simulations. The parameters are
based on typical parameters for a Japanese high-speed train. We adopted the arc
wheel profile of a Shinkansen and a 60-kg rail profile, both of which are used in the
profile functions.

11.4.2 Effect of Track Rigidity on Rail Displacement

The effect of the support characteristics of ballasted track on the rail displacement
is discussed in this section.

Figure 11.12 shows the numerical results for the vertical displacements of the
rail under two support conditions of the track, in which (a) the vehicle passes over
section A at 40 km/h and (b) the vehicle passes over section C, which has five sleepers
that are unsupported by ballasts, at 45 km/h. Under both conditions, we obtained
numerical results that are consistent with the experimental results shown in Fig. 11.8.
Since the track rigidity of section C is lower than that of section A, the following
analysis results are obtained. The rail is displaced by approximately 0.7 mm when the
wheelsets pass over section A (Fig. 11.12a). On the other hand, the rail is displaced by
approximately 6 mm when the front and rear bogies pass over section C (Fig. 11.12b).
The numerical results shown in Fig. 11.12 are in good quantitative agreement with
the experimental results shown in Fig. 11.8. Furthermore, while the front and rear
bogies pass over section A, the rail displacement is restored to the original position
at section A (Fig. 11.12a). On the other hand, the rail displacement produced by the
front bogie passing over section C is not completely restored (Fig. 11.12b).

Figure 11.13 shows the rail displacement of each sleeper in positions I, II, and III,
as shown in Fig. 11.9.

For section C, the rail displacements are approximately 10 times larger than
those for section A, which is consistent with the experimental results, as shown
in Fig. 11.10. While the first wheelset travels from position II to position III, the
rail displacement is not quickly restored because of the reduced track rigidity of
section C. This causes the deformation shapes in positions II and III to be similar.
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Table 11.1 Numerical parameters

Parameter Value Units

Car body mass mC 31,000 kg

Bogie frame mass m B 3,200 kg

Wheelset mass mW 1,800 kg

Longitudinal direction of axle box suspension on
bogie frame a1B

1.25 m

Longitudinal direction of air spring on car body a2C 3.75 m

Rail mass per unit length m R 60.8 kg/m

Sleeper mass mS 259 kg

Moment of inertia of sleeper IS 120.1 kg ·m2

Upper ballast m Ba1 59.4 kg

Middle ballast m Ba2 59.4 kg

Lower ballast m Ba3 110.4 kg

Support stiffness of rail (krY , kr Z ) (30, 60) MN/m

Support damping coefficient of rail (crY , cr Z ) (73, 98) kN · s/m

Support stiffness of rail ksY 30 MN/m

Support damping coefficient of rail csY 60 kN · s/m

Support stiffness of rail ks Z 1.19 GN/m

Support damping coefficient of rail cs Z 980 kN · s/m

Support stiffness of rail (kb1Z , kb2Z ) (59.3, 54.0) GN/m

Support damping coefficient of rail (cb1Z , cb2Z ) (980, 980) kN · s/m

Support stiffness of rail kb3Z 49 MN/m

Support damping coefficient of rail cb3Z 980 kN · s/m

Interval of sleeper ls 0.581 m

Length of track lT 62.167 m

Number of elements of a rail ne 108 –

Track gauge 2L R 1,435 mm

Although the displacements differ between the numerical and experimental results
due to track irregularities, the displacements are in good agreement qualitatively.

11.4.3 Effect of Track Rigidity on Contact Force

The effect of the support characteristics of ballasted track on the vertical contact
force, namely wheel load, is discussed in this section.

Figure 11.14 shows the numerical results for the wheel load when the vehicle is
passing over section A with regular support rigidity and section C which has three
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Fig. 11.12 Numerical results for the vertical displacements of the rail. a Passing over section A at
40 km/h. b Passing over section C at 45 km/h
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Fig. 11.13 Numerical results for the vertical displacements of rail arrangements I, II, and III. a
Passing over section A at 40 km/h. b Passing over section C at 45 km/h
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Fig. 11.14 Numerical results for the wheel loads. a 20, 25 km/h. b 40, 45 km/h
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or five sleepers that are unsupported by ballasts. In the numerical simulations, the
vehicle speed is set to be the same as in the experiments: 20, 25, 40, and 45 km/h.

The wheel load fluctuation caused by the change in track rigidity for section C is
observed in the numerical results as well as in the experimental results. The details
of each analytical condition are described as follows.

The wheel load fluctuates immediately after passing over section C, as shown
Fig. 11.14. And the phase of the wheel load fluctuation is delayed as the number of
consecutive unsupported sleepers increases from three to five. The reason for this
is that the vehicle performs a pitching motion when it passes section C because of
the reduced track rigidity. This result indicates that the pitch angle fluctuation pro-
duced by passing section C increases with the increase in the number of unsupported
sleepers.

Comparing the numerical results for wheel loads to the experimental results, as
shown in Fig. 11.11, the fluctuations in the numerical results are smaller than those
in the experimental results because of the track irregularities encountered in the
experiments. In order to focus on the effect of the reduced track rigidity in section C,
we subtract the results for wheel loads in section A from those in section C, which,
in this case, has five unsupported sleepers, as shown in Fig. 11.15.

We can see that, in both the numerical and experimental results at 40 and 45 km/h,
the wheel load fluctuates when passing over section C. Although the measurement
noises are appeared in the experimental result. However the amounts and the fre-
quencies of the wheel load fluctuations are in good agreement qualitatively.

Fig. 11.15 Experimental
and numerical results for the
difference between the wheel
loads in section C, with 5
unsupported sleepers, and
those in section A (45 km/h)

20 25 30 35 40 45 50 55 60
-6

-4

-2

0

2

4

6
Experimental

 Numerical

W
he

el
 lo

ad
 [

kN
]

Traveled distance [m]

Section C (Unsupported sleeper zone)



11 Study on Contact Force Fluctuation Between Wheel and Rail 255

C

θ

A AB B

θ

CA ABB

C

θ

A AB B C

θ−

A AB B

(a) (b)

(c) (d)

Fig. 11.16 Vehicle motion around section C. a The first wheelset has reached section C. b The
first wheelset is in the middle of section C. c The first wheelset has passed section C, but the second
wheelset has not. d Immediately after the front bogie has passed section C

11.4.4 Effect of Vehicle Motion on Contact Force

In this section, the effect of vehicle motion on the wheel load fluctuation around
section C is discussed.

The vehicle performs a pitching motion when it passes section C because of
the reduced track rigidity. Figure 11.16a through d show the vehicle motion around
section C. When the first wheelset reaches section C, the vehicle starts pitching with
a downward motion due to the difference in the track rigidity at the wheel positions.
As the pitch angle increases, the wheel load on the first wheelset increases, as shown
in Fig. 11.14. After the first wheelset passes section B, following section C, the pitch
angle of the vehicle becomes a maximum and the wheel load becomes a maximum
(Fig. 11.16c).

11.5 Conclusions

The present study presented a vehicle/track model that takes into account the three-
dimensional wheel/rail contact geometry and the ballasted track characteristics. The
purpose was to elucidate the effects of the support characteristics of ballasted track
on the interaction between the vehicle and the track. Numerical simulations were
conducted for a railway vehicle running under the conditions that include a change
in track support rigidity, and experiments were conducted in the low-speed range
under the same conditions. The following conclusions were obtained for the speed
range analyzed in the present study.
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(1) Numerical simulations of the interaction between a passing vehicle and the track
can be performed with high accuracy. Good agreement was obtained for the
simulations conducted using the proposed model and the experiments under two
track conditions: one that simulates regular ballasted track characteristics and
one that has sufficient space provided between sleepers and ballasts.

(2) An increase in rail displacement occurred when the vehicle passed over the
section with reduced track support rigidity. The displacements were not com-
pletely restored to their former state between front and rear bogie passes.

(3) Although a significant fluctuation in wheel load did not occur when the vehicle
passed over the section with the reduced track support rigidity, a rapid wheel load
increase was caused by the pitching of the vehicle after passing this section. The
amount of wheel load fluctuation increased as the length of the section increased
because the pitch angle was larger.
The vehicle motion when running over ballasted track that has a change in support
rigidity was analyzed with high accuracy using the numerical simulation model
proposed in the present study.
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Chapter 12
Use of Flexible Models in Extended Kalman
Filtering Applied to Vehicle Body Force
Estimation

Sebastiaan van Aalst, Frank Naets, Johan Theunissen
and Wim Desmet

Abstract Accurate knowledge of wheel loads is of great value in vehicle design and
control. However, a direct measurement of these forces is generally not feasible. This
motivates the use of model-based estimation techniques, such as the Kalman filter to
obtain operational wheel forces. The general approach in literature is to use simple
ad-hoc models (like the bicycle model) in the Kalman filter. In many applications
however, including vehicle dynamics, this results in a system that is not observable
for all the variables of interest, e.g. the individual tyre forces. In this light, this work
proposes the use of general flexiblemultibodymodels forKalmanfiltering. The intro-
duction of flexible deformations in the model enables the observation of variables
which cannot be obtained from a rigid model. This allows the filter to differentiate
between the contributions of different input forces. This approach is demonstrated by
employing an augmented extended Kalman filter to perform a combined estimation
of the current vehicle state and wheel forces of a 2D vehicle model. The system
is modeled in a floating-frame-of-reference (FFR) approach and the vehicle body
is described by a reduced order finite element model. An observability analysis is
performed and the observability conditions for the unknown input forces are derived.
The proposed approach is validated numerically and compared to an estimator with
a rigid assumption.
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12.1 Introduction

The forces acting on a vehicle are an important area in vehicle dynamics research.
Together with the vehicle state, they are essential for determining the dynamic behav-
ior of the vehicle. Accurate knowledge of the external forces, mostly tyre forces, is
of specific interest during the vehicle design phase, and is of great value for vehicle
control systems that attempt to improve vehicle handling and safety. A complete
measurement of the forces and states of interest, however, requires an expensive and
complicated sensor installation which is not feasible for mass-produced vehicles.
This motivates the use of model-based estimation techniques such as the Kalman
filter [1] and its many variations [2] to leverage a limited set of measurements for
more information.

The standard Kalman filter assumes that the inputs to the system are known, but in
many application this is not the case. For example, in vehicle dynamics applications
the wheel loads are typically unknown. In order to perform state estimation in the
presence of unknown inputs so-called unbiased Kalman filters have been proposed
[3, 4]. However, often there is a special interest to obtain an estimate of the unknown
inputs to the system as well. Several variations of the standard Kalman filter exist
that can perform a combined estimation of the states and unknown inputs. In this
work the augmented (joint) Kalman filter is employed [5]. This approach adds the
unknown inputs to the state vector and treats them as additional states to be estimated.
A model for the unknown inputs has to be provided.

The estimation accuracy of derived variables, like the wheel loads, is directly
related to the accuracy of the model. Currently, the general approach is still to use
simple ad-hoc models for the Kalman filter. This limits the possible estimation accu-
racy, and in many applications, including vehicle dynamics, this results in an unob-
servable system, especially in the case of multiple unknown inputs. For example,
consider the rigid four-wheel vehicle model. A seven degree-of-freedom model can
be used with an augmented Kalman filter for state/input estimation [6–8]. With this
model, there are eight unknown input forces: a longitudinal and a lateral tyre force
at each wheel. Taking into account the measurements that are typically available in
a standard car (six degree of freedom inertial measurement unit, wheel speed sen-
sors, steering angle sensor and GPS), an observability analysis will show that the
individual tyre forces are not observable. This means that we are not able to obtain
valid estimates for these forces. In literature this issue is typically circumvented by
making assumptions about the tyre forces such as a known tyre load distribution or
by assuming a tyre force model with known parameters. This reduces the number of
independent variables that needs to be estimated as such that an observable system
is obtained. These assumptions reduce the robustness and the accuracy of the esti-
mation because this information is generally not available and will thus introduce a
bias. This issue does not only appear in vehicle dynamics but also arises in many
other domains of mechanical input estimation.
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Multibody simulation provides a general framework to develop high fidelity
models for mechanical systems [9]. Rigid multibody models have already been used
for state estimation [10, 11] and for state/input estimation [12]. However, even an
extensive rigidmultibodymodel does not necessarily prevent the observability issues
which arise when multiple unknown input forces are present. This work demon-
strates that introducing flexibility in the bodies for the model is key for obtaining
an observable system. Flexibility adds a sufficient number of degrees-of-freedom to
differentiate between the contributions of different input forces. The required infor-
mation can be extracted from additional measurements, such as strainmeasurements.
As a result an observable system can be obtained. A similar approach is followed
in structural dynamics applications to estimate external forces applied to the struc-
ture [13–15]. The difference being that in a multibody system the flexible body can
also undergo large translational and rotational motion, resulting in a nonlinearmodel.
Recently nonlinear model reduction techniques for flexible multibody systems have
been developed [16]. These techniques can allow to run these models in real-time
together with a Kalman filter.

This paper demonstrates the use of flexible multibody models for estimation by
employing the augmented Kalman filter to perform a combined estimation of the cur-
rent vehicle state and tyre forces for 2D vehicle models (which can be used for esti-
mation longitudinal-vertical, longitudinal-lateral or lateral-vertical models). How-
ever, the presented approach can be readily extended to three-dimensional dynamics.
The remainder of this paper is divided into three sections: Sect. 12.2 discusses the
derivation of the estimation model. This section also discusses the use of a reduced
order finite element model to describe the flexible behavior of the vehicle body.
Section12.3 introduces the discrete-time augmented extended Kalman filter and dis-
cusses the required derivatives of the model. Here, also an observability analysis is
performed and the results are discussed. Finally in Sect. 12.4 the proposed approach
is numerically validated and compared to the current general approach for a vehicle
model consisting of a flexible vehicle body suspended on a spring-damper suspension
system.

