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Abstract The development of complex software and embedded systems is usually
composed of a series of design, implementation, and testing phases. Challenged
by their continuously increasing complexity and high-performance requirements,
model-driven development approaches are gaining in popularity. Modeling lan-
guages like UML (Unified Modeling Language) cope with the system complexity
and also allow for advanced analysis and validation methods. The approach of Test-
driven Agile Simulation (TAS) combines novel model-based simulation and testing
techniques in order to achieve an improved overall quality during the development
process. Thus, the TAS approach enables the simulation of a modeled system and the
simulated execution of test cases, such that both system and test models can mutually
be validated at early design stages prior to expensive implementation and testing on
real hardware. By executing system specifications in a simulation environment, the
TAS approach also supports a cheap and agile technique for quantitative assessments
and performance estimates to identify system bottlenecks and for system improve-
ments at different abstraction levels. In this chapter we will present the current status
of the TAS approach, a software tool realization based on the Eclipse RCP, and a
detailed example from the image processing domain illustrating the methodology.
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1 Introduction

Rapid and efficient development of complex hardware and software systems for
telecommunication, automotive, or medical applications needs support from dedi-
cated tool chains and customized modeling environments. Model-driven engineering
(MDE) [1] is a promising approach to address the complexity that is inherent in each
technical system. MDE is combining two technologies that may help to overcome
the complexity hurdle:

e Domain-specific modeling languages (DSML) focus on particular application
domains like automotive or telecommunications.

e Transformation and generation mechanisms support the analysis of specific model
artifacts in order to generate simulation or source code and alternative model
representations. An automated transformation process also ensures the consis-
tency between application development and the assurance of functional and extra-
functional requirements like timing aspects, reliability, or performance issues cap-
tured by model artifacts.

By providing different abstraction levels and distinct model types, which are
standardized by the Object Management Group (OMG) in the Unified Modeling
Language (UML) [2], the OMG Model-Driven Architecture (MDA) [3] offers basic
concepts and techniques to specify a system independently of the platform that sup-
ports it:

1. Starting from a Computation Independent Model (CIM) that specifies the system
functionality without showing constructional details,

2. a Platform-Independent Model (PIM) is derived by adding architectural knowl-
edge, at the same time hiding details of the platform used.

3. Finally, a Platform-Specific Model (PSM) arises when all elements and services
are added that complete the target platform.

The main advantage of having different views of the same system (see Fig. 1)
is to include domain and business experts, as well as software architects and IT
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Fig. 1 Relationship between views, models, and system (Reproduced from [1])
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specialists in the overall development process, whereby dedicated models focus on
different tasks. In an iterative modeling process model transformations support the
refinement of the models up to a formal, precise, and detailed specification that will
be the basis for implementing and testing the system.

In order to handle specific issues, OMG provides standardized UML profiles that
can be combined with normal UML models. For example, the profile for System
Modeling Language (SysML) [4] enables modeling of requirements for embedded
systems in greater detail. Extra-functional properties, time, and analysis details are
expressed by the profile for Modeling and Analysis of Real-time and Embedded sys-
tems (MARTE) [5] profile, while UML Testing Profile (UTP) [6] is used to consider
testing aspects.

Test-driven Agile Simulation (TAS) [7] intends to improve the overall quality
of the development process by combining UML-based engineering, simulation, and
testing techniques [8]. The TAS approach assists the transformation of specification
models to executable simulation code and uses standardized model-to-text transfor-
mation methods. By simulating a given system and running tests on it, TAS provides
an agile technique to validate specification models at an early stage of the devel-
opment process. To express extra-functional requirements and testing details for
embedded systems, TAS offers the possibility to integrate model extensions that
conform to the SysML, MARTE, and UTP profiles.

This practice is also applied in recent industrial design and development processes,
and was evaluated in the European research project COMPLEX [9] for building
complex systems. In contrast to the methodology used in COMPLEX, the TAS
approach concentrates the verification and validation (V&V) activities on simulation
and testing and also involves the UTP profile.

Because UML profiles may handle the same modeling aspect in different ways,
model interferences and inconsistencies may appear. For instance, SysML and
MARTE provide quite different approaches for the specification of quantitative val-
ues, e.g., for time or duration. We therefore showed in a recent paper how to avoid
model interferences for test-driven agile simulations based on standardized UML
profiles [10].

Avoiding model interferences was also a topic that has been tackled within the EU
funded MADES [11] project. Using the MADES language it is possible to restrict
SysML and MARTE profiles to a consistent model subset. V&V activities during the
development cycle focus on analyzing temporal properties of the components instead
of testing. Hence, validation in the context of MADES is mostly time-related.

Since the benefits of standardized graphical languages and simulation-based test-
ing have been recognized, several efforts have been undertaken in that area. In
this context, mention can be made of the tool environments Matlab/Simulink' or
SCADE ? that are often used in practice for the development of embedded systems.
Both also offer solutions for the integration of UML-/SysML-based modeling tech-
niques within a combined simulation and test environment. However, the tools used

Uhttp://mathworks.com/products.
Zhttp://www.esterel-technologies.com/products.
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are still very much tied to their own proprietary modeling languages. The notations
used in this case primarily support synchronous data flow-oriented paradigms. Thus,
both tool environments are rather more suitable for the development of control-
oriented systems. In contrast, TAS is seamlessly based on the standardized UML as
amore expressive and flexible common modeling language, which can also consider
nondeterministic, asynchronous systems.

