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Non soffocare la tua ispirazione e la tua
immaginazione, non diventare lo schiavo del
tuo modello.
(Do not stifle your inspiration and your
imagination, do not become the slave of your
model.)

—Vincent Van Gogh

Sbagliando si impara
-proverbio italiano
(You learn by making mistakes
-Italian proverb)



To my wife Maria and my beloved children,
Carlo and Andrea, for their unconditioned
love. To my friends, colleagues
and students representing the second half
of my existence.

—Antonio Puliafito

—Lance Fiondella
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Review of Prof. Trivedi’s Contributions
to the Field

Kishor S. Trivedi holds the Hudson Chair in the Department of Electrical and
Computer Engineering at Duke University, Durham, NC. He has been on the Duke
faculty since 1975.

Professor Trivedi is a leading international expert in the domain of reliability and
performability evaluation of fault-tolerant systems. He has made seminal contri-
butions to stochastic modeling formalisms and their efficient solution. He has
written influential textbooks that contain not only tutorial material but also the latest
advances. He has encapsulated the algorithms developed into usable and
well-circulated software packages. He has made key contributions by applying the
research results to practical problems, working directly with industry and has been
able to not only solve difficult real-world problems but also develop new research
results based on these problems.

Professor Trivedi is the author of the well-known text, Probability and Statistics
with Reliability, Queuing and Computer Science Applications, published by
Prentice-Hall, which has allowed hundreds of students, researchers, and practi-
tioners to learn analytical modeling techniques. A thoroughly revised second
edition (including its Indian edition) of this book was published by John Wiley in
2001. A comprehensive solution manual for the second edition containing more
than 300 problem solutions is available from the publisher. This book is the first of
its kind to present a balanced treatment of reliability and performance evaluation,
while introducing the basic concepts of stochastic models. This book has made a
unique contribution to the field of reliability and performance evaluation.

Professor Trivedi has also authored two books: Performance and Reliability
Analysis of Computer Systems, published by Kluwer Academic Publishers in 1995,
and Queueing Networks and Markov Chains, published by John Wiley in 1998,
which are also well known and focused on performance and reliability evaluation
techniques and methodologies. His second book has already made inroads for
self-study with practicing engineers and has been adopted by several universities.
The third book is considered to be an important book in queueing theory with
several interesting example applications. The second edition of this book was
published in 2006. He has also edited two books, Advanced Computer System

xix



Design, published by Gordon and Breach Science Publishers, and Performability
Modeling Tools and Techniques, published by John Wiley & Sons.

He is a Fellow of the Institute of Electrical and Electronics Engineers and a
Golden Core Member of the IEEE Computer Society. He has published over
500 articles and has supervised 44 Ph.D. dissertations and 30 postdoctoral asso-
ciates. He is on the editorial boards of IEEE Transactions on Dependable and
Secure Computing, Journal of Risk and Reliability, International Journal of
Performability Engineering, and International Journal of Quality, Reliability and
Safety Engineering.

Professor Trivedi has taken significant steps to implement his modeling tech-
niques in tools, which is necessary to the transition from state-of-the-art research to
best practices for industry. These tools are used extensively by practicing engineers,
researchers, and instructors. Tools include HARP (Hybrid Automated Reliability
Predictor) which has been installed at nearly 120 sites; SHARPE (Symbolic
Hierarchical Automated Reliability and Performance Evaluator) is used at over
550 sites; and SPNP (Stochastic Petri Net Package) has been installed at over
400 sites. Trivedi also helped design and develop IBM’s SAVE (System
Availability Estimator), Software Productivity Consortium’s DAT (Dynamic
Assessment Toolset), Boeing’s IRAP (Integrated Reliability Analysis Package), and
SoHar’s SDDS. Graphical user interfaces for these tools have been developed.
These packages have been widely circulated and represent a reference point for all
researchers in the field of performance evaluation. Most researchers in the field are
probably aware of such tools and have very likely used one or more of them.

Trivedi has helped several companies carry out reliability and availability pre-
diction for existing products as well as the ones undergoing design. A partial list of
companies for which he has provided consulting services includes 3Com, Avaya,
Boeing, DEC, EMC, GE, HP, IBM, Lucent, NEC, TCS, and Wipro. Notable among
these is his help to model the reliability of the current return network subsystem
of the Boeing 787 for FAA certification. The algorithm he developed for this
problem has been jointly patented by Boeing. He led the reliability and availability
model of SIP on IBM Websphere, a model that facilitated it sale of the system to a
telco giant.

Kishor has developed polynomial time algorithms for performability analysis,
numerical solution techniques for completion time problems, algorithms for the
numerical solution of the response time distribution in a closed queueing network,
techniques to solve large and stiff Markov chains, and algorithms for the automated
generation and solution of stochastic reward nets, including sensitivity and transient
analysis. His contributions to numerical solution and decomposition techniques for
large and stiff stochastic models have considerably relaxed the limits on the size and
stiffness of the problems that could be solved by alternative contemporary tech-
niques. He has also developed fast algorithms for the solution of large fault trees
and reliability graphs, including multistate components and phase mission
systems analysis. He has defined several new paradigms of stochastic Petri nets
(Markov regenerative stochastic Petri nets and fluid stochastic Petri nets), which

xx Review of Prof. Trivedi’s Contributions to the Field



further extend the power of performance and reliability modeling into
non-Markovian and hybrid (mixed, continuous-state, and discrete-state) domains.

His recent work on architecture-based software reliability is very well cited. He
and his group have pioneered the areas of software aging and rejuvenation. His
group has not only made many theoretical contributions to the understanding of
software aging and rejuvenation scheduling but has also been the first to collect data
and develop algorithms for the prediction of time to resource exhaustion, leading to
adaptive and on-line control of rejuvenation. His methods of software rejuvenation
have been implemented in the IBM X-series servers three years after the research
was first done; a record time in technology transfer. In recognition of his pioneering
work on the aging and rejuvenation of software, Kishor was awarded the title of
Doctor Honoris Causa from the Universidad de San Martín de Porres, Lima Peru’
on August 12, 2012. He has now moved on to experimental research into software
reliability during operation where he is studying affordable software fault tolerance
through environmental diversity.

Professor Trivedi developed solution methods for Markov regenerative pro-
cesses and used them for performance and reliability analysis. He has applied his
modeling techniques to a variety of real-world applications, including performance
analysis of polling systems and client–server systems, wireless handoff, connection
admission control in CDMA systems, reliability analysis of RAID and FDDI token
rings, availability analysis of Vaxcluster systems, transient performance analysis of
leaky bucket rate control scheme, and the analysis of real-time systems.

The contributions of Trivedi’s work are fundamental to the design of reliable
digital systems. His papers on modeling fault coverage are recognized as mile-
stones. His papers on hierarchical modeling and fixed-point iteration represent
breakthroughs to solve large reliability models. His advances in transient analysis
are recognized as leading the state of the art by computer scientists. His contri-
butions to the field of stochastic Petri nets and his work on performability modeling
appear as benchmark references on these topics.

Among the enormous scientific production of Prof. Trivedi, the following five
papers are representative of his contribution to the scientific community:

[1] Gianfranco Ciardo and Kishor S. Trivedi. “A decomposition approach for
stochastic reward net models.” Performance Evaluation 18(1) (1993): 37–59.
Develops a decomposition approach to large Markovian Petri nets; both
theoretical and practical aspects are considered.

[2] Hoon Choi, Vidyadhar G. Kulkarni, and Kishor S. Trivedi. “Markov regen-
erative stochastic Petri nets.” Performance Evaluation 20(1) (1994): 337–357.
Develops a new formalism of MRSPN that allows generally distributed firing
times concurrently with exponentially distributed firing times.

[3] Vittorio Castelli, Richard E. Harper, Philip Heidelberger, Steven W. Hunter,
Kishor S. Trivedi, Kalyanaraman Vaidyanathan, and William P. Zeggert.
“Proactive management of software aging.” IBM Journal of Research and
Development 45(2) (2001): 311–332. Details the implementation of software
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rejuvenation in IBM X-series as an example of tech transfer from academia to
industry.

[4] Sachin Garg, Aad van Moorsel, Kalyanaraman Vaidyanathan, Kishor
S. Trivedi. “A methodology for detection and estimation of software aging.”
Proc. Ninth International Symposium on Software Reliability Engineering
(1998): 283–292. First experiment to demonstrate the existence of software
aging and prediction of time to resource exhaustion.

[5] Andrew Reibman, and Kishor S. Trivedi. “Numerical transient analysis of
Markov models.” Computers & Operations Research 15(1) (1988): 19–36.
Benchmark paper on numerical transient analysis of Markov models.
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Part I
Phase Type Distributions, Expectation

Maximization Algorithms, and
Probabilistic Graphical Models



Phase Type and Matrix Exponential
Distributions in Stochastic Modeling

Andras Horvath, Marco Scarpa and Miklos Telek

Abstract Since their introduction, properties of Phase Type (PH) distributions have
been analyzed andmany interesting theoretical results found. Thanks to these results,
PH distributions have been profitably used in many modeling contexts where non-
exponentially distributed behavior is present. Matrix Exponential (ME) distributions
are distributions whose matrix representation is structurally similar to that of PH
distributions but represent a larger class. For this reason, ME distributions can be
usefully employed in modeling contexts in place of PH distributions using the same
computational techniques and similar algorithms, giving rise to new opportunities.
They are able to represent different dynamics, e.g., faster dynamics, or the same
dynamics but at lower computational cost. In this chapter, we deal with the charac-
teristics of PH and ME distributions, and their use in stochastic analysis of complex
systems. Moreover, the techniques used in the analysis to take advantage of them are
revised.

1 Introduction

Stochastic modeling has been used for performance analysis and optimization of
computer systems for more than five decades [19]. The main analysis method behind
this effort was the continuous time Markov chains (CTMC) description of the sys-
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tem behavior and the CTMC-based analysis of the performance measures of inter-
est. With the evolution of computing devices, model description languages (e.g.,
queueing systems, Petri nets, process algebras), and model analysis techniques (a
wide range of software tools with efficient analysis algorithm using adequate data
representation and memory management) the analysis of more and more complex
systems has become possible. One of main modeling limitations of the CTMC-based
approach is the limitation on the distribution of the random time durations, which
is restricted to be exponentially distributed. Unfortunately, in a wide range of prac-
tical applications, the empirical distribution of field data differs significantly from
the exponential distribution. The effort to relax this restriction of the CTMC-based
modeling on exponentially distributed durations resulted in the development of many
alternative stochastic modeling methodologies (semi-Markov and Markov regener-
ative processes [11], analysis with the use of continuous system parameters [8]),
yet all of the alternative modeling methodologies quickly suffers from infeasible
computational complexity when the complexity of the system considered increases
beyond basic examples.

It remains a significant research challenge to relax the modeling restriction of the
exponentially distributed duration time and still evaluate complex model behaviors.
To this end, one of the most promising approaches is the extension of CTMC-based
analysis to non-exponentially distributed durations. Initial steps in this direction date
back to the activity of A.K. Erlang in the first decades of the twentieth century as
reported in [10]. These initial trials were referred to as the method of phases, which
influenced later terminology. M.F. Neuts characterized a set of distributions which
can be incorporated into CTMC-based analysis by introducing the set of phase type
(PH) distributions [16].

The extension of CTMC-based analysis (where the durations are exponentially
distributed) with PH distributed durations requires the generation of a large CTMC,
referred to as extended Markov chain (EMC), which combines the system behavior
with the description of the PH distributions. In this chapter, we summarize the basics
of EMC-based stochastic analysis and provide some application examples. Finally,
we note that in this chapter we restrict our attention to continuous time stochastic
models, but that the same approach applies for discrete time stochastic models as
well.

1.1 Structure of the Chapter

The next two sections, Sects. 2 and 3, summarize the basic information on PH and
MEdistributions, respectively. The following two sections, Sects. 4 and 5, discuss the
analysis procedure for complex stochastic systemswith PH andME distributed dura-
tions, respectively. The tools available to support EMC-based analysis of stochastic
systems is presented in Sect. 6. Numerical examples demonstrate the modeling and
analysis capabilities of the approach are discussed in Sect. 7 and the main findings
and conclusions are given in Sect. 8.
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2 PH Distributions and Their Basic Properties

2.1 Assumed Knowledge

Transient behavior of a finite state Markov chain with generator Q and initial dis-
tribution π, specifically, the transient probability vector p(t), satisfies the ordinary
differential equation

d

dt
p(t) = p(t)Q, with initial condition p(0) = π,

whose solution is a matrix exponential function

p(t) = πeQt , (1)

where the matrix exponential term is defined as

eQt =
∞∑

i=0

t i

i !Qi .

The properties of generatorQ and initial distributionπ are as follows. The elements of
π are probabilities, i.e., nonnegative numbers not greater than one. The off-diagonal
elements of Q are transition intensities, i.e., nonnegative numbers. The diagonal
elements of Q are such that each row sum is zero, i.e., the diagonal elements are
non-positive. The elements of π sum to one, that is

∑
iπi = π1 = 1. Each row of a

generator matrix sums to zero, that is
∑

j Qi j = 0, or equivalently, in vector form,
we can write Q1 = 0, where 1 is a column vector of ones and 0 is a column vector
of zeros. Hereafter, the sizes of vector 1 and 0 are defined by the context such that
the dimensions in the vector expressions are compatible.

The stationary distribution of an irreducible finite state Markov chain with gen-
erator Q, p � limt→∞ p(t), can be computed as the unique solution of the linear
system of equations

pQ = 0, p1 = 1. (2)

In this chapter, we focus on the computation of the initial distribution and the
generator matrix of the EMC and do not discuss the efficient solution methods for
solving (1) and (2).

2.2 Phase Type Distributions

PH distributions are defined by the behavior of a Markov chain, which is often
referred to as the background Markov chain behind a PH.
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Let X (t) be a Markov chain with n transient and one absorbing states, meaning
that the absorbing state is reachable (by a series of state transitions) from all transient
states, but when the Markov chain moves to the absorbing state it remains there for-
ever. Let π be the initial distribution of the Markov chain, that is πi = P (X (0) = i).
Without loss of generality, we number the states of the Markov chain such that state
1, . . . , n are transient states and state n + 1 is the absorbing state. The generator
matrix of such a Markov chain has the following structure

Q =
[

A a
0 0

]
,

where A is a square matrix of size n and a is a column vector of size n. Since the
rows of the generator matrix sum to zero, the elements of a can be computed from
A, that is a = −A1. Similarly, the first n elements of the initial vector π, denoted by
α, completely defines the initial vector, since the (n + 1)st element of π is 1 − α1.
We note that α defines the initial probabilities of the transient states. With the help
of this Markov chain, we are ready to define PH distributions.

Definition 1 The time to reach the absorbing state of a Markov chain with a finite
number of transient and an absorbing state

T = min{t : X (t) = n + 1, t ≥ 0},

is phase type distributed.

Throughout this document, we assume that the Markov chain starts from one of
the transient states and consequently α1 = 1, i.e., there is no probability mass at
zero and T has a continuous distribution onR+. Since the time to reach the absorbing
state is a transient measure of the Markov chain, we can evaluate the distribution of
random variable T , based on the transient analysis of the Markov chain with initial
distribution π and and generator matrix Q

FT (t) = P (T < t) = P (X (t) = n + 1) = πeQt en+1,

where en+1 is the (n + 1)st unit vector (the column vector with zero elements except
in position n + 1 which is one).

This straight forward description of the distribution of T is not widely used due
to the redundancy of matrix Q and vector π. Indeed, matrix A and the initial vector
associated with the transient states, α, define all information about the distribution
of T and the analytical description based on α and A is much simpler to use in more
complex stochastic models. To obtain the distribution based on α and A, we carry
on the block structure of matrix Q in the computation.
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FT (t) = P (T < t) = P (X (t) = n + 1) = 1 −
n∑

i=1

P (X (t) = n + 1)

= 1 − [α, 0]eQt

[
1
0

]
= 1 − [α, 0]

∞∑

i=0

t i

i !
[

A a
0 0

]i [ 1
0

]

= 1 − [α, 0]
∞∑

i=0

t i

i !
[

Ai •
0 0

] [
1
0

]
= 1 − α

∞∑

i=0

t i

i ! Ai 1 = 1 − αeAt 1,

where • indicates irrelevant matrix block whose elements are multiplied by zero.
The PDF of T can be obtained from the derivative of its CDF.

fT (t) = d

dt
FT (t) = d

dt

(
1 − α

∞∑

i=0

t i

i ! Ai 1

)
= −α

∞∑

i=0

d

dt

t i

i ! Ai 1

= −α

∞∑

i=1

t i−1

(i − 1)! Ai−1 A1 = −αeAt A1 = αeAt a,

where we used a = −A1 in the last step.
Before computing the remaining properties of PH distributionswe need to classify

the eigenvalues of A. The i, j element of matrix eAt contains the probability that
starting from transient state i the Markov chain is in transient state j at time t . If
states 1, . . . , n are transient states then as t tends to infinity eAt tends to zero, which
means that the eigenvalues of A have negative real part and, as a consequence, A is
non-singular.

The Laplace transform of T , E
(
e−sT
)
, can be computed as

f ∗
T (s) = E

(
e−sT
) =

∞∫

t=0

e−st fT (t) dt =
∞∫

t=0

e−stαeAt a dt

= α

∞∫

t=0

e(−sI+A)t dt a = α(sI − A)−1a,

where we note that the integral surely converges for R(s) ≥ 0 because in this case
the eigenvalues of −sI + A also possess a negative real part.

To compute the kth moment of T , E
(
T k
)
, we need the following integral relation

[
t keAt
]∞
0 =

∞∫

t=0

ktk−1eAtdt +
∞∫

t=0

t keAt Adt,

whose left-hand side is zero because the eigenvalues of A possess a negative real
part. Multiplying both side with (−A)−1 we get
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∞∫

t=0

t keAtdt = k

∞∫

t=0

t k−1eAtdt (−A)−1.

Using this relation, the kth moment of T is

E
(
T k
) =

∞∫

t=0

t k fT (t)dt = α

∞∫

t=0

t keAtdt (−A)1 = kα

∞∫

t=0

t k−1eAtdt1

= k(k − 1)α

∞∫

t=0

t k−2eAtdt (−A)−11 = · · · = k!α(−A)−k1.

These four properties of PH distributions (CDF, PDF, Laplace transform, and
moments) have several interesting consequences and some of which we summarize
below.

• Matrix (−A)−1 has an important stochastic meaning. Let Ti j be the time spent
in transient state j before moving to the absorbing state when the Markov chain
starts from state i . For E

(
Ti j
)
, we have

E
(
Ti j
) = δi j

−Ai i
+
∑

k,k �=i

Aik

−Ai i
E
(
Tk j
)
,

where δi j is the Kronecker delta symbol. The first term of the left-hand side is the
time spent in state j while the Markov chain is in the initial state, and the second
term is the time spent in state j during later visits to j . Multiplying both sides by
−Ai i and adding E

(
Ti j
)

Ai i gives

0 = δi j +
∑

k

Aik E
(
Tk j
)
,

whose matrix form is

0 = I + AT −→ T = (−A)−1,

where T is the matrix composed of the elements E
(
Ti j
)
. Consequently, the (i j)

element of (−A)−1 is E
(
Ti j
)
, which is a nonnegative number.

• f ∗
T (s) is a rational function of s whose numerator is at most order n − 1 and

denominator is at most order n. This is because

f ∗
T (s) = α(sI − A)−1a =

∑

i

∑

j

αi (sI − A)−1
i j a j

=
∑

i

∑

j

αi

[
det j i (sI − A)

det(sI − A)

]
a j =

∑
i

∑
j αi a j det j i (sI − A)

det(sI − A)
.
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det j i (M) denotes the determinant of the matrix obtained by removing row j and
column i of matrix M. The denominator of the last expression is an order n
polynomial of s, while the numerator is the sum of order n − 1 polynomials,
which is at most an order n − 1 polynomial of s.

• This rational Laplace transform representation indicates that a PH distribution
with n transient state can be represented by 2n − 1 independent parameters. A
polynomial of order n is defined by n + 1 coefficients, and a rational function of
order n − 1 numerator, and order n denominator is defined by 2n + 1 parameters.
Normalizing the denominator such that the coefficient of sn is 1 and considering
that
∫

t fT (t)dt = lims→0 f ∗
T (s) = 1 adds two constraints for the coefficients, from

which the number of independent parameters is 2n − 1.
• The PDF of a PH distribution is the sum of exponential functions. Let A = B−1�B
be the Jordan decomposition1 of A and let u = αB−1 and v = Ba. Then,

fT (t) = αeAt a = αB−1e�t Ba = ue�tv .

At this point, we distinguish two cases.

– The eigenvalues of A are different and� is a diagonal matrix. In this case, fT (t)
is a sum of exponential functions because

fT (t) = ue�tv =
∑

i

uivie
λi t =

∑

i

cie
λi t ,

where ci = uivi is a constant coefficient of the exponential function.
Here the eigenvalues (λi ) as well as the associated coefficients (ci ) can be real
or complex conjugate pairs. For a complex conjugate pair of eigenvalues, we
have

cie
λi t + c̄ie

λ̄i t = 2|ci |eR(λi )t cos(I(λi )t − ϕi ),

where ci = |ci |eıϕi , R(λi ) and I(λi ) are the real and the imaginary part of λi

and ı is the imaginary unit.
– There are eigenvalues of A with higher multiplicity and � contains real Jordan
blocks. The matrix exponent of a Jordan block is

exp

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .

λ

⎞

⎟⎟⎟⎠ t

⎤

⎥⎥⎥⎦ =

⎛

⎜⎜⎜⎝

eλt teλt 1
2! t

2eλt 1
3! t

3eλt

eλt teλt 1
2! t

2eλt

. . .
. . .

eλt

⎞

⎟⎟⎟⎠ .

1The case of different Jordan blocks with identical eigenvalue is not considered here, because it
cannot occur in non-redundant PH representations.



10 A. Horvath et al.

Consequently, the density function takes the form

fT (t) =
#λ∑

i=1

#λi∑

j=1

ci j t
j−1eλi t ,

where #λ is the number of different eigenvalues and #λi is the multiplicity of λi .
Similar to the previous case, the eigenvalues (λi ) as well as the associated coef-
ficients (ci, j ) can be real or complex conjugate pairs. For a complex conjugate
pair of eigenvalues, we have

ci, j t
j−1eλi t + c̄i, j t

j−1eλ̄i t = 2|ci, j |t j−1eR(λi )t cos(I(λi )t − ϕi, j ),

where ci, j = |ci, j |eıϕi, j .

As a result of all of these cases, the density function of a PH distribution possesses
the form

fT (t) =
#λR∑

i=1

#λR
i∑

j=1

ci j t
j−1eλR

i t +
#λC∑

i=1

#λC
i∑

j=1

2|ci, j |t j−1eR(λC
i )t cos(I(λC

i )t − ϕi, j )

(3)

where #λR is the number of different real eigenvalues and #λC is the number of
different complex conjugate eigenvalue pairs.

• In general, infinitely many Markov chains can represent the same PH distribution.

– The following similarity transformation generates representations with identi-
cal size.

Let T be a non-singular matrix with unit row sums (T1 = 1). The vector–matrix
pairs (α, A) and (αT, T−1 AT) are two different vector–matrix representations
of the same PH distribution, since

FT (t) = 1 − αTeT−1 ATt 1 = 1 − αTT−1eAt T1 = 1 − αeAt 1.

– Representations with different sizes can be obtained as follows.

Let matrix V of size m × n be such that V1 = 1.

The vector–matrix pairs (α, A) of size n and (γ, G) of size m are two different
vector–matrix representations of the same PH distribution if AV = VG and
αV = γ because

FT (t) = 1 − γeGt 1 = 1 − αVeGt 1 = 1 − αeAt V1 = 1 − αeAt 1

in this case.
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3 Matrix Exponential Distributions and Their Basic
Properties

In the definition of PH distributions, vectorα is a probability vector with nonnegative
elements and matrix A is a generator matrix with negative diagonal and nonnegative
off-diagonal elements. Relaxing these sign constraints for the vector and matrix
elements and maintaining the matrix exponential distribution (and density) function
results in the set of matrix exponential (ME) distributions.

Definition 2 Random variable T with distribution function

FT (t) = 1 − αeAt 1,

where α is a finite real vector and A is a finite real matrix, is matrix exponentially
distributed.

The size of α and A plays the same role as the number of transient states in case
of PH distributions. By definition, the set of PH distributions with a given size is a
subset of the set of PH distributions with the same size.

MEdistributions share the followingbasic propertieswithPHdistributions:matrix
exponential distribution function, matrix exponential density function, moments,
rational Laplace transform, the same set of functions as in (3), and non-unique rep-
resentation. The main difference between the matrix exponential and the PH classes
comes from the fact that the sign constraints on the elements of generator matrixes
restrict the eigenvalue structure of suchmatrixes, while such restrictions do not apply
in case of ME distributions. For example, the eigenvalues of an order three PH distri-
bution with dominant eigenvalue θ satisfyR(λi ) ≤ θ and |I(λi )| ≤ (θ−R(λi )/

√
3,

while the eigenvalues of an order three ME distribution with dominant eigenvalue
θ satisfy R(λi ) ≤ θ only. This flexibility of the eigenvalues has significant con-
sequence on the flexibility of the set of order three PH and ME distributions. For
example, the minimal squared coefficient of variation among the order three PH and
ME distributions are 1/3 and 0.200902, respectively.

The main difficulty encountered when working with ME distributions is that a
general vector–matrix pair does not always define a nonnegative density function,
while a vector–matrix pairwith the sign constraints of PHdistributions does. Efficient
numerical methods have been proposed recently to check the nonnegativity of a
matrix exponential function defined by a general vector–matrix pair, but general
symbolic conditions are still missing.

4 Analysis of Models with PH Distributed Durations

If all durations (service times, interarrival times, repair times, etc.) in a system are
distributed according to PH distributions, then its overall behavior can be captured
by a continuous time Markov chain, referred to as extended Markov chain (EMC).



12 A. Horvath et al.

In this section, we show how to derive the infinitesimal generator of this EMC using
Kronecker operations. Themethodologyhere described has been originally presented
in the case of Discrete PHs in [17] and more recently in the case of Continuous PHs
in [13]

To this end we first introduce the notation used to describe the model. By S, we
denote the set of states and by N = |S| the number of states. The states themselves
are denoted by s1, s2, ..., sN . The set of activities is denoted byA and the set of those
that are active in state si is denoted byAi . The activities are denoted by a1, a2, ..., aM

with M = |A|. When activity ai is completed in state s j then the system moves from
state s j to state n( j, i), i.e., n is the function that provides the next state. We assume
that the next state is a deterministic function of the current state and the activity that
completes. We further assume that there does not exist a triple, k, i, j, for which
sk ∈ S, ai ∈ A, a j ∈ A and n(k, i) = n(k, j). These two assumptions, which make
the formulas simpler, are easy to relax in practice. There can be activities that end
when the system moves from state si to state s j even if they do not complete and are
active both in si and in s j . These activities are collected in the set e(i, j). The PH
distribution that is associated with activity ai is characterized by the initial vector
αi and matrix Ai . As before, we use the notation ai = −Ai 1 to refer to the vector
containing the intensities that lead to completion of activity ai . The number of phases
of the PH distribution associated with activity ai is denoted by ni .

Example 1 PH/PH/1/K queue with server break-downs.Asan example,we consider,
using the above-described notation, a queue in which the server is subject to failure
only if the queue is not empty. The set of states is S = {s1, s2, ..., s2K+1} where s1
represents the empty queue, s2i with 1 ≤ i ≤ K represents the state with i clients
in the queue and the server up, and s2i+1 with 1 ≤ i ≤ K represents the state with
i clients and the server down. There are four activities in the system: a1 represents
the arrival activity, a2 the service activity, a3 the failure activity,2 and a4 the repair
activity. The vectors and matrices that describe the associated PH distributions are
α1,α2,α3,α4 and A1, A2, A3, A4. In this example, we assume that the arrival
activity is active if the system is not full and it is inactive if the system is full.
The service and the failure activities are active if the queue is not empty and the
server is up. The repair activity is active if the queue is not empty and the server is
down. Accordingly, we have A1 = {a1}, A2i = {a1, a2, a3} for 1 ≤ i ≤ K − 1,
A2i+1 = {a1, a4} for 1 ≤ i ≤ K − 1, A2K = {a2, a3}, and A2K+1 = {a4}. The next
state function is as follows: for arrivals we have n(1, 1) = s2 and n(i, 1) = si+2 with
2 ≤ i ≤ 2K − 1; for services n(2, 2) = s1 and n(2i, 2) = s2i−2 with 2 ≤ i ≤ K ;
for failures n(2i, 3) = s2i+1 with 1 ≤ i ≤ K ; for repairs n(2i + 1, 4) = s2i with
1 ≤ i ≤ K . We assume that the failure activity ends every time when a service
activity completes, i.e., failure is connected to single jobs and not to the aging of the
server. Other activities end only when they complete or when such a state is reached
in which they are not active. Accordingly, e(2i, 2i − 2) = {a3} for 2 ≤ i ≤ K .

2Failure is more like an event than an activity but, in order to keep the discussion clearer, we refer
to it as failure activity.
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Based on the description of the ingredients of the model, it is possible to derive
blocks of the initial probability vector and the blocks of the infinitesimal generator
of the corresponding CTMC. Let us start with the infinitesimal generator, which we
denote by Q, composed of N × N blocks. The block of Q that is situated in the i th
row of blocks and in the j th column of blocks is denoted by Qi j . A block in the
diagonal, Qi i describes the parallel execution of the activities that are active in si .
The parallel execution of CTMCs can be captured by the Kronecker-sum operator
(⊕), and thus we have

Qi i =
⊕

j :s j ∈Ai

A j .

An off-diagonal block, Qi j , is not a zero matrix only if there exists an activity
whose completion moves the system from state si to state s j . Let us assume that the
completion of activity ak moves the system from state si to state s j , i.e., n(i, k) = s j .
The corresponding block, Qi j , must

• reflect the fact that activity ak completes and restarts if ak is active in s j ,
• reflect the fact that activity ak completes and does not restart if ak is not active
in s j ,

• end activities that are active in si but not in s j ,
• start those activities that are not active in si but are active in s j ,
• end and restart those activities that are active both in si and in s j but are in e(i, j),
• and maintain the phase of those that are active both in si and in s j and are not in
e(i, j).

The joint treatment of the above cases can be carried out by the Kronecker-product
operator and thus we have

Qi j =
⊗

l:1≤l≤M

Rl

with

Rl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak if l = k and k /∈ A j

akαk if l = k and k ∈ A j

1nl if l �= k and k ∈ Ai and k /∈ A j

αl if l �= k and k /∈ Ai and k ∈ A j

1nl αl if l �= k and k ∈ Ai and k ∈ A j and k ∈ e(i, j)
Inl if l �= k and k ∈ Ai and k ∈ A j and k /∈ e(i, j)
1 otherwise

where the subscripts to 1 and I indicate their size.
The initial probability vector of the CTMC, π, is a row vector composed of N

blocks which must reflect the initial probabilities of the states of the system and the
initial probabilities of the PH distributions of the active activities. Denoting by πi

the initial probability of state si , the i th block of the initial probability vector, πi , is
given as
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πi =
⊗

j :s j ∈Ai

α j .

Example 2 For the previous example, the diagonal blocks, which must reflect the
ongoing activities, are the following:

Q1,1 = A1, Q2i,2i = A1

⊕
A2

⊕
A3, Q2i+1,2i+1 = A1

⊕
A4,

Q2K ,2K = A2

⊕
A3, Q2K+1,2K+1 = A4 with 1 ≤ i ≤ K − 1

Arrival in state s1 takes the system to state s2. The corresponding blockmust complete
and restart the arrival activity andmust restart both the service and the failure activity:

Q12 = a1α1

⊗
α2

⊗
α3 (4)

Arrival in state s2i (server up) takes the system to state s2i+2. If the system does
not become full then the corresponding block must complete and restart the arrival
activity and must maintain the phase of both the service and the failure activity. If
the system becomes full, the arrival activity is not restarted. Accordingly, we have

Q2i,2i+2 = a1α1

⊗
In2

⊗
In3 with 1 ≤ i ≤ K − 2

Q2K−2,2K = a1

⊗
In2

⊗
In3

An arrival in state s2i+1 (server down) takes the system to state s2i+3. If the system
does not become full then the corresponding block must complete and restart the
arrival activity and must maintain the phase of the repair activity. If the system
becomes full, the arrival activity is not restarted. Accordingly, we have

Q2i+1,2i+3 = a1α1

⊗
In4 with 1 ≤ i ≤ K − 2

Q2K−1,2K+1 = a1

⊗
In4

Service completion can take place in three different situations. If the system becomes
empty then the phase of the arrival activity is maintained, the service activity is
completed and the failure activity is put to an end. If the system neither becomes
empty nor was full then the phase of the arrival activity is maintained, the service
activity is completed and restarted, and the failure activity ends and restarts. Finally, if
the queuewas full then the arrival activity is restarted, the service activity is completed
and restarted, and the failure activity is put to an end and restarted. Accordingly, we
have

Q2,1 = In1

⊗
a2

⊗
1n3
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Q2i,2i−1 = In1

⊗
a2α2

⊗
1n3α3 with 1 < i < K

Q2K ,2K−2 = α1

⊗
a2α2

⊗
1n3α3 (5)

The failure activity can be completed in two different situations. If the system is not
full, then the phase of the arrival activity is maintained. If the system is full then
the arrival activity is not active. In both cases, the service activity ends, the failure
activity is completed and the repair activity is initialized.

Q2i,2i+1 = In1

⊗
1n2

⊗
a3

⊗
α4 with 1 ≤ i < K

Q2K ,2K+1 = 1n2

⊗
a3

⊗
α4

Similarly to the failure activity, also the repair activity can be completed in two
different situations because the arrival activity can be active or inactive. In both
cases, the service activity and the failure activity must be initialized and the repair
activity completes.

Q2i+1,2i = In1

⊗
α2

⊗
α3

⊗
a4 with 1 ≤ i < K

Q2K+1,2K = α2

⊗
α3

⊗
a4

5 Analysis of Stochastic Systems with ME Distributed
Durations

Themost important observation to take from this section is that all steps of themethod
of EMCs (as explained in the previous section) remain directly applicable in case
of ME distributed durations (where the (αi , Ai ) vector–matrix pairs describe ME
distributions). In that case, the only difference is that the signs of the vector andmatrix
elements are not restricted to be nonnegative in case of the vector elements and off-
diagonal matrix elements and to be negative in case of the diagonal matrix elements.
Consequently, the model description does not allow a probabilistic interpretation via
Markov chains.

This general conclusion was obtained through serious research efforts. Following
the results in [12], it was suspected that in a stochastic model ME distributions could
be used in place of PH distributions and several results would carry over, but it was
not easy to prove these conjectured results in the general setting because probabilistic
arguments associated with PH distributions no longer hold. In [1], it was shown that
matrix geometric methods can be applied for quasi-birth–death processes (QBDs)
with rational arrival processes (RAPs) [3], which can be viewed as an extension of
ME distributions to arrival processes. To prove that the matrix geometric relations
hold, the authors of [1] use an interpretation of RAPs proposed in [3]. However,
the models considered are limited to QBDs. For the model class of SPNs with ME
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distributed firing times, the applicability of the EMC-like analysis was proved in [2]
and refined for the special case when the ME distribution has no PH representation
in [4].

6 Analysis tools

Based on the common representation of the EMC through the Kronecker algebra,
smart algorithms have been developed recently to optimize memory usage. These
algorithms build the EMC in a completely symbolic way, both at the process state
space level and at the expanded state space level, as deeply explained in [13] that we
use as reference.

The algorithm presented in [13] is based on two high level steps:

1. to generate the reachability graph of the model (which collects the system states
in a graph according to their reachability from an initial set of states) using a
symbolic technique;

2. to enrich the symbolically stored reachability graph with all the necessary infor-
mation to evaluate Kronecker expressions representing the expanded state space.

Step 1 is performed using symbolic technique based on complex data structures like
Multi-Valued Decision Diagram (MDD) [18] to encode the model state space; step
2 adds information related to each event memory policy to the encoded state space.
In manner it is possible to use on the fly expressions introduced in Sects. 4 and 5 to
compute various probability measures of the model.

6.1 Symbolic Generation of Reachability Graph

Both traditional performance or dependability evaluation techniques andmore recent
model checking-based approaches are grounded in the knowledge of the set of states
that the system considered can reach starting from a particular initial state (or in
general from a set of initial states). Symbolic techniques [5] focus on generating
a compact representation of huge state spaces by exploiting a model’s structure
and regularity. A model has a structure when it is composed of K sub-models, for
some K ∈ N. In this case, a global system state can be represented as a K -tuple
(q1, . . . , q K ), where qk is the local state of sub-model k (having some finite size nk).

The use of (MDDs) for the encoding of model state spaces was introduced by
Miner and Ciardo in [14]. MDDs are rooted, directed, acyclic graphs associated with
a finite ordered set of integer variables. When used to encode a state space, an MDD
has the following structure:
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• nodes are organized into K + 1 levels, where K is the number of sub-models;
• level K contains only a single non-terminal node, the root, whereas levels K − 1
through 1 contain one or more non-terminal nodes;

• a non-terminal node at level k has nk arcs pointing to nodes at level k − 1;

A state s = (q1, . . . , q K ) belongs to S if and only if a path exists from the root node
to the terminal node 1 such that, at each node, the arc corresponding to the local
state qk is followed. In [6], and then in [7], Ciardo et al. proposed the Saturation
algorithm for the generation of reachability graphs using MDDs. Such an iteration
strategy improves both memory and execution time efficiency.

An efficient encoding of the reachability graph is built in the form of a set of
Kronecker matricesWe,k with e ∈ A and k = 1, . . . , K , whereA is the set collecting
all the system events or activities. We,k[ik, jk] = 1 if state jk of sub-model k is
reachable from state ik due to event e. According to such a definition, the next
state function of the model can be encoded as the incidence matrix given by the
boolean sum of Kronecker products

∑
e∈A
⊗

K≥k≥1 We,k . As a consequence, the
matrix representation R of the reachability graph of the model can be obtained by
filtering the rows and columns of such amatrix corresponding to the reachable global
states encoded in the MDD and replacing each non-null element with the labels of
the events that cause the corresponding state transition.

Saturation Unbound is a very effective way to represent the model state space
and the related reachability graph of a model. In any case, the methodology we are
dealing with is not strictly dependent on any particular algorithm to efficiently store
the reachability graph.We refer to the Saturation Unbound algorithm simply because
its efficiency is well known [7].

6.2 Annotating the Reachability Graph

The use of Saturation together with the Kronecker representation presented in previ-
ous sections enable solution of the derived stochastic process. However, knowledge
of the reachability graph of the untimed system as produced by Saturation is not
sufficient to manage the infinitesimal generator matrix Q on the fly according to the
symbolic representation. Considering that the information about the enabled events
for all the system states is contained in the high level description of the model and it
can be evaluated on the fly when needed with a negligible overhead, the only addi-
tional information needed is knowledge about the sets of active but not enabled events
in each state s (T (s)

a ). Using Saturation for the evaluation of the reachability graph
requires an additional analysis step for the computation of such an information and
use of a different data structure for storage. Multi Terminal Multi-Valued Decision
Diagram (MTMDD) [15] is used for this purpose.

The main differences with respect to MDDs are that: (1) more than two terminal
nodes are present in an MTMDD and (2) such nodes can be labeled with arbitrary
integer values, rather than just 0 and 1. An MTMDD can efficiently store both the
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system state space S and the sets T (s)
a of active but not enabled events for all s ∈ S;

this is necessary, in our approach, to correctly evaluate non-null blocks of Q matrix.
In fact, while an MDD is only able to encode a state space, an MTMDD is also
able to associate an integer to each state. Thus, the encoding of sets T (s)

a can be
done associating to each possible set of events an integer code that unambiguously
represents it. Let us associate to each event an unique index n such that 1 ≤ n ≤ ‖A‖.
Then the integer value associated to one of the possible sets T (s)

a is computed starting
from the indices associated with the system events that belong to it in the following
way:

bM · 2A + · · · + bn · 2n + · · · b1 · 21 + 1 =
M∑

i=1

bi2
i + 1

where

bi =
{
1, if event ei ∈ T (s)

a
0, otherwise

In this manner all the necessary information to apply the Kronecker-based expres-
sions on the fly are provided; the only remaining need is a method to evaluate the set
T (s)

a given a referring state s.
In [13], the following theorem has been proved.

Theorem 1 Given a model M, a state s0 ∈ S and an event e ∈ A with an age
memory policy associated, then e ∈ T (s0)

a iff e /∈ T (s0)
e and one of the following

statements holds:

1. ∃ s1 ∈ S, ∃ e1 ∈ A, s1 �= s0, e1 �= e | s0 ∈ Ne1(s1) ∧ e ∈ T (s1)
e

2. ∃ s1 ∈ S, s1 �= s0 | s0 ∈ N (s1) ∧ e ∈ T (s1)
a

where Ne1 is the next state function associated to event e1.

Note that function N is the equivalent to the n(·, ·) defined in Sect. 4; function Ne

instead differs for the restriction to the firing of a specific event e.We use this notation
because it is less cumbersome in this specific context.

Theorem 1 gives a way to evaluate if an event e belongs to the set T (s0)
a or not.

In fact, according to the statements proved, it is possible to characterize a state
s0 with respect to the system event memory policies by exploring its reachability
graph. Exploration can be performed using classical bread-first search and depth-
first search algorithms, easily applicable to an explicitly stored reachability graph; it
is more complicated to apply classical search algorithms when the graph is stored in
implicit manner as is the case when MTMDD data structures are used.

In this case, a different approach can be used by resorting to Computational Tree
Logic (CTL) formulas that have been shown to be very efficient for data structures
like MDD and MTMDD. The use of CTL formulas to evaluate sets T (s)

a is justified
by a theorem introduced in [13]. Before recalling this theorem, we need to introduce
a CTL operator.
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Definition 3 Let s0 ∈ S be a state of a discrete state process with state space S, and
let p and q be two logical conditions on the states. Let alsoF(s) ⊆ N (s)∪N−1(s) be
a reachability relationship between two states in S that defines a desired condition
over the paths. Then s0 satisfies the formula EF [pUq], and we will write s0 �
EF [pUq], iff ∃ n ≥ 0, ∃ s1 ∈ F(s0), . . . , ∃ sn ∈ F(sn−1) | (sn � q) ∧ (∀m <

n, sm � p).

In definition above, we used the path quantifier E with the meaning there exists a
path and the tense operator U with the meaning until, as usually adopted in CTL
formulas.

Given Definition3, the following theorem holds:

Theorem 2 An event e ∈ E , with an age memory policy associated, belongs to
T (s0)

a , with s0 ∈ S, iff s0 � EF [pUq] over a path at least one long, where
p and q are the statements “e is not enabled” and “e is enabled,” respectively,
and F(s) = N−1(s) \ N−1

e (s).

Thanks to Theorem 2, evaluation of the CTL formula EF [pUq] makes possible
to evaluate whether an event e is active but not enabled in state s0 or not by setting
condition p as e is not enable and q as e is enabled. This is the last brick to build
an algorithm able to compute state probabilities of a model, where the event are PH
or ME distributed; in fact, it is possible to characterize all the active and/or enabled
events in all the different states and to apply the Kronecker expressions with this
information to solve the derived EMC.

7 Examples

In this section, we present two examples where non-exponentially distributed dura-
tions are present. In the first example, these durations are approximated by PH dis-
tributions, while in the second example they are described by ME distributions.

7.1 Reliability Model of Computer System

We introduce a reliability model where we use PH distributions as failure times.
The model is specified according to the Petri net depicted in Fig. 1, where the usual
graphical notation for the places, transitions, and arcs has been adopted.

The system under study is a distributed computing system composed of a cluster
of two computers. Each of them has three main weak points: the motherboard, CPU,
and disk. Interconnections inside the cluster are provided by a manager in such a
way that the overall system is seen as a single unit. In the distributed system, the two
computers work independently, driven by the manager that acts as a load balancer to
split the work between them. Since the manager represents a single point of failure, a
second instance is deployed for redundancy in the system; this latter instance operates
in cold standby when the main computer manager works and it is powered on when
it fails.



20 A. Horvath et al.

Fig. 1 Computer system reliability model

Due to this configuration, the distributed systemworkswhen at least one of the two
computersworks and the computermanager properly operates. Themain components
of each computational unit (CPU, motherboard, and disk) may fail rendering the
unit inoperable. In the Petri net model, faults in the CPU, motherboard, and disk
are modeled by the timed transitions M B_i , Disk_i , and C PU_i whose firing
represents the respective faulty event in the i-th Computer; the operating conditions
of components are represented by a token in the places C PUi_U P , M Bi_U P , and
Diski_U P . When one of the transitions above fires a token is flushed out of the
place and a token is put in the place Comp_ f ail. At the same time, all the other
transitions related to the faulty events in the same unit become disabled because
the unit is considered down and thus no more faults can occur. Two tokens in the
place Comp_ f ail means that the two computational units are both broken and the
overall distributed system is not operational. Similarly, transition Man models the
fault of a manager unit. Its firing flushes a token out of the place Man_U P and puts
a token in the place Man_ f ail. Thanks to the redundancy, the first manager unit
fault is tolerated whereas the system goes down when a second fault occurs. This
state is represented in the Petri net by two tokens in the place Man_ f ail. In both
faulty states, all the transitions are disabled and an absorbing state is reached. In
terms of Petri net objects, the not operational condition is expressed by the following
statement:

(#Comp_ f ail = 2) ∨ (#Man_ f ail = 2) , (6)

where the symbol #P states the number of token in place P .
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Table 1 Failure time distribution parameters

Weibull

Transition β f η f E λ

M B_1, M B_2 0.5965 1.20 1.82 0.55

Disk_1, Disk_2 0.5415 1.00 1.71 0.59

C PU_1, C PU_2 0.399 1.46 3.42 0.29

Man 0.5965 1.20 1.82 0.55

As usual in reliability modeling, the time to failure of the components has been
modeled using Weibull distributions whose cumulative distribution function is

F(t) = 1 − e(1/η f )
β f

.

This choice has been also supported by measures done on real systems such as those
analyzed in [9]. The parameters of the Weibull distributions used for the Petri net
transitions of Fig. 1 are reported in Table1.

Weibull distributions have been introduced in the model through the use of 10-
phasePHdistributions, approximating thembyevaluating the formula (6). The results
obtained are depicted in Fig. 2. To better highlight the usefulness of the modeling
approach presented here, the Petri net model was solved by imposing exponential
distributions as transition firing times. In fact, the use of exponential distributions
is quite common to obtain a more tractable model. The value of the parameters λ
used in this second run was computed as the reciprocal of the expected value, E , of
the corresponding Weibull distributions (listed in Table1). The result obtained are
also depicted in Fig. 2. As can be easily noted, the use of exponential distributions
produces optimistic results compared to the use of Weibull distributions, making the
system appear more reliable than it is in reality.

Fig. 2 Computer system reliability R(t)
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7.2 Numerical Example with “Oscillating” ME Distribution

For our second example, we consider the Activity Network depicted in Fig. 3, which
represents a “mission” composed of five activities and the constraints on the order
in which the five activities can be carried out. Initially, activities 1 and 2 are active.
If activity 1 finishes then activities 3 and 4 start and thus there are three activities
under execution, namely, activities 2, 3, and 4. If activity 3 is the first first among
these three activities to finish then no new activity starts because in order to start
activity 5, both activity 2 and 3 must finish. The graph of all the possible states of
the Activity Network is shown in Fig. 4, where in every node we report the activities
that are under execution in the node. The label on the edges indicates the activity
whose completion triggers the edge. The duration of the activities are modeled with
ME distributions and we denote the vector and matrix that represent the duration of
activity i by αi and Ai , respectively. Further, we use the notation ai = (−Ai )1 and
denote by Ii the identity matrix whose dimension is equal to that of Ai .

Following the approach described in Sect. 4, one can determine the infinitesimal
generator of the model. Its first seven block-columns are given as (the left side of the
matrix)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1
⊕

A2 a1
⊗

I2
⊗

A3
⊗

A4 0 0 I1
⊗

a2 0 0
0 A2

⊕
A3
⊕

A4 I2
⊗

I3
⊗

a4 0 0 I2
⊗

a3
⊗

I4 a2
⊗

I3
⊗

I4
0 0 A2

⊕
A3 I2

⊗
a3 0 0 0

0 0 0 A2 0 0 0
0 0 0 0 A1 0 a1

⊗
A3
⊗

A4
0 0 0 I2

⊗
a4 0 A2

⊕
A4 0

0 0 0 0 0 0 A3
⊕

A4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

and the remaining five block-columns are (the right side of the matrix)

Fig. 3 An activity network
1

2

3

4

5

Fig. 4 CTMC of the activity
network in Fig. 3 5

1,2

2,3,4 2,4 2 5

2,3 4,5

1 3,4 3 4

1

2

3

4
1

2
2

2

3

3

4

4

3

4
4

5
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0 0 0 0 0
0 0 0 0 0

a2
⊗

I3 0 0 0 0
0 a2

⊗
A5 0 0 0

0 0 0 0 0
0 0 a2

⊗
I4
⊗

A5 0 0
I3
⊗

a4 0 a3
⊗

I4
⊗

A5 0 0
A3 a3

⊗
A5 0 0 0

0 A5 0 0 a5

0 a4
⊗

I5 A4
⊕

A5 I4
⊗

a5 0
0 0 0 A4 a4

0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The vector that provides the initial configuration is |A1 ⊗ A2, 0, ..., 0|.
In order to illustrate a feature of ME distributions that cannot be exhibited by PH

distributions, we applied an ME distribution with “oscillating” PDF to describe the
duration of activities 1, 2, 4, and 5. The vector–matrix pair of this ME distribution is

A1 = A2 = A4 = A5 = |1.04865,−0.0340166,−0.0146293| ,

A1 = A2 = A4 = A5 =
∣∣∣∣∣∣

−1 0 0
0 −1 −20
0 20 −1

∣∣∣∣∣∣
,

and its PDF is depicted in Fig. 5. The duration of the remaining activity, namely
activity 3, is distributed according to an Erlang distribution with four phases and
average execution time equal to 1, i.e.,

A3 = |1, 0, 0, 0| , A3 = 1

4

∣∣∣∣∣∣∣∣

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

∣∣∣∣∣∣∣∣
.

Fig. 5 Oscillating activity
duration pdf
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Fig. 6 Overall
accomplishment time pdf
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The model was then used to characterize the PDF of the time that is needed to
accomplish the whole mission. The resulting PDF is shown in Fig. 6 and one can
observe that the oscillating nature of the distribution of the activity durations carries
over into the overall completion time distribution.

8 Conclusions

While the evolution of computing devices and analysis methods resulted in a sharp
increase in the complexity of computable CTMCmodels, CTMC-based analysis had
been restricted to the analysis of stochastic models with exponentially distributed
duration times. A potential extension of CTMC-based analysis is the inclusion of
PH distributed duration times, which enlarges the state space, but still possesses
feasible computational complexity. We surveyed the basics of PH distributions and
the analysis approach to generate the EMC.

A more recent development in this field is the extension of the EMC-based analy-
sis with ME distributed duration times. With respect to the steps of the analysis
method, the EMC-based analysis and its extension with ME distributions are identi-
cal. However, because ME distributions are more flexible than the PH distributions
(more precisely, the set of PH distributions of a given size is a subset of the set of
ME distributions of the same size) this extension increases the modeling flexibility
of the set of models which can be analyzed with a given computational complexity.

Apart of the steps of the EMC-based analysis method, we discussed the tool sup-
port available for the automatic execution of the analysis method. Finally, application
examples demonstrated the abilities of the modeling and analysis methods.
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An Analytical Framework to Deal
with Changing Points and Variable
Distributions in Quality Assessment
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Abstract Nonfunctional properties such as dependability and performance have
growing impact on the design of a broad range of systems and services, where
tighter constraints and stronger requirements have to bemet. Thisway, aspects such as
dependencies or interference, quite often neglected, nowhave to be taken into account
due to the higher demand in terms of quality. In this chapter, we associate such aspects
with operating conditions for a system, proposing an analytical framework to evaluate
the effects of condition changing to the system quality properties. Starting from
the phase type expansion technique, we developed a fitting algorithm able to catch
the behavior of the system at changing points, implementing a codomain memory
policy forcing the continuity of the observed quantity when operating conditions
change. Then, to also deal with the state-space explosion problem of the underlying
stochastic process, we resort to Kronecker algebra providing a tool able to evaluate,
both in transient and steady states, nonfunctional properties of systems affected by
variable operating conditions. Some examples from different domains are discussed
to demonstrate the effectiveness of the proposed framework and its suitability to a
wide range of problems.
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1 Introduction

Current research trends move toward new technologies and solutions that have to
satisfy tight requirements raising the quality standards and calling for adequate tech-
niques, mechanisms, and tools formeasuring, modeling, and assessing nonfunctional
properties and parameters. Aspects so far coarsely approximated or neglected alto-
gether must now be taken into account in the quantitative evaluation of modern
systems. This encompasses a wide range of phenomena, where it is often neces-
sary to consider the relationships among different quantities in terms of aggregated
metrics (e.g., dependability, performability, sustainability, and quality of service).