12.2 Reduced Order Model for State/Input Estimation

The equations of motion for a deformable body undergoing large translational and
rotational motion in a floating-frame-of-reference (FFR) formulation can be sum-
marized as [17]:

M (q) q̈ + Cq̇ + Kq + g gyr (q, q̇) = g ext (q, t) (12.1)

In this equation q is the vector of time-dependent generalized coordinates of the sys-
tem, and M, C and K are respectively the mass-, damping- and stiffness matrix. g gyr

is a quadratic velocity vector that contains the centrifugal and Coriolis force compo-
nents and g ext is the vector of generalized external forces. In the FFR formulation the



262 S. van Aalst et al.

motion of the body is separated into a large motion of the body reference frame and
a linear elastic deformation with respect to the reference frame. The configuration
of the deformable body is then defined by a coupled set of generalized reference and
elastic coordinates:

q =
⎡
⎣qt

qr

qf

⎤
⎦ (12.2)

In which qt and qr are the generalized reference coordinates and qf is the vector
of generalized elastic coordinates. qt is the global position of the origin of the body
reference frameandqr is a set ofnr rotational parameters that describes the orientation
of the body reference frame with respect to the global frame.

For the sake of simplicity, this paper only treats the planar case but the presented
results can easily be extended to the spatial case. Henceforth qr is written as θ .

In what follows, the derivation of g ext is provided. For the derivation of the full
model (12.1) the reader is referred to [17].

Assume that the external force fext is applied at an arbitrary point P of the
deformable body. The global position of point P can be expressed in function of
the generalized coordinates as:

rp = qt + A (θ)
(
u0p + Npqf

)
(12.3)

where u0p is the local position vector of point P in the undeformed state and the term
Npqf describes the local linear elastic deformation. Np is a partition of a shape matrix
that can be obtained by using e.g. the finite element method. A is a transformation
matrix that transforms the local vector coordinates to the global frame. The general-
ized external force vector g ext is then obtained from the virtual work performed by an
infinitesimal displacement of the application point rp with respect to the generalized
coordinates:

g ext (q, t) = LT (q) fext (t) =
[

I
∂A (θ)

∂θ

(
u0p + Npqf

)
A (θ) Np

]T

fext (t) (12.4)

In which the matrix L describes how the external force loads the generalized coor-
dinates. For estimation purposes in automotive applications it often makes more
sense to express the external forces with respect to the body reference frame. This is
achieved by substituting in (12.4) the external forces by the product of the transfor-
mation matrix A and the external forces expressed with respect to the body reference
frame:

g ext (q, t) = L
T

(q) fext (t) =
[
AT (θ) ˜

(
u0p + Npqf

)
Np

]T
fext (t) (12.5)

where the tilde denotes the skew symmetric transformation.
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The remainder of this section consists of three subsections. The first subsection
discusses the use of a reduced order finite element model to describe the behavior
of the deformable body. The second subsection discusses a technique called state
augmentation, which allows to obtain estimates of the unknown external forces in
a Kalman filtering approach. The third subsection discusses the time-discretization
of the equations of motion, which is required to employ the discrete-time extended
Kalman filter.

12.2.1 Model Order Reduction by Modal Truncation
Augmentation

The flexible behavior of a body can be modeled using the finite element method [18].
However, if the goal is to perform the model-based estimation in an online applica-
tion, it is typically not feasible to use a full finite element model. This is due to the
large amount of degrees-of-freedom (DOFs) and the high-frequency content of these
models, which leads to large computational loads. Therefore, a reduced order model
should be employed. Over the past decades, severalmodel order reduction techniques
have been proposed [19] for linear mechanical systems, which can be employed on
a component-level in a FFR model. Historically, the most widely used reduction
technique for structural systems is modal reduction, which is based on a truncated
modal expansion of the system. However, this technique exhibits poor convergence
because the modes retained are usually not sufficient to represent the spatial distrib-
ution of the applied load. This shortcoming can be overcome by adding to the set of
retained modes additional component modes that take the specific loading situation
into account. This technique is applied in this work to reduce a finite element model
of the body. A statically complete dynamic mode superset is employed:

��� = [
���rb ��� ff ���rira

]
(12.6)

where���rb are the rigid-bodymodes,��� ff is the set of retained free-free normalmodes,
and ���rira are the so-called residual inertia-relief attachment modes [20]. An attach-
ment mode is defined as the static deformation of the system for a unit input force
at a specific DOF. Since in this work, the body has rigid-body freedom, the attach-
ment modes are made inertia-relief. This comes down to equilibrating the applied
unit force by the d’Alembert forces associated with the rigid-body acceleration. Fur-
thermore, the attachment modes are residualized such that they are guaranteed to be
linearly independent of the set of retained free-free normal modes.

The reduction of the finite element model is performed by representing the com-
ponent’s physical displacement DOFs d, in terms of the generalized coordinates p:

d = ���p (12.7)
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In which the number of modes in��� is typically much less than the number of DOFs
of the original system. The resulting reduced finite element model is then used to
construct the model in (12.1) according to the FFR formulation.

12.2.2 State Augmentation for Input Estimation

In order to use model (12.1) in a Kalman filtering approach, it has to be transformed
into first-order form:

ẋ = g
(
x, fext

)
(12.8)

The state-space coordinates vector x for this system is:

x =
[

q
q̇

]
(12.9)

and the corresponding continuous-time system equations are:

[
q̇
q̈

]
=

[
0 I

−M−1K −M−1C

] [
q
q̇

]
+

[
0

M−1L
T

]
fext −

[
0

M−1g gyr

]
(12.10)

where for ease of notation, the time-dependency of fext , and the dependency of M, L
andg gyr onq and q̇ are omitted from the notation. These equations canbe summarized
as:

ẋ = A (x) x + B (x) fext − c (x) (12.11)

For estimating the input simultaneouslywith the system state in aKalman filtering
approach, a technique called state augmentation is employed [5]. In this approach
the unknown input forces are added to the state vector and are treated as additional
states to be estimated. In this work it is assumed that all the input forces are unknown.
This leads to the augmented state vector x∗:

x∗ =
[

x
fext

]
(12.12)

A model for the unknown forces has to be provided in this case as well. Here, a
zeroth-order random walk model is employed for each unknown force. This model
assumes the force to be constant except for an additive uncertainty:

ḟext = 0 + rf (12.13)

where rf is continuous-time noise, which indicates that the rate of change of the
external force is expected to be a random process. This approach has been applied
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with success by Naets [13, 14, 21] and Lourens [15] and higher order versions of
this approach have been used by Ray [6, 7]. In general, rf is not exactly known
and serves as a tuning parameter for the Kalman filter. Since the external forces can
show strong variations, rf is typically quite high. The augmented continuous-time
system is: [

ẋ

ḟext

]
=

[
A (x) B (x)

0 0

] [
x

fext

]
−

[
c (x)

0

]
+

[
0
rf

]
(12.14)

which can be summarized as:

ẋ∗ = A∗ (x) x∗ − c∗ (x) + rx∗ (12.15)

= g∗ (
x∗) + rx∗ (12.16)

where rx∗ is the continuous-time model noise vector with associated covariance
matrix Q∗. Notice that the noise on the continuous-time multibody model is assumed
to be zero and all noise is assumed on the unknown forces. This is a valid approx-
imation as unknown forces generally dominate the uncertainty in the model. It is
important to mention that this system is nonlinear. Both the matrix A∗ and the vector
c∗ depend on the system state x. A nonlinear Kalman filter, like the extended Kalman
filter, is required to handle this kind of system. This approach is chosen in this work
due to the low computational load, but other schemes like unscented Kalman filters
can be used as well.

12.2.3 Discretization of Equations of Motion

In this work the discrete-time extended Kalman filter is employed because it is
particularly suitable for efficient computer implementation. In order to apply this
filter to system (12.16), the equations of motion need to be time-discretized. Several
integration schemes exist to discretize these equations. In this work an exponential
Euler integration scheme is chosen with zero-order hold for the inputs [22]. This
approach allows for larger time steps than typical explicit integrators. The following
discrete-time equations of motion are obtained:

[
x

fext

]
k

=
[

e A�t A−1
(
e A�t − I

)
B

0 I

]
k−1

[
x

fext

]
k−1

−
[

A−1
(
e A�t − I

)
c

0

]
k−1

+
[

0
rf

]
k−1

(12.17)

where �t is the time step size and subscript k refers to the time sample k. For ease
of notation, the dependency of A, B and c on x is omitted from the notation. These
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equations can be summarized as:

x∗
k = Ad (xk−1) x∗

k−1 − cd (xk−1) + rx∗
k−1

(12.18)

= gd
(
x∗

k−1

) + rx∗
k−1

(12.19)

where rx∗
k
is the discrete-time process noise vector with associated covariance

matrix Q∗
k :

Q∗
k−1 =

∫ tk

tk−1

e A∗(x)(tk−τ) Q∗ e A∗ T (x)(tk−τ) dτ (12.20)

Solving this integral is not straightforward, however, Q∗
k can also be calculated by

first constructing a matrix, and then computing the matrix exponential of it. More
details about the computation of Q∗

k can be found in [23].
The discrete-time equations of motion (12.19) and the covariance matrix Q∗

k can
be inserted in the discrete-time augmented extended Kalman filter to perform the
coupled state/input estimation.

12.3 The Augmented Extended Kalman Filter
for Coupled State/Input Estimation

As mentioned before, the system considered is nonlinear. In this work, the extended
Kalman filter is selected to perform the estimation. This filter is a straightforward
extension of the original linear Kalman filter to nonlinear systems [2]. The sys-
tem equations of motion (12.19) are complemented by the (nonlinear) measurement
equations:

yk = h
(
x∗

k

) + ry (12.21)

in which yk contains the sensor measurements as obtained by the (nonlinear) mea-
surement equations h and themeasurement noise ry. The noise is assumed to be zero-
mean uncorrelated Gaussian noise with covariance matrix R. Just like the original
linear Kalman filter, the extended Kalman filter algorithm is recursive and operates
in two steps: a time update step and a measurement update step. The time update
step predicts the current system state x̂∗−

k and propagates the state error covariance
matrix P−

k :
x̂∗−

k = gd
(
x̂∗+

k−1

)
(12.22)

P−
k = Gk−1 P+

k−1GT
k−1 + Q∗

k−1 (12.23)

Once the measurement yk is available, the Kalman gain Kk is calculated which is
then used to update the system state estimate x̂∗+

k by incorporating the information
available in the measurement. The updated state error covariance matrix P+

k is also
computed:
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Kk = P−
k HT

k

(
Hk P−

k HT
k + R

)−1
(12.24)

x̂∗+
k = x̂∗−

k + Kk
(
yk − h

(
x̂∗−

k

))
(12.25)

P+
k = (I − KkHk) P−

k (12.26)

In both the time- and measurement update step, the propagation of the state error
covariance is performed by linearizing, respectively, the system- and measurement
equations around the current configuration:

Gk−1 = ∂gd

∂x∗
(
x∗

k−1

)
(12.27)

Hk = ∂h
∂x∗

(
x∗

k

)
(12.28)

CalculatingH is usually rather straightforward. CalculatingG, however, the deriv-
ative of the equations of motion, is more involved. This derivative is elaborated in
the next subsection.

12.3.1 Required Derivatives

In order to employ the extended Kalman filter, the derivative of the discrete-time
equations of motion with respect to the augmented state vector is required. This
derivative is a square matrix in which each column j is the derivative of the equations
of motion with respect to augmented state x∗j:

Gj
k−1 = ∂gd

∂x∗j

(
x∗

k−1

) = Aj
d (xk−1) + ∂Ad

∂x∗j
(xk−1) x∗

k−1 − ∂cd

∂x∗j
(xk−1) (12.29)

for j = 1 . . . n∗, where n∗ is the number of augmented states. In order to evalu-
ate (12.29) the following expressions must be used:

∂A
∂x∗j

=
[

0 0

M−1 ∂M
∂x∗j

M−1K M−1 ∂M
∂x∗j

M−1C

]
(12.30)

∂B
∂x∗j

=
⎡
⎣ 0

M−1 ∂L
T

∂x∗j
− M−1 ∂M

∂x∗j
M−1L

T

⎤
⎦ (12.31)

∂c
∂x∗j

=
[

0

M−1 ∂g gyr

∂x∗j
− M−1 ∂M

∂x∗j
M−1g gyr

]
(12.32)
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For the derivative of the mass matrix M and of the quadratic velocity vector g gyr

the reader is referred to [17]. The derivative of matrix L can be obtained rather
straightforward from (12.5).

12.3.2 Observability

The observability for a given set ofmeasurements is a very important systemproperty.
Therefore, before moving on to the numerical validation, an observability analysis is
performed. A system is said to be observable if its state vector at a certain time instant
can be uniquely determined given a finite sequence of its outputs. Less formally,
observability means that the measurements can provide sufficient information for
estimating the state vector. Observability is thus a property of a certain system-
measurement combination. In this work four different kinds of measurements are
considered:

• Position measurement: For a position tracking of point P, e.g., using an optical
tracking system, the measurement equation is:

rp = qt + A (θ) up, up = u0p + ���ptrans qf (12.33)

where up is the local position vector of point P, and ���ptrans is the partition of the
modeset (12.6) associated to the translational DOFs of point P.