Furthermore, numerous efforts have been considered so far to develop techniques
for deriving quality of service (QoS) properties from UML specifications using
diverse analytical techniques. For instance, in [12] the authors propose a frame-
work to transform UML models that are annotated, among others, with stereotypes
from the MARTE profile to Stochastic Reward Nets (SRNs). These SRNs are eval-
uated with the software package SHARPE? [13] to obtain performability results. In
situations where the complexity of the system specification allows the application
of analytical techniques, these results will certainly provide a valuable insight in
the system under development. In contrast, however, the TAS approach aims on the
simulation-based, test-driven development and evaluation of complex systems.

In the following sections, we provide a modeling methodology for the TAS
approach by combining standardized UML profiles. We focus on strategies that
will avoid model interferences caused by overlapping specification parts that are
described by different UML profiles. We also show how tracing of functional and
extra-functional requirements can be achieved in the SimTAny tool environment.

2 Test-driven Agile Simulation

In this section, we introduce the concept of TAS. We start with the motivation for
the suggested approach, describing its main idea and the basic concept. Then, we
outline the most important features covered by TAS.

2.1 Idea and Concept of TAS

The development process of complex software and embedded systems usually con-
sists of a series of design, implementation, and testing phases, aligned to some formal
process model. Despite a large number of different process models, the development
typically starts with requirement definition followed by several specification, pro-
gramming, and testing steps. Due to a continuously increasing complexity of sys-
tems, the approaches based on formal modeling languages like UML are gaining in
popularity. On one side, modeling with graphical diagrams helps to deal with the
complexity. On the other side, formal specifications enable automated derivation of
the implementation code as well as of advanced analysis and validation capabilities.

3http://sharpe.pratt.duke.edu.
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With our TAS approach, initially introduced in [7], we propagate the combination
of model-driven simulation and testing techniques to achieve an improved over-
all quality during the development process. Thus, our approach enables to derive
executable simulations from UML-based specifications of both the system and test
models in order to analyze a modeled system and to perform simulated tests on it at
early stages of the development process. This approach supports a cheap and agile
technique for design error detection as well as for first quantitative assessments and
performance estimates. Even prior to expensive implementation and testing on a real
system, potential drawbacks and bottlenecks in the system can be identified by the
use of simulation. By means of simulation it is also easily possible to investigate
and compare alternative designs and solutions at the level of models. Furthermore,
the early validation of the specification models helps to reduce development risks.
In order to achieve mutual validation of the system and test specifications, we sug-
gest starting with the specification of requirements and then to derive system and
test specifications independently and in parallel to each other from these common
requirements (see Fig.2).

Solely based on UML and using its standardized extension profiles, the TAS
approach provides for the application of one common modeling language for differ-
ent design stages like requirements, system, simulation, and test design. Amongst
several obvious advantages of having a common modeling language, like simplifying
the communication between team members of different disciplines, ability to use only
one modeling tool, and cost savings, it also contributes to the quality improvement.
Thus, the traceability between relevant model parts can be easily created and exam-
ined. Furthermore, in distributed development teams and processes it is particularly
important to ensure a joint understanding of definitions and relations across different
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Fig. 2 Concept of test-driven agile simulation (Reproduced from [14])
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disciplines. Although specialized tools and languages have been established for each
discipline, it is nevertheless possible to use common UML-based specifications as
central documents shared during the development process, for instance, by applying
integration and transformation solutions as provided by ModelBus.*

2.2 Main Features

The TAS approach makes provisions for various aspects of the model-driven devel-
opment process. Among others, it covers modeling, model-based validation, simula-
tion code generation, and test as well as integrability and extendability for different
domains and development environments. In the following, we will shortly introduce
some of the main features of TAS (see also Fig.2).

Modeling

As already mentioned, our approach is widely based on UML as a common modeling
language. Due to its general nature, UML is principally suitable for modeling in
several development stages, like requirements, system, simulation, and test modeling,
which are addressed by the TAS approach. However, for specifications of domain-
specific aspects we propose a UML-based modeling methodology, which utilizes
several standardized UML extension profiles. As will be shown in detail in Sect. 3,
we apply a combined subset of OMG’s SysML, MARTE, and UTP profiles. In
particular, we use basic elements and diagrams of UML and apply SysML to specify
requirements, system blocks, port directions, and traces between requirements and
other model elements. A number of stereotypes of several sub-profiles of MARTE are
used, for example, to characterize analysis aspects and extra-functional properties, to
introduce nondeterminism, and to describe HW/SW allocation. UTP profile is utilized
to represent parts of the test model, like test contexts, test components, and test
cases. Additionally, our modeling methodology allows for use of the textual action
specification language ALF [15] and its library, which provides useful collection
types and operations.

However, the combination of different specialized profiles involves special chal-
lenges caused primarily by a number of semantic and syntactic overlappings between
different profiles. To overcome these challenges, we suggest a strategy of selective
combination of proper subsets of profiles presented in our previous work [10].

Verification and Validation

In order to improve the quality of a developed system and to increase the efficiency of
the development process itself, it is reasonable to perform verification and validation
activities as soon as possible. Our TAS approach enables validation of model-based
specifications at very early stages of the design phase. In addition to the known
verification and model checking methods, independent formal system and test models
derived from the same requirements can serve for their mutual validation.

“http://www.modelbus.org.
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At this point, our approach distinguishes between static and dynamic validation.
Static validation can be applied directly on the specification models of both the system
and the test models. It consists of examination of constraints, which relates to the
static modeling aspects like structure, naming, constraints definitions and traceability
to requirements.

On the other side, dynamic validation aims to inspect the dynamic behavior of the
modeled system and its corresponding test model. On the level of models the behavior
can be validated by executing test cases from the test model on the simulated system
model.

Transformation to Simulation Code

Since simulation plays an important role for validation and system’s behavior analysis
in TAS, our approach assists an automated transformation of the specification models
to the executable simulation code. It consists of generation of the simulation code
from system models as well as from test models. Thereby, in the latter case we speak
about abstract test suites to differentiate the simulated test suites from those derived
for real tests on the implemented system.

Referring to the OMG standard for model-to-text transformations MOFM2T [16],
a standardized transformation method can be applied to transform structural, behav-
ioral, and analytical elements from UML models to appropriate representations in the
desired simulation environment. The definition of such compatible mappings poses
the biggest challenge on this stage.

Above all, of course, discrete-event simulation tools are eligible for the purpose
of simulation due to the original time-discrete nature of UML and of most com-
puting systems. Thus, the focus of our approach is primarily on supporting the
transformation of time-discrete models for discrete-event simulators (see Sect.4.3).
Nevertheless, with some limitations time-continuous aspects and systems may also be
represented with SysML and transformed to appropriate simulation tools, as shown
for instance in [17].

Simulation

On one side, the simulation code derived from a system model can be utilized for
design and performance analysis of the whole system. The generated simulation
represents in this case all active components of the system with their reproduced
behaviors. Running a simulation of the system one can first investigate its dynamic
behavior. Depending on the simulation tool, even interactive or stepwise execution
could be possible, which is particularly helpful for debugging. At the end of or even
during the simulation, predefined analytical values could be assessed. By modeling
different design solutions as specific parameter configurations, simulation tools can
provide support for parameter variation and searching for optimal solutions with
respect to the specified requirements.

Test

On the other side, abstract test suites generated from a test model serve for the sim-
ulated execution of tests. A test suite corresponds at the model level to the UTP’s
test context, which describes the configuration of a test consisting of a system under
test (SuT) with surrounding test components and contains a number of test cases.
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Depending on the type of a test, i.e., unit, integration, or system test, the SuT may
either be one system component, a set of components, or the whole system, respec-
tively. A test case is thereby usually represented as a sequence of interactions between
a SuT and test components.

After the transformation to a simulation code an abstract test suite largely consists
of simulated test components, which can create stimuli for the SuT and evaluate its
responses by comparing them with the expected results. While the behavior of test
components is simulated according to the currently executed test case, the behavior
of the SuT is coming from the embedded simulation code generated from the system
model. It is the task of each test component to determine its local verdict according to
the expected responses from the SuT. The verdict of a test case is then composed of
local verdicts of all containing test components. A failed or inconclusive test case first
indicates some inconsistencies in the system or test model, or event in the original
requirements model and requires a closer inspection of these models.

Analysis

The output provided by the simulation runs helps to assess different design solutions
or to predict the performance of a developed system. However, a comprehensive
statistical analysis of simulation results is often also needed. In order to facilitate this
task, our approach provides support for convenient calculation and visualization of
some basic measures.

Traceability

Traceability information about relationships between the requirements, the system
and test design, and their implementations is quite crucial for the development of
complex systems, since the traceability analysis can help to improve the develop-
ment process enormously. In general, traceability information helps to determine
the impact of an element on the other specification parts. Furthermore, traceability
analysis can provide coverage and traceability metrics to assist in localizing gaps or
inconsistencies in complex specifications.

Using SysML, requirements of the system to be developed can be represented
in UML models. They can be either directly defined in the model or imported from
specialized requirement management tools. Furthermore, SysML provides special
association types to define traceability links between requirements among themselves
or between requirements and elements that are determined to realize or to verify
requirements.

In order to maintain an overview of the many links and to advance traceabil-
ity analysis, the TAS approach summarizes traceability information in a dedicated
model. Such a traceability model largely includes references (traces) to the relevant
elements from the requirements, system, and test model. In addition, this model is
enriched with traceability links to the artifacts, like implementation or simulation
code, derived from the specification models. Our traceability model allows for clear
visualization of the traceability information and for easier navigation across different
modeling domains. Furthermore, traceability metrics can be easily calculated with
this model and potential gaps like unsatisfied or untested requirements can be easily
identified.
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Fig. 3 Service-oriented User Frontend
architecture for TAS

(Reproduced from [14])
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Service-Oriented Architecture
The previously outlined features of the TAS approach require a broad tool support for
modeling, model transformations, simulation, and analysis. Of course, it is desirable
to have one integrated tool environment on a single workstation. For large distributed
processes or due to performance reasons it is, however, often required to source out
some designated functionality or rather to make it accessible as services over the
network. For instance, the simulation of large, complex models could be very time
and resource consuming or could require special system requirements.
Furthermore, to enable integration of the TAS approach into existing development
environments, the interoperability and loose coupling of heterogeneous tools via
ubiquitous standards is needed. Therefore, in [14] we suggested a service-oriented
architecture design [18] for the TAS approach (see also Fig.3). The core of this
design consists of a central repository with several common services, for example,
services for registry, notification, or logging. The additional tools or components,
provided for TAS, can be either realized as external services or are even part of the
user front end. The communication between individual components is realized using
open standards and well-defined Web service interfaces.

3 The TAS Modeling Methodology for Image Processing
Systems

In this section, we illustrate how our modeling approach can be used for the design
of an image processing system. It should be mentioned that we have reported this
possible utilization of the TAS approach for the image processing domain in our
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Fig. 4 Monocular vision
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low-cost micro aerial vehicle
(MAV) system

video@ 30 Hz control

V_VLAﬂ _640_x 360_ o command
Ground station

Landpad approach | | Landing on landpad

Trajectory following

previous works [19], but we now look at a concrete example. The system, which is
shown in Fig. 4, enables an off-the-shelf Parrot AR.Drone 2.0 low-budget quadrotor
micro aerial vehicle (MAV) to autonomously detect a typical helicopter landpad,
approach it, and land on it. To fly toward the landpad while accurately following
a trajectory, monocular simultaneous localization and mapping (SLAM) have been
used [20].

The workflow in this application is based on the monocular, stereo, and RGB-D
cameras as the main sensors and consists of the following steps: (1) exploitation of
the geometric properties of the circular landpad marker and detection of the landpad;
(2) determination of the exact flight distance between the quadrotor and the landpad
spot; (3) moving toward the landpad by means of monocular simultaneous local-
ization and mapping (SLAM); and (4) landing on the landpad. Development and
hardware details related to this application have been illustrated in [20].

The Parrot AR.Drone 2.0 is a low-cost quadrotor with a simple IMU and two
monocular cameras. The quadrotor features are | GHz, ARM Cortex-A8 processor,
32-bit 800 MHz DSP, and 1 GB of DDR2 RAM 200 MHz. Due to the complexity of
the computational tasks, the above-mentioned workflow cannot be performed directly
on-board. Therefore, the quadrotor communicates with ground station through wire-
less LAN. The ground station receives video data, performs the computations, and
sends the generated steering commands back. In the example system, there are sig-
nificant delays in the communication between the quadrotor and the ground station,
as all the computations are performed externally. By means of simulation at the level
of models, we aim to investigate and to compare alternative designs and solutions
for the described system.
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«requirement»
[ Cameras Specifications
«Requirement»

id=C1.0
text=The quadrotor should have two cameras to capture
video streaming. Each camera has to own a separate ID.

fan 4\
«requirement» «DeriveReqt» :’
[ Front-facing camera specification
«Requirement» [E] Camera switch
id=C1.1 Hl «Requirement»
text=The front-facing camera should use 720p (1280x720) image id=Q1.3
resoulution. The video stream video frame rate should be 30 FPS. text=To switch cameras, the ActivateSignal with
the Camera-ID should be send to the quadrotor.
«requirement» '
[#1 Bottom-facing camera specification DeriveReqt_switchTime !
«Requirement» —
text=The bottom-facing camera should use 360p ] Switch time
(540x360) image resolution. The video stream frame «Requirement»
rate for the camera should be 30 FPS. id=Q1.3.1
text=The switch time between the different

cameras should be less than 9 ms.

Fig. 5 Simple SysML requirement model for the video stream control systems

3.1 Requirements Modeling

In the scope of TAS, the design specification starts with SysML-based modeling,
which involves the initial requirement specification. We have analyzed fundamental
requirements on the hardware and software architectures for the example system. The
requirements captured in text are represented and clustered directly in the model by
means of the SysML requirements and package diagrams. Main requirements, which
need to be considered to achieve a safe flying system with the minimum functionality
including the video stream control systems, are illustrated in Fig. 5.

The Camera requirement includes the description of the quadrocopt’s cameras: a
HD (1280%720) 30fps front-facing camera and a QVGA (320%240) 60 fps bottom-
facing camera. During the video streaming, it shall be possible to switch between
two cameras in a short time (see Fig.5).

3.2 Structure Modeling

Based on the specified requirements, the system model as well as the test model can
be created independent from each other in order to ensure their utilization for mutual
validation (see in Sect.2.1). The aim of this specification phase is to design the sys-
tem architecture in terms of functional blocks. The functional and behavior aspects
of the block can be expressed using SysML block definition, internal block, and state
machine diagrams. Figure 6 shows the main block definition diagram from our exam-
ple system. In addition to SysML concepts, the diagram will include a set of MARTE
concepts in order to specify a context in which the system should be analyzed. We
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«gaResourcesPlatform» «omnetModule»
\ / +‘ «block» «block»
Modul ] SystemArchitecture g <= groundStation
«omnetModule» T properties
«block»

= cn IControl + —| 4 tracker: ImageProcessingEngine
= ChannelContro =4 wlan.mgmType= leee80211Mgm..,

properties «omnetModule»
iz numChannels= 2 «block» parts
[*! Quadrotor Architecture = ac: AccessPoint
«omnetModule» properties flow ports
@ van «tbloctz . . |:-:|currentF|Tame: ImageSignal & cmd: gsFlowSpecification
= IPvaNetworkConfigurator iziframeSN: Integer & video: gsFlowSpecification
properties [=lwlan.mgmtType= leee80211Mgm...
[Econfig= xml("<config><interface hosts...
parts «gaAnalysisContext»
/’ lt4 fCamera: Camera= frontCamera 9 «éock»
yz * | £ bCamera: Camera= bottonCamera [ Analysis
«block» N bropemes
=/ OMAP_Platform i channelRate: Integer= 10000...
properties «block» =l messageSize: Integer= 800
i currentFrame: ImageSignal =] camera N
[ activateSignal: ActivateCamer... ~ properties 4 «GaAnalysisContext»
{5 captureRate: Integer platform=[SystemArchitecture]
parts =i id: Cameraldentifier
Eimanager: OMAT_PlatformMana... =4 isActive: Boolean

&2 currentimageSN: Integer
=2 imagesQueue: Integer [0..1]
imageResolution: Integer

[

flow ports
inout port

2]

operations
videoCapture()
handleFrameCapture()
«signal» ActivateEventReception:::-
sendVideoFrames(in char *, in id: -+ |

shew

Fig. 6 Example of a description of system components and their relationships using SysML block
definition diagram

«datatype» «signal» «signal»
ImageSignal ActivateCameraSignal [ ATCommand
properties properties properties
=l imageSize: Integer =1 cameralD: Cameraldentifier =l cmd: CommandType
[ imageResolution: Res...

SN: Integer
cameralD: Cameralde...

Fig. 7 Example of data type and signal definitions

use the stereotype GaAnalysisContext applied to a separate block to specify which
of the blocks in the model should be analyzed. The platform attribute points to a
SystemArchitecture block that has a GaResourcesPlatfrom stereotype applied. It rep-
resents a logical container for the resources used in the analysis context. All system
components nested in this block will be simulated. The GaAnalysisContext block
can also include input and output parameters for the simulation, which are specified
with MARTE stereotype Var.

Figure 7 shows the signals in our model. The signal ATcommand is used to man-
age the quadrotor during the flight. ImageSignal encapsulates application-level data
like images of the video stream for the transmission over the channel. Activate
CameraSignal is used to switch the camera during the video stream.
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«gaResourcesPlatform»
«block»
SystemArchitecture

«resource»
«part»
[£3 hc: Quadrotor Architecture

= in cmd
«omnetModule»

moduleName=Ileep80211
bitrate=27

«part»
[E3 channelCont: ChannelControl

Bl video

«part»
3 netConfig: IPv4NetworkConfigurator

& video

B cmd
«resource»
«part»
£ gs: groundStation

Fig. 8 Composite structure for the system

The SysML internal block diagrams describe the internal structure of a block.
We use the SysML internal block diagram to model the system architecture.
Figure8 shows the internal structure of the SystemArchitecture block from our
model. The system consists of a Quadrotor Architecture and a groundStation.
ChannelControl is required for wireless simulation. It represents a system com-
ponent that keeps track of which nodes are within interference distance of other
nodes. IPv4NetworkConfigurator component assigns IP addresses and sets up static
routing for an IPv4 network. Using the SysML concepts of ports and the connectors,
it is possible to express communication links between various components.

3.3 Behavior Modeling

To model system behavior at a high level of abstraction, we primary use UML state
diagrams. The state machines representing the image processing algorithm for the
detection of the landpad in our model are shown in Figs.9 and 10.

Figure9 shows the top-level behavior of the groundStation block. As the state
name wait for video stream indicates, the ground station waits in this state until it
receives an ImageSignal message. This is the trigger of the only transition leaving
from the wait for video stream state to the landpad detection state. The transition has
applied a MARTE stereotype GaStep that indicates subsequent occurrences of the
ImageSignal event which are of interest. The do behavior of the landpad detection
state invokes the detectionStateMachine behavior.

Figure 10 shows the ground station behavior for the detection of the landpad.
The main transition is triggered by the reception of the Image signal. The algorithm
consists of the following main steps: (1) edge detection and (2) landpad matching.
In the first step, we detect the edges in the image. After that, we group detected
edges to a curve and check whether it contains the letter “H” [20], which indicates
the landpad. Once the letter is detected, the NotificationMsg must be sent out to the
quadrotor and the state machine moves into the final state.
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Ground station workflow
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Fig. 9 State machine of the ground station
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emdPort.sendMessage(nMsg);

final

Fig. 10 System behavior building using SysML and ALF syntaxes

As exemplarily shown in Fig. 10 for the do activity of the state edge detection,
we can define detailed behaviors either using standard UML behavior diagrams, for
instance, like activity diagrams, or using a more compact high-level action language
ALF [15].

In order to express performance attributes of behavior steps, we can apply the
MARTE’s PaStep stereotype. For example, we specify that the response time of



Combined Simulation and Testing Based on Standard UML Models 513

calling the landpad matching activity is required to match the given distribution.
To collect the statistics of interest during the simulation, one just have to apply an
additional MARTE expression source=calc on the corresponding property value.
In our example, we do so for rep and respT properties of PaStep stereotype on
landpad matching state to determine the number of repetitions and response time.
The collected data can then be analyzed for comparison with the expected result
by utilizing the analysis capabilities of our framework as it will be shown later in
Sect. 4.4.

3.4 Test Modeling

As a counterpart to the system modeling presented in the previous sections, the
modeling of test specifications can also be performed in UML. Thereby, quite similar
modeling paradigms can be applied as used for system modeling. Based on common
requirements a test designer has to specify proper tests for subsequent validation of
the system specification and later of its implementation. The purpose of these tests
is to determine whether the system satisfies the requirements.

To provide a complete test specification, one has first to define the context of a
test identifying the SuT and required test components. Figure 11 shows an example
of a test context provided to test the behavior of the quadrotor component of our

«testContext» «block»
= TestQuadrotorBehavior (helicopterModel::SystemSpecification::quadrotor)
Quadrotor Architecture

=1+ groundStation: GroundStation_t [1]

[E] «sUT» + sut_quadrotor: Quadrotor Architecture [1] + cmd: gcFlowSpecification [1]

~ video: gcFlowSpecification [1]
+ currentFrame: FrameSignal [1]
+ frameSN: Integer [1]

=
ol

# «testCase» + TestCameraSwitchCommand()
ik «testCase» + TestConnectionLost()

DO

## «testCase» + TestCommandDelays() [EZ + omap: OMAP_Platform [1]
[E3 + bCamera: Camera [1]
Eg + fCamera: Camera [1]
[] ¢ =+ wlan.mgmtType: String [1]
[1] + groundStation (1] | Eg + part: Battery [1]
«testComponent»

] Groundstation t + sut_quadrotor

I + video: gsFlowSpecification [1]
Fp + cmd: gsFlowSpecification [1]

(TestData) (TestData)
IZ] FrontCameralmage: Image [Z) BottomCameralmage: Image
cameralD : Cameraldentifier = FRONT_FACING cameralD : Cameraldentifier = BOTTOM_FACING

Fig. 11 Example of a test context definition
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«block»
TestQuadrotorBehavior

«part» «part»
[=] sut_quadrotor: Quadrotor Archit.. = groundStation: GroundStation_t
B video ( <> E video
B cmd B cmd
] |

Fig. 12 Internal block diagram of a test context

example system. As already mentioned, we apply stereotypes of the UTP profile in
order to declare test relevant aspects.

Thus, using a SysML block definition diagram or UML class diagram, a test con-
text can be modeled as a structured block with the applied TestContext stereotype.
A test context consists of test components, SuT, and serves at the same time as con-
tainer for test cases. Whereas test components are simple blocks or classes containing
ports for communication and declared in the test model using the stereotype Test-
Component, SuT represents a block of the system specification model with its own
behavior. To identify the SuT in a test context, the property referencing the SuT is
marked with the SuT stereotype of UTP. The internal structure of the test context,
which defines connections between test components and SuT, can be represented by
the SysML internal block diagram, as shown in Fig. 12.

The behavior of test components is individually specified for each test case of
the owning context. Therefore, using UML sequence diagrams a test case can be

T sut_quadrotor:Quadrotor Architecture :' groundStation:GroundStation_t

[EL] Ref ]

| =

Initialization

_'p ActivateCameraSignal(cameralD = FRONT_FACING)

I
T
I
I
I
T
I
I
I
T
I
I

lseq J

[ [undefihed] B FrontCameralmage

—'o ActivateCameraSignal(cameralD = BOTTOM_FACING)

[l seq J

!
I
I
1
I
i
I
El [undeﬁlned] _°p4zFrontCameraImage

{0..$switchDelay}

NS SRR L S N IO SR ) Y S [

|
T
: L3 BottomCameralmage
L
I
I
I

Fig. 13 Test case specification using UML sequence diagram
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«block» «requirement»
(SystemSpecification:quadrotor) (Hardware:zCameras) «Verify»
= OMAP Platform | :. ; =4 Camera switch =
«>Satisty»
<Satisfy» «DeriveReqt» (TestsSpecification:TestQuadrotorBehavior)
block & TestCameraSwitchCommand
«block» —=> «requirement» Veri
(SystemSpecification:quadrotor) (Hardware::Cameras) «Verify»
= Camera = Switch time

Fig. 14 Modeling of traceability links to requirements from satisfying or verifying elements

defined in every detail. As shown in Fig. 13, a test case is represented as a sequence
of messages between the test component groundStation and the SuT sut_quadrotor.
This test case, for instance, checks whether the quadrotor is able to activate its front
camera and switch to the bottom camera appropriately after receiving appropriate
camera activation command messages from the ground station.

3.5 Traceability Modeling

Although it is not the case in the modeling example presented, in a strict requirement-
driven development process, nearly all system components and test cases shall relate
to corresponding requirements. To express these relations, SysML provides special
association links that can be assigned between requirements and other modeling
elements. In Fig. 14 we show an example of traceability links defined for requirements
regarding camera switching of the quadrotor. As shown in the figure, elements exist
in the system specification, which satisfy the requirements and at least one test case in
the test model, which verifies them. Currently, an engineer has to specify and manage
most traceability links manually. However, additional tool support for automatic
generation of traceability links while deriving model elements from requirements,
for instance, is certainly possible and is part of the ongoing work.

4 SimTAny Framework

The main features of the suggested TAS approach are widely supported by the
framework SimTAny (formerly introduced in [7] as ‘VeriTAS’) that will be fur-
ther extended. SimTAny integrates relevant tools with newly developed components
in a common environment based on the popular Eclipse RCP platform. Among
others, we utilize a UML modeling tool, a transformation framework, a simulation
engine, and an analysis tool (see Fig. 15). In the following, we will depict the main
features of our framework and describe their realization in some more details.

Shttp://wiki.eclipse.org/Rich_Client_Platform.
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Traceability i S e v

Modeling Transformation
Simulation Analysis
SirnTAny R:‘*‘“ v
fZ] i il _i:

Test {

Fig. 15 Overview of tools integrated in the SimTAny framework

4.1 Modeling

In order to support extensive modeling capabilities required for TAS, we apply the
open source modeling tool Papyrus,® which is closely integrated with Eclipse. We
preferably use Papyrus, since it has been designed to exactly implement the UML
specification. All in all, it provides a very advanced modeling support for OMG
standards including UML-related SysML and MARTE profiles. Nevertheless, other
modeling tools, which can consistently export models into the OMG’ interchange
format XMI, can also be used instead of Papyrus.

In order to improve the modeling efficiency, our framework adds some exten-
sions to Papyrus. This primarily concerns the modeling of detailed behaviors and
expressions with ALF textual editors. The main reason for supporting ALF’s textual
notation is because specifying of a detailed behavior with a higher programming lan-
guage, in most cases, is much more compact, faster, and intuitive than with standard
UML behavior diagrams like state, activity, or sequence diagrams.

As it has been previously illustrated in Fig. 10 in Sect. 3.3, in principle, we can
always express detailed activities of a state with activity diagrams, for instance.
Because of the excessive complexity and inefficiency of this method, UML also pro-
vides the possibility to describe behaviors and expressions with a natural or program-
ming language encapsulated in a so-called OpaqueBehavior or OpaqueExpression
correspondingly. Thus, we apply the standardized action language ALF to directly
specify such expressions and behaviors at appropriate places in our models in a more

Shttp://eclipse.org/papyrus.
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compact and intuitive way. Among others, entry, exit, and do behaviors of a state as
well as guard conditions and effects of a transition in state diagrams are predestined
for ALF and thus are supported by appropriate text editors in SimTAny.

4.2 Static Validation and Verification

The special feature for static validation of system and test models, suggested for the
TAS approach, has been realized in our framework by means of the Eclipse EMF
validation framework.” In order to achieve static validation and verification of the
models, we provide constraints to check, on the one hand, for inconsistencies in each
model separately and for compatible relations within the models to each other and to
their common requirements, on the other hand. The defects detected in this way by the
framework are listed in the Eclipse problems’ view. Moreover, affected elements are
marked as erroneous in the model editor afterwards. It is further possible to navigate
from the problems listed in the view to corresponding elements in the model editor.
Although only few simple constraints are currently implemented in SimTAny, the
framework can be easily extended by new constraints.

4.3 Transformation to Simulation Code

Since the generation of the executable simulation code from UML models is one
of the most challenging issues in our approach, a solid methodology with exten-
sive tool support is required to perform this task. That is why we decided to build
upon the OMG’s standard MOFM2T [16] and its reference implementation, i.e., the
Eclipse Acceleo® code generation framework. MOFM2T provides a template-based
model-to-text transformation language, where a template is a text containing spe-
cially marked areas that have to be generated accessing the elements of the input
model. Generally, any kind of text or code for any textual language (C++, Java,
Python) can be generated with this method. The framework Acceleo provides a code
generation engine along with tools to support the efficient development of code gen-
erators. Besides a comprehensive editor with syntax highlighting, error detection,
and auto-completion, it assists with a debugger, a profiler, and a traceability API.
With Acceleo we have implemented model-to-text transformation templates for
generation of the simulation code (see Fig. 16). In order to demonstrate the feasibil-
ity of our approach, we currently generate code that is executable with the simula-
tion engine OMNeT++.° Nevertheless, our transformation module is designed to be

7http://projects.eclipse.org/projects/modeling.emf.validation.
8http://eclipse.org/acceleo.
“http://omnetpp.org.
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Transformation templates

UML Artifacts (C++, NED)

Fig. 16 Template-based model-to-text transformation

extendable for other simulation engines, too. OMNeT++ is an open source discrete-
event simulator that is quite popular for simulation of communication networks.
An OMNeT++ simulation project (also called simulation model) typically con-
sists of active components (simple modules) programmed in C++ that are composed
of compound modules and networks using the OMNeT++’s own NED language. Fur-
thermore, initialization files (ini) are used in OMNeT++ for additional configuration
of simulation experiments. Thus, as a result of the model-to-text transformation our
framework automatically generates C++, NED, and ini files of the complete simu-
lation model. As shown in Fig. 17 for our use case, the simulation model generated

& General-0.elog £ -
Em} +4mes 100us A +Hams. 158us  #4ms 160us  +4ms 200us
he stk {Position: 15 482ms E00us:
he e Range: 1ms 6&2us
SystemArchitecture he wlan[o]. megpt Ras.

o Simulate Inspect View Help

G Gl | ok or 2 20D A By
wmeral #0: Sy Event #1079

| Sy h M-ln[ﬂ]-ﬁ_ 1 m
A9 H I ——
SystemArchitecture. groundstation notficaticnBoard i Fassan

I

[5=

ianack

158us edms160us  +4ms 200us |

Fig. 17 Simulation with OMNeT++
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can then be executed with OMNeT++ to analyze the behavior of the system (during
the simulation or afterwards using the event log).

4.4 Analysis

The output data collected during the simulation can be directly analyzed in our
framework, in the first instance, without prior external analysis tools being required.
Therefore, SimTAny provides a dedicated perspective for analysis where the simu-
lation results can be imported and visualized.

In the background, a very popular environment for statistical computing and
graphics, i.e., the R-Project,'? is applied to generate plots and to calculate statis-
tics of the data. Thus, for instance, the user can obtain an immediate overview about
the key statistical measures like the mean, median, deviation, or confidence intervals
of a data sample as well as to take a look at its time series, histogram, or box plots.
To illustrate this, Fig. 18 shows example plots and statistics generated for landpad
matching times observed during the simulation of our quadrotor model.

landpadMatchingTime landpadMatchingTime

12
|

o
o

15
10
1

14
1

13
1
Frequancy
[
1

12
1

matching time [ms]

tching ti
o landpadMarchingTime:vector rstiaing me el

Min. 1st Qu. Median Mean 3rd Qu. Max.
9234 11.73275 12508 12.31427 12876 15.755
Confidence intervals:

99% rel. Error 95% rel. Error 90% rel. Error
[11.736,12.892] 4.693% [11.884 ,12.744] 3.494% [11956,12672] 2.906%

Fig. 18 Analysis of simulation results

Ohttp://www.r-project.org.
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Fig. 19 TestView provides Test &1 Ao =
an 0V§rv1ew of tests TestCase Verdict Covera.. Details
contained in a model, control 4[] helicopterModel NONE 066
of test case execution, and 4 v TestQuadrotorBehavior NONE  0.66
test verdict [*] TestCameraSwitchCommand | PASS 1.0

[w] TestConnectionLost PASS 10

u‘ TestCommandDelays NONE

4.5 Test

In order to support tests at the level of simulation models as described in Sect. 2,
along with the generation of simulation code from the system model our framework
provides the generation of executable OMNeT++ simulations for each test case con-
tained in the test model. In Sect. 3.4 we have demonstrated an example for modeling
of a test context and a test case. The user can obtain an overview of all test contexts
and test cases defined in the model in the dedicated test view (see Fig. 19). Once the
model has been transformed to the simulation code, the user can perform the execu-
tion of tests from this view. The verdict and eventual error reports of each completed
test run are then also accessible in the view.

4.6 Traceability

As already mentioned, our approach provides for a special model aimed to store
traceability information. Initially coming from specification models, this traceabil-
ity information is enriched with the traceability links to artifacts generated during
model-to-text transformations. Based on the Eclipse modeling framework EMF,!!
the traceability meta model has been developed and integrated in our framework.
Instances of this model are created in SimTAny automatically from specification
models by performing a model-to-model transformation according to the OMG
standard specification (MOF) 2.0 Query/View/Transformation [21] supported by
the Eclipse component QVT Operational.'

Furthermore, using the traceability listeners mechanism provided by Acceleo,
SimTAny is able to collect traceability information during the code generation and
to add it to the related traceability model instance.

In order to provide a better overview about all available traceability information,
SimTAny provides a special traceability view (see Fig.20). In this view the user can
inspect the relationships between elements in both directions starting either from the
requirements, from the system or test model elements, or even from the artifacts. The
view also provides special filters to show possible deficiencies such as unsatisfied or

http://eclipse.org/modeling/emf.
2http://projects.eclipse.org/projects/modeling.mmt.qvt-oml.
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Fig. 20 Traceability view to inspect traceability relationships between different model elements

untested requirements. Thus, for instance, the requirements that do not relate to any
test case can be easily detected for additional investigations.

Moreover, as depicted in Fig. 20, SimTAny allows easy switching from the trace-
ability view to other views or editors relevant for further inspection of the selected
element. In this manner, a model element occurring in the traceability view can be
opened in the model editor, or a test model element can be shown in the corresponding
test view.

5 Conclusions

Due to the ever increasing complexity of hardware and software systems, model-
driven development methods and tools are gaining popularity as methods to fulfill
functional and extra-functional requirements like timing aspects, reliability, or per-
formance issues.

Model-driven engineering technique based on OMG’s UML and the MDA is a
promising practice to address the complexity that is inherent in each technical system.
The suggested TAS approach improves the overall quality of the development process
by combining UML-based engineering, simulation, and testing techniques. TAS also
assists the transformation of specification models to executable simulation code and
uses MOFMZ2T, a standardized model-to-text transformation method.

By simulating a given system and running tests on it, TAS provides an agile tech-
nique to validate specification models at an early stage of the development process.
To express extra-functional requirements and testing details for embedded systems
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TAS offers the possibility to integrate model extensions that conform to OMG’s
SysML, MARTE, and UTP profiles.

In order to integrate the different tasks of the TAS approach we built the domain-
independent framework SimTAny, which is based on the Eclipse RCP platform.
Amongst other tools, we utilize the UML modeling tool Papyrus, the code generation
framework Acceleo, the simulation engine OMNeT++, and the analysis tool R, which
provides statistical measures and expressive plots. In addition, the Eclipse modeling
framework EMF is used to develop and integrate a traceability meta model in order
to store and exchange traceability information between different components.

Last but not least, we have shown how to apply TAS techniques for the develop-
ment of a concrete image processing system. Here, the main task was the design of
a system consisting of a quadrotor and a ground station that exchange image data
over a wireless IPv4 channel. Diverse models from different UML profiles are used
to specify functional and extra-functional properties of the overall system.

6 Future Work

Our ongoing work consists of proving more detailed hardware and software specifi-
cations for image processing systems by further elaboration of the modeling approach
presented and by extending the transformation rules for simulation code generation.

Since extensive improvements regarding the UML modeling tools are still required
to increase the efficiency of the model-based engineering, one part of our future work
will be to make the modeling in the context of the suggested approach more user
friendly. Thus, amongst others, to reduce the effort in creating and updating models,
dealing with different modeling views, profiles, and a large number of stereotypes,
we are developing appropriate extensions within the scope of our tool environment.
For the special domain of the modeling of image processing systems, we would like
to provide a modeling library, which will contain several predefined elements like
typical image operators and data types.

Furthermore, an extensive experiment design framework is being developed to
support model-based design and management of simulation experiments. Moreover,
in order to allow precise simulation of hardware, we intend to integrate SystemC"?
in our simulation environment.
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