A particularly interesting aspect that often emerges while dealing with the contin-
uously growing complexity of modern systems is the fallouts on observed quantities
due to changes. The notion of change that we consider in the present work takes into
account both the interdependencies among internal quantities, parts, or subparts,
and the external environment interactions. Workload fluctuations, energy variations,
environmental phenomena, user-related changing behaviors, and changing system
operating conditions are only few examples of such aspects that can no longer be
neglected in quantitative assessment [1, 2].

When non-exponentially distributed events are associated with system quantities,
an important issue to address is the memory representation. In fact, in presence
of changes, a wide class of phenomena requires that the quantity distribution may
change its behavior still preserving its continuity. More specifically, the stochastic
characterization at changing points, where the distributions governing the underlying
phenomena affecting the observed quantity could change, is strategic to have a good
and trustworthy representation of the actual system through a model. Stochastic
processes more complex and powerful than Markov models are necessary in order
to model this kind of memory, such as semi-Markov processes [3] or those deriving
from renewal theory [4], but these techniques are sometimes not able to cover some
specific aspects. Other modeling formalisms, such as fluid models [5], can deal
with more complex phenomena but their analytic solution cannot always be easily
automated, thus often requiring simulation [6].

In this chapter, we collect the results obtained in some previous works dealing
with the above discussed aspects and phenomena, thus proposing a detailed problem
analysis, a well-established analytical framework, as well as a comprehensive set
of case studies with examples coming from ICT areas (network, Cloud, IoT) and
science (physics).

The key aspects of the proposed modeling technique are: (i) the stochastic char-
acterization of the observed quantity in different working conditions; (ii) the spec-
ification of the working condition process governing the corresponding variations;
(iii) the modeling of the behavior of the observed quantity at changing points.

In particular, at changing points, the quantity distributionmay change its behavior,
preserving, under specific assumptions, its continuity. In order to implement the
continuity constraints imposed by the changing working conditions in the presence
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of non-exponential distributions,wepropose a solution techniquebasedonphase type
distributions, providing an ad hoc fitting algorithm based on codomain discretization.

The chapter is organized as follows. Section2 introduces the scenario considered
also presenting background details that can be useful in order to understand the
proposed approach. Section3 presents our ad hoc fitting algorithm, while Sect. 4
explains how to adopt this algorithm in the evaluation of a system affected by variable
operating conditions through stochastic models. Section5 shows how the proposed
framework can be exploited to deal with a variety of application domains. Section6
concludes the work with some final remarks.

2 Preliminary Concepts

2.1 Problem Rationale

Let us consider a continuous random variable X defined on the sample space Ω

stochastically characterizing a generic event. Moreover, let us assume such an event
is also characterized and influenced by a specific condition belonging to a numerable
set of conditions ci

X ∈ CX identified by i ∈ N. Thus, the values of X ∈ Ω also depend
on the condition in a way that X in the ith specific condition is characterized by the
cumulative distribution function (CDF) Fi

X(x) = Pr{X ≤ x | The condition is ci
X}

and the probability density function (PDF) f i
X(x) = d(Fi

X(x))/dx. Let us assume
Fi

X(x) ∈ FX is continuous and strictly increasing for all i.
To stochastically characterize conditions, let us consider another continuous ran-

dom variable Yi,j on Ω . Specifically, Yi,j triggers the switching of X from condition
ci

X to cj
X , with ci

X �= cj
X ∈ CX. Assuming that Yi,j is characterized by the FYi,j (y) CDF

(and by the fYi,j (y) PDF), we can identify a set Y of condition switching random vari-
ables and a set FY of CDFs. Moreover, considering the following CDF stochastically
characterizing the event related to X when condition cX varies:

FX(x, cX) = Pr{X ≤ x ∧ The condition is cX ∈ CX}

since the condition changes are triggered by the corresponding random variables in
Y, such a CDF can be treated as a joint CDF of X and Y, FX(x, cX) = FX,Y(x, y).
We also impose that FX(x, cX) is a continuous function with respect to c. This choice
reflects the behavior of many physical systems where quantities under study have
no sudden changes. The main consequence of this continuity is that at the condition
changing points there is no probability mass for FX(x, c).

Our aim is to expressFX(x, c) (or equivalently,FX,Y(x, y)) in terms of its marginal
distributionsFi

X(x) ∈ FX andFYi,j (y) ∈ FY . This is an undefined problem if no further
hypotheses are assumed. To proceed with our discussion, let us consider that just two
conditions for X are possible and that they are characterized by the CDFs F1

X(x) and
F2

X(x) respectively. Moreover, let us assume we start with condition c1 and then to
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switch to condition c2. Thus, we are considering just one change point from c1 to c2
with FY1,2(y) = FY (y). We can express FX,Y (x, y) as

FX,Y (x, y) =
{

F1
X(x) x ≤ y

F2
X(x + τ ) x > y

(1)

where τ ∈ Ω is a constant depending on the change point such that x, y, x + τ ∈ Ω

and FX,Y (x, y) is continuous in y. To quantify τ , we need to understand what happens
at the change point. Given that FX,Y (x, y)must be continuous and strictly increasing
(and thus invertible) by Eq. (1),

F1
X(y) = F2

X(y + τ ) ⇒ τ = F2(−1)
X

(
F1

X(y)
) − y (2)

where F2(−1)
X (·) is the inverse function of F2

X(·). Finally, a simple application of the
law of total probability allows us to decondition FX,Y (x, y), obtaining

FX,Y (t) =
∫ +∞

−∞
Pr(X ≤ t|Y = y)fY (y)dy

=
∫ t

0
Pr(X ≤ t|Y = y)fY (y)dy

+
∫ +∞

t
Pr(X ≤ t|Y = y)fY (y)dy

=
∫ t

0
(1 − Pr(X > t|Y = y))fY (y)dy

+ F1
X(t)(FY (y)|∞t ) (3)

This way, considering y ≤ t, Pr(X > t|Y = y) = 1 − F2
X(t + τ ) = 1 − F2

X(
t + F2(−1)

X

(
F1

X(y)
) − y

)
and thus by Eq. (3)

FX,Y (t) = F1
X(t)(1 − FY (t))

+ ∫ t
0 F2

X

(
t + F2(−1)

X

(
F1

X(y)
) − y

)
fY (y)dy

(4)

Note that Eq. (4) has been deduced by simply applying probability theory. There-
fore, it is valid whenever the above model and related assumptions (continuity and
invertibility of marginal CDFs, and no probability mass at changing point for the
joint CDF) are satisfied. We can associate several physical meanings with such an
equation. All of them are related to conservation laws in different application areas,
such as stochastic modeling (conservation of reliability-Sedyakin model [2], sur-
vival models, duration models), physics (e.g., conservation of energy, momentum),
economics, sociology, history, biology, and so on.
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2.2 Phase Type

Phase type distributions were first used by Erlang [7] in his work on congestion in
telephone systems at the beginning of this century. His method of stages, that has
been further generalized since then, represents a non-exponentially distributed state
sojourn time by a combination of stages, each ofwhich is exponentially distributed. In
this way, once a proper stage combination has been found to represent or approximate
a distribution, the whole process becomes Markovian and can be easily analyzed
through well-known and established approaches. Note that the division into stages
is an operational device. Thus, stages have no physical significance in general.

Later, Neuts [8, 9] formally defined the class of phase type distributions. A non-
negative random variable T (or its distribution function) is said to be of phase type
(PH) when T is the time until absorption of a finite-state Markov chain [9]. When
continuous time Markov chains are considered, we talk about continuous phase-
type (CPH) distributions. In particular, we say that T is distributed according to a
CPH distribution with representation (α,G) and of order n if α and G are such
that π(0) = [α,αn+1] is the n + 1 dimensional initial probability vector in which
αn+1 = 1 − ∑n

i=1 αi and Ĝ ∈ Rn+1 × Rn+1 is the infinitesimal generator matrix of
the underlying continuous time Markov chain in which

Ĝ =
[

G U
0 0

]

Matrix G ∈ Rn × Rn describes the transient behavior of the CTMC and U ∈ Rn

is a vector grouping the transition rates to the absorbing state. Matrix Ĝ must be
stochastic so U = −G1, where 1 ∈ Rn is a vector of 1. Thus, the CDF of T , FT (t),
i.e. the probability of reaching the absorbing state of the CPH, is given by:

F(t) = 1 − αeGt1, t ≥ 0 (5)

One of themain drawbacks of PHdistributions is the state-space explosion. In fact,
expanding each non-exponential distribution with a set of phases greatly increases
the number of model states. In order to provide a compact representation of the
resulting CTMC, Kronecker algebra is usually exploited [9–11], providing several
advantages: (i) it is not necessary to physically generate nor store the expanded
state space as a whole; (ii) the memory cost of the representation of the expanded
state space grows linearly with the dimension of the PH distributions instead of
geometrically; (iii) specific algorithms developed for similar cases can be used for
the model solution [12].

The method of stages allows one to code memory through Markov models. Each
phase represents a particular condition reached by the stochastic process during its
evolution. Usually, this condition is associated to the time. CPHs are specified with
the aim of coding the time instant at which a specific event occurs, by keeping
memory of the phase reached so far. This allows resumption of the evolution of an
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activity from the saved point if the activity is interrupted. This mechanism works if
the observed events are not changing their nature. On the other hand, if the nature
of the observed event changes preserving memory of the time instant may not be
enough.

In such cases, as described in Sect. 2.1, since the distribution characterizing the
observed phenomenon changes according to some event, it becomes a bi-variate
function of both the observed event and the external one. Moreover, it is generally
difficult or even impossible to obtain the joint CDF by only knowing the marginal
CDFs.

As an example, let us consider that the observed event is a component failure
characterized by the component lifetime CDF in a changing environment. In such a
context, a way to adequately address the problem may be to characterize the lifetime
CDFs of the observed system both in isolation or in the initial working condition
(without dependencies or in the baseline environment), and in the new environment
or after the dependency application. By representing the two lifetime CDFs as CPHs
in this way, it would be necessary to specify how the system jumps from one CPH
to the other one and viceversa. Such a “jump” process is usually governed by a
law regulating the underlying system. For example, the conservation of reliability
principle states that reliability should be preserved in the transition between the two
conditions. Of course, other possible examples are the conservation of momentum,
of age, of battery charge, and so on. In general, such quantities can be expressed as
a function of time. Thus, the quantity to preserve is not necessarily the time but a
(usually monotonic, nonincreasing) function of the time.

In several previous works, [13–23], we presented a method based on CPHs and
Kronecker algebra to manage such kind of memory, without incurring in the com-
plexity of the problem described in Sect. 2.1. The proposed method is able to manage
many changing points affecting the reliability, availability, or other performability
indexes that can change many times during the system evolution. The technique
requires some assumptions on the CPHs structure in order to be easily implemented.
In particular, it is necessary that the CPHs coding the functions associated to the
changing indexes in different operating states have the same number of phases and
initial probability vector. In order to deal with this issue, we propose an ad hoc fitting
algorithm. The basic idea to represent the conservation of the considered quantity in
terms of CPHs is to discretize the probability codomain associating to each stage of
the CPH a specific value of the function. Thus, in order to jump from a CPH repre-
senting the behavior of the system under specific environmental conditions to the one
representing the system in different environmental conditions, it is only necessary to
save the phase reached, thus implementing the conservation of the considered quan-
tity. In other words, a specific phase encodes the value reached by the quantity. Then,
if we represent the two functions in terms of CPHs with the same number of phases
n, the ith phase of the two CPHs, with i ≤ n, corresponds to the same function value.
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In this chapter, we give an overview of the technique also providing a set of
simplified examples taken from previous works. The aim is to show that our approach
can deal with a wide class of phenomena and to give the reader an overall idea of
our work on such a topic.

3 PH Codomain-Fitting Algorithm

The goal of the fitting algorithm we propose is to associate a specific meaning, a
memory tag or value, with the phases of the CPH, while approximating the original
distribution through a CPH. The idea is to characterize the CPH phases with some
information encoding the probability codomain, in order for each phase to represent
a value of probability or better, an interval of probability values in Ki = [ai, bi] ⊆
[0, 1]. The Ki intervals must be mutually exclusive (Ki

⋂
Kj = ∅ ∀i �= j) and cover

the whole [0, 1] probability codomain (
⋃

i Ki = [0, 1]).
The first step to perform the proposed fitting algorithm is to discretize the

codomain of the CDF to be approximated through continuous phase type. For exam-
ple, applying this algorithm to the CDF shown in Fig. 1a, n = 10 contiguous intervals
Ki = [i/n, (i + 1)/n) ∈ [0, 1] ⊂ R, with i = 0, . . . , n − 1 ⊂ N, have been identi-
fied, characterizing n + 1 endpoints in total. The proposed technique associates with
each of such endpoints a phase of the corresponding CPH as reported in Fig. 1b for
the CDF given as example, where phase 0 corresponds to probability 0, 1 to 0.1, 2
to 0.2, and so on. In general, the jth phase corresponds to the j/n probability with
j = 0, . . . , n.

The transitionbetween the states i and j is strictly related to the event characterizing
the underlying process. Transitions are allowed either to the next phase of the CPH
model or to the absorbing state, as shown in Fig. 1b. If, while in the ith interval,
the event occurs a transition between the ith and the last nth phase is performed,
otherwise, if the event does not occur, the CPH transits from the ith phase to the
(i + 1)st.

A generic CPH obtained by applying the proposed technique is reported in
Fig. 2, where n + 1 phases labeled 0, . . . , n are identified, subdividing the prob-
ability codomain into n contiguous intervals [i/n, (i + 1)/n) ∈ [0, 1] ⊂ R with
i = 0, . . . , n − 1 ⊂ N. As stated above, two are the possible transitions outgoing
from the ith phase: one incoming to the next i + 1 phase and the other to the absorb-
ing nth phase. To evaluate the rates to associate with such transitions, we start from
the i → i + 1 transition. Assuming the considered event is not occurred before ti and
does not occur in the interval [ti, ti+1), the sojourn time in phase i depends only on the
time spent in the ith state due to the Markov property of CTMCs. This sojourn time
can be characterized by the random variable τi with mean value E[τi] = ti+1 − ti.
Since τi has to be approximated by a random sojourn time characterized by the
negative exponential rate λi, we have that that:

λi = 1

E[τi] = 1

ti+1 − ti
(6)
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Fig. 1 A CDF Codomain Sampling (a) and corresponding CPH (b)

Fig. 2 A generic CPH of the proposed approach

It is worth noting that Eq. (6) is the rate of the CPH approximating the sojourn
time in state i if the observed event has not occurred before ti and does not occur in
the interval [ti, ti+1). Thus, we have to identify the probability of transiting to state
i + 1 and n from i. The i → i + 1 probability pi,i+1 is

pi,i+1 = Pr{X > ti+1|X > ti} = 1 − Pr{X ≤ ti+1|X > ti}
= 1 − Pr{ti < X ≤ ti+1}

Pr{X > ti} = 1 − F(ti+1) − F(ti)

1 − F(ti)

= 1 − 1/n

1 − i/n
= 1 − 1

n − i
(7)
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where X is the observed random variable and F(t) is its corresponding CDF to be
approximated by CPH. Since the approximation algorithm split the codomain into
intervals of size 1/n, we have that F(ti+1) − F(ti) = 1/n and F(ti) = i/n. On the
other hand, the i → n probability pi,n is the complement of the Eq. (7):

pi,n = Pr{X ≤ ti+1|X > ti} = 1 − Pr{X > ti+1|X > ti}
= 1 − pi,i+1 = 1

n − i
. (8)

This way, the rate specified by Eq. (6) is split between the two possible transitions
such that:

λi,i+1 = pi,i+1λi = (1 − 1

n − i
)λi (9)

λi,n = pi,nλi = λi

n − i
(10)

as shown in Fig. 2. The n − 1 → n transition has only one rate λn that, since a CDF
asymptotically reaches 1 at t = ∞, should be ideally 0. For the CTMC of Fig. 2 to
be a CPH, there exists only one absorbing state. Therefore, in building the CPH, the
last rate λn is characterized by a low value, approximating with only one phase the
long asymptotic tail of the CDF considered, for example by a fraction of the CPH
lowest rate λk . The proposed algorithm has some problems exhibits some inaccuracy
when fitting long-tail distributions and in general of distributions with constant or
quasi-constant segments. A possible solution or workaround could be to increase n,
especially in those segments, adopting a kind of “resolution” trimming or tuning on
them, to be taken into account in the retrieval of the codomain value associated with
the phase.

4 Phase-Type Distributions to Model Variable Conditions

The fundamentals introduced in the previous section together with the fitting algo-
rithm presented in Sect. 3 aim to more easily manage the phenomena of changing
conditions. In fact, the method of stages is a way to code memory through a Markov
model, since a phase of a CPH represents a particular condition reached by the
underlying stochastic process during its evolution. In classical methods [24–26], the
condition usually is associated with time in order to remember the elapsed time since
the enabling of an event. In other words, such CPHs are specified to save the time
instant in which a specific event occurs, by just saving the phase reached and to con-
tinue their evolution from the saved point. Such mechanism works if the observed
events are not changing their nature. In the context where the component dynamics
are subject to change, preserving time memory is useless due to the change in the
distribution characterizing the firing time. In such cases, we need a specific represen-
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tation of the change event in order to preserve the memory as expressed by Eq. (2) in
Sect. 2.1. According to that relation the quantity to preserve is no longer the time but
the probability to fire at the enabling time y. To directly apply Eq. (2) implies a search
of the time shift τ and the computation of Eq. (4) that is numerically inapplicable in
real cases where more than one changing event can happen at a state change.

Our proposal is to represent the event firing times in terms of CPHs obtained
as result of the fitting algorithm of Sect. 3; in that case, the firing probability is
discretized and a specific value of probability is associated to each stage of the
CPH. Thus, in order to jump from a CPH T1 representing the behavior of the system
under specific environmental conditions to the one (T2) representing the system in
different environmental conditions, it is only necessary to save the phase reached,
thus implementing the conservation of the firing probability. In other term, a specific
phase must encode the value of reached firing probability, and, by representing the
twoCDF in terms ofCPHswith the same number of phases n, the probability encoded
by the i-th phase of a CPH, where i ≤ n, is the same encoded in the i-th phase of
the other CPH. Of course, T1 and T2 must have the same number of phases; their
representation is different due to the different dynamic of the events into the two
operating conditions.

Jumping from T1 to T2 maintaining the phase reached implements the behavior
described by Eq. (2). In fact, the CDF value is maintained by construction and the
time shift is a consequence of a different rate assigned in CPH T2. The fact that at a
given time y the process switches from a phase k of T1 to phase k of T2 implies that
the event in the new condition is as enabled by a different time with respect to the
dynamic described through T1. In this way, we take into account of the time shift τ
of Eq. (2). This behavior is depicted in Fig. 3.

When the events are coded through CPHs, expansion methods can be used to
adequately study the stochastic process also in the case of non-exponentially dis-
tributed events. The memory conservation at the switching condition time is taken

Fig. 3 CPH switching due to operating condition changing
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into account using the CPH coding given above and associating to the changing
event the classical memory policy managed by the expansion methods. These meth-
ods are very memory intensive. Thus, in order to provide a compact representation
of CTMCs resulting from phase-type expansion, the Kronecker algebra is used as
shown in [12, 25, 27–29].

4.1 Symbolic Representation

Let us consider a discrete-state discrete-event model and let S be the system state
space and ε the set of CPH distributed system events. Following the state-space
expansion approach [9], the stochastic process can be represented by an expanded
CTMC. Such CTMC is composed of ||S|| macro-states and it is characterized by a
||S|| × ||S|| block infinitesimal generator matrix Q in which

• the generic diagonal block Qn,n (1 < n < ||S||) is a square matrix that describes
the evolution of the CTMC inside the macro-state related to state n, which depends
on the possible events that are enabled in such state;

• the generic off-diagonal block Qn,m (1 < n < ||S||, 1 < m < ||S||) describes the
transition from themacro-state related to state n to the one related to statem, which
depends on the events that occur in state n and on the possible events that are still
able to occur in state m.

By exploiting Kronecker algebra, matrix Q does not need to be generated and
stored as a whole, but can be symbolically represented through Kronecker expres-
sions and algorithmically evaluated on-the-flywhen neededwith consequent extreme
memory saving [25, 28]. Moreover, this approach is particularly suitable in models
where the memory conservation at the switching condition time has to be applied.
Going into details of matrix Q, its blocks have the following form:

Qn,n =
⊕

1<e<||ε||
Qe (11)

Qn,m =
⊗

1<e<||ε||
Qe (12)

In other words, the diagonal blocks are computed as Kronecker sums whereas off-
diagonal blocks are computed as Kronecker products of a series of matrices Qe, each
associated to a CPH representing system events. In the case of switching conditions
incurred during a state change, the CPHs in the two states are different and this is
reflected in Eq. (11) in the fact that matrix Qe related to the same event is different
in the two states. Thanks to the fitting algorithm of Sect. 3, the structure of CPHs in
different conditions can be modeled with the same number of phases n where each
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phase codes a level of probability to fire. As a consequence, the conservation of the
phase reached between the two CPHs the contribution of event e to the equation
Eq. (12) is the rank n identity matrix In.

5 Examples

In this section we aim at highlighting the generality of the proposed framework in
modeling a wide range of systems. To this purpose, four examples are proposed
dealing with both ICT and physics’ systems and demonstrating the effectiveness of
the approach in a variety of application fields.

5.1 Network Data Performability

In this example, we investigate both performance and reliability of data transferred
through a connection-oriented virtual circuit network (VCN) at datalink or network
layer such as X.25, ATM, Frame Relay, GPRS, or MPLS. To send data in a layer
2–3 VCN, a virtual circuit between the two endpoints must be established first.
This means that data transmissions in such networks always follow the same path
among nodes. Although this implies several benefits (bandwidth reservation, low
overhead, and simple switching), themain drawback of such an approach is the virtual
channel reliability, especially in wireless networks. Indeed, a channel failure usually
breaks the virtual circuit forcing creation of a new connection. Several mechanisms
and countermeasures, such as fault tolerance and redundancy policies, have been
adopted by virtual circuit protocols to mitigate these failure effects. For example,
bandwidth overprovisioning sends packet replicas to increase the delivery ratio. This
often implies bandwidth overbooking to improve the channel utilization and the
provider outcome. However, it impacts both the channel and the data transmission
reliability, which become sensitive to network traffic fluctuations.

In this example, we focus on both reliability and performance of packet transmis-
sion in VCN, taking into account different traffic conditions in the evaluation of the
packet time-to-failure and time-to-delivery r.v. Packet lifetime includes all the causes
of delivery failure (channel failure, congestion, hardware and software faults, etc.).
In other words, we aim at evaluating the probability the channel is reliable when and
while a packet is sent, given that the channel is available at sending time.

As discussed above, we assume that both the packet time-to-failureX and time-to-
delivery T also depend on the traffic, i.e. on the bandwidth available for transmission.
To this end, we characterize two traffic conditions, average and high, assuming
knowledge of theCDFs of the packet lifetime and time-to-delivery in such conditions,
namely FA

X (t), FA
T (t), FH

X (t) and FH
T (t), respectively.

Thisway, the trigger events associatedwith trafficfluctuations are characterized by
twoCDFsFI(t) andFD(t) corresponding to the switching from average to high traffic
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(traffic increase − I) and vice-versa (traffic decrease − D), respectively. Assuming
periodicfluctuations between the two types of traffic, a bursty trafficpattern, aMarkov
modulated Poisson process can be adopted in the modeling if FI(t) and FD(t) are
exponentially distributed.

The resulting state-space model is composed of four main states identifying the
reliable channel both in the average (STA) and in high (STH ) traffic conditions, the suc-
cessful packet delivery (SPD ), and the failed transmission (SPF ), as shown in Fig. 4a. If
the channel is available at the beginning, the system starts from either state STA or STH

according to the traffic condition. The transitions between these two states model the
traffic condition switching and are triggered by the eTI and eTD events representing
traffic fluctuations characterized by the corresponding CDFs FI(t) and FD(t).

From such states, in the case of a failure during message sending, the state SPF

is reached through transitions labeled eFA or eFH depending on the traffic condition,
associated with FA

X (t) and FH
X (t) respectively. Otherwise, for successful delivery,

state SPD is reached through events eDA or eDH , according to the traffic, characterized
by FA

T (t) and FH
T (t) respectively. The goal is to evaluate the CDFs of the time to

message delivery (FR(t)), i.e., the probability of reaching state SPD , and the time
to message sending failures (FF(t)), i.e. the probability of reaching state SPF , Since
states SPD and SPF are both absorbing, a steady state exists for themodel and the values
FR(∞) and FF(∞) represent the steady state probability the packet is delivered or
fails, respectively, i.e. the packet/data delivery ratio, with FR(∞) + FF(∞) = 1. It
follows that the that FR(t) and FF(t) are defective CDFs.

To evaluate the model, we based our analysis on parameters and values taken
from the literature. With regard to the time to delivery, we used the data published in
[30, 31], providing statistics of two workload conditions on the channel. Therefore,
we stochastically characterized the time to delivery by Gaussian CDFs, the average
traffic one (FA

T (t)) with mean value 2.5 ms and variance 0.5 ms, the high traffic CDF
(FH

T (t)) has higher mean value (11 ms) and variance (3 ms).
The (sending) time to failure CDF has been obtained by the delivery ratio taken

from [32], i.e. 0.9 in the average traffic case and 0.6 in the high one. This requires

The model.
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Fig. 4 Network data performability example
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further manipulation. The delivery ratio is the steady state probability the packet is
delivered in the above model. Knowing the delivery steady state probability in each
traffic condition, we have to find a failure CDF such that the steady state probability
of delivery in themodel of Fig. 4a is equal to the delivery ratio. Assuming themessage
sending lifetime is represented by a Weibull CDF (1 − e−( t

α )
β
) commonly used in

reliability, setting β = 5 through the model we identifiedαA = 22 ms for the average
traffic andαH = 4ms for the high one. Finally, the traffic switching rate isλI = λD =
500 s−1, i.e. a switch every 2 ms.

Applying the codomain fitting algorithm of Sect. 3 four 100 phase CPHs approxi-
mate these distributions. Then we evaluated the packet delivery and failure probabil-
ity, obtaining the results shown in Fig. 4b. As discussed above, two defective distrib-
utions the time to delivery and the lifetime of the packet are identified, corresponding
to states SPD and SPF , respectively. The steady state is reached at approximately 12ms,
with a delivery ratio of about 75%. Similar transient trends can be observed. The first
knee identifies a change in probability following the underlying CDFs, with initially
a very low probability to deliver the packet, then suddenly increasing. The second
knee represents the transition to the steady state, where it is very likely either the
packet has been already delivered or sending failed.

5.2 IaaS Cloud Performance

Cloud computing systems offer virtualized environments where jobs, in terms of
virtual machines (VMs), can be executed without any knowledge on the physical
computing infrastructure. In such a scenario, multiple VMs can be allocated in the
same physical machine (PM), e.g., a core in a multi-core architecture, in order to
respond to specific provider goals such as energy consumption or load burst manage-
ment.Multiple VMs sharing the same PMcan incur in a reduction of the performance
mainly due to I/O interference between VMs. In order to meet the stringent QoS level
required by service-level agreements (SLAs), cloud providers must find trade-offs
between the internal management strategies and theQoS offered. To this end, we pro-
pose an application of the proposed technique that could help data center managers
to tune system parameters.

We model a system composed of a single PM that is able to concurrently execute
up to m VMs. The actual number of VMs is a function of the traffic load as well as
of the VM allocation strategy. We model such an aspect through a system composed
of m states (see Fig. 5a), where transitions among states are triggered by events eCI

(Increase) and eCD (Decrease) representing an increase or a decrease in the level of
concurrency. Such events canbegenerally distributedwithmeanλ andμ, respectively
and can be correlated through the traffic intensity factor ρ defined as ρ = λ

μ
. With

low values of ρ (<1), the system will experience a low concurrency level while with
values of ρ near to 1 the system will experience a concurrency level near to m.

We are interested in measuring the time needed to execute a job that can be mod-
eled through events eT1 , eT2 , ..., eTm that represent the execution times associatedwith
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Fig. 5 The Cloud example

the different operating conditions. Events eTi are generally distributed and depend on
the performance degradation due to the concurrent execution. They can be estimated
by means of theoretical studies or statistical observations. Finally, the state ST is the
absorbing state, which corresponds to the task completion.

Measures of interest include the mean execution time or the probability to execute
the task within a given time deadline τ . Such performance indexes can be investi-
gated by varying the maximum concurrency level m under different load conditions
characterized by different values of ρ.

In order to provide a quantitative example, we start defining a job whose duration
T1 can bemodeled as a series of cycles composed of a CPU execution (modeled by an
exponentially distributed execution time T 1

CPU with mean λCPU) followed by an I/O
access (modeled by an exponentially distributed execution time T 1

I/O with mean λI/O).
To reach the job completion, such events need to be repeated for a certain number of
times. We model such an aspect by defining a probability pf that is the probability of
finishing the job at the end of a CPU-I/O cycle. The performance degradation [33]
is modeled by varying the CPU and I/O execution times with respect to the concur-
rency level: Ti

CPU = T 1
CPU · (1 + dCPU)(i−1) Ti

I/O = T 1
I/O · (1 + dI/O)(i−1), where dCPU

and dI/O are the degradation factors related to CPU and I/O events, respectively.
Notice that modeling job duration according to such a technique corresponds to a
CPH distributed job completion time that, even without the specific form of Fig. 2,
respects the characteristic discussed in Sect. 3, i.e., phases have a physical meaning
and preserving memory of the phase is equal to preserving memory of the corre-
sponding physical quantity (in this case the execution time).

Figure5b shows the results obtained with the parameters λCPU = 0.33min−1,
λI/O = 0.2min−1, pf = 0.9, dCPU = 0.05, dI/O = 0.1. This figure gives an example of
how the proposed technique can be exploited in order to obtain high level information
on the cloud system. In particular, from the plotted curves, it is possible to quantify
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the probability that a job executeswithin the threshold defined by an SLA (in this case
τ = 240min). Such a probability can be evaluated under different load conditions and
using different concurrency strategies, thus providing useful insights to the system
administrator to identify a better set of strategies.

5.3 Energy Consumption in IoT Mobile Devices

While talking about mobile environments, the first thing that attracts attention is the
comparison between resource-poor devices and fixed stations. Mobile devices are
limited in computational power, available memory, and battery life. The presence of
wireless connections with different available bandwidth and probability of discon-
nection and reconnection is another important characteristic of these environments.
One of the more interesting topics in this research field is the Internet of Things
(IoT), where concerns regarding mobility are even more constrained.

Mobile crowdsensing (MCS) [34] applications are a typical scenario in the
IoT world. In such applications, hundreds or even thousands of mobile phones
are employed to collect environmental information usually aggregated with user-
generated patterns, in order to analyze and forecast crowd behavior and attitude
measuring various individual as well as community trends. Individual trends are
those pertaining to a single device(s) owner, while collective trends are those inher-
ent to an aggregate of surroundings and not limited to any individual in particular.
Examples of individual trends are movement patterns (e.g., running, walking, climb-
ing stairs), commuting modes (e.g., biking, driving, taking a bus, riding the subway),
as well as activities in general (e.g., using an ATM, visiting a store, having a conver-
sation, listening to music, making coffee). Collective trends may be exemplified by
(air/noise) pollution levels, e.g., in a neighborhood or, even more aptly, by realtime
traffic patterns and transit timings, including significant deviations from recurrent
trends and averages, like reroutings due to either scheduled (e.g., closures) or sudden
(e.g., pot holes) road alterations.

Such large scale, collective trends monitoring is achievable only if a large com-
munity of individuals are willing to share their resources by accepting a certain
amount of the processing duties. We distinguish between participatory and oppor-
tunistic approaches. In participatory scenarios, individuals are actively involved in
contributing by mean of devices or (meta-)data (e.g., taking a picture or reporting a
road bump). In opportunistic scenarios, sensing is more automatic and user involve-
ment is minimal (e.g., continuous sampling of geo-localized data).

Given that mobile devices are usually equipped with low voltage batteries, energy
saving is certainly one of the main issues in such a context. In fact, users usually
have full control on their devices and they are allowed to choose when and how
they want to contribute to the MCS application. Usually, some kind of policy is
exploited, referring to the energy status in terms of battery charge. Experimental
results show that the energy consumption of a mobile device depends on the load
the device is subjected to. This is related to the specific tasks and operations the
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device is performing at a particular time instant. There are tasks that request a higher
energy consumption when compared to others, while low consumption statuses, e.g.,
suspend, idle, can be forced to extend lifetime.

Here, we consider the simple example of a user willing to contribute to an MCS
application by allowing its smart phone to periodically share geo-localized data
collected through on-board sensors. The user agrees to send such data only if the
remaining battery energy is above 20%. Several works, such as [35], show that the
main high-level tasks that affect smart phone energy consumption are: (i) making
phone calls, and (ii) browsing the Web, while, in all the other situations, the smart
phone is usually maintained in a minimum energy consumption (suspend) mode. For
simplicity, let us consider three different usage patterns:

• generic—over a single day, about 20% of time is spent making phone calls while
about 10% of time is spent in browsing the Web;

• business—over a single day, about 40% of time is spent making phone calls while
about 10% of time is spent in browsing the Web;

• student—over a single day, about 10% of time is spent making phone calls while
about 40% of time is spent in browsing the Web.

Finally, let us suppose that the battery duration Td is approximately equal to 43 h in
suspend mode, 10 h while making phone calls, and 5 h while browsing the Web. Our
technique allows us to predict the smart phone battery duration and, accordingly, the
amount of contribution that the mobile device can provide to the MCS application,
according to the different usage patterns.

The state space of the model that can be used to represent our MCS application
scenario is depicted in Fig. 6a. States SS , SC , and SB represent the suspend, calling,
and web browsing modes respectively. Events eSC and eCS represent the switching
between suspend and calling modes while events eSB and eBS model the switching
between suspend and browsing mode. They can be characterized with exponential
distributions and their rates must be fixed so that the mean sojourn times in states
SS , SC , and SB during a day is set accordingly to the above reported usage patterns.
State SD represents the fully discharged battery state while events eDC , eDS , and eDB

represent the battery discharge process.
As described in [17], the linear or nonlinear discharge process of a battery can

be modeled, according to the technique described in Sect. 3, through an Erlang CPH
with a sufficient number of phases. In our case, we used n = 100 phases. The phases
of the CPH assume the physical meaning of the battery charge level. The rates of the
Erlang distributions are set equal to n/Td . The discharge time is different in the three
states, as described above. However, the battery charge level should be kept while
switching among them.

Thanks to the physical meaning of the CPH phases resulting from the codomain
fitting algorithm, our technique allows us to compute the probability of having a
80% discharged battery and, as a consequence, the probability for the mobile device
to stop contributing to the IoT mobile crowdsensing service. Figure6b shows this
probability in the three usage scenarios considered.
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Fig. 6 The energy management in IoT mobile devices example

5.4 Car Travel Planning

As the last example, we consider a car with a fixed quantity of fuel in its tank that
should arrive at a defined destination within a certain time. The car has to travel along
a path growing at different altitudes. Thus, the road could posses a different slope in
different sections. In particular, we consider a road with the elevation graph depicted
in Fig. 7a.

The main requirement the driver must meet is to arrive to the stop point by the
time of a scheduled appointment. Thus, he/she develops two different driving plans
in order to meet this requirement. Two remarks must be considered: (1) even if the
driver chooses to travel each path section at a given speed some degree of uncertainty
must be considered due to the road condition (holes, traffic congestion, and other
unpredictable events potentially occurring during the travel). Thus each section travel
time is a r.v. characterized by a mean value (the time planned by the driver) and
a nonzero coefficient of variation; (2) the power required to cover a path section
depends on the section slope; this means the engine consumes petrol at different
rates in each section.

Our method is able to evaluate such problems thanks to its ability to remember
an arbitrary quantity following changing operational conditions. In this example, we
preserve memory of the level of petrol in the tank, taking into account both the road
slope and the changing engine usage.

Based on these considerations, a state model to investigate the car travel plan is
depicted in Fig. 7b. Specifically, the model must evaluate the distance the car is able
to run and the corresponding time, given an initial quantity of fuel and a travel plan.
States SSi , 0 ≤ i ≤ 5, represent the car running in section Si of the path, whereas
states SEi represent the car stopped somewhere in those sections due to empty tank.
If the state SS is reached the mission is successfully accomplished.

Each plan fixes the expected speeds on each path section and, as a consequence,
the required engine power per section is computed by referring to the mechanical
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Fig. 7 Car travel planning example

specifications of the car (power vs. engine speed graph, final drive ratio, gear, and
tires). In ourmodel, we assume the expected power as the power used along a specific
path section.1 The amount of fuel a(τ ) used during a time interval [0, τ ] depends on
both the engine fuel consumption c and the power P since a = c · P · τ . Thus, the

1This is an approximation we made because the speed is not constant but a r.v. Thus, the supplied
power is a r.v. too. The approximation introduced is not required by the proposed method and we
made it just to simplify the presentation because our purpose is to show the effectiveness of the
technique and not to study the mechanical system with high accuracy.
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Table 1 Travel plans Plane n. Speed (km/h)

S1 S2 S3 S4 S5

1 290 80 290 130 290

2 222 80 222 130 222

quantity of fuel in the tank after τ is a(τ ) = a0 − c · P · τ , where a0 is the quantity
of fuel in the tank when the car starts running.

We use a(τ ) to define events eTi , as explained in Sect. 3, by taking into account the
fact that P changes according to the path sections but the quantity of fuel at changing
points must be preserved. The time to run along the path sections Si (events eFi )
are modeled by Erlang distributions with the mean time depending on the speed
provided by the travel plan and a coefficient of variation estimated according to the
environmental conditions. The travel plans we considered are reported in Table1.
Moreover, we assumed the car has just 15 l of fuel in its tank. Fuel consumption
depends on the power and the speed of the engine. It is important to remark that
the fuel consumption may also increase in case of lower speeds. The numerical
values are taken from the fuel consumption graph of a BMW M3 E46 car and the
engine installed as its standard equipment. For lack of space, we do not show all the
mechanical feature graphs used to obtain such values.

Figure7c, d show the results related to the two travel plans of Table1. The lesson
learned by observing the graphs is that plan 1 does not ensure the car arrives at the
end of the path (the Stop curve), since it has 0.4 probability to stop at the middle of
the overall path and a probability equal to 0.1 to arrive at destination. Plan 2 gives
more confidence about the possibility to complete the travel with a probability equal
to 0.36. On the other hand, the time required to travel along path 2 is longer than the
path 1 one, due to the reduced speed in path sections S1, S3, and S5.

6 Conclusions

In this chapter, we considered a class of systems characterized by different working
conditions that alternate and change a system’s stochastic behavior. In such systems,
the continuity of particular quantities needs to be preserved and this calls for adequate
analytical techniques. The chapter summarizes our work on an analytical framework
able to represent such phenomena which is based on phase-type distributions and
on an ad hoc fitting algorithm relying on codomain discretization. The framework
is general enough to model a wide range of systems and, to show its usefulness,
four examples have been presented both for ICT and physical systems. Different
quantitative analyses have been conducted in order to provide and overview of the
available modeling tools.
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Fitting Phase-Type Distributions
and Markovian Arrival Processes:
Algorithms and Tools

Hiroyuki Okamura and Tadashi Dohi

Abstract This chapter provides a comprehensive survey of PH (phase-type) distri-
bution and MAP (Markovian arrival process) fitting. The PH distribution and MAP
are widely used in analytical model-based performance evaluation because they can
approximate non-Markovian models with arbitrary accuracy as Markovian mod-
els. Among a number of past research results on PH/MAP fitting, we present the
mathematical definition of the PH distribution and MAP, and summarize the most
recent state-of-the-art results on the fitting methods. We also offer an overview of
the software tools for PH/MAP fitting.

1 Introduction

Model-based performance evaluation is widely used to estimate system attributes
such as dependability and security, as well as quantitative system performance. In
model-based performance evaluation, the continuous-time Markov chain (CTMC)
plays a central role and is useful to describe the probabilistic behavior of a target sys-
tem as a state-based stochastic model. Though CTMCs are mathematically tractable,
efficient numerical techniques are needed to compute stationary and transient mea-
sures for the performance of large-scale systems [12, 71].

When the underlying stochastic model is non-Markovian, i.e., the model includes
nonexponential distributions such as the Weibull, Pareto, and lognormal distribu-
tions, it is often difficult to apply the analytical approach. Distefano and Trivedi [22]
introduced analytical methods for non-Markovian models, phase-type (PH) expan-
sions, Markov renewal programming, and the supplementary variable method. In
this chapter, we focus on the PH expansion.
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In brief, the main idea of the PH expansion is to replace general probability dis-
tributions and/or general stochastic point processes by approximate PH distributions
[47] and/or Markovian arrival processes (MAPs), respectively. The PH distribution
and MAP are one of the widest classes of probability distributions and stochastic
point processes. It is well known that both PH distribution and MAP are dense for
arbitrary probability distributions with non-negative support and point processes,
so they can provide good approximations for general probability distributions and
point processes with arbitrary accuracy [5]. Additionally, since the PH distribution
and MAP are defined by CTMCs, the resulting model approximated by the PH
expansion reduces to a relatively simple CTMC. Hence, analytical and numerical
approaches for CTMCs are directly applied to analyze the approximation model.
However, in practice, there is a serious problem of how to determine PH/MAP para-
meters to guarantee a good approximation. The aim of PH/MAP fitting is to estimate
model parameters from empirical data or probability density functions. Thus, these
techniques possess practical significance to the model-based performance evaluation
of large-scale complex systems.

In this chapter, we provide a comprehensive survey of PH/MAP fitting. In general,
although PH/MAP fitting can be classified as moment-based and likelihood-based
approaches, we concern ourselveswith several likelihood-based algorithms proposed
by [54, 56] as joint workswith Prof. Kishor S. Trivedi. These are useful to understand
the fundamental ideas of PH/MAP fitting from the statistical point of view. In addi-
tion, we offer an overview of the existing PH/MAP fitting tools. This information is
valuable for all researchers who study model-based performance evaluation.

2 PH Fitting

The PH distribution is defined as the distribution of required time to reach the absorp-
tion state in a time-homogeneous CTMC with an absorbing state. Without loss of
generality, we consider an absorbing CTMC on the finite state space {0, 1, 2, . . . , m}
with the following infinitesimal generator:

QPH =
(
0 0
τ T

)
, (1)

where T is an infinitesimal generator between transient states and τ is a column
vector of transition rates from transient states to the absorbing state. By using the
column vector 1 whose all elements are 1, the vector τ is given by τ = −T1. The
above absorbing CTMC is called a phase process, denoted by Jx , and the state of
the phase process is referred to as a phase in this chapter. The PH random variable is
defined by the first passage time to the absorbing state (state 0) on the phase process
Jx , i.e.,

X = inf{x ≥ 0; Jx = 0}. (2)



Fitting PH Distributions and MAPs 51

Suppose that the initial phase J0 is determined by a probability (row) vector α

over the transient states {1, . . . , m}. The probability density function (p.d.f.) and
cumulative distribution function (c.d.f.) of X can be written by

g(x) = α exp(T x)τ , 0 ≤ x < ∞, (3)

G(x) = 1 − α exp(T x)1, 0 ≤ x < ∞, (4)

respectively, where (α, T , τ ) are the PH parameters.1 Also, αi , τi , and λi, j denote
the i-th entries of α and τ , and the (i, j)-entry of T , respectively.

The PH distribution can approximate any kind of probability distribution defined
on the non-negative support [5]. The purpose of PH fitting is to determine the PH
parameters (α, T , τ ) to approximate the original distributionwith the fitted PHdistri-
bution. In general, the accuracy of approximation depends on the number of phases
and the phase structure which determines the structure of state transitions of the
underlying phase process. For example, if the number of phases is 1, the corre-
sponding PH distribution reduces to an exponential distribution. Needless to say, the
exponential distribution does not exhibit much flexibility when fitting distributions.
Hence, we encounter the following three research questions on PH fitting:

(i) What is the appropriate phase structure?
(ii) How many phases are required?
(iii) How should the parameters (α, T , τ ) be estimated?

For research question (i), three kinds of phase structures were typically assumed
in the past literature. The first is a general PH (GPH) distribution, which does not
have any special phase structure, i.e., α and T are allowed to be full vector and
matrix, respectively. The second is an acyclic PH (APH) distribution whose underly-
ing phase process is restricted to an acyclic CTMC. In this case, T is expressed as an
upper or lower triangular matrix. Cumani [19] proved that any APH distribution can
be represented in three standard structures called canonical forms. Thus, PH fitting
with the APH distribution essentially reduces to PH fitting with canonical forms. The
third phase structure is a finite mixture of exponential/Erlang distributions. A finite
mixture of probability distributions is represented by a weighted sum of the finite
number of distributions. When the mixed components are PH distributions, the mix-
ture also becomes a PH distribution. In other words, the parameter estimation of the
mixture of exponential/Erlang distributions is equivalent to PH fitting with a special
phase structure. One of the advantages of using the mixture of exponential/Erlang
distributions avoids the computation of a matrix exponential.

Research question (ii) is still an open and unresolved problem of PH fitting.
Several approaches have been proposed in the past literature. The most intuitive
method is to determine the number of phases from the viewpoint of moments. That
is, the number of phases is determined by the minimum number of phases so that

1ThePHparameters can be definedby (α, T ). In this chapter, since the diagonals ofT are determined
after estimating nondiagonals of T and τ , the PH parameters include τ .
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the resulting moments (mean, variance, skewness, etc.) of the PH expansion coin-
cide with the theoretical (given) moments. A more sophisticated approach is based
on the Laplace–Stieltjes (LS) transform. The LS transform is a variant of Laplace
transform. O’Cinneide [48–51] discussed the characteristics of the PH distribution
and provided the lower bounds on the order of the PH distribution by means of
poles of the LS transform. He and Zhang [28] derived the phase reduction algorithm
to find the minimal representation of Coxian distribution based on O’Cinneide’s
works. The theoretically valid approach is to use information criteria such as AIC
(Akaike information criterion) [1] and BIC (Bayesian information criterion) [66]
from the statistical point of view. The information criterion represents a kind of dis-
tance between the true and estimated models, and is used in many applications of
the statistical model selection problem. Briefly speaking, the information criterion
imposes a penalty term on models that contain many parameters. Thus, information
criteria can also identify the minimum number of phases.

For research question (iii), there aremanyvariations proposed in the past literature,
and these methods can be classified into three types. The first method is moment
matching (MM). The fundamental concept of MM is to find PH parameters so that
themoments can fit the givenmoments. In fact, many authors focused on only the first
two or three moments to determine PH parameters. The second method is maximum
likelihood estimation (MLE). The MLE is a commonly used technique to estimate
model parameters by maximizing the likelihood so that the observed data are drawn
from the model. When PH parameters are estimated from a theoretical p.d.f., MLE
is essentially equivalent to minimizing cross entropy. The advantage of MLE is that
it can estimate parameters from any type of data and possesses several statistically
rich properties such as asymptotic normality2 when fitting PH distributions. On the
other hand, since the computational cost of MLE is relatively high, a challenging
issue is to identify methods to reduce the computational cost. The EM (expectation-
maximization) algorithm [20, 75] is frequently used for PH fitting.

The third method is Bayes estimation. In the Bayesian paradigm, it is assumed
that unknown model parameters are random variables, i.e., all model parameters are
randomly distributed. By observing field data, the corresponding probability distri-
bution of model parameters is updated according to Bayes theorem. The updated
probability distribution of model parameters is called the posterior distribution, and
the probability distribution of model parameters before the update is called the prior
distribution. The main feature of Bayes estimation is to compute the posterior distri-
bution of parameters. The Bayes estimation enables us to evaluate not only interval
estimation of parameters but also the predictive distribution in many cases. How-
ever, the computation of a posterior distribution is often more expensive than MM
andMLE.Thus, approximationmethods are sometimes used to compute the posterior
distribution.

The main concern for the earliest PH fitting efforts wasMMwith special structure
such as a mixture of Erlang distributions and a 2-phase Coxian distribution based

2When the number of samples increases, the log-likelihood function can be approximated by a
multivariate normal distribution.
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on the first two moments in application of Markov model [43]. Altiok [3] presented
a method to approximate general distributions with PH distributions via the LS
transform of the mixture of exponential distributions. van der Heijden [72] gave
a simple formula for MM of a Coxian distribution with the first three moments.
Aldous and Shepp [2] showed that the number of phases is easily determined by
the coefficient variation for the Erlang distribution. Johnson and Taaffe [36–39]
and Johnson [35] obtained several results on PH fitting for the mixture of Erlang
distributions with nonlinear programming techniques in terms of the difference of
p.d.f. as well as moments. Feldmann and Whitte [26] discussed an algorithm to
estimate a mixture of exponentials to fit long-tailed data. In the context of MM
for APH distribution, Telek and Heindl [67] presented a method for the 2-phase
APH distribution. Osogami and Harchol-Balter [60] and Bobbio et al. [10] found the
MM for APH distributions with the first three moments. Specifically, their methods
addressed the problem of determining the number of phases, where the number of
phases is given by a minimum number of phases so that the first three moments of the
estimated PH distribution match the given first three moments. van de Liefvoort [73]
and Telek and Horvath [68] extended the PH distribution to the matrix-exponential
distribution, and discussed MM with high-order moments.

Here, we remark on the computational risk in the use of MM. There is no doubt
thatMMworks well for PH approximation when the theoretical moments are known.
However, if MM is applied to PH fitting with statistical data, we should consider the
estimation errors for the moments. In general, an estimate of high-order moments is
rather sensitive to errors contained in a random sample. Thus, it is difficult to obtain
accurate estimates of high-order moments when the number of samples is small. In
addition, there is the situation where we cannot even calculate the first moment when
some data are missing. In such cases, MLE or other statistical approaches are more
appropriate.

In the context of MLE, Bobbio and Cumani [9] presented the MLE for the APH
distribution by applying linear programming iteratively to solve the maximization
problem for the log-likelihood function which is a logarithm of probability mass or
density function for observed data. Also, Bobbio and Telek [11] carried out experi-
ments on MLE-based PH fitting for the APH distribution. Asmussen et al. [6] pro-
posed an EM algorithm for the GPH distribution. Olsson [59] extended the EM
algorithm to the case with censored data. Okamura et al. [55] improved Asmussen’s
EM algorithm with respect to time complexity of the number of phases. Also, they
proposed an algorithm to estimate the APH distribution with EM-based PH fitting.
Moreover, in [56], theEM-basedPHfitting is extended to handle the cases of grouped,
truncated, andmissing data. On the other hand, for PHfittingwith amixture of Erlang
distributions (hyper-Erlang distribution), Thummler et al. [69] and Panchenko and
Thumler [61] developed EM algorithms which can determine the phase structure of
a hyper-Erlang distribution. Reinecke et al. [63] combined data clustering with PH
fitting.
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For Bayes estimation, Bladt et al. [8] proposed an MCMC (Markov chain Monte
Carlo) algorithm3 for the GPH distribution with a Markov jump process to approx-
imate the posterior distributions. Watanabe et al. [74] considered an improved
MCMC algorithm by using the uniformization technique. Yamaguchi et al. [76] and
Okamura et al. [58] proposed the variational Bayes algorithms for amixture of Erlang
distributions and the GPH distribution.

3 PH Fitting Algorithms

3.1 Data for PH Fitting

In this section, we describe a detailed PH fitting algorithm proposed in [56]. The
algorithm is based onMLEwith the EMprinciple and can be applied to estimateGPH
parameters with grouped, truncated, and missing data. The grouped data consists of
several time intervals and the number of events that occur in the time intervals. The
time points that generate time intervals are referred to as break points in this chapter.
Table1a presents an example of grouped, truncated, and missing data with break
points 0, 10, 20, . . . , 100. In this table, the values in intervals [10, 20] and [40, 50]
aremissing and denoted asNA (not available). Furthermore, the bottom row indicates
that 5 samples are truncated at 100. Similarly, Table1b gives another example. In
this case, several samples are truncated at 100, but we do not know the exact number
of truncated samples. Since such grouped, truncated, and missing data frequently
appear in practical situations, the PH fitting approach presented here is one of the
most appropriate algorithms.