• Acceleration measurement: For an accelerometer at point P, the measurement
equation is:

ap = AT (θ) q̈t + ωωω × (
ωωω × up

) + ααα × up + 2ωωω × u̇p + üp (12.34)

where ωωω and ααα are, respectively, the angular velocity vector and angular acceler-
ation vector defined in the body reference. The expression for ap can be rewritten
such that all variables are expressed as function of the system state.

• Angular velocity measurement: For a gyroscope at point P, the measurement
equation is:

ωωωp = ωωω + ���prot q̇f (12.35)

where���prot is the partition of the modeset (12.6) associated to the rotational DOFs
of point P.

• Strain evaluation: For a strain gauge at point P, the measurement equation is:

ε = BL���pqf (12.36)
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where B is a boolean matrix that selects the measured strain component, and L is a
matrix that describes the strain-displacement relationship using the finite element
shape functions.

As mentioned before, the model and measurements considered are nonlinear. Deter-
mining the observability for a nonlinear system is substantiallymore difficult than for
a linear system. An approximate method of checking the observability of nonlinear
systems is to perform a linearized observability analysis. This can already provide
some general conditions for observability. In this work the Popov-Belevitch-Hautus
(PBH) test of observability of a linear system is applied on the linearized continuous-
time system [24]. This test states that the linearized system is observable if and only if:

rank

[
Gc − sI

H

]
= n∗, for all s ∈ C (12.37)

where Gc is the derivative of the continuous-time system and H is the derivative
of the measurement equations. It is sufficient to check the rank (12.37) for values
of s equal to the eigenvalues of the matrix Gc since for all other values of s the
matrix Gc − sI is of full rank by definition of the eigenvalue-problem. Here, only
s = 0 is investigated because this is where the problems typically occur for force
estimation [13]. In this case, the following considerations can be made:

• the number of DOFs of the reduced finite element model should be greater than
or equal to the number of forces to be estimated. This condition indicates that not
only accuracy requirements can dictate the size of the reduced order model, but
also observability must be taken into account.

• the number of strainmeasurements should be greater than or equal to the number of
forces to be estimated. If this is not satisfied the filter cannot differentiate between
the contributions of different input forces.

• at least one global x- and y-position measurement should be performed. This mea-
surement is required to observe the states associated to the reference coordinates.

These considerations will be taken into account for the numerical validation in
Sect. 12.4. Notice that it is not required to perform acceleration or angular veloc-
ity measurements. However, these measurements do provide valuable information
that can lead to a better estimation accuracy. A further analysis of (12.37) and of
the model and measurements considered, reveals that it is possible to observe the
unknown forces by performing the strain measurements only. In this case, the states
associated to the reference coordinates are not observable but in this work the main
interest is in the unknown input forces such that these variables are not of specific
interest. This is a very good feature since global position measurements are difficult
to obtain in practice.

It is interesting to perform a similar observability analysis in case of a rigid
model. This corresponds to the current general approach. In this case, the information
available in strain measurements cannot be extracted because the model does not
contain this effect. Making use of criterion (12.37) it can be shown that a maximum
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of three unknown external forces can be estimated, requiring at least one angular
velocity measurement and a longitudinal and lateral acceleration measurement. This
demonstrates the benefit of introducing flexible deformations in the model. It enables
the observation of variables that cannot be obtained from a rigid model. This allows
the filter to differentiate between the contributions of different input forces.

12.4 Numerical Validation

In order to validate the proposed approach, a numerical experiment is performed
in MATLAB. The proposed approach is compared to the current general approach
where the flexibility of the body is not taken into account in themodel for the Kalman
filter. The first subsection introduces the system and describes the models used. The
second subsection shows and discusses the simulation results.

12.4.1 Model Description

The 2D vehicle model shown in Fig. 12.1 is used to validate the proposed estimation
approach. It consists of a flexible vehicle body suspended on a spring-damper sus-
pension system. The vehicle is loaded by a known gravitational force, the reaction
forces due to the irregular road profile and an aerodynamic force. In total there are six
unknown external forces that need to be estimated, as shown in Fig. 12.1. Table12.1
summarizes the main properties of the vehicle body, Table12.2 shows the properties
of the spring-damper suspension system.

The system ismodeled in the floating-frame-of-reference approach, and the reduc-
tion technique outlined in Sect. 12.2.1 is used to reduce the finite element model of
the vehicle body. The residual inertia-relief attachment modes corresponding to the
six force components together with the first six free-free normal modes are used
to compute the reduced model, so that the number of flexible DOFs is equal to 12.

Fig. 12.1 2D vehicle model with unknown force components
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Table 12.1 Main properties of the vehicle body

Mass (kg) Rot. iner. (kgm2) f1 (Hz) f2 (Hz) f3 (Hz) nDOF (/)

Vehicle body 1000 1261 3.42 4.66 5.75 8726

Table 12.2 Properties of the
suspension system

Stiffness (N/m) Damping (Ns/m)

Front 49e3 1e4

Rear 49e3 1e4

Elevenmeasurements are performed; ten strainmeasurements and one angular veloc-
ity measurement. The strain measurements are performed at high strain locations.
The noise on the measurements is assumed to be Gaussian white noise with realistic
values for the sensors. This system-measurement combination leads to a partially
observable system. The unknown forces are observable, but the states qt , q̇t and θ

are not. This is because no global position measurement is performed. The sampling
frequency of the estimator is 1kHz.

The measurements and the true force trajectories are generated using the refer-
ence model. The reference model is also derived according to the floating-frame-of-
reference formulation. A high-accuracy Krylov reduced finite element model of the
vehicle body is employed [25] of dimension 64. Convergence tests were performed
to ascertain that this reduced model is a very good approximation of the full finite
element model in a wide frequency range. The equations of motion for the reference
model are integrated with a generalized-α solver with time step 1ms and spectral
radius ρ∞ = 1 [26], to reduce the inverse crime [27].

The accuracy of the estimator model and the referencemodel is shown in Fig. 12.2
for a collocated measurement on a vertical and longitudinal load at the front wheel.
From this figure it is clear that the reference model provides a very good reduced
model in a wide frequency range. The accuracy of the estimator model is high for
low frequencies, but decreases with increasing frequency. This is due to the nature
of the residual inertia-relief attachment modes; they are constructed around 0Hz.

The proposed approach, as described above, is compared to the current general
approach where the vehicle body is assumed to be rigid in the model for the Kalman
filter. In this case, three measurements are performed: an acceleration measurement,
and an angular velocitymeasurement. The accelerationmeasurement provides accel-
erations in the frame attached to the vehicle body.

12.4.2 Simulation Results

For the numerical experiment, an imposed displacement is applied to bothwheels and
a concentrated aerodynamic force is applied at the rear of the vehicle. The imposed
displacement is the superposition of a sine sweep (0–3Hz) and a ramp. A time-delay



272 S. van Aalst et al.

0 5 10 15 20 25

D
is

pl
ac

em
en

t 
re

sp
on

se
 [m

/N
]

Abs (FRF)

Full FE

Reference model

Estimation model

0 5 10 15 20 25

10
−14

10
−11

10
−8

10
−5

10
−2

10
−14

10
−10

10
−6

10
−2

10
2

Frequency [Hz]

A
m

pl
itu

de
 e

rr
or

 [%
]

Relative amplitude error

Fig. 12.2 Comparison of the full finite element model, reference model and estimator model.
Top: magnitude of the frequency response function for a collocated measurement on a vertical and
longitudinal load at the front wheel. Bottom: relative magnitude error in percent (%)

of 0.5 s exists between the excitation at the front and the rear wheel. The aerodynamic
force is the superposition of a sine at constant frequency (3Hz), and a constant load.
In total there are six unknown external forces that need to be estimated, as shown in
Fig. 12.1.

Figure12.3 shows the simulation results. Part (a) of the figure clearly shows that
the proposed approach is able to deliver accurate force estimates. At first sight, the
accuracy of the estimate for Fx,a seems rather low, but notice the low amplitude of
this force as compared to the other forces. For the rigid approach the force estimates
are significantly worse. This is not caused by the model-plant mismatch, but by the
fact that in this case the system is unobservable. The three measurements do not
provide sufficient information to differentiate between the six unknown force com-
ponents. Performing any additional measurements, such as strainmeasurements, will
not resolve this issue. This demonstrates the benefit of introducing flexible deforma-
tions in the model. It enables the observation of variables that cannot be obtained
from a rigid model. This allows the filter to differentiate between the contributions
of different input forces. Part (b) of Fig. 12.3 shows the evolution of the force esti-
mate error variances. These results confirm the previous statements. The proposed
approach leads to observability of the forces: the error variances quickly converge.
The rigid approach leads to unobservability of the forces: the error variances diverge.
Over time the estimates obtained with the rigid approach will further deteriorate.
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12.5 Conclusions

Accurate knowledge of wheel loads is of great value in vehicle design and control.
However, a direct measurement of these forces is generally not feasible. This moti-
vates the use of model-based estimation techniques such as the Kalman filter to
leverage a limited set of measurements for more information. The general approach
in literature is to use simple rigid models in the Kalman filter. This limits the pos-
sible estimation accuracy, and in many applications this results in an unobservable
system, especially in the case of multiple unknown inputs. This paper proposed the
use of general flexible multibody models for Kalman filtering. The introduction of
flexible deformations in the model enables the observation of variables which cannot
be obtained from a rigid model. This allows the filter to differentiate between the
contributions of different input forces. This approach was demonstrated by employ-
ing the augmented extended Kalman filter to perform a combined estimation of the
current vehicle state and wheel forces of a 2D vehicle model. The system was mod-
eled in a floating-frame-of-reference approach and the vehicle body was described
by a reduced order finite element model. It has been shown that, even though a global
position measurement is required to obtain a fully observable system, strain mea-
surements are sufficient to observe the unknown forces. The proposed approach was
numerically validated and compared to an estimator with a rigid assumption. The
validation demonstrated that the proposed approach provides superior estimation
results. Future research will focus on extending the proposed methodology to spatial
motion and multiple connected bodies.

Acknowledgments This work has been partially supported by the Flanders’ DRIVE project
‘GPS-positioning’, granted by the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen). This work benefits from the Belgian Programme on
Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy Office (DYSCO).
The Fund for Scientific Research Flanders (F.W.O.), and the Research Fund KU Leuven are also
gratefully acknowledged for their support.

References

1. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng
82(1):35–45

2. Simon D (2006) Optimal state estimation: Kalman, H∞ and nonlinear approaches. Wiley, New
York

3. Kitanidis PK (1987) Unbiased minimum-variance linear state estimation. Automatica
23(6):775–778

4. Darouach M, Zasadzinski M (1997) Unbiased minimum variance estimation for systems with
unknown exogenous inputs. Automatica 33(4):717–719

5. Hostetter GH, Meditch JS (1973) On the generalization of observers to systems with unmea-
surable, unknown inputs. Automatica 9(6):721–724

6. Ray LR (1995) Nonlinear state and tire force estimation for advanced vehicle control. IEEE
Trans Control Syst Technol 3(1):117–124



12 Use of Flexible Models in Extended Kalman Filtering 275

7. Ray LR (1997) Nonlinear tire force estimation and road friction identification: simulation and
experiments. Automatica 33(10):1819–1833

8. Doumiati M, Charara A, Victorino A, Lechner D (2012) Vehicle dynamics estimation using
Kalman filtering. Wiley, New York

9. Wasfy T, Noor A (2002) Computational strategies for flexible multibody systems. Appl Mech
Rev 56(6):553–613

10. Cuadrado J, Dopico D, Barreiro A, Delgado E (2009) Real-time state observers based on
multibody models and the extended Kalman filter. J Mech Sci Technol 23(4):894–900

11. Cuadrado J, Dopico D, Perez JA, Pastorino R (2012) Automotive observers based onmultibody
models and the extended Kalman filter. Multibody Syst Dyn 27(1):3–19

12. Naets F, Pastorino R, Cuadrado J, DesmetW (2013) Online state and input force estimation for
multibody models employing extended Kalman filtering. Multibody Syst Dyn 32(1):317–336

13. Naets F, Croes J, Desmet W (2015) An online coupled state/input/parameter estimation
approach for structural dynamics. Comput Methods Appl Mech Eng 283:1167–1188

14. Naets F, Cuadrado J, Desmet W (2015) Stable force identification in structural dynamics using
Kalman filtering and dummy-measurements. Mech Syst Signal Process 50–51:235–248

15. Lourens E, Reynders E, De Roeck G, Degrande G, Lombaert G (2012) An augmented Kalman
filter for force identification in structural dynamics. Mech Syst Signal Process 27:446–460

16. Naets F, Heirman GHK, Desmet W (2011) Subsystem global modal parameterization for effi-
cient simulation of flexible multibody systems. Int J Numer Methods Eng 89(1):1227–1248

17. Shabana AA (2005) Dynamics Multibody Systems, 3rd edn. Cambridge University Press,
Cambridge

18. ZienkiewiczOC,TaylorRL (2000)Thefinite elementmethod.ButterworthHeinemann,Oxford
19. BesselinkB, TabakU, LutowskaA, van deWouwN,NijmeijerH,RixenDJ,HochstenbachME,

SchildersWHA (2013) A comparison of model reduction techniques from structural dynamics,
numerical mathematics and system and control. J Sound Vib 332(19):4403–4422

20. Craig RR, Kurdila AJ (2006) Fundamentals of structural dynamics, 2nd edn. Wiley, New York
21. Naets F, Pastorino R, Cuadrado J, DesmetW (2013) Online state and input force estimation for

multibody models employing extended Kalman filtering. Multibody Syst Dyn 32(3):317–336
22. Ros J, Yoldi R, Plaza A, Angeles J (2012) Exponential integration schemes in multibody

dynamics. In: Proceedings of the second joint international conference onmultibody dynamics,
Stuttgart, Germany

23. Van Loan CF (1978) Computing integrals involving the matrix exponential. IEEE Trans Autom
Control 23(3):395–404

24. Ghosh BK, Rosenthal J (1995) A generalized Popov-Belevitch-Hautus test of observability.
IEEE Trans Autom Control 40(1):176–180

25. Bai Z, Su Y (2005) Dimension reduction of large-scale second-order dynamical systems via a
second-order Arnoldi method. SIAM J Sci Comput 26(5):1692–1709

26. Brüls O, Arnold M (2008) The generalized-alpha scheme as a linear multistep integrator:
towards a general mechatronic simulator. ASME J Comput Nonlinear Dyn 3(4)

27. Kaipio J, Erkki E (2007) Statistical inverse problems: discretization, model reduction and
inverse crimes. J Comput Appl Math 198(2):493–504



Chapter 13
Design and Control of an Energy-Saving
Robot Using Storage Elements
and Reaction Wheels

Makoto Iwamura, Shunichi Imafuku, Takahiro Kawamoto
and Werner Schiehlen

Abstract In this paper, we propose a concept for the design and control of an energy
saving robot utilizing springs and reaction wheels. Firstly, we examine the simulta-
neous optimization problem of spring parameters and trajectories with respect to the
energy consumption based on optimal control theory. We analyze the relationship
between the consumed energy and the robot cycle time, derive a condition for an opti-
mal energy efficient cycle, and propose a corresponding design method for springs.
After that, we consider the practical design problem to realize the proposed energy
saving manipulator concept. In order to verify the proposed method, a prototype
2DOF manipulator is developed by using linear springs and reaction wheels. The
experimental results show the effectiveness of the proposed energy saving manipu-
lator concept.

13.1 Introduction

In the manufacturing industry, machines and robots controlled by actuators are used
to increase productivity and achieve high quality products. However, these actuators
are consuming a great amount of energy accelerating and braking continuously.
Hence, saving the energy of such mechanical systems is a very important issue.

Existing methods for reducing the energy consumption of industrial robots in
manufacturing systems have been recently reviewed by Paryanto et al. [1]. There are
three main approaches found as follows.
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• Energy-efficient motion planning:

– Optimizing robot dynamics,
– Collision free motion planning,
– Smooth and time-optimal motion planning,
– Optimal robot control systems,
– Electrical energy exchange via internal DC bus.

• Optimal robot operation parameters:

– Experimental approach,
– Modelling and simulation approach,
– Combination of experiments and simulation.

• Scheduling robot operations:

– Optimal robot process sequences,
– Start–stop optimization,
– Optimizing robot cycle time.

Recuperated energy saving potential and approaches in industrial robotics were
considered by Meike and Ribickis [2]. These authors present experimental and sim-
ulation results for two complementary alternatives: a capacitive energy buffer on
the robot’s DC-bus and a novel approach, the robot EnergyTeam. The principle of
the robot EnergyTeam is a DC-bus merging among a various number of industrial
robot power controllers thus enabling a controlled energy flow among the robots that
decelerate and, therefore recuperate energy, and those that simultaneously require a
peak power supply for the acceleration.

A path planning approach for the amplification of electrical energy exchange in
multi axis robotic systems was presented by Hansen et al. [3]. The energy-based
system model includes the robot dynamics, mechanical and drive losses, as well
as the exchange of electrical energy. The nonlinear optimization problem is solved
using global methods, considering kinematical and dynamic limitations. Simulations
results are presented that prove the performance of the algorithm and demonstrate the
beneficial effect of electrical energy exchange.Minimum time criteria can be retained
if required and the approach is applicable to different multi axis manipulator types.

Resonant robotic systems were considered by Babitzky and Shipilov [4]. These
robotic systems include spring accumulators and use control design with minimal
energy consumption.

The standard task of industrial robots is a planned repetitive motion with a short
cycle time. Such periodic motions result in phases of high accelerations and decel-
eration featuring high energy losses. Therefore, local energy storage transforming
kinetic energy in reusable potential energy is attractive. Springs are reliable passive
mechanical components for energy storage. Methods for reducing the consumed
energy of controlled multibody systems by utilizing passive storage elements such
as springs have been recently examined, see Refs. [5–7].
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Fig. 13.1 Planar NDOF serial manipulator with storage springs

In this paper, we consider the case of a planar NDOF serial manipulator with
springs as in shown Fig. 13.1. Firstly, we analyze theoretically how to choose the
spring stiffnesses, spring mounting positions, and robot motion trajectories to maxi-
mize energy savings. Based on the results of the analysis, we propose a simultaneous
optimizationmethod of spring parameters and trajectories.We show the effectiveness
of the proposed method by numerical simulations.

In theory, we can achieve zero energy consumption by our method, but in practice
the method can not be directly applied to a conventional manipulator since it utilizes
the free frictionless vibrations of the system. Therefore,we next consider the practical
design and control problems to realize the proposed energy saving robot concept. We
propose a designmethod that utilizes the linear springs and controlled reactionwheels
and develop a prototype 2DOF energy saving manipulator based on the method.
Finally, the effectiveness of the proposedmethod is verified through lab experiments.

13.2 Energy Saving Control Method Using Springs

This paper discusses the reduction of the energy consumption of SCARA robots by
adding springs to the joints as shown in Fig. 13.1. In this chapter, we consider the
simultaneous optimization problem of spring parameters and robot trajectories that
minimizes the energy consumption based on the optimal control theory.

13.2.1 Problem Formulation

The equations of motion of N -link serial horizontal manipulators equipped with
springs can be expressed as follows

M(θ)θ̈ + h(θ , θ̇) = −K (θ − θn) + u, (13.1)

where θ = [θ1, θ2, . . . , θN ] ∈ RN is the joint variable vector, M ∈ RN×N is the iner-
tia matrix, h ∈ RN is the vector of centrifugal and Coriolis forces, u = [u1, u2, . . . ,

uN ] ∈ RN is the vector of direct driving torques, K = diag[k1, k2, . . . , kN ] ∈ RN×N

is the rotational stiffness matrix, θn = [θn1, θn2, . . . , θnN ] ∈ RN is the vector of
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springmounting positions which is vanishing in Fig. 13.1. Here, we consider motions
between two points and rest at both ends, i.e.,

θ(0) = θ0, θ(t f ) = θ f , (13.2)

θ̇(0) = 0, θ̇(t f ) = 0, (13.3)

where θ0 and θ f are the initial and final configurations and t = t f is the robot cycle
time. The energy consumed by this motion can be estimated by the following cost
function

J =
∫ t f

0
f0(x, u)dt, f0(x, u) = 1

2
uT W u, (13.4)

where W ∈ RN×N is a positive definite symmetric matrix.
The problem considered in this section can be formulated as follows: Find u(t),

θ(t), θn and k = [k1, k2, . . . , kN ]T by minimizing the energy consumption (13.4)
subject to the initial and final conditions (13.2) and (13.3) for the system (13.1).

13.2.2 Theoretical Analysis of Minimum Energy Control

It is difficult to obtain analytical solutions of the problem formulated in Sect. 13.2.1
since the Eq. (13.1) has a strong nonlinearity. Hence, in this section, we analyze the
problem approximately by using the linearization and modal analysis techniques.

Firstly, we shift the reference point to the middle point of the initial and final
configurations in order to make the later calculations easy. We define θm = 1

2 (θ f +
θ0) and θ e = 1

2 (θ f − θ0), and shift the coordinates as θ̃(t) = θ(t) − θm , θ̃n = θn −
θm . This transforms the initial and final conditions to the symmetric form

θ̃(0) = −θ e, θ̃(t f ) = θ e, (13.5)
˙̃
θ(0) = 0,

˙̃
θ(t f ) = 0. (13.6)

And the equations of motion (13.1) is transformed to the following form

M̃(θ̃)
¨̃
θ + h̃(θ̃,

˙̃
θ) + K θ̃ = u + K θ̃n. (13.7)

If it is assumed that fairly strong springs are used, the spring forces become predom-
inant over the centrifugal and Coriolis forces. Therefore, we neglect these forces.
Additionally, we assume that the inertia matrix can be approximated at the middle
point θ̃ = 0 (θ = θm) as M(θm) = M̃(0) ≡ M̂ = const. Under these assumptions,
the following linearized equations of motion are obtained

M̂ ¨̃
θ + K θ̃ = u + K θ̃n. (13.8)
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Let us consider the free vibration system corresponding to Eq. (13.8) and calculate
the modal matrix Φ ∈ RN×N that satisfies

ΦT M̂Φ = I, ΦT KΦ = Ω2, Ω = diag[ω1, ω2, . . . , ωN ], (13.9)

where I is the identity matrix, ωi is the i th natural frequency arranged as ω1 < ω2 <

· · · < ωN where some of the lowest may vanish. We make the coordinate trans-
formation q = Φ−1θ̃ (qn = Φ−1θ̃n) and define the state vectors x = [xT

1 , xT
2 ]T =

[qT , q̇T ]T . Then, the following state equations are found

ẋ1 = x2 (≡ f 1(x, u)), (13.10)

ẋ2 = −Ω2x1 + ΦT u + Ω2qn (≡ f 2(x, u)). (13.11)

The initial and final conditions are expressed as

x1(0) = −qe, x1(t f ) = qe, (13.12)

x2(0) = 0, x2(t f ) = 0, (13.13)

where qe = Φ−1θ e.
Next, let us introduce an adjoint vector ψ = [ψT

1 ,ψT
2 ]T and define the Hamil-

tonian as follows

H = f0 + ψT
1 f 1 + ψT

2 f 2 = 1

2
uT W u + ψT

1 x2 + ψT
2 (−Ω2x1 + ΦT u + Ω2qn).

(13.14)
Then, the optimal control is derived from the condition ∂ H/∂u = 0 as

u = −W−1Φψ2. (13.15)

SubstitutingEq. (13.15) intoEq. (13.14), theHamiltonian along the optimal trajectory
is given by

H = ψT
1 x2 − ψT

2 Ω2x1 − 1

2
ψT

2 ΦT W−1Φψ2 + ψT
2 Ω2qn. (13.16)

From Eq. (13.16), the canonical equations of Hamilton can be derived as follows

ẋ = ∂ H/∂ψ = Ax + Bψ + cn, (13.17)

ψ̇ = −∂ H/∂x = −AT ψ, (13.18)

where

A =
[

0 I
−Ω2 0

]
, B =

[
0 0
0 −ΦT W−1Φ

]
, cn =

[
0

Ω2qn

]
. (13.19)
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By solving the differential equations (13.17) and (13.18) under the boundary
conditions (13.12) and (13.13), we obtain the optimal solution that minimizes the
energy consumption. However, it is difficult to obtain the closed-form analytical
solution of these equations since they are coupled due to the term ΦT W−1Φ in the

matrix B. In contrast, choosing the weighting matrix as W = M̂
−1

results in the cost
function of mechanical power and allows to decouple these equations by the property
ΦT W−1Φ = ΦT M̂Φ = I . Therefore, in the following, we analyze this case.

Let us denote the initial value of adjoint vector as ψ(0), then the solution of
Eq. (13.18) reads

ψ(t) = e−AT tψ(0). (13.20)

By using Eq. (13.20), the solution of Eq. (13.17) is derived as

x(t) = eAt x(0) + eAt
∫ t

0
e−Aτ Be−AT τ dτψ(0) + eAt

∫ t

0
e−Aτ dτ cn. (13.21)

If the final condition x(t f ) is specified, ψ(0) can be computed from Eq. (13.21) as
follows

ψ(0) =
[∫ t f

0
e−At Be−AT t dt

]−1

×
[

e−At f x(t f ) − x(0) −
∫ t f

0
e−At dt cn

]
.

(13.22)
Then, by substituting this ψ(0) into Eq. (13.20), ψ2(t) is obtained as

ψ2(t)=[ψ21(t) ψ22(t) . . . ψ2N (t)]T , (13.23)

ψ2i (t)= 2ω2
i {sinωi (t f − t)−sinωi t}

sinωi t f −ωi t f
qei + 2ω2

i {sinωi (t f − t) + sinωi t}
sinωi t f + ωi t f

qni ,

(13.24)

where qei and qni is the i th element of qe and qn respectively. From Eq. (13.15),

W = M̂
−1
, and Eq. (13.23), the optimal control u(t) can be computed by

u(t) = −M̂Φψ2(t). (13.25)

Furthermore, by Eq. (13.25) and W = M̂
−1
, the cost function can be expressed as

J = 1

2

∫ t f

0
uT (t)M̂

−1
u(t)dt = 1

2

∫ t f

0
ψT

2 (t)ψ2(t)dt,

=
N∑

i=1

2ω3
i (1 + cosωi t f )

ωi t f − sinωi t f
q2

ei +
N∑

i=1

2ω3
i (1 − cosωi t f )

ωi t f + sinωi t f
q2

ni , (13.26)
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where we use the fact that ΦT M̂Φ = I . In the above equation, it is easily confirmed
that

2ω3
i (1 − cosωi t f )

ωi t f + sinωi t f
≥ 0. (13.27)

Hence it is understood that the optimal spring mounting position that minimizes J is
always qni = 0(i = 1, 2, . . . , N ), i.e., qn = 0 (θn = θm). Therefore in the following,
we analyze the problem by setting qn = 0.

It should be noted that some of ωi might be zero depending on the structure of
the stiffness matrix K . By using the L’Hospital’s theorem, we can get

lim
ωi →0

2ω3
i (1 + cosωi t f )

ωi t f − sinωi t f
= 24

t3f
. (13.28)

Hence, the relationship between the minimum value of the energy consumption J
and the robot cycle time t f including the case ofωi = 0 can be summarized as follows

J (t f ) =
N∑

i=1

Ji (t f ), (13.29)

Ji (t f ) =
⎧⎨
⎩

2ω3
i (1+cosωi t f )

ωi t f −sinωi t f
q2

ei (if ωi �= 0)
24
t3f

q2
ei (if ωi = 0).

(13.30)

Equations (13.29) and (13.30) show that the total consumed energy of horizontal
manipulators with springs can be reasonably understood as the sum of the consumed
energy corresponding to the each mode.

The optimal trajectory in modal coordinates q(t) is derived by substituting ψ(0),
Eqs. (13.12) and (13.13) into Eq. (13.21) as follows

x1(t) = q(t) = [q1(t) q2(t) . . . qN (t)]T , (13.31)

qi (t) = −qei cosωi t − qei
(ωi t cosωi t − sinωi t)(1 + cosωi t f )

sinωi t f − ωi t f

− qei
ωi t sinωi t sinωi t f

sinωi t f − ωi t f
. (13.32)

Then, the optimal trajectory in physical coordinates θ(t) can be obtained by θ(t) =
θm + Φq(t) where θm is the middle position of the robot configuration as used for
Eqs. (13.5) and (13.6).
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Fig. 13.2 Planar 2DOF
manipulator

ls

u

n

1

1 1

θ

θ

1

1

m1

l

s

u

k

2

2

2

2

θ

θ 2

2

m2

n

k1

13.2.3 Validation of the Obtained Optimal Solution

The analytical solution obtained in the previous section is based on the linearized
equations of motion (13.8). Hence, we should examine the influence of the nonlin-
earity ignored in the analysis. Therefore, in this section, we compare the analytical
solution with the numerical one considering the full nonlinear dynamics by a gen-
eral purpose optimal trajectory planning algorithm for multibody systems [8]. Here
we consider the planar 2DOF manipulator shown in Fig. 13.2 as an example. The
parameters used for the simulation are given in Table13.1.

The equations of motion of the planar 2DOF manipulator with springs can be
expressed as

Table 13.1 Parameters of the 2DOF manipulator

Link i 1 2

Length li (m) 0.250 0.160

Center of mass si (m) 0.125 0.080

Mass mi (kg) 14.25 10.00

Moment of inertia I1 (kgm2) 0.430 0.244
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Fig. 13.3 Energy
consumption J (without
springs)

[
I1 + I2 + 2m2l1s2 cos θ2 + m2(l21 + s22 ) + m1s21 sym.

I2 + m2(s22 + l1s2 cos θ2) I2 + m2s22

][
θ̈1
θ̈2

]

+
[ −m2l1s2 sin θ2(2θ̇1θ̇2 + θ̇2

2 )

m2l1s2 sin θ2θ̇
2
1

]
=−

[
k1 0
0 k2

][
θ1−θn1

θ2−θn2

]
+

[
u1

u2

]
. (13.33)

As an example, we consider the motion under the initial and final conditions
θ0 = [−30,−30]T deg, θ f = [30, 30]T deg. Figure13.3 shows the comparison
between the analytical solution and the numerical one for the casewithout spring, i.e.,
k = [k1, k2]T = [0, 0]T Nm/rad. Obviously, short robot cycle times are very energy
consuming. The centrifugal and Coriolis forces become larger as the moving speeds
become faster, the difference between the two becomes larger as t f becomes shorter.
However, we can confirm that the difference converge to zero as t f is longer, i.e., the
moving speeds become slower. Figure13.4 shows the comparison for the three cases
of k = [k1, k2]T = [30, 0]T , [0, 30]T , [30, 30]T Nm/rad. If fairly strong springs are
used, the spring forces become predominant over the centrifugal and Coriolis forces.
Therefore, we can observe that both results are well coinciding everywhere. Since
the analytical solution is well approximating the characteristics of the exact one, it is
proposed that the analytical solution obtained in the previous section can be used for
analysis and design of planar manipulators with springs. Furthermore, Fig. 13.4 indi-
cates that for cycle time t f less than 1s the energy consumption may be considerably
reduced by properly chosen springs.

13.2.4 Optimal Robot Cycle Time

In this subsection, we derive a condition for an optimal robot cycle time t f . If some
ωi become zero, an optimal robot cycle time t f does not exist since J has the terms



286 M. Iwamura et al.

Fig. 13.4 Energy
consumption J (reduced by
proper springs)

that decrease monotonously with t f , see Eq. (13.30). Therefore, in the following,
we discuss the case that all ωi are non-zero. If we consider t f as the quantity that
may take any value, H(t f ) = 0 should be satisfied from the transversality condition.
Moreover, since Eq. (13.16) does not contain t explicitly, ∂ H/∂t = 0, it holds H =
const along optimal trajectories. Hence the condition H(0) = 0 should be satisfied.
By substituting the Eqs. (13.12) and (13.13), qn = 0, and ψ(0) into Eq. (13.16), one
can get

H(0) = ψT
2 (0)Ω2qe − 1

2
ψT

2 (0)ψ2(0) =
N∑

i=1

−2ω5
i t f sinωi t f

(ωi t f − sinωi t f )2
q2

ei . (13.34)

FromEq. (13.34), it follows that H(0)=0 is satisfied if sinωi t f = 0 (i =1, 2, . . . , N )

or equivalently
ωi t f = riπ (i = 1, 2, . . . , N ), (13.35)

where ri is an integer. When the condition (13.35) is satisfied, the second and third
term of Eq. (13.24) vanishes and the optimal trajectory in modal coordinate reduce
to harmonic vibrations

x1(t) = q(t) = [q1(t) q2(t) . . . qN (t)]T , (13.36)

qi (t) = −qei cosωi t. (13.37)

And by substituting Eq. (13.35) into Eqs. (13.29) and (13.30), the cost function can
be expressed as

J =
N∑

i=1

Ji =
N∑

i=1

2ω3
i (1 + cos riπ)

riπ
q2

ei . (13.38)
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From Eq. (13.38), it is understood that Ji takes the maximum 4ω3
i q2

ei/riπ if ri is an
even number and vanishes if ri is an odd number. Hence, J takes the global minimum
if all ri are odd number resulting in the minimum value of zero.

13.2.5 Optimal Design Method for Springs

In this section, we consider the problem to design the spring stiffnesses k =
[k1, k2, . . . , kN ]T that make the consumed energy minimum for a specified time
t∗

f . Firstly, from Eq. (13.35), the natural frequencies ωi read as

ωi = riπ/t∗
f (i = 1, 2, . . . , N ), (13.39)

where all ri should be selected to be odd number so that all Ji takes the minimum.
Moreover, ri should satisfy r1 < r2 < · · · < rN since we assumed that ω1 < ω2 <

· · · < ωN . The spring stiffnesses k = [k1, k2, . . . , kN ]T should be determined as they
satisfy the following characteristic equations

det[K − ω2
i M̂] = 0 (i = 1, 2, . . . , N ). (13.40)

Let us define the error vector e = [e1, e2, . . . , eN ]T where ei = det[K − ω2
i M̂].

Then, the problem here becomes to find k that satisfies

e(k) = 0. (13.41)

Solving this nonlinear equation, e.g., by Newton–Raphson method, we can obtain
the optimal spring stiffnesses k that minimizes the energy consumption.

Especially, for the case of 2DOFmanipulator, we can calculate the optimal spring
stiffnesses analytically as follows. Since N = 2, from the characteristic equations
det[K − ω2

i M̂] = 0 (i = 1, 2), two equilateral hyperbolas can be obtained

k2 = c2i
k1 − ai

+ bi (i = 1, 2), (13.42)

where ai = m̂11(riπ/t∗
f )

2, bi = m̂22(riπ/t∗
f )

2, ci = m̂12(riπ/t∗
f )

2, and m̂i j is the i j th

element of matrix M̂. From these two equations, k1 can be calculated analytically as
follows

k1 =
A+ B− − C+C− ±

√
(C+)2(C−)2 − 2A− B−(c22 + c21) + (A−)2(B−)2

2B− ,

(13.43)
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where A+ = a2 + a1, A− = a2 − a1, B− = b2 − b1, C+ = c2 + c1, C− = c2 − c1.
Then, by substituting k1 into Eq. (13.42), k2 can also be obtained.

We can achieve the minimum energy control of planar robot manipulators by
adding the springs with optimal stiffnesses to the joint at the optimal mounting
positions θm .

13.2.6 Application Example

In this section, the proposed optimal design method for springs is demonstrated
for the planar 2DOF manipulator shown in Fig. 13.2. As in the Sect. 13.2.3, we
consider the motion under the initial and the final conditions θ0 = [−30,−30]T

deg, θ f = [30, 30]T deg. Here we assume that the robot cycle time is specified
as t∗

f = 1s. Firstly, we select ri in Eq. (13.39) as r1 = 1, r2 = 3, then the natural
frequencies become ω1 = π , ω2 = 3π rad/s. Let us first set the spring stiffnesses as
k = [k1, k2]T = [30, 30]T Nm/rad. Though the consumed energy J corresponding
to this spring stiffnesses is included in Fig. 13.4, we show it again on a different
scale with J1 and J2 for the first and second mode in Fig. 13.5. Since the minimum
of J1 and J2 do not coincide, J is not vanishing. Therefore, we optimize the spring
stiffnesses. FromEqs. (13.42) and (13.43), the optimal values of spring stiffnesses can
be obtained as k = [k1, k2]T = [21.854, 14.182]T Nm/rad. The consumed energy J
corresponding to this spring stiffnesses is shown in Fig. 13.6 with J1 and J2. We
can observe that the minimum of J1 and J2 coincides at t∗

f = 1s and therefore J
is vanishing at t∗

f = 1s. In Fig. 13.6, the minimum value of J corresponding to the
case without spring, i.e., a conventional robot manipulator, is also shown. We can
confirm that the consumed energy is strongly reduced at the design point t∗

f = 1s.
This proves the effectiveness of the proposed method.

Fig. 13.5 Energy
consumption J before
optimization
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Fig. 13.6 Energy
consumption J after
optimization

13.3 Design and Control of Energy Saving Manipulator

The energy saving control method using springs proposed in the Chap.2 utilizes nat-
ural modes of vibration of the system. On the other hand, existing robot manipulators
have direct drive or geared motors at the joints and therefore free vibrations do not
occur. Therefore, the proposed method cannot be directly applied to conventional
manipulators. Hence in this chapter, we consider the practical design problem to real-
ize the proposed energy saving manipulator concept. We develop a prototype 2DOF
manipulator to validate realizability and effectiveness of the proposed method.

13.3.1 Design of Energy Saving Manipulator

In Chap.2, we consider a horizontal manipulator model equipped with rotational
springs as shown in Fig. 13.1 or Fig. 13.7a, respectively. However, for the rotational
spring it is usually difficult to adjust its stiffness and mounting position, and so
we impose in our experimental setup rotational stiffness between neighboring links
by using two linear springs and a special spring holder as shown in Fig. 13.7b. We
denote by kti the linear spring stiffness, lti the distance between the joint and spring
mounting point on the holder, then the applied torque Ti by springs about a joint can
be approximated as

Ti = −2kti l
2
ti sin θi cos θi � −2kti l

2
tiθi (≡ −kiθi ). (13.44)

From the above equation, it is understood that we can convert linear spring stiffness
kti to corresponding rotational spring stiffness ki by

http://dx.doi.org/10.1007/978-3-319-30614-8_2
http://dx.doi.org/10.1007/978-3-319-30614-8_2


290 M. Iwamura et al.

Fig. 13.7 Structure of
proposed energy saving
robot, a mathematical model,
b practical design

(a)

(b)

ki = 2kti l
2
ti . (13.45)

Next, let us consider the installation position of actuators. Since the proposed
method utilizes the free vibration of the system, all joints must be able to rotate freely.
Therefore, we will not install motors at the joints, instead, we introduce controlled
reaction wheels at an arbitrary point on the link and add driving torques from them
as shown in Fig. 13.8.

The equations of motion of the links and the reaction wheels in Fig. 13.8 can be
derived as follows

Mθθ θ̈ + MT
φθ φ̈ + h = −K (θ − θn), (13.46)

Mφθ θ̈ + Mφφφ̈ = τ , (13.47)

where θ = [θ1, θ2, . . . , θN ]T is the vector of joint variables, φ = [φ1, φ2, . . . , φN ]T

is the vector of rotation angles of reaction wheels, Mθθ , Mφθ , Mφφ are the inertia
matrices, h is the vector of centrifugal and Coriolis forces, τ = [τ1, τ2, . . . , τN ]T

Fig. 13.8 Structure of proposed energy saving robot
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is the vector of driving torques of reaction wheels, K = diag[k1, k2, . . . , kN ] is the
stiffness matrix, θn is the vector of spring mounting positions.

By eliminating φ from Eqs. (13.46) and (13.47), and defining M ≡ Mθθ −
MT

φθ M−1
φφ Mφθ ,u≡ −MT

φθ M−1
φφτ , then the following equations ofmotion are obtained

M θ̈ + h = −K (θ − θn) + u. (13.48)

Since Eq. (13.48) has the same form as Eq. (13.1), the energy saving control method
proposed in the Chap.2 can be directly applied to this novel energy saving manipu-
lator systems.

13.3.2 Control of Energy Saving Manipulator

From Eqs. (13.36) and (13.37), the minimum energy trajectory between the initial
position θ0 = [θ10, θ20, . . . , θN0]T and the final position θ f = [θ1 f , θ2 f , . . . , θN f ]T

can be expressed as

θ(t) = θm + Φq(t)(≡ θd(t)), (13.49)

q(t) = [−qe1 cosω1t,−qe2 cosω2t, . . . ,−qeN cosωN t]T . (13.50)

Theoretically, if wemove the links to the position θ0 by applying the external torques
for the first time only, then repetitive movement between θ0 and θ f can be achieved
continuously without any additional input torque u. However, practically, due to the
existence of friction and air resistance, the link motions attenuate gradually with
time. Hence, let the desired trajectory θd(t) be given by Eq. (13.49), and following
feedback controller is introduced

u = M{θ̈d − α(θ̇ − θ̇d) − β(θ − θd)} + K (θ − θn). (13.51)

By substituting Eq. (13.51) into the equations of motion (13.48), it can be seen that
the behavior of the error vector e(t) ≡ θ(t) − θd(t) is governed by the equation

ë(t) + αė(t) + βe(t) = 0, (13.52)

where α and β are constant matrices that guarantee asymptotic stability. Equa-
tion (13.52) means that θ(t) converges to θd(t), which means that proposed energy
saving control method is realized.

http://dx.doi.org/10.1007/978-3-319-30614-8_2
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Fig. 13.9 Top view of the
prototype 2DOF manipulator

Fig. 13.10 Side view of the
prototype 2DOF manipulator

13.3.3 A Prototype 2DOF Manipulator and Experimental
Results

To validate the proposed energy saving control method, and practical design and
control approach, we develop a protptype 2DOF manipulator. The developed energy
saving manipulator is shown in Figs. 13.9 and 13.10. The main specifications of the
experimental setup are in Tables13.2, 13.3 and 13.4. In this experimental device,
reaction wheels are driven by DC motors and installed such that their rotational
center coincide with the joint axes. The rotary encoders are used to obtain rotational
angles of the links. And the electro-magnetic breaks are equipped to the joints so
that we can keep holding the links at an arbitrary positions.
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Table 13.2 Parameters of the 2DOF energy saving manipulator

Link i 1 2

Length li (m) 0.2500 0.2250

Mass mi (kg) 0.8097 0.6747

Moment of inertia Ii (kgm2) 0.0062 0.0037

Table 13.3 Parameters of the reaction wheel

Reaction wheel i 1 2

Mass mwi (kg) 0.0484 0.0484

Moment of inertia Iwi (kgm2) 2.767 × 10−5 2.767 × 10−5

Table 13.4 Parameters of the motor

Motor i 1 2

Mass mdi (kg) 0.0750 0.0750

Moment of inertia Idi (kgm2) 9.250 × 10−6 9.250 × 10−6

As an example, let us consider the repetitive movement between θ0 = [0, 0]T

deg and θ f = [60, 60]T deg. The robot cycle time between two points are set as
t∗

f = 2 s. If we choose ri as r1 = 1, r2 = 3, the optimal rotational spring stiff-
nesses can be obtained as k = [k1, k2]T = [0.374, 0.085]T Nm/rad fromEqs. (13.42)
and (13.43). By using Eq. (13.45), k is converted to the linear spring stiffnesses
as kt = [kt1, kt2]T = [18.706, 4.237]TN/m. Then we adjust the linear spring stiff-
nesses of the experimental device as close as possible to the optimal values. After
that we conduct trajectory tracking control experiments by using the control law of
Eq. (13.51). Figures13.11 and 13.12 show the results of the trajectory tracking test
for the 1st and 2nd joint angles respectively. In these figures, dotted line shows the
optimal (reference) trajectory calculated by Eqs. (13.49) and (13.50), and solid line
shows the actual trajectory measured by encoders. From these figures, it can be seen
that the tracking error is fairly small and trajectory tracking is almost achieved. Fig-
ures13.13 and 13.14 show the driving torques of 1st and 2nd actuators respectively.
In these figures, the solid line shows the reaction wheel driving torque of proposed
energy saving manipulator and dotted line shows the joint driving torque required by
the conventional manipulator to perform the same task. Let us compare the energy
consumption of the proposed and the conventional manipulators by the following
cost function

J (t) = 1

2

2∑
i=1

∫ t

0
u2

i (t̃)dt̃ . (13.53)
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Fig. 13.11 Angle versus
time (joint 1)

Fig. 13.12 Angle versus
time (joint 2)

Figure13.15 shows the result. The value of J (t f ) for the proposed manipulator was
10.57, in contrast for the conventional manipulator was 173.5. It turns out that the
energy consumption is reduced by 94% in the experiment. In theory, see Sect. 13.2.6,
we could show 100% reduction by optimization but 94% is still an excellent number.
This result proves that the proposed concept is effective and it can strongly reduce
the energy consumption.
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Fig. 13.13 Torque versus
time (actuator 1)

Fig. 13.14 Torque versus
time (actuator 2)
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Fig. 13.15 Comparison of
energy consumption

13.4 Conclusions

In this study, we considered a method for reducing energy consumption of planar
robot manipulators by adding springs to the joints and utilizes the potential energy
effectively. Firstly, we proposed a simultaneous optimization method for springs and
trajectories based on the optimal control theory. Then, we discussed the practical
design and control problems to realize the proposed energy saving manipulator con-
cept. Finally, we developed a 2DOF energy saving manipulator prototype and show
the effectiveness of the proposed method through experiments.
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Chapter 14
Exploiting the Equations of Motion
For Biped Robot Control with Enhanced
Stability

Johannes Mayr, Alexander Reiter, Hubert Gattringer
and Andreas Müller

Abstract The scope of the present contribution is the derivation of the equations of
motion and its field of application for humanoid robots, in particular legged robots.
The derivation is performed in a modular and structured manner and it is shown how
these equations can be exploited for the control of biped robots. The used methods
allow to easily adopt the kinematic structure of single limbs and to reuse results
obtained for limbs with similar kinematic structure but different inertial parameters
such as in case the left leg is a mirrored version of the right one. After finding a
recursive formulation to calculate the equations of motion we perform various state
transformations and apply some model simplifications to obtain expressions that can
be used to efficiently solve control problems. Two applications, compensating for the
overall angular momentum and calculation of feed-forward torques, are shown. In
both applications we can exploit the recursive calculation of the equations of motion
used during the subsystem synthesis giving rise to real-time algorithms that can be
used on a physical humanoid robot system.
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14.1 Introduction

For the derivation of the equations of a complex multi-body model various different
algorithms can be found in the literature. Due to computational efforts in robotics
typically recursive algorithms like [10, 17] are used to calculate the direct dynamics.
For the calculation of generalized accelerations algorithms like [8, 16] can be used. In
[1, 9] an algorithm based on subsystems is introduced. This algorithm allows to save
up calculation time by exploiting the similarities within the kinematic structure of
robots. Both, the direct dynamics and the generalized accelerations can be calculated
in a recursive way using these subsystems [1, 9].

When stabilizing a biped humanoid robot system one has to cope with many
different control challenges mainly introduced by the high amount of degrees of
freedom and the under-actuation of the system. To allow the robot to walk stably
without tripping over one has to consider the contact forces between the robot and
the environment. Typically the stabilization of the robot and the generation of the
walking pattern are treated separately [3, 6, 12, 19] which allows to use models
of different complexity for the different tasks. First a set of trajectories is defined
according to the desired walking behavior [3, 5, 12, 18]. This trajectory is then
tracked as accurately as possible. In the ideal case the robot would be able to walk
dynamically balanced just by tracking those trajectories, but due to the unknown
environment, inaccurate parameters and external disturbances different control layers
have to modify the generated walking pattern to stabilize the robot around the given
equilibrium trajectory. Especially thewalking pattern generation relies on an accurate
system model given by the equations of motion for the multi-body system [5, 18].
Depending on the desired walking behavior (e.g. fast walking) more accurate models
are needed for walking pattern generator to provide physically consistent trajectories.
On the other hand, complex models are computationally heavy and algorithms based
on them may not be executed in realtime. Thus one needs to find a reasonable trade-
off between model accuracy and computational effort of the model. Various different
models have been proposed in the literature. The simplest one is given by a single
pointmass at constant height and is typically referred to as three dimensional linear
inverted pendulummode (3D-LIPM) [14]. An extension of this simple model, which
adds two other masses for the legs to themodel, is used in [3]. Various offline walking
pattern generators use the full or a slightly reduced multi-body model of the robot
[5, 18].

In this communication we are going to present various different models that can
be used for the control of a biped robot. We start with the equations of motion for
the full multi-body model and after various simplifications we will end up with the
three dimensional linear inverted pendulum. Exemplarily two control applications,
the compensation of the angular momentum of the robot while walking, and the
calculation of feed-forward torques will demonstrate how the different models can
be used. The compensation of the angular momentum of the robot is already shown in
[13] and realized by a resolved momentum controller. In this work we used a slightly
different approach to obtain the Jacobian for the angular momentum directly from
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the equations of motion in minimal representation. The calculation of feed-forward
torques for the quasi-static case is shown in [11]. Therein a least-square solution is
used to calculate contact forces and joint torques for the current gravity forces. In
[21] an extended version is presented that solves a quadratic program to calculate the
optimal contact forces. These contact forces can then be used to calculate the feed
forward torques for the joints.

The text is organized as follows. After a short introduction to the used multi-body
algorithm a detailed multi-body model and various simplified models of the robot
will be derived in Sects. 14.2 and 14.3. In Sect. 14.4 these models will then be used
to exemplarily show two possible control applications. Section14.5 concludes the
contribution.

14.1.1 Coordinates and Frames

The frames and their origin used during the following sections are summarized in
Fig. 14.1. The frameW is a world fixed framewith the z-axis pointing in the opposite
direction of the gravity vector g. A body fixed frame B is attached to the torso. For
the description of the position of the limbs the framesFR ,FL are fixed to the left leg
and the right leg. While the relative rotation and translation of the origins between
two frames B and L is given by the homogenous transformation HBL ∈ SE(3), the
position and orientation of a frame B with respect to the world frameW is given by

Fig. 14.1 Frames and
variables used for the
kinematic description
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HB ∈ SE(3).1 The twist between two frames is given by Vb
BL ∈ R

6 and corresponds
to the linear and angular velocity of the frame L relative to frame B represented in
L. The superscript {}b denotes a body twist. The twist of frame B with respect toW
is simply given by Vb

B ∈ R
6.

14.1.2 Configuration Space

The kinematic configuration of robotic manipulators is typically described by their
joint positions. For a humanoid robot this is not sufficient. Depending on the contact
state of the robot additional information is needed to fully define the position of the
robot in the world frame. In the worst case, there is no contact of the robot to the
ground. This state will be referred to as free floating base. Adding the position and
orientation of a frame attached to an arbitrary link (e.g. B for the base frame) to the
configuration space leads to the complete kinematic configuration of a free floating
robot. Thus the configuration space is given by

Q = {(HB, qJ )|HB ∈ SE(3), qJ ∈ J } (14.1)

withJ = J1 × · · · × Jn as the joint space of a robot with n drive units andJi ⊆ R
m

as the parameter space representing the m degrees of freedom of the i th drive unit.
Further HB is the homogenous transformation from a world fixed frame to the upper-
body, qJ summarizes all joint positions.

The generalized velocities corresponding to the configuration space Q are cho-
sen as

ṡ =
[

Vb
B

q̇J

]
. (14.2)

Note that ṡ contains non-holonomic velocities.

14.1.3 Task Space

To simplify trajectory and controller design it is useful to define different task spaces
for the robot:

T1 = {
(rc, RB, qJ )|rc ∈ R

3, RB ∈ SO(3), qJ ∈ J } (14.3)

and

T2 =
{
(rc, RB, HR, HL , q̂J )|rc ∈ R

3, RB ∈ SO(3), Hi ∈ SE(3), q̂J ∈ Ĵ
}

(14.4)

1For simplification, the index of the world fixed frame W is suppressed.
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with Ĵ ⊂ J . In contrast toQ, for T1 the inertial center of mass (CoM) position rc is
used to describe the position of the robot in space. The orientation of the upper-body
is given by the rotation matrix RB . In T2 the joint positions of the legs are replaced
by the homogeneous transformations to the feet. The joint positions of the arms q̂J

remain in the task space.
The corresponding velocities are chosen to

ż1 = [
ṙT

c ωT
B q̇T

J

]T
(14.5)

and
ż2 = [

ṙT
c ωT

B (Vb
R)T (Vb

L)T ˙̂qT
J

]T
(14.6)

with angular velocity of the upper body ωB .

14.2 Dynamic Modeling

14.2.1 Subsystem Modeling

In general the equations of motion for a robot with n degrees of freedom and a free
floating base is given in the form

M(q)s̈ + G(q, ṡ)ṡ − Q(q) = 0 (14.7)

where q ∈ Q is the tuple of generalized coordinates. The generalized non-holonomic
velocities ṡ ∈ R

6+n are given by (14.2). M ∈ R
(6+n)×(6+n) denotes the mass matrix,

G ∈ R
(6+n)×(6+n) is the matrix of the centrifugal and Coriolis forces and Q ∈ R

6+n

is the vector of generalized forces and torques. In this work an approach based on
the Projection Equation introduced in [2] is used to derive the multi-body dynamics
from (14.7). For a multi-body system with N bodies the equations of motion are
given by

N∑
i=1

[(
∂Rvc
∂ṡ

)T (
∂Rω
∂ṡ

)T
]

i

[
R ṗ + Rω̃ I R Rp − Rfe

RL̇ + Rω̃ I R RL − RMe

]
i

= 0. (14.8)

with Rpi = mi vc,i being the vector of linear momentum and RLi = RJc,i Rωi the
vector of angular momentum. The absolute velocity of the CoM and the angular
velocity of the i th body are given by Rvc,i ∈ R

3 and Rωi ∈ R
3. The inertia tensor of

the i th body is RJc,i ∈ R
3×3. The angular velocity of the reference frame for the i th

body is given by Rω I R,i ∈ R
3. External forces and torques like motor torques and

gravitational forces acting on the CoM of the i th body are considered by Rfe
i ∈ R

3

and RMe
i ∈ R

3. The ˜(·) operator describes the skew symmetric matrix for calculating
the cross product (ãb = a × b, ã ∈ SO(3)). For each body i in (14.8) a different
arbitrary reference frame R can be used. Unlike other algorithms the Projection
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Equation allows the use of non-holonomic velocities and non-holonomic constraints
a priori. Thus, the angular velocity of the base can directly be used as part of the
generalized velocities. With the Projection Equation it is even possible to describe
multi-body systems consisting of a combination of rigid and elastic bodies within
the same framework. For further explanation see [2].

For the proposed system and for robotic systems in general, it is useful to com-
bine interconnected bodies to subsystem assemblies (e.g. motor—gear—structural
components). This can be done by partitioning the sum of (14.8) into Ns subsystems

Ns∑
i=1

⎧⎨
⎩

Ni∑
j=1

[(
∂Rvc
∂ṡ

)T (
∂Rω
∂ṡ

)T
]

j

[
R ṗ + Rω̃ I R Rp − Rfe

RL̇ + Rω̃ I R RL − RMe

]
j

⎫⎬
⎭ = 0. (14.9)

where each subsystem i consists of Ni bodies and has ni degrees of freedom.
Additionally it is useful to describe each subsystem by a different set of describ-
ing velocities ẏi ∈ R

6+ni which are themselves a function of the generalized veloc-
ities ṡ. Splitting up the partial derivative of (14.9) yields the Projection Equation in
subsystem representation

Ns∑
i=1

(
∂ẏi

∂ṡ

)T
⎧⎨
⎩

Ni∑
j=1

[(
∂Rvc
∂ẏi

)T (
∂Rω
∂ẏi

)T ]
j

[
R ṗ + Rω̃ I R Rp − Rfe

RL̇ + Rω̃ I R RL − RMe

]
j

⎫⎬
⎭ = 0.

(14.10)
After summing up over all Ni bodies j of a subsystem i we obtain a representation

for each subsystem and (14.10) can be rewritten to

Ns∑
i=1

(
∂ẏi

∂ṡ

)T

{Mi (qi )ÿi + Gi (qi , ẏi )ẏi − Qi (qi )} = 0. (14.11)

where Mi ∈ R
(6+ni )×(6+ni ) represents the mass matrix of the subsystem, Gi ∈

R
(6+ni )×(6+ni ) summarizes centrifugal and Coriolis forces and Qi ∈ R

6+ni represents
generalized forces and torques acting on the subsystem. The subsystemmatrices and
vectors are functions of the generalized velocities ẏi and the generalized coordinates
qi ∈ SE(3) × R

ni of the subsystem. Both of them can be expressed as a function of
the generalized velocities ṡ and the generalized coordinates q of the whole robotic
system.

After we found the corresponding matrices Mi and Gi and the vector Qi from
(14.11) by evaluating the terms in the braces in (14.10) for each subsystem, they can
be combined to yield the equations of motion of the complete system. The outer sum
in (14.10) can be rewritten as

[(
∂ẏ1
∂ṡ

)T · · ·
(

∂ẏNs
∂ṡ

)T ]
⎡
⎢⎣

M1ÿ1 + G1ẏ1 − Q1
...

MNs ÿNs + GNs ẏNs − QNs

⎤
⎥⎦ = 0. (14.12)
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Fig. 14.2 One possible
choice of subsystems and
frames for a humanoid robot

14.2.2 Assembly Strategy

In the case of the considered biped robot one reasonable choice of a decomposition
in subsystems is given by Fig. 14.2. In total four different kinds of subsystems (sub-
sequently referred to as limb subsystems) for the legs, the arms, the head and the
torso are defined.

While the leg and the arm subsystem are used twice for the left and the right side of
the robot, the other subsystems are used once yielding a total of Ns = 6 subsystems
for the robot. The free floating body subsystem is the only root of the kinematic
topology of the robot, and all other subsystems are attached to this root.

All of the above mentioned subsystems consist of structural elements and actua-
tors, which themselves can be grouped into smaller subsystems. Thus we start with
the smallest subsystem consisting of amotor, a gear, and a structural element attached
to the driven side of the gear (subsequently referred to as the drive subsystem) as
shown in the left part of Fig. 14.3, and compute the subsystem matrices and vectors.
Next we adopt the above subsystem with the inertial parameters of the individual
drive subsystems of the considered limb and then recursively combine these drive
subsystems to the limb subsystem (see Fig. 14.3 in themiddle). Then the equations of
motion of the complete robot are synthesized by recursively combining the limb sub-
systems using (14.12). As a result we find the equations of motion of the humanoid
robot system with free moving base as given in (14.7).
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Fig. 14.3 Subsystems are recursively combined to larger subsystems

Fig. 14.4 Schematic of a
drive subsystem

14.2.3 Drive Subsystem

The drive subsystem is considered the smallest union of structural elements and an
actuator. A schematic of the subsystem can be seen in Fig. 14.4 next to a sample
representation of the subsystem in Fig. 14.5. It consists of a motor, an elastic gear
and an arm. The subsystem has two internal degrees of freedom, the position of
the motor and the position of the arm. The arm position is given by qA, j , the motor
position transferred to the gear output is given by qM, j . The gear elasticity is modeled
as a rotational spring at the output of the gear. While in (14.10) one can use different
arbitrary reference frames R for each body of the subsystem, in most cases it is
constructive to use a body fixed frame Ai attached to the arm as reference frame.
In this case the inertia tensor of a rigid body is constant w.r.t. time. The different
variables in Fig. 14.4 are defined as follows
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Fig. 14.5 Representation of
a drive subsystem—Hip roll
joint

mM, j : mass of the motor
m A, j : mass of the arm
iG, j : gear ratio
ci : linear spring constant of the gear elasticity
JM, j : inertia tensor of the motor represented in frame A j

JA, j : inertia tensor of the arm represented in frame A j

rc, j : position of the CoM of the arm with respect to A j

e j : unit vector aligned with the axis of rotation represented in frame A j

vF, j : translational velocity of the origin of A j represented in frame A j

ωF, j : angular velocity of the frame A j−1 represented in frame A j

qM, j : angle of rotation of the motor around e j divided by the gear ratio iG

qA, j : angle of rotation of the arm around e j .

Using the generalized subsystem velocities2

ẏd, j = [
vT

F, j ωT
F, j q̇T

J, j

]T
(14.13)

with the vector of motor and arm position

qJ, j = [
qM, j qA, j

]T ∈ J j (14.14)

and evaluating the terms in brackets in (14.10) yields the subsystem matrices and
vectors for the drive subsystem. In contrast to the equations of motion of the robot,
in the subsystem equations we still have to consider reaction forces Qr

d, j introduced
by the neighboring joint units

Md, j ÿd, j + Gd, j ẏd, j − Qe
d, j = Qr

d, j . (14.15)

2Index d stands for drive subsystem.
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14.2.4 Limb Subsystem

Each limb subsystem consists of Nl drive subsystems.3 The generalized velocities
of a limb subsystem are chosen as

ẏl,i =
[
Vb

l,i
T

q̇T
l,i

]T
(14.16)

where Vb
l,i is the twist of the origin of the body fixed frame Li , i ∈ 1, 2 attached to

the torso, see Fig. 14.2. The vector ql,i ⊂ J combines all internal degrees of freedom
of the particular limb subsystem. The various drive subsystems are combined to

[(
∂ẏd,1

∂ẏl,i

)T · · ·
(

∂ẏd,Nl
∂ẏl,i

)T ]
⎡
⎢⎣

Md,1ÿd,1 + Gd,1ẏd,1 − Qe
d,1

...

Md,Nl ÿd,Nl + Gd,Nl ẏd,Nl − Qe
d,Nl

⎤
⎥⎦ = Qr

l,i (14.17)

and yield the subsystem equations

Ml,i ÿl,i + Gl,i ẏl,i − Qe
l,i = Qr

l,i (14.18)

with the limb subystem matrices and vectors. Again reaction forces Qr
l,i have to be

considered on the right hand side of (14.17).

14.2.5 External Forces

External forces, such as motor torques, gravity or contact forces are part of the
generalized forcesQ in (14.7).While themotor torques and gravity forces are already
included in the subsystems, the ground contact forces are inserted by means of
the principal of virtual work afterward. The generalized forces Q can be separated
into one part representing the contact forces Qc and another one for the remaining
forces Qr ,

Q = Qc + Qr . (14.19)

The vector Qc is calculated as

Qc =
∑

j

κ j

(
∂Vb

j

∂ṡ

)T

W j (14.20)

withVb
j as the body-twist of a reference frameF j , j ∈ L , R fixed within the j th con-

tact area andW j as the contactwrench acting at the reference frame.The homogenous

3Index l stands for limb subsystem.
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transformation of the reference frame w.r.t. the world fixed frame is given by
H j = (r j , R j ). Contacts can be opened and closed by the scalars κ j which are equal
to one if the contact is active or zero otherwise.

Due to the unilateral contact between the robot and the contact areas, the contact
wrenches W j have to be limited. Aligning the z-axis of the frameF j with the surface
normal and placing it in the middle of the corresponding contact area simplifies the
definition of this constraints. For a rectangular shaped contact area, like a foot, the
constraints can be expressed by

0 ≤ eT
3 W j (14.21)

−b

2
eT
3 W j ≤ eT

4 W j ≤ b

2
eT
3 W j (14.22)

−a

2
eT
3 W j ≤ eT

5 W j ≤ a

2
eT
3 W j , (14.23)

with ei as the i th unit vector and a and b as the length and the width of the foot, see
Fig. 14.6. As one can see, the perpendicular contact force (eT

3 W j ) must always be
positive, as the various contact areas can only push on the ground. The limitation of
the horizontal torques (eT

4 W j and eT
5 W j ) are a function of the vertical contact forces

and the geometry of the foot.
In Fig. 14.1 contact wrenches and the corresponding contact areas are shown

exemplary for a biped robot with two contact points j ∈ {L , R} at the feet. The
frames are aligned within the contact area as mentioned above.

14.2.6 Equations of Motion

After one has found the subsystem matrices and vectors for the various limb subsys-
tems, they can now be projected to the equations ofmotion inminimal representation,
of a robot with free floating base by applying (14.12) leading to

M(q)s̈ + h(ṡ, q) =
(
0
B

)
τ J +

∑
j

κ j

[
AdT

Hj B

JT
B j

]
︸ ︷︷ ︸

JT
j

W j (14.24)

where τ J are the joint torques, h summarizes all nonlinear terms and B is the input
mapping matrix. Contact wrenches are mapped into the configuration space by the
Jacobians J j ∈ R

6×(n+6). The transpose adjoint matrix for the homogeneous trans-
formation H j B is given by AdT

Hj B
.

Additionally, the unilateral contact between the feet and the ground in the form of
the constraints from (14.21) to (14.23) for the contact wrenches has to be considered.
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14.2.7 Equations of Motion W.r.t Center of Mass

For the derivation of the equations of motion an intuitive choice of the generalized
velocities is given by (14.2). Using the CoM velocity and the angular torso velocity
instead of the torso twist gives many benefits for controller design. Switching gen-
eralized velocities from (14.2) to (14.5) is realized by a projection of (14.10) to new
minimal velocities ż1 with the Jacobian J1 = ∂ṡ/∂ż1, see [21, 26] for details. The
resulting equations of motion with CoM velocity and floating base are

⎡
⎣mI 0 0

0 MωB (qJ ) MωB ,J (qJ )

0 MT
ωB ,J (qJ ) MJ (qJ )

⎤
⎦ z̈1 +

⎡
⎣ −mg

hωB (ż1, qJ )

hJ (ż1, qJ )

⎤
⎦ =

⎡
⎣0
0
B

⎤
⎦ τ J +

∑
j

κ j

⎡
⎢⎣
[
R j 0

]
JT
ωB , j
JT

J, j

⎤
⎥⎦W j .

(14.25)

The gravity vector is given by g ∈ R
3, m denotes the total weight of the considered

system and hωB and hJ represent the centrifugal and Coriolis forces.

14.3 Reduced Dynamic Models

In the previous sectionwe derived amulti-bodymodel for the robotwith elastic gears.
In particular for the considered robot this leads to 34 degrees of freedom. This model
is adequate for complex and accurate simulations of the robot, especially if one is
interested in the dynamics of the drives. For other purposes, like controller design, a
reducedmodel of the robot is necessary. In this section three different reducedmodels
with lower complexity are derived. The first one will assume ideal kinematic gears
which reduces the model to 20 degrees of freedom. The second model additionally
assumes high gain joint controllers and therefore neglects the joint dynamics leading
to 6 degrees of freedom. The last model also disregards the angular momentum and
reduces the model to a point mass with 3 degrees of freedom.

While the last two models are used for controller design, the first model can be
used for simple simulations to check the stability of the robot.

14.3.1 Ideal Kinematic Gears

For an ideal kinematic gear the velocities of the attached components correspond to
the velocity of the motor, therefore the constraint

Φ̇ =
⎛
⎜⎝

q̇A,1 − q̇M,1
...

q̇A,n − q̇M,n

⎞
⎟⎠ = 0 (14.26)
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and (14.7) follows to

M(q)s̈ + G(q, ṡ)ṡ − Q(q) −
(

∂�̇

∂ṡ

)T

λ = 0. (14.27)

Using the orthogonality relation (see [2]) results in

(
∂ṡ

∂ ˙̄s
)T [

M(q)s̈ + G(q, ṡ)ṡ − Q(q)
] = 0 (14.28)

where ˙̄s conveniently is chosen as a subset of ṡ (e.g. by removing the motor velocity).
Finally one obtains the reduced equations of motion in minimal representation to

M̄(q̄)¨̄s + Ḡ(q̄, ˙̄s)˙̄s − Q̄(q̄) = 0 (14.29)

with

q̄ ⊂ q, (14.30)

ṡ = ∂ṡ

∂ ˙̄s
˙̄s := F˙̄s, (14.31)

M̄ = FT MF, (14.32)

Ḡ = FT GF + FT MḞ, (14.33)

Q̄ = FT Q. (14.34)

14.3.2 High-Gain Joint Controller

The joint angles qJ can easily be stabilized by a simple high-gain position control
law. Doing so and using the singular perturbation theory it is possible to reduce the
dynamical model to (for more details see [4])

[
mI 0
0 MωB

](
r̈c

ω̇B

)
+
( −mg

MωB ,J q̈d
J + hωB

)
=
∑

j

κ j

[
I 0

r̃cj I

](
f j

τ j

)
. (14.35)

where f j and τ j are the contact forces and torques with respect toW corresponding
to the contact wrench W j . The vector from the CoM to the center of the contact area
is given by rcj = r j − rc.While the dynamical model from (14.35) still considers the
full multi-body dynamics one has to notice that the reduced model assumes perfect
joint tracking (qd

J − qJ → 0). The superscript d in (14.35) marks desired values. In
our special case, the relation for the time derivative of the inertia matrix

Ṁ = G + GT (14.36)
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holds and (14.35) can be rewritten in terms of canonical momenta as

(
ṗ
L̇

)
+
(−mg

0

)
=
∑

j

κ j

[
I 0

r̃cj I

](
f j

τ j

)
(14.37)

whereL is the overall angularmomentumandp is the total linearmomentumgiven by

(
p
L

)
=
[

I 0 0
0 I 0

]
M(qJ )ṡ (14.38)

with M(qJ ) is the inertia matrix from (14.25).

14.3.3 Point Mass Model

Neglecting the angular momentum of the robot leads us to an approximation of the
robot that treats the multi-body model as a single point mass. The position of the
point mass coincides with the position of the CoM of the full robot. The equations
of motion for the point mass model is given by

mr̈c − mg =
∑

j

κ j f j . (14.39)

A further simplification of the point mass model can be done by constraining the
height of the CoM to a constant value [14]. In this case only two degrees of freedom,
given by the horizontal position of theCoM, remain. This simplifiedmodel is referred
to as 3D-LIPM (linear inverted pendulum mode).

14.4 Control Applications

The derived multi-body model and the various reduced models can be used in a
wide range of different control applications. While many walking controllers use
the point mass model given by (14.39) for feedback control [7, 15, 20, 25], only a
few controllers consider the angular momentum of the robot [6, 13, 19]. Also for
walking pattern generation most robots rely on the point mass model from (14.39),
as in this case an online generation of the CoM trajectory can be realized [12, 27].
Considering the angular momentum during walking pattern generation can either
be computed offline with the full robot dynamics given by (14.25) [5] or online by
estimating the angular momentum [3, 18] through equivalent masses e.g. in the legs,
or by the model from (14.35). It is clear that depending on the control application
the best dynamical model for the specific application has to be chosen. Two different
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control applications, one using the model from (14.35) and another one using the
dynamics of the multi-body model from (14.24) will demonstrate how the different
models can be used for the control tasks.

14.4.1 Feed-Forward Torques

In the transition from (14.25) to (14.35) we assumed a high gain position control law
and sufficiently accurate joint position tracking. For the physical robot, the accuracy
of joint tracking can be significantly increased by means of torque feed-forward
control. Toobtain feed-forward joint torques for a given trajectory in the configuration
space (q, ṡ, s̈) one needs to calculate the inverse dynamics from (14.24). During single
support the contact wrench acting on the swing leg is equal to zero, which leads to
a unique solution of the inverse dynamics. In contrast the system is over-actuated
during double support leading to an infinite number of solutions for the inverse
dynamics. To find a solution during double support one needs to find a criterion, for
example the minimum of the contact forces, to obtain a favorable solution. Solving
a quadratic optimization problem of the form

min
{WL ,WR}

αWT
L �WL + (1 − α)WT

R�WR (14.40)

s.t. κLAdT
HL B

WL + κRAdT
HRB

WR = W, (14.41)

with α ∈ [0, 1] as a scalar coefficient weighting the contact forces to allow a smooth
transition between single and double support and � as diagonal scaling matrix lead-
ing to a dimensionless objective function, gives the optimal force distribution that
minimizes the Euclidian norm of the contact forces. The vector W represents the
wrench that has to act at the upper-body B to realize the desired motion and is given
by the first six equations of the left hand side of (14.24)

M(q)s̈ + h(ṡ, q) =
(

W
τ J

)
. (14.42)

As alreadymentioned there is only a unilateral contact between a foot and the ground,
which limits the set of feasible contact wrenches and the constraints from (14.21) to
(14.23) need to be considered.

By limiting eT
1 Wk , eT

2 Wk and eT
6 Wk with k ∈ {L , R} and ei as the i th unit vector,

according to a physical friction law, slipping between the ground and the feet can
be prevented as further constraints. In this work sufficient friction is assumed which
has held for all tested walking trajectories in simulations and in real world so far.
According to (14.24) the desired joint torques τ J can now be calculated from the
distributed ground reaction forces. If onewould just useκL andκR to turn the contacts
on and off during single and double support thiswould lead to non-continuous ground
reaction forces and therefore to non-continuous joint torques. This can be omitted
by choosing an appropriate distribution coefficient α. A good choice can be made
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Fig. 14.6 Geometrical interpretation of weighting factor α
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Fig. 14.7 Feed-forward torques for a walking gait exemplarily shown for the right hip joints

by the relative position of the CoM relative to the origins of the feet, see Fig. 14.6.
Any other rule for the force distribution, like proposed in [15], will lead to similar
results.

Figure14.7 exemplarily shows the feed-forward torques for the hip joints and the
corresponding desired joint positions for a typical walking gait where the robot walks
forward. In Fig. 14.8 one can see the desired contact forces and torques for the same
walking pattern.

14.4.2 Angular Momentum Control

In the walking pattern generation typically reference trajectories for the lower body
coordinates are designed according to the dynamic constraints of the unilateral con-
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Fig. 14.8 Contact forces and torques for a typical walking gait

tact of the feet to the ground. While in most cases only the overall linear momentum
p from (14.37) of the robot is considered during this trajectory design stage, the
neglected angular momentum L can cause the robot to slip and rotate about its ver-
tical axis [13]. Using the arms, like humans do during walking, to compensate the
angular momentum caused by the joints of the lower body can reduce the overall
angular momentum significantly.

The total angular and linear momenta of the robot are given by (14.38) where the
inertiamatrix gives the relation betweenbothmomenta and the generalized velocities.
While the linear momentum p is a linear function of the CoM velocity, the overall
angular momentum L depends on the joint positions and the angular velocity.

A short excursion to inverse kinematics calculations shows that the inverse kine-
matics for a redundant robot can be calculated by using the differential kinematics
Jacobian [22, 24]

żi = Ji ṡ (14.43)

with żi from (14.5) to (14.6) and their corresponding Jacobians. The velocities in the
configuration space can be obtained by

ṡ = J−1
i żi . (14.44)

Knowing the initial configuration of the robot, velocities can be summed up over
time to get the corresponding configuration of the robot in task space coordinates.
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Instead of using the generalized velocities żi in (14.43) we introduce a new vector

żm = S
[

żi

L

]
= S

[
Ji[

0 I 0
]

M

]
︸ ︷︷ ︸

Jm

ṡ (14.45)

which is an extension of the generalized velocities żi by the total angular momentum.
The matrix S ∈ N

(6+n)×(12+n) is a binary selection matrix used to pick the 6 + n new
coordinates of interest. The total linear momentum cannot be added to (14.45) as the
velocity of the CoM and the total linear momentum are linearly dependent. If we
want to use the arms (q13 and q14) of the robot in Fig. 14.3, with only one degree of
freedom per arm, to compensate for the angular momentum around the vertical axis
we can define the new vector

˙̄zm = (
ṙT

c ωT
B VbT

L VbT
R q̇13 + q̇14 Lz

)T
. (14.46)

Instead of directly choosing the velocity of the second arm we introduce q̇13 + q̇14

as relative velocity of the two arms to tie their motion together. This finally gives the
selection matrix for the task space velocities z2 to

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 eT

1 + eT
2

⎤
⎥⎥⎥⎥⎦ 0

0 eT
3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14.47)

For the control of biped robots in general we are only interested in the joint angles
qJ for a given trajectory in the configuration space T2. Thus instead of (14.43) we
can also use

˙̄zm = SJmJ−1
1 ż1 (14.48)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0

A1 A2 A3

A4 A5 A6

0 0 eT
13 + eT

14

0 eT
3 MωB eT

3 MωB ,J

⎤
⎥⎥⎥⎥⎥⎥⎦

ż1. (14.49)

to calculate the inverse kinematics. Adopting the special structure of the Jacobian in
(14.49) we get

⎡
⎢⎢⎣

Vb
R

Vb
L

q̇13 + q̇14

Lz

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

A1 A2

A4 A5

0 0
0 eT

3 MωB

⎤
⎥⎥⎦
[

ṙc

ωB

]
=

⎡
⎢⎢⎣

A3

A6

eT
13 + eT

14

eT
3 MωB ,J

⎤
⎥⎥⎦ q̇J . (14.50)
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The joint velocities are then given by

q̇J =

⎡
⎢⎢⎣

A3

A6

eT
13 + eT

14

eT
3 MωB ,J

⎤
⎥⎥⎦

−1⎛
⎜⎜⎝
⎡
⎢⎢⎣

Vb
R

Vb
L

q̇13 + q̇14

Lz

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

A1 A2

A4 A5

0 0
0 eT

3 MωB

⎤
⎥⎥⎦
[

ṙc

ωB

]⎞⎟⎟⎠ . (14.51)

With an Euler integration method joint angles can be calculated to

qJ (tk+1) = qJ (tk) + q̇J (tk)Δt. (14.52)

To avoid a numerical drift a stabilization term is added to the general formulation
of the inverse kinematics given by (14.51) leading to

q̇J =

⎡
⎢⎢⎢⎣

A3
A6

eT
13 + eT

14

eT
3 MωB ,J

⎤
⎥⎥⎥⎦

−1⎛
⎜⎜⎝

⎡
⎢⎢⎣

Vb
R

Vb
L

q̇13 + q̇14
Lz

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

A1 A2
A4 A5
0 0
0 eT

3 MωB

⎤
⎥⎥⎦
[

ṙc
ωB

]
+

⎡
⎢⎢⎣

KR 0 0
0 KL 0
0 0 K A
0 0 0

⎤
⎥⎥⎦
⎡
⎣eR

eL
eA

⎤
⎦
⎞
⎟⎟⎠

(14.53)

with Ki as positive definite gain matrices the arm position error eA = q13 + q14 and
the position and orientation errors of the feet
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Fig. 14.9 Time evolution of the angularmomentum for a typical walking gait: (left) without angular
momentum compensation, (right) with angular momentum compensation
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Fig. 14.10 Time evolution of the vertical torque around the CoMmeasured by the force/torque sen-
sors in the feet: (top) without angular momentum compensation, (bottom) with angular momentum
compensation

Fig. 14.11 Snapshots of the
robot walking: (top) without
angular momentum
compensation, (bottom) with
angular momentum
compensation

e j =
[

rd
j − r j

sin(ϕ j )u j

]
j ∈ {L , R} (14.54)

with u j as the axis of rotation and ϕ j as the rotation angle of the matrix Re
j = Rd

j RT
j .

Amore detailed analysis of the numerical stabilization of the inverse kinematics with
the geometric Jacobian for different orientation representations can be found in [23,
24].

Figure14.9 shows the time evolution of the angular momentum generated once
with a classical inverse kinematics and once generated with the proposed angular
momentum control. It can be seen that the vertical angular momentum is constant
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at zero if the compensation is turned on. While Fig. 14.9 presents the feed-forward
controlled angular momentum, Fig. 14.10 depicts the torque around the CoM for a
simulated robot. Obviously, the torque around the CoM is significantly reduced by
the proposed angular momentum compensation. Snapshots of the walking robot are
shown in Fig. 14.11.

14.5 Conclusions

In this contribution we presented a detailed dynamic model that can be used for the
control of humanoid robots. The derivation of the dynamical model uses various
subsystems combined recursively to the equations of motion. The used methods
allow to easily adopt the kinematic structure of single limbs and to reuse results
obtained for limbs with similar kinematic structures but different inertial parameters
such as for symmetric legs. After we found a recursive formulation to calculate
the equations of motion we perform various state transformations and apply some
model simplifications to gain equations that can be used to solve control problems
effectively. Next to the modeling of the robot we presented two control applications
that use the derived model simplifications. For feed-forward torque control inverse
dynamics is used together with a parameter optimization to calculate necessary joint
torques. Further on we extended the inverse kinematics algorithm of the robot to
resolve a desired angular momentum to a motion of the robot. Simulations showed
the effectiveness of the proposed algorithm.
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