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Abstract Recently, many systems that consist of a large number of interacting
objects have been analysed using the mean-field method, which allows a quick and
accurate analysis of such systems, while avoiding the state-space explosion problem.
To date, the mean-field method has primarily been used for classical performance
evaluation purposes. In this chapter, we discuss model-checking mean-field mod-
els. We define and motivate two logics, called Mean-Field Continuous Stochastic
Logic (MF-CSL) and Mean-Field Logic (MFL), to describe properties of systems
composed of many identical interacting objects. We present model-checking algo-
rithms and discuss the differences in the expressiveness of these two logics and their
combinations.

1 Introduction

Present-day computational technologies are massive and can cope with a huge
amount of data. However, for modelling or simulation of a large system of inter-
acting objects this computational power is often not enough. The mean-field method
can be used to model such large systems efficiently. This method [1, 2] does not
consider the state of each individual object separately. Instead, only their average
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behaviour, i.e. the fraction of objects in each possible state at any time, is considered.
The model obtained possesses two levels: (i) the local level describes the behaviour
of a random individual; (ii) the global level addresses the overall model behaviour.
On the global level, the mean-field model computes the exact limiting behaviour of
an infinite population of identical objects, which is a good approximation when the
number of objects is not infinite but sufficiently large. Examples of systems for which
themean-field method has been successfully applied include gossiping protocols [3],
disease spread between islands [4], peer-to-peer botnets spread [5] and many more.

Thus far, the mean-field method was primarily used for classical system per-
formance measures, however, also more involved measures might be of interest.
Therefore, methods for efficient and automated model-checking of such non-trivial
measures (or properties) are essential andnon trivial.One challenge lies in the fact that
the model has two layers. Therefore, it is desirable to be able to formulate properties
on both levels. Another challenge is that the local model is a time-inhomogeneous
Markov chain (ICTMC). Therefore, the results of the model-checking procedure
depend on time. Finally, the state-space of the global mean-field model is infinite.
Hence, finding the satisfaction set is difficult.

In this chapter we discuss two logics, namely Mean-Field Continuous Stochastic
Logic (MF-CSL) and Mean-Field Logic (MFL) together with the corresponding
model-checking algorithms. While MF-CSL was proposed in Ref. [6], MFL is a
valuable addition, since it enables reasoning about timed properties on the global
level. MF-CSL first expresses the property of a random node in a system (including
timed properties) and then lifts this to the system level using expectation operators.
In contrast, MFL expresses the property of the whole system directly and it does not
take into account the behaviour of the individual objects.

The contributionof this chapter is to adapt the existing logicSignal Temporal Logic
(STL) [7] to mean-field models. This is done by defining global atomic properties
of the mean-field model, which define binary trajectories based on the real-valued
behaviour of the mean-field model. Moreover, three ways to approximate the full
satisfaction set of an MFL formula are discussed. One of the methods is specifically
tailored toMFL and may be very computationally expensive. The two other methods
are based on existing algorithms, proposed in Refs. [8, 9], where sensitivity analysis
is used to partition the parameter set, which results in more efficient algorithms. We
adapt these methods to approximate the satisfaction set of an MFL formula. This
chapter compares the three methods and discusses available tools. Moreover, we
compare the previously proposed logic MF-CSL to the logic MFL and motivate the
existence of both. The possible combination of both logics is also discussed and
illustrated by an example.

This chapter is further organized as follows. Section2 discusses related work
on model-checking mean-field models. In Sect. 3, a brief overview of the mean-field
model andmean-field analysis is provided. The logicMF-CSL is described in Sect. 4,
whereas Sect. 5 introduces MFL. The two logics are compared in Sect. 6. Section7
concludes the chapter.
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2 Related Work

Model-checking analyses whether a system state satisfies certain properties. It was
initially introduced for finite deterministic models, for the validation of computer
and communication systems, and later extended to stochastic models and models
with continuous time. Checking models of large systems is complicated by the state-
space explosion problem. Hence, model-checking mean-field models is considered
a valuable continuation. For an overview, we refer the reader to Ref. [10].

The first work on model-checking mean-field models was presented in Refs. [6,
11]. Reference [11] presented first steps towards approximate model-checking of
bounded CSL properties of an individual object (or group of objects) in a large
population model. The Fast Simulation Theorem is used to characterise the behav-
iour of a single object via the average system behaviour, as defined by mean-field
approximation. The proposed method is called fluid model-checking, which has been
supplemented with next and steady-state operators in Ref. [12].

In contrast to fluid model checking, cf. [6], focuses on the properties of the whole
population and proposes the logic MF-CSL. Such formulas consist of two layers,
namely the local CSL formula, which describes the property of an individual object
and a global expectation formula describing the fraction of objects, satisfying the
local formula. The algorithm to check the until operator on the local level is based on
the algorithm presented in Ref. [11]. An extra layer on top of local CSL properties
allows the description of global properties of the whole system.We discuss this logic
in more details later in this chapter.

Another two-layer logic is introduced in Ref. [13]. The time-bounded local prop-
erties are described using 1-global-clock Deterministic Timed Automata. Next, the
global probability operator is introduced to estimate the probability that a certain
fraction of local objects satisfies the local property, instead of the fractions of objects
satisfying a certain property as in Ref. [6].

A different approach for model-checking mean-field models was proposed in
Ref. [14]. There, the authors focus on the properties of an individual object, which is
modelled as a discrete-time model in contrast to previously mentioned works. The,
so-called, on-the-fly model-checking approach examines only those states that are
required for checking a given property instead of constructing the entire state space.

Another way of looking at the mean-field model is to consider the behaviour
of the whole system without addressing its local behaviour. Having in mind the
representation of the global behaviour as a real-valued signal, one can use STL-like
properties [7], as will be discussed further in this chapter. Moreover, a great effort
has recently been made to enhance temporal properties with a real value, which is
addressed as quantitative semantics or robustness degree [9, 15–17]. These methods
can be successfully applied tomean-fieldmodels aswell. The robustness of stochastic
systems (including mean-field or fluid models) has been discussed in Ref. [18]. The
design problem has also been addressed, where the parameters of the model can be
optimized in order to maximize robustness. Several tools are available which allow
calculating the robustness degree [19–21].
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3 Mean-Field Models

The main idea of mean-field analysis is to describe the overall behaviour of a system
that is composed of many similar objects via the average behaviour of the individual
objects. In Sect. 3.1we briefly recall the definition of the local model, which describes
the behaviour of each individual object as well as how to build the overall model
that describes the complete system. In Sect. 3.2, we then describe how to compute
transient and steady-state occupancy measures using mean-field analysis.

3.1 Model Definition

Let us start with a random individual object which is part of a large population.
We assume that the size N of the population is constant; furthermore, we do not
distinguish between classes of individual objects for simplicity of notation. However,
these assumptions can be relaxed, see, e.g., [22].

The behaviour of a single object can be described by defining the state space
Sl = {s1, s2, . . . , sK } that contains the states or “modes” this object may experience
during its lifetime, the labelling of the state space L : Sl → 2L AP that assigns local
atomic propositions from a fixed finite set of Local Atomic Properties (LAP) to each
state and the transitions between these states.

In the following we will consider a large population of N objects, where each
individual is modelled as described above, and denoted asMi for i ∈ {1, . . . , N }. Let
us first try to preserve the identity of each object and build the model, describing the
behaviour of N objects individually. It is easy to see that when the population grows
linearly the size of the state space of the model grows exponentially. Fortunately, the
mean-field approach allows modelling such a system of indistinguishable objects
and avoids exponential growth of the state space (state-space explosion).

Given the large number of objects, where each individual is modelled by M ,
we proceed to build the overall model of the whole population. We assume that all
objects behave identically, therefore, we canmove from the individual representation
to a collective one, that does not reason about each object separately, but gives the
number (or fraction) of individual objects in a given state of the modelM . It is done
by taking the following steps:

Step 1. Lump the state space. When preserving the identity of the objects in a
population (M1,M2, . . . ,MN ) the sequence of the models of individual objects
can be considered as a model of the population. However, the size of such sequence
depends on N . Due to the identical and unsynchronized behaviour of the individual
objects, a counting abstraction (or, stated differently, a transition from the individual
to a collective representation) is used to find a smaller stochastic process, denoted
as M(N ), of which the states capture the number of the individual objects across the
states of the local model M :
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M(N )
j =

N∑

i=1

1{Mi = j}.

The state of M(N ) at time t is a counting vector M(t) = (M1(t), M2(t), . . . , MK (t)),
where Mi ∈ {0, . . . , N }, and ∑K

i=1 Mi = N . The initial state is denoted as M(0).
Step 2. Defining transition rates. Given M(N ) and M(0) as defined above the

Continuous-Time Markov Chain (CTMC) M (N )(t) can be easily constructed. The
transition rates are defined as follows [23]:

Qi, j (M(t))=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

limΔ→0
1
Δ
Prob

{
M (t + Δ)) = j |
M (t) = i, M(t)

}
, if Mi (t) > 0,

0, if Mi (t) = 0,
− ∑

h∈Sl ,h �=i Qi,h(M(t)), for i = j,

whereM (t) indicates the state of the individual object at time t . The transitionmatrix
depends on time viaM (t).

Step 3. Normalize the population. For the construction of the mean-field model,
which does not depend on the size of the population, the state vector is normalized
as follows:

m(t) = M(t)

N
,

where 0 ≤ mi (t) ≤ 1 and
∑K

i=1 mi = 1.
When normalizing, first we have to make sure that the related transition rates are
scaled appropriately. The transition rate matrix for the normalized population is
given by:

Q(m(t)) = Q(N · m(t)).

Secondly, the initial conditions have to scale appropriately. This is commonly called
convergence of the initial occupancy vector [24, 25]:

m(0) = M(0)

N
.

The overall mean-field model can then be constructed as follows:

Definition 1 (Overall mean-field model) An overall mean-field model MO

describes the limit behaviour of N → ∞ identical objects and is defined as a tuple
(So, Q), that consists of an infinite set of states:

So =
⎧
⎨

⎩m = (m1, m2, . . . , mK )| ∀ j ∈ {1, . . . , K }, m j ∈ [0, 1] ∧
K∑

j=1

m j = 1

⎫
⎬

⎭ ,
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Fig. 1 The model describing computer virus spread in three groups of computers

where m is called occupancy vector, and m(t) is the value of the occupancy vector
at time t ; m j denotes the fraction of the individual objects that are in state s j of the
model M . The transition rate matrix Q(m(t)) consists of entries Qs,s ′(m(t)) that
describe the transition rate of the system from state s to state s ′.

Note that for any finite N the occupancy vector m is a discrete distribution over K
states, taking values in {0, 1

N , 2
N , . . . , 1}, while for infinite N , themi are real numbers

in [0, 1].
Example 1 We describe amodel of virus spread in a system of interacting computers
(see Fig. 1). We divide the whole computer system into three groups (e.g. different
departments or geographical locations). We name these groups X, Y and Z. Each
group has a fixed number of nodes (computers) NX , NY and NZ , respectively, where
N = NX + NY + NZ . Communication between the groups is possible, but less prob-
able than within a group. The system we model has three different locations and two
different types of hardware (or software), where for each type the same computer
virus would behave differently, i.e. computers in group X differ from the computers
in groups Y and Z . The model of computer behaviour must take into account the
possibility of being (i) in each of the three groups and (ii) being in each of the states
of infection. Let us now consider the spread of the infection.

States represent the modes of an individual computer, which can be uninfected,
infected and active or infected and inactive in all three groups; in addition, in group
X a computer must first stay in the initially connected state before the virus is
fully embedded in the computer system and the computer is infected. An active
infected computer spreads the virus, while an inactive computer does not. Given this
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information, the state-space of the local model must be extended to incorporate the
possibility of being in each of the three groups. This results in the finite local state-
space Sl = {sX,1, sX,2, sX,3, sX,4, sY,1, sY,2, sY,3, sZ ,1, sZ ,2, sZ ,3},with |Sl | = K = 10
states, which are labelled as infected X , uninfected X , initial connectionX , activeX and
inactiveX , etc., as indicated in Fig. 1.

The transition rates for computers in thefirst group are as follows: the infection rate
k∗

X,1 is the rate for the initial connection; after that a computer must first try to pass the
initially connected state with rate kX,3 or return to the uninfected state with rate kX,2.
The recovery rate for an inactive infected computer is kX,5, the recovery rate for an
active infected computer is kX,7, the rate with which computers become active is kX,4

and they return to the inactive state with rate kX,6. Rates kX,2, kX,3, kX,4, kX,5, kX,6

and kX,7 are specified by the individual computer and the properties of the computer
virus and do not depend on the overall system state. The infection rate k∗

X,1 does
depend on the rate of attack kX,1, the fraction of computers that is infected and active
and, possibly, the fraction of uninfected computers. The dependence on the overall
system state is intended to reflect real-world scenarios and might be different for
different situations. We discuss the infection rate of the current model further in this
example.

Given a system of N computers, we can model the average behaviour of the
whole system through the global mean-field model, which has the same underly-
ing structure as the individual model (see Fig. 1), however, with state-space So =
{m X,1, m X,2, m X,3, m X,4, mY,1, mY,2, mY,3, m Z ,1, m Z ,2, m Z ,3}, where m X,1 denotes
the fraction of uninfected computers in group X · m X,2 represents the fraction of
computers in the initially connected state, and m X,3 and m X,4 denote the fraction of
active and inactive infected computers in group X , etc.

The infection rate can then be seen as the number of attacks performed by all active
infected computers in group X , which is uniformly distributed over all uninfected
computes in a chosen group, that is, kX,1 · m X,4(t)

m X,1(t)
. Note that we assume here that

computer viruses are “smart enough” to only attack computers which are not yet
infected, see [5, 26]. As discussed above, the computers from the different groups
might interact with a certain probability. In the context of our virus spread model,
this interaction plays a role when infected computers from groups Y and Z might
contact uninfected computers in group X and vice versa. In this example model,
we describe a virus which chooses one of the groups of computers with probability
pX,X , pX,Y , pX,Z (for an infected computer from group X ). The complete infection
rates are composed by multiplying the above rates for one group with the probability
of choosing a given group and accumulating all possible interactions between the
three groups. Given the reasoning above, the infection rate in group X is

k∗
X,1 = pX,X · kX,1 · m X,4(t)

m X,1(t)
+ pY,X · kY,1 · mY,3(t)

m X,1(t)
+ pZ ,X · kZ ,1 · m Z ,3(t)

m X,1(t)
.

The infection rates of groups Y and Z are constructed in a similar way.
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For example, a completely healthy system without infected computers would

be in state m =
(

N1

N
, 0, 0, 0,

N2

N
, 0, 0,

N3

N
, 0, 0

)
. A system with 50% uninfected

computers and 40 and 10% of inactive and active computers in group X , and no
infected computers in groups Y and Z would be in state:

m =
(
0.5 · N1

N
, 0, 0.4 · N1

N
, 0.1 · N1

N
,

N2

N
, 0, 0,

N3

N
, 0, 0

)
.

3.2 Mean-Field Analysis

Here we express a reformulation of Kurtz’s theorem [27] which relates the behaviour
of the sequence of models M1,M2, . . . ,MN with increasing population sizes to
the limit behaviour. We reformulate the theorem to make it more suitable for our
purposes.

Before the theorem can be applied one has to checkwhether the overall mean-field
model satisfies the following two conditions:

1. the model preserves the so-called density dependence condition in the limit N →
∞ for all N > 1. This means that transition rates scale together with the model
population, so that in the normalized models they are independent of the size of
the population.

2. The rate functions are required to be Lipschitz continuous (informally it means
that rate function are not too step).

When the three steps for constructing the mean-field model are taken and the above-
mentioned conditions are satisfied, Kurtz’s theorem can be applied, which can be
reformulated as follows: For increasing values of the system size (N → ∞) the
sequence of the individual models converges almost surely [28] to the occupancy
vector m, assuming that functions in Q(m(t)) are Lipschitz continuous, and for
increasing values of the system size, the initial occupancy vectors converge to m(0).
The above statement can be formally rewritten as in Ref. [23].

Theorem 1 (Mean-field convergence theorem) The normalized occupancy vector
m(t) at time t < ∞ tends to be deterministic in distribution and satisfies the following
differential equations when N tends to infinity:

dm(t)

dt
= m(t) · Q(m(t)), given m(0). (1)

The ODE (1) is called the limit ODE. It provides the results for the population of size
N → ∞, which is often an unrealistic assumption for real-life systems. However,
when the number of objects in the population is finite but sufficiently large, the
limit ODE provides an accurate approximation and the mean-field method can be
successfully applied.
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Fig. 2 Distribution of the computers over the states of themodel for each group. The dashed, dotted,
dash-dotted and solid lines show the fraction of uninfected, initially infected, infected inactive and
infected active computers respectively

The transient analysis of the overall system behaviour can be performed using the
above system of differential equations (1), i.e. the fraction of objects in each state of
M at every time t is calculated, starting from some given initial occupancy vector
m(0), as illustrated in the following example.

Example 2 We provide an example, applying the mean-field method to the virus
spread model, as in Example 1. We describe how to construct the mean-field model
and obtain the performance results. The model below will be used throughout the
chapter as a running example. The distribution of objects over three groups in this
example is uniform, where N1 = N2 = N3 = N

3 .
Theorem 1 is used to derive the system of ODEs (1) describing the mean-

field model. These ODEs are solved, given the following initial vector1 m(0) =
1
3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}), and the following parameters:

kX,1 = 0.2, kY,1 = 0.9, kZ ,1 = 0.25, pX,X = 0.93,
kX,2 = 0.01, kY,2 = 0.005, kZ ,2 = 0.001, pY,Y = 0.94,
kX,3 = 0.2, kY,3 = 0.01, kZ ,3 = 0.001, pZ ,Z = 0.97,
kX,4 = 0.0001, kY,4 = 0.1, kZ ,4 = 0.05, pX,Y = 0.05,
kX,5 = 0.0001, kY,5 = 0.06, kZ ,5 = 0.001, pX,Z = 0.02.
kX,6 = 0.005, pY,X = 0.05, pZ ,X = 0.02,
kX,7 = 0.005, pY,Z = 0.01, pZ ,Y = 0.01,

The distribution of the objects between the states of the model over time (see Fig. 2)
is obtained using Wolfram Mathematica [29].

In the following we discuss a couple of topics which lie beyond the convergence
theorem discussed above. We first explain how the behaviour of individual objects
within the overall population can be modelled. Second, possible relaxations of the
assumptionsmade for this theoremare discussed. Then the behaviour in the stationary
regime is briefly recalled.

Local model. The rates of themodel for an individual object within the population
may depend on the overall system state, which means that the local model is a Time-
Inhomogeneous Continuous-Time Markov Chain (ICTMC). To formally describe

1Note that for ease of interpretation, we group the elements of the vector according to the three
submodels.
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the behaviour of a single individual in the population the asymptotic decoupling of
the system is used, and the result is often referred to as Fast Simulation [25, 30].
The main idea of this method lies in the fact that every single object (or group of
objects) behaves independently from other objects, and can only sense the mean of
the system behaviour, which is described by m(t). The model of one object within
the population is called “local mean-field model” in the following and is defined as:

Definition 2 (Local model) A local model M l describing the behaviour of one
object is defined as a tuple (Sl , Q, L) that consists of a finite set of K local states
Sl = {s1, s2, ..., sK }; an infinitesimal generator matrix Q : (Sl × Sl) → R; and the
labelling function L : Sl → 2L AP that assigns local atomic propositions from a fixed
finite set of Local Atomic Properties (LAP) to each state.

Relaxing the assumptions. For models considered in practice the assumption of
density dependence may be too restrictive [25]. Furthermore, also the assumption
of (global) Lipschitz continuity of transition rates can be unrealistic [31]. There-
fore, these assumptions can be relaxed and a more general version of the mean-field
approximation theorem, having less strict requirements and which is applied to pre-
fixes of trajectories rather than to full model trajectories, can be obtained. We will
not focus on this reformulation of the convergence theorem here, instead we refer
to [2].

Moreover, the mean-field approach has recently been expanded to a class of mod-
els with both Markovian and deterministically timed transitions, as introduced for
generalized semi-Markov processes in Ref. [32]; and generally distributed timed
transitions for population generalized semi-Markov processes [33]. In addition, an
extension towards hybrid Markov population models has recently been made in
Refs. [34, 35].
Stationary behaviour. The convergence theoremdoes not explicitly cover the asymp-
totic behaviour, i.e. the limit for t → ∞. However, when certain assumptions hold,
the mean-field equations allow to perform various studies including steady-state
analysis. In the following we briefly recall how to assess the steady-state behaviour
of mean-field models as in [36].

The stochastic process (M(N )), which was approximated by themean-field model,
has to be studied in order to find out whether the stationary distribution exists. It has
been shown that, if the stochastic process is reversible, the fixed point approximation
addressing the limiting behaviour of the overall mean-field model is indeed valid.
Fixed point is an approximation of the stationary behaviour of the stochastic process
by the stationary points of the mean-field (fluid) limit [36]. The reversibility of
the stochastic process implies that any limit point of its stationary distribution is
concentrated on stationary points of the mean-field limit. If the mean-field limit has
a unique stationary point, it is an approximation of the stationary distribution of the
stochastic process. The stationary distribution m̃ = limt→∞ m(t), if it exists, then is
the solution of:

m̃ · Q(m̃) = 0. (2)
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For some models the above equation can not be applied straightforwardly and more
advanced methods are required in order to approximate the stationary distribution or
its bounds [37]. This, however, lies outside of the scope of this chapter.

4 Overall System Properties. The Logic MF-CSL

In this section, we briefly recall the logic MF-CSL for checking properties of mean-
field models, as introduced in Ref. [6]. MF-CSL is a two-layer logic, where (i) on
the local level the property of a random object is specified; (ii) on the global level
the fraction of objects satisfying this local property is expressed.

4.1 CSL and MF-CSL

Let us first recall how the properties of a randomobject can be expressed and checked.
As discussed in Sect. 3, the model of one object in a mean-field system is an ICTMC.
Therefore, the logic CSL [38] can be used to describe properties on the local layer.

Definition 3 (CSL Syntax) Let p ∈ [0, 1] be a real number, ��∈ {≤,<,>,≥} a
comparison operator, I ⊆ R≥0 a non-empty time interval and LAP a set of atomic
propositions with lap ∈ LAP. CSL state formulas Φ are defined by:

Φ:: = t t | lap | ¬Φ | Φ1 ∧ Φ2 | S��p(Φ) | P��p(φ),

where φ is a path formula defined as:

φ:: = χ I Φ | Φ1 U I Φ2.

When the local model is time homogeneous, the semantics of CSL formulas is well
known. However, in any non-trivial mean-field model, the transition rates of the local
model M l are not constant. According to Definition 2, the rates of the local model
M l may depend on the state of the global model M O , which changes with time.
There are two ways to formalize this: the local rates depend on (i) the current state
m, which changes with time, or (ii) on global time. While the first is more intuitive,
it does not allow transition rates to depend explicitly on global time. For ease of
notation we restrict ourselves to models that only depend on the overall state. Note
that this approach can easily be extended to models that explicitly depend on global
time.

Since the local model changes with the overall system state, the satisfaction rela-
tion for a local state or path depends on the global state m. Therefore, the satisfaction
relation |=m , was introduced in Ref. [6]. Due to the lack of space we do not provide
the extended semantics of CSL for the local model and refer to [6] for more details.

In order to reason at the level of the overall model in terms of fractions of objects
we introduce an extra layer “on top of CSL” that defines the logic CSL for mean-field
models, denoted MF-CSL.
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Definition 4 (MF-CSL Syntax) Let p ∈ [0, 1] be a real number, and ��∈ {≤,<,>,

≥} a comparison operator. MF-CSL formulas Ψ are defined as follows:

Ψ :: = t t | ¬Ψ | Ψ1 ∧ Ψ2 | E��p(Φ) | ES��p(Φ) | EP��p(φ),

where Φ is a CSL state formula and φ is a CSL path formula.

This definition introduces three expectation operators: E��p(Φ), ES��p(Φ) and
EP��p(φ), with the following interpretation:E��p(Φ) denotes whether the fraction of
objects that are in a (local) state satisfying a general CSL state formulaΦ fulfils �� p;
ES��p(Φ) denotes whether the fraction of objects that satisfyΦ in steady state, fulfils
�� p; EP��p(φ) denotes whether the probability that an object chosen uniformly at
random satisfies path formula φ fulfils �� p.

Example 3 In the following, we provide a couple of example MF-CSL formulas.

• No more than 5% of all computers are infectedY (i.e. these computers belong to
the group Y and are infected), is expressed as E≤0,05 infectedY .

• The percentage of all computers which happen to belong to group X and have
a probability of less than 10% of going from an uninfected to an active infected
state within 3h is greater than 40%, i.e.

E>0,4
(
P<0.1(uninfectedX U [0,3] activeX )

)
.

• EP<0.5(ttU [0,2] infectedZ ) ensures a probability below50% that amachine, chosen
uniformly at random, is in group Z and becomes infected within two hours from
now.

• In the long run a very low proportion (less than 2%) of all computer should be
infected group Z machines: ES<0.02 infectedZ .

Definition 5 (MF-CSL Semantics) The satisfaction relation |= for MF-CSL for-
mulas and states m = (m1, m2, . . . , mK ) ∈ So of the overall mean-field model is
defined by:

m |= t t ∀ m ∈ So,
m |= ¬Ψ iff m �|= Ψ ,
m |= Ψ1 ∧ Ψ2 iff m |= Ψ1 ∧ m |= Ψ2,

m |= E��p(Φ) iff

(
K∑

j=1
m j · I nd(s j |=mΦ)

)
�� p,

m |= ES��p(Φ) iff

(
K∑

j=1
m j · πM l

(s j , Sat (Φ, m))

)
�� p,

m |= EP��p(φ) iff

(
K∑

j=1
m j · ProbM l

(s j , φ, m)

)
�� p,
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where Sat (Φ, m), πM (s, Sat (Φ, m)), ProbM l
(s, φ, m) are defined in the seman-

tics ofCSL formula [6]; and I nd(s j |=mΦ) is an indicator function,which showswhether
a local state s j ∈ Sl satisfies formula Φ for a given overall state m:

I nd(s j |=mΦ) =
{
1, if s j |=m Φ,

0, if s j �|=m Φ.

Although m is referred to as the m vector at time 0, this is only for ease of discussion,
without loss of generality.

To check an MF-CSL formula at the global level, the local CSL formula has to be
checked first, and the results are then used at the global level. As discussed above,
the local model M l is a time-inhomogeneous CTMC, i.e. transition rates vary with
the state of the overall model M O , which makes model-checking at the local level
non-trivial. The full algorithms for checking CSL properties of the local model are
based on the methods presented in Ref. [11], and have been adapted for the MF-
CSL semantics in Ref. [6] according to Definition 5. These algorithms enable the
identification of the satisfaction set of a CSL formula for a given initial occupancy
vector (i.e. at time t = 0), as well as the time-dependent satisfaction set of a CSL
formula for a given initial occupancy vector and time bound θ .

Traditionally, the satisfaction set of a given formula is the set of states which
satisfies that formula. In the context of MF-CSL model-checking, this would result
in the set of all occupancy vectors m that satisfy a given formula. While such a set
can be built for time-independent MF-CSL operators, it is not a trivial task for time-
dependent operators, since model-checking on the local model M l must be done
without knowing the initial occupancy vector. Theoretically speaking, partitioning
of the whole state-space into sets which satisfy a givenMF-CSL formula and the rest
is possible, but it is computationally very expensive, as model-checking the local
time-inhomogeneous CTMC is very demanding.

Since obtaining the full satisfaction set of an MF-CSL formula is not practically
feasible, the notion of Time Validity Set of the MF-CSL formula for a given initial
occupancy vector and time interval is defined in Ref. [6] as follows:

Definition 6 (Time Validity Set) Let θ > 0 be a predefined time bound,Ψ be anMF-
CSL formula, and initial conditions of the mean-field model M O be an occupancy
vector m(0) = m. The T ime Validity Set (TVS) contains all time intervals, where
Ψ holds, for a given m, and θ :

TVS(Ψ, m, θ) = {t ∈ [0, θ ] | m(t) |= Ψ }.

The time validity set is a set of time intervals, where a given MF-CSL formula holds
for fixed initial conditions.Wewill use this notion later in the chapterwhen discussing
MFL and comparing the two logics. For the details of model-checking MF-CSL we
refer to [6]. However, we provide an example that illustrates the general procedure
of model-checking two-layer properties.



354 A. Kolesnichenko et al.

Example 4 We show how to check whether a given occupancy vector satisfies an
MF-CSL formula (Case A), and how to compute the corresponding TVS (Case B)
for the model provided in Example 1.3.2.

Case A. Let us consider the following formula

Ψ = EP<0.2(uninfectedY U [0,3] infectedY )

and the occupancy vector m = 1
3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}). In

order to check the satisfaction relation m |= Ψ , we first compute the satisfaction
set of the until formula on the local level, and then check the satisfaction relation
m |= Ψ using Definition 5. We use algorithms from [6] as follows.

To find the probability that the until formula holds, the following reachability
problem must be solved: Is state infectedY reached within 3 time units by only
visiting uninfectedY states? This is done by calculating transient probabilities on
the modified local model, where all states satisfying infectedY , and states in groups
X and Z are made absorbing. The Kolmogorov equation is used to calculate the
transient probability matrix of the modified local model. The transient (reachability)
probabilities for state sY,1 to reach states sY,1 and sY,2 are equal to 0.77 and 0.23,
respectively. The probability to reach any state s starting at this state is, obviously,
one. All other transient probabilities are equal to zero.

To compute the probability that the until formulaφ = uninfectedY U [0,3] infectedY
holds for each starting state, we have to accumulate the probabilities to start at this
state and end at the infectedY state. Therefore, the probability that the until formula
holds equals 0.23, since for all states, but sY,1, this probability equals zero. According
to Definition 5, the weighted sum of the entries of the occupancy vector m and the
respective probabilities in the local model define the expected probability EP(φ) as
follows:

K∑

j=1

m j · ProbM
l
(s j , φ, m) = mY,1 · 0.23 + mY,1 · 1.0 = 0.3 · 0.23 + 1

30
· 1 = 0.102.

Therefore the occupancy vector m satisfies EP<0.2(uninfectedY U [0,3] infectedY ).
Case B. Let us consider the same formula Ψ and occupancy vector m and com-

pute TVS(Ψ, m, 15) for θ = 15. The calculation of the time-dependent probabilities
ProbM l

(s, uninfectedY U [0,3]infectedY , m, t) requires the initial transient probabil-
ity (for time t = 0), as done inCaseA.Next, theODEs describing the time-dependent
transient probability of the modified local model are constructed using both forward
and backward Kolmogorov equations [6]. These equations are solved using the ini-
tial transient probability (as computed in Case A) as initial condition. The solution
of these ODEs defines the required time-dependent reachability probabilities. The
time-dependent probability that state sY,1 satisfies the until formula is depicted in
Fig. 3. The probability equals zero for all other starting states, since these states do
not satisfy uninfectedY . To calculate TVS(Ψ, m, 15) the time-dependent expected
probability is calculated using the time-dependent probability that the until formula
holds (see Fig. 3). Then, the time points where the expected probability equals 0.2
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Fig. 3 The dashed line (top) shows ProbM
l
(sY,1, uninfectedY U [0,1]infectedY , m, t). The

(increasing) solid line shows the time-dependent expected probability that the formula
EP<0.2(uninfectedY U [0,1] infectedY ) holds. The horizontal and vertical dotted lines
delimit the period for which the probability is below 0.2, and hence the formula
EP<0.2(uninfectedY U [0,1] infectedY ) holds

are found. In the current example, this is only t = 6.228. The time validity set of
the formula EP<0.2(uninfectedY U [0,3] infectedY ) then consists of all time inter-
vals, where the probability EP(uninfectedY U [0,3]infectedY ) is less than 0.2, i.e.
TVS(Ψ, m, 15) = [0, 7.45).

5 Timed Properties of the Global Model: MFL

In the previous section, we introduced a way to express and check properties of the
global mean-field modelM O via properties of a random local object. The properties
whichMF-CSL can describe include CSL properties (possibly temporal) of the local
model and the expected number of objects for a global model to satisfy this property.
However, timed properties of the global model can not be expressed using MF-CSL,
but can be beneficial for understanding the behaviour of large systems. For that
purpose, the new Mean-Field Logic (MFL) is introduced in Sect. 5.1. Algorithms for
model-checking MFL properties are presented in Sects. 5.2 and 5.3.

5.1 MFL Syntax and Semantics

To be able to express timed properties of the overall model, we adapt the existing
Signal Temporal Logic (STL) which was developed to monitor discrete temporal
properties of continuous signals [7, 39]. In order to do so, we address the solution
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of the ODEs (1) for given initial conditions m(0) as a signal or a trajectory of the
global/overall mean-field model M O . In the following, we express properties of
real-valued trajectories of mean-field models m(t) using STL-like properties. We
first introduce the mapping of the model trajectory to a Boolean signal.

Definition 7 (Global atomic property) An atomic propertyGAP of the globalmodel
is a characteristic function (Boolean predicate) So → {0, 1}, from occupancy vector
m to a Boolean value.

Applying the concept of GAP to a given trajectory of a mean-field model m(t)
results in a Boolean function of time GAP(m(t)). In order to guarantee decidability,
we require that the output Boolean trajectory GAP(m(t)) has finite variability, i.e.
the number of time points where GAP(m(t)) changes value is finite; the output
trajectory is a Boolean robust (cadlag2) function [7]. For simplicity, in the following
we use inequalities of the form

∑
i∈N ai · mi �� p as global atomic properties of

mean-field models, where ai is an indicator factor equal to 1 or 0. However, more
advanced functions, satisfying the above requirements, can be used as GAP. Given
the definition of a global atomic property, the syntax of Mean-Field Logic (MFL)
can be introduced.

Definition 8 (Syntax of MFL) Let I = [a, b], where 0 ≤ a < b, be a non-empty
bounded time interval and function GAP defining global atomic properties. MFL
formulas Υ are defined as:

Υ :: = t t | GAP | Υ1 ∧ Υ2 | ¬Υ | Υ1 U
I Υ2.

We can define not only a property of the global model at a given time point but also
the evolution of the model over time, as shown in the following example.

Example 5 Wefirst start with the properties of the global model at a given time point
(time-independent properties). To define such a property, G APs are combined with
the time-independent operators ¬ and ∧.

The following property describes a system in which the fraction of computers that
belong to group Y and that are infected is smaller than 0.2:

Υ1 = mY,2 + mY,3 < 0.2,

where mY,2 and mY,3 denote the number of infected computers in group Y (inactive
and active respectively). The same property can be expressed using atomic properties
of the local model as follows: infectedY < 0.2. Here and in the following, we use
labels of the local model instead of fractions in G AP to ease the interpretation of
the formula.3 A more involved property can be defined by a conjunction of G APs.

2A function is called cadlag if it is defined on the real numbers (or a subset of them), if it is
everywhere right-continuous and if it has left limits everywhere.
3Note, however, a global atomic property is not always connected to the properties of the local
model (unlike the expectation operator in MF-CSL).
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For example, the property that a system has more than 20% infected computers and
less than 1% active infected group-Z computers is formalized as:

Υ2 = infected < 0.2 ∧ activeZ < 0.01.

Note that the first part of the property Υ2 includes all infected computers in all three
groups. The timed properties of the global system are constructed by combining
GAPs (or other MFL formulas) using the until operator. The following property
describes the system in which the fraction of computers which belong to group X
and are infected is smaller than 0.1 at all times until in the time interval between 3
and 5 time units the fraction of computers that are members of group Z and active
exceeds 0.4:

Υ3 = (infectedY < 0.1) U [3,5] (activeZ > 0.4).

Definition 9 (Semantics of MFL) The satisfaction relation |= forMFLstate formulas
and state m ∈ So is defined as:

m |= t t ∀ m ∈ So,

m |= G AP iff G AP(m) = 1,
m |= Υ1 ∧ Υ2 iff m |= Υ1and m |= Υ2,

m |= ¬Υ iff m � Υ,

m |= Υ1U I Υ2 iff ∃t ∈ I : (m(t) |= Υ2) ∧ (∀t ′ ∈ [0, t] m(t ′) |= Υ1),

where m = m(0) at time t = 0, and m(t ′) is a solution of the ODEs (1) at time t = t ′
with m as the initial condition.

The definition of the until formula is different from the usual representation [40],
because it requires both Υ1 and Υ2 to hold at time t , in order to guarantee closure [7].

As was explained in the previous section, in this chapter we discuss mean-field
models, where the dependency on time is only implicit (via m(t)). Therefore, the
entire model trajectory (the solution of the ODEs (1)) is defined through the cur-
rent system state; the time when this state is reached does not influence the future
behaviour of the system. The occupancy vector for which the satisfaction relation is
checked is therefore denoted m(0), and the time intervals in the until formulas are
relative. However, all the arguments and algorithms presented in this section can be
generalized to models with an explicit time dependence. The next section overviews
the algorithms used for checking MFL properties of mean-field models.

5.2 Checking an MFL Property

To check an MFL formula, its parse tree has to be built and all sub-formulas have
to be checked recursively. Therefore, the algorithms for checking each individual
operator have to be introduced. Checking a given occupancy vector m against time-
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independent operators is straightforward, which follows directly from Definition 9.
However,MFL formulas containing the Until operator can not be checked that easily,
since the behaviour of the system (trajectory) influences the result. Therefore, we
introduce the notion of the time validity set for a given MFL formula, mean-field
model and an occupancy vector, as done in the previous section forMF-CSL formulas
(seeDefinition 6). It is easy to see that if theTVS(Υ, m, θ) contains t = 0, the formula
holds for m. The TVS of a general MFL formula is again built recursively by finding
the TVSs of sub-formulas. The computation of the TVS for the time-independent
operators is straightforward:

TVS(t t, m, θ) = [0, θ ],
TVS(GAP, m, θ) = {t ∈ [0, θ ] | GAP(m(t)) = 1},
TVS(¬Υ, m, θ) = [0, θ ] \ TVS(Υ, m, θ),

TVS(Υ1 ∧ Υ2, m, θ) = TVS(Υ1, m, θ) ∩ TVS(Υ2, m, θ).

Computing the TVS for the until operator (Υ1U [a,b]Υ2) (with 0 ≤ a < b) is more
challenging. The algorithm described in the following is based on the method of
monitoring temporal properties as in Refs. [7, 39]; we refer to these papers for more
details and proofs.

To compute the TVS for the until formula Υ = Υ1U [a,b]Υ2 we first find the sets
of time intervals where the sub-formulas Υ1 and Υ2 hold. Note that both sets may
containmultiple intervals. Thereforewe denote them as TVS(Υ1, m, θ) = υ1

1 ∪ υ2
1 ∪

. . . ∪ υ
n1
1 , and TVS(Υ2, m, θ) = υ1

2 ∪ υ2
2 ∪ . . . ∪ υ

n2
2 , respectively.

TocalculateTVS(Υ, m, θ)onemust obtain all time intervalswhereΥ = Υ1U [a,b]
Υ2 holds. Hence, we search for time intervals where both Υ1 and Υ2 hold, since these
are the time intervals, where the validity of the until formula can be confirmed, in case
at least one such time interval lies between a and b. Recall that the time interval in the
until formula is relative to the starting point. Therefore, to check whether a given vec-
tor fulfils the until formula, one must check whether the intersection interval can be
reached from the vector within the predefined time interval [a, b]. Hence, to directly
compute the set of all time points from which the formula can be fulfilled, we shift
TVS(Υ1 ∩ Υ2, m, θ) backwards, i.e. move the left interval bound back with b and the
right with a time units. This is defined for each pair of sub-intervals in TVS(Υ1, m, θ)

and TVS(Υ2, m, θ) as a backwards shift, denoted asBS [a,b](υ i
1;υ

j
2 ). For each pair

of the intervals (υ i
1;υ

j
2 ), the backward shift is computed as follows:

BS [a,b](υ i
1;υ

j
2 ) = ((υ i

1 ∩ υ
j
2 ) � [a, b]) ∩ υ i

1, (3)

where [x1, x2] � [a, b] := [x1 − b, x2 − a] ∩ [0,∞). This backward shift can be
understood as follows (from left to right):

1. The intersection (υ i
1 ∩ υ

j
2 ) defines all time points where both Υ1 and Υ2 are valid.

2. The �-operation (or backwards shift) ensures that:
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a. the earliest starting point is taken such that after at most b time units one
can reach a state where Υ2 holds;

b. the latest starting point is taken such that one can still switch to a state in
which Υ2 holds for at least a time units.

3. The intersection with υ
(i)
1 ensures that on the way to the state where Υ2 holds, Υ1

always holds.

After the backwards shift is applied to each pair (υ i
1;υ

j
2 ), the resulting intervals are

then combined to find the TVS of the overall until formula:

TVS(Υ1U
[a,b]Υ2, m, θ) =

n1⋃

i=1

n2⋃

j=1

BS [a,b](υ i
1;υ

j
2 ). (4)

In practice, only the pairs of intervals which actually intersect must be considered.
Given the above, the TVS of any MFL formula can be found. After the TVS of
the formula is found, we can validate whether a formula holds for a given initial
occupancy vector m by checking whether t = 0 lies in the TVS. Note that the TVS
can also be seen as an independent measure of interest, if one is looking for the time
slots where the system satisfies a given property, for a given initial state (as in the
previous section). In the following, model-checking MFL formulas is illustrated by
an example.

Example 6 We again address the model of Example 1, with the same parame-
ters as given in Example 2. We explain in detail how to calculate the time valid-
ity set TVS(Υ, m(0), θ) for both time-independent and time-dependent formulas,
given m(0) = 1

3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}), and θ = 25. Next,
we check whether 0 ∈ TVS(Υ, m(0), θ), which would indicate that the initial occu-
pancy vector m(0) satisfies the formula.

Case A. We first consider the time-independent property, describing the situation
in which the fractions of active computers in groups Y and Z are “sufficiently small”,
i.e. the fraction of active infected computers in group Y is bounded by 0.015, and
the fraction of active infected computers in group Z is at most 0.01:

Υ A = (activeY ≤ 0.015) ∧ (activeZ ≤ 0.01).

To check this property the following steps are taken:

1. The trajectory of the model is obtained by solving the ODEs given m(0).
2. The TVS of the sub-formulas Υ A

1 = (activeY ≤ 0.015) and Υ A
2 = (activeZ ≤

0.01) are calculated using a root finding procedure for mY,3(t) = 0.015 and
m Z ,3(t) = 0.01:

• TVS(Υ A
1 , m(0), θ) = [6.79; 21.69];

• TVS(Υ A
2 , m(0), θ) = [15.14, 25] (see Fig. 4a).

3. The TVS of the whole formula then consists of all intervals, where both sub-
formulas hold: TVS(Υ A, m(0), θ) = [15.14; 21.69] (see Fig. 4b).
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Fig. 4 a TVS of
Υ A
1 = (activeY ≤ 0.015)

(solid line) and
Υ A
2 = (activeZ ≤ 0.01)

(dashed line). b Intersection
of TVS(Υ A

1 , m(0), θ) and
TVS(Υ A

2 , m(0), θ)

Fig. 5 a TVSs of
Υ B
1 = active ≤ 0.05 (dashed

line) and
Υ B
2 = (uninfected ≤ 0.6)

(solid line). b Intersection of
TVS(Υ B

1 , m(0), θ) and
TVS(Υ B

2 , m(0), θ). c TVS
of Υ B = (active ≤ 0.05)
U [0,3] (uninfected ≤ 0.6)

4. The validity of the formula for a given initial vector is checked by verifying
whether t = 0 lies in TVS(Υ A, m(0), θ). It is easy to see that 0 /∈ [15.14, 21.69],
therefore m(0) �|= Υ A.

Case B. We now consider a time-dependent property of the global model, which
describes that the fraction of active infected computers in all three groups together
(denoted as active) remains smaller or equal to 0.05 until within 3 time units the
fraction of all uninfected computers becomes less or equal to 0.6. This property
ensures that the virus is “quiet enough” and will not be detected until a sufficient
number of computers in the system is infected:

Υ B = (active ≤ 0.05) U [0,3] (uninfected ≤ 0.6).

We first find the time validity sets for this formula and check whether the initial
occupancy vector m(0) satisfies this property:

1. The time validity sets of the sub-formulas Υ B
1 = active ≤ 0.05 and Υ B

2 =
uninfected ≤ 0.6 are calculated using a root findingprocedure form X,3 + mY,3 +
m Z ,3 = 0.05 and m X,1 + mY,1 + m Z ,1=0.6; and are given as TVS(Υ B

1 , m(0), θ)

= [0; 3.64] and TVS(Υ B
2 , m(0), θ) = [2.5; 25] (see Fig. 5a).

2. The intersection of TVS(Υ B
1 , m(0), θ) and TVS(Υ B

2 , m(0), θ) is [2.5; 3.64]
(Fig. 5b).

3. To find TVS(Υ B, m(0), θ) the backwards shift is performed as in Eq. (4)
TVS(Υ B, m(0), θ) = [2.5 − 3; 3.64 − 0] = [0; 3.64] (see Fig. 5c). Note that
the behaviour of the system in the past (before time t = 0) is not relevant. There-
fore, the lower bound of the TVS is set to zero.
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4. Formula Υ B = (active ≤ 0.05) U [0,3] (uninfected ≤ 0.6) holds for m(0), since
0 ∈ TVS(Υ B, m(0), θ).

Wolfram Mathematica [29] was used to calculate the results above. We compared
them with results obtained from the Breach toolbox [19], which has been built to
check STL properties, confirming that the results coincided.

5.3 Satisfaction Set of an MFL Formula

In this section, we discuss how to compute the complete satisfaction set of an MFL
formula, which is formally defined as follows:

Definition 10 (Satisfaction Set) Given an MFL formula Υ and a mean-field model
M O , the satisfaction set of an MFL formula consists of all occupancy vectors m
that satisfy Υ :

Sat(Υ ) = {m | m |= Υ }.

The mean-field model has an infinite state-space. Therefore, the computation of the
satisfaction set is not straightforward. The ultimate goal is to partition the state-space
of the model SO into two parts: (i) states satisfying a given formula, i.e. Sat(Υ ) and
(ii) states which do not satisfyΥ . Since exact methods for computing the satisfaction
set of an MFL formula are not available, numerical (approximate) algorithms will
be discussed in the following, which means that it might not always be possible to
partition the state-space into two sets. Hence, a third set, namely, a set of uncertain
states, may be necessary. In such cases, this third set should be as small as possible.
The satisfaction set of a given formula is constructed recursively, by building and
combining the satisfaction sets of sub-formulas.

5.3.1 Time-Independent Operators

The computation of satisfaction sets for operators which are not time dependent, is
straightforward and does not imply any additional computations. It follows directly
from Definition 9 and is formalized as follows:

Sat(t t) = So,

Sat(GAP) = {m | GAP(m) = 1},
Sat(Υ1 ∧ Υ2) = Sat(Υ1) ∩ Sat(Υ2),

Sat(¬Υ ) = So\Sat(Υ ).
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5.3.2 The Until Operator

The computation of the satisfaction set of the time-boundeduntil operatorΥ1U [a,b]Υ2

is not trivial and involves additional methods.We discuss three ways that can be used
to calculate this set. Twoof thesemethods are directly applicable to the completeMFL
formula, andone is only suitable for a single until operator.Hence, the satisfaction sets
of the time-independent sub-formulas must be computed separately (see Sect. 5.3.1).

Discretization of the state-space. One of the ways to approximate the satisfac-
tion set of an MFL formula is to discretize the continuous state space and check the
MFL formula for each point of the discrete state space obtained using the standard
method (see Sect. 5.2). The discretization can be done, for example, by a grid-based
approach. However, this approach is computationally intensive and produces only
an approximation of the satisfaction set. Moreover, the quality of such an approx-
imation and the computational demand depend directly on the granularity of the
grid. Moreover, the complexity of the problem grows with the number of dimensions
(local states). Although the method is applicable to any MFL formula, applying it
to a model with a large local state-space to obtain high quality approximations is
simply not feasible.

Solving two reachability problems. Another way to numerically develop the
satisfaction set of a given until formula would be to divide the formula Υ1U [a,b]Υ2

into two reachability problems, similar to standard methods, as e.g. in Ref. [38]:
(i) starting from the states which satisfy Υ1, the trajectory evolves such that only
states satisfying Υ1 are visited during time interval [0, a]; (ii) starting from the states
which satisfy Υ1 and are reachable during the first step, the trajectory evolves such
that only states satisfying Υ1 are visited until a state satisfying Υ2 is reached during
time interval [0, b − a]. The reachability problems for mean-field models can be
solved using techniques proposed in Ref. [8]. Their method partitions the parameter
set of the ODE-based model into three sets, namely, (i) Sgoal, which comprises all
states that satisfy the reachability problem, (ii) Sbad, including all states which do
not satisfy it, and (iii) Sunc, which combines all states for which reachability can not
(yet) be decided. Instead of partitioning the parameter space, we use the proposed
methods to partition the state-space of the mean-field model. Note, however, that this
approach is only applicable for a single until operator. To compute the satisfaction
set of an until formula, we need to solve the two reachability problems in reverse
order. We first find all states from which we can reach an Υ2 state in at most (b − a)

time units, while visiting only Υ1 states. We denote the set of all these states as S′
goal.

We then find the set of all states, denoted as Sgoal, from which we can reach S′
goal,

while visiting only Υ1 states. The satisfaction set of the overall until formula then
equals Sgoal.

The general approach of the method given in Ref. [8] is as follows. The reachable
set is found using sensitivity analysis and the satisfaction set is obtained by using a
parameter synthesis algorithm based on refining partition, which iteratively refines
the state-space of the mean-field model and assigns the subsets obtained to one of the
three sets, namely: Sgoal, Sbad, or Sunc by checking the reachability problem for this
set. Each refinement introduces only subsets that are strictly smaller than the refined
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set to guarantee that the process ends. The algorithm is designed to stop when the
uncertain set is either empty or smaller than a predefined value.

The Breach Toolbox [19] was used to implement the above algorithm. However, a
tool for the automated solution of the reachability problem is not available. Although
the numerical algorithms in Ref. [8] can not provide formal guarantees on the cor-
rectness of the results, asymptotic guarantees exist. Therefore, results can always be
improved by decreasing the tolerance factor in the numerical computations.

Robustness-based method. Another method to obtain the satisfaction set of an
arbitrary MFL formula, including nested until operators, partitions the state-space
based on refining partition algorithms. However, this approach requires introducing
a quantitative semantics of MFL. This allows both Boolean and real values as a
result of amodel-checking algorithm (R ∪ {�,⊥}). The result of themodel-checking
procedure shows that a given occupancy vector satisfies anMFL formula (in case the
obtained value is greater than zero), and also estimates the quality of satisfaction.We
introduce the quantitative semantics of MFL, similarly to [15], where a quantitative
semantics was introduced for STL. For simplicity of notation, we use global atomic
properties in the form f (m1, m2 . . . mK ) ≥ c, where c ∈ R.

Definition 11 (Quantitative semantics) Given an MFL formula Υ , a mean-field
model M , and initial occupancy vector m, the quantitative semantics ρ(Υ, m) is
defined as follows:

−� = ⊥,

ρ(t t, m) = �,

ρ(GAP, m) = f (m1, m2 . . . mK ) − c,
ρ(Υ1 ∧ Υ2, m) = min(ρ(Υ1, m), ρ(Υ2, m)),

ρ(¬Υ, m) = −ρ(Υ, m),

ρ(Υ1U I Υ2, m) = supt ′∈I min
(
ρ(Υ2, m(t ′)), inf t ′′∈[0,t ′] ρ(Υ1, m(t ′′))

)
,

where m = m(0) at time t = 0, and m(t ′) is a solution of the ODEs (1) at time t = t ′
with m as the initial condition.

Time and space-time robustness of satisfaction for a quantitative semantics is dis-
cussed in Ref. [15], where ρ(Υ, m) is called a robustness estimate. The robustness
estimate is found using an inductive procedure for model-checking MFL formulas.
Efficient algorithms to find robust estimates are described in Ref. [9], and the Breach
toolbox [19] can be directly used for that purpose. Given algorithms to find the robust
satisfaction of an MFL formula, the satisfaction set of such formula, Sat(Υ ), can be
calculated by partitioning the state-space SO of the mean-field model. The latter can
be done using refining partition, as proposed in Refs. [8, 15].

The robustness analysis can also be performed with tools like S-TaLiRo [20]
and BIOCHAM [21]. Note also that here no formal guarantees on the correctness
of results can be provided. The advantage of the robustness-based method lies in
the fact that the procedure is ununiform for any MFL formula, unlike reachability-
based methods. Moreover, there are tools available for robustness analysis of the
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time series, numerical solutions of the ODEs, or even measured data in the context
of satisfaction set development. Finally, more advanced numerical methods may be
applied to partition the state space.

6 Relation Between the Two Logics

As discussed in the previous sections, there are two ways to describe properties of
the overall mean-field model. One way is reasoning about the fraction of objects
satisfying a given local property by checking whether this number meets a given
threshold using the logic MF-CSL. Another way is to describe the properties of the
whole system, including timed properties, which can be done with the logic MFL.
In Sect. 6.1, we discuss the difference between these two logics and argue that both
possess value. The possibility of combining both logics is discussed in Sect. 6.2.

6.1 Comparison of MFL and MF-CSL

Table1 depicts the main differences between the MFL and MF-CSL logics. As pre-
viously discussed, both logics are used in order to describe (and check) properties
of mean-field models. Moreover, the time validity set can be defined for MF-CSL,
while model-checking MFL properties require the computation of TVSs.

All properties in MF-CSL are based on the structure and labelling of the local
model, and expectation operators lift these properties to the global level. MFL
expresses properties of the global mean-field model independently from the labelling
and structure of the local model. AGAP can be defined both on the local model struc-
ture and labelling, as well as via labelling-independent functions of the occupancy
vector m. For example, properties such as “there are infected computers in all three
groups” can easily be described by MFL, while MF-CSL needs “workarounds” by

Table 1 The MF-CSL logic versus the MFL logic

Property MF-CSL MFL

Applicable for mean-field models + +

Operates on both local and global levels + −
Timed property on the local level + −
Timed property on the global level − +

Depends on the local labelling + −
Uses expectation relations + −
Has notion of TVS + +

Satisfaction set can be obtained −/+ +
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either introducing different labelling on the local level, or expressing the infected
properties for each group separately on the local level, then on the global level, and
finally combining these properties by concatenation and/or negation.

The largest difference lies in the application of timed properties. Both logics may
use the until operator. However, in MFL the until operator is used on the global level,
while inMF-CSL only the evolution of an individual random object can be described
with the until operator. Approximating the full satisfaction set is possible for MFL
properties, as defined in Sect. 5. The calculations on the local level of MF-CSL are,
however, quite demanding and the partitioning of the state-space using MF-CSL
property as an indicator function is impractical.

For some models, such as models of chemical reactions [41], the behaviour of
a random individual (one molecule) is not of interest. Therefore, MF-CSL may
not be of interest and only the logic MFL would be applicable. Despite this, there
are many systems that can be modelled using the mean-field method, where the
behaviour of a random object would still be important, for example in the virus
spread models, as discussed in this chapter. Clearly, both logics can be of interest,
albeit for different users and different systems. Some properties can be expressed
in both logics. However, the majority of properties can only be described using
one of the two logics, which explains the necessity of introducing both these logics
separately.

6.2 Combination of the Two Logics

Wenowdiscuss the combination of the two logics to achieve the greatest expressivity.
As described in Sect. 5, a GAP can be defined by any Boolean function which, when
applied to the model trajectory, produces as output a robust cadlag function. As
MF-CSL properties can be interpreted as a Boolean function So → {0, 1}, combined
properties can be expressed and analysed.

The above can be generalize as follows: in order to describe the combined property
of the global mean-field model, a linear combination of the MF-CSL properties is
used as a global atomic property:

∑

j

a j · 1Ψ j �� p, (5)

wherea j is a real number and1Ψ j is the indicator function of theMF-CSLpropertyΨ j

being satisfied.
Due to the cadlag restriction on the GAP function, the set of MF-CSL formulas

that can be used asGAP is restricted in order to guarantee decidability, e.g. properties
which are only valid at one time point are not allowed for the combination. Apart
from this, anyMF-CSL formula whose TVS consists of a finite number of sets can be
used as GAP in MFL. As an example of such a property, we consider the following
formula:
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Υ = (E≤0.1activeY ) U [0,5] (EP≤0.1t t U [0,3] infectedY )

This property is useful for a system administrator, who wants to be sure that with the
current activity of the anti-malware software not more than 10% of the computers
in group Y are infected and active until within 5 time units a system state is reached,
where the probability that a random computer will become infected within 3 time
units is less or equal than 0.1.

The example below provides a more detailed explanation on how to check such
properties. Note that, the calculation of the satisfaction set of such combined proper-
ties may not be practically feasible, due to the high computational costs on the local
level of MF-CSL sub-formula.

Example 7 The virus spread model is used in the following example with the para-
meters as given in Example 4. We will construct a combined property using both
logics. Then we find the time validity set for the property obtained given a predefined
time interval θ = [0, 20], and initial distribution

m(0) = 1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}).

Finally, we check the combined property against the initial occupancy vector m(0).
For simplicity, we use theMF-CSL property, described in Example 4 as one of global
atomic properties in the combined property:

Υ1 = EP<0.3(uninfectedY U [0,3] infectedY ).

We combine Υ1 with Υ2 = active ≤ 0.1 using the until operator and obtain the fol-
lowing combined formula:

Υ = EP<0.3(uninfectedY U [0,3] infectedY ) U [1,2] (active ≤ 0.1).

This property describes a system where the expected probability that a random com-
puter is from group Y and becomes infected within 3 time units is less than 0.3, at
all times until within time interval [1, 2] the number of active infected computers in
all three groups is less or equal than 0.1.

To check such a combined property we must first find the TVSs of all sub-
formulas, including the time validity set of the MF-CSL formula Υ1, which equals
TVS(Υ1, m, θ) = [0, 11.86] (see Example 4). The time validity set of the MFL
sub-formula TVS(Υ2, m, θ) is found by solving m X,3 + mY,3 + m Z ,3 = 0.1; and
equals TVS(Υ2, m, θ) = [9.925, 20]. Figure6a displays the time validity sets of sub-
formulas Υ1 and Υ2. The time validity set of the combined formula is computed as
described in Sect. 5.2. First, the intersection of TVS(Υ1, m, θ) and TVS(Υ2, m, θ) is
found: TVS(Υ1 ∩ Υ2, m, θ) = [9.925, 11.86]. Then, TVS(Υ1 ∩ Υ2, m, θ) is shifted
backwards: TVS(Υ, m, θ) = [9.925 − 2, 11.86 − 1] = [7.925, 10.86] (see Fig. 6b).
As one can see, the occupancy vector m does not satisfy the combined property Υ ,
since 0 /∈ [7.925, 10.86].
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Fig. 6 a TVSs of Υ1
(dashed line) and Υ2 (solid
line). b TVS of Υ

7 Conclusions

Over the last decade, many systems that consist of a large number of interacting
objects have been analysed using the mean-field method. This method avoids the
well-known state-space explosion problem, which is encountered in many classical
Markovian analysis techniques. However, the mean-field method has primarily been
used for classical performance evaluation purposes. In this chapter,we have discussed
model-checking algorithms formean-fieldmodels, in order to be able to address non-
standard system properties.

In this chapter, we define and motivate two logics, called Mean-Field Continuous
Stochastic Logic (MF-CSL) and Mean-Field Logic (MFL), to describe properties
of systems composed of many identical interacting objects. The logic MF-CSL [6]
uses local CSL properties as a basis for the global expectation operator. Therefore,
it is fully dependent on the structure of the local model. The logic MFL, on the other
hand, does not take into account properties of the individual objects and only reasons
on the global level. Therefore, time-dependent properties of the global model can be
described using MFL, while MF-CSL allows only time-dependent properties on the
local level.

The algorithms to check MFL properties against a given occupancy vector and to
find the so-called time validity set are based on the methods of monitoring temporal
properties as in Refs. [7, 39]. We adapt these methods to check global properties of
the mean-field model, and illustrate these algorithms in examples. All computations
were done in Wolfram Mathematica and compared against results produced by the
Breach Toolbox, which were consistent with one another.

Furthermore, three possible ways to calculate the satisfaction set of an MFL
formula were discussed. One of these methods relies on the Boolean semantics of
MFL presented and a discretization of the continuous state space. The secondmethod
makes use of the existing technique to find the parameters of themodel, which satisfy
a given reachability problem [8] using sensitivity analysis. The third method adapts
an existing notion of robustness [15] of a temporal logic and sensitivity analysis. This
technique is based on defining a quantitative semantics ofMFL. The resulting robust
estimate is then used as an indicator in order to guide the partitioning algorithm.

The expressivity and applicability of the two logics were also compared in this
chapter. Despite the fact that both logics are applicable to mean-field models, both
are clearly of interest and can not be fully replaced by the other. Another interesting
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insight related to the use of the logics presented is that they can be combined if
the global atomic property of the mean-field model is represented by one of the
expectation operators. This allows the combination of MF-CSL and MFL properties
on both levels, including timed properties. Such properties can be easily checked for
a given occupancy vector. However, the satisfaction set development may be even
more challenging.
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