3.2 EM-Step Formulas

The fitting algorithm is based on the EM algorithm, which is an iterative method
to compute MLE when observed data are incomplete [20, 75]. Define D and U as
observable and unobservable data, respectively. The EM algorithm consists of two
steps, namely the E-step and M-step. In the E-step, we compute the expected log-
likelihood function (LLF) with respect to the unobserved data when observed data
are given. The M-step finds the parameters that maximize the expected LLF. The
LLF monotonically increases by updating the parameters in each EM-step. These
EM-steps are executed until the LLF or parameters converge. Let Q(θ |θ ′) denote
the expected LLF of the parameter vector θ provided that the provisional (initial)

3The MCMC is a sample-based approximation method for posterior distributions.
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Table 1 Examples of
grouped, truncated, and
missing data for PH fitting
(break points:
0, 10, 20, . . . , 90, 100)

Data (a)

Time interval Number of events

[0, 10] 1

[10, 20] NA

[20, 30] 5

[30, 40] 11

[40, 50] NA

[50, 60] 29

[60, 70] 9

[70, 80] 12

[80, 90] 4

[90, 100] 0

[100,∞] 5

Data (b)

[0, 10] 1

[10, 20] NA

[20, 30] 5

[30, 40] 11

[40, 50] NA

[50, 60] 29

[60, 70] 9

[70, 80] 12

[80, 90] 4

[90, 100] 0

[100,∞] NA

parameters θ ′ are given. The E-step computes Q(θ |θ ′) by using θ ′. In the M-step,
we update the parameter vector by solving

θ ← argmax
θ

Q(θ |θ ′). (5)

In the EMalgorithm, the E- andM-steps are successively repeated until the parameter
vector converges.

Here, we consider grouped data with break points 0 = x0 < x1 < . . . < xK , i.e.,
the data consist of the number of samples for K + 1 intervals [0, x1), [x2, x3), . . . ,
[xK ,∞). For the sake of notational convenience, let X (k,l) be the l-th sample in the
k-th interval. In addition, we assume two kinds of intervals: observable and unobserv-
able intervals. Let I and I be the sets of indexes of observable and unobservable
intervals. Note that I and I are disjoint, and that I ∪ I gives all the indexes,
i.e.,I ∪ I = {1, 2, . . . , K + 1}. We can count the numbers of samples in only the
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observable intervals, but the numbers of samples in the unobservable intervals are
unknown, i.e., the data are missing in the unobservable intervals.

Let D = {nk}k∈I be the numbers of samples in observable intervals. Define the
following unobserved variables:

• Uk : the number of samples in the k-th unobserved interval [xk−1, xk), k ∈ I .
• B(k,l)

i : an indicator random variable for the event that the phase process of X (k,l)

begins with phase i .
• Z (k,l)

i : the total sojourn time of phase i on the phase process of X (k,l).
• Y (k,l)

i : an indicator random variable for the event that the phase process of X (k,l)

is i just before the absorption.
• M (k,l)

i, j : the total number of phase transitions from i to j on the phase process of
X (k,l).

Since the estimates of CTMC parameters are given by frequencies and sojourn time
for each state when the CTMC process is completely observed, the M-step formulas
of the PH parameters are obtained from Eq. (5):

αi ←
∑

k∈I E
[∑nk

l=1 B(k,l)
i

∣∣∣D
]

+ ∑
k∈I E

[∑Uk
l=1 B(k,l)

i

∣∣∣D
]

∑
k∈I nk + ∑

k∈I E[Uk |D] , (6)

τi ←
∑

k∈I E
[∑nk

l=1 Y (k,l)
i

∣∣∣D
]

+ ∑
k∈I E

[∑Uk
l=1 Y (k,l)

i

∣∣∣D
]

∑
k∈I E

[∑nk
l=1 Z (k,l)

i

∣∣∣D
]

+ ∑
k∈I E

[∑Uk
l=1 Z (k,l)

i

∣∣∣D
] , (7)

λi, j ←
∑

k∈I E
[∑nk

l=1 M (k,l)
i, j

∣∣∣D
]

+ ∑
k∈I E

[∑Uk
l=1 M (k,l)

i, j

∣∣∣D
]

∑
k∈I E

[∑nk
l=1 Z (k,l)

i

∣∣∣D
]

+ ∑
k∈I E

[∑Uk
l=1 Z (k,l)

i

∣∣∣D
] . (8)

Note that all the expected values are computed from the provisional PH parameters
θ = (α, T , τ ), which are given as a result of the previous M-step. At the first EM-
step, they are provided as initial guesses of PH parameters.

Next, we derive the analytical forms of the expected values in Eqs. (6)–(8). Since
it is known that the posterior distribution of unobserved samples U = {Uk}k∈I
becomes a negative multinomial distribution [44], the expected value of Uk , k ∈ I
is given by

E[Uk |D] = N
∫ xk

xk−1
g(x)dx

∑
i∈I

∫ xi

xi−1
g(x)dx

, k ∈ I , (9)

where N = ∑
k∈I nk and g(x) is the p.d.f. of the PH distribution.

Define the following row and column vectors for a PH random variable X and its
phase process Jx :

[ f (x)]i = P(Jx = i), [b(x)]i = P(X = x |J0 = i), (10)
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where i 	= 0, [·]i is the i-th element of the vector. For the sake of notational conve-
nience, although X is a continuous random variable, P(X = x) indicates the p.d.f.
of X .

Since X (k,l) are IID (independent and identically distributed) samples, the expected
value of B(k,l)

i in the observable interval is given by

E

[
nk∑

l=1

B(k,l)
i

∣∣∣∣∣D
]

= nkE[Bi |xk−1 < X ≤ xk] = nk P(J0 = i, xk−1 < X ≤ xk)

P(xk−1 < X ≤ xk)

= nk
∫ xk

xk−1
P(J0 = i)P(X = x |J0 = i)dx

∫ xk

xk−1
P(X = x)dx

= nk
∫ xk

xk−1
αi [b(x)]idx

∫ xk

xk−1
g(x)dx

. (11)

In the case of an unobservable interval, by using the posterior distribution of Uk , the
expected value becomes

E

[
Uk∑

l=1

B(k,l)
i

∣∣∣∣∣D
]

=
∞∑

n=0

nE[Bi |Uk = n, xk−1 < X ≤ xk]P(Uk = n|D)

=
∞∑

n=0

n
∫ xk

xk−1
αi [b(x)]idx

∫ xk

xk−1
g(x)dx

P(Uk = n|D)

= E[Uk |D] ∫ xk

xk−1
αi [b(x)]idx

∫ xk

xk−1
g(x)dx

= N
∫ xk

xk−1
αi [b(x)]idx

∑
i∈I

∫ xi

xi−1
g(x)dx

. (12)

Similarly, we have

E

[
nk∑

l=1

Y (k,l)
i

∣∣∣∣∣D
]

= nk
∫ xk

xk−1
P(X = x, J−

x = i)dx

P(xk−1 < X ≤ xk)

= nk
∫ xk

xk−1
P(J−

x = i)P(Jx = 0|J−
x = i)dx

P(xk−1 < X ≤ xk)

= nk
∫ xk

xk−1
[ f (x)]iτidx

∫ xk

xk−1
g(x)dx

, (13)
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E

[
Uk∑

l=1

Y (k,l)
i

∣∣∣∣∣D
]

= N
∫ xk

xk−1
[ f (x)]iτidx

∑
i∈I

∫ xi

xi−1
g(x)dx

, (14)

where J−
x = limx ′→0+ Jx−x ′ .

For Z (k,l)
i and M (k,l)

i, j , the expected values in the observable interval are

E

[
nk∑

l=1

Z (k,l)
i

∣∣∣∣∣D
]

= nk
∫ xk

xk−1

∫ x
0 P(X = x, Ju = i)dudx

P(xk−1 < X ≤ xk)

= nk
∫ xk

xk−1

∫ x
0 P(Ju = i)P(X = x, |Ju = i)dudx

P(xk−1 < X ≤ xk)

= nk
∫ xk

xk−1

∫ x
0 [ f (u)]i [b(x − u)]idudx

∫ xk

xk−1
g(x)dx

, (15)

E

⎡

⎣
nk∑

l=1

M(k,l)
i, j

∣∣∣∣∣∣
D

⎤

⎦ =
nk

∫ xk
xk−1

∫ x
0 P(X = x, J−

u = i, Ju = j)dudx

P(xk−1 < X ≤ xk)

=
nk

∫ xk
xk−1

∫ x
0 P(J−

u = i)P(Ju = j |J−
u = i)P(X = x, |Ju = j)dudx

P(xk−1 < X ≤ xk)

=
nk

∫ xk
xk−1

∫ x
0 [ f (u)]i λi, j [b(x − u)] jdudx

∫ xk
xk−1

g(x)dx
. (16)

Also, the expected values in the unobservable interval become

E

[
Uk∑

l=1

Z (k,l)
i

∣∣∣∣∣D
]

= N
∫ xk

xk−1

∫ x
0 [ f (u)]i [b(x − u)]idudx
∑

i∈I
∫ xi

xi−1
g(x)dx

, (17)

E

[
Uk∑

l=1

M (k,l)
i, j

∣∣∣∣∣D
]

= N
∫ xk

xk−1

∫ x
0 [ f (u)]iλi, j [b(x − u)] jdudx
∑

i∈I
∫ xi

xi−1
g(x)dx

. (18)

3.3 Computation Algorithms

To compute the expected values, we define the following vectors and matrices based
on f (x) = α exp(T x) and b(x) = exp(T x)τ :
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f k =
∞∫

xk

f (x)dx = α(−T )−1 exp(T tk), (19)

f̃ k =
xk∫

xk−1

f (x)dx = f k−1 − f k, (20)

bk =
∞∫

xk

b(x)dx = exp(T xk)1, (21)

b̃k =
xk∫

xk−1

b(x)dx = bk−1 − bk . (22)

Moreover, for the sake of mathematical convenience, we introduce the following
matrices to compute the convolution integral of f (u) and b(u):

Hk =
∞∫

xk

u∫

0

b(x − u) f (u)dudx =
xk∫

0

exp(T (xk − u))1α exp(Tu)du + 1 f k

= Υ + 1 f k, (23)

H̃k =
xk∫

xk−1

u∫

0

b(x − u) f (u)dudx = Υ k−1 − Υ k + 1 f̃ k, (24)

where Υ k = ∫ xk

0 exp(T (xk − u))1α exp(Tu)du. By using the above vectors and
matrices, the expected values are rewritten as

E [Uk |D] = Nα b̃k∑
i∈I α b̃i

, (25)

E

[
nk∑

l=1

B(k,l)
i

∣∣∣∣∣D
]

= nkαi [b̃k]i

α b̃k

, E

[
Uk∑

l=1

B(k,l)
i

∣∣∣∣∣D
]

= Nαi [b̃k]i∑
u∈I α b̃u

, (26)

E

[
nk∑

l=1

Y (k,l)
i

∣∣∣∣∣D
]

= nk[ f̃ k]iτi

α b̃k

, E

[
Uk∑

l=1

Y (k,l)
i

∣∣∣∣∣D
]

= N [ f̃ k]iτi∑
u∈I α b̃u

, (27)

E

[
nk∑

l=1

Z (k,l)
i

∣∣∣∣∣D
]

= nk[H̃k]i,i

α b̃k

, E

[
Uk∑

l=1

Z (k,l)
i

∣∣∣∣∣D
]

= N [H̃k]i,i∑
u∈I α b̃u

, (28)
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E

[
nk∑

l=1

M (k,l)
i, j

∣∣∣∣∣D
]

= nkλi, j [H̃k] j,i

α b̃k

, E

[
Uk∑

l=1

M (k,l)
i, j

∣∣∣∣∣D
]

= Nλi, j [H̃k] j,i∑
u∈I α b̃u

,

(29)

where [·]i, j is the (i, j)-entry of matrix. Note that f̃ k , b̃k , H̃k are replaced by f k , bk ,
and Hk respectively at k = K + 1 because tK+1 goes to infinity.

Much computation time of the EMalgorithm for the PHdistribution is spent on the
calculation of convolution integral of matrix exponential. In [52, 55], an effective
computation algorithm for the convolution integral of the matrix exponential was
proposed based on the uniformization. Let Υ (t; v1, v2) be the convolution integral
of matrix exponential;

Υ (x; v1, v2) =
x∫

0

exp(T (x − u))v1v2 exp(Tu)du, (30)

where v1 and v2 are arbitrary column and row vectors, respectively. Algorithm 1
presents a pseudo code to compute Υ (x; v1, v2). In this algorithm, ε is an error toler-
ance for the computation of the Poisson probability. The function PoiBound(μ, ε)

gives the first point where the c.d.f. of Poisson distribution with mean μ becomes
more than 1 − ε. The function PoiProb(n, μ) is the Poisson probability mass func-
tion with mean parameter μ, i.e., e−μμn/n!. Also, I denotes the identity matrix. The
time complexity of Algorithm 1 is proportional to a square of the number of phases.
In particular, when T is a sparse matrix, the time complexity is proportional to the
number of nonzero elements of T .

Algorithm 1 Uniformization-based convolution integral of matrix exponential [55,
56].
function convint(x, v1, v2) : return value Υ

r ← max(abs(diag(T ))); P ← I + T/r; R ← PoiBound(r x, ε)

v1(0) ← v1
for i = 1 : R do

v1(i) ← Pv1(i − 1)
end for
v2(R) ← PoiProb(R + 1, r x)v2
for i = R − 1 : 0 do

v2(i) ← v2(i + 1)P + PoiProb(i + 1, r x)v2
end for
Υ ← 0
for i = 0 : R do

Υ ← Υ + v1(i)v2(i)/r
end for
end function
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Applying the algorithm into the computation of expected values, we define

H =
K+1∑

k=1

wk H̃k, (31)

where

wk =
⎧
⎨

⎩
nk/π b̃k, k ∈ I ,

N/
∑

u∈I π b̃u, k ∈ I .
(32)

Since H̃ = Hk−1 − Hk and Hk = Υ (xk; 1,α) + 1 f k , we get

H =
K+1∑

k=1

wk1 f̃ k +
K∑

k=1

Υ (Δxk; bk−1, ck), (33)

where Δxk = xk − xk−1 and

ck =
K∑

l=k

(wl+1 − wl)α exp(T (tl − tk)). (34)

Algorithm 2 shows our E-step procedure for PH distributions under grouped,
truncated, and missing data according to the above formulas. In this algorithm, the
function convint(x, v1, v2) denotes the convolution integral of the matrix expo-
nential presented in Algorithm 1. By using the results of Algorithm 2, the para-
meters are updated with αi ← αi [B]i/(N + U ), τi ← τi [Y ]i/[H]i,i and λi, j ←
λi, j [H] j,i/[H]i,i .

3.4 M-Step of Canonical Form

As mentioned before, any APH distribution can be transformed to three canonical
forms [19]. Thus, PH fitting for canonical forms is of practical importance. For
instance, one of the canonical forms (CF1: canonical form1) is given by the following
bidiagonal infinitesimal generator:

α = (
α1 . . . αm

)
, T =

⎛

⎜⎜⎜⎝

−λ1 λ1

−λ2 λ2

. . .

−λm

⎞

⎟⎟⎟⎠ , τ =

⎛

⎜⎜⎜⎝

0
...

0
λm

⎞

⎟⎟⎟⎠ , (35)

where the restriction λ1 ≤ . . . ≤ λm holds.
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Algorithm 2 E-step procedure for PH distributions with grouped and truncated data
[56].

B ← 0; Y ← 0; H ← O
f 0 ← α(−T )−1; b0 ← 1; N ← 0; U ← 0
for k = 1 : K do

f k ← f k−1 exp(TΔxk); f̃ k ← f k−1 − f k; bk ← exp(TΔxk)bk−1; b̃k ← bk−1 − bk
if k ∈ I then

N ← N + nk; U ← U + α b̃k
end if

end for
if K + 1 ∈ I then

N ← N + nK+1; U ← U + αbK
end if
for k = 1 : K do
if k ∈ I then

w(k) ← nk/α b̃k;
else

w(k) ← N/U
end if
B ← B + w(k)b̃k; Y ← Y + w(k) f̃ k

end for
if K + 1 ∈ I then

w(K + 1) ← nK+1/αbK
else

w(K + 1) ← N/U
end if
B ← B + w(K + 1)bk; Y ← Y + w(K + 1) f k
cK ← (w(K + 1) − w(K ))α

for k = K − 1 : 1 do
ck ← ck+1 exp(TΔxk+1) + (w(k + 1) − w(k))α

end for
for k = 1 : K do

H ← H + w(k)1 f̃ k + convint(Δxk , bk−1, ck)

end for
H ← H + w(K + 1)1 f K

Algorithm 3 Resorting algorithm [55].
for i = 1 : (m − 1) do
for j = 1 : (m − i) do
if λ j > λ j+1 then

α j ← α j + α j+1(1 − λ j+1/λ j );
α j+1 ← α j+1λ j+1/λ j;
swap(λ j , λ j+1);

end if
end for

end for
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In the M-step, the parameters are updated by using the results of E-step;

αi ← αi [B]i

N + U
, λi ← λi [H]i+1,i

[H]i,i
for i = 1, . . . , m − 1, λm ← λm[Y ]m

[H]m,m
. (36)

However, this procedure does not ensure that the restriction of CF1 holds. Okamura
et al. [55] proposed Algorithm 3 as the resorting algorithm of λ1, . . . , λm for the
bidiagonal PH distribution. After every M-step execution, Algorithm 3 is performed
to ensure the restriction.

4 MAP Fitting

A MAP (Markovian arrival process) is defined by a time-homogeneous CTMC on
a two-dimensional state space {(n, i); n = 0, 1, . . . , and i = 1, . . . , m} with the
following infinitesimal generator:

QMAP =
⎛

⎜⎝
D0 D1

D0 D1

. . .
. . .

⎞

⎟⎠ . (37)

The first coordinate of state space is called the level which represents the number of
arrivals corresponding to the block structure of the infinitesimal generator in which
D1 corresponds to the arrival rates. The second coordinate of state space is called
the phase which dominates the arrival rate. In general, the MAP is denoted by a two-
dimensional point process (Nt , Jt )where Nt and Jt are the level and phase processes
of the MAP. From the infinitesimal generator, Jt becomes a CTMC on the finite state
space {1, . . . , m} with the infinitesimal generator D0 + D1.

By taking account of time instants when arrivals occur, we build an embedded
Markov chain, i.e., the phase process is reduced to a discrete-time Markov chain
(DTMC) with the transition probability P = (−D0)

−1 D1. Then the interarrival time
follows a PH random variable. Let π be the probability vector for initial phase at
time t = 0. Then, the time to the first arrival occurrence becomes a PH random
variable with PH parameters (π , D0, D11). Generally, let X0, X1, . . . , Xk be the k-
successive interarrival times ofMAPwith (D0, D1). The examples ofmoment-based
characteristics of the MAP are;

• the lag-l joint moments;

E[Xi
0X j

l ] = i ! j !π s(−D0)
−i P l(−D0)

− j 1, (38)
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• the lag-l autocorrelation;

ρl = E[X0Xl] − E[X ]2
E[X2] − E[X ]2 , (39)

where E[Xk] = k!π s(−D0)
−k1 is the k-th moment of the PH distribution and π s is

the stationary vector of P satisfying π s = π s P .
MAP fitting also encounters the following three research questions:

(i) What is the appropriate phase structure?
(ii) How many phases are required?
(iii) How should the parameters D0 and D1 be estimated?

Research questions (i) and (ii) have not been overcome yet by the research commu-
nity. For research question (i), the Markov-modulated Poisson process (MMPP) and
interrupted Poisson process (IPP) are often assumed as subclasses of the MAP. Telek
and Horvath [68] proposed a minimal representation for general MAP by allowing
parameters to take complex values, i.e., a rational arrival process. Also, from the
computational point of view, Horvath et al. [32] focused on the interarrival time
distribution of the MAP, assuming that it is given by hyper-Erlang distributions.
Yoshihara et al. [77] and Casale et al. [18] presented a superposition of the MAP
and MMPP. For research question (ii), Telek and Horvath [68] suggested that the
size of the underlying CTMC could be determined in the framework of MM for an
interarrival time distribution. Also, Okamura et al. [52, 54] suggested using the AIC
to determine the number of phases in the context of MLE. However, this is still an
open problem in MAP fitting.

For research question (iii), MAP parameter estimation is categorized as MM,
MLE, and Bayes estimation as well. Heffes and Lucantoni [30] provided an explicit
formula for estimating the parameters of a two-state MMPP by using empirical
moments of the number of arrivals. Anderson and Nielsen [4] proposed a fitting
method for a superposition of 2-state MAPs using the Hurst parameter in addition to
the moments. Yoshihara et al. [77] developed a moment-based estimation procedure
for a superposition ofMMPP.Mitchell and van de Liefvoort [45] proposed a two-step
method that deals with interarrival time data and lag correlation separately. Buchholz
and Kriege [15] developed a heuristic algorithm with joint moments.

In the context of MLE, Deng and Mark [21] proposed the MLE for MAPs by
converting it to a Markov-modulated Bernoulli process. Rydén [65] derived an EM
algorithm for MMPP. The EM algorithm by Rydén [65] is analogous to the forward-
backward algorithm for the well-known hidden Markov model [7], and this method
can also be applied to the MAP. Breuer [13] and Klemm et al. [41] discussed EM
algorithms to estimate the parameters of batch MAP. Roberts et al. [64] proposed
a scaling method and a computation method for the matrix exponential to speed
up Rydén’s EM algorithm. Buchholz [14] reduced the time complexity of the EM
algorithm by applying the uniformization technique. Also, Buchholz and Panchenko
[16] andHorváth et al. [32] developed two-step fittingmethods by combining the EM
algorithm for the PH distribution and the moment-based two-step method proposed
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in [45]. Okamura et al. [57] provided a deterministic annealing of the EM algorithm
for the MAP and GPH distribution to relax the local maximum convergence of
the EM algorithm. Furthermore, Okamura and Dohi [52] presented a novel EM
algorithm using a hyper-Erlang distribution, which does not need to compute the
matrix exponential. This algorithm is one of the most effective algorithms for MAP
fitting. The same idea is extended to estimate the marked MAP [33]. On the other
hand, MLE strongly depends on the data type. Thus, it is important to consider MAP
fitting algorithms for a variety of data types. However, there are only a few works
on MAP fitting with different data types. Okamura et al. [54] first discussed the
MAP fitting problem with grouped data. Works on Bayes estimation for MAP fitting
include Fearnhead and Sherlock [25] who presented an MCMC algorithm based on
Gibbs sampling for the MMPP.

5 MAP Fitting Algorithm

5.1 Data for MAP Fitting

In this section, we introduce a detailed MAP fitting algorithm with grouped data
proposed in [54]. Similar to the grouped data for PH fitting, the grouped data for
MAP fitting is also defined by time intervals and the number of arrivals in those
intervals. Table2 shows examples of time data and grouped data generated from the
time data. In this table, the grouped data is created from the time data by counting
the number of arrivals in successive 5 s periods.

5.2 EM-Step Formulas

Consider the grouped dataD = {n1, n2, . . . , nK }with break points 0=t0 < t1 < · · ·
< tK , where nk is the number of arrivals in [tk−1, tk). When the grouped data D are
observed, we estimate MAP parameters (π , D0, D1), where π is the probability
vector to determine the initial phase at time t = 0. In this chapter, πi , λi, j and μi, j

are the i-th entry of π , (i, j)-entries of D0 and D1, respectively.
Define the following unobserved variables:

• Bi : an indicator random variable for the event that the phase process of the MAP
begins with phase i .

• Z (k)
i : the total sojourn time of phase i in the interval [tk−1, tk).

• Y (k)
i, j : the total number of arrivals leading to phase transitions from phase i to phase

j in the interval [tk−1, tk).
• M (k)

i, j : the total number of phase transitions from phase i to phase j in the interval
[tk−1, tk).
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Table 2 Examples of time
and grouped data for MAP
fitting (break points:
0, 5, 10, 15, 20, 25, . . .)

Time data

Arrival no. Time (s)

1 1.240

2 1.608

3 4.206

4 9.140

5 11.036

6 15.075

7 17.912

8 20.604

9 22.032

10 26.300
.
.
.

.

.

.

Grouped data

Time interval Counts

[0, 5] 3

[5, 10] 1

[10, 15] 1

[15, 20] 2

[20, 25] 2
.
.
.

.

.

.

By considering the expected values for the unobserved variables, we have the fol-
lowing M-step formulas of MAP parameters:

πi ← E[Bi |D], λi, j ←
∑K

k=1 E[M (k)
i, j |D]

∑K
k=1 E[Z (k)

i |D] , μi, j ←
∑K

k=1 E[Y (k)
i, j |D]

∑K
k=1 E[Z (k)

i |D] . (40)

Next, we consider the expected values of the unobserved variables, i.e., the E-step
formulas for MAP fitting. Define the following row and column vectors:

[ f k(n, u)]i = P(ΔN1 = n1, . . . , ΔNk−1 = nk−1,

Nu+tk−1 − Ntk−1 = n, Ju+tk−1 = i), 0 ≤ u ≤ Δtk, (41)
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[bk(n, u)]i = P(Ntk − Ntk−u = n,

ΔNk+1 = nk+1, . . . , ΔNK = nK |Jtk−u = i), 0 ≤ u ≤ Δtk, (42)

whereΔNk = N (tk) − N (tk−1) andΔtk = tk − tk−1. The sumof rowvector f k(n, u)

represents the likelihood of observed data in [0, tk−1 + u], and the i-th entry of
bk(n, u) denotes the conditional likelihood of observed data in [tk − u, tK ] provided
that Jtk−u = i .

By using f k(n, u) and bk(n, u), the expected value E[Bi |D] is given by

E[Bi |D] = P(J0 = i,ΔN1 = n1, . . . , ΔNK = nK )

P(ΔN1 = n1, . . . , ΔNK = nK )

= P(J0 = i)P(ΔN1 = n1, . . . , ΔNK = nK |J0 = i)

P(ΔN1 = n1, . . . , ΔNK = nK )

= πi [b1(n1,Δt1)]i

πb1(n1,Δt1)
, (43)

whereπb1(n1,Δt1) becomes the likelihood ofD . Also, the expected valueE[Z (k)
i |D]

becomes

E[Z (k)
i |D] =

∫ Δtk
0 P(ΔN1 = n1, . . . , ΔNk = nk, Jtk−1+u = i, . . . , ΔNK = nK )du

P(ΔN1 = n1, . . . , ΔNK = nK )
.

(44)

For the numerator of Eq. (44), we have

P(ΔN1 = n1, . . . , ΔNk = nk, Jtk−1+u = i, . . . , ΔNK = nK )

=
nk∑

l=0

P(ΔN1 = n1, . . . , Ntk−1+u − Ntk−1 = l, Jtk−1+u = i)

× P(Ntk − Ntk−u = nk − l, . . . , ΔNK = nK |Jtk−1+u = i)

=
nk∑

l=0

[ f k(l, u)]i [bk(nk − l,Δtk − u)]i . (45)

From Eqs. (44) and (45), the expected value can be written in the form:

E[Z (k)
i |D] =

∫ Δtk
0

∑nk
l=0[ f k(l, u)]i [bk(nk − l,Δtk − u)]idu

πb1(n1,Δt1)
. (46)
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Similarly, the expected value E[M (k)
i, j |D] is given by

E[M (k)
i, j |D] = 1

P(ΔN1 = n1, . . . , ΔNK = nK )

×
Δtk∫

0

P(ΔN1 = n1, . . . , ΔNk = nk,

J−
tk−1+u = i, Jtk−1+u = j, . . . , ΔNK = nK )du

= 1

πb1(n1,Δt1)

Δtk∫

0

nk∑

l=0

P(ΔN1 = n1, . . . , Ntk−1+u − Ntk−1 = l,

J−
tk−1+u = i) × P(Jtk−1+u = j |J−

tk−1+u = i)

P(Ntk − Ntk−u = nk − l, . . . , ΔNK = nK |Jtk−1+u = j)du

=
∫ Δtk
0

∑nk
l=0[ f k(l, u)]iλi, j [bk(nk − l,Δtk − u)] jdu

πb1(n1,Δt1)
. (47)

Also, the expected value E[Y (k)
i, j |D] is derived as

E[Y (k)
i, j |D] = 1

P(ΔN1 = n1, . . . , ΔNK = nK )

×
Δtk∫

0

P(ΔN1 = n1, . . . , ΔNk = nk ,

Ntk−1+u − N−
tk−1+u = 1, J−

tk−1+u = i, Jtk−1+u = j, . . . , ΔNK = nK )du

= 1

πb1(n1,Δt1)

Δtk∫

0

nk−1∑

l=0

P(ΔN1 = n1, . . . , N−
tk−1+u − Ntk−1 = l, J−

tk−1+u = i)

× P(Ntk−1+u − N−
tk−1+u = 1, Jtk−1+u = j |J−

tk−1+u = i)

× P(Ntk − Ntk−u = nk − l − 1, . . . , ΔNK = nK |Jtk−1+u = j)du

=
∫ Δtk
0

∑nk−1
l=0 [ f k(l, u)]i μi, j [bk(nk − l − 1,Δtk − u)] jdu

πb1(n1,Δt1)
, (48)

where N−
t = limt ′→0+ Nt−t ′ .

5.3 Computation of E-Step Formulas

The E-step of MAP fitting with grouped data requires the computation of f k(n, u),
bk(n, u), and their convolutions. Here, we define the following row and column
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vectors:

f̂ k(u) = (
f k(0, u) . . . f k(nk, u)

)
, b̂k(u) =

⎛

⎜⎝
bk(nk, u)

...

bk(0, u)

⎞

⎟⎠ . (49)

Hence, f̂ k(u) and b̂k(u) can be expressed as

f̂ k(u) = π̂ exp( D̂0(1)Δt1) Î(1)

× · · · × exp( D̂0(k − 1)Δtk−1) Î(k − 1) exp( D̂0(k)u), (50)

b̂k(u) = exp( D̂0(k)u) Î(k) exp( D̂0(k + 1)Δtk+1) Î(k + 1)

× · · · × exp( D̂0(K )ΔtK ) Î(K )1̂, (51)

where D̂0(k) and Î(k) are the following block matrices:

D̂0(k) =

⎛

⎜⎜⎜⎝

D0 D1

D0 D1

. . .
. . .

D0

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
︸ ︷︷ ︸

m(nk + 1)

m(nk + 1), Î(k) =

⎛

⎜⎜⎜⎝

O . . . . . O
... . . . . .

...

O . . . . . O
I O · · · O

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
︸ ︷︷ ︸

m(nk+1 + 1)

m(nk + 1).

(52)

The row and column vectors π̂ and 1̂ are defined by

π̂ = (
π 0 · · · 0

)
︸ ︷︷ ︸

m(n1+1)

, 1̂ =

⎛

⎜⎜⎜⎝

0
...

0
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
m(nK + 1). (53)

Next, we define the following convolution integral of b̂k(u) and f̂ k(u):

Ĥk =
Δtk∫

0

b̂k(Δtk − s) f̂ k(s)ds. (54)

From the definition of b̂k(u) and f̂ k(u), the sum of diagonal matrices yields an
m-by-m matrix representing the convolution of f k(n, u) and bk(n, u), i.e.,
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nk∑

v=0

Ĥk(u)[v, v] =
u∫

0

nk∑

l=0

bk(nk − l, u − s) f k(l, s)ds, (55)

where Ĥk[v, v] is the (v + 1)-st diagonal submatrix of Ĥk . Also, the sum of subdi-
agonal matrices becomes

nk∑

v=1

Ĥk(u)[v, v − 1] =
u∫

0

nk−1∑

l=0

bk(nk − l − 1, u − s) f k(l, s)ds. (56)

For the sake of notational convenience, we define f̂ k = f̂ k(Δtk) and b̂k =
b̂k(Δtk). Also, let f̂ k[v] and b̂k[v], v = 0, 1, . . . , nk be the v-th subvectors of f̂ k

and f̂ k , respectively. Then, the expected values can be rewritten as

E[Bi |D] =
πi

[
b̂1[0]

]

i

π b̂1[0]
, E[Z (k)

i |D] =

[∑nk
v=0 Ĥk [v, v]

]

i,i

π b̂1[0]
, (57)

E[M(k)
i, j |D] =

λi, j

[∑nk
v=0 Ĥk [v, v]

]

j,i

π b̂1[0]
, E[Y (k)

i, j |D] =
μi, j

[∑nk
v=1 Ĥk [v, v − 1]

]

j,i

π b̂1[0]
.

(58)

FromEqs. (50) and (51), f̂ k and b̃k can be obtained by computing thematrix exponen-
tial in the forward-backward manner. On the other hand, Eq. (54) can be reduced to

Ĥk =
Δtk∫

0

exp( D̂0(k)(Δtk − s)) Î(k)b̂k+1 f̂ k−1 Î(k − 1) exp( D̂0(k)s)ds

= Υ (Δtk; Î(k)b̂k+1, f̂ k−1 Î(k − 1)). (59)

Therefore, Algorithm 1 can be applied to compute Ĥk . Since the computation time
is proportional to the number of nonzero elements of D0(k), the time complexity is
proportional to (nk + 1)m2 even if D0 and D1 are m-by-m full matrices.

Finally, we present the E-step computation of MAP fitting with grouped data in
Algorithm 4.4 By using the algorithm, the parameters are updated with πi ← πi [B]i ,
λi, j ← λi, j [H] j,i/[H]i,i , and μi, j ← μi, j [Y ] j,i/[H]i,i .

4In the implementation, to avoid underflow in f̂ k and b̂k , the scaling technique should be applied.
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Algorithm 4 E-step procedure for MAP fitting with grouped data [54].

H ← O; Y ← O; f̂ 0 ← π̂; b̂K+1 ← 1̂
for k = 1 : K do

f̂ k ← f̂ k−1 exp( D̂0(k) Δtk) Î(k)

end for
for k = K : 1 do

b̂k ← exp( D̂0(k) Δtk) Î(k)b̂k+1
end for
B ← b̂1[0]/π b̂1[0]
for k = 1 : K do

Ĥk ← convint(Δtk , Î(k)b̂k+1, f̂ k−1 Î(k − 1))/π b̂1[0]
H ← H +

nk∑
v=0

Ĥk [v, v]
if nk ≥ 1 then

Y ← Y +
nk∑

v=1
Ĥk [v, v − 1]

end if
end for

6 Tools

There have been several PH/MAP fitting software tools available on the Internet.
EMpht [23] is a C program language-based tool for PH fitting with EM algorithms
by Asmussen et al. [6] and Olsson [59]. PhFit [31, 62] consists of a Java-based
interface and computational engine written in the C language. This tool implements
PHfitting for continuous and discrete PHdistributions. Furthermore, it can be applied
to PH fitting from a p.d.f. momentmatching [46] is a set of MATLAB files to execute
three moment matching algorithms [60]. BuTools [17] are program packages for
Mathematica and MATLAB/Octave. The tool provides PH/MAP fitting with the
MM method. G-FIT [27] is a command line tool to provide EM algorithms for the
hyper-Erlang distribution [61, 69]. jPhaseFit [40] is a library for Java to handle PHs.
In this library, both of PH fitting with MM and EM algorithm are implemented. In
particular, the EM algorithm for the hyper-Erlang distribution [69] was implemented
in this tool. HyperStar [34] is a Java-based GUI tool to estimate the hyper-Erlang
distribution and to plot graphs. It implements the cluster-based algorithm [63]. KPC
Toolbox [70] is a library for MATLAB for PH/MAP fitting based on MM presented
in [18]. mapfit [42, 53] is an R package for PH/MAP fitting, which is distributed
by CRAN (The Comprehensive R Archive Network). This package provides the
fast EM algorithms for PH/MAP [52, 55] and PH/MAP fitting with grouped data
[54, 56].
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7 Conclusion

In this chapter, we have introduced the PH/MAP fitting, specifically, statistical esti-
mation algorithms and tools. Since the PH/MAP fitting has been studied since the
early of 1980s, there exist several interesting results that could not be covered in this
chapter. In the last five years, the computation speed of PH/MAP fitting has been
drastically improved to study large-scale systems. For instance, the latest tool devel-
oped by the authors, mapfit, can handle the PH fitting for CF1 with over 200 phases.
These methods and their associated PH/MAP fitting tools are expected to be used
in performance evaluation of computer, communication and production systems in
the real world. On the other hand, from the theoretical point of view, the fitting tech-
niques for matrix-exponential distribution [24], rational arrival process [68], and the
marked MAP [29], which are generalized from PH and MAP, are quite challenging
issues. The similar techniques of PH/MAP fitting introduced in this chapter will be
useful to attain the new achievements.
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Constant-Stress Accelerated Life-Test Models
and Data Analysis for One-Shot Devices

Narayanaswamy Balakrishnan, Man Ho Ling and Hon Yiu So

Abstract In reliability analysis, accelerated life-tests are commonly used for
inducing rapid failures, thus producing more lifetime information in a relatively
short period of time. A link function relating stress levels and lifetimes is then uti-
lized to extrapolate lifetimes of units from accelerated conditions to normal operating
conditions. In the context of one-shot device testing, encountered commonly in test-
ing devices such as munitions, rockets, and automobile air bags, either left- or right-
censored data are collected instead of actual lifetimes of the devices under test. In this
chapter, we study binary response data of one-shot devices collected from constant-
stress accelerated life-tests, and discuss the analysis of such one-shot device testing
data under accelerated life-tests based on parametric and semi-parametric models.
In addition, a competing risks model is introduced into the one-shot device testing
analysis under constant-stress accelerated life-test setting. Finally, some numerical
examples are presented to illustrate the models and inferential results discussed here.

1 Introduction

Aone-shot device is a unit that performs its function only once and cannot be used for
testing more than once; examples include electric explosive devices, fire extinguish-
ers, airbags in cars, and missiles (see [10, 26, 29]). While testing one-shot devices,
only the condition of the device at a specific inspection time can be recorded, and
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exact failure times cannot be obtained from the test. As a result, the lifetimes of
devices are either left- or right-censored, with the lifetime being less than the inspec-
tion time if the test outcome is a failure (resulting in left censoring) and the lifetime
being more than the inspection time if the test outcome is a success (resulting in right
censoring). One-shot device testing data also arise in destructive life-tests, wherein
tested devices cannot be used again since the test results in their destruction.

Due to customers’ needs and demands, new products are designed to be highly
reliable with substantially long lifetimes. So, accelerated life-tests, wherein test units
are subject to higher-than-normal stress levels, are usually performed to collect suffi-
cient failure time information about the products. In this regard, reliability analysis for
one-shot device testing data from constant-stress accelerated life-tests has recently
received much attention. Estimation and inferential issues under different parametric
models have been comprehensively discussed in the literature. Morris [25] analyzed
battery data from destructive life-tests in which the batteries were stored under a
mildly accelerated aging temperature and a relatively light load. Fan et al. [10] com-
pared three different priors in the Bayesian approach for making predictions on the
reliability and the mean lifetime of electro-explosive devices at typical operating
conditions under the exponential lifetime distribution. Balakrishnan and Ling [1]
developed an EM algorithm for the estimation of parameters of a one-shot device
model under exponential distribution with a single stress factor and compared their
results with those of Fan et al. [10] based on the Bayesian approach. Balakrishnan
and Ling [2] further extended this approach to multiple stress factors, and developed
an EM algorithm for the same problem under Weibull [3] and gamma [4] lifetime
distributions, respectively. Recently, Balakrishnan et al. [5, 6] extended this line of
work by introducing a competing risks model into a one-shot device testing analysis
under an accelerated life test setting, and Ling et al. [21] considered semi-parametric
models for analyzing one-shot device testing data collected from constant-stress
accelerated life-tests.

2 Likelihood Inference

In constant-stress accelerated life-tests for one-shot devices, the devices are placed
in I test groups. Suppose, for i = 1, 2, . . . , I , Ki devices are subjected to J types of
stress factors at stress levels xi = (xi1, xi2, . . . , xi J ) and under inspection at time I Ti .
In the i-th test group, the number of failures, ni , is collected. The data thus observed
can be summarized as in Table1. The purpose of the test is to determine the life char-
acteristic of the device under normal operating conditions, x0 = (x01, x02, . . . , x0J ).

For notational convenience, we denote z = {I Ti , Ki , ni , xi , i = 1, 2, . . . , I } for the
observed data, and θ for the model parameters. Suppose the lifetime distribution has
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Table 1 Data on one-shot device testing at various stress levels collected at different inspection
times

Test group Inspection time # of tested devices # of failures Stress levels

1 I T1 K1 n1 (x11, x12, . . . , x1J )

2 I T2 K2 n2 (x21, x22, . . . , x2J )

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

I I TI K I nI (xI1, xI2, . . . , xI J )

a cumulative distribution function (cdf) F(t; θ). The observed likelihood function is
then given by

L(θ; z) = C
I∏

i=1

[F(I Ti ; θ)]ni [1 − F(I Ti ; θ)]Ki −ni ,

where C is the normalizing constant.

2.1 EM Algorithm

The EM algorithm is an efficient and powerful technique for finding the maximum
likelihood estimates (MLEs) of the model parameters in the presence of missing
data; see McLachlan and Krishnan [23]. It is suitable for the determination of the
MLEs of the model parameters when all the failure times of the devices are censored
like in the case of one-shot device testing data. The EM algorithm simply involves
approximating the missing data (the expectation step/E-step) and maximizing the
corresponding likelihood function (the maximization step/M-step) in each iteration.
These are developed here in this section for the problem under consideration.

Suppose the lifetime distribution has a probability density function (pdf) f (t; θ).

In the EM algorithm, we first consider the log-likelihood function based on the
complete data given by

�c(θ) =
I∑

i=1

Ki∑

k=1

ln( f (tik; θ)).

The objective then is to maximize the function

Q(θ , θ (m)) = Eθ (m) [�c(θ)|z]
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based on the current estimate θ (m) in the M-step, and then to obtain the conditional
expectation Q(θ , θ (m+1)) based on the updated estimate θ (m+1) in the E-step. These
two steps are repeated until convergence is achieved to a desired level of accuracy. It
can be seen that we actually solve the incomplete data problem by first approximating
the missing data and then using the approximated values to find the estimate of the
parameter vector as the solution for the complete data problem.

However, for the maximization problem, a closed-form solution cannot be found.
The EM algorithm based on the one-step Newton-Raphson method needs to be
employed for this purpose. It requires the second-order derivatives of the log-
likelihood function with respect to the model parameters. For the present situation,
let us define

I =
[

∂ Q(θ, θ (m))

∂θ

]

θ=θ (m)

and

J = −
[

∂2Q(θ , θ (m))

∂θ∂θT

]

θ=θ (m)

.

Then, we have the updated parameters as

θ (m+1) = J−1I + θ (m).

2.2 Asymptotic Confidence Intervals

To construct confidence intervals for a parameter of interest, asymptotic confidence
intervals are commonly used when sufficiently large sample sizes are available.
This would require the asymptotic variance-covariance matrix of the MLEs of the
model parameters, θ̂ . Under the EM framework, the missing information principle,
introduced by Louis [22], is often employed to obtain the observed information
matrix of the MLEs of the model parameters. This method requires the complete
information matrix, as well as the missing information matrix. These matrices are,
respectively, given by

Ic = −
[

∂2(�c(θ))

∂θ∂θT

]

θ=θ̂

and Im = −
[

I∑

i=1

Ki∑

k=1

∂2(ln( f (tik |z; θ)))

∂θ∂θT

]

θ=θ̂

.

Using these matrices, we will then obtain the observed information matrix as

Iobs = Ic − Im . (1)
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Theorem 1 Suppose the lifetime distribution has a pdf f (t; θ) and a cdf F(t; θ).

For the case when all lifetimes are censored, such as in one-shot device testing data,
the observed Fisher information matrix based on the observed likelihood function
is identical to the observed information matrix obtained by the Missing Information
Principle in (1).

Proof Given a data with a sequence of inspection times 0 < I T1 < I T2 < · · · <

I TI−1 and the corresponding numbers of failures in each time slot, {n1, n2, . . . , nI },
and K observed failure times, tk, k = 1, 2, . . . , K , the log-likelihood function is then
given by

�(θ) = n1 ln F(I T1; θ) +
I−1∑
i=2

ni ln(F(I Ti ; θ) − F(I Ti−1; θ))

+ nI ln(1 − F(I TI−1; θ)) +
K∑

k=1
ln( f (tk; θ)) + ln(C),

where n1, n2, . . . , nI and t1, t2, . . . , tK are random variables.
On the other hand, the log-likelihood function for complete data is given by

�c =
I∑

i=1

ni∑

j=1

ln( f (t j ; θ)) +
K∑

k=1

ln( f (tk; θ)) + ln(C),

while the log-likelihood function of the conditional distribution for missing data is
given by

�m =
I∑

i=1

ni∑
j=1

ln( f (t j ; θ)) −
n1∑

j=1
ln(F(I T1; θ)) −

nI∑
j=1

ln(1 − F(I TI−1; θ))

−
I−1∑
i=2

ni∑
j=1

ln(F(I Ti ; θ) − F(I Ti−1; θ)) + ln(C).

Note that t j in �c and �m are also random variables, but the terms of ln( f (t j ; θ))

are canceled out by the Missing Information Principle. Hence, the observed log-
likelihood function is obtained from the Missing Information Principle as

�obs = n1 ln F(I T1; θ) +
I−1∑
i=2

ni ln(F(I Ti ; θ) − F(I Ti−1; θ))

+ nI ln(1 − F(I TI−1; θ)) +
K∑

k=1
ln( f (tk; θ)) + ln(C),

where t1, t2, . . . , tK are random variables. Therefore, for the case when all lifetimes
are censored, the terms of

∑K
k=1 ln( f (tk; θ)) in both �(θ) and �c disappear.Moreover,

it is easy to show that the observed information matrix from theMissing Information
Principle is identical to the observed Fisher informationmatrix based on the observed
likelihood function. �
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For the case of one-shot device testing data, due to the fact that all failure times are
censored, the observed information matrix obtained from the Missing Information
Principle is identical to the observed Fisher information matrix obtained from the
log-likelihood function conditional on z. The observed log-likelihood function is
given by

�(θ) =
I∑

i=1

[ni ln (F(I Ti ; θ)) + (Ki − ni ) ln (1 − F(I Ti ; θ))] + ln(C).

Then, the observed Fisher information matrix and the variance-covariance matrix of
the MLEs of the model parameters can be obtained as

Iobs = −
[
∂2(�(θ))

∂θ∂θT

]

θ=θ̂

=
I∑

i=1

∂2F(I Ti ; θ)

∂θ∂θT

(
ni

F(I Ti ; θ)
− Ki − ni

1 − F(I Ti ; θ)

)

−
I∑

i=1

∂ F(I Ti ; θ)

∂θ

∂ F(I Ti ; θ)

∂θT

(
ni

(F(I Ti ; θ))2
+ Ki − ni

(1 − F(I Ti ; θ))2

)

and
V̂ (θ̂) = I −1

obs,

respectively.
In addition, the variance of the MLE of any parameter of interest φ can also be

computed using the delta method as

V̂ (φ̂) = PT V̂ (θ̂)P,

where P = [∂φ/∂θ] is a column vector. Then, the estimated standard error of φ̂ is
immediately obtained as

ŝe(φ̂) =
√

V̂ (φ̂). (2)

Consequently, the 100(1 − α)% asymptotic confidence interval for the parameter φ

can be constructed as
(
φ̂ − z1−α/2ŝe(φ̂), φ̂ + z1−α/2ŝe(φ̂)

)
,

where φ̂ is the MLE of φ, and z1−α/2 is the upper (α/2)-th quantile of the standard
normal distribution.
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2.3 Approximate Confidence Intervals

When the sample size is small, the distributions of theMLEs of the reliability and the
mean-time-to-failure (MTTF) of the devices may not be close to the normal distrib-
ution, and consequently confidence intervals constructed directly by the asymptotic
method may not maintain the nominal level of confidence. Hoyle [12] discussed
various transformations for developing suitable confidence intervals for parameters
from a skewed distribution.

Viveros and Balakrishnan [31] used a transformation approach to construct con-
fidence intervals for reliability in the context of start-up demonstration testing. Even
when the distribution of the estimate of reliability is skewed in the case of small sam-
ples, the bounds for the reliability always fall between 0 and 1 under this approach.
Now, by employing a logit transformation, we assume

ĝ = ln

(
R̂(t)

1 − R̂(t)

)

to be asymptotically normally distributed with the corresponding standard error,
determined by the delta method, as

ŝe(ĝ) = ŝe(R̂(t))

R̂(t)(1 − R̂(t))
,

where ŝe(R̂(t)) is the estimated standard error of R̂(t). The inverse logit transforma-
tion gives an approximate 100(1 − α)% confidence interval for the reliability, R(t),
to be (

R̂(t)

R̂(t) + (1 − R̂(t))S
,

R̂(t)

R̂(t) + (1 − R̂(t))/S

)
,

where S = exp
(
z1− α

2
ŝe(ĝ)

)
.

In a similar manner, Bishop et al. [7] suggested a log-approach for constructing
confidence intervals for the MTTF of devices as it ensures positive lower bound for
the mean lifetime. In the log-approach, we assume

ĝ = ln(μ̂)

to be asymptotically normally distributed. The corresponding standard error, by the
delta method, is

ŝe(ĝ) = ŝe(μ̂)

μ̂
,
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where ŝe(μ̂) is the estimated standard error of μ̂. The inverse log transformation
gives an approximate 100(1 − α)% confidence interval for the MTTF, μ,as

(
μ̂ exp

(−z1− α
2
ŝe(μ̂)

μ̂

)
, μ̂ exp

(
z1− α

2
ŝe(μ̂)

μ̂

))
.

It should be noted that the computation of the estimated standard errors of the relia-
bility and the MTTF are in (2).

2.4 Parametric Models

Johnson et al. [14, 15] have presented booklength accounts on many lifetime distrib-
utions that are useful for reliability analysis. Here, we consider two popular lifetime
models in reliability engineering, namely, the Weibull and gamma distributions.

2.4.1 Weibull Distribution

In practice,Weibull distribution is widely used as a lifetimemodel in engineering and
physical sciences. It is also used extensively in biomedical sciences as a proportional
hazards model for evaluating the effects of covariates on lifetimes; and in this setting,
usually the scale parameter varies with covariates, but the shape parameter remains
unchanged over all covariates. Of course, under these assumptions, the Weibull dis-
tribution can be parametrized as a proportional hazards model, meaning that the
hazard rates of any two products maintain a constant ratio over time. However, the
shape parameter of the Weibull distribution may be different for different conditions
in general, and so the assumption that the shape parameter does not depend on stress
factors or other covariates may often be violated. Many examples show that both
the scale and shape parameters of the Weibull distribution vary with covariates ([16,
28, 30]). Meeter andMeeker [24] have presented additional examples of theWeibull
distribution with unequal shape parameters while modeling lifetimes of devices.

We assume that the lifetimes of the devices in the i-th group that experience at
the same stress level xi , {tik, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki }, follow a Weibull
distribution with corresponding pdf and cdf

fT (t) = ηi tηi −1

α
ηi
i

exp

(
−
(

t

αi

)ηi
)

, t > 0,

and

FT (t) = 1 − exp

(
−
(

t

αi

)ηi
)

, t > 0,
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whereαi > 0 and ηi > 0 are the scale and shape parameters, respectively.We assume
that both of these parameters relate to the stress levels in log-linear forms as

αi = exp

⎛

⎝
J∑

j=0

a j xi j

⎞

⎠ and ηi = exp

⎛

⎝
J∑

j=0

b j xi j

⎞

⎠ .

Note that xi0 = 1, for all i , corresponding to constant effects on the scale and shape
parameters in the model. We denote the model parameters that are to be estimated
by θ = (a, b) = (a0, a1, . . . , aJ , b0, b1, . . . , bJ ).

Instead ofworkingwithWeibull lifetimes, it is oftenmore convenient toworkwith
the extreme value distribution for the log-lifetimes wik = ln(tik); see, for example,
Meeter and Meeker [24], and Ng et al. [27]. Therefore, we consider here the extreme
value distribution with the corresponding pdf and cdf as

fW (w) = 1

σi
exp(ξi ) exp (− exp(ξi )) , −∞ < w < ∞,

and
FW (w) = 1 − exp (− exp(ξi )) , −∞ < w < ∞,

where ξi = (w − δi )/σi , δi = ln(αi ) =∑J
j=0 a j xi j , and σi = η−1

i =
exp

(
−∑J

j=0 b j xi j

)
.

Then, the corresponding reliability at mission time t and MTTF under normal
operating conditions, x0, are given by

R(t; x0) = exp (− exp(ξ)) (3)

and
μ(x0) = exp (δ) Γ (1 + σ), (4)

respectively,where ξ = (ln(t) − δ)/σ, δ =∑J
j=0 a j x0 j , σ = exp

(
−∑J

j=0 b j x0 j

)
,

and Γ (·) denotes the complete gamma function.
In the EM algorithm, the log-likelihood function based on the complete data can

be expressed in this case as

�c(θ) =
I∑

i=1

Ki∑

k=1

(− ln(σi ) + ξik − exp (ξik)) + ln(C). (5)

In the M-step, for j = 0, 1, . . . , J, taking the first-order derivatives of the log-
likelihood function in (5) with respect to the model parameters a j and b j , we obtain
the likelihood equations
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∂ Q(θ, θ (m))

∂a j
=

I∑

i=1

(
Ki xi j

σi

) (−1 + Eθ (m) [exp (ξi ) |z]) ,

∂ Q(θ, θ (m))

∂b j
=

I∑

i=1

Ki xi j
(
1 + Eθ (m) [ξi |z] − Eθ (m) [ξi exp (ξi ) |z]) .

Then, the required second-order derivatives of the log-likelihood function with
respect to the model parameters are

∂2Q(θ, θ (m))

∂ap∂aq
= −

I∑

i=1

(
Ki xipxiq

σ 2
i

)
Eθ (m) [exp (ξi ) |z],

∂2Q(θ, θ (m))

∂bp∂bq
= −

I∑

i=1

Ki xipxiq Eθ (m) [ξi exp (ξi ) + ξ 2
i exp (ξi ) − ξi |z],

∂2Q(θ, θ (m))

∂ap∂bq
= −

I∑

i=1

(
Ki xipxiq

σi

) (
1 − Eθ (m) [exp (ξi ) + ξi exp (ξi ) |z]) ,

for p = 0, 1, . . . , J , and q = 0, 1, . . . , J.

This calculation would require four conditional expectations to be considered
in the following E-step. Given the updated model parameters θ ′ = θ (m+1), let vi =
ln(I Ti ), ζi = exp((vi − δi )/σi ) and SW (vi ; θ ′) = 1 − FW (vi ; θ ′).Then, the four con-
ditional expectations of interest can be derived as

Eθ ′ [ξi |z] = ni

Ki FW (vi ; θ ′)

∫ ζi

0
ln(t) exp(−t)dt

+ Ki − ni

Ki SW (vi ; θ ′)

∫ ∞

ζi

ln(t) exp(−t)dt

= ni

Ki FW (vi ; θ ′)

(
−γ − ln(ζi ) exp(−ζi ) −

∫ ∞

ζi

exp(−t)

t
dt

)

+ Ki − ni

Ki SW (vi ; θ ′)

(
ln(ζi ) exp(−ζi ) +

∫ ∞

ζi

exp(−t)

t
dt

)
,

Eθ ′ [exp(ξi )|z] = ni

Ki FW (vi ; θ ′)

∫ ζi

0
t exp(−t)dt

+ Ki − ni

Ki SW (vi ; θ ′)

∫ ∞

ζi

t exp(−t)dt

= ni

Ki FW (vi ; θ ′)
(1 − exp(−ζi ) − ζi exp(−ζi ))
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+ Ki − ni

Ki SW (vi ; θ ′)
(exp(−ζi ) + ζi exp(−ζi )) ,

Eθ ′ [ξi exp(ξi )|z] = ni

Ki FW (vi ; θ ′)

∫ ζi

0
t ln(t)d(− exp(−t))

+ Ki − ni

Ki SW (vi ; θ ′)

∫ ∞

ζi

t ln(t)d(− exp(−t))

= ni

Ki FW (vi ; θ ′)

(
1 − γ − A −

∫ ∞

ζi

exp(−t)

t
dt

)

+ Ki − ni

Ki SW (vi ; θ ′)

(
A +

∫ ∞

ζi

exp(−t)

t
dt

)
,

Eθ ′ [ξ 2
i exp(ξi )|z] = ni

Ki FW (vi ; θ ′)

∫ ζi

0
t (ln(t))2 exp(−t)dt

+ Ki − ni

Ki SW (vi ; θ ′)

∫ ∞

ζi

t (ln(t))2 exp(−t)dt

= ni B

Ki FW (vi ; θ ′)
+ Ki − ni

Ki SW (vi ; θ ′)

(
γ 2 + π2

6
− 2γ − B

)
,

where

A = exp(−ζi ) + ln(ζi ) exp(−ζi ) + ζi ln(ζi ) exp(−ζi ),

B =
∞∑

m=0

(−ζi )
m+2

m!(m + 2)

(
(ln(ζi ))

2 − 2 ln(ζi )

m + 2
+ 2

(m + 2)2

)
,

∫∞
x exp(−t)/t dt is the exponential integral that can be readily computed by math-
ematical programs such as MATLAB and Maple, and γ ≈ 0.577215665 is Euler’s
constant.

Given the information on normal operating conditions, x,we can also estimate the
reliability at mission time t as well as theMTTF of devices by substituting theMLEs
of the model parameters θ̂ into (3) and (4), respectively. In addition, to construct
confidence intervals for R(t; x) and μ(x), the required first-order derivatives of
corresponding functions with respect to a j and b j are given by

∂ R(t; x)

∂a j
= − x j

σ
R(t; x) ln(R(t; x)),

∂ R(t; x)

∂b j
= x j R(t; x) ln(R(t; x)) ln(− ln(R(t; x))),

∂μ(x)

∂a j
= x jμ(x),

∂μ(x)

∂b j
= −x jσΨ (1 + σ)μ(x),

where Ψ (z) = d lnΓ (z)/dz is the digamma function.
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2.4.2 Gamma Distribution

Gamma distribution is commonly used for fitting lifetime data in reliability and sur-
vival studies due to its flexibility. Its hazard function can be increasing, decreasing,
or constant. When the hazard function of gamma distribution is a constant, it corre-
sponds to the exponential distribution. In addition to the exponential distribution, the
gamma distribution also includes the chi-square distribution as a special case. The
gamma distribution has found a number of applications in different fields. To quote
a few, Husak et al. [13] used the gamma distribution to describe monthly rainfall
in Africa for the management of water and agricultural resources, as well as food
reserves. Kwon and Frangopol [17] assessed and predicted bridge fatigue reliabili-
ties of two existing bridges, the Neville Island Bridge and the Birmingham Bridge,
based on long-term monitoring data. They applied log-normal, Weibull, and gamma
distributions to estimate the mean and standard deviation of the stress range.

We now assume that the lifetimes of the devices in the i-th group that experience
at the same stress level, xi , {tik, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki }, follow gamma
distribution with shape parameter αi > 0 and scale parameter βi > 0. The corre-
sponding pdf and cdf are given by

f (t) = tαi −1

Γ (αi )β
αi
i

exp

(
− t

βi

)
, t > 0,

and

F(t) =
∫ t

0

yαi −1

Γ (αi )β
αi
i

exp

(
− y

βi

)
dy, t > 0,

respectively. The cdf F(t) can be readily expressed in terms of the lower incomplete
gamma ratio as

F(t) =
∫ t

βi

0

yαi −1

Γ (αi )
exp (−y) dy = γ

(
αi ,

t

βi

)
.

We assume that both shape and scale parameters are related to the stress factors in
log-linear forms as

αi = exp

⎛

⎝
J∑

j=0

a j xi j

⎞

⎠ and βi = exp

⎛

⎝
J∑

j=0

b j xi j

⎞

⎠ ,

where xi0 = 1, for all i.
Let θ = (a, b) = (a0, a1, . . . , aJ , b0, b1, . . . , bJ ), denote the model parameters

to be estimated and the corresponding reliability at mission time t and the MTTF
under normal operating conditions, x0, are given by



Constant-Stress Accelerated Life-Test Models … 89

R(t; x0) = Γ

(
α,

t

β

)
(6)

and
μ(x0) = αβ, (7)

respectively, where α = exp
(∑J

j=0 a j x0 j

)
, β = exp

(∑J
j=0 b j x0 j

)
, and

Γ (α, t/β) = 1 − γ (α, t/β) is the upper incomplete gamma ratio.
In the EM algorithm, the log-likelihood function based on the complete data can

be expressed as

�c(θ) =
I∑

i=1

Ki∑

k=1

(
− lnΓ (αi ) + αi ln

(
tik
βi

)
− ln(tik) − tik

βi

)
+ ln(C). (8)

In the M-step, for j = 0, 1, . . . , J, taking the first-order derivatives of the log-
likelihood function in (8) with respect to the model parameters a j and b j , we obtain
the likelihood equations as

∂ Q(θ, θ (m))

∂a j
= −

I∑

i=1

Ki xi jαi

(
ψ(αi ) − Eθ(m)

[
ln

(
Ti

βi

)∣∣∣∣ z
])

,

∂ Q(θ, θ (m))

∂b j
= −

I∑

i=1

Ki xi j

(
αi − Eθ(m)

[
Ti

βi

∣∣∣∣ z
])

.

Furthermore, the required second-order derivatives of the log-likelihood function
with respect to the parameters a j and b j are

∂2Q(θ, θ (m))

∂ap∂aq
= −

I∑

i=1

Ki xipxiqαi

(
αiψ

′(αi ) + ψ(αi ) − Eθ(m)

[
ln

(
Ti

βi

)∣∣∣∣ z
])

,

∂2Q(θ, θ (m))

∂bp∂bq
= −

I∑

i=1

Ki xipxiq Eθ(m)

[
Ti

βi

∣∣∣∣ z
]

,

∂2Q(θ, θ (m))

∂ap∂bq
= −

I∑

i=1

Ki xipxiqαi ,

for p = 0, 1, . . . , J and q = 0, 1, . . . , J, where ψ ′(z) = dψ(z)/dz is the trigamma
function.

This calculation would require two conditional expectations to be considered
in the following E-step. Given the updated model parameters θ ′ = θ (m+1), the two
conditional expectations of interest can be derived as follows:
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Eθ ′

[
Ti

βi

∣∣∣∣ z
]

=
(

ni

Ki

)
Eθ ′

[
T

βi

∣∣∣∣ T < I Ti

]
+
(
1 − ni

Ki

)
Eθ ′

[
T

βi

∣∣∣∣ T > I Ti

]

= α′
i

⎛

⎜⎝1 −
(

ni
Ki

) (
I Ti
β ′

i

)α′
i
exp

(
− I Ti

β ′
i

)

Γ
(
α′

i + 1
)
γ
(
α′

i ,
I Ti
β ′

i

)

+
(
1 − ni

Ki

) (
I Ti
β ′

i

)α′
i
exp

(
− I Ti

β ′
i

)

Γ
(
α′

i + 1
)
Γ
(
α′

i ,
I Ti
β ′

i

)

⎞

⎟⎠ ,

Eθ ′

[
ln

(
Ti

βi

)∣∣∣∣ z
]

=
(

ni

Ki

)
Eθ ′

[
ln

(
T

βi

)∣∣∣∣ T < I Ti

]

+
(
1 − ni

Ki

)
Eθ ′

[
ln

(
T

βi

)∣∣∣∣ T > I Ti

]

=
(

ni

Ki

) H1

(
α′

i ,
I Ti
β ′

i

)

γ
(
α′

i ,
I Ti
β ′

i

) +
(
1 − ni

Ki

) ψ
(
α′

i

)− H1

(
α′

i ,
I Ti
β ′

i

)

Γ
(
α′

i ,
I Ti
β ′

i

) ,

where

H1(α, β) = 1

Γ (α)

∫ β

0
ln (x) xα−1 exp (−x) dx

= ln(β)γ (α, β) − βα
2F2(α, α; 1 + α, 1 + α;−β)

α2Γ (α)
,

and n Fm(a1, a2, . . . , an; b1, b2, . . . , bm; z) is the Gaussian hypergeometric function
that can be computed using MATLAB.

Given the information on normal operating conditions, x,we can also estimate the
reliability at mission time t as well as theMTTF of devices by substituting theMLEs
of the model parameters θ̂ into (6) and (7), respectively. In addition, to construct
confidence intervals for R(t; x) and μ(x), the required first-order derivatives of
corresponding functions with respect to a j and b j are

∂ R(t; x)

∂a j
= x jα

{
ψ(α)γ

(
α,

t

β

)
− H1

(
α,

t

β

)}
,

∂ R(t; x)

∂b j
= x j

Γ (α)

(
t

β

)α

exp

{
−
(

t

β

)}
,

∂μ(x)

∂a j
= x jαβ,

∂μ(x)

∂b j
= x jαβ.

It is noted that the estimates by the EM algorithm are not attainable in the situation
when ni = 0 for all i. In such a situation, we obtain no information on the reliability.
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2.5 Goodness of Fit Test

To test the suitability of an assumed model for the observed data, a distance-based
test statistic of the form

M = max
i

|ni − Ki F̂(I Ti )| (9)

can be used as a discrepancy measure. The distance-based test statistic M in (9)
simply quantifies the distance between the observed and the expected number of
failures at each testing condition, and so when the assumed model does not fit the
data, we would expect to observe a large value of the test statistic M. Note that in
each testing condition, the number of failures, ni , has a binomial distribution with
(Ki , F̂(I Ti )), and so we can calculate the exact p-value of this test as follows:

pv = Pr

(
max

i
|ni − n̂i | > M

)

= 1 − Pr

(
max

i
|ni − n̂i | ≤ M

)

= 1 − Pr
(|ni − n̂i | ≤ Mfor all i

)

= 1 −
I∏

i=1

Pr
(|ni − n̂i | ≤ M

)

= 1 −
I∏

i=1

⎛

⎝
min(Ki ,�n̂i +M−1�)∑

n=max(0,�n̂i −M+1	)

(
Ki

n

)
F̂(I Ti )

n(1 − F̂(I Ti ))
Ki −n

⎞

⎠ , (10)

where n̂i = Ki F̂(I Ti ). If the p-value determined is small, i.e., p-value< 0.05 or 0.1,
then we can conclude that the data do not provide enough evidence for the assumed
model.

3 Competing Risk Models

One-shot devices often havemultiple components that can cause failure. For example,
a fire extinguisher contains a cylinder, a valve and chemicals inside; an automobile
air bag contains a crash sensor, an inflator and an air bag; and for any packed food
(which is also a kind of one-shot device), there are different causes for food expiry
such as the growth of microorganisms in the package, the moisture level and the
food deterioration due to oxidation. A failure of any of the components will result
in the failure of the product. For those failed units, one will normally determine the
cause responsible for the failure. Thus, the information collected from a life-test on
one-shot devices in this case will include the status of the unit at inspection time as
well as the cause of failure in case the unit did fail. With competing risks, the model
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becomes more complicated than those considered earlier and so the corresponding
estimation problem becomes quite complex. However, this competing risks model
is more realistic since many one-shot devices do contain multiple components that
could cause the failure of the device. This motivates us to consider the one-shot
device model with competing risks here.

3.1 Likelihood Function

An accelerated life test for such one-shot devices is set up as follows:

1. the tests are only checked at inspection times I Ti , for i = 1, ..., I ,
2. the devices are tested under different stress levels w j , for j = 1, ..., J ,
3. there are Ki j devices tested at I Ti and w j ,
4. the number of devices failed due to the r -th cause at I Ti and w j is denoted by

Dri j , for r = 1, . . . , R,
5. the number of devices that function at I Ti and w j is denoted by Si j = Ki j −∑R

r=1 Dri j .

Let us now assume that there are only two causes responsible for the failure, cause 1
and cause 2, and denote the random variable for the failure time due to causes 1 and 2
by Tri jk , for r = 1, 2, i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . , Ki j , respectively.
In this work, we assume that Tri jk are independent of each other and follow an
exponential distribution with rate parameter λr j with pdf

fr j (t) = λr j exp(−λr j t), r = 1, 2, j = 1, . . . , J,

and with cdf

Fr (I Ti |w j ) = 1 − exp(−λr j I Ti ), r = 1, 2, i = 1, . . . , I, j = 1, . . . , J,

where λr j is the failure rate of the r -th component in the device under stress level
w j . Of course, tri jk will be used to denote the realization of the variable Tri jk . The
relationship between λr j and w j is assumed to be a log-link function of the form

λr j = αr0 exp(αr1w j ), αr0, αr1, w j ≥ 0. (11)

We define Δi jk to be the indicator for the k-th device under stress level w j and
inspection time I Ti . When the device functions we will set Δi jk = 0. However,
if the device does not function, we will identify (by careful inspection) the spe-
cific cause responsible for the failure. If risk r is the cause for the failure, we will
denote this event byΔi jk = r , for r = 1, 2.Mathematically, the indicatorΔi jk is then
defined as
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Δi jk =
⎧
⎨

⎩

0 if min(T1i jk, T2i jk) > I Ti

1 if T1i jk < min(T2i jk, I Ti )

2 if T2i jk < min(T1i jk, I Ti )

and then δi jk will be used for the realization of Δi jk .
We also denote p0i j , p1i j and p2i j for the survival probability, failure probability

due to cause 1 and failure probability due to cause 2, respectively, which are

p0i j = (1 − F1(I Ti |w j ))(1 − F2(I Ti |w j )) = exp(−(λ1 j + λ2 j )I Ti ), (12)

p1i j =
(

λ1 j

λ1 j + λ2 j

) (
1 − exp(−(λ1 j + λ2 j )I Ti )

)
, (13)

p2i j =
(

λ2 j

λ1 j + λ2 j

) (
1 − exp(−(λ1 j + λ2 j )I Ti )

)
. (14)

Now the data collected at stress levels w = {w j , j = 1, 2..., J } and inspection
times IT = {I Ti , i = 1, ..., I } are the numbers of devices with the indicator values
δi jk = 0, δi jk = 1 and δi jk = 2, which are denoted by Si j , D1i j and D2i j , respectively.
Then, the likelihood function of ααα = {α10, α11, α20, α21} is given by

L(ααα|δ, IT, w) =
I∏

i=1

J∏

j=1

p
Si j

0i j p
D1i j

1i j p
D2i j

2i j .

3.2 EM Algorithm

In the example of one-shot devices, the parameters of interest are αr0, αr1, r = 1, 2,
and the data that are not observable are the true lifetimes of the devices. Let us denote
that lifetime by T

(Δi jk )

ri jk defined as

T
(Δi jk )

ri jk =
⎧
⎨

⎩

Tri jk |min(T1i jk, T2i jk) > I Ti , when Δi jk = 0
Tri jk |T1i jk < min(T2i jk, I Ti ), when Δi jk = 1
Tri jk |T2i jk < min(T1i jk, I Ti ), when Δi jk = 2

.

Let us denote ααα = (α10, α11, α20, α21) and ααα′ for the current estimate of ααα. Then,
the complete data likelihood is given by

lc(ααα) =
I∑

i=1

J∑

j=1

Ki j∑

k=1

ln
(

f1 j (T
(δi jk )

1i jk )
)

+ ln
(

f2 j (T
(δi jk )

2i jk )
)

=
I∑

i=1

J∑

j=1

lc
i j (ααα),
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where

lc
i j (ααα) =

Ki j∑

k=1

ln(λ1 j ) − λ1 j T
(δik )
1i jk + ln(λ2 j ) − λ2 j T

(δik )
2i jk

= Ki j
(
ln(λ1 j ) + ln(λ2 j )

)− λ1 j

Ki j∑

k=1

T (δik )
1i jk − λ2 j

Ki j∑

k=1

T (δik )
2i jk .

In the E-step of the EM algorithm, we shall take the expected value of the missing
data, given the observed data and the current parameter estimates, to approximate
the missing data. It is given by

E(lc
i j (ααα)|ααα′) = Ki j

(
ln(λ1 j ) + ln(λ2 j )

)

−λ1 j

(
Si j E(T (0)

1i jk |ααα′) + D1i j E(T (1)
1i jk |ααα′) + D2i j E(T (2)

1i jk |ααα′)
)

−λ2 j

(
Si j E(T (0)

2i jk |ααα′) + D1i j E(T (1)
2i jk |ααα′) + D2i j E(T (2)

2i jk |ααα′)
)

,

where the conditional expectations, E
(

T
(δ jk )

ri jk

∣∣∣ααα′
)
, are as presented in Table2. It

is important to note here that the expectations are in simple closed-form since the
lifetimes here are assumed to follow an exponential distribution.

Then, the partial objective function Qi j (ααα,ααα′) for lc
i j (ααα) is

Qi j (ααα,ααα′) = Ki j
(
ln(λ1 j ) + ln(λ2 j )

)− λ1 j g1i j
(
ααα′)− λ2 j g2i j

(
ααα′) , (15)

Table 2 Conditional expected values of missing data, with λ′
r j = α′

r0 exp(α
′
r1), r = 1, 2, for dif-

ferent cases

Case No. of cases E
(

T
(δi jk )

1i jk

∣∣∣ααα′
)

δi jk = 0 Si j I Ti + 1
λ′
1 j

δi jk = 1 D1i j
1

λ′
1 j +λ′

2 j
− I Ti exp(−(λ′

1 j +λ′
2 j )I Ti )

1−exp(−(λ′
1 j +λ′

2 j )I Ti )

δi jk = 2 D2i j
1

λ′
1 j

+ 1
λ′
1 j +λ′

2 j
− I Ti exp(−(λ′

1 j +λ′
2 j )I Ti )

1−exp(−(λ′
1 j +λ′

2 j )I Ti )

Case No. of cases E
(

T
(δi jk )

2i jk

∣∣∣ααα′
)

δi jk = 0 Si j I Ti + 1
λ′
2 j

δi jk = 1 D1i j
1

λ′
2 j

+ 1
λ′
1 j +λ′

2 j
− I Ti exp(−(λ′

1 j +λ′
2 j )I Ti )

1−exp(−(λ′
1 j +λ′

2 j )I Ti )

δi jk = 2 D2i j
1

λ′
1 j +λ′

2 j
− I Ti exp(−(λ′

1 j +λ′
2 j )I Ti )

1−exp(−(λ′
1 j +λ′

2 j )I Ti )
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where

gri j
(
ααα′) =

(
Si j E(T (0)

ri jk |ααα′) + D1i j E(T (1)
ri jk |ααα′) + D2i j E(T (2)

ri jk |ααα′)
)

,

g2i j
(
ααα′) =

(
Si j E(T (0)

2i jk |ααα′) + D1i j E(T (1)
2i jk |ααα′) + D2i j E(T (2)

2i jk |ααα′)
)

.

From (15), the objective function to maximize the overall likelihood function
lc(ααα) will be the summation of the partial objective functions, Qi j (ααα,ααα′), i =
1, . . . , I, j = 1, . . . , J , given by

Q(ααα,ααα′) =
I∑

i=1

J∑

j=1

Qi j (ααα,ααα′).

Upon substituting the link function for the failure rates specified in (11), and then
differentiating the objective function with respect to αr0, αr1, r = 1, 2, we obtain the
first-order derivatives of Q(ααα,ααα′)

∂ Q(ααα,ααα′)
∂αr0

=
∑I

i=1

∑J
j=1 Ki j

αr0
−

I∑

i=1

J∑

j=1

exp(αr1w j )gri j
(
ααα′) ,

∂ Q(ααα,ααα′)
∂αr1

=
I∑

i=1

J∑

j=1

Ki j w j −
I∑

i=1

J∑

j=1

αr0w j exp(αr1w j )gri j
(
ααα′) ,

for j = 0, 1, . . . , J .
It is evident that the first-order derivatives involve nonlinear terms, and so we

have to find the estimates by numerical methods. To solve the likelihood equations,
we consider the updating equations

α
(h+1)
r1 = α

(h)
r1 −

∑I
i=1

∑J
j=1 c j exp(α

(h)
r1 w j )gri j

(
ααα′)

∑I
i=1

∑J
j=1 c j w j exp(α

(h)
r1 w j )gri j (ααα′)

,

α̂r0 =
∑I

i=1

∑J
j=1 Ki j

∑I
i=1

∑J
j=1 exp(α̂r1w j )gri j (ααα′)

,

where r = 1, 2 and c j =
(

w j −
∑I

i=1

∑J
j=1 Ki j w j∑I

i=1

∑J
j=1 Ki j

)
.

3.2.1 Goodness of Fit Test

We can measure the goodness of fit of the proposed model using a distance-based
test statistic of the form
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M = max
i j

(|Si j − Ŝi j |, |D1i j − D̂1i j |, |D2i j − D̂2i j |),

where i = 1, . . . , I, j = 1, . . . , J, and (Ŝi j , D̂ri j ) are the expected numbers of suc-
cesses and failures based on the proposed model. The statistic M quantifies the
distance between the fitted model and the observed data. If the model does not fit the
data, the distance M will be large. If the model is true, (Si j , D1i j , D2i j ) should follow
the multinomial distribution with probabilities close to ( p̂0i j , p̂1i j , p̂2i j ), which are
obtained from (12)–(14) with parameters replaced by the corresponding estimates.
Then, the exact p-value of the test can be found as follows:

pv = Pr(max
i j

(|Si j − Ŝi j |, |D1i j − D̂1i j |, |D2i j − D̂2i j |) > M)

= 1 − Pr(max
i j

(|Si j − Ŝi j |, |D1i j − D̂1i j |, |D2i j − D̂2i j |) ≤ M)

= 1 −
∏

i, j

Pr({|Si j − Ŝi j | ≤ M} ∩ {|D1i j − D̂1i j | ≤ M} ∩ {|D2i j − D̂2i j | ≤ M})

= 1 −
∏

i, j

⎛

⎜⎝
bu
2i j∑

D2i j =bl
2i j

bu
1i j (D2i j )∑

D1i j =bl
1i j (D2i j )

Ki j !
Si j !D1i j !D2i j ! p̂

Si j
0i j p̂

D1i j
1i j p̂

D2i j
2i j

⎞

⎟⎠ ,

where Si j = Ki j − D1i j − D2i j , bl
1i j = max(0, �D̂1i j − M�, �D̂1i j + D̂2i j − M� −

D2i j ), bu
1i j (D2i j ) = min(Ki j − D2i j , �D̂1i j + M	, �D̂1i j + D̂2i j + M	 − D2i j ),

bl
2i j (D2i j ) = max(0, �D̂2i j − M�) and bu

2i j = min(Ki j , �D̂2i j − M	) for
i = 1, . . . , I , j = 1, . . . , J . If the exact p-value is smaller than the desired level,
say, 0.05 or 0.1, then we may conclude that the proposed model does not fit the data
well.

3.3 Bayesian Approach

Fan et al. [10] applied the Bayesian approach to analyze highly reliable one-shot
devices. They suggested three priors for theBayesian estimation: exponential, normal
and beta. Their simulation results show that all the priors perform similarly when
the data possess enough information. However, if the data possess zero-failure cases,
the normal prior is recommended by these authors. Here, we extend their work by
incorporating a competing risk model into a one-shot device testing analysis under
an accelerated life test setting and develop a Bayesian estimation framework. We
adopt the prior distributions of the parameters stated in [10], namely, the exponential
distribution, normal distribution with non-informative prior for the variance, and
Dirichlet distribution which is an extension of the beta distribution.
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Let π(ααα) be the joint prior. Then, the joint posterior density of ααα, given δδδ, IT and
w, is

π(ααα|δδδ, IT, w) = L(ααα|δδδ, IT, w)π(ααα)∫
L(ααα|δδδ, IT, w)π(ααα)dααα

. (16)

The denominator in (16) is usually not in closed-form. Following the method of
[10], the Bayesian point estimate of α̂αα = N−1∑N

n=1 ααα(n),whereααα(n) is the n-th value
out of N samples from the posterior distribution. We may be interested in estimates
of some parameters of interest at the normal operating condition, such as the failure
rate λr , the survival probability p0i at I Ti , and the expected life time E(T ). They
can be estimated as follows:

Quantity Bayesian Point Estimate
λr N−1∑N

n=1 α
(n)
r0 exp(α(n)

r1 w j ) = N−1∑N
n=1 λ(n)

r

p0i N−1∑N
n=1 exp(−(λ

(n)
1 + λ

(n)
2 )I Ti )

P(T1 < T2|min(T1, T2) < I T ) N−1∑N
n=1 λ

(n)
1 /(λ

(n)
1 + λ

(n)
2 )

E(Tr ) N−1∑N
n=1 1/λ

(n)
r

E(T ) N−1∑N
n=1(λ

(n)
1 + λ

(n)
2 )−1

In the above, E(Tr ) and E(T ) are the mean lifetimes for cause r and that of the
device, respectively. We also denote the probability P(T1 < T2|min(T1, T2) < I T )

by P.d1, for simplicity. The mean lifetime is a useful quantity for finding the 100q0 %
quantile t0 of the devices with exponential lifetime, and the relationship is simply

P(T > t0) = exp(−λt0) ⇒ t0 = − ln(q0)/λ.

Consequently, the Bayesian estimate of the quantile will be− ln(q0)n−1∑N
n=1 1/λ

(n)

which is a constant multiple of the Bayesian estimate of the mean lifetime. So, the
MSE of the estimate of the quantile will simply be the multiplication of the MSE of
the mean lifetime by (ln(q0))

2.
Several prior distributions are considered in this study, as described below.

3.3.1 Exponential Prior

Since the parameters (α10, α11, α20, α21) are all positive, a simple prior distribution
for them is an exponential one of the form

π1(ααα) =
R∏

r=1

θ−1
r0 exp(−αr0/θr0)θ

−1
r1 exp(−αr1/θr1),

where αrm, θrm > 0 for r = 1, 2, m = 0, 1.
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The θrm are the unknown hyperparameters and E(αrm) = θrm . Fan et al. [10]
assumed that the reliability of the items under w j and I Ti are around p̂0i j , p̂1i j , p̂2i j ,
for i = 1, . . . , I and j = 1, . . . , J , and so p̂0i j , p̂1i j , p̂2i j can be empirically esti-
mated as Si j/Ki j , D1i j/Ki j , D2i j/Ki j . If one of these estimates is zero, then it will
be hard to determine the initial value. Zero-frequency problem has often been dis-
cussed in the literature and Lee and Cohen [18] suggested using

(
p̃0i j , p̃1i j , p̃2i j

) =
(

Si j + 1

Ki j + 3
,

D1i j + 1

Ki j + 3
,

D2i j + 1

Ki j + 3

)
. (17)

Recall that we can estimate λ1i j + λ2i j = − ln(p0i j )/I Ti by (12). Then, by (13) and
(14), we can rewrite

ln(αr0) + αr1w j = ln(pri j ) − ln(1 − p0i j ) + ln(− ln(p0i j )) − ln(I Ti )

for l = 1, 2. By replacing pri j by the estimates in (17), we can obtain the least-square
estimate of ααα by minimizing

S(ααα) =
I∑

i=1

J∑

j=1

2∑

r=1

(
ŷri j − ln(αr0) − αr1w j − ln(I Ti )

)2
,

where

ŷri j = ln( p̃ri j ) − ln(1 − p̃0i j ) + ln(− ln( p̃0i j )). (18)

By performing the necessary algebra, we derive the least-square estimates as

α̂LSE
r1 =

{ (∑
Ki j
) (∑

Ki j w j (ŷri j − ln(I Ti ))
)

− (∑w j Ki j
) (∑

Ki j (ŷri j − ln(I Ti ))
)
}

×
{(∑

w2
j Ki j

) (∑
Ki j

)
−
(∑

w j Ki j

)2}−1

,

α̂LSE
r0 = exp

⎧
⎪⎪⎨

⎪⎪⎩

{ (∑
w2

j Ki j

) (∑
Ki j (ŷri j − ln(I Ti ))

)

− (∑w j Ki j
) (∑

Ki j w j (ŷri j − ln(I Ti ))
)

}

×
{(∑

w2
j Ki j

) (∑
Ki j
)− (∑w j Ki j

)2}−1

⎫
⎪⎪⎬

⎪⎪⎭
,

where
∑ =∑I

i=1

∑J
j=1 .

However, the least-square estimates are not guaranteed to be positive, which will
violate the assumption that both α11 and α21 are positive. To have a least-square esti-
mate with nonnegative constraints, Liew [19] suggested using Inequality Constraints
Least-Square (ICLS) method: if α̂LSE

r1 is negative, then
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α̂ICLS
r1 = 0,

ln
(
α̂ICLS

r0

) = ln
(
α̂LSE

r0

)+ α̂LSE
r1 ×

∑I
i=1

∑J
j=1 K 2

i j w j
∑I

i=1

∑J
j=1 K 2

i j

;

otherwise,

α̂ICLS
r1 = α̂L SE

r1 ,

α̂ICLS
r0 = α̂L SE

r0 .

If α̂ICLS
r1 = 0, we will add a very small number to it and make it positive: α̂ICLS

r1 =
10−14, say. By presuming that the ICLS estimates are close to the prior means, we
can use them as hyperparameter values for αr0 and αr1, i.e., θrm = α̂ICLS

rm for r = 1, 2
and m = 0, 1. Upon combining with (16), the posterior density then becomes

π1(ααα|δδδ, IT, w) ∝ L(ααα|δδδ, IT, w)π1(ααα|θθθ = αααICLS)

∝
I∏

i=1

J∏

j=1

p
Si j

0i j p
D1i j

1i j p
D2i j

2i j

R∏

r=1

exp

(
−
(

αr0

α̂ICLS
r0

+ αr1

α̂ICLS
r1

))
.

3.3.2 Normal Prior

Let εri j be the error such that

p̃ri j = pri j + εri j ,

and let us now assume that the error εri j are i.i.d. N (0, σ 2) variables. Then, the
conditional likelihood function of α, given σ 2, is

L(ααα|I Ti , w j , p̃ri j , σ
2) ∝

2∏

r=1

1√
2πσ 2

exp

{
− 1

2σ 2

(
pri j − p̃ri j

)2
}

,

where pri j and p̃ri j are as specified in (13)–(17), respectively. We will now adopt
the likelihood function as the prior distribution of ααα:

π2(ααα|IT, w, σ 2) ∝
I∏

i=1

J∏

j=1

2∏

r=1

1√
2πσ 2

exp

{
− 1

2σ 2

(
pri j − p̃ri j

)2
}

.

Since σ 2 is unknown, we adopt the noninformative prior

π(σ 2) ∝ 1

σ 2
, σ 2 > 0,
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which yields the joint prior density of ααα

π2(ααα|IT, w) ∝
∫ ∞

0
π2(ααα|IT, w, σ 2)π(σ 2)dσ 2

∝
∫ ∞

0
(σ 2)−

2I J+2
2 exp

⎧
⎨

⎩− 1

2σ 2

I∑

i=1

J∑

j=1

2∑

r=1

(
pri j − p̃ri j

)2
⎫
⎬

⎭ dσ 2

∝
⎧
⎨

⎩

I∑

i=1

J∑

j=1

2∑

r=1

(
pri j − p̃ri j

)2
⎫
⎬

⎭

−I J

.

Then, by (16), the joint posterior density of ααα becomes

π2(ααα|δδδ, IT, w) ∝
I∏

i=1

J∏

j=1

p
Si j

0i j p
D1i j

1i j p
D2i j

2i j

⎧
⎨

⎩

I∑

i=1

J∑

j=1

2∑

r=1

(
pri j − p̃ri j

)2
⎫
⎬

⎭

−I J

. (19)

3.3.3 Dirichlet Prior

The natural extension of the beta prior discussed in [10] to the competing risks
scenario is the Dirichlet prior. The prior density corresponding to pri j is

fi j (p0i j , p1i j , p2i j ) = p
β0i j −1
0i j p

β1i j −1
1i j p

β2i j −1
2i j

B(β i j )
,

where p0i j + p1i j + p2i j = 1, p0i j , p1, p2i j > 0, and

B(βββ i j ) = Γ (β0i j )Γ (β1i j )Γ (β2i j )

Γ (β0i j + β1i j + β2i j )
.

The hyperparameters βββ i j are then chosen to match

E(pri j ) = βri j

β0i j + β1i j + β2i j
= p̃ri j , r = 1, 2. (20)

Clearly, onemore equation is needed for the determination of the hyperparameterβββ i j .
For this, we may focus on the variance of p0i j , which corresponds to the accuracy of
the survival probability of one-shot devices.With the prior belief that Var(p0i j ) = c2,
the last equation to be used to determine the hyperparameter βββ i j is given by

Var(p0i j ) = β0i j (β1i j + β2i j )

(
∑2

r=0 βri j )2(
∑2

r=0 βri j + 1)
= c2. (21)
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Using (20) and (21), we then obtain the hyperparameters as

β1i j = p̃1i j

2∑

r=0

βri j , β2i j = p̃2i j

2∑

r=0

βri j , β0i j =
2∑

r=0

βri j − β1i j − β2i j , (22)

where

2∑

r=0

βri j =
(

p̃0i j (1 − p̃0i j )

c2
− 1

)
,

which yields the posterior distribution

π3(ααα|δδδ, IT, w) ∝
I∏

i=1

J∏

j=1

p
Si j +β0i j −1
0i j p

D1i j +β1i j −1
1i j p

D2i j +β2i j −1
2i j ;

here, p0i j , p1i j and p2i j are as specified in (12)–(14), respectively, and p̃0i j , p̃1i j and
p̃2i j are as specified in (17).

3.3.4 Prior Belief on pri j

In [10], the authors assumed that the prior belief of pi j , denoted by p̂i j , is very
reliable with regard to the true unknown parameter pi j . Thus, they generated p0i j

from a beta distribution with specific choice of parameters. Now, by incorporating
competing risks into the one-shot device testing, we assume that the prior belief of
pri j , denoted by p̂ri j , is also very reliable in the sense that the variance of prior belief
on the survival probability, Var( p̂0i j ) = c2, is small, with c2 being a small constant.
We also assume that E( p̂ri j ) = pri j . Then, with the choice of parameters similar to
the one in (22), we have

f ( p̂0i j , p̂1i j , p̂2i j ) ∝ p̂
β∗
0i j −1

0i j p̂
β∗
1i j −1

1i j p̂
β∗
2i j −1

2i j ,

where p̂0i j + p̂1i j + p̂2i j = 1, p̂0i j , p̂1i j , p̂2i j > 0. The parameters β∗
ri j are chosen

to be

β∗
1i j = p̂1i j

2∑

r=0

β∗
ri j , β∗

2i j = p̂2i j

2∑

r=0

β∗
ri j , β∗

0i j =
2∑

r=0

βri j − β∗
1i j − β∗

2i j ,

where

2∑

r=0

β∗
ri j =

(
p̂0i j (1 − p̂0i j )

c2
− 1

)
. (23)
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The prior belief on the parameter can be used to replace p̃ri j in (18), (19) and (22)
and the corresponding posterior distribution will then result. Note that

∑2
r=0 β∗

ri j

must be larger than zero. From (23), this means that c2 < p0i j (1 − p0i j ).
It is observed that Dirichlet prior is generally good for estimationwhen the devices

with high reliability and normal prior provides better estimates for devices with
moderate and low reliability.

4 Semi-parametric Models

Under the parametric setup, product lifetimes are assumed to be fully described by
a probability distribution consisting of a number of model parameters. In this case,
inferencedevelopedmaybequite sensitive to departures from the assumedparametric
distribution. For this reason, semi-parametric models that consist of parametric and
nonparametric parts become good alternatives for model fitting propose when no
suitable parametric models are known. Moreover, semi-parametric models can help
in the choice of an appropriate model. Finkelstein and Wolfe [11] developed a semi-
parametric regression model to examine the effect of dose on the hazard for tumor
onset in an animal tumorigenicity study. Cheng andWei [8] subsequently considered
another semi-parametric model for analyzing panel data from an AIDS clinical trial.
It is therefore of great interest to develop a proportional hazards model for one-shot
device testing data analysis.

4.1 Proportional Hazards Models

Consider I constant-stress accelerated life-tests and K inspection times. For the
i-th life-test, Ni devices are placed under stress level combinations with J stress
factors, xi = (xi1, xi2, . . . , xi J ), of which Nik are tested at the k − th inspection
time I Tk, where Ni =∑K

k=1 Nik and 0 < I T1 < · · · < I TK . Then, the numbers of
devices that have failed by the time, nik, are recorded. One-shot device testing data
obtained from such a life-test can then be represented as (nik, Nik, xi , I Tk), for
i = 1, 2, . . . , I, k = 1, 2, . . . , K . Under the proportional hazards assumption [9],
the cumulative hazard function is given by

H(t;ηηη, a, x) = H0(t;ηηη)λ(x; a), (24)

where H0(t;ηηη) is the baseline cumulative hazard function,ηηη = (η1, η2, . . . , ηK ), and
a = (a1, a2, . . . , aJ ) is a vector of coefficients for stress factors. The model in (24) is
composed of two independent components. One component measures the influence
of the stress factors and the other measures the changes in the baseline. We now
assume a log-linear link function to relate the stress levels to the failure times of the
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units to obtain the cumulative hazard function from (24) to be

H(t;ηηη, a, x) = H0(t;ηηη) exp

⎛

⎝
J∑

j=1

a j x j

⎞

⎠ ;

the corresponding reliability function is then

R(t;ηηη, a, x) = exp (−H(t;ηηη, a, x)) = R0(t;ηηη)
exp
(∑J

j=1 a j x j

)

,

where R0(t;ηηη) = exp(−H0(t;ηηη)) is the baseline reliability function. It is of interest
to note that the baseline reliability function is a decreasing function, that is, 0 <

R0(I TK ;ηηη) < R0(I TK−1;ηηη) < · · · < R0(I T2;ηηη) < R0(I T1;ηηη) < 1, and therefore,
we let

γ (ηK ) = 1 − R0(I TK ;ηηη) = 1 − exp(− exp(ηK )),

and, for k = 1, 2, . . . , K − 1,

γ (ηk) = 1 − R0(I Tk;ηηη)

1 − R0(I Tk+1;ηηη)
= 1 − exp(− exp(ηk)).

Let us now define Gk =∏K
m=k γ (ηm). We then have

R0(I Tk;ηηη) = 1 −
K∏

m=k

{1 − exp(− exp(ηm))} = 1 − Gk .

Also, it can be seen that R0(I Tk;ηηη) ≈ R0(I Tk+1;ηηη) when ηk → +∞, and
R0(I Tk;ηηη) � R0(I Tk+1;ηηη)when ηk → −∞.The value of ηk gives us an idea about
the probability of failure between successive times I Tk and I Tk+1. It is observed that
few devices will fail between I Tk and I Tk+1 when ηk tends to+∞, andmany devices
will fail between I Tk and I Tk+1 when ηk tends to −∞.

The log-likelihood function based on the data is then given by

�(a,ηηη) =
I∑

i=1

K∑

k=1

nik ln

(
1 − (1 − Gk)

exp
(∑J

j=1 a j xi j

))

+ (Nik − nik) ln (1 − Gk) exp

⎛

⎝
J∑

j=1

a j xi j

⎞

⎠+ ln(C).

We now present a connection between the proportional hazards model and a
parametric model with proportional hazard rates. The two-parameter Weibull distri-
bution is commonly used as a lifetime distribution having proportional hazard rates.
In constant-stress accelerated-life tests, if the lifetimes of units subjected to ele-
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vated stress levels xi follow the Weibull distribution with the same shape parameter

β = exp(b) and the scale parameter αi = exp
(∑J

j=0 c j xi j

)
, the cdf of the Weibull

distribution is

FT (t, αi , β) = 1 − exp

(
−
(

t

αi

)β
)

, t > 0.

If the proportional hazards assumption holds, then the baseline reliability and the
coefficients of stress factors are given by

R0(I Tk;ηηη) = exp
(
−I T β

k exp(−βc0)
)

and
a j = −βc j ,

for j = 1, 2, . . . , J.

Furthermore, ηk = ln
(
− ln

(
1 − 1−R0(I Tk )

1−R0(I Tk+1)

))
and ηK = β(ln(I TK ) − c0).

In the present case, the maximum likelihood estimators of the model parameters
θ̂θθ = (â, b̂) have no explicit form but can be determined numerically, for example, by
the Newton-Raphson method, which requires the first- and second-order derivatives
of the log-likelihood function.

4.2 Test of Proportional Hazard Rates

The proposed model imposes only the proportional hazards assumption and allows
hazard rate to change in a nonparametric way. Here, we present a test for the pro-
portional hazards assumption based on one-shot device testing data. Let us consider
the distance-based test statistic M of the form in (9), introduced in Sect. 2.5. The test
statistic simply assesses the fit of the assumed model to the observed data, and so we
would observe a large value of the test statistic M when the assumed model is not
a good fit to the data. From (10), we can readily validate the proportional hazards
assumption when the p-value is sufficiently large, i.e., p-value >0.05 or 0.1.

5 Applications to Tumor Toxicological Data

In this section, two real data from a toxicological study are used to illustrate the
models and the estimation methods described in the preceding sections.
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5.1 Benzidine Dihydrochloride Data

Survival and sacrifice data which involved 1816 mice, of which 553 developed
tumors, taken from the National Center for Toxicological Research, is used here to
illustrate the models and the inferential results described in the preceding sections.
These data have been considered earlier by Kodell and Nelson [16], and Lindsey
and Ryan [20]. The original data were classified into five groups, and were reported
by Kodell and Nelson [16]. Note that not all mice were sacrificed at prespecified
times because some died of tumors naturally before the sacrifice time. Thus, their
times of natural death would also be treated as times of sacrifice. We considered the
mice sacrificed with tumors, died of tumors, and died of competing risks with liver
tumors as those having tumors, while the mice sacrificed without tumors and died of
competing risk without liver tumors as those not having tumors.

Let a1(d1), a2(d2), and a3(d3) denote the parameters corresponding to the covari-
ates of strain of offspring, gender, and square root of concentration of the chemical
of benzidine dihydrochloride in the scale parameter of the Weibull (gamma) distrib-
ution; and b1(c1), b2(c2), and b3(c3) similarly for the shape parameters, respectively.
The MLEs of the model parameters were computed by means of the EM algorithm,
along with the corresponding standard errors and the 95% asymptotic confidence
intervals for all the model parameters. These results are all presented in Table3.
It is evident that both the shape and scale parameters vary with all the covariates.
The goodness of fit test with p-values reveals that the Weibull and gamma distri-
butions incorporated with the log-linear links are suitable for these data. Also, we
have grouped the data into three inspection times I T = (10, 16, 22) and then tested
the proportional hazard rates using the proportional hazards model. The test pro-
vides strong evidence against the proportional hazards model for these data since the
calculated p-value of the test turns out to be as small as 0.0019. This finding is con-
sistent with the results in Table3, wherein it can be readily seen that the parametric
distributions without proportional hazard rates provide a good fit to these data.

5.2 Carcinogen 2-AAF Data

Here we apply the competing risk model to a dataset concerning rodent tumorigenic-
ity described in [20]. The experimental results were observed by National Center for
Toxicological Research in 1974. 3355 out of 24,000 female mice were randomized to
a control group (w = 0) or groups that were injected with a high dose (150 parts per
million) of a known carcinogen, called 2-AAF (w = 1), to different parts of the body.
The inspection times used on the mice were 12, 18 and 33months and the outcome of
mice were death without tumour (DNT), with tumour (DWT), and sacrificed without
tumour (SNT) and with tumour (SWT). In this analysis, we ignore the information
about parts of mouse bodies where the drugs were injected. We combine SNT and
SWT as the sacrificed group (r = 0), and denote the cause of DNT as natural death
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Table 3 MLEs of model parameters, along with their standard errors (within brackets) and the
corresponding 95% asymptotic confidence intervals

Weibull (M = 6.4416, p-value = 0.1565)

Scale parameter α

a0 a1 a2 a3
Estimates (s.e.) 3.2996 (0.0365) 0.0485 (0.0219) 0.5178 (0.0498) −0.0508 (0.0028)

Asymptotic CI (3.2281, 3.3711) (0.0055, 0.0915) (0.4202, 0.6154) (−0.0563,
−0.0452)

Shape parameter η

b0 b1 b2 b3
Estimates (s.e.) 2.1933 (0.1638) −0.2389 (0.0895) −0.4741 (0.1140) −0.0327 (0.0114)

Asymptotic CI (1.8722, 2.5143) (−0.4143,
−0.0635)

(−0.6875,
−0.2507)

(−0.0551,
−0.0104)

Gamma (M = 6.3067, p-value = 0.2272)

Shape parameter α

c0 c1 c2 c3
Estimates (s.e.) 3.0597 (0.0287) −0.0576 (0.0230) −0.9780 (0.0477) −0.0330 (0.0025)

Asymptotic CI (3.0034, 3.1160) (−0.1026,
−0.0125)

(−1.0714,
−0.8846)

(−0.0379,
−0.0281)

Scale parameter β

d0 d1 d2 d3
Estimates (s.e.) 0.2616 (0.0421) 0.0781 (0.0319) 1.5627 (0.0729) −0.0237 (0.0037)

Asymptotic CI (0.1790, 0.3442) (0.0156, 0.1406) (1.4198, 1.7057) (−0.0310,
−0.0165)

Table 4 Numbers of mice sacrificed (r = 0) and died (without tumour r = 1, with tumour r = 2)
from the ED01 experiment data

δi jk = 0 δi jk = 1 δi jk = 2

I T1 = 12 w1 = 0 115 22 8

w2 = 1 110 49 16

I T2 = 18 w1 = 0 780 42 8

w2 = 1 540 54 26

I T3 = 33 w1 = 0 675 200 85

w2 = 1 510 64 51

(r = 1) and the cause ofDWTas death due to cancer (r = 2). Thesemodified data are
presented in Table4 and the corresponding estimates of model parameters obtained
by the proposed estimation method are presented in Table5.

From Table5, we note that the estimate of α11 is negative which means that the
drug will decrease the hazard rate of natural death. The reason for this is that the car-
cinogenic drug will increase the chances of developing a tumour which will of course
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Table 5 Estimates of various parameters of interest determined by the EM algorithm

Parameter α10 α11 α20 α21

Estimate 6.169e-03 −1.279e-01 2.347e-03 2.532e-01

Parameter p01|w=0 p02|w=0 p03|w=0 E(T |w = 0) P.d1w=0

Estimate 9.029e-01 8.579e-01 7.55e-01 1.174e+02 7.244e-01

Parameter p01|w=1 p02|w=1 p03|w=1 E(T |w = 1) P.d1w=1

Estimate 9.036e-01 8.589e-01 7.566e-01 1.183e+02 6.423e-01

decrease the chances of deathwithout tumour,meaning that P.d1w=0 > P.d1w=1. The
estimate ofα21 is positive suggesting that the drug is indeed carcinogenic.Apparently,
there are no significant differences between the life expectancies of mice receiving
the drug and not receiving the drug.
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Probabilistic Graphical Models for Fault
Diagnosis in Complex Systems
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Abstract In this chapter, we discuss the problem of fault diagnosis for complex
systems in two different contexts: static and dynamic probabilistic graphical models
of systems. The fault diagnosis problem is represented using a tripartite probabilistic
graphical model. The first layer of this tripartite graph is composed of components
of the system, which are the potential sources of failures. The condition of each
component is represented by a binary state variable which is zero if the component
is healthy and one otherwise. The second layer is composed of tests with binary
outcomes (pass or fail) and the third layer is the noisy observations associated with
the test outcomes. The cause–effect relations between the states of components and
the observed test outcomes can be compactly modeled in terms of detection and false
alarm probabilities. For a failure source and an observed test outcome, the probability
of fault detection is defined as the probability that the observed test outcome is a fail
given that the component is faulty, and the probability of false alarm is defined as the
probability that the observed test outcome is a fail given that the component is healthy.
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When the probability of fault detection is one and the probability of false alarm is
zero, the test is termed perfect; otherwise, it is deemed imperfect. In static models,
the diagnosis problem is formulated as one ofmaximizing the posterior probability of
component states given the observed fail or pass outcomes of tests. Since the solution
to this problem is known to be NP-hard, to find near-optimal diagnostic solutions,
we use a Lagrangian (dual) relaxation technique, which has the desirable property
of providing a measure of suboptimality in terms of the approximate duality gap.
Indeed, the solutionwould be optimal if the approximate duality gap is zero. The static
problem is discussed in detail and some interesting properties, such as the reduction
of the problem to a set covering problem in the case of perfect tests, are discussed.We
also visualize the dual function graphically and introduce some insights into the static
fault diagnosis problem. In the context of dynamic probabilistic graphical models,
it is assumed that the states of components evolve as independent Markov chains
and that, at each time epoch, we have access to some of the observed test outcomes.
Given the observed test outcomes at different time epochs, the goal is to determine the
most likely evolution of the states of components over time. The application of dual
relaxation techniques results in significant reduction in the computational burden as
it transforms the original coupled problem into separable subproblems, one for each
component, which are solved using a Viterbi decoding algorithm. The problems, as
stated above, can be regarded as passive monitoring, which relies on synchronous
or asynchronous availability of sensor results to infer the most likely state evolution
of component states. When information is sequentially acquired to isolate the faults
in minimum time, cost, or other economic factors, the problem of fault diagnosis
can be viewed as active probing (also termed sequential testing or troubleshooting).
We discuss the solution of active probing problems using the information heuristic
and rollout strategies of dynamic programming. The practical applications of passive
monitoring and active probing to fault diagnosis problems in automotive, aerospace,
power, and medical systems are briefly mentioned.

1 Introduction

With increasing number of subsystems and components in complex engineered sys-
tems, the need for system monitoring, anomaly (fault) detection, and root cause
analysis is paramount for improved system availability. However, the process of
detecting and isolating faults in complex systems is challenging, because

• The numbers of faults and monitoring signals (“processed sensor measurements,”
“tests,” “symptoms,” “visual observations”) in these systems are large (running
into tens of thousands).

• Each test outcome may be caused by faults in multiple components of possibly
multiple subsystems (“many-to-many” fault–test relationships).

• Faults propagate from one subsystem to another (“cross-subsystem fault propaga-
tion”) with delays.
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• Test outcomes, which are uncertain, are observed with delays caused by fault
propagation, computation, and communication.

• Simultaneous occurrence of multiple faults is frequent.

Thismakes traditional single-fault diagnosis approaches untenable. Uncertain test
outcomes pose particularly difficult challenges to fault diagnosis: while, in a perfect
binary test outcome situation, a passed test indicates the normal status of its associated
components and a failed test implies the existence of at least one faulty component
associated with the test, neither can be inferred when the tests are imperfect. In the
binary test outcome case, an imperfect test outcome may be reported as passed, even
when there are faulty component(s) associated with the test, a situation referred to
as imperfect (missed) detection. On the other hand, an imperfect test outcome may
be reported as failed, even though there is no faulty component associated with the
test, a condition referred to as a false alarm.

In broad terms, fault diagnosis problems can be categorized into two groups: pas-
sive monitoring and active monitoring (“probing”). In passive monitoring, the fault
diagnosis subsystem (“diagnoser”) relies on synchronous or asynchronous availabil-
ity of test outcomes to detect abnormal conditions in the system and to isolate the
faulty component or components in the system. This is also termed abductive rea-
soning. One application of passive monitoring is in disease diagnosis, such as Quick
Medical ReferenceDecision-Theoretic (QMR-DT) problem, wherein bipartite belief
networks are used to model the probabilistic cause–effect relations of a set of dis-
eases and a set of findings [108, 133]. On the other hand, in active probing, the aim is
to adaptively sequence the application of tests based on the outcomes of previously
applied tests in order to minimize the expected troubleshooting time or the expected
testing cost. Evidently, hybrid passive and active monitoring (e.g., passive monitor-
ing followed by active probing to troubleshoot problems) is a common practice in
complex system diagnosis.

Graphical models combine graph theory and probability theory into an elegant
formalism for visualizing models, gaining insights into conditional independence
properties, inference, and learning. Since fault diagnosis is inherently an inference
problem, it is natural to employ graphical models for fault diagnosis. In this vein, a
fault diagnosis system can be conceptualized as a tripartite directed graph (digraph)
as shown in Fig. 1. The first (top) layer contains the components (failure modes or
failure sources) and the second (middle) layer is comprised of tests. The cause–
effect relations between the component health states (herein termed failure source
states) and the test outcomes may be perfect or imperfect (probabilistic). The third
(bottom) layer encompasses the observations of test outcomes, which may be perfect
or imperfect, observed synchronously or asynchronously and, in the synchronous
case, not all observations of test outcomes may be available at each epoch. Note
that the observations may be different from the test outcomes, for example, due
to uncertainty and communication errors. When the observations are perfect, we
have oj(k) = tj(k) and the tripartite digraph is reduced to a bipartite one. In the
following, we assume that observations are perfect and represent the system as a
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Fig. 1 Tripartite digraph of fault diagnosis system

bipartite digraph. Also in the case of static fault diagnosis, the dependence on time
is omitted in the bipartite digraph.

The problem has three basic elements, namely failure sources (associated with
components), tests, and dependency relations between failure sources and tests. Each
of these elements can be abstracted in various ways to capture the nature of the fault
diagnosis problem in a complex system. For example, failure sources associated with
a component can be permanent (static) or intermittent (dynamic). They may have
binary states (normal, abnormal) ormultivalued states (nominal and various degraded
modes of operation). The failure sources may be independent or coupled (see Fig. 2).
In the same vein, a test can be categorized as having binary or multivalued outcomes,

Fig. 2 Modeling abstractions in fault diagnosis subsystems
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(a) (b)

Fig. 3 Perfect and imperfect relations of a failure source and a test outcome

and the relationship between the failure sources and test outcomes can be perfect or
imperfect, as alluded to earlier.

For ease of exposition and simplicity of notation, we consider failure sources and
test outcomes with binary states. Figure3a shows a component and a test, each with
binary (0-1) states, having a perfect dependency relationship. Evidently, in this case,
with probability one, xi = 1 is mapped to tj = 1, and xi = 0 to tj = 0.

Figure3b shows the dependency relationship of a failure source and a test outcome
in an imperfect test setting. An imperfect binary relation can be represented by
probability of detection and probability of false alarm as follows:

Probability of Detection: If xi = 1, then there is a probability Pdij that test tj fails.
Here, Pdij denotes the probability of detection. Formally, Pdij = Pr

(
tj = 1|xi = 1

)
.

Probability of False Alarm: If xi = 0, then there is a probability Pfij that test tj fails.
Here, Pfij denotes the probability of false alarm. Formally, Pfij = Pr

(
tj = 1|xi = 0

)
.

In the sequel, we discuss the static and dynamic form of multiple fault diagnosis
and also passive and active monitoring using this simplified model. Extensions of
the method to coupled and delayed failure source state propagation, and delayed
observations can be found in [65, 66, 110, 120, 135].

2 Static Multiple Fault Diagnosis

In this section, we consider the multiple fault diagnosis problem in a static context,
and refer to it as static multiple fault diagnosis (SMFD). The SMFD problem is
comprised of the following:

• The system consists of m components c1, c2, . . . , cm. Without loss of generality,
a single failure mode is associated with each component. The failure modes are
assumed to be conditionally independent. Let S = {s1, s2, . . . , sm} be the set of
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independent potential failuremodes (failure sources), respectively, associatedwith
the system components c1, c2, . . . , cm.

• To each component (potential failure source), ci (si) is assigned a binary state
variable xi, where xi = 1 represents the fault state of the component and xi = 0
represents the normal state of the component.

• Each potential failure source is assumed to have a prior probability psi of being
faulty; in other words, Pr (xi = 1) = psi .

• The system is assumed to have n tests, t = {t1, t2, . . . , tn}.
• Tests are assumed to be independent.
• When test tj has a pass outcome, it is represented by tj = 0, otherwise by tj = 1.
• The cause–effect relation between the potential failure sources and the tests are
assumed to be probabilistic with detection probabilities and false alarm probabil-
ities, as discussed in the previous section.

• In a real-world system, if component ci is associated with test tj , the detection
probability Pdij is a number close to 1, for example, in the range [0.75, 1] and the
false alarm probability Pfij is a number close to 0, for example, in the range
[0, 0.20]. The situation that the component ci is not associated with test tj is
represented by Pdij = Pfij = 0.

• Werepresent the states of failures sources as x. In otherwords x = {x1, x2, . . . , xm}.
Based on the above assumptions, the problem of SMFD is defined as follows:

Static Multiple Fault Diagnosis (SMFD) Problem: Given T , a subset of all
test outcomes t, i.e., T ⊆ t,what are the most likely states of failure sources, x?

Formally, the problem is stated as follows:

x̂ = arg max
x

Pr (x|T) . (1)

Using Bayes’ rule, we can write Pr (x|T) as

Pr (x|T) = Pr (T |x)Pr (x)

Pr (T)
. (2)

Since maximization of Pr (x|T) is equivalent to maximization of Pr (T |x)Pr (x), we
can simplify the problem further by maximizing the logarithm of Pr (T |x) Pr (x).
Thus, the problem is

x̂ = arg max
x

ln (Pr (T |x) Pr (x)) . (3)
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In tackling the problem, we first classify the given tests T into two subsets of passed
tests and failed tests, respectively, represented by Tp and Tf . Since the test outcomes
are assumed to be conditionally independent,wehavePr (T |x) = Pr

(
Tp|x

)
Pr

(
Tf |x

)
.

Therefore, by converting the logarithm of the product to the sum of logarithms, we
can write (3) as follows:

x̂ = arg max
x

{
ln

(
Pr

(
Tf |x

)) + ln
(
Pr

(
Tp|x

)) + ln (Pr (x))
}
. (4)

Since the potential failure sources are assumed to be independent, we have

Pr (x) =
m∏

i=1

Pr (xi). (5)

Based on problem assumptions, we have Pr (xi = 1) = psi ; therefore Pr (xi) =(
psi

)xi
(
1 − psi

)1−xi , which by defining pi = psi
1−psi

can be simplified as

Pr (xi) = (pi)
xi

(
1 − psi

)
. (6)

Taking the logarithm of (5) and using (6), we have

ln (Pr (x)) =
m∑

i=1

ln(pi)xi +
m∑

i=1

ln
(
1 − psi

)
. (7)

Note that
∑m

i=1 ln
(
1 − psi

)
is a known constant. The next term to calculate is

ln
(
Pr

(
Tp|x

))
. Since the test outcomes are assumed to be conditionally independent,

we can write

Pr
(
Tp|x

) =
∏

tj∈Tp

Pr
(
tj = pass|x)

. (8)

In order that test tj has passed outcome conditioned on x, it should pass conditioned
on each component state. In other words,

Pr
(
tj = pass|x) =

m∏

i=1

Pr
(
tj = pass|xi

)
. (9)

From Fig. 3b, we have

Pr
(
tj = pass|xi

) =
{
1 − Pfij xi = 0
1 − Pdij xi = 1

. (10)
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Equation (10) can be represented in the compact form of Pr
(
tj = pass|xi

) =(
1 − Pdij

)xi
(
1 − Pfij

)1−xi , which by defining Pdij = 1 − Pdij and Pfij = 1 − Pfij can
be further compactly written as

Pr
(
tj = pass|xi

) = Pfij
(

Pdij/Pfij
)xi

. (11)

Inserting (11) into (9) and taking the logarithm, we have

ln
(
Pr

(
tj = pass|x)) = ln

(
yj

) = hj +
m∑

i=1

βijxi, (12)

where βij = ln
(

Pdij

Pfij

)
, hj = ∑m

i=1 ln
(

Pfij
)
, and the continuous variable yj is defined

as

yj = Pr
(
tj = pass|x)

. (13)

Note that βij and hj are known constants. By taking the logarithm of both sides of
(8) and then using relation (12), we can write

ln
(
Pr

(
Tp|x

)) =
∑

tj∈Tp

ln
(
yj

) =
∑

tj∈Tp

hj +
∑

tj∈Tp

m∑

i=1

βijxi. (14)

Note that the summation
∑

tj∈Tp
hj is simply a constant. The last term to be character-

ized from (4) is ln
(
Pr

(
Tf |x

))
. Similarly to the passed tests, for failed tests we have

Pr
(
Tf |x

) = ∏
tj∈Tf

Pr
(
tj = fail|x)

and as Pr
(
tj = fail|x) = 1 − Pr

(
tj = pass|x) =

1 − yj, we have the following relation:

Pr
(
Tf |x

) =
∏

tj∈Tf

(
1 − yj

)
, (15)

where based on (12) and the definition of yj, we have

ln(yj) = hj +
m∑

i=1

βijxi. (16)

By taking the logarithm of (15), we have

ln
(
Pr

(
Tf |x

)) =
∑

tj∈Tf

ln
(
1 − yj

)
. (17)
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Now inserting (7), (14), and (17) into (4), and discarding the constant terms of∑m
i=1 ln

(
1 − psi

)
and

∑
tj∈Tp

hj, the SMFD problem simplifies to

x̂ = arg max
x,y

J(x, y),

subject to:

ln(yj) = hj +
m∑

i=1
βijxi ∀tj ∈ Tf .

(18)

where J(x, y), the primal objective function, is as follows:

J(x, y) =
∑

tj∈Tf

ln
(
1 − yj

) +
∑

tj∈Tp

m∑

i=1

βijxi +
m∑

i=1

ln(pi)xi. (19)

Before we proceed to solve this problem, let us consider the case where the tests are
perfect, i.e., Pdij = 1 and Pfij = 0, for components associated with tests.

Property 1 If tests are perfect, for any passed test tj, i.e., tj ∈ Tp, the set of all
components that are associated with test tj should be healthy.

Proof Using the definition of perfect test, if a component ci is faulty, i.e., xi = 1,
and if it is associated with test tj, i.e., Pdij = 1, then test tj should fail. In other
words, xi = 1 ⇒ tj = fail, whose contrapositive is tj = pass ⇒ xi = 0. Therefore,
xi = 0 ∀tj ∈ Tp &Pdij > 0; in other words, for any test tj where tj ∈ Tp, the set of
all components that are associated with test tj, i.e., Pdij > 0, should be healthy. �

Property 1 substantially reduces the cardinality of failure sources, S, by discarding
the failure sources covered by passed tests. Let the reduced set of failure sources be
denoted by S−.

Property 2 If tests are perfect, for any failed test tj, i.e., tj ∈ Tf , among all
components associated with the failed test, i.e., Pdij > 0, at least one should
be faulty.

Proof Since, for perfect tests, we have Pfij = 0 ∀i, j, hj = ∑m
i=1 ln

(
Pfij

)
=

∑m
i=1 ln(1) = 0, the constraints in (16) are reduced to ln(yj) = ∑m

i=1 βijxi ∀tj ∈ Tf .
Suppose all components that are associated with the failed test tj are healthy, that
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is, xi = 0 ∀xi, Pdij > 0, then, ln(yj) = 0. Equivalently, ln
(
1 − yj

)
in the objective

function (19) will be unbounded. Therefore, for any tj ∈ Tf , for all Pdij > 0 at least
one of the xi’s should be 1. �

This condition can be compactly expressed as
∑

xi∈S− Pdijxi ≥ 1 ∀tj ∈ Tf . Note

that for any tj ∈ Tf , and for anyPdij > 0, we have βij = ln
(

Pdij

Pfij

)
= ln

(
1−1
1−0

) = −∞.

Since at least one of the corresponding xi’s is 1, ln(yj) = −∞
∀tj ∈ Tf or yj = 0 ∀tj ∈ Tf , hence

∑
tj∈Tf

ln
(
1 − yj

) = ∑
tj∈Tf

ln(1) = 0.
Therefore, the SMFD problem reduces to the following set covering problem:

max
∑

i∈S−
ln(pi)xi,

such that∑
i∈S−

xiPdij ≥ 1, ∀tj ∈ Tf .

(20)

Since the set covering problem is NP-hard, the general problem in (18) is NP-hard
as well. We solve the problem in (18) using Lagrangian relaxation. Note that in
(18) and in the following discussion, the tests are in general imperfect. By relaxing
the constraints in (18), performing some simple manipulations, and defining αi =
ln(pi) + ∑

tj∈Tp
βij, ci(λ) = αi − ∑

tj∈Tf
λjβij, the relaxed objective function will be

as follows:

L(x, y,λ) =
∑

tj∈Tf

{
ln

(
1 − yj

) + λj ln(yj) − hjλj
} +

m∑

i=1

ci(λ)xi. (21)

The advantage of (21) is that the maximization with respect to x and y can be done
separately. As λj ≥ 0, by taking derivative with respect to yj and equating to zero,
we obtain y∗

j = λj

1+λj
, where y∗

j denotes the optimal value of yj. By inserting y∗
j into

(21) and simplifying, we obtain

L(λ, x) =
∑

tj∈Tf

{
λj ln(λj) − (1 + λj) ln(1 + λj) − hjλj

} +
m∑

i=1

ci(λ)xi. (22)

In [105], the above problem is solved iteratively by initializing λj’s to unity, obtaining
the optimal solution x∗ of (22) via a set covering algorithm and then updating λj’s
via a subgradient approach until a stopping condition is met. For details, the reader
is referred to [105]. Here, we discuss a purely dual approach to the problem in (22).
For any given λ, the first summation in (22) is just a constant and therefore can be
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discarded, and the maximization of the second summation completely depends on
the sign of ci(λ) terms. For any component ci, if ci(λ) is positive, then x∗

i = 1, and
if it is negative, x∗

i = 0. Therefore,

x∗
i (λ) = u (ci(λ)) = u

⎛

⎝αi −
∑

tj∈Tf

λjβij

⎞

⎠ . (23)

where u(.) is the unit step function. Hence, the SMFD problem in the dual form is
as follows:

Q(λ) = L(λ, x∗) = Q1(λ) + Q2(λ),

Q1(λ) =
∑

tj∈Tf

qj(λj), qj(λj) = λj ln(λj) − (1 + λj) ln(1 + λj) − hjλj, (24)

Q2(λ) =
m∑

i=1

ci(λ)u (ci(λ)) =
m∑

i=1

max (0, ci(λ)).

Note that ci(λ) is negative with a high magnitude, if

• Failure source si has a low a priori probability, i.e., psi is close to zero.
• Passed tests have high detection probabilities as long as false alarm probabilities
are reasonable (less than 0.25).

• Failed tests have low detection probabilities as long as false alarm probabilities
are reasonable (less than 0.25).

Next, we characterize some properties of the SMFD problem using the dual cost
function.

Property 3 In a real-world system, any failure source which is not associated
with any of the failed tests, is healthy based on maximum likelihood estimation.

Proof Since in a real-world system the probability of a failure source being faulty,
i.e., psi , is small (for example, around 0.01–0.2), ln(pi) < 0 and since βij ≤ 0 ∀i, j,
αi = ln(pi) + ∑

tk∈Tp
βik < 0. If a failure source xi is not related to any of the failed

tests (tj ∈ Tf ), it is equivalent to saying that it gives neither a false alarm nor a

detection to test tj ∈ Tf , that is, Pfij = Pdij = 0, therefore βij = ln
(

Pdij/Pfij
)

=
ln (1/1) = 0 ∀tj ∈ Tf . Evidently, ci(λ) = αi, which is always negative. As a result,
x∗

i = u (ci(λ
∗)) = u(αi) = 0. �
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Property 3 can be used to substantially reduce the size of the fault diagnosis
problem. Let N = {1, 2, . . . , m} and remove any failure source which is not related
to any of the failed tests. Let us call the remaining indices as S′ ⊆ N . Consequently,
Q2(λ) can be simplified as

∑
i∈S′ ci(λ)u (ci(λ)). Since αi < 0 ∀i and βij ≤ 0 ∀i, j,

for a failure source to be inferred faulty, the norm
∥∥λ∗∥∥ should be sufficiently large.

As a result for a given λ∗, the more negative αi is, the more likely component ci is
healthy. Since αi = ln(pi) + ∑

tk∈Tp
βik if a component ci is associated with some

failed tests (that is, i ∈ S′) and if it is not associated with any passed tests (that is,∑
tk∈Tp

βik = 0) then αi = ln(pi) < 0. However, if the failure source is associated
with some of the passed tests (that is,

∑
tk∈Tp

βik) then αi < ln(pi) < 0; hence, in
this case the probability of x∗

i = 1 reduces even further. In other words, the more
passed tests a failure source si is associated with, the more negative αi becomes and
consequently, the less likely the failure source si is in state 1.

Property 4 In a real-world system, for any tj ∈ Tf , we have λ∗
j ≤ λmax

j , where

λmax
j = ehj

1−ehj
.

Proof Note that Q1(λ) is composed of
∣∣Tf

∣∣ separate elements, each equal to qj(λj),

and each qj(λj) is a convex function whose minimum value occurs at ehj

1−ehj
. As Q2(λ)

does not contribute a decrease in Q(λ), increasing λj at most up to ehj

1−ehj
may help in

decreasing Q(λ); thus, λmax
j = ehj

1−ehj
. �

Property 5 In a real-world system, for any i ∈ S′ if we have αi <
∑

tj∈Tf

βije
hj

1−ehj
,

then x∗
i = 0.

Proof Since λ∗
j ≤ λmax

j based on Property 4, therefore if αi <
∑

tj∈Tf
βijλ

max
j or αi <

∑
tj∈Tf

βije
hj

1−ehj
, then ci(λ

∗) ≤ ci(λ
max) < 0. Thus, x∗

i = u (ci(λ
∗)) = 0. �

Based on Property 5, we can exclude from S′ any i such that αi <
∑

tj∈Tf

βije
hj

1−ehj
,

call the remaining indices S′′ and search for failure sources among S′′. Therefore,
Q2(λ) can be simplified as

∑
i∈S′′ ci(λ)u (ci(λ)).

In the remainder of this section, we consider a simple example to gain insights
into the SMFD problem. Consider a system with three components and two tests,
where test t1 is affected by components c1 and c2; test t2 is affected by components
c2 and c3. The prior probabilities are ps = [0.15, 0.10, 0.05]T , and the nonzero
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Fig. 4 Some plots regarding the dual function

detection and false alarm probabilities are Pd11 = 0.85, Pd21 = 0.90, Pd22 = 0.80,
Pd32 = 0.95, Pf11 = 0.06, Pf21 = 0.03, Pf22 = 0.07, Pf32 = 0.08.

In the sequel, we consider the individual terms in the dual function to gain insights
into the nature of the dual function. First, consider the function f1 = λj ln(λj), λj > 0.
At λj = 1, f1 = 0. For the extreme value of λj → 0+, we have f1 → 0− and for the
other extreme value of λj → +∞, we have f1 → +∞. Therefore, for λj ∈ (0, 1), the
convex function f1 is negative (see Fig. 4a) with the minimum value of f ∗

1 = −e−1

occurring at λ∗
j = e−1, and for λj ∈ [1,∞), the function monotonically increases

from zero to infinity (see Fig. 4a).
Next, we consider f2 = −(λj + 1) ln(λj + 1), which is the negative and time-

shifted version of f1. Note that f2 can be sketched by shifting graph of f1 by one
unit to the left and then flipping it around the x-axis; thus it is evident that for
positive λj, the function f2 is always negative (see Fig. 4a, b). Therefore, for λj ∈
(0, 1) as both f1 and f2 are negative, the summation of these two functions, i.e.,
f3 = f1 + f2, is also negative (see Fig. 4). For λj ∈ [1,∞), the magnitude of f2 is
always bigger than the magnitude of f1 and as f2 is always negative, therefore f2
dominates f1. Thus, f3 is negative for all positive values of λj and it goes unboundedly
to −∞ as λj → +∞. In fact, it can be shown that as λj → +∞, the function f3
asymptotically approaches f asymptotic

3 = −1 − ln(λj + 1) (see Fig. 4b). Note that in
the case of multiple faults, there exist multiple Lagrangian multipliers. First, we look
into the Q1(λ) part of the dual function. For now, we consider

∑
tj∈Tf

{
λj ln(λj)

}
,

which is actually
∑

tj∈Tf
f1(λj) and

∑
tj∈Tf

{
λj ln(λj) − (1 + λj) ln(1 + λj)

}
, which is

actually
∑

tj∈Tf
f3(λj). From the equations, it is clear that both of these functions are

symmetric with respect to the Lagrange multipliers. Figure4c, d shows the plots of
these functions in a two-dimensional space (which corresponds to a two-failed-tests
scenario). The plot of

∑
tj∈Tf

f1(λj) has a cup-shape surface which first heads down

and reaches the minimum value of −2e−1 at λ∗ = [
e−1, e−1

]T
, and thereafter, it

heads up and monotonically goes to infinity (see Fig. 4c).
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As we saw, f3(λ) is a monotonically decreasing function (Fig. 4b). Thus∑
tj∈Tf

f3(λj) is also a monotonically decreasing function. The function for the case
of the two-failed-tests scenario is shown in Fig. 4d. For clarity of presentation, the
direction of λ1 and λ2 in Fig. 4d is chosen to be opposite of those in Fig. 4c.

Next, we consider the effects of −hjλj in the Q1(λ) part of the dual function.

Note that hj = ∑m
i=1 ln

(
Pfij

)
is always negative, and in the above example, |h2| >

|h1|, because false alarm probabilities form components to test t2 are greater than
those to t1 (h1 = −0.092, h2 = −0.156). The line −hjλj has always a positive slope,
and it finally dominates f3, because f3 is asymptotic to the logarithmic function
−1 − ln(λj + 1); thus

(
f3 − hjλj

) → +∞ as λj → +∞. Figure5a shows the plots
of f3(λ),−h1λ,−h2λ, f3(λ) − h1λ, and f3(λ) − h2λ. Figure5b shows the Q1(λ) part
of the dual cost function, which is asymmetric in the Lagrangian dimensions due
to unequal hj’s, with a sharper slope in the direction of λ2, because |h2| > |h1|.
Intuitively, if the probabilities of the false alarms from different failure sources to
the failed tests are high, the magnitudes of hj’s are high, which in turn results in
an increase in the slope of −hjλj line and this results in λ∗

j ’s to have low values.
As the parameters αi and βij are always negative, the low values of λ∗

j ’s result in
more arguments of ci(λ

∗) to become negative; hence more components will likely
be healthy.

Next, we consider the Q2(λ) part of the dual cost function, which is
∑

i∈S′′
(ci(λ)) u (ci(λ)). Note that for each failure source of this summation, ci(λ) = 0 is
a hyperplane in

∣∣Tf

∣∣ dimensions; the failure source makes no contribution to the
dual cost function if ci(λ) ≤ 0 (because u (ci(λ)) = 0), while it makes a positive
linear contribution if ci(λ) > 0; thus sharp corners are created in the dual cost func-
tion and make the dual cost function nondifferentiable. In our example, as we have
three components (failure sources), there exist three hyperplanes (here they are just
lines because

∣∣Tf

∣∣ = 2), one for each component. Figure5c shows these three lines
and also the place where the minimum dual cost occurs. Figure5d shows the dual
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cost function, which is obtained by adding the contributions of the nondifferentiable
function Q2(λ) to the differentiable function Q1(λ) shown in Fig. 5b.

Note that, at the optimal point λ∗, if ci(λ
∗) is negative, then x∗

i = 0 and if it is
positive, then x∗

i = 1. However, for some components, we may have ci(λ
∗) = 0, and

we cannot decisively assign a value to x∗
i because the contribution of (ci(λ

∗)) x∗
i

to Q(λ) is zero irrespective of x∗
i being one or zero. For these cases, we should

either check the primal cost function or use the set covering ideas. Note that for the
following reasons, there are not many cases of this kind:

1. In practice, the number of failed tests
∣∣Tf

∣∣ is not large. As a result, the probability
that ci(λ

∗) = 0 tends to be low.
2. In practice, the cause–effect relation of failure sources and tests is sparse (not all

failure sources affect all tests). Therefore, not all hyperplanes have full dimension
(
∣∣Tf − 1

∣∣).
3. As we saw in the illustrative example, the optimal point may occur on one hyper-

plane or few hyperplanes whose intersection is not a point but lower dimensioned
hyperplanes.

4. The possibility of the optimal point being on a low-dimension hyperlane dra-
matically restricts the number of hyperplanes that include the optimal point. For
example, given that the optimal point is on a hyperplane with dimension one
(a line), then there exist only two generic possibilities: (a) the only hyperplane
that includes the optimal point is that line and (b) a line generally can intersect
only a full-dimension (with dimension

∣∣Tf

∣∣ − 1) hyperplane.

In our example, the optimal Lagrange multipliers (to three digits of accuracy)
are λ∗

1 = 0.476, λ∗
2 = 0.726. The evaluation of ci(λ

∗) for the three components are,
respectively, –0.86, 7.2 × 10−5, and –0.83. Evidently, x∗

1 = 0 and x∗
3 = 0. Since for

x2, the argument is very close to zero, we should either evaluate the primal cost for
both candidates of x2 = 1 and x2 = 0, or use the set covering idea for deciding on the
assignment for x∗

2 . Thus, we need to evaluate the primal cost for x1x2x3 = 000 and
x1x2x3 = 010 and choose the one with the maximum value. The primal cost function
for these two candidates are, respectively, –4.36 and –2.50, therefore x1x2x3 = 010
is the most likely candidate. Also, since component c2 covers both failed tests, it
should be faulty; thus we reach the same conclusion either way.

The nondifferentiability of dual cost function demands the use of numerical opti-
mization tools, such as subgradient algorithm, to find its optimal point. Recently,
surrogate Lagrangian relaxation (SLR) method [21], which provides a general pur-
pose rapidly converging algorithm for mixed integer programming problems, has
been proposed. The method, fundamentally, is based on two key ideas: (a) decreas-
ing the distance between Lagrange multipliers in consecutive iterations, by selecting
appropriate step sizes, and (b) preventing the algorithm from premature termination,
by keeping step sizes sufficiently large. This algorithm has been used for solving the
dual problem in (24).
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3 Dynamic Multiple Fault Diagnosis

In this section, we discuss the dynamic multiple fault diagnosis (DMFD) problem.
The difference between theDMFDand SMFD is that the states of the potential failure
sources and the tests and their observations are functions of time. The additional
assumptions for DMFD are the following:

• Time epochs of the system evolve in a discrete manner, from k = 0 to k = K .
• At any time epoch k, the state variable of component ci (or failure source si) is

xi(k) and the test outcomes are tj(k).
• Prior probability psi is defined as psi = Pr (xi(0) = 1).
• The dynamics of states of components are assumed to be Markovian; in other
words, there is a probability of fault appearance and probability of fault vanishing
(disappearance) as follows:
Probability of fault appearance: Pai(k) = Pr (xi(k) = 1|xi(k − 1) = 0).
Probability of fault vanishing: Pvi(k) = Pr (xi(k) = 0|xi(k − 1) = 1).

Based on the above assumptions, the DMFD problem is defined as follows:

Dynamic Multiple Fault Diagnosis (DMFD) Problem: Given a set of test
observations in K + 1 epochs (namely TK ) where TK ⊆ tK , and given the
initial states of components (namely x(0)), what is the most likely evolution
of state sequence xK of each potential failure source?

Note that the observed test outcome sequence TK may not include all of the test
outcomes. Formally, we can represent the problem as follows:

x̂K = arg max
xK

Pr
(
xK |TK , x(0)

)
. (25)

As before, using Bayes’ rule, the problem is equivalent to

x̂K = arg max
xK

Pr
(
TK |xK , x(0)

)
Pr

(
xK |x(0)

)
. (26)

Using the assumptions that (i) passed and failed tests at a given epoch and the tests at
different epochs are conditionally independent, (ii) invoking the Markovian nature
of failure source state evolution, and (iii) using the fact that maximizing the posterior
is equivalent to maximizing the log-posterior, we can simplify (26) as follows:

x̂K = arg max
xK

K∑

k=1

fk (x(k), x(k − 1)), (27)
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where

fk (x(k), x(k − 1)) = ln
(
Pr

(
Tp(k)| x(k)

)) + ln
(
Pr

(
Tf (k)| x(k)

))

+ ln (Pr (x(k)|x(k − 1))) .
(28)

Now, let us find each of the three elements in the right-hand side of (28). The first
two terms are similar to the SMFD case. Therefore,

ln
(
Pr

(
Tp(k)|x(k)

)) = ln(yj(k)) = γ (k) +
∑

tj(k)∈Tp(k)

m∑

i=1

βijxi(k), (29)

where

γ (k) =
∑

tj(k)∈Tp(k)

hj, (30)

ln
(
Pr

(
Tf (k)| x(k)

)) =
∑

tj(k)∈Tf (k)

ln
(
1 − yj(k)

)
. (31)

The third term in (28), using the Markov property, can be computed as follows:

ln (Pr (x(k)|x(k − 1))) =
m∑

i=1

ln (Pr (xi(k)|xi(k − 1))). (32)

As each of xi(k − 1) and xi(k) has two possible values, there exist four combinations
for Pr (xi(k)|xi(k − 1)). Therefore, Pr (xi(k)|xi(k − 1)) can be compactly represented
as follows:

Pr (xi(k)|xi(k − 1)) = (1 − Pai(k))(1−xi(k−1))(1−xi(k))(Pai(k))(1−xi(k−1))xi(k)

(1 − Pvi(k))xi(k−1)(1−xi(k))(Pvi(k))xi(k−1)xi(k). (33)

Inserting (33) into (32), and after some simplifications, we get the following
formula:

ln (Pr (x(k)|x(k − 1))) =
m∑

i=1
μi(k)xi(k) +

m∑
i=1

σi(k)xi(k − 1)

+
m∑

i=1
hi(k)xi(k)xi(k − 1) + g(k),

μi(k) = ln
(

Pai(k)

1−Pai(k)

)
, σi(k) = ln

(
Pvi(k)

1−Pai(k)

)
,

hi(k) = ln
(

(1−Pai(k))(1−Pvi(k))

Pai(k)Pvi(k)

)
, g(k) =

m∑
i=1

ln (1 − Pai(k)).

(34)
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Thus, the DMFD problem is as follows:

X̂K = arg max
XK

K∑

k=1

fk (x(k), x(k − 1), y(k)),

fk (x(k), x(k − 1)) =
∑

tj(k)∈Tp(k)

m∑

i=1

βijxi(k) + γ (k) +
∑

tj(k)∈Tf (k)

ln
(
1 − yj(k)

)
(35)

+
m∑

i=1

μi(k)xi(k) +
m∑

i=1

σi(k)xi(k − 1)

+
m∑

i=1

ϕi(k)xi(k)xi(k − 1) + g(k),

subject to

ln
(
yj(k)

) = hj +
m∑

i=1

ln(βij)xi(k). (36)

The next step, as we did in SMFD, is to use Lagrangian relaxation. For this pur-
pose, the constraint (36) is relaxed using Lagrange multipliers λj(k). The resulting
Lagrangian function is

L(x, y,λ) =
K∑

k=1

fk (x(k), x(k − 1), y(k))

+
∑

tj(k)∈Tf (k)

λj(k)

(
ln

(
yj(k)

) − hj −
m∑

i=1

ln(βij)xi(k)

)
, (37)

where λ = {
λj(k) ≥ 0, k ∈ {1, . . . , K}, tj(k) ∈ Tf (k)

}
is the set of Lagrange

multipliers.
The dual of primal DMFD problem can be written as

min
λ

Q(λ),

subject to: λ = {
λj(k) ≥ 0, k ∈ {1, . . . , K}, tj(k) ∈ Tf (k)

}
,

(38)

where the dual function is

Q(λ) = max
x,y

L(x, y, λ). (39)

Taking derivative of L(x, y,λ) with respect to yj(k) and equating it to zero yields

the optimal y∗
j (k) as λj(k)

1+λj(k)
. Inserting y∗(k) into (39), we get Q(x,λ) = L(x, y∗,λ),
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which, after some manipulation, yields

Q(λ) = max
x

m∑

i=1

Qi(xi,λ), (40)

where

Qi(xi,λ) =
K∑

k=1

{
ξi

(
xi(k), xi(k − 1), λj(k)

) + 1

m
ωk(λ)

}
, (41)

ξi
(
xi(k), xi(k − 1), λj(k)

) =
⎛

⎝
∑

tj(k)∈Tp(k)

βij + μi(k) +
∑

tj(k)∈Tf (k)

βijλj(k)

⎞

⎠ xi(k)

+ σi(k)xi(k − 1) + ϕi(k)xi(k)xi(k − 1), (42)

ωk(λ) = γ (k) + g(k) +
∑

tj(k)∈Tf (k)

λj(k) ln
(
λj(k)

) − λj(k)hj

−
∑

tj(k)∈Tf (k)

(
1 + λj(k)

)
ln

(
1 + λj(k)

)
. (43)

Note that the original problem has been converted to a separable problem in (40),
where the problem is one of solving m (one problem per component) much simpler
problems. The dual problem can be solved in an iterative two-level strategy where
separable problems of maximization Qi(xi,λ) with respect to xi is performed using
the Viterbi algorithm (dynamic programming) and then the Lagrange multipliers are
updated using surrogate subgradient methods. For more details about the implemen-
tation of the algorithm, extensions of this method to coupled, delayed failure source
state propagation, and delayed observations, the reader is referred to [65, 66, 110,
120, 135].

4 Fault Diagnosis in Active Probing (Sequential Fault
Diagnosis) and Fault Diagnosis Applications

Passive monitoring, discussed as SMFD and DMFD in the previous sections, may
still result in residual ambiguity as to sources of failure. The diagnosis from passive
monitoring is followed by active probing to troubleshoot the source of failures.
In this section, we consider the active probing problem used for sequential fault
diagnosis and point to the applications of fault diagnosis in a number of industrial
contexts, including automotive, aerospace, and power systems. In the context of a
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static single-fault diagnosis problemwith perfect binary tests and failure sourceswith
binary outcomes, the test sequencing problem can be conceptualized as a four-tuple
(S, p, T , c), where S is the finite set of system states composed of the fault-free state s0
and m failure sources denoted by s1, s2, . . . , sm. Associated with each failure source
si and fault-free state s0 is the a priori probability denoted by p = [

p0, p1, . . . , pm
]T
.

The vector p is therefore the a priori probability vector. The test set T is composed of
n tests, i.e., T = {t1, t2, . . . , tn} and the cost vector c = [c1, c2, . . . , cn]T associates a
cost to each test. The diagnostic dictionary (code book) matrix D has the dimension
of (m + 1) × n whose ij-th element is one if test tj is able to detect the fault state
of si (i.e., si is associated with tj) and zero otherwise. The problem is to design a
sequential testing algorithm that unambiguously identifies the fault states using the
set of tests, while minimizing the expected test cost given by

J = pT Ac =
m∑

i=0

n∑

j=1

aijpicj, (44)

where A is an (m + 1) × n matrix whose ij-th element is one if test tj is used in
the path leading to the identification of failure source si and zero otherwise. The
problem is a perfectly observed Markov decision problem (MDP), whose solution is
a deterministic AND/OR binary decision tree. In this tree, eachOR node is labeled by
a subset of S, which is called the ambiguity subset (state in an MDP), and each AND
node denotes a test at an OR node (control or action in anMDP), and divides its input
ambiguity subset into two disjoint ambiguity subsets at the output. As shown in [54],
however, the construction of the optimal decision tree is NP-complete. Therefore, a
way of tackling the problem is to use heuristic search strategies with tight bounds on
the cost-to-go [33, 86, 122].

In [86], the test sequencing problem (TSP) is solved using an ordered, best-fit
search on an AND/OR graph using different heuristic evaluation functions (HEF)
based on Huffman coding and entropy. It is shown that among the HEFs used [86],
a HEF based on Huffman code length is the best choice for medium-sized problems
(m < 100) and that a HEF based on entropy plus one is suitable for larger problems.
Rollout strategies have been employed to extend the range of applicability to even
larger problems [119]. Reference [87] generalizes the test sequencing problem (TSP)
[86] to modular diagnosis, wherein testing stops when a faulty module is isolated.
The dynamic programming recursion for this generalized TSP is derived in [87] and
lower bounds on the optimal cost-to-go are derived based on information theory.
The problem is generalized to include test setups, precedence constraints on tests,
multiple test outcomes, multiple system modes, and hierarchical test sequencing in
[20, 97, 101]. In [98], the TSP was extended to consider the following cases:

• Minimize the maximum test cost.
• TSP with an upper bound on expected test time.
• TSP that achieves the lowest average ambiguity group size subject to a constraint
on the number of tests.

• TSP that achieves the lowest expected test storage cost.
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Reference [99] extends the test sequencing problem to the case where the tests are
imperfect. Optimal and near-optimal test sequence constructionmethods formultiple
fault diagnosis are discussed in [106]. The test sequencing problem becomes even
more difficult in hybrid systems with multiple modes of operation. This is because,
in a multimode system, the availability of tests depends on the mode of the system
and even the same test may have different diagnostic capabilities in different modes.
The multimode test sequencing problem is discussed in detail in [101]. TEAMS
(Testability Engineering And Maintenance System) [32, 88] is a package designed
for automatic test sequencing and testability analysis of complex modular systems
for multimode systems with multivalued failure source states and multivalued test
outcomes [117].

Before we close this section, we mention some of the real-world applications of
fault diagnosis. Two of the applications of passive monitoring appear in tools such
as QMR-DT [108, 133] and ARES-I [117]. Some of the aerospace applications of
active probing include UH-60, SH-60B, and Sikorsky S92 helicopters (transmission
system, engine subsystem, landing gear control unit), and a receiver synthesizer (e.g.,
JTIDS-RS). A few of these applications can be found in [119, 120]. Fault diagnosis
in automotive systems (engine control systems, antilock breaking systems, electric
power generation, and storage systems) is discussed in [25, 67, 76, 77].Model-based
diagnosis of an automotive engine is discussed in [85]. In [4], the fault diagnosis tech-
nique is used for identifying and evaluating power quality problems. Reference [24]
discusses fault diagnosis in heating, ventilation, and air conditioning (HVAC) sys-
tems. Application of hierarchical test sequencing in a lithographic machine can be
found in [20]. TSP has been effectively used to troubleshoot problems in semicon-
ductor fabrication facilities as well.

5 Relevant Work

In this section, we place passivemonitoring and active probing discussed in the previ-
ous sections in the context of literature on fault detection and diagnosis (FDD). FDD
methods have mainly evolved upon three major paradigms, viz., model-based, data-
driven, and knowledge-based approaches. The FDDmodel-based approaches require
mathematical representation of the system, hence, they are effectively applicable
when satisfactory physics-based models of the system and an adequate number of
sensors for state observation are available. Most applications of model-based diag-
nosis are restricted to systems with a relatively small number of inputs, outputs,
and states. The main advantage of a model-based approach is incorporating a phys-
ical understanding into the process monitoring scheme. However, it is difficult to
apply the model-based approach to large-scale systems because it requires detailed
analytical models of failures in order to be effective.

The FDD data-driven approaches are preferred when system models are not
available, but instead system monitoring data is available. This situation arises fre-
quently when subsystem vendors seek to protect their intellectual property by not
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providing internal system details to the system integrators. In these cases, experimen-
tal data from an operating system or simulated data from a black box simulator will
be the major source of system knowledge for FDD. Neural network and statistical
classification methods are illustrative of data-driven techniques. Significant amount
of data is needed from monitored variables under nominal and faulty scenarios for
data-driven analysis.

The FDD knowledge-based approaches require qualitative models for process
monitoring and troubleshooting. These approaches are especially well suited for
systems for which detailed mathematical models are not available. Most knowledge-
based techniques are based on casual analysis, expert systems, and/or ad hoc rules.
Because of the qualitative nature of these models, knowledge-based approaches have
been applied to many complex systems. Graphical models such as Petri nets, mul-
tisignal flow graphs, and Bayesian networks are applied for diagnostic knowledge
representation and inference in automotive systems. Bayesian networks subsume the
deterministic fault diagnosis models embodied in the Petri net and multisignal mod-
els. Model-based, data-driven, and knowledge-based approaches provide the sand
box that test designers can use to experiment with, and systematically select relevant
models or combinations thereof to satisfy the requirements on diagnostic accuracy,
computational speed, memory, online versus offline diagnosis, and so on. Ironically,
no single technique alone can serve as the diagnostic approach for complex systems.
Thus, an integrated diagnostic process that naturally employs data-driven techniques,
graph-based dependencymodels, andmathematical/physical models is necessary for
fault diagnosis, thereby enabling efficient maintenance of these systems.

The graphical methods we discussed in previous sections belong to knowledge-
based methods using cause–effect relations between the failure sources and test
outcomes using false alarm and detection probabilities. When the false alarm proba-
bilities of all tests are zero, the problemsimplifies to the parsimonious covering theory
[34, 35, 93, 94, 102]. In [93], based on probabilistic causal methods, a competition-
based connectionist method is proposed to overcome the combinatorial explosion of
computing the posterior probability of all possible combinations of failure sources.
This method, however, does not guarantee a global optimum and is computationally
expensive, even for small problems (e.g., m = 26). Genetic algorithm-based meth-
ods for MFD are used in [15, 82]. These algorithms, however, converge extremely
slowly and have been applied to small-size problems (e.g.,m = 20, n = 20). In [132],
a symptom clustering method is used which exploits the weak causal intersections in
partially decomposable diagnosis structures. This approach, however, does not scale
to systems with large numbers of nondecomposable causes and symptoms. In [105],
the MFD problem is formulated as one of maximizing the log of the posterior proba-
bility of the hypothesized faults and the resulting constrained optimization problem
is solved using Lagrangian relaxation [11, 40] and a subgradient method [12, 14]. It
is shown that when tests are perfect (no false alarms and no missed detections), the
MFD is reduced to a set covering problem [105]. However, it is well known that set
covering problem (SCP) is NP-hard [51], and different algorithms have been pro-
posed for SCP, including tree search procedures [10, 123], genetic algorithm [13],
and greedy heuristics [27].
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The dynamic fault diagnosis problem is discussed in [111, 112], using linear
difference equations relating HMM and neural network-based pattern recognition.
The drawback of this approach is that building a neural network for a large number of
classes (here, faults) is difficult [84, 127]. Graph theory has been widely used in fault
diagnosis and safety-critical systems can be modeled at an abstract level as directed
graphs [23, 63, 68, 100]. In [30, 38, 114], the multiple fault diagnosis algorithms are
proposed, assuming that at most k components in the system are faulty (the system is
k-diagnosable). In [5, 16, 31] probabilistic models are proposed for fault diagnosis
in these contexts.

The fault diagnosis problem has also been extensively studied in the control and
estimation literature. A classic survey on the traditional model-based fault detection
techniques is byWillsky [130].Here, a system is represented by two sets of equations:
system dynamics and sensor equations.

x(k + 1) = Φ(k)x(k) + B(k)u(k) + w(k), (45)

z(k) = H(k)x(k) + J(k)u(k) + v(k), (46)

where x, u, and z are, respectively, the state vector, input vector, and measurement
vector, Φ, B, H, and J are matrices, w and v are zero-mean, independent, white
Gaussian noise processes, defined by the following covariances [130]:

E
{
w(k)wT (j)

} = Qδ(k, j), E
{
v(k)vT (j)

} = Rδ(k, j), (47)

where δ(k, j) is the Kronecker delta function, which is “one” if k = j and “zero”
otherwise. Equations (45)–(46) represent the “normal operation” or “no failure”
model of the system [130]. A failure is defined as an abrupt change in the behavior of
the system which could be caused, for example, by a malfunction in actuators, plant,
or sensors. The failure diagnosis problem here is comprised of three tasks: alarm,
isolation, and estimation [130]. The alarm task is a binary decision of existence or
nonexistence of failure in the system. The isolation task is determining the source of
failure, and the estimation task is to evaluate the extent of failure; for example, is it a
complete failure such as a sensor burnout or is it a partial failure such as a sensor bias?
[130]. In recent terminology, however, “alarm” is often referred to as “detection,”
and “isolation with or without estimation” as “diagnosis.” Among elementary algo-
rithms for failure detection are the Shewhart control chart, geometric moving average
(GMA), finite moving average (FMA), filtered derivative algorithm, and some more
advanced approaches such as cumulative sum (CUSUM)-type algorithms, Bayes-
type algorithms, and generalized likelihood ratio (GLR) test [6]. The traditional
approaches discussed in [130] include “failure-sensitive” filters [9, 37, 59, 60, 62,
64, 116], voting systems (for systems with high degree of redundancy in parallel
hardware), multiple hypothesis filter-detectors [2, 28, 74], jump process techniques
[18, 19], and innovation-based detection systems [52, 79, 80, 96, 115, 131].
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The failure-sensitive filters are categorized into two groups: indirect and direct
approaches. Indirect failure detection approaches, such as exponentially age-weighted
filter [37, 116], limited memory filter [59], noise covariance increase [60], respond
faster than a normal filter and one can make failure detection decision by abrupt
changes in state estimates. Direct failure detection approaches, however, assign “fail-
ure states” to failure modes (e.g., bias onset in a sensor), and failure is detected
once a failure state deviates notably from its nominal value [64]. This method pro-
vides failure alarm, isolation, and estimation, all at once, at the cost of dimensional-
ity enlargement and also performance degradation during normal conditions [130].
A systematic direct approach, which is applicable to a wide variety of abrupt changes
in linear time-invariant (LTI) systems, is discussed in [9, 62], where a filter, with the
dynamical form of (48), is assigned to the LTI system of ẋ(t) = Ax(t) + Bu(t) with
the measurement equation of z(t) = Cx(t).

d

dt
x̂(t) = Ax̂(t) + D

(
z(t) − Cx̂(t)

) + Bu(t). (48)

Here, the gain matrix D is designed in a manner to highlight the effects of certain
failures in the residuals of z(t) − Cx̂(t). In other words, D is chosen so that specific
failure modes have distinct directions (“signatures”) in the space of residuals [130].

A geometrical formulation of the filter is presented in [78]. The method in [9, 62]
was reformulated as an eigensystem assignment problem in [128], which greatly
simplifies the design process. Multiple hypothesis filter-detectors are based on using
a bank of filters based on different hypotheses for the system behavior; innovations
from these hypothesized models are used to find the most likely model [130]. A
simple innovation-based detection approach is the chi-squared test [79, 129]. The
chi-squared test is an alarm method with a binary decision output and it is useful in
detecting failuremodes that have noticeable effects on innovations, but is not sensitive
in detecting subtle failure modes [130]. The drawbacks of the simple chi-squared
test was partly the motivation for developing the generalized likelihood ratio (GLR)
test [129, 131]; a modified version of GLR test was proposed in [7] to overcome the
two drawbacks of GLR, namely the coupling effect between the window size and
hypothesis testing threshold and the possibly high sensitivity to the hypothesis testing
threshold [8]. Since both faults and model uncertainties affect the residuals, the task
of a “robust” FDI system is to be sensitive to faults and insensitive to uncertainties
[90]. The various aspects of robustness in fault diagnosis systems are discussed in
[26, 43, 90].

Another line of attack for fault diagnosis is the knowledge-based approaches
using artificial intelligence techniques, such as qualitative reasoning [17, 46, 47, 73],
fuzzy systems [107], and neural networks [44, 83]. The QSIM algorithm is a purely
qualitative algorithm that is used in the medical context [70–72]. An example of the
use of qualitative reasoning in the automotive industry is [113]. Fault diagnosis using
fuzzy and neuro-fuzzy methods are discussed in [3, 36, 57, 75, 92]. Both shallow
knowledge and deep knowledge fuzzy models are used for fault diagnosis [36]. The
neural network is another fault diagnosis method, which acts as a mapping from
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observations of sensor outputs and the alarms (which themselves are the outputs
of some fault detection systems) to the faults or the hypothesized failure modes.
However, the use of neural networks as a fault diagnosis tool is viable only in the
absence of an accurate system model and abundance of process history data [121].

Another work related to the diagnosis problem is discriminability, diagnosability,
and optimal sensor placement [69, 118]. Discriminability level of a system is the
number of faults that can be discriminated given a set of sensors [118]. Diagnosability
degree is how the discriminability level is related to the total anticipated faults in
the system [118], and sensor placement deals with optimal placement of sensors to
increase the diagnosability of the system.

Another direction in the literature is diagnosis approaches for discrete event sys-
tem (DES) [61, 103, 104, 109] which are based on the hypothesis that any executed
faulty event in aDES is diagnosedwithin a boundednumber of state transitions/events
[61].

For more information on fault diagnosis methods, the interested reader is referred
to the following papers and books: [1, 6, 8, 22, 26, 29, 39, 41–43, 45, 48–50, 53,
55, 56, 58, 60, 73, 81, 83, 89–91, 95, 103, 124–126, 130, 134].

6 Summary

In this chapter, we discussed the problem of fault diagnosis in complex systems using
knowledge-based probabilistic graphical models in two different contexts: static and
dynamic. The fault diagnosis problem is represented using a tripartite probabilistic
graphical model. The first layer of this tripartite graph is composed of components
of the system, which are the potential sources of failures. The healthy or faulty con-
dition of each component is represented by a binary state variable which is zero if
the component is healthy and one otherwise. The second layer is composed of tests
with binary outcomes (pass or fail) and the third layer is the noisy observations asso-
ciated with the test outcomes. The cause–effect relations between the states of the
components and the test outcomes can be compactly modeled in terms of detection
and false alarm probabilities. When the probability of fault detection is one and the
probability of false alarm is zero, the test is termed perfect; otherwise, it is deemed
imperfect. In the case of perfect tests, the static multiple fault diagnosis (SMFD)
problem reduces to a set covering problem, which itself is an NP-hard problem. We
discussed the SMFD problem in its general form by maximizing the posterior proba-
bility of component states given the fail or pass outcomes of tests. Since the solution
to this problem is known to be NP-hard, we used a Lagrangian (dual) relaxation
technique to find near-optimal diagnostic solutions, which has the desirable property
of providing a measure of suboptimality in terms of the approximate duality gap.
Indeed, the solution would be optimal if the approximate duality gap is zero. The
static problem is discussed in detail and a pure dual cost function is derived. By
presenting some graphical illustrations, we provided insights into the properties of
the nondifferentiable dual function.
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We also discussed the multiple fault diagnosis in a dynamic context (DMFD),
where it is assumed that the states of components evolve as independent Markov
chains and that, at each time epoch, we have access to some of the test outcomes.
Finally, we discussed the fault diagnosis problem in the context of active probing
(also termed sequential testing or troubleshooting), where information is sequentially
acquired to isolate the faults in minimum time, cost, or other economic factors, and
we briefly mentioned some of the applications of fault diagnosis.
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From Performability to Uncertainty

Raymond A. Marie

Abstract Starting from the expertise in reliability and in performance evaluation,we
present the notion of performability introduced by John Meyer in his famous paper.
We recall that in the past, few industry leaders believed in stochastic models, most
of them placing greater confidence in the development of deterministic models and
the use of coefficients of security to take into account the different uncertainties. But
now, the notion of risk has been emphasized by the development of new technologies,
the generalization of insurance policies, and the practice of service level agreements.
Therefore, this is the time to consider stochastic models, where former deterministic
parameters are replaced by random variables, with the encouragement of industrial
leaders. We illustrate these latter models through two variants of a case study.

1 Motivation

Motivated by the first objective of the book, this chapter aims to present a part of
the evolution of the performance and of the dependability evaluations in our field of
computation, telecommunication and up to some degree in discrete events systems.
Starting from the expertises in reliability and in performance evaluation,1 we present
the notion of performability introduced by John Meyer in his seminal paper. Let us
remember that in ancient times, many industry leaders did not believe in stochastic
models, most of them being more confident in the development of deterministic
models and the use of coefficients of security to take into account the different
uncertainties, or the development of worst case studies. But now, the notion of risk
has been emphasized by the development of the new technologies, the generalization
of insurance policies and the practice of service agreements. Therefore, the time has
arrived to consider stochastic models, where former deterministic parameters are
replaced by random variables, with the encouragement of industrial leaders. We

1Which are two of Kishor Trivedi’s areas of expertise, as already illustrated in his first book.
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illustrate these latter models with the help of two variants of a case study regarding
the expression of the asymptotic unavailability, where themean up time is considered
a random variable following, respectively, a uniform and a triangular distribution.

2 Emergence of the Performability

At the end of the 1960s, when the computers were very big and expensive but had
low computational speed and small main memory capacities, reliability studies were
still mainly applied to series-parallel structures. On the other hand, the set of system
resource models developed for performance evaluation were mostly consisting of
isolated queues. Most of the research was dedicated to the study of many different
types of unique queues (cf. for example [10]). However, in the seventies, researchers
took an active interest in the study of queueing networks, in particular with the
purpose of predicting the performance of computer architectures. The new results
on the so called product form queueing networks [2, 6] allowed the researchers to
obtain amazingly accurate performance predictions on the main frame computers
used in that epoch with time sharing service policies, despite all the simplifying
assumptions made in the model constructions. A classical such queueing network
model of a computer architecture of that time is shown on Fig. 1.

Meanwhile, pioneers of the reliability studies were investigating simple non-
series-parallel structures with the help of the notion of decomposition introduced by
Shannon. As a little example, we can consider the computer architecture illustrated
in Fig. 2 which consists of two processors and two memories in parallel and of two
power supplies. The first power supply A1 being in charge of the first processor P1

and of the first memory M1 and the second being in charge of the second ones (we
can see that the existence of the two power supplies does not allow us to express
the system reliability according to a series-parallel structure). This approach was
soon called the factorization method, from the fact that Shannon’s decomposition
theorem, when applied to reliability of redundant structures, was also called the

•
•
•
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Fig. 1 Representation of a computer architecture model
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Fig. 2 Reliability diagram of the computing system

factoring theorem of Boolean algebra (Moskowitz [51]). Let us use this example to
explain the factorization method. Let RAi denotes the reliability of the i th power
supply, i = 1, 2, and RS denotes the reliability of the system. Let us define the
Boolean variables x1 and x2 such that, for i = 1, 2 :

xi =
{
1 if Ai is operational
0 if Ai is down

(1)

In the same way, we introduce the Boolean variable xS such that we have RS =
P(xS = 1). The first step of the factorization method consists of conditioning on the
state of a perturbing element, such as the first power supply, and to write :

RS = RA1 × P(xS = 1|x1 = 1) + (1 − RA1) × P(xS = 1|x1 = 0) . (2)

We then continue the conditioning phase writing successively

P(xS = 1|x1 = 1) = RA2 × P(xS = 1|x1 = 1, x2 = 1)

+(1 − RA2) × P(xS = 1|x1 = 1, x2 = 0) , (3)

and

P(xS = 1|x1 = 0) = RA2 × P(xS = 1|x1 = 0, x2 = 1)

+(1 − RA2) × P(xS = 1|x1 = 0, x2 = 0) . (4)

For any given values of x1 and x2, the corresponding reliability diagram is of the
series-parallel type and its reliability is easy to calculate. There are 4 cases cor-
responding to the 4 possible states of the tuple (x1, x2) but it is obvious that the
reliability is null when x1 = x2 = 0. Knowing the reliability of the 3 others series-
parallel structures, the value of RS is obtained by successive deconditioning. In its
generality, the factorization method consists of two phases. The first one corresponds
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to the construction of a binary tree until the subsystems associated to the nodes are
of the series-parallel type (these nodes becomes the leaves of the final binary tree).
The reliabilities of these series–parallel subsystems are easily computed. The second
phase consists in executing successive deconditioning until we get the reliability RS

of the original system associated with the root node of the binary tree.
Note that, up to the early seventies, the results were obtained for reliability dia-

grams that could be associated with a directed graph connecting a source node S to a
terminal T (see for example Moore and Shannon [50], Moskowitz [51], Misra [49],
Aggarwal et al. [1]). The components under consideration were basic elements such
as relays or connections. Let us remark that the Boolean function characterizing the
reliability of the structure presented in the example above does not admit a directed
graph representation. In the seventies, some research was also conducted on the use
of the simulation in order to determine the Source-Terminal reliability for general
directed graphs modeling communication networks [61].

The appearance of multiprocessors systems played a role in the evolution of the
perception of reliability, especially the arrival of the so called gracefully degradable
system. Up to that time, reliability of a component was associated with two possible
states: the operational and nonoperational states (also called the up and down states).
Then appeared the notion of potential production of a system. In the case of comput-
ers, this notion was defined as the computation capacity of a system (see Beaudry
[3]).

The idea is as follows. We assume that a computing system can be characterized
in several different states belonging to a given state set E. This set can be partitioned
into the subset of the operational states EO and the subset of the down states EF .
The computation capacity is not the same for all the operational states of the system
(for example, to an operational state i may correspond a given number of operational
processors). Consequently, we assume we can associate with any operational state i
a parameter ri such that

dT = ridt , (5)

where dT is the achievable computation capacity during a time interval dt , given that
the computing system is in state i . Moreover, we now assume that the behavior of
the computing system has been modeled by a continuous timeMarkov chain (ctmc)
X (t) evolving on the state set E, according to an infinitesimal generator A = (ai j ).
If pi (t) denotes the state probability that X (t) = i , we know that this probability
satisfies the following differential Kolmogorov equation:

dpi (t)

dt
= aii pi (t) +

∑

j �=i

a ji p j (t) . (6)

Similarly, we can consider on the computation domain a probability Pi (T ) defined
as the probability that the computing system is in state i after having produced a
computation capacity T . Assuming ri is strictly positive and using Eq.5, we can
write
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ai jdt = bi jdT , (7)

where
bi j = ai j

ri
. (8)

The evolution of the probability Pi (T ) on the computation domain between T
and (T + dT ) satisfies the following differential Kolmogorov equation:

Pi (T + dT ) = bii Pi (T )dT +
∑

j �=i

b ji Pj (T )dT . (9)

Doing so, we may consider a new ctmc Z(T ) evolving on a state set included in the
previous state set E, according to an infinitesimal generator B = (bi j ).

Let us consider a simple but classical example such as a two processor system
with perfect coverage like the one illustrated by Fig. 3. λ is the processor failure rate
and μ is the repair rate.

If we are interested in expressing the reliability of this system, we transform
the model such that state 0 becomes an absorbing state and states 1 and 2 become
transient states (see Fig. 4).

For a given order of the states, there exists a matrix which describes the infini-
tesimal generator of the ctmc. Let us focus on the sub-matrix associated to the two
transient states. Ordering the states of the chain according to the order (2, 1, 0), and
denoting A this sub-matrix, we have

Fig. 3 Markovian model of
a two processor system
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Fig. 4 Reliability model of
a two processor system
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A =
[−2λ 2λ

μ −(μ + λ)

]
(10)

The reliability of the system is given by

R(t) = p(0)e At e , (11)

where p(0) = (p2(0), p1(0)) and e is the unity vector of dimension 2, its size being
determined by the context of the equation. Note that in this little example, R(t) is
also equal to (1 − p0(t)).

Let us now switch to the computation domain and consider the available compu-
tation capacity of this system. We assume that ri = iα, i = 1, 2. Then, with respect
to these two productive states, matrix B = (bi j ) (here of order 2) is given by

B =
[− λ

α
λ
α

μ

α
−μ+λ

α

]
(12)

and defining P(T ) = (P2(T ), P1(T )), we have

P(T ) = P(0)e BT , (13)

where P(0) = p(0). The probability that the system is able to produce a computation
capacity T , given that the initial conditions of the system correspond to initial vector
p(0), is the following

CS(T ) = P(0)e BT e . (14)

Knowing this probability function, we can compute the mean computation before
failure (mcbf) using

mcbf =
∫ ∞

0
CS(u)du . (15)

For a given operational state i , we can also determine the probability Ci (T ) that the
system is able to execute a task T given that the system was originally in state i :

Ci (T ) = ei e
BT e , (16)

where ei is a vector having its component i equal to one and all its other components
equal to zero, its size being determined by the context of the equation.

Let us introduce now the notion of “computation reliability,” defined as the
probability that the system is able, at time t , to execute a task T , given the initial
state probability vector p(0) of the system. Starting from the previous result (16), it
is possible to compute this new notion that we denote R̃(t, T ) by conditioning on
the state of the system at time t :
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R̃(t, T ) =
∑

i∈EO

pi (t)Ci (T ) . (17)

Let us remark that R̃(t, 0) = R(t) and that R̃(0, T ) = CS(T ).
But this innovative work presents some drawback. For example, it cannot effec-

tively model repairable systems such as the one on Figure 3. Indeed, the method
is less efficient because we cannot consider null coefficients ri in Eq.8. The notion
of expected computation availability at time t has to be obtained from the transient
solution of the ctmc X (t):

E[Ac(t)] =
∑

i∈EO

ri pi (t) . (18)

Since here the system is repairable, we assume that the ctmc X (t) is irreducible.
Let πi denote the probability of being in state i in the steady state. In asymptotic
behavior, the expected computation availability is given by

E[Ac] =
∑

i∈EO

riπi . (19)

Almost in the same epoch that the pioneering work of Beaudry was published,Meyer
started to use the term “performability” (see [24, 48]) as a shortcut for referring to an
performance-reliabilitymeasure.However, this is in a paper ofAugust 1980 (see [45])
that Meyer described what he called a general modeling framework that permits the
definition, formulation, and evaluation of a unified performance-reliability measure
referred to as “performability”.

The model of the system under consideration is elaborated at the level of the
different resources and takes into account the environment such as resource requests
and the reliability of the different elements. Themodel is built as a stochastic dynamic
one. So, at time t , the performance depends both on the reliability and environmental
behaviors. It is assumed that to a state of the modeled system corresponds a value of a
capability indicator and that whenwe observe the evolution of themodel describing a
random trajectoryω over a time interval [0, T ], we can obtain a quantitative value YT

of the observed performance/capability over the time interval. For example, YT can
be the percentage of requests satisfied over the time interval [0, T ]. To summarize the
notion, let us say that performability expresses performance of systems with variable
capability such as gracefully degradable and eventually repairable architectures. If
Y (ω) is the system performance realized on the time interval considered, Y is a
random variable with probability distribution function FY called the performability.
As suspected, the determination of this distribution function is generally not really an
easy task! Meyer presented in 1982 (see [46]) a case study where the model structure
was reduced to an acyclic Markov chain and where the performability was obtained
as a closed form solution. This was the time for more transient studies.
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While the heart of the problem for the specialists of performance evaluation was
the determination of steady-state solutions of more and more sophisticated models,
performability studies involved working on the transient behavior of the models.

3 Need for More Transient Analysis

In the 1980s, a substantial effort was invested by the research community on the
performability concept, bringing, step by step, successive solutions to models of
increasing complexity.A significant part of the researchwas done on a class ofmodels
which was soon called “Markov reward models” (mrm). Such a model corresponds
to a stochastic process Z(t) (generally a ctmc), designed as the model structure and
to the attribution to each state i of a reward rate ri , (a real number, the meaning
of which may depends on the purpose of the study). At this point, the model seems
close to the one introduced by Beaudry [3], but here we keep working on the time
domain and introduce a new process X (t) that gives the reward rate at time t :

X (t) = rZ(t) . (20)

Note that if Z(t) is a ctmc, then X (t) is also a ctmc (on a different state space).
The key random variable is the accumulated reward up to time t :

Y (t) =
∫ t

0
X (u)du . (21)

Again, the performability corresponds to the probability distribution function of Y (t)
and the challenge was to determine it. Some other measures can be associated with
this probability distribution function with different levels of difficulty. For example,
if we consider the expectation E[Y (t)] of the accumulated reward up to time t , it can
be shown that

E[Y (t)] =
∑

i

ri

∫ t

0
pi (u)du . (22)

Defining Li (t) =
∫ t

0
pi (u)du as an element of the row vector L(t), this latter vector

is the solution of the differential linear system

d

dt
L(t) = L(t)A + p(0) . (23)

This system can be solved in the same way one solves the linear differential system

d

dt
p(t) = p(t)A . (24)
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Once vector L(t) is obtained,
E[Y (t)] = Lr , (25)

where r is the column vector of the rewards.
Concerning the performability itself, the first general results were obtained for

acyclic ctmc and monotonic rewards. Papers of Furchtgott and Meyer [23] and of
Goyal and Tantawi [29] were among the first to present the corresponding results.
The constraint on the monotonicity of the rewards was raised with the publications
of Ciciani and Grassi [9] and of Donatiello and Iyer [21]. Note that at the same time,
another challenge was to find algorithms with an acceptable complexity.

The results of cyclic ctmc (for the case of repairable systems) were not easy to
obtain and arrived first for the special case of the study of the interval availability
(In this special case, the reward equals one if the state is operational or equals zero
if the state is nonoperational). Recall the following publications: Goyal et al. [31] in
1985, de Souza and Gail [17] in 1986, Goyal and Tantawi [30] in 1988. Note that
de Souza and Gail obtained their results by using the uniformization technique. A
comparison between the uniformization and numerical linearmulti-stepmethodswas
made by Reibman and Trivedi (1988) [55]. Meanwhile, in 1986, Iyer et al. obtained
the moments of the performability thanks to a recursive technique. Also in 1986,
Kulkarni et al. [39] presented a numerical inversion of the double Laplace transform
system characterizing the performability. The efficiency of this numerical algorithm
was improved in a paper of Smith et al. in 1988 [58].

Using the uniformization technique, de Souza andGail [13] presented a quite gen-
eral method to obtain the performability measures of cyclic ctmc, allowing impulse-
based and rate-based rewards. However, this latter approach possessed an exponen-
tial complexity with the number of different reward coefficients. However, in 1991
Donatiello and Grassi [20] proposed a new algorithm (also based on the uniformiza-
tion technique) with polynomial computational complexity, but the stability of this
latter algorithm seemed questionable. Almost five years latter in 1996, another algo-
rithm still based on the uniformization technique, published by Nabli and Sericola
[52], exhibited stability property thanks to a transformation on the rewards values
in order to deal only with nonnegative values bounded by 1 (see also the comment
[59]).

Let us mention two publications that extend the domain of homogeneous Markov
chains. First, there is the publication [8] of 1990 where Ciardo et al. presented
an algorithm for the computation of the accumulated reward for a semi-Markov
reward process. Secondly, there is the publication [53] of 1993 where Pattipati et al.
obtained the distribution of the accumulated reward for a nonhomogeneous Markov
reward process using hyperbolic linear partial differential equation (pde) with time-
dependent coefficientswhich are solved thanks to a numericalmethod.Meanwhile de
Souza et al. [16] presented in 1995 amore efficient algorithm than the one published in
[13], with linear complexity with the number of states (see in addition the extended
publication of 1998 [12]). Note also the state of the art in transient solutions for
Markov chain that was published latter in 2000 by de Souza and Gail [15].
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The development of tools, especially those based on the notion of stochastic
timed Petri networks, constituted a booster on research involving the studies of
performability. More information, especially on the development of tools, can be
found in the three surveys published by Meyer [47] in 1992, Trivedi et al. [60] in
1993, and Haverkort and Niemegeers in 1996 [34]. The paper of de Souza and Gail
[14] first develops the aspects of model specification in correlation with available
software tools and also the use of uniformization to determine the different measures.
In [40], Lanus et al. (2003) proposed a hierarchical construction and aggregation
of models in order to control the size of models for extracting the performability
measures of large systems. Let us also mention the paper of Colbourn (1999) [11]
where a survey on performability is presented in the context of telecommunication
network planning.

Meanwhile, several papers where published on applications or in connection with
the use of software tools such as Rubino and Sericola [57], Iyer et al. [37], Hirel
et al. [36]. Let us also mention the paper of Fricks et al. [22] that, in 1998, presented
an introduction of performability evaluation onMarkov renewalmodels,which donot
satisfy the memoryless property at every instant. This subject was also investigated
by individuals such as German and Telek (see [26–28]).

4 Sensitivity Analysis Studies

During the design of a system, sensitivity analysis helps the designer to identify the
critical parameters with respect to a chosen metric, those which may be targeted
for improvement, or may have dramatic consequences if parameter estimates are
inaccurate.

The idea is straightforward. Considering the state probabilities pi (t) , i ∈ E, and

a particular parameter λ, we consider the partial derivatives
∂pi (t)

∂λ
that we denote

by Si (t), i ∈ E. Starting from Eq.24 and taking the partial derivatives with respect
to λ we get

d

dt
S(t) = S(t)A + p(t)V . (26)

whereV is the derivative of the infinitesimal generatorA, i.e., vi j = d

dλ
ai j . In general,

the initial vectorS(0) equals the null vector 0. For the case of an acyclicMarkov chain,
a semi-formal solution was proposed in 1987 by Marie et al. [44]. For the general
case, we can obtain the solution from different approaches such as the uniformization
technique (Heidelberger and Goyal (1987) [35]), a numerical method (Reibman et
al. (1989) [54]), or a transform approach (Grassi and Donatiello (1992) [32]).

The sensitivity of the expectation of the performability E[Y (t)] can be expressed
starting from Eq.25 from where
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d

dλ
E[Y (t)] =

∑

i

∂ri

∂λ
Li (t) +

∑

i

ri
∂Li (t)

∂λ

=
∑

i

∂ri

∂λ
Li (t) +

∑

i

ri

∫ t

0
Si (u)du . (27)

This sensitivity can be obtained using the same methods as above. See for exam-
ple Blake et al. (1988) [5], Reibman and Trivedi (1989) [56] and Haverkort and
Meeuwissen (1995) [33].

These results tell us how important a parameter is with respect to a given measure.
Depending on the selected measure, the parameter might be important with respect
to a performance or a dependability point of view, or to an optimal solution. In
general, a selected measure MS depends of several parameters. If the changes of
these parameters are assumed to be independent, we can construct a global sensitivity
indicator as follows:

ΔMS =
∑

j

Δλ j
∂

∂λ j
MS . (28)

For the case where the individual parameters are dependent is another challenge.
Workingwith the field of perturbations analysis is away to extend sensitivity analysis.
For example, see the work of Do Van et al. published in 2008 [18] and in 2010 [19]
on multi-directional sensitivity measures with functional dependencies.

5 Uncertainty Studies

People in charge of a project are more and more concerned with the notion of risk
and with its potential consequences. There are different categories of risk: risk that a
bridge breaks down due to wrong dimensioning with respect to wind forces, risk that
a new product does not satisfy its clientèle, risk that the availability of a new system
does not reach its predicted value, etc. In general, the risk is a consequence of the
existence of uncertainties of different kinds such as: values of parameters depending
on the environment, accuracy of a design variable, faithfulness of a model, choice
of constraints, etc. For a long time, engineers have employed security coefficients to
reinforce their projects. The use of sensitivity analysis is also an attempt to evaluate
the risk of a deterioration of the performances. But ideally, when some uncertainties
cannot be eliminated, the values must be considered as random and this compels us
to introduce random variables in the expressions of measures.

Nevertheless, a first step is to consider intervals as input parameters and when
possible propagate the determination of new intervals on new parameters, using
interval arithmetic until obtaining bounds on output measures. Some publications
devoted to this approach are: Majumdar and Revathy (1995) [43], Luthi et al. (1997)
[42], Luthi and Haring (1998) [41]. To go further, we have to assume a probability
distribution on the interval of variation of the parameter. The choice of the probability
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distribution is not evident and obviously depends on the meaning of the parameter
and of the type of objective. The favorites seem to be the uniform, the triangular, the
Gaussian, the log-uniform and the log-normal distributions. Given the probability
distributions of the uncertain parameters, the determination of the expectation of
the measure of interest is generally not trivial. However, the Grail is to obtain the
probability distribution of the measure of interest because the up-to-date service
agreements are associated with penalties depending generally on tail distributions.

Unfortunately, not all situations lead to nice final expressions. This is why there
is room for example for simulation approaches in order to evaluate the dispersion
of different indicators, thanks to more or less sophisticated Monte Carlo simulations
such as Yin et al. (2001) [63] and Wubbeler et al. (2008) [62]. Another way to cope
with uncertainty could be to use fuzzy theories such as the fuzzy sets theory (see for
example Benetto et al. (2008) [4]). Looking at the work of other communities is of
interest (cf. Jackson et al. (1982) [38], Garelliand Ferrero (2012) [25] and Chen et
al. (2013) [7]).

Not mentioned yet in this section, we can face uncertainty with functional depen-
dencies between different parameters. Probably in such a situation (with more than
two parameters), the solution seems to be simulation (cf. Yin et al. (2001) [63] and
Haverkort and Meeuwissen (1995) [33]). Following this section, we will consider
two variants of a relatively basic case study in order to be able to obtain analytical
solutions with the aim to produced some interesting deductions.

5.1 Two Variants of a Case Study

Let us consider the classic expression of the steady-state unavailability A

A = mdt

mut + mdt
(29)

wheremut is themean up time andmdt is themean down time. For a new equipment
such as a line repairable unit (lru), the determination of the value of mut is not
evident, even for a specialist. This is why it might be more judicious to ask the
expert to give a time interval [ mutmin, mutmax] for which he believes that this
interval contains the true value of the mean up time. In such a situation, without any
complementary information, it is natural to consider that mut is a random variable
following a uniform distribution U(mutmin, mutmax), (which maximizes the entropy
of the information). If the expert has more expertise, it may also be possible to
consider a different probability distribution, the triangular distribution, the density
function ofwhich increases linearly on [mutmin,mutmod ] and then decreases linearly
on [ mutmod , mutmax] (cf. Fig. 5). This latter unimodal distribution gives us more
information on the random variablemut than the previous one. Here we consider the
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Fig. 5 Illustration of the
density function of the
triangular distribution

xmin xmod xmax

2
(xmax−xmin)

x

fMUT (x)

mdt as constant because, generally, there are fewer difficulties identifying a value
from past experience. So, considering the mut as a random variable, the quantity
A becomes itself a random variable. We will now examine the consequences of
this transformation when assuming, first that mut is a random variable following a
uniform distribution (case 1) and secondly that it follows a triangular distribution
(case 2). As a first step, we would like to exhibit the expectation of A.

5.1.1 Expectations of New Random Variables

Let us start by introducing some new notations. Denoting d the value of mdt, let
consider the new notations a, b and Δ such that

a = mutmin + d , b = mutmax + d , and Δ = (mutmax − mutmin)

Also, for case 2, let ρ denotes the ratio ρ = mut mod − mutmin

Δ
.

Considering the relation (29), the steady-state unavailability A can be rewritten

as A = d

MU T + d
and takes values between Amin and Amax such that Amin = d

b
and

Amax = d

a
.

In order to obtain the expectation E[A] of the unavailability, we consider the
conditional expectation knowing the value of mut

E[A | mut = u] = d

u + d
. (30)

For case 1 where mut follows a uniform distribution with density
1

Δ
, we get by

deconditioning
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E[A] =
∫ b−d

a−d

d

u + d

du

Δ
,

= d

Δ
[ln(u + d)]b−d

a−d

= d

Δ
ln

(
b

a

)
(31)

Now, introduce an index of uncertainty K defined as K = b

a
− 1. Note that K ≥ 0

and that K = 0 if mut is a constant. However, the purpose of K is not to be a
general factor. Since b = a(K + 1) and Δ = aK , we can rewrite the last result in
the following way:

E[A] = d

aK
ln (K + 1) (32)

In case 2, mut follows a triangular distribution. Considering the random variable
X defined as X = mut + d, it is clear that X also follows a triangular distribution
(because d is a constant), the density of which is given by

fX (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 si x < a
2

ρΔ2 (x − a) si a ≤ x ≤ a + ρΔ
2

Δ2(1−ρ)
(b − x) si a + ρΔ ≤ x ≤ b

0 si x > b

(33)

As a function of the random variable X , the steady-state unavailability A is equal to
d

X
and we obtain the expectation E[A] by deconditioning. For 0 < ρ < 1, we have:

E[A] =
∫ a+ρΔ

a

d

x
fX (x)dx +

∫ b

a+ρΔ

d

x
fX (x)dx

= 2d

ρΔ2

∫ a+ρΔ

a

x − a

x
dx + 2d

Δ2(1 − ρ)

∫ b

a+ρΔ

b − x

x
dx

= 2d

ρΔ2
[x − a ln(x)]a+ρΔ

a + 2d

Δ2(1 − ρ)
[b ln(x) − x]ba+ρΔ

= 2d

Δ2

[
ρΔ

ρ
− b − a − ρΔ

(1 − ρ)
− a

ρ
ln

(
a + ρΔ

a

)
+ b

(1 − ρ)
ln

(
b

(a − ρΔ)

)]

= 2d

Δ2

[
− a

ρ
ln

(
a + ρΔ

a

)
+ b

(1 − ρ)
ln

(
b

(a − ρΔ)

)]

= 2db

Δ2(1 − ρ)
ln

(
b

a + ρΔ

)
− 2da

ρΔ2
ln

(
a + ρΔ

a

)
(34)
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Using the proposed index of uncertainty K , we can rewrite this result in the
following way:

E[A] = 2d(K + 1)

a(1 − ρ)K 2
(ln ((K + 1)) − ln (1 + ρK )) − 2d

aρK 2
ln (1 + ρK )

= 2d

a(1 − ρ)K 2

(
(K + 1) ln(K + 1) − ρ(K + 1) + (1 − ρ)

ρ
ln(1 + ρK )

)

= 2d

a(1 − ρ)K 2

(
(K + 1) ln(K + 1) − (1 + ρK )

ρ
ln(1 + ρK )

)
(35)

Following the same line, we get for ρ = 0:

E[A] = 2d

Δ2

∫ b

a

b − x

x
dx

= 2d

aK 2
[(1 + K ) ln(1 + K ) − K ] ,

while for ρ = 1, we obtain

E[A] = 2d

Δ2

∫ b

a

x − a

x
dx

= 2d

aK 2
[K − ln(1 + K )] .

In Fig. 6, we illustrate the variation of the expectation of E[A] as a function of ρ

for a = 10, b = 20, and d = 1 (therefore, K = 1). As expected, this expectation is
decreasing when ρ is increasing (but not linearly).

Fig. 6 Variation of the
expectation of E[ A ] as a
function of ρ when the va
mut follows a triangular
distribution. With a = 10,
b = 20, and d = 1
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Fig. 7 Density of A when
mut follows a uniform
distribution
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5.1.2 Distributions of the New Random Variables

Let us first consider case 1 where mut follows a uniform distribution. Then, the
density function of A can be written as:

f A(x) = d

(b − a)x2
, x ∈

[
d

b
,

d

a

]
(36)

This density function is illustrated Fig. 7.
The cumulative probability function of A can be written as:

FA(x) =
⎧
⎨

⎩

0 if x ≤ d/b
b−d/x
(b−a)

if d/b ≤ x ≤ d/a
1 if x ≥ d/a

(37)

We have in particular

P(A > x) = 1

(b − a)

[
d

x
− a

]
, x ∈

[
d

b
,

d

a

]
(38)

With the aim of normalizing the observations, let us now express the variable x as a
function of a parameter α, α ∈ [0, 1] in the following way:

x(α) = Amin + α(Amax − Amin) = (1 − α)
d

b
+ α

d

a
(39)
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or, using the index K

x(α) = d

a

(1 + αK )

(1 + K )
(40)

We now consider the probability P(A > x(α)) that can be written as

P(A > x(α)) = 1

(b − a)

[
a(1 + K )

(1 + αK )
− a

]
, x ∈

[
d

b
,

d

a

]

= a

aK

[
(1 + K ) − (1 + αK )

(1 + αK )

]
,

= (1 − α)

(1 + αK )
. (41)

Let us remark that the difference (1 − α) − P(A > x(α)) can be written as

(1 − α) − P(A > x(α)) = α(1 − α)K

(1 + αK )
, (42)

and is always positive when α ∈ (0, 1). This property tells us that P(A > x(α)) is
always lower than (1 − α) as long as α ∈ (0, 1).

Figure8 presents the variation of P(A ≤ x(α)) as a function of α, α ∈ [0, 1],
for different values of K . The linear segment associated to K = 0 corresponds to
the limit curve when K tends to zero, i.e., when a tends to b. We observe that
P(A > x(α)) decreases significantly when the index K increases. A zoom of these
variation when α ∈ [0.9 , 1] is shown in Fig. 9. Nevertheless, we have to remember
that the interval [Amin, Amax] increases with index K and that globally, uncertainty
remains a penalizing element.

Another point is to look for the value α such that P(A > x(α)) = γ , when γ takes
small values. This enables the determination of α from the equation

Fig. 8 Variation of
P(A ≤ x(α)) as a function of
α, α ∈ [0, 1]. Values of K :
{0, 1, 3, 7} (bottom up). mut
follows a uniform
distribution
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Fig. 9 Variation of
P(A ≤ x(α)) as a function of
α, zoom on
α ∈ [0.9 , 1].Values of K :
{0, 1, 3, 7} (bottom up)
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(1 − α)

(1 + αK )
= γ . (43)

This gives us α as a function of γ :

α = (1 − γ )

(1 + γ K )
. (44)

We observe that this function is an involution ( f ( f (x)) = x). In particular, it must
be symmetric. Figure10 gives the value of α as a function of γ , γ ∈ [0 , 0.2], for
different values of K . We observe that the value of α decreases significantly when
the index K is increased.

Let us now consider the second case where mut follows a triangular distribution.

Again A = d

X
but now the density function of X is given by relation (33). Since the

Fig. 10 Variation of α as a
function of γ , γ ∈ [0 , 0, 2].
Values of K : {0, 1, 3, 7} (top
down). mut follows a
uniform distribution
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functionφ(x) = d

x
is strictlymonotone and differentiable, A = φ(X) is a continuous

rv with density

f A (z) =
⎧
⎨

⎩
fX (φ−1(z)). | (φ−1)′(z) | if z ∈

[
d

b
,

d

a

]

0 else
(45)

Here, φ−1(z) = d

z
and | (φ−1)′(z) |= d

z2
, producing

f A (z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if z < d/b
2d

(1 − ρ)Δ2

1

z2
(b − d

z
) if d/b ≤ z ≤ d

a + ρΔ
2d

ρΔ2

1

z2
(
d

z
− a) if

d

a + ρΔ
≤ z ≤ d/a

0 if z > d/a

(46)

This density function of A is illustrated Fig. 11 for three values of ρ (0.25, 0.5
and 0.75).

We obtain the cumulative distribution function by integration

F A (z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if z < d/b
1

(1 − ρ)Δ2

(
b − d

z

)2

if d/b ≤ z ≤ d

a + ρΔ

1 − 1

ρΔ2

(
d

z
− a

)2

if
d

a + ρΔ
≤ z ≤ d/a

1 if z > d/a

(47)

Fig. 11 Density function of
A when the va mut follows
a triangular distribution for
three values of ρ. With
a = 10, b = 20 and d = 1
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We note that F A (z) takes the value (1 − ρ) for z = d

a + ρΔ
. Sincemut mod + d =

(a + ρΔ), this result agrees with the fact that the probability P(mut ≥ mut mod) is
equal to (1 − ρ). Note that condition (mut ≥ mut mod) implies condition

(A ≤ d

a + ρΔ
).

Let us consider the probability P(A > x), A ∈
[

d

b
,

d

a

]
, when x is expressed as a

function of the normalizing coefficient α, using relation (40). With this objective, let

us first denote α∗ the value of α such that x(α∗) = d

a + ρΔ
, i.e., the value of α that

corresponds to the unavailability obtained when mut = mut mod. This value is equal
to

α∗ = (1 − ρ)

(1 + ρK )
. (48)

Note that, because K is nonnegative, α∗ is always lower than (1 − ρ).
When α is between α∗ and 1, we have

P(A > x(α)) = 1 − F A (x(α)) = 1

ρΔ2

(
a(1 + K )

(1 + αK )
− a

)2

= a2

ρΔ2

(
(1 + K ) − (1 + αK )

(1 + αK )

)2

= a2

a2ρK 2

(
(1 − α)K

(1 + αK )

)2

= 1

ρ

(
(1 − α)

(1 + αK )

)2

. (49)

Note that P(A > x(α∗)) = ρ and does not depend on the index K .
We may also be interested in small values of x , when α lies between 0 and α∗. In

that case, we have

P(A ≤ x(α)) = 1

(1 − ρ)Δ2

(
b − d

z

)2

= 1

(1 − ρ)Δ2

(
a(1 + K )(1 + αK ) − a(1 + K )

(1 + αK )

)2

= a2

a2(1 − ρ)K 2

(
αK (1 + K )

(1 + αK )

)2

= 1

(1 − ρ)

(
α(1 + K )

(1 + αK )

)2

. (50)

It would be possible to check that P(A ≤ x(α∗)) = (1 − ρ).
Figure12 shows the variation of the probability P(A ≤ x(α)) as a function of

α when ρ = 0.5 , α ∈ [0.5 , 1], for several values of K . Again, the curve labeled
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Fig. 12 Variation of
P(A ≤ x(α)) as a function of
α, α ∈ [0.5, 1]. ρ = 0.5 .
Values of K : {0, 1, 3, 7}
(bottom up). mut follows a
triangular distribution
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Fig. 13 Variation of
P(A ≤ x(α)) as a function of
α with a zoom on
α ∈ [0.9 , 1]. ρ = 0.5 .
Values of K : {0, 1, 3, 7}
(bottom up). mut follows a
triangular distribution
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K = 0 corresponds to the limit curve when K tends to zero, i.e., when mutmax tends
tomutmin. We may observe that the probability P(A > x(α)) decreases significantly
when the index K increases. A zoom of this variation is presented on Fig. 13 with
the reduced interval α ∈ [0.9 , 1]. Comparing this latter figure with Fig. 9, we may
realize, for identical values of index K , the advantage of the triangular distribution
over the uniform one.

It is possible to find the value of α such that P(A > x(α)) = γ , for small values
of γ by looking for the solution of the following equation:

1

ρ

(
(1 − α)

1 + Kα

)2

= γ , (51)

from which we get α as a function of γ :

α = (1 − √
ργ )

(1 + K
√

ργ )
. (52)

Figure14 shows the value ofα as a function of γ , γ ∈ [0, 0.2], for several values of
K . For example, if K = 1, ρ = 0.5 and γ = 0.1, then α = 0.63.We can observe that
the value of α significantly decreases when the index K increases. These results have
to be compared with those of Fig. 10 relative to the case of the uniform distribution.
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Fig. 14 Variation of α as a
function of γ , γ ∈ [0 , 0.2].
Values of K : {0, 1, 3, 7} (top
down). mut follows a
triangular distribution
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We can also find the value of α such that P(A ≤ x(α)) = δ, for small values of
δ. It is possible to show that α satisfies the relation

α =
√

(1 − ρ)δ

1 + K (1 − √
(1 − ρ)δ)

. (53)

In order to synthesize the main results of this study of the steady-state unavail-
ability in the presence of uncertainty on the mut’s value, let us define the function
RK (x) as follows:

RK (x) = 1 − x

1 + K x
. (54)

We note that this function is an involution: RK (RK (x)) = x .
For case 1 where the random variable mut is assumed to follow a uniform distri-

bution,
P(A > x(α)) = RK (α) , (55)

and, for a given value γ , the value of αγ satisfying the equality P(A > x(α)) = γ

can be written as
αγ = RK (γ ) . (56)

Considering now the case 2 where the random variable mut is assumed to follow a
triangular distribution,

α∗ = RK (ρ) . (57)
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For α∗ ≤ α ≤ 1, we have

P(A > x(α)) = 1

ρ
(RK (α))2 , (58)

and
αγ = RK (

√
ργ ) . (59)

For 0 ≤ α ≤ α∗, we have

P(A ≤ x(α)) = 1

(1 − ρ)
(1 − RK (α))2 , (60)

and, for a given value δ, the value αδ satisfying the equality P(A ≤ x(α)) = δ can
be written as

αδ = RK (1 − √
(1 − ρ)δ) . (61)

Since the function RK is an involution, we immediately obtain

P(A > x(α∗)) = 1

ρ

(
RK (α∗)

)2 = 1

ρ
(RK (RK (ρ)))2 = ρ , (62)

and

P(A ≤ x(α∗)) = (1 − RK (α∗))2

(1 − ρ)
= 1

(1 − ρ)
(1 − RK (RK (ρ)))2 = (1 − ρ) .

(63)
Looking for the situation where there is a unique random variable mdt instead

of mut would lead to the same kind of results with an equivalent difficulty. The
situation where both mut and mdt are considered as random variables, respectively,
on intervals [a0, b0] and [c0, d0] ismore difficult to solve and, in particular, we have to
consider the orders of the values a0, b0, c0, d0 in order to obtain the density function
of A.

6 A Final Remark

The period observed in this chapter started at the epoch where the rare computers
were like dinosaurs: big, with a small memory and relatively slow. This was the time
where research was focusing on synthetic models and evaluation of steady-state
measures. The technological progress of computers achieved over the past forty
years has allowed researchers to tackle more sophisticated and larger models and to
look for transient measures. But going deeper into the details, we realize that we still
have more questions to answer than before!
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Sojourn Times in Dependability Modeling

Gerardo Rubino and Bruno Sericola

Abstract We considerMarkovianmodels of computing or communication systems,
subject to failures and, possibly, repairs. The dependability properties of such systems
lead to metrics that can all be described in terms of the time that the Markov chain
spends in subsets of its state space. Some examples of such metrics are MTTF and
MTTR, reliability or availability at a point in time, the mean or the distribution
of the interval availability in a fixed time interval, and more generally different
performability versions of these measures. This chapter reviews this point of view
and its consequences, and discusses some new results related to it.

1 Introduction

In this chapter, we are interested in Markovian models of systems subject to fail-
ures and, possibly, repairs. A typical framework is that of a system made of sev-
eral independently living components or units, each of them belonging to a given
class. When the system starts operating, each component has a life-time distributed
according to the exponential distribution whose parameter (the component failure
rate) is the same for all components in the same class. At the beginning, the sys-
tem starts with a given number of operational components in each of the classes.
Let K be the number of classes, indexed from 1 to K , and Nk the number of class
k units in the system. If nk is the number of class k units that are operational at
any point in time, 0 ≤ nk ≤ Nk , a basic case is then when the vector (n1, . . . , nK )

suffices to obtain a Markovian evolution for the model. For instance, assume that
the system is non repairable, and that the only transitions are the individual compo-
nents’ failures. Assume, for instance, that the system works when at least mk class
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k units are operational, for each k (we say that, from the dependability viewpoint,
it works as a series of mk-out-of-Nk modules). The initial state for the Markovian
model X = {Xt , t ≥ 0} is X0 = (N1, . . . , NK ). For this simple structure, we could
need to evaluate the system’s reliability at time t , R(t), which is here the probability
that the system is alive at time t , or themean system’s life-time, typically calledMean
Time To Failure, MTTF. For this purpose, we consider that X lives in the state space
S = {m1, m1 + 1, . . . , N1} × · · · × {mK , mK + 1, . . . , NK } ∪ {a}, where state a is
absorbing and the remaining (N1 − m1 + 1) · · · (NK − mK + 1) states are transient.
If we denote B = S \ {a}, and if T is the absorption time of the chain, we have
that T is the sojourn time of X in B, that there is only one such sojourn and that
R(t) = P{T > t} and MTTF = E{T }.

With the same state representation as before, and the same system structure (the
series of mk-out-of-Nk modules), we can handle the case where any failed unit is
immediately repaired with some rate μk when it belongs to class k, the repair times
being also independent of anything else in the model. In that case, process X live
in S = {0, . . . , N1} × · · · × {0, . . . , NK }. TheMarkov chain X has a single recurrent
class, and the same B defined above, B = {(n1, . . . , nK ) ∈ S | n1 ≥ m1, . . . , nK ≥
mK }, together with its complement Bc define a partition of S. The model will spend
some random time working, during what we will call its first operational period. It
is referred to as the first sojourn time of X in B, whose duration will be denoted by
SB,1. Then, some failure will put it in Bc, that is, in a failed system situation. At that
point in time, a sojourn in Bc starts, that from the system point of view, can be seen
as a system’s repair. Its length in time will be denoted by SBc,1. At some later point
in time, the system will come back to subset B and a new operational period will
start. This alternate sequence of operational periods and repair or unoperational ones
will thus continue forever. In this setting, it can be of interest to evaluate not only the
previously definedmetrics (the reliability at t defined by R(t) = P{SB,1 > t} and the
MTTF = E{SB,1}) but also other ones, such as the mean availability on the interval
[0, t], defined as the mean fraction of that interval spent by X in B. Asymptotically,
we can consider the widely used asymptotic availability, which can be seen as the
limit of the previous fraction when t → ∞.

As noted in the abstract, most dependability metrics can be associated with the
time the system’s model spends in subsets of its state space. The examples discussed
before illustrate the point, but they can get muchmore complex. For instance, assume
that in the repairable case described above, there is a single repair facility that can
handle one component at a time, connected to a buffering area where failed units wait
(say, in FIFO order) until the repair server is available. Then, we need richer states to
be able to build aMarkovian evolution on it, we need to know howmany components
of each class are working, but also some information about what happens at the repair
facility. In all cases, the same connection with sojourn times will hold.

Generally speaking, we often have a stochastic process representing the system,
living in some state space S, and associated with each state x we have a function Φ

saying if the system is working or not when its state is x . The typical convention is
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to use Φ(x) = 1 if the system works when its state is x , and 0 if it is failed. This
function Φ is called the system’s structure function. It naturally defines the set of
operational states B = Φ−1(1) and its complement, where the system doesn’t work,
Bc = Φ−1(0). Then, the main dependability metrics are defined as in the initial
examples: MTTF = E{SB,1}, R(t) = P{SB,1 > t}, Mean Time To Repair, MTTR =
E{SBc,1}, etc., and they correspond to different aspects of the sojourns of X in B
and/or in Bc.

For a global background on these topics, an appropriate reference is the blue-
while-yellow book [20]. All the basic mathematical objects used here are introduced
and carefully explained there. Another directly relevant one is the introduction of the
authors’ recent book [[17], Sect. 1.3]. The reader can also find in Kishor Trivedi’s
web pages many general presentations of the topics discussed in this chapter. As
an example, see [9] for an introduction to Markov models in dependability and
extensions to performability, or [8] for generalities about dependability analysis.

The analysis of sojourn times in Markov chains, both in discrete and continuous
time, was started in dependability in [10]. In that paper, the distribution of the nth
sojourn time of the chain in a subset of its state space, in the irreducible and finite case,
is derived, and its asymptotic behavior is analyzed. The connections with state lump-
ing and the so-called “pseudo-aggregation” in [12, 16] are also discussed. In [11] the
corresponding absorbing case is analyzed. At the end of the chapter, supplementary
bibliographical notes are provided.

It appears that some of the results published in this area, for instance the basic
distributions, were known in a specific biological field called “ion channel analysis,”
as reported in [6]. As stated in [17], the analysis of sojourn times is also relevant in
queueing theory (think of the busy period of a single queue, for instance).

This chapter reviews part of the basic material concerning the times spent by a
Markovian process in proper subsets of its state space, and adds some new elements
and guidelines for obtaining more results. Since we focus here on dependability
applications, all our developments are in continuous time, but they have counterparts
in discrete time, not discussed here (see the references). We had to make some
choices because of the amount of material available. For this reason, until Sect. 5, we
limited the discussion to irreducible models. Section2 reviews the basic facts when
studying these objects, namely, the distribution of the sojourn time of a Markov
process in a subset of its state space. The asymptotic behavior of this distribution is
also discussed. Section3 presents the joint distribution of sojourn times. In Sect. 4,
we focus on a specific function of them, the sum of the n first sojourn times of the
chain in a given subset of states, its distribution, the computation of its moments, etc.
Section5 illustrates how to deal with absorbing models, and at the same time, with
Markov models whose states are weighted by rewards (Markov reward models). In
the last Sect. 6, bibliographical notes are provided, togetherwith some supplementary
comments and discussions.
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2 Successive Sojourn Times Distribution

We consider a homogeneous irreducible continuous-time Markov chain X =
{Xt , t ≥ 0} with finite state space denoted by S. Its initial probability distribution is
given by the row vector α and its transition rate matrix by A. The stationary distri-
bution of X , denoted by π , is the row vector satisfying π A = 0 and π1 = 1 where
1 is the column vector with all its entries equal to 1, its dimension being given by
the context of its use. For every i ∈ S, we denote by λi the output rate of state i ,
that is λi = −Ai,i . Let λ be a positive real number such that λ ≥ max{λi , i ∈ S}
and let {Nt , t ≥ 0} be a Poisson process with rate λ. We then define matrix P by
P = I + A/λ, where I is the identity matrix which dimension is also determined by
the context of its use.We introduce the discrete-timeMarkov chain Z = {Zn, n ≥ 0}
on the state space S, with transition probability matrix P and with initial probability
distribution α. Assuming that the processes {Nt } and Z are independent, the sto-
chastic processes X and {Z Nt , t ≥ 0} are equivalent, i.e., they have the same finite-
dimensional distributions. This well-known construction is called the uniformization
technique. The Markov chain Z is called the discrete-time Markov chain associated
with the uniformized Markov chain of X with respect to the uniformization rate λ.

Let B be a proper subset of S, i.e., B �= ∅ and B �= S. We denote by Bc the
subset S \ B. Subset B contains the operational states and subset Bc contains the
non operational ones. The subsets B, Bc form a partition of the state space S. Ordering
the states such that those in B appear first, then those in Bc, the partition induces the
following decomposition of matrices A and P and vectors α and π :

A =
(

AB AB Bc

ABc B ABc

)
, P =

(
PB PB Bc

PBc B PBc

)
, α = (

αB αBc

)
and π = (

πB πBc

)
.

Lemma 1 The matrices I − PB and I − PBc are invertible.

Proof Consider the auxiliary discrete-timeMarkov chain Z ′ on the state space B ∪ a,
where a is an absorbing state, with transition probability matrix P ′ given by

P ′ =
(

PB u
0 1

)
,

where u is the column vector defined by u = 1 − PB1. The Markov chain X being
irreducible, the states of B are transient for Markov chain Z ′. A well-known result
about Markov chains says that if state j is transient, then for all state i , we have
(Pk)i, j −→ 0 as k −→ ∞, if P is the transition probability matrix of the chain, see
for instance [18]. Here, this translates into the fact that

lim
k−→∞(PB)k = 0.
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From the immediate identity

(I − PB)

K∑

k=0

(PB)k =
( K∑

k=0

(PB)k

)
(I − PB) = I − (PB)K+1,

we obtain, taking the limit as K −→ ∞, that the series
∑

k≥0(PB)k converges, and
calling M its limit, that (I − PB)M = M(I − PB) = I . This means that I − PB is
invertible and that (I − PB)−1 = ∑

k≥0(PB)k . Replacing B by Bc and using again
the same argument, we obtain that I − PBc is invertible as well. ��

Consider the successive instants at which the Markov chain X enters subsets B
and Bc. We define TB,1 = inf{t ≥ 0 | Xt ∈ B}, TBc,1 = inf{t ≥ 0 | Xt ∈ Bc} and,
for every n ≥ 2,

TB,n = inf{t > TB,n−1 | Xt− ∈ Bc, Xt ∈ B},
TBc,n = inf{t > TBc,n−1 | Xt− ∈ B, Xt ∈ Bc}.

Note that if X0 ∈ B (resp. X0 ∈ Bc) then we have TB,1 = 0 (resp. TBc,1 = 0). The
nth sojourn time of X in B is denoted by SB,n and we have, for every n ≥ 1,

SB,n =
{

TBc,n − TB,n ifX0 ∈ B,

TBc,n+1 − TB,n ifX0 ∈ Bc.

Let VB,n (resp. VBc,n), for n ≥ 1, be the random variable representing the state of
B (resp. Bc) in which the nth sojourn of X in B (resp. BC ) starts. With the usual
convention saying that the paths of X are right-continuouswe have, for n ≥ 1, VB,n =
XTB,n and VBc,n = XTBc ,n . We introduce the matrices R and H defined by

R = (I − PB)−1 PB Bc and H = (I − PBc)−1 PBc B .

Note that both matrices R and H are composed of probabilities, and satisfy R1=1
and H1=1.

Theorem 1 The process VB = {VB,n, n ≥ 1} is a homogeneous discrete-time
Markov chain with state space B. Its initial probability distribution, denoted by
v(1), and its transition probability matrix, denoted by G, are given by

v(1) = αB + αBc H and G = RH.

Proof The sequence of instants TB,n being an increasing sequence of stopping times,
the process VB = {VB,n, n ≥ 1} is a homogeneous discrete-time Markov chain with
state space B. For every i, j ∈ B, we have

P{VB,1 = j | X0 = i} = P{X0 = j | X0 = i} = 1{i= j}.
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For every i ∈ Bc and j ∈ B, we have, using the Markov property,

P{VB,1 = j | X0 = i} = P{XTB,1 = j | X0 = i}
=

∑

k∈S

Pi,kP{XTB,1 = j | Z1 = k, X0 = i}

=
∑

k∈B

Pi,k1{k= j} +
∑

k∈Bc

Pi,kP{XTB,1 = j | X0 = k}

= Pi, j +
∑

k∈Bc

Pi,kP{VB,1 = j | X0 = k}.

Denoting by M the matrix defined, for i ∈ Bc and j ∈ B, by Mi, j = P{VB,1 = j |
X0 = i}, this last equality leads to M = PBc B + PBc M , that is, using Lemma 1,
M = (I − PBc)−1 PBc B , i.e., M = H . This leads, for every j ∈ B, to

v(1)
j = P{VB,1 = j} =

∑

i∈B

αi1{i= j} +
∑

i∈Bc

αi Hi, j = α j + (αBc H) j ,

that is v(1) = αB + αBc H .
Using the same arguments and denoting by K the matrix defined, for i ∈ B and

j ∈ Bc, by Ki, j = P{VBc,1 = j | X0 = i}, we obtain symmetrically K = R. For
every i, j ∈ B, we get, using the Markov property,

Gi, j = P{VB,2 = j | VB,1 = i) = P{VB,2 = j | X0 = i}
=

∑

k∈Bc

P{VBc,1 = k | X0 = i}P{VB,2 = j | VBc,1 = k, X0 = i}

=
∑

k∈Bc

P{VBc,1 = k | X0 = i}P{VB,1 = j | X0 = k}

=
∑

k∈Bc

Ri,k Hk, j ,

that is G = RH . ��
The Markov chain VB contains only one recurrent class, which we denote by B ′,

composed of the states of B that are directly accessible from Bc. More precisely,

B ′ = { j ∈ B | ∃i ∈ Bc, Pi, j > 0}.

If B ′ �= B, we denote by B ′′ the set B \ B ′. The subsets B ′, B ′′ form a partition of
B which induces the following decomposition of matrices G and H ,

G =
(

G ′ 0
G ′′ 0

)
and H = (

H ′ 0
)
. (1)
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In the same way, the partition B ′, B ′′, Bc of S leads to the following decomposition
of P ,

P =
⎛

⎝
PB ′ PB ′ B ′′ BB ′ Bc

PB ′′ B ′ PB ′′ BB ′′ Bc

PBc B ′ 0 PBc

⎞

⎠ .

The matrices H ′, G ′ and G ′′ are given by the following theorem.

Theorem 2 We have

H ′ = (I − PBc)−1 PBc B ′ ,

G ′ = (I − Q B ′ B ′′ PB ′′ B ′)−1
(
Q B ′ B ′′ PB ′′ Bc + (I − PB ′)−1 PB ′ Bc

)
H ′,

G ′′ = (I − Q B ′′ B ′ PB ′ B ′′)−1
(
Q B ′′ B ′ PB ′ Bc + (I − PB ′′)−1 PB ′′ Bc

)
H ′,

where

Q B′ B′′ = (I − PB′ )−1 PB′ B′′ (I − PB′′ )−1 and Q B′′ B′ = (I − PB′′ )−1 PB′′ B′ (I − PB′ )−1 .

Proof Since PBc B ′′ = 0, we get

H = (I − PBc)−1 PBc B = (
H ′ 0

)
,

with H ′ = (I − PBc)−1 PBc B ′ . Next, from G = RH or equivalently

(I − PB) G = G − PB G = PB Bc H,

we have G = PB G + PB Bc H . Using now the decomposition of matrices G, PB ,
PB Bc , and H with respect to the partition {B ′, B ′′} of B, we obtain

⎧
⎨

⎩

G ′ = PB ′ G ′ + PB ′ B ′′ G ′′ + PB ′ Bc H ′,

G ′′ = PB ′′ B ′ G ′ + PB ′′ G ′′ + PB ′′ Bc H ′.

This gives

⎧
⎨

⎩

G ′ = (I − PB ′)−1 PB ′ B ′′ G ′′ + (I − PB ′)−1 PB ′ Bc H ′,

G ′′ = (I − PB ′′)−1 PB ′′ B ′ G ′ + (I − PB ′′)−1 PB ′′ Bc H ′.

Putting the second relation in the first one leads to the expression of G ′ and putting
the first relation in the second one leads to the expression of G ′′. ��

We denote by v(n) the distribution of the state from which the nth sojourn of X
in B starts, which means that v(n) is the distribution of VB,n . Since VB is a Markov
chain, we have, for every n ≥ 1,
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v(n) = v(1)Gn−1.

Using these results we derive the distribution of SB,n , the nth sojourn time of X in
subset B.

Theorem 3 For every n ≥ 1 and for all t ≥ 0, we have

P{SB,n > t} = v(n)eAB t1 = v(1)Gn−1eAB t1.

Proof Using a classical backward renewal argument, as for instance in [18], we have,
for every i ∈ B,

P{SB,1 > t | X0 = i} =
∑

j∈S

Pi, j

∫ ∞

0
P{SB,1 > t |Z1 = j, T1 = x, X0 = i}λe−λxdx,

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. We then
have

P{SB,1 > t | X0 = i} =
∫ ∞

t
λe−λxdx

+
∑

j∈B

Pi, j

∫ t

0
P{SB,1 > t − x | X0 = j}λe−λxdx .

The change of variable x := t − x in the second integral leads to

P{SB,1 > t | X0 = i} = e−λt

⎛

⎝1 +
∑

j∈B

Pi, j

∫ t

0
P{SB,1 > x | X0 = j}λeλxdx

⎞

⎠ .

Introducing the column vector w(t) defined by wi (t) = P{SB,1 > t | X0 = i}, for
every i ∈ B, we get w(0) = 1 and

w(t) = e−λt

(
1 + λPB

∫ t

0
w(x)eλxdx

)
.

Differentiating with respect to t leads to

w′(t) = −λw(t) + λPBw(t) = ABw(t),

that is
w(t) = eAB t w(0) = eAB t1. (2)

For every n ≥ 1 and for all t ≥ 0, we have, using now the Markov property, the
homogeneity of X and (2),
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P{SB,n > t} =
∑

i∈B

v(n)
i P{SB,n > t | VB,n = i}

=
∑

i∈B

v(n)
i P{SB,1 > t | X0 = i}

= v(n)eAB t1,

which completes the proof. ��
The next theorem gives the limiting distribution of SB,n when n tends to infinity.

To determine the limiting distribution, we need the following lemma.

Lemma 2 The row vector πB satisfies

πB = πB PB Bc (I − PBc)−1 PBc B (I − PB)−1 .

Proof Since π A = 0, we also have π P = π , that is,

⎧
⎨

⎩

πB = πB PB + πBc PBc B

πBc = πB PB Bc + πBc PBc .

The second equation gives

πBc = πB PB Bc (I − PBc)−1 .

The first one gives
πB = πBc PBc B (I − PB)−1 .

Replacing the value of πBc in this last relation, we get

πB = πB PB Bc (I − PBc)−1 PBc B (I − PB)−1 ,

which completes the proof. ��
Theorem 4 For every t ≥ 0, the sequence P{SB,n > t} converges in the Cesàro
sense when n tends to infinity to veAB t1, where

v = πBc PBc B

πBc PBc B1

is the stationary distribution of the Markov chain VB. The convergence is simple if
and only if matrix G ′ is aperiodic.

Proof It suffices to prove that the sequence v(n) converges in the Cesàro sense. The
Markov chain VB has a finite state space B and a single recurrent class B ′, so it
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has a unique invariant distribution which we denote by v. We thus have vG = v,
with v1 = 1. According to the partition B ′, B ′′ of B, we write v = (v′ 0) and the
decomposition of matrix G described in (1) leads, for every n ≥ 1, to

Gn =
(

G ′n 0
G ′′G ′n−1 0

)
.

The general properties of Markov chains tell us that G ′n converges in the Cesàro
sense to 1v′ and that the convergence is simple if and only if G ′ is aperiodic. In
the same way, G ′′G ′n−1 also converges to 1v′, since G ′′1 = 1. Using Lemma 2, we
obtain

πB(I − PB) = πB PB Bc (I − PBc)−1 PBc B,

which implies that πB(I − PB) = πB(I − PB)G. Normalizing this vector, we have

v = πB(I − PB)

πB(I − PB)1
= πBc PBc B

πBc PBc B1
,

which completes the proof. ��
Remark that there is no relation between the periodicity of matrix P and the

periodicity of matrix G ′. The four situations in which each matrix is either periodic
or aperiodic are possible as shown in Figs. 1 and 2. In all cases, the state space is
S = {1, 2, 3, 4}, and we have B = {1, 2} and Bc = {3, 4}. An arrow between two
states means that the corresponding transition probability is positive.

1 2

3 4

1 2

3 4

Fig. 1 On the left graph P and G ′ are both aperiodic. On the right graph both P and G ′ are periodic

1 2

3 4

1 2

3 4

Fig. 2 On the left graph P is periodic and G ′ is aperiodic. On the right graph P is aperiodic and
G ′ is periodic
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3 Joint Distributions of Sojourn Times

In many situations, we are interested in functions of several sojourn times of X in a
subset of states B, which means that we need the joint distribution of these random
times. For instance, when B is composed of the operational states only, we would
like to evaluate the random variable minn≤N SB,n , or we may want to move control
variables in the model in order to obtain that for some N ∈ N, t > 0 and ε > 0,
we haveP{SB,1 > t, SB,2 > t, . . . , SB,N > t} > 1 − ε. The point is that the random
variables SB,1, SB,2, . . . are in general dependent. To get a feeling of this, just consider
the example depicted in Fig. 3, where B = {1, 2}. If ε is small, the sojourn times of X
in state 1 are “very short” and in state 2 are “very long.” The topology of the chain
says that knowing that previous sojourn was a short one, it is highly probable that
next one will be short again.

If we are interested in studying the correlations between successive operational
times, we need to evaluate second order moments, and, again, we need the joint
distribution of sojourn times. This is the topic of this subsection.

Recall that the matrices R and H are defined by R = (I − PB)−1 PB Bc and H =
(I − PBc)−1 PBc B and that we have G = RH . We also recall that VBc,1 = XTBc ,1 and
that for every i, � ∈ B and j, k ∈ Bc,

P{VBc,1 = j | X0 = i} = Ri, j and P{VB,1 = � | X0 = k} = Hk,�.

We first give a lemma that will be used in the next theorem.

Lemma 3 For all s, t ≥ 0, we have

P{SB,1 > t, VBc,1 = j | X0 = i} = (
eAB t R

)
i, j , for i ∈ B, j ∈ Bc,

P{SBc,1 > s, VB,1 = j | X0 = i} = (
eABc s H

)
i, j , for i ∈ Bc, j ∈ B,

P{SB,1 > t, SBc,1 > s, VB,2 = j | X0 = i} = (
eAB t ReABc s H

)
i, j , for i ∈ B, j ∈ B.

1 2

3 4

11 ε

1

ε1

Fig. 3 Illustrating the dependence in the sequence of sojourn times of X in a subset B of states;
here, B = {1, 2}. If SB,n−1 was small, it is highly probable that the (n − 1)th sojourn in B was a
holding time in state 1. We then expect that the next one, SB,n , will be small as well
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Proof We introduce the matrix L(t) defined, for every i ∈ B and j ∈ Bc, by

Li, j (t) = P{SB,1 > t, VBc,1 = j | X0 = i}.

Using again classical backward renewal arguments, as for instance in [18], we have

Li, j (t) = P{SB,1 > t, Z1 = j | X0 = i}
+

∑

k∈B

P{SB,1 > t, VBc,1 = j, Z1 = k | X0 = i}

= Pi, j e
−λt +

∑

k∈B

Pi,ke−λtP{VBc,1 = j | X0 = k}

+
∑

k∈B

Pi,k

∫ t

0
Lk, j (t − x)λe−λxdx

= e−λt

(
Pi, j +

∑

k∈B

Pi,k Rk, j +
∑

k∈B

Pi,k

∫ t

0
Lk, j (x)λeλxdx

)
.

This gives in matrix notation

L(t) = e−λt

(
PB Bc + PB R + λPB

∫ t

0
L(x)eλxdx

)
.

Differentiating with respect to t leads to

L ′(t) = −λL(t) + λPB L(t) = AB L(t),

which gives L(t) = eAB t L(0) and since L(0) = R, we get

L(t) = eAB t R,

which completes the proof of the first relation. The second relation follows immedi-
ately from the first one by interchanging the role played by subsets B and Bc. The
third relation is easily obtained from the first two. Indeed, for every i, j ∈ B, we
have, using the Markov property and the homogeneity of X ,

P{SB,1 > t, SBc,1 > s, VB,2 = j | X0 = i}
=

∑

k∈Bc

P{SB,1 > t, VBc,1 = k, SBc,1 > s, VB,2 = j | X0 = i}

=
∑

k∈Bc

P{SBc,1 > s, VB,2 = j | SB,1 > t, VBc,1 = k, X0 = i} (
eAB t R

)
i,k
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=
∑

k∈Bc

P{SBc,1 > s, VB,1 = j | X0 = k} (
eAB t R

)
i,k

=
∑

k∈Bc

(
eAB t R

)
i,k

(
eABc s H

)
k, j

= (
eAB t ReABc s H

)
i, j

,

which completes the proof. ��
Theorem 5 For every n ≥ 1, for all t1, . . . , tn ≥ 0 and s1, . . . , sn ≥ 0, we have

P{SB,1 > t1, SBc,1 > s1, . . . , SB,n > tn, SBc,n > sn}

= αB

[
n−1∏

k=1

eAB tk ReABc sk H

]
eAB tn ReABc sn1

+ αBc

[
n−1∏

k=1

eABc sk HeAB tk R

]
eABc sn HeAB tn1. (3)

Proof The proof is made by recurrence over integer n. Consider first the case i ∈ B.
For n = 1, we have, using the third relation of Lemma 3 and the fact that H1=1,

P{SB,1 > t1, SBc,1 > s1 | X0 = i}=
∑

j∈B

P{SB,1 > t1, SBc,1 > s1, VB,2 = j | X0 = i}

=
∑

j∈B

(
eAB t1 ReABc s1 H

)
i, j

= (
eAB t1 ReABc s11

)
i ,

which is Relation (3) since the product is equal to the identity matrix when n = 1.
Suppose that Relation (3) is true for integer n − 1. We have, using the Markov
property, the homogeneity of X , the third relation of Lemma 3 and the recurrence
hypothesis,

P{SB,1 > t1, SBc,1 > s1, . . . , SB,n > tn, SBc,n > sn | X0 = i}
=

∑

j∈B

P{VB,2 = j, SB,1 > t1, SBc,1 > s1, . . . , SB,n > tn, SBc,n > sn | X0 = i}

=
∑

j∈B

P{SB,1 > t1, SBc,1 > s1, VB,2 = j | X0 = i}

× P{SB,2 > t2, SBc,2 > s2, . . . , SB,n > tn, SBc,n > sn | VB,2 = j}
=

∑

j∈B

(
eAB t1 ReABc s1 H

)
i, j

× P{SB,1 > t2, SBc,1 > s2, . . . , SB,n−1 > tn, SBc,n−1 > sn | X0 = j}
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=
∑

j∈B

(
eAB t1 ReABc s1 H

)
i, j

([
n−1∏

k=2

eAB tk ReABc sk H

]
eAB tn ReABc sn1

)

j

=
([

n−1∏

k=1

eAB tk ReABc sk H

]
eAB tn ReABc sn1

)

i

.

In the same way, interchanging the role played by subsets B and Bc, we obtain, for
every i ∈ Bc,

P{SB,1 > t1, SBc,1 > s1, . . . , SB,n > tn, SBc,n > sn | X0 = i}

=
([

n−1∏

k=1

eABc sk HeAB tk R

]
eABc sn HeAB tn1

)

i

.

Unconditioning with respect to the initial state gives the result. ��
Corollary 1 For every n ≥ 1 and for all t1, . . . , tn ≥ 0, we have

P{SB,1 > t1, . . . , SB,n > tn} = v(1)

[
n−1∏

k=1

eAB tk G

]
eAB tn1, (4)

Proof Putting s1 = · · · = sn = 0 in Theorem 3 gives the result. ��
We obtain, in the same way the joint distribution of the n first sojourn times in subset
Bc by interchanging the role played by subsets B and Bc.

For instance, as illustrated at the beginning of the subsection, if we want to make
sure that the first N operational periods are long enough, that is, formally, if we want
that the probability that each of these periods lasts at least t units of time is, at least,
1 − ε, we must check that

P{SB,1 > t, . . . , SB,N > t} = v(1)
(
eAB t G

)N−1
eAB t1 ≥ 1 − ε.

The possible independence of the sequences (SB,n) and (SBc,n) is discussed in [13].

4 Sum of the n First Sojourn Times

We focus in this section on the distribution of the sum of the n first sojourn times.
We denote this random variable by TSB,n . We then have

TSB,n =
n∑

�=1

SB,�.
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The distribution of TSB,n is given by the following theorem which uses the next
lemma. We first introduce the column vectors wB(n, t) and wBc(n, t) defined by

wB(n, t) = (
P{TSB,n > t | X0 = i}, i ∈ B

)

and
wBc(n, t) = (

P{TSB,n > t | X0 = i}, i ∈ Bc
)
.

Lemma 4 For every n ≥ 1 and for all t ≥ 0, we have

wBc(n, t) = HwB(n, t).

Proof For i ∈ Bc, we have, using the Markov property and since X0 = Z0,

P{TSB,n > t | X0 = i} =
∑

j∈S

P{TSB,n > t, Z1 = j | Z0 = i}

=
∑

j∈B

Pi, jP{TSB,n > t | X0 = j}

+
∑

j∈Bc

Pi, jP{TSB,n > t | X0 = j}.

This gives, in matrix notation,

wBc(n, t) = PBc BwB(n, t) + PBc wBc(n, t),

that is
wBc(n, t) = (I − PBc)−1 PBc BwB(n, t) = HwB(n, t),

which completes the proof. ��
Theorem 6 For every n ≥ 1 and for all t ≥ 0, we have

P{TSB,n > t} = wneMnt1,

where wn = (
v(1) 0 · · · 0

)
is the row vector with length n|B| (each 0 represents here

the null vector with length |B|) and Mn is the (n|B|, n|B|) matrix given by
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Mn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 Q2 0 0 · · · 0 0
0 Q1 Q2 0 0 · · · 0 0
0 0 Q1 Q2 0 0 · · · 0 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Q1 Q2

0 0 · · · 0 Q1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Q1 = AB and Q2 = −AB Bc (ABc)−1 ABc B (each 0 represents here the
(n|B|, n|B|) null matrix).

Proof For n = 1, the result is immediate since w1 = v(1) and M1 = Q1 = AB . Let
n ≥ 2.We use classical backward renewal arguments, see for instance [18]. For every
i ∈ B, we have

P{TSB,n > t |X0 = i} =
∑

j∈S

Pi, j

∫ ∞

0
P{TSB,n > t |Z1 = j, T1 = x, X0 = i}λe−λxdx

=
∑

j∈S

Pi, j

∫ t

0
P{TSB,n > t |Z1 = j, T1 = x, X0 = i}λe−λxdx

+
∫ ∞

t
λe−λxdx

=
∑

j∈B

Pi, j

∫ t

0
P{TSB,n > t − x | X0 = j}λe−λxdx

+
∑

j∈Bc

Pi, j

∫ t

0
P{TSB,n−1 > t − x |X0 = j}λe−λxdx + e−λt,

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. The
change of variable x := t − x leads to

P{TSB,n > t | X0 = i} = e−λt

⎛

⎝1 +
∑

j∈B

Pi, j

∫ t

0
P{TSB,n > x | X0 = j}λeλxdx

+
∑

j∈Bc

Pi, j

∫ t

0
P{TSB,n−1 > x | X0 = j}λeλxdx

⎞

⎠ .



Sojourn Times in Dependability Modeling 185

Using the column vectors wB(n, t) and wBc(n, t) defined above, we obtain

wB(n, t) = e−λt

(
1 + λPB

∫ t

0
wB(n, x)eλxdx + λPB Bc

∫ t

0
wBc(n − 1, x)eλxdx

)
.

Differentiating with respect to t we get

w′
B(n, t) = −λwB(n, t) + λ (PBwB(n, t) + PB Bc wBc(n − 1, t)) .

Using Lemma 4, we have

w′
B(n, t) = −λwB(n, t) + λ

(
PBwB(n, t) + PB Bc(I − PBc)−1PBc BwB(n − 1, t)

)

= −λ (I − PB) wB(n, t) + λPB Bc(I − PBc)−1PBc BwB(n − 1, t).

Note that since −λ (I − P) =A, we have −λ (I − PB) =AB , λPB Bc(I − PBc)−1

PBc B = −AB Bc (ABc)−1 ABc B and thus

w′
B(n, t) = ABwB(n, t) − AB Bc (ABc)−1 ABc BwB(n − 1, t)

= Q1wB(n, t) + Q2wB(n − 1, t).

Introducing the column vector uB(n, t) defined by

uB(n, t) = (wB(n, t), wB(n − 1, t), . . . , wB(1, t)) ,

this gives
u′

B(n, t) = MnuB(n, t)

and thus, since uB(n, 0) = 1,

uB(n, t) = eMnt uB(n, 0) = eMnt1.

Finally,
P{TSB,n > t} = αBwB(n, t) + αBc wBc(n, t).

Using Lemma 4, we get

P{TSB,n > t} = (αB + αBc H) wB(n, t) = v(1)wB(n, t) = wnuB(n, t) = wneMnt1,

which completes the proof. ��
To compute the distribution of TSB,n for a fixed n we proceed as follows. Let β

be a positive real number such that β ≥ max{λi , i ∈ B}. The matrix Tn defined by
Tn = I + Mn/β is substochastic and given by
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Tn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 P2 0 0 · · · 0 0
0 P1 P2 0 0 · · · 0 0
0 0 P1 P2 0 0 · · · 0 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 P1 P2

0 0 · · · 0 P1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where P1 = I + Q1/β and P2 = Q2/β. We then have

P{TSB,n > t} = wneMnt1 =
∞∑

k=0

e−βt (βt)k

k! wn(Tn)
k1.

The special form of matrix Tn leads to the following form of its kth power,

(Tn)
k =

(
(P1)

k Wn−1,k

0 (Tn−1)
k

)
,

where, bywriting (Tn)
k = Tn(Tn)

k−1, thematrix Wn−1,k , which is a (|B|, (n − 1)|B|)
matrix, is given for k, n ≥ 2 by

Wn−1,k = P1Wn−1,k−1 + Wn−1,1(Tn−1)
k−1

with Wn−1,1 = (P2 0 · · · 0). If xB(n, k) denotes the column vector composed of the
|B| first entries of vector (Tn)

k1, we have

xB(n, 0) = 1 for n ≥ 1, xB(1, k) = (P1)
k1 for k ≥ 0

and, for n ≥ 2 and k ≥ 1,

xB(n, k) = (P1)
k1 + Wn−1,k1

= (P1)
k1 + P1Wn−1,k−11 + Wn−1,1(Tn−1)

k−11

= (P1)
k1 + P1Wn−1,k−11 + P2xB(n − 1, k − 1)

= P1
(
(P1)

k−11 + Wn−1,k−11
) + P2xB(n − 1, k − 1)

= P1xB(n, k − 1) + P2xB(n − 1, k − 1). (5)

We then have

P{TSB,n > t} =
∞∑

k=0

e−βt (βt)k

k! v(1)xB(n, k).
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Let ε be a given specified error tolerance associated with the computation of the
distribution of TSB,n and let K be the integer defined by

K = min

⎧
⎨

⎩k ∈ N

∣∣∣∣∣∣

k∑

j=0

e−βt (βt) j

j ! ≥ 1 − ε

⎫
⎬

⎭ .

This gives

P{TSB,n > t} =
K∑

k=0

e−βt (βt)k

k! v(1)xB(n, k) + e(K ),

where

e(K ) =
∞∑

k=K+1

e−βt (βt)k

k! v(1)xB(n, k) ≤
∞∑

k=K+1

e−βt (βt)k

k! = 1 −
K∑

k=0

e−βt (βt)k

k! ≤ ε.

We consider now the moments of the sum of the n first sojourn times of X in subset
B. From Theorem 6, we have

E
{(

TSB,n
)k

}
= (−1)kk!wn(Mn)

−k1.

The expected value of TSB,n is given by

E{TSB,n} =
n∑

�=1

E{SB,�} = −v(1)

(
n−1∑

�=0

G�

)
(AB)−11.

For the higher moments of TSB,n , we need the following lemma. We denote by
Mn[i, j] the submatrix of matrix Mn , of dimension (|B|, |B|) defined for i, j =
1, . . . , n by

Mn[i, j] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q1 if i = j,

Q2 if i = j − 1,

0 otherwise.

We define in the same way the blocks (Mn)
−k [i, j] of matrix (Mn)

−k . For k = 1,
these blocks are given by the following result.
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Lemma 5 For every i, j = 1, . . . , n, we have

(Mn)
−1 [i, j] =

⎧
⎨

⎩
(−1) j−i (Q1)

−1
(
Q2 (Q1)

−1
) j−i = G j−i (Q1)

−1 if i ≤ j,

0 if i > j.

Proof The matrix Mn being upper triangular, the matrix (Mn)
−1 is also upper tri-

angular. For i = j , we clearly have (Mn)
−1 [i, i] = (Q1)

−1. For i < j , by writing
I = Mn (Mn)

−1, we have 0 = Q1 (Mn)
−1 [i, j] + Q2 (Mn)

−1 [i + 1, j], that is

(Mn)
−1 [i, j] = − (Q1)

−1 Q2 (Mn)
−1 [i + 1, j].

Since (Mn)
−1 [i, i] = (Q1)

−1 we easily get the first equality recursively. The second
one follows immediately from the first one. ��
For every k ≥ 2, it is easily checked that the matrix (Mn)

−k has the same structure
as matrices Mn and (Mn)

−1, that is, that the blocks (Mn)
−k [i, j] only depend on the

difference j − i . We thus get

E
{(

TSB,n
)2} = 2wn(Mn)

−21

= 2v(1)
n∑

j=1

(Mn)
−2 [1, j]1

= 2v(1)
n∑

j=1

j∑

h=1

(Mn)
−1 [1, h] (Mn)

−1 [h, j]1

= 2v(1)
n∑

j=1

j∑

h=1

Gh−1 (Q1)
−1 G j−h (Q1)

−1 1.

For k ≥ 2, we obtain

(Mn)
−k [1, j] =

j∑

h=1

(Mn)
−1 [1, h] (Mn)

−k+1 [h, j]

=
j∑

h=1

Gh−1 (Q1)
−1 (Mn)

−k+1 [1, j − h + 1].

Introducing the column vectors θn(k, j) of dimension |B|, defined by θn(k, j) =
(Mn)

−k [1, j]1, we have the following recurrence relation to compute them.
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θn(k, j) =
j∑

h=1

Gh−1 (Q1)
−1 (Mn)

−k+1 [1, j − h + 1]1

=
j∑

h=1

Gh−1 (Q1)
−1 θn(k − 1, j − h + 1)

=
j∑

h=1

G j−h (Q1)
−1 θn(k − 1, h),

with θn(1, j) = G j−1 (Q1)
−1 1, for j = 1, . . . , n. We then have

E
{(

TSB,n
)k

}
= (−1)kk!wn(Mn)

−k1

= (−1)kk!v(1)
n∑

j=1

(Mn)
−k [1, j]1

= (−1)kk!v(1)
n∑

j=1

θn(k, j).

5 Extension to Absorbing Chains with Rewards

We consider now the case where the state space S of X is composed of transient states
and an absorbing state denoted by a. The subset of operational states is denoted by
B and we denote by B ′ the set of the other transient states. We then have the partition
S = B ∪ B ′ ∪ {a}. The set of nonoperational states is thus Bc = B ′ ∪ {a}. A reward
rate or performance level ri is associated with each state i ∈ S. We suppose that we
have ri > 0 for every i ∈ B and we denote by RB the (|B|, |B|) diagonal matrix with
entries ri , for i ∈ B. As we will see, the value of the rewards associated with the
other states has no influence on the sojourn times considered here. The partition B,
B ′, {a} of the state space S induces the following decomposition of matrices A and
P = I + A/λ, and vector α.

A =
⎛

⎝
AB AB B ′ ABa

AB ′ B AB ′ AB ′a
0 0 0

⎞

⎠ , P =
⎛

⎝
PB PB B ′ PBa

PB ′ B PB ′ PB ′a
0 0 1

⎞

⎠ andα = (
αB αB ′ αa

)
.

For n ≥ 1, we denote by Si,B,n the total time spent by X in state i ∈ B during
the nth sojourn of X in B, if the latter exists. If the process gets absorbed before
the nth sojourn of X in B, we set Si,B,n = 0. For n ≥ 1, the random variable SB,n
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representing the accumulated reward during the nth sojourn of X in B is defined by

SB,n =
∑

i∈B

ri Si,B,n .

Following the same steps used for the irreducible case, it is easily checked that the
distribution v(n) of the random variable VB,n representing the state of B in which the
nth sojourn of X in B starts is given, for every n ≥ 1, by v(n) = v(1)Gn−1, where

v(1) = αB + αB ′(I − PB ′)−1PB ′ B = αB − αB ′(AB ′)−1AB ′ B,

G = (I − PB)−1PB B ′(I − PB ′)−1PB ′ B = (AB)−1AB B ′(AB ′)−1AB ′ B .

The distribution of SB,n is given by the following theorem.

Theorem 7 For every n ≥ 1 and for all t ≥ 0, the distribution of the accumulated
reward in B during the nth sojourn of X in B, is given by

P{SB,n > t} = v(1)Gn−1e(RB )−1 AB t1.

Proof The proof is quite similar to the proof of Theorem 3. Using a classical back-
ward renewal argument, as for instance in [18], we have, for every i ∈ B,

P{SB,1 > t |X0 = i} =
∑

j∈S

Pi, j

∫ ∞

0
P{SB,1 > t |Z1 = j, T1 = x, X0 = i}λe−λxdx,

where T1 is the first occurrence instant of the Poisson process {Nt , t ≥ 0}. We then
have

P{SB,1 > t | X0 = i} =
∫ ∞

t/ri

λe−λxdx

+
∑

j∈B

Pi, j

∫ t/ri

0
P{SB,1 > t − ri x | X0 = j}λe−λxdx .

The change of variable x := t − ri x in the second integral leads to

P{SB,1 > t | X0 = i} = e−λt/ri

⎛

⎝1 +
∑

j∈B

Pi, j

∫ t

0
P{SB,1 > x |X0 = j} λ

ri
eλx/ri dx

⎞

⎠ .

Introducing the column vector w(t) defined by wi (t) = P{SB,1 > t | X0 = i}, for
every i ∈ B, we get w(0) = 1 and

w(t) = e−λ(RB )−1t

(
1 +

∫ t

0
eλ(RB )−1xλ(RB)−1PBw(x)dx

)
.
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Differentiating with respect to t leads to

w′(t) = −λ(RB)−1w(t) + λ(RB)−1PBw(t) = (RB)−1ABw(t),

that is,
w(t) = e(RB )−1 AB t w(0) = e(RB )−1 AB t1. (6)

For every n ≥ 1 and for all t ≥ 0, we have, using now the Markov property, the
homogeneity of X and (6),

P{SB,n > t} =
∑

i∈B

v(n)
i P{SB,n > t | VB,n = i}

=
∑

i∈B

v(n)
i P{SB,1 > t | X0 = i}

= v(n)e(RB )−1 AB t1,

which completes the proof. ��
In the same way, the distribution of the accumulated reward over the n first sojourn
times of X in B is given by the following result.

Theorem 8 For every n ≥ 1 and for all t ≥ 0, we have

P{TSB,n > t} = wneMnt1,

where wn = (
v(1) 0 · · · 0

)
is the row vector with length n|B| (each 0 represents here

the null vector with length |B|) and Mn is the (n|B|, n|B|) matrix given by

Mn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 Q2 0 0 · · · 0 0
0 Q1 Q2 0 0 · · · 0 0
0 0 Q1 Q2 0 0 · · · 0 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Q1 Q2

0 0 · · · 0 Q1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Q1 = (RB)−1AB and Q2 = −(RB)−1AB B ′ (AB ′)−1 AB ′ B (each 0 represents
here the (n|B|, n|B|) null matrix).

Proof For n = 1, the result is immediate since w1 = v(1) and M1=Q1=(RB)−1AB .
Let n ≥ 2. We use the same classical backward renewal arguments already used in
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the proof of Theorem 6. For every i ∈ B, we have

P{TSB,n > t | X0 = i} =
∑

j∈B

Pi, j

∫ t/ri

0
P{TSB,n > t − ri x | X0 = j}λe−λxdx

+
∑

j∈B ′
Pi, j

∫ t/ri

0
P{TSB,n−1 > t − ri x | X0 = j}λe−λxdx

+ Pi,ae−λt/ri .

The rest of the proof is identical to the proofs of Theorems 6 and 7. ��
Note that unlike the irreducible case, the matrix G is substochastic and if we

denote by NB the total number of visits to the subset B until absorption, the events
{NB > k} and {SB,k+1 > 0} are equal for every k ≥ 0. It follows that

P{NB > k} = P{SB,k+1 > 0} = v(1)Gk1.

In particular, we have

E{NB} =
∞∑

k=0

v(1)Gk1 = v(1)(I − G)−11.

Observe that if we know that the process has visited the set B at least n times, for
n ≥ 1, that is, given that SB,n > 0, the evaluation of the accumulated reward during
the nth sojourn in B changes. The conditional distribution of SB,n given that SB,n > 0
writes, for n ≥ 1 and t ≥ 0,

P{SB,n > t | SB,n > 0} = P{SB,n > t}
P{SB,n > 0} = v(1)Gn−1e(RB )−1 AB t1

v(1)Gn−11
.

The total accumulated reward in subset B until absorption is defined by

TSB,∞ =
∞∑

n=1

SB,n.

Its distribution is given in [3] for semi-Markov reward processes. In the case of
Markov reward processes, it becomes

P{TSB,∞ > t} = v(1)e(Q1+Q2)t1.

Finally, the distribution of the sojourn times SB,n for semi-Markov reward processes
has been obtained in [15].
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6 Notes

As stated in the introduction, the analysis of sojourn times of Markov models in
subsets of their state spaces, in the dependability area, started apparently in [10], in
the irreducible case. In biology, close related work, with differences however, was
known before (see [6]). There are other papers related to the analysis of these objects.
For instance, [1, 4] provide bounds on reliability metrics by exploiting the fact that
in many dependability models, when the system is highly reliable, there is a huge
difference in the holding times the chain spends in its states.

Perhaps even closer to this chapter, we can mention [2], where the authors define
a “conditional MTTF” in the case of a system subject to very different failures. If the
chain has, say, two absorbing states a and a′, representing two different situations
where the system has failed, depending on the causes of such a failure, it makes
sense to analyze the mean time the system operates given that it will be absorbed
in state a, that is, the metric E{T | X∞ = a}, where T is the system’s life-time. If,
more generally, we are interested in some subset B of transient states, we can look
at the nth sojourn time of the process X in B, if it exists.

Using the notation in this chapter, let us briefly outline how to derive the distribu-
tion of the nth sojourn time of X in B, given that X∞ = a. As in Sect. 5, we simplify
the presentation avoiding the fact that we must define SB,n and VB,n for all n, in
particular when the nth sojourn in B does not exist (in that case, SB,n = 0 and VB,n

is assigned a specific extra state). After doing that and simplifying, we can write

P{SB,n > t | X∞ = a} =
∑

i∈B

P{SB,n > t, VB,n = i | X∞ = a}

=
∑

i∈B

P{SB,n > t |VB,n = i, X∞ = a}P{VB,n = i |X∞ = a}

=
∑

i∈B

P{SB,1 > t | X0 = i}P{VB,n = i | X∞ = a}.

Then, for every i, j ∈ B,

P{VB,n+1 = j | VB,n = i, X∞ = a} = P{X∞ = a | VB,n+1 = j, VB,n = i}Gi, j

P{X∞ = a | VB,n = i}
= P{X∞ = a | VB,n+1 = j}Gi, j

P{X∞ = a | VB,n = i}
= P{X∞ = a | X0 = j}Gi, j

P{X∞ = a | X0 = i} .

The quantitiesP{X∞ = a | X0 = k} arewell-known inMarkov chain theory, and the
distributions P{SB,1 > t | X0 = k} were given in Sect. 2. This type of computation
also appears in [7], where bounds of the asymptotic availability, and more generally
of the asymptotic reward, are derived. The Markov model considered is irreducible
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on a state space partitioned into three classes, say B, C , C ′. The object of interest
is the sojourn time of the process in B, given that when leaving B the process will
visit C next. Concerning Sect. 2, see that we can get more information about sojourn
times following the same lines as described there. For instance, assume that we are
interested in the last state of B visited by X during its nth visit to that subset. Call
it WB,n , and call w(n) its distribution:P{WB,n = i} = w(n)

i . Following the same path
as in Theorem 1, we have for n ≥ 1,

w(n) = w(1)Mn−1 = v(n) (I − PB)−1 ,

where M = PB Bc (I − PBc)−1 PBc B (I − PB)−1. Note that this is the matrix appear-
ing in Lemma 2, where it is stated that πB = πB M .

In [13], we analyze conditions under which the sequence of sojourn times of a
Markov chain X in a subset B of states is i.i.d., with applications always in the analy-
sis of dependability properties. A particularly important metric appearing in depend-
ability, more complex to analyze than previously considered ones, is the interval
availability over an interval [0, t], which is the random variable

IAt = 1

t

∫ t

0
1{Xs∈B}ds,

where B is the set of operational states. In words, IAt is the fraction of [0, t] during
which the system is operational. The first paper where the distribution of this variable
is proposed using the uniformization techniques (as we do in this chapter) is [19].
We proposed some improvements to the algorithms (including the possibility of
dealing with infinite state spaces) in [14]. Many of the results described here can be
extended to semi-Markov processes, and also to the casewhere the states in themodel
are weighted by rewards, or costs. Some of these extensions have been presented in
Sect. 5. See also [11] or [15]. The monograph [5] also discusses many of these results
together with several other related issues.
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Managed Dependability in Interacting
Systems

Poul E. Heegaard, Bjarne E. Helvik, Gianfranco Nencioni
and Jonas Wäfler

Abstract A digital ICT infrastructure must be considered as a system of systems in
itself, but also in interaction with other critical infrastructures such as water distribu-
tions, transportation (e.g. Intelligent Transport Systems) and Smart Power Grid con-
trol. These systems are characterised by self-organisation, autonomous sub-systems,
continuous evolution, scalability and sustainability, providing both economic and
social value. Services delivered involve a chain of stakeholders that share the respon-
sibility, providing robust and secure services with stable and good performance. One
crucial challenge for the different operation/control centres of the stakeholders is
to manage dependability during normal operation, which may be characterised by
many failures of minor consequence. In seeking to optimise the utilisation of the
available resources with respect to dependability, new functionality is added with
the intension to help assist in obtaining situational awareness, and for some parts
enable autonomous operation. This new functionality adds complexity, such that the
complexity of the (sub)systems and their operation will increase. As a consequence
of adding a complex system to handle complexity, the frequency and severity of the
consequences of such events may increase. Furthermore, as a side-effect of this, the
preparedness will be reduced for restoration of services after a major event (that
might involves several stakeholders), such as common software breakdown, secu-
rity attacks, or natural disaster. This chapter addresses the dependability challenges
related to the above-mentioned system changes. It is important to understand how
adding complexity to handle complexity will influence the risks, both with respect to
the consequences and the probabilities. In order to increase insight, a dependability
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modelling approach is taken, where the goal is to combine and extend the existing
modelling approaches in a novel way. The objective is to quantify different strate-
gies for management of dependability in interacting systems. Two comprehensive
system examples are used to illustrate the approach. A software-defined networking
example addresses the effect of moving control functionality from being distributed
and embedded with the primary function, to be separated and (virtually) centralised.
To demonstrate and discuss the consequences of adding more functionality both in
the distributed entities serving the primary function, and centralised in the control
centre, a Smart Grid system example is studied.

1 Introduction

The private and public ICT service-provisioning infrastructure has developed over
many years into a complex system and its interactions with other critical infrastruc-
ture systems such as water distribution, transportation (e.g. Intelligent Transport
Systems) and Smart Power Grid control have created diverse digital ecosystems.
Digital ecosystems are characterised by self-organisation, autonomous subsystems,
continuous evolution, scalability and sustainability, providing both economic and
social value. Services delivered involve a chain of stakeholders that share the respon-
sibility, providing robust and secure services with stable and good performance.

This evolution has been evident for some time. In spite of this, and the crucial role
of such systems, not much research is directed toward ensuring the dependability of
the services provided by such an ecosystem of systems. The objective of this chapter
is to address some of the issues that arise when we seek to manage the dependability
of systems.

1.1 Challenges

One crucial challenge for the different operation and control centres of the different
systems is to manage the dependability in normal operation with many failures of
minor consequence. In seeking to optimise the utilisation of the available resources
with respect to dependability [1], the complexity of the (sub)systems and their oper-
ation will increase due to increased interconnectedness and complexity.

Some issues to take into consideration include:

• The public ICT services are the result of the cooperation between a huge number
of markets actors. The overall system providing these services are not engineered,
and there is no aggregate insight into their design and operation.

• There is no coordinated management to deal with issues involving several
autonomous systems, in spite of such issues being a likely cause of extensive
problems and outages.
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• It is necessary to prepare for restoration of service after a major event such as
common software breakdown, security attacks, or natural disasters. This prepara-
tion must include technical and operational as well as organisational and societal
aspects.

An additional challenge is the management of dependability over multiple net-
work domains, with uncoordinated operations in each of the different domains. As a
potential side-effect of this, the preparedness for restoration of services after a major
event (thatmight involve several stakeholders) such as common software breakdown,
security attacks or a natural disaster will be reduced. In addition, the frequency and
consequences of such events may increase. More focus on exercises and use of the
improved situational awareness provided by the new operational functionality, will
to some extent reduce the negative side effect.

Ensuring the dependability of services based on an interacting relationship
between independent stakeholders in the provision is typically agreed upon through
Service Level Agreements (SLAs), which give guarantees on the non-functional
properties of the services, including dependability aspects such as interval avail-
ability. These are important means to ensure the dependability of the services, but
are insufficient to prevent and handle dependability problems across providers, as
outlined above.

New functionality is added to enhance and improve operation and management
of complex digital ecosystems. This is done to rationalise the operation, save money,
simplify resourcemanagement, andmaximise utilisation. It also enables more timely
and precise knowledge and information about system state, facilitating timely (proac-
tive) maintenance and reducing the frequency and consequences of failures. The
operational cost is reduced by reduction in manual labour through better and quicker
detection and diagnostic mechanisms, and more autonomous self-repair. The objec-
tive is to shorten the recovery time and to reduce the failure frequency through better
proactive maintenance. It should be kept in mind that this functionality targets the
frequent (everyday) failures which are anticipated in the system design and nor-
mally of low consequence. However, this increased maintainability is achieved by
the introduction of new, and partly centralised functionality, that increases the total
complexity and creates an interdependent system [8]. These systems not only have
additional failures and failure modes [12, 22], but they may also manifest a more
fragile behaviour in critical situations [2, 18].

Figure1 illustrates a risk curve, where the events with high “probability” have
low consequence and the events with low “probability” have high consequence.
The introduction of ICT-based support system, to operate an ICT system, or a crit-
ical infrastructure such as Smart Grid, is expected to reduce the consequences and
probability of daily events. Less human resources are needed for the daily opera-
tions. However, due to the introduction of another ICT-based system, the complex-
ity and interdependency in a system will increase, with the potential consequence
of increased probability of critical events with extensive and long lasting conse-
quences. Such events affect large parts of the system and take a long time to recover
from because of lack of understanding of the complexity (“we have not seen this



200 P.E. Heegaard et al.

Critical events

Frequent events

 Introduction of ICT support 

More advanced human effort needed 
(to prepare for the unknown)   

Move personnel 
Increase competence 

Focus is here

Move personnel
Increase competence 

"Probability"

Consequenses

Before

After

Fig. 1 Introducing ICT support to assist daily operations may increase the overall risk

failure before”), or the lack of maintenance support and coordination between the
different subsystems and domains in the digital ecosystem (“who should do what?”).
As indicated in the figure, it is not only necessary to increase the focus and man-
power on the events with larger consequences, but also increase the competence of
the operation personnel.

There is a lack of theoretical foundation to control the societal and per service
dependability of ICT infrastructure in the digital ecosystem. No foundation is estab-
lished for optimisation, consolidated management, and provision of this infrastruc-
ture, neither from a public regulatory perspective, nor from the perspective of groups
of autonomous (commercially) co-operating providers. Amodel of an ICT infrastruc-
ture must describe the structure and behaviour of the physical and logical informa-
tion and network infrastructure, and include the services provided. Furthermore,
through the modelling phases, it should be described how resilience engineering [9]
can be applied to manage the robustness and survivability of the ICT infrastructure
ecosystem.

1.2 Outline

This chapter describes the above-mentioned challenges and outlines potential
approaches to gain more insight into the risks. To increase the understanding and
assess the risk (both consequences and probabilities), a holistic modelling approach
is taken of service in systems of systems. The goal is to quantify different strategies
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Fig. 2 Understanding the complexity

for management of dependability in interacting systems. This should be addressed
by different approaches:

• System modelling:Modelling of the functional interaction between embedded tech-
nical sub-systems in an ecosystem with multiple actors coordinated via business
models only.

• Management strategies: Management and provisioning of (digital) ecosystems in
a cost-efficient way, considering the trade-off between cost and quality.

• Quantitative assessment: Resource allocation optimisation (modelling, measure-
ments, simulations) of robustness/dependability andperformance in digital ecosys-
tems.

Figure2 illustrates that to improve the operation and management (O&M) of
complex systems (e.g. in Smart Grids), new control logic and functionality must be
added and in some cases also be centralised (e.g. in Software-Defined Networking
(SDN), and by the introduction of network function virtualisationNFV in next gener-
ation communication networks). This needs to be modelled, and the system models
parametrised to quantify the effect on the dependability and to identify potential
changes and improvements that can be made in O&M. The reason is that the new
and/or moved functionality poses new risks and threats to the systems, and may have
potential undesired side-effects that need to be qualitatively assessed to again iden-
tify potential changes and improvements that can be made during O&M, and to the
O&M systems.

As a step towards gaining this understanding, Sect. 2 discusses how the complexity
is changing by adding and moving control logic from being embedded and closely
integrated with the functionality to be controlled to being separated and to some
extents also centralised. Being able to deal with these issues, the ability to build
representative, yet understandable and tractable dependability models are crucial.
Seeking to build an entirely new theoretical approach does not seem feasible. Our
approach is to extend and combine current approaches in novel manners to reach
our objective. Hence, to illustrate this and to exemplify the effect of the changes
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in complexity, Sect. 2 includes two simple models with numerical examples. To
demonstrate how the complexity might be modelled and assessed, Sect. 3 gives an
example of modelling of the increase complexity in SDN, and Sect. 4 provides the
same for a Smart Grid example. Finally, our concluding remarks are found in Sect. 5.

2 Complex Digital Ecosystems

As discussed in the previous section, digital ecosystems are complex systems, which
are challenging to operate and control. This is due both to their tight integration with
other technical systems and the necessity to perform management over multiple
system domains where each domain has (partly) uncoordinated operations.

To enhance and improve the operation and maintainability of the complex
digital ecosystems, new functionality is added and/or moved and centralised. As
an example, in Software-Defined Networking, the functionality of the control logic
is separated from the forwarding functionality in the data plane and moved from the
distributed control plane residing on the components to be controlled to a virtually
centralised control plane. Another example is Smart Grid, where the ICT and power
grids are tightly integrated and interdependent. New functionality is added both in a
distributed manner to enable observability and controllability of the components in
the power grid, and centralised in the control centres to implement the control and
management.

Adding and moving functionality will contribute to changes in the complexity.
The goal is to simplify, or assist handling of complexity. However, adding new
hardware and software, ormoving the existing,will change the interrelations between
functional and logical “entities”/“components”. This means that, even though the
total complexity is the same or reduced, the system is less well understood and
potentially contains new vulnerabilities and poses new management challenges.

Later in this chapter, two comprehensive system examples are introduced to
demonstrate the modelling of this change in complexity. In Sect. 3, a model of
Software-Defined Networking is given and in Sect. 4 a Smart Grid example.

2.1 Centralising Distributed Functionality

IP networks are comprised of distributed, coordinated, but autonomous network
nodes, where the control logic is embedded and closely integrated with the same
forwarding functionality that is to be controlled, as illustrated in Fig. 3a.

In emerging networking technology, the trend is to separate the control and for-
warding1 and to move the control logic from the network nodes to a (virtually) cen-

1This is similar to how it was done in telephony systems (PSTN) with separate data traffic and
signalling traffic using Signalling System 7 (SS7) [10] and in B-ISDN [11].
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Fig. 3 Moving control logic to enhance the resource utilisation and improve QoS. a Distributed
logic embedded on the forwarding engine of the network nodes. b Logically centralised control
logic with simple distributed network nodes

tralised controller. The reduction in the distributed (control logic) functionality and
a corresponding increase in the centralised functionality will potentially reduce the
complexity in the (partly) autonomous network nodes and increase the complexity
of the centralised systems, as illustrated in Fig. 3a.

It is reasonable to assume that a simplification in the functionality will reduce
the complexity of the network nodes. If the properties of the hardware platform are
unchanged, the network node will then be less error prone. However, if at the same
time commodity hardware is used to reduce the node cost then there is a potential
risk of decreasing the hardware availability. Then, it is not obvious whether the node
availability will improve or not.

The centralisation of the complex functionality should increase the system avail-
ability, due to better global overview and coordination. The control logic has compa-
rable (or the same) functionality to the functionality that ismoved from the distributed
nodes, but additional functionality is needed to coordinate and mitigate the central
controllers. Furthermore, centralisation invites newmore advanced functionality, for
instance consult the motivation for SDN [6, 20, 24]. It is therefore not known what
effect the central controllers have on the system availability.

A separation of the forwarding and control functionality does not necessarilymean
a separation of the hardware platform and its functionality. A common mistake is to
forget that the underlying resources, such as the routing and switching hardware, are
typically utilised not only by the primary information handled by the system, such as
user packets, but also for the signalling of information exchange necessary to control
and manage the very same resources. Such an interdependency has a negative effect
on the overall system availability [4].

Whether the system availability is improved or not when centralising complex
functionality depends on to what extent the reduced complexity of the functionality
will have a positive effect and improve resource utilisation (due to the global system
state being availability, which eases resource coordination) compared to the added
complexity in the overhead associated with managing the centralised functionality.

Example 1 Availability requirement of the controller. To demonstrate the effect
of moving the complexity on availability a very simple example can be considered.
Assume that the conventional network in Fig. 3a is modelled as a serial structure
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with three network nodes with availability ANo. The serial structure of the network
nodes is assumed for simplicity and is not regarded as realistic. The new network is a
serial structure consisting of the central controller with availability AC and the three
networks nodes with availability ANn . Since moving the complexity should improve
the availability then ANo < ANn . The availability requirement of the controller is
given by

AC >

(
ANo

ANn

)3

(1)

If ANo = 0.98 and ANn = 0.99, then AC > 0.97.

If we have some inherent redundancy in the distributed system, the effect becomes
radical. Assuming the elements in the network in Fig. 3a operate in a ideal load-shared
modewere on, they can take the entire load. Theywill then constitute a parallel system
and we get A∗

C · 1 − (1 − ANn)
3 > 1 − (1 − ANo)

3, where A∗
C > 0.999992.

Later, in Sect. 3, a system model of Software Defined Networking is introduced
to address in more detail the effect of moving control functionality from being dis-
tributed and embedded with the primary function to be separated and (virtually)
centralised.

2.2 Add Distributed and Increase Centralised Functionality

The need for enhanced operation and control in the power grid is an excellent exam-
ple where the new ICT-based control logic is added to the distributed power grid
components. In power distribution grids, the grid components typically contain little
or no automated control logic. This means that manual detection and recovery is
required, which must be coordinated by the control centre, as illustrated in Fig. 4a.

Figure4b shows that new functionality must be added to the centralised controller
to be able to utilise the new distributed functionality (remote control logic). Central-
ising functionality to achieve better decisions will provide a single point of failure,
performance bottleneck and expose targeted attacks.

The ICT-based control functionality is not only supporting the operations, but
needs to be operated in addition to the primary functionality. The technology and
functionality will in many cases be new to the organisation and might change the
workflows and result in a need for enhanced knowledge and competence in operation.

From a dependability perspective, adding ICT-based control seems to be a bad
idea since all the negative side effects pointed out in the previous subsection apply,
with functionality added both in the distributed nodes and in the centralised con-
trollers. This produces less-positive effects compared to moving and centralising
functionality. However, the new ICT-based control functionality will increase the
maintainability through more timely and precise knowledge and information about
system state, so timely (proactive) maintenance can be carried out, and hence, the
frequency and consequences of the most frequent faults (failures) are reduced. The
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Fig. 4 Adding control logic to enhance the maintainability and improve service reliability. a Cen-
tralised logic and loosely coupled distributed network nodes. b Add logic to both the centralised
controller and the distributed network nodes

operational cost is reduced by reduction in manual labour through better and quicker
detection mechanisms and more autonomous (self-)repair. The results are reduced
recovery times and better proactive maintenance.

It is not guaranteed that the system availability will increase from added (ICT-
based) functionality or not. Even though themaintainability is significantly improved,
which makes both proactive and reactive maintenance more effective, it is an uncer-
tainty in that the control functionality itself adds complexity that might affect the
system availability.

Example 2 Mean component down time. Adding more logic to the components is
assumed to reduce the components recovery time, but at the same time increase the
component failure intensity. The hardware failure intensity is assumed unchanged,
but the added logic might also fail.

To compare the two systems, we should consider the requirements of mean down
time (MDT), mean time to failures (MTTF), and availability. In this example, we
say that the new system should have the same availability requirement and will then
determine themaximumMDT requirement of the component for a given set of failure
intensities for the hardware, λH , and software, λS .

The availability of the original system is:

ANo = ASo · A3
H = μS

λS + μS
·
(

μH

λH + μH

)3

(2)

while for the modified system with added functionality it is:

ANo = ASn · (AH S · AH )3 = μS

μS + λSS
·
(

μSμSS

(λS + μS)(λH + μSH )

)3

(3)
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To retain the same availability level in the new system, themaximummean down time
M DT = 1/μH S is determined by ANo < ANn . Let the software failure intensity [in
minutes−1] for the centralised control logic be λSS = 0.5λS , and λH = 1/24, μS =
60, λH = 1/168,μH = 1 thenμH S > 1.18529, which means thatMDT< 50.6min.

In Sect. 4, a Smart Grid example is introduced to demonstrate and discuss the
consequences of adding more functionality, both in the distributed entities serving
the primary function and centralised in the control centre.

3 Example: Availability in Software-Defined Networking

The purpose of this section is to present a case study that highlights how the complex-
ity changes bymoving the control logic of a system fromdistributed to centralised. To
illustrate this, we extend and combine current approaches in order tomodel and assess
the availability of a new network paradigm. The results show how the management
of complex systems is critical from a dependability perspective. In the following, we
introduce some details about Software-Defined Networking (SDN) and describe the
problem addressed, then we present a two-level hierarchical to evaluate the avail-
ability of SDN. Finally, we perform a simple sensitivity analysis on a selected set of
parameters that will potentially affect the dependability of SDN.

3.1 Software-Defined Networking

During the recent years, SDN has emerged as a new network paradigm, whichmainly
consists of a programmable network approach where the forwarding plane is decou-
pled from the control plane [6, 14]. Despite programmable networks having been
studied for decades, SDN is experiencing a growing success because it is expected
that the ease of changing protocols and providing support for adding new services and
applications will foster future network innovation, which is limited and expensive in
today’s legacy systems.

A simplified sketch of the SDN architecture from IRFT RFC 7426 [6] without
the management plane is depicted in Fig. 5. The control plane and data plane are
separated. Here, the control plane is logically centralised in a software-based con-
troller (“network brain”), while the data plane is composed of the network devices
(“network arms”) that conducts the packet forwarding.

The control plane has a northbound and a southbound interface. The northbound
interface provides an network abstraction to the network applications (e.g. routing
protocol, firewall, load balancer, anomaly detection, etc.), while the southbound
interface (e.g. OpenFlow) standardises the information exchange between control
and data planes.
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Fig. 5 SDN architecture (exclusive the management plane)

In [20], the following set of potential advantages of SDN were pointed out:

• centralised control;
• simplified algorithms;
• commoditising network hardware;
• eliminating middle-boxes;
• enabling the design and deployment of third-party applications.

However, from a dependability perspective, the SDN poses a set of new vulnera-
bilities and challenges compared with traditional networking, as discussed in [7]:

• consistency of network information (user plane state information) and controller
decisions;

• consistency between the distributed SDN controllers in the control plane;
• increased failure intensities of (commodity) network elements;
• compatibility and interoperability between general purpose, non-standard network
elements

• interdependency between path setup in network elements and monitoring of the
data plane in the control plane;

• load sharing (to avoid performance bottleneck) and fault tolerance in the control
plane have conflicting requirements;
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Fig. 6 Software-Defined Networking is an example where the control logic is moved from distrib-
uted to virtually centralised (see Fig. 3). a Current IP networks: distributed logic embedded on the
forwarding engine of the network nodes. b SDN: logically centralised control logic combined with
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3.2 Problem Description

Traditional IP networks consist of a set of interconnected nodes that include both
the data and control planes. Each network node is a complex device that has the
functionality of both data forwarding and networking control. To increase the avail-
ability and performance of such devices, manufacturers have focused on specialised
hardware and software over the past few decades.

As discussed in Sect. 2, SDN has the potential to change the principles of network-
ing and to enhance network flexibility. This implies moving the control logic from
the network nodes to a (virtual) centralised controller, and to open up the controllers
to a third party via an API (northbound interface), as illustrated in Fig. 6. The tran-
sition from a distributed network with a focus on establishing and maintaining the
connectivity between peering points, to a centralised network with a focus on QoS
and resource utilisation, will potentially lead to much simpler network nodes with
less control logic. The centralised control logic, such as the routing decisions, might
be simpler and can even be made more advanced, without making it more complex
compared to the distributed solution. The controller has the potential to set up data
flows based on a richer set of QoS attributes than in traditional IP networks. However,
the coordination and handling of the consistency between the SND controllers, will
require new, and complicated logic that will be a critical element to also make SDN
a good solution from a dependability perspective.

In the example in this section, we study how the SDN paradigm modifies the
overall availability of the network relative to the traditional distributed IP network
and analyse which factors dominate in this new scenario.

Although dependability must be regarded as an important issue to make SDN a
success, to the best of our knowledge, very limited work on modelling the depend-
ability in SDN availability has been performed. In [17], amodel of SDN controllers is
developed, while [7] discusses potential dependability challenges with SDN, which
is partially illustrated by a small case studywith a structural analysis of SDN-enabled
network. In this section,we study a comprehensive systemmodel of SDNwith respect
to dependability.
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3.3 Modelling

A two-level hierarchical model is introduced to evaluate the dependability of SDN
in a global network. In this example, the dependability is measured in terms of
steady-state availability and in the following referred to as availability. The two-
level hierarchical modelling approach consists of

• upper level: a structural model of the topology of network elements and controllers
• lower level: dynamic models (some) of network elements

The approach seeks to avoid the potential uncontrolled growth inmodel size, by com-
promising the need for modelling details and at the same time modelling a (very)
large-scale network. The detailed modelling is necessary to capture the dependen-
cies that exist between network elements and to describedmultiple failuremodes that
might be found in some of the network elements and in the controllers. The structural
model disregards this and assumes independence between the components consid-
ered, where a component can be either a single-network elements with one failure
mode or a set of elements that are interdependent and/or experience several failure
modes and an advanced recovery strategy. For the former, we need to use dynamic
models such as a Markov model or Stochastic Petrinet (e.g. Stochastic Reward Net-
work [3]), and for the latter structural models such as reliability block diagram, fault
trees, or structure functions based on minimal cut or path sets.

In the following section, we will demonstrate the use of this approach.

3.3.1 Model Case

In this example, we analyse the availability of a nation-wide backbone network that
consists of 10 nodes across 4 cities, and two dual-homed SDN controllers. See Fig. 7
for an illustration of the topology. The nodes are located in the four major cities in
Norway, Bergen (BRG), Trondheim (TRD), Stavanger (STV), and Oslo (OSL). Each
town has duplicated nodes, except Oslo which has four nodes (OSL1 andOSL2). The
duplicated nodes are labelled, X1 and X2, where X=OSL1, OSL2, BRG, STV, and
TRD. In addition to the forwarding nodes, there are two dual-homed SDN controllers
(SC1 and SC2), which are connected to TRD and OSL1.

The objective of the study is to compare the availability of SDN with a traditional
IP network with the same topology of network elements (SDN forwarding switched
and IP routers). We assume that nodes, links, and controllers in the system may fail.
The peering traffic in a city is routed through an access and metro network with a
connection to both (all four) nodes in the city. The system is working (up), when
all the access and metro networks are connected. Note that for SDN, at least one
controller must be reachable from all the nodes along a working path.
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Fig. 7 Case study: nation-wide backbone network

3.3.2 Structural Analysis

The critical parts of the connection between the traffic origins and destinations can be
determined using structural analysis based on either minimal cut sets S, or minimal
path sets. The sets are defined as follows:

Definition 1 Minimal cut set: The system is failed if and only if all the subsystems
in a minimal cut set are failed, given that all the other subsystems that are not in the
set are working.

Definition 2 Minimal path set: The system is working if and only if all the subsys-
tems in a minimal path set are working, and given that all the subsystems that are
not in the set are failed.

We use the minimum cut sets, S, to form the basis for a structure function, Φ

(minimum path sets can also be applied).

Definition 3 Structure function: Each max-term of the structure function expressed
in a minimal product-of-sums form corresponds to a minimal cut set.

The following connections in SDN must be considered:

• flow triggering: a path for the trigger message that should be sent from the source
node (at least one node of each city) to at least one SDN controller on arrival of a
new flow;
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Table 1 Distribution of cardinality of the minimum cut sets for the IP network and SDN

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Sum

IP network 0 3 8 91 304 360 356 189 70 13 1394

SDN 0 4 15 107 340 520 780 584 302 170 59 31 4 2916

• network state update and route directives: a path from the SDN controller to each
node;

• forwarding: forwarding path from/to each city (6 combinations).

The structural analysis for all the possible connections in the SDNexample, shows
that the cardinality of the set of minimal cut set S is ‖S‖ = 2916. The cardinality
c j = ‖s j‖ of each of the minimal cut sets, j = 1, . . . , 2916 is given in Table1. Each
column contains the number of sets that is Ck = ‖{s j ∈ S|c j = k}‖, k = 1, . . . , 13.
The table compares the minimal cut sets of SDN with a conventional IP network
where the control plane is embedded in the nodes, and hence, no controllers are
needed.

The number of minimal cut sets with cardinality one is equal to zero because
traffic sources are at least dual-homed and there are two dual-homed control sites.

The number of minimal cut sets C2 increases from three to four due to the control
nodes.Note also that the number ofminimal cut setsC3 almost doubles. This indicates
that in this example, a significant increase in vulnerability is observed for the SDN
case that is not explained solely by the introduction of a control node, but the fact
that a controller must be reachable from every node across the backbone in order for
the network to work.

3.3.3 Markov Model of Networks Elements

In order to evaluate the availability of each network element, we develop Markov
models of each of the links, traditional routers/switches, SDN routers/switches, and
the SDN controllers.

Links

The network model of a link is assumed to be dominated by hardware failures.
Therefore, a simple two-state Markov model is used. The links are either up or down
due to hardware failure. We use the same model for both traditional networks and
SDN.Given failure rateλL and repair rateμL , the availability of a link is AL = μL

λL+μL
.

This model is assumed for each of the components in the structural model.
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Fig. 8 Markov model of a router/switch. a Traditional network. b SDN

Table 2 State variables for traditional IP router

State Up/Down Description

OK Up System is fault free

OM Down Operation and Maintenance state

CHW1 Up Hardware failure of one controller

CHW2 Down Hardware failure both controllers

COV Down Coverage state, unsuccessful activation of the
stand-by hardware after a failure; manual recovery

FHW Down Permanent hardware failure in forwarding plane

FHWt Down Transient hardware failure in forwarding plane

SW Down Software failure

Routers

The model of a traditional router/switch is depicted in Fig. 8a, where the states are
defined in Table2.

Multiple failures are not included in the model since they are rare and will have
an impact significantly smaller than the expected accuracy of the approach.

SDN Forwarding Nodes

Figure8b shows the model of the forwarding node, i.e. router or switch in an SDN,
which corresponds to the traditional IP router. It is significantly simpler. The states
related to the control hardware and O&M failures are not contained in this model,
since all the control logic is located in the controller. The software is still present but
its failure rate will be very low since the functionality is much simpler.
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Fig. 9 Generic states of the model of SDN controller

SDN Controller

The model of the SDN controller is composed of two sets of states. One set captures
the software and hardware failures. The second set captures the O&M failures in
combination with the hardware states of the system. We have assumed that the SDN
controller is a cluster of M processors and the system is working, i.e. possesses
sufficient capacity if K out of the M processors are active, which means that both
software and hardware are working. To represent this scenario, each state is labelled
by four numbers {n, i, j, k}, where n is the number of active processors, i the number
of processors down due to hardware failures, j the number of processors down due to
software failures and k the state of the O&M functionality (k = 1 if O&M mistake,
k = 0, if not). Figure9 shows the outgoing transitions from a generic state {n, i, j, k}.
The main characteristics of the model are:

• single repairman for a hardware failure;
• load dependency of software failure when the system is working, λS(n) = λS/n,
where the meaning of λS is explained in more detail in Sect. 3.4;

• load independence of software failure when the system has failed, λS(n) = λS;
• when the entire system fails, only processors failed due to hardware failures will
be down until the system recovers.
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3.3.4 Using Inclusion-Exclusion Principle to Evaluate the System
Availability

The inclusion-exclusion principle is a technique to obtain the elements in the union
of finite sets. Using the inclusion-exclusion principle on the structure function, we
can write the system availability as the probability of the union of all minimal paths:

AS = P

(
n⋃

i=1

Qi

)
=

n∑

k=1

(−1)k−1
∑

∅�=I⊆[n]
|I |=k

P

(
⋂

i∈I

Qi

)
, (4)

where {Q1, Q2, . . . , Qn} is the set of all minimal paths, and P(Qi ) is the probability
of set Qi .

To compute the probability of the intersection of minimal paths, we need to know
the availability of each network element. To this end, we can calculate the element
availability by using the proposed Markov models.

3.4 Numerical Evaluation

Toevaluate the availability of traditional networks,we consider the typical parameters
in Table3, which are inspired by and taken from several studies [5, 15, 23].

All SDN parameters are expressed relative to the parameters for the traditional
network (Table3). The parameters for the SDN switch you find in Table4 and for the
SDN controller in Table5. The parameters αH , αS and αO are proportionality factors
that are studied in this example.

Using these parameters in the models described in this section, we can compare
the (un)availability of traditional IP and SDNnetworks. Failures with the same cause,
have the same intensities in bothmodels. However, we assume that the software on an
SDN switch/router will be much less complicated than on a traditional IP router, and
we have set the failure rate to zero, for the sake of simplicity. In an SDN controller,
all failure rates are N -times larger than in the traditional network, where N is the
number of network nodes. This is because we assume that the centralised system
needs roughly the same processing capacity and amount of hardware. Therefore,
the failure intensity is assumed to be proportional to N , and of the same order of
magnitude as the total failure intensity of the traditional distributed IP router system.

The results of a numerical example are given in the plot in Fig. 10. The overall
unavailability, i.e. the probability that not all cities in Sect. 3.2 are connected (for
SDN this requires also a connection to a controller) is given for different values
of αO . The figure shows that the unavailability increases with about one order of
magnitude when αO changes in the range from 0.1 to 1. The sensitivity of αH and
αS are far less significant. This indicates that O&M failures are dominant and most
critical to the dependability of SDN.
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Table 3 Model parameters for the IP network

Intensity [time] Description

1/λL = 4 [months] Expected time to next link failure

1/μL = 15 [minutes] Expected time to link repair

1/λd F = 6 [months] Expected time to next permanent forwarding
hardware failure

1/μd F = 12 [hours] Expected time to repair permanent forwarding
hardware

1/λd Ft = 1 [week] Expected time to next transient forwarding
hardware failure

1/μd Ft = 3 [minutes] Expected time to repair transient forwarding
hardware

1/λdC = 6 [months] Expected time to next control hardware failure

1/μdC = 12 [hours] Expected time to repair control hardware

1/λd S = 1 [week] Expected time to next software failure

1/μd S = 3 [minutes] Expected time to software repair

1/λd O = 1 [month] Expected time to next O&M failure

1/μd O = 3 [hours] Expected time to O&M repair

C = 0.97 Coverage factor

Table 4 Model parameters
for SDN switch/router

Intensity Description

λF = λd F Intensity of permanent
hardware failures

μF = μd F Repair intensity of
permanent hardware failures

λFt = λd Ft Intensity of transient
hardware failures

μFt = μd Ft Restoration intensity after
transient hardware failures

λsS = 0 Intensity of software failure

Table 5 Model parameters
for SDN controller

Intensity Description

λH = αH λdC N/K Intensity of hardware failures

μH = μdC Hardware repair intensity

λS = αS λd S N Intensity of software failures

μS = μd S Restoration intensity after
software failure

λO = αO λd O N Intensity of O&M failures

μO = μO Rectification intensity after
O&M failures
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Fig. 10 Unavailability of SDN (solid line) and of traditional network (dashed line) by varying αO
(αH = 1 αS = 1)

As a preliminary conclusion from this study, it seems as the use of commodity
hardware and centralised control has a moderate effect on the availability of the
overall network. However, theO&Mfailures and software/logical failures that causes
a control cluster to fail are very important in order to improve the dependability when
changing from the traditional distributed IP network to SDN.

4 Example: Restoration in Smart Grid

The purpose of this example is to show how the automation of process steps changes
the dependability of a system. The system under consideration is a power grid and
we focus on the restoration process after a physical failure.

A power grid is a critical infrastructure and its reliability is critical to the smooth
operation of a resilient society. Power grids are due to undergo modernisation in the
coming years. This next generation power grid is commonly called the smart grid.
One of the biggest differences compared to the current grid is additional monitoring
information about the current state of the grid and new control abilities throughout
the grid. These improvements allow the introduction of more automated processes
with the goal of increasing the overall dependability of the system.

This is the starting point of our example. We model the restoration process with
and without automation and conduct a dependability analysis. Our results show that
the introduction of automation yields benefits like a reduction of down time, but it
also extends the system into a compound and more complex system. This system has
new failure modes as the automation may malfunction and thus, without taking the
appropriate measures, may partially negate benefits.
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Fig. 11 Schematic view of a protection zone in the current power grid and smart grid. a Current
power grid: no automated detection and controlling. b Smart grid: added logic for automated
detection and controlling (distributed and centralised)

4.1 Problem Description

The power grid (PG) has traditionally contained only a few monitoring and control-
ling devices distributed throughout the grid. Mostly they are deployed in the higher
voltage levels. In the lower voltage levels monitoring and controlling devices are,
depending on the country, virtually absent. In case of a failure a distributed and
autonomously working protection system automatically disconnects a whole protec-
tion zone by opening a circuit breaker, causing a power outage to all customers inside
this protection zone.

The future power grid, the so called smart grid,will possessmonitoring and control
systems widely deployed throughout the power grid. These devices detect failures
automatically and send failure diagnostics to a central control, operation, and man-
agement system. The central system then attempts to isolate the failure by opening
other circuit breakers closer to the failure and connecting the rest of the protection
zone again to the grid. It is assumed that the power grid at this voltage level has an
open ring topology that allows reconnection to the non-isolated parts after a single
failure. Figure11 shows a protection zone in the current PG and in the smart grid,
consisting of three PGnodes and two protection devices represented by large squares.
The small squares represent new circuit breakers controlled by the centralised control
system.

In the following, we study how the introduction of detection and isolation automa-
tion changes the characteristics of the restoration process. More precisely, we study
the downtime and the energy not supplied (ENS), which is the accumulated energy
that could not be delivered due to outages, i.e. down time weighted with the load
during the outages. Both the lines and the PG nodes can fail, but only larger outages
that require a repair crew to go on cite are considered.

4.2 Modelling

The restoration process of a power grid failure consists of two stages containing a
total of six phases, as shown in Fig. 12. The phases are:
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Fig. 12 Phases during the restoration process. For readability reasons, the transitions into state 4
and 8 are displayed in a compact form, it is read as follows; States 3, 12, 13, 20 and 22 each have a
transition to 4 and 8. The first is multiplied with ¬pnode, i.e. (1 − pnode), the latter with pnode

Detection Time period between a failure and its detection in the monitoring sys-
tem. It is assumed that the protection system disconnects the protection zone
containing the failure immediately after the incident. In reality, there is a short
delay of several milliseconds. The disconnection leads to a black out in the whole
protection zone.

Remote Isolation The failed element is isolated more precisely, either automati-
cally by the central system or manually by a controller at the control centre. The
rest of the protection zone is powered up again.

Administrative Failure diagnostics from the monitoring devices are evaluated,
the recovery is planned, and a repair crew is assigned.

Logistic Repair crew is equipped with the necessary material and moves to the
incident location.

Fault Localization Precise localisation of the failure, both geographically and in
the system.

Repair Actual repair, all isolated network elements are restored to normal opera-
tion.

The difference between the current power grid and the smart grid lies mainly
in Stage I. In the current power grid, detection occurs manually, i.e. the failure is
detected by a controller or through a call by a consumer. There are no remote isolation
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capabilities, so this phase is skipped. Throughout the entire restoration phase, the
whole protection zone is without power in the model in Fig. 12. This is denoted by
pentagonal states.

In the smart grid, the distributed devices detect the failure automatically and send
an alarm together with fault diagnostics to the central system. Now, the failure is
isolated automatically and remotely from the central system and Stage II begins. If a
PG node is affected by the failure, and now isolated, then the system proceeds to state
8. If only a line is isolated then it proceeds to state 4. In the first case, there are still
consumers without power. In the latter case, the power supply has been reinstated to
all consumers. This difference is indicated in the model by the different shapes of the
states. In both cases, the number of consumers affected is smaller than in the current
system. An additional difference is the sojourn time of the fault localisation phase.
It is shorter for the smart grid, as the detection devices provide fault diagnostics that
accelerate this phase.

So far, we have described the process during operation without any failures in the
new system. In the following, we consider failures in the information and commu-
nication technology (ICT) subsystem used for the automation. It is assumed that all
the other systems, e.g. the protection system, work perfectly. The following failures
in the detection system are considered:

• false positive detection failure: there is no failure, but the detection system reports
one.

• false negative detection failure: there is a failure but the detection system does
not notice it.

A false positive detection failure is modelled with a new transition out of state 1
with an additional failure intensity leading to state 19. The failure is detected by
the system as before. If the system discovers the false positive failure the restoration
process is interrupted and the system goes back to state 1, otherwise it continues.

A false negative detection failure is modelled by splitting the transition from
state 1 to 2 into two, pointing one to state 18 and weighting the rate by the
false negative probability pFN. The new state 18 indicates amanual detection because
of the non-detection in the system. The isolation is then done manually by an opera-
tor. If the isolation is successful, it proceeds as before either in state 4 or 8 depending
on whether a line or a node is affected. If the isolation is not successful, the entire
protection zone remains without power for Stage II of the restoration process.

In the isolation system, the following failures are considered:

• isolation failure: there is a failure, but isolation is unsuccessful because of prob-
lems with communication or systems. The whole protection zone remains unpow-
ered.

• spontaneous isolation failure: there is no failure, but a network element is falsely
isolated by the system.
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Fig. 13 Mean values per outage. a MTBF against MDT per outage. b MTBF against Mean ENS
per outage

An isolation failure is modelled in the system by splitting the transitions from the
isolation states 3, 12, 13, 20 and 22 into two, andweighting the rate by the probability
of an isolation failure pIF, except for the transitions from 13, which uses a higher
probability pIFC, because the system already suffered one ICT failure and is in a
critical state.

A spontaneous isolation failure is modelled with a new transition out of state 1
with an additional failure intensity leading to state 21. The failure is detected by the
system as before. If the system discovers that the failure originates from the isolation
system and not the power grid, it restores the system (state 23) and goes back to the
up state; otherwise, it continues.

4.3 Numerical Example

All event times in the system are assumed to be exponentially distributed with the
following expected values. The event times are based on data for longer outages from
the Norwegian regulator [21] (Table 6).

First, we computeMDT and the mean time between failure (MTBF) for the model
in Fig. 12. All states in which there is a power outage are considered as down states,
i.e. all states but the round states. MTBF is computed with

MTBF = 1/(
∑

i∈ΩUp

∑

j∈ΩDown

λi j pi )

where pi is the steady-state probability of being in state i , λi j is the transition rate
from state i to j and ΩUp and ΩDown are the sets of up and down states, respectively.
MDT is computed by MDT = U · MTBF, where the unavailability U is computed
with U = ∑

i∈ΩDown
pi .
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Table 6 Model parameters for the IP network

Intensity [time] Description

1/λ = 4 [months] Expected time to next PG failure inside this
protection zone

1/λFP = 6 [months] Expected time to next false positive detection
failure

1/λSIF = 12 [months] Expected time to next spontaneous isolation
failure

1/μD,M = 20 [minutes] Expected manual detection time

1/μD,A = 1 [minutes] Expected automatic detection time

1/μI,M = 5 [minutes] Expected manual isolation time

1/μI,A = 1 [minutes] Expected automatic isolation time

1/μA = 5 [minutes] Expected time in administrative state

1/μL = 15 [minutes] Expected time in logistics state

1/μFL,M = 20 [minutes] Expected manual fault localisation time, i.e.
without fault diagnostics from the detection
devices

1/μFL,A = 10 [minutes] Expected automatic fault localisation time

1/μR = 10 [minutes] Expected repair time

1/μrestore = 10 [minutes] Expected restoration time for discovered
spontaneous isolation failure

pnode = 0.1 Probability of failure affecting a node

pFN = 0.01 Probability of false negative detection failure

pD,FP = 0.2 Probability of discovering a false positive in
isolation phase

pD,SIF = 0.2 Probability of discovering a spontaneous
isolation failure in isolation phase

pIF = 0.1 Probability of unsuccessful isolation

pIFC = 0.5 Probability of unsuccessful isolation (ICT failure)

The results are presented in Fig. 13a. Four scenarios are computed:

1. current system, which is today’s power grid system
2. new system,
3. new system with perfect ICT, i.e. pFN = 0, pIF = 0, λFP = 0, λSIF = 0, and
4. new system with a permanent isolation failure, i.e. pIF = 1.

The MDT of the new system is smaller than the current system, due to the reduced
event times. However, when considering the new system with imperfect ICT, the
MTBF is reduced as well. Hence, the reduction in MDT comes at the expense of
more frequent failures. In case of a permanent isolation failure, the MDT increases
significantly but is still shorter than the current system, as the time in the detection
phase is reduced.
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MDT gives a one-sided picture of the situation, as the down states have dif-
ferent consequences for the system. The consequences are marked in the model
with three different shapes. To incorporate this information, we use the concept of
Energy Not Supplied (ENS). ENS is used in outage reports in power engineering and
plays a central role in the Norwegian regulation framework [13]. As the name sug-
gests, it indicates the amount of energy that could not be supplied due to an outage.
For our example, we assume that each PG node has a constant energy consumption
of 1 kWh per minute. In the pentagonal states, three nodes are down. Therefore, the
ENS is 3 kWh per minute. The octagonal states have an ENS of 1 kWh per minute
and the round states 0 kWh per minute.

We use a Markov reward model to obtain the instantaneous ENS e(t), i.e. the
energy that cannot be delivered at time instance t . First, state 1 is defined to be
absorbing.When the system is in steady state, a down period starts in state j ∈ ΩDown

with probability p j (0) = MTBF · ∑
i∈ΩUp, j∈ΩDown

λi j pi . Now the instantaneous ENS
is computed with e(t) = ∑

i∈ΩDown
pi (t) · ei , where pi (t) and ei are the instantaneous

state probability and the energy consumption per minute of state i , respectively.
Integrating e(t)over timeyieldsMean ENS per outage = ∫ ∞

0 e(t), which is plotted
in Fig. 13b. The MTBF is the same as in Fig. 13a. Compared to MDT, the improve-
ment achieved by automation is even larger in this metric because ENS weighs the
downtime according to the consequences. However, this is not true for the case with
a permanent isolation failure because the down states are all pentagonal like in the
current system.

Finally, we extend downtime-frequency curves [19] to characterise how the total
ENS per year of all failures in this protection zone depends on the down time. Let us
denote the total ENS per year with ENStotal. Counting only the ENS of those outages
that are longer than time t0, it becomes time dependent and is computed by:

ENStotal(t0) = d(t0)

MTBF

(∫ ∞

t0

e(t)

d(t0)
dt + e∗(t0)

)

where (MTBF)−1 is the number of failures per year, d(t) the probability that the
system is down at time t , computed by d(t) = ∑

j=ΩDown
p j (t), and e∗(t0) is the

energy not supplied up to time t0 given that the system has not yet been restored. In
order to compute e∗(t0), the Markov model is modified so there is no transition out
of the subspace formed byΩDown because no complete restoration takes place before
t0 by definition. The transition rates are defined as

λ∗
i j =

{
λi j if i, j ∈ ΩDown

0 otherwise

The initial state vector of the system is p∗(0) = p(0), as before. Thus, p∗(t) and
e∗(t) are computed in the same way as explained above.

The results for ENStotal(t0) are shown in Fig. 14. In the current system, the relation
between downtimes and ENStotal is approximately linear during the first 50min. In
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the new system, however, there is a drop in the beginning, indicating that short down
times contribute disproportionately to ENStotal. The drop corresponds to Stage I of the
model. After that, there are either no consumers without power or the system is in the
restoration process with the octagonal or pentagonal states and behaves similarly to
the current system but at a reduced level. In the case of a permanent isolation failure,
ENStotal(t0) is larger than in the current system for t0 > 55min, mainly because of the
shorterMTBF. For larger t0, this is compensated for by the effect of shorterMDT due
to automatic detection. The results show that the automation possesses significant
potential to reduce ENStotal. However, in case of longer failures, this may become a
disadvantage.

4.4 Observations from the Example

The automation of the detection and isolation phase is introduced with the goal of
reducing MDT and mean ENS per failure. However, as the new supporting ICT
systems may fail as well, the failure characteristics of the system are changed. First,
the MTBF decreases significantly, i.e. the number of failures per year increases.
Second, outages are on average shorter, and short outages become an important factor
when the totalENS per year is considered. Third, in case of a longer permanent failure
in the ICT system, the consequences increase temporarily and, thereby, adversely
affect of the benefit of automation.
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The introduction of automation should, therefore, be accompanied by two crucial
steps. First, additional training is necessary for the staff covering the new failure char-
acteristics and failures, including the scenario of a malfunctioning ICT system [16].
Second, it is necessary to acquire the skills to maintain and quickly restore the new
ICT system to assure a high dependability and thus achieve the positive effects for
which the automation was originally introduced.

5 Concluding Remarks

The focus of this chapter has been the increasing complexity in digital ecosystems,
which are system-of-systems of ICT infrastructures or interact with other critical
infrastructures such as water distribution, transportation (e.g. Intelligent Transport
Systems) and Smart Power Grid control. There is a lack of theoretical foundation
to control the societal and per service dependability of ICT infrastructure in the
digital ecosystem. No foundation has been established for optimisation, consolidated
management and provision of this infrastructure, neither from a public regulatory
perspective, nor from the perspective of groups of autonomous (commercially) co-
operating providers.

More ICT-based operation support and control functions are included to manage
digital ecosystems, with the objective to reduce the frequency and consequences of
daily events. However, it is important to be aware of the potential side effects that
might increase the frequency and consequences of critical and catastrophic failure
events. The reason is that the added support enables interaction and integration of
even more complex and heterogeneous systems, changes workflows in organisations
and ICT-based support systems may fail.

To enhance and improve the operation and maintainability of complex digital
ecosystems, new functionality is added and/ormoved and centralised. Two examples
are considered in this chapter: (i) Software-Defined Networking, which separates the
control logic from the forwarding functionality and moves the logic from the distrib-
uted network elements to a virtual centralised controller, (ii) Smart Grid integrates
ICT and power grids whichmake themmore interdependent. Here, new functionality
is added both in a distributed manner to enable observability and controllability of
the components in the power grid and centralised in the control centres to implement
the control.

How the changes in complexity affect the overall system dependability is less
understood, contains potential vulnerabilities andposes newmanagement challenges.
This chapter emphazises the importance of being able to model ICT infrastruc-
tures. A model must describe both the structure and behaviour of the physical
and logical information and network infrastructure, including the services provided.
Furthermore, through the modelling phases, it should be explained how resilience
engineering can be applied to manage the robustness and survivability of the ICT
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infrastructure. This is the research focus of the research lab on Quantitative mod-
elling of dependability and performance, NTNUQUAMLab (https://www.ntnu.edu/
telematics/quam).
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30 Years of GreatSPN

Elvio Gilberto Amparore, Gianfranco Balbo, Marco Beccuti,
Susanna Donatelli and Giuliana Franceschinis

Abstract GreatSPN is a tool for the stochastic analysis of systems modeled as
(stochastic) Petri nets. This chapter describes the evolution of the GreatSPN frame-
work over its life span of 30years, from the first stochastic Petri net analyzer imple-
mented in Pascal, to the current, fancy, graphical interface that supports a number
of different model analyzers. This chapter reviews, with the help of a manufacturing
system example, how GreatSPN is currently used for an integrated qualitative and
quantitative analysis of Petri net systems, ranging from symbolic model checking
techniques to a stochastic analysis whose efficiency is boosted by lumpability.

1 Introduction

GreatSPN [24] is a tool that supports model-based (stochastic) analysis of discrete
event dynamic systems (DEDS). It has evolved significantly over its 30years of life
and it has been used not only for the evaluation of systems, but also to support
research activities, by providing an environment suitable for the development of new
methods and techniques, mainly aimed at performance evaluation.
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The modeling formalisms of reference in GreatSPN are Generalized Stochastic
Petri nets (GSPN) [3] and its colored extension stochastic well-formed nets (SWN)
[18]. SWN are based on the high-level Petri net model of well-formed net (WN).
WNs have been recasted into symmetric nets (SN) in the Petri net ISO/IEC 15909-2
standard [29], and therefore SWN are sometimes also called Stochastic Symmetric
Nets (SSN).

GreatSPNwas conceived about 30years ago as a tool for performance evaluation.
To overcome the (at that time) existing limitations in expressing synchronization and
resource acquisition, GreatSPN evolved into a tool with a more holistic approach to
verification. In this approach, classical performance properties (like resource usage
and throughput of transitions) and classical qualitative Petri net properties (like live-
ness of transition, existence of deadlocks and traps) and, more recently, probabilistic
verification properties, work in a synergic manner to establish the property of interest
of a DEDS. In the rest of the paper, we shall use the term “stochastic analysis” to
refer to the set of analysis activities aimed at establishing the qualitative correctness
of the model, using both performance and performability properties.

One of the distinctive features of GreatSPN with respect to other tools is the will-
ingness of its development team to maintain, in the stochastic extension, the basic
semantics of transition enabling and firing as well as the relevance of the graphical
information. The underlying Petri net formalism is that of place/transition nets with
priorities and inhibitor arcs, which have a comprehensive graphical representation
of the net behavior. The idea was to try to diverge as little as possible from the under-
lying Petri net formalism, so as to be able to reuse all possible solution techniques
available for classical (nonstochastic) Petri nets. This choice enhanced the analytical
power, but certainly decreased the modeling power, since certain modeling features,
like queueing policy for places and marking dependencies on arcs, have never been
included.

In this chapter, we review 30years of history of GreatSPN and discuss its current
role for model-based analysis: we revisit how the graphical interfaces have evolved
over the years, andwe also revisitmany of the advances in stochastic Petri net analysis
and what is the current status in model-based stochastic analysis.

The chapter starts with a review of the GSPN formalism: its roots and its evolution
(Sect. 2), followed by the history of the GreatSPN tool in Sect. 3. The rest of the paper
shows the current value of GreatSPN for model-based stochastic analysis. The tool,
as it is now, is presented in Sect. 4. Section5 describes howGreatSPN3.0 supports the
workflow of a model-based analysis of a target system: from model construction to
validation through model checking and evaluation using stochastic model checking
and standard performance evaluation techniques. A similar workflow is illustrated
for the colored case (Sect. 6). The common reference example is inspired by the
various flexible manufacturing systemmodels available in the literature. The chapter
ends with a literature survey of tools with similar characteristics (Sect. 7) followed
by a summary of the status of GreatSPN3.0 and of its desirable future (Sect. 8).
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2 From Petri Nets to GSPN

Petri nets (PN) [34] are a natural, simple, and powerful formalism aimed at the mod-
eling of the information and control logics in systems with asynchronous and con-
current activities. In Stochastic Petri nets (SPN) [32], all the transitions are assumed
to fire with a random delay that is exponentially distributed. This feature enriches the
analysis of a variety of systems by computing several quantitative indices on their
efficiency (performance) and reliability. Usually, this is achieved by automatically
constructing a continuous-time Markov chain (CTMC) which reflects the behav-
ior of the system and then applying the analysis methods available for this type of
stochastic process.

In models of real systems, it is often the case that a change of state occurs not
only because there has been a completion of an activity which takes time, but also
because there has been a change of some logical conditions which may depend on
the current state of the system in a rather intricate manner. These two types of events
may have rather different durations, and modeling these type of systems with SPNs
yields CTMCs with quite different transition rates, making the numerical analysis of
the model very difficult.

Starting from thepractical observations,GeneralizedStochasticPetriNets (GSPN)
[3] were proposed. Immediate transitions were introduced to address the need for
events that happen in a very short time (actually zero), it was also chosen that imme-
diate transitions have priority over timed ones (the transitions that fire after a non-
negligible amount of time). Priorities were introduced to simplify the analysis, by
splitting markings in “vanishing” markings (states in which at least one immediate
transition is enabled and where therefore the net does not spend any time) and “tan-
gible” markings (states in which only timed transitions are enabled and where the net
does spend time). Soon after their introduction, GSPNs became very popular in the
performance and reliability evaluation community. The reason for this unexpected
success was probably due to three quite different reasons: the simplicity of the for-
malism, the presence and the role of immediate transitions, and the availability (not
much later than the formalism definition) of a design and analysis tool.

GSPNS are based on very few (and simple) primitive constructs that with their
precise semantics make the formalism easy to learn and apply to many interest-
ing practical problems. Indeed, researchers with considerably different backgrounds
found GSPNs easy to grasp and useful for quickly drawing and analyzing complex
probabilisticmodels that would have been otherwise difficult to construct in a reliable
manner. Despite the need for more powerful formalisms for a compact representa-
tion of complex real systems, the choice of keeping the formalism simple while
delegating to a different modeling language (namely Stochastic Well-Formed nets—
SWNs), the burden of dealing with these possible additional complexities allowed
many newcomers to become quickly acquainted with GSPNs without scaring them
away with less intuitive definitions. On the other hand, researchers already familiar
with the features of the basic formalism found quite interesting the possibility of
using with little additional effort the more complex high-level extensions, as they
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realized that this additional complexity pays off when it is actually needed by the
difficulty of the problem at hand.

Immediate transitions were originally included in GSPNs to allow a simple repre-
sentation of very fast activities and logical choices. The extensive use of the formalism
soon made clear that the structure of the underlying untimed (autonomous) net could
play an important role in allowing many more results to be derived from the model.
Time scale differences captured with timed and immediate transitions were related
with the concepts of visible and invisible transitions in Petri net theory. The prior-
ity of immediate over timed transitions led to the study of untimed Petri nets with
different levels of priority. Drawing on these results, it became clear the danger of
specifying “confused models,” and thus the difficulty of constructing “correct mod-
els” including sequences of immediate transitions. To help analysts in specifying
“well behaving nets,” the concept of extended conflict set was formalized and meth-
ods were developed to find this structure at the net level [17, 37]. In the analysis of
GSPN models, immediate transitions are thus “preprocessed” to construct a reduced
embedded Markov chain defined on tangible markings only.

Even the simplest GSPN models that one can conceive are difficult to describe
and analyze without the use of proper software tools. The development and the
free distribution of such a tool to academic researchers was indeed a key factor in
spreading the knowledge and the use ofGSPNswithin the performance and reliability
research communities.

Asmentioned before, the complexity of real systems often requiresmore powerful
formalisms in order to build relatively simple models, where abstraction is the key
element to understand highly intricate situations. Colored extensions of (G)SPNs
have thus been proposed, allowing a more compact and parametric model represen-
tation with a more efficient analysis. Such analysis is based on the strong or exact
lumpability conditions onMarkov chains. In particular, StochasticWell-FormedNets
(SWN) [18] have a structured color syntax that enables an automatic discovery of
the presence of behavioral symmetries, leading directly to a reduced state space and
a corresponding lumped CTMC.

3 The History of GreatSPN

The development of the Generalized Stochastic Petri Net (GSPN) formalism [2] was
motivated by themodeling power of SPNs,with their effectiveness and simplicity [4].
A prototype solver [1] was initially jointly developed by members of the Computer
Science Department of the University of Torino and of the Electronics Department
of the Politecnico of Torino with the simple aim of overcoming the tedious and error-
prone task of manually constructing the Markov chains underlying GSPN models.
Starting from the insights gained from the experience of using this preliminary tool,
it was decided to design and implement a complete framework for the modeling,
verification, and solution of GSPN models. The first version of the framework [15],
written in Pascal [30], was released in 1985 and targeted three platforms: the VAX
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CTR: Conflicting Exponential Transition Matrix
DTR: Not-Conflicting Exponential Transition Matrix
EMC: Embedded Markov Chain Probability matrix
CNV: Time Probability Conversion Matrix for DSPN

TOOLS:

FILES:

Fig. 1 The structure of the GSPN/DSPN solution toolchain in 1985

11/780 with VMS, the VAX 11/780 with BSD Unix 4.1, and Sun 1 workstation with
BSD Unix 4.2. This was the first documented software package for the analysis of
GSPN models [23, p. 29].

The structure of the framework was conceived as a collection of interacting tools.
Figure1 (taken from [15], p. 139) shows the structure of this original toolchain. Pro-
grams (represented as rectangles) communicate with each other using intermediate
files (represented as circles). Each program is designed to solve a specific problem.
The purpose of this toolchain was the generation of the reachability graph, com-
putation of steady-state and/or transient solution of the reduced Markov chain, and
computation of result statistics. GSPN andDSPN (Deterministic and Stochastic Petri
Nets with deterministic transitions) models were supported.

Started inAugust 1986 and based on the experience ofMikeMolloy’s SPAN inter-
face [33] (which was the first graphical editor for SPN), a new GUI was written from
scratch for the SunView 3.0 graphical toolkit, and its fusion with the GSPN solution
toolchain became the GRaphical Editor and Analyzer for Timed and Stochastic Petri
Nets, namely GreatSPN 1.0. GreatSPN was the first software package developed to
fully integrate within a single user-friendly tool a modeling pipeline that included,
among other features, editing Petri net models graphically, inspecting their proper-
ties like invariants and bounds, calling solvers, and showing graphically the results.
In 1987, version 1.3 was released with all command line programs rewritten in C
to increase the portability of the framework. Several “compilation techniques” [16]
were introduced in this version to improve the time and space efficiency of the tool.
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With these new features, GreatSPN had the merit of joining a powerful graphical
interface with a large variety of (both qualitative and quantitative) analysis methods.
Models developed with GreatSPN showed for the first time the advantage of making
practical the possibility for a performance analyst to first study qualitative properties
of systems with methods (s)he was unfamiliar with, and for formal method experts to
complete their correctness and validation studies with performance considerations.
Subsequently the addition of animation (token game) and discrete-event simulation
facilities [10] made GreatSPN beneficial also in management-oriented environments
where the intuitive representations of real systems were more important than the
powerful analysis methods that could be used for their evaluation. In 1995, the mile-
stone release 1.7 introduced bound computation based on linear algebra techniques,
as well as colored Petri nets in the form of Stochastic Well-formed Nets (SWN) [18].
The SWN solution method implemented in GreatSPN included both the state-space
generation and consequent solution of the associated Markov chain as well as the
simulation, using either colored or symbolic markings.

4 GreatSPN Now

After almost 30years of developments, improvements, and tests, the GreatSPN
framework is now a collection of many tools that support Petri net modeling and
evaluation in multiple ways. Figure2 shows a (simplified) schema of the current
features of GreatSPN. Tool names are written in bold, and are grouped into logical
modules. Tool functions include: numerical solutions, structural analysis, state-space
exploration, and model checking for GSPN and SWN, support for Markov Decision
Well-formed nets (MDWN), conversions among multiple formalisms, Monte Carlo
simulation, support for DSPN definition and solution, and model composition. The
graphical editor is the center of GreatSPN as it is used for drawing the models and
for defining their properties. It is responsible for the invocation of various command
line tools and for the visualization of the results. GreatSPN is now in the transition
of replacing the old Motif-based GUI with a new interface developed in Java. For
the rest of the chapter, the characteristics of the framework will be shown from the
user point of view, i.e., interacting with the new Java GUI. Most of the command
line tools comprised in GreatSPN can be called directly from the GUI.

The workflow of GreatSPN was conceived, back in its original design, to consist
of threemain phases: the user (“modeler”) draws the Petri net in a graphical way; then
structural properties are computed (minimal P-/T-semiflows, place bounds, conflict
sets, …) to understand if the model is designed properly and if it can be solved
using numerical methods or via simulation; finally, the user specifies the measures
of interest directly on the model and calls a command line solver to compute the
results. Several solvers are provided for different types of models and with different
characteristics. Models are written to the disk in the net/def format, which contains
the net description and the evaluation indices to be computed. There are three families
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Fig. 2 The structure of the GreatSPN framework today

ofmodels supported byGreatSPN: coloredGSPNs,GSPNswith deterministic and/or
general transitions, and Markov Decision Petri nets (MDWNs).

The new GUI [6] integrates a modern editing pipeline which supports the entire
GreatSPN workflow consisting of the editing phase, the visual inspection of net
properties, the evaluation of qualitative and quantitative properties, and visualization
of the results. The rest of the chapter describes this implementation discussing a case
study represented by a sufficiently complex GSPN model that illustrates the details
and the new features of the framework.

A picture of the new GreatSPN GUI is shown in Fig. 3, taken while editing a
Petri net model. In the upper left panel, there is the list of open files. The editor
supports multipage files. In the current version of the editor, pages can be of three
types: Petri net models, Deterministic Timed Automaton models (to be discussed
later), and tables of measures. New model formalisms can be added to the editor by
specifying new types of pages. The property panel is in the lower left corner. It shows
the editable properties of the selected objects. It is possible to operate to more than
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Fig. 3 The GUI with a GSPN model of an FMS with faults and repairs

one object, of the same type, at a time. The central canvas contains the editor of the
selected project page, in this case a GSPN model.

Petri nets are drawnwith the usual graphical notation. Transitionsmay be immedi-
ate (thin black bars), exponential1 (white rectangles), or general2 (black rectangles).
The priority level of immediate transitions is indicated as π = i (omitted when
i = 1). Input and output arcs are arrows and inhibitor arcs are circle-headed arrows.
Arcs may be “broken,” meaning that only the beginning and the end of the arrows are
shown. The real values (or real-valued parameters) associated with transitions repre-
sent either the rate of the exponential distribution associated with timed transitions
or the weight used to derive firing probabilities of immediate transitions. Definitions
(constants, color classes, color variables) are drawn in textual form. Names, arc mul-
tiplicities, transition delays, weights, and priorities are all drawn as small movable
labels positioned next to the corresponding Petri net elements.

Unlike the previous graphical interface, the check of the syntax of the colored
definition is done while the definition is written. The editor also supports fluid places
and fluid transitions (not shown in the example). Places can be partitioned into
labeled groups for Kronecker-based solutions [14]. The editing process supports
all the common operations of modern interactive editors, like undo/redo of every
action, cut/copy/paste of objects, drag selection of objects with the mouse, single
and multiple editing of selected objects, etc. Petri net models are drawn entirely
using vector graphics, which allows for high-quality visualization and print of the

1Firing times are random variables with negative exponential distributions.
2Firing times are random variables with general distributions.
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net. Object labels may be drawn with an optional LATEX engine. The interface is
designed to avoid modal dialog windows as much as possible to streamline the use
of the GUI.

5 Model-Based Analysis Through GSPN in GreatSPN3.0

Model-based analysis is supported by GreatSPN3.0 in various ways. The goal is
to verify the correct behavior of the modeled system through qualitative analysis
and model checking as well as to verify performance properties once it is decided
that the model correctly represents the system under study (as in the case of nets
automatically generated from system specifications). Once the user is confident that
the model represents the system behavior, the analysis workflow concentrates on the
probabilistic aspects, through stochastic model checking, and through the computa-
tion of classical performance and/or dependability evaluation indices. The GUI of
the tool supports the computation and the visualization of the results for a varying set
of parameter values. The analysis workflow is illustrated on a rather classical GSPN
model of a flexible manufacturing system (FMS). All the figures and the graphs
reported are directly produced by GreatSPN3.0, unless otherwise stated.

The GSPN model of our FMS model is depicted in Fig. 3, inside a screenshot of
the GUI that has been used for its definition. The net by itself could also be printed
as pdf file using the classical printing facilities of the operating system. The system
includes three machines Mi (places Mi ) and K pallets of parts to be worked (place
Pallets). Each part is loaded and then sequentially processed by the three machines
until the work is completed, the manufactured part is unloaded and the pallet goes
back to place Pallets through transition restart waiting for a new rawpart to be loaded.
For each machine Mi an arriving part is taken (transition swi ), worked (transition
ewi ), and put in the input buffer of the subsequent machine or in the buffer of the
completed parts. Machines M2 and M3 can fail. In the case of M2 there are SP spares
available, while for M3 there are no spare parts. Spares in use can fail as well. Both
spares and machines are repaired by a repairman (token in place Ready). Since there
are no spares for M3 the repairman is assigned with higher priority to M3. This is
implemented through the priority of transition repM3 which is higher than that of
transition repSpares. Upon failure of M2 (firing of transition failM2), if no spare is
available, the work to be done waits in place M2ko, while if a spare is available it
is taken (transition repM2), the machine goes into repair, and the piece is worked
(transition ew2bis). Finally, the part is put in the input buffer of M3 (place M3buff)
and a token goes into themachine placeM2 meaning that M2 is available again. Upon
failure of M3, since there is no spare available, the part is blocked until the repair
ends (transition repM3E) and the part is worked (transition ew3bis). Then machine
goes back to M3 and the part goes into the buffer of completed parts.

The modeler can play the token game and observe the flow of tokens by firing the
transitions. The token game can be driven by the modeler, which explicitly chooses



236 E.G. Amparore et al.

Fig. 4 Visualization of a T-semiflow for the FMS model

which transition to fire among the set of enabled transitions, or can be delegated to
the tool (random mode execution).

Step 1: standard qualitative properties

The analysis by P- and T-invariants, which can be activated from the graphical inter-
face, reveals that there are 6 minimal P-semiflows and 4 minimal T-semiflows. The
corresponding P-invariants prove that all places are bounded, with bounds equal
either to 1, K or S P . Figure4 shows one of the four T-semiflows as displayed by
the GUI directly on the GSPN model. Transitions in the semiflow are marked in red
and their weight in the semiflow is displayed inside the transition box (all weights
equal to 1 in this semiflow). The T-semiflow of the figure refers to a pallet that goes
normally through machines M1 and M2 and then experiences a failure at M3. For this
T-semiflow there is a firing sequence fireable in the initial marking. The T-semiflow
shows a scenario inwhich there is the direct intervention of the repairman to complete
the work.

Reachability graph generation and analysis reveal that the state space contains a
single connected component, that there are no deadlocks, and that all transitions are
live. Reachability graphs can also be displayed by selecting the “measure”RG (TRG
for the tangible reachability graph). Figure5, right, shows the TRG as displayed by
GreatSPN,while the left part is a zoom-in of a portion of it. The feature for displaying
the reachability graph is very useful for Petri net beginners and for teaching, but it
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init

 M1: 
Pallets, M1, M2, M3, Spares, Ready

 M2: 
M1on, M2, M3, Spares, Ready

load
exp[0.4]

 M3: 
M1, M2on, M3, Spares, Ready

ew1
exp[1.2]

 M4: 
M1, M2, M3on, Spares, Ready

ew2
exp[1.8]

 M5: 
M1, M3, M2SpareRepairing

redoM2

failM2
exp[1]

 M6: 
M1, M2, M3, Completed, Spares

Ready

ew3
exp[1.9]

 M7: 
M1, M2, Spares, M3repairing

failM3
exp[0.07]

 M8: 
M1, M3, Spares, EndRep, redoM2

repSparesE
exp[0.1]

 M9: 
M1, M2, M3on, M2SpareRepairing

ew2bis
exp[1.8]

restart
exp[0.2]

 M10: 
M1, M2, Spares, EndRep, redoM3

repM3E
exp[0.15]

 M11: 
M1, M3, Spares, Ready, redoM2

goReady
exp[0.5]

 M12: 
M1, M2, M3on, Spares, EndRep

ew2bis
exp[1.8]

repSparesE
exp[0.1]

 M13: 
M1, M2, M2SpareRepairing, M3ko

failM3
exp[0.07]

 M14: 
M1, M2, M3, Completed

M2SpareRepairing

ew3
exp[1.9]

 M15: 
M1, M2, Spares, Ready, redoM3

goReady
exp[0.5]

 M16: 
M1, M2, M3, Completed, Spares

EndRep

ew3bis
exp[1.9]

ew2bis
exp[1.8]

goReady
exp[0.5]

ew3
exp[1.9]

 M17: 
M1, M2, Spares, EndRep, M3ko

failM3
exp[0.07]

repSparesE
exp[0.1]

repSparesE
exp[0.1]

 M18: 
Pallets, M1, M2, M3
M2SpareRepairing

restart
exp[0.2]

ew3bis
exp[1.9]

goReady
exp[0.5]

 M19: 
Pallets, M1, M2, M3, Spares, EndRep

restart
exp[0.2]

goReady
exp[0.5]

repSparesE
exp[0.1]

 M20: 
M1on, M2, M3, M2SpareRepairing

load
exp[0.4]

goReady
exp[0.5]

 M21: 
M1on, M2, M3, Spares, EndRep

load
exp[0.4]

repSparesE
exp[0.1]

 M22: 
M1, M2on, M3, M2SpareRepairing

ew1
exp[1.2]

goReady
exp[0.5]

 M23: 
M1, M2on, M3, Spares, EndRep

ew1
exp[1.2]

ew2
exp[1.8]

repSparesE
exp[0.1]

 M24: 
M1, M3, M2ko, M2SpareRepairing

failM2
exp[1]

goReady
exp[0.5]

ew2
exp[1.8]

 M25: 
M1, M3, SpareBroken, EndRep

redoM2

failM2
exp[1]

repSparesE
exp[0.1]

goReady
exp[0.5]

 M26: 
M1, M2, M3on, SpareBroken, EndRep

ew2bis
exp[1.8]

goReady
exp[0.5]

 M27: 
M1, M2, SpareBroken, EndRep, M3ko

failM3
exp[0.07]

 M28: 
M1, M2, M3, Completed
SpareBroken, EndRep

ew3
exp[1.9]

 M29: 
M1, M2, SpareBroken

M3repairing

goReady
exp[0.5]

goReady
exp[0.5]

 M30: 
Pallets, M1, M2, M3, SpareBroken

EndRep

restart
exp[0.2]

 M31: 
M1, M2, SpareBroken, EndRep

redoM3

repM3E
exp[0.15]

goReady
exp[0.5]

 M32: 
M1on, M2, M3, SpareBroken, EndRep

load
exp[0.4]

ew3bis
exp[1.9]

 M33: 
M1, M2, M2SpareRepairing

redoM3

goReady
exp[0.5]

goReady
exp[0.5]

 M34: 
M1, M2on, M3, SpareBroken, EndRep

ew1
exp[1.2]

repSparesE
exp[0.1]

ew3bis
exp[1.9]

goReady
exp[0.5]

ew2
exp[1.8]

 M35: 
M1, M3, M2ko, SpareBroken, EndRep

failM2
exp[1]

goReady
exp[0.5]

 M12: 
M1, M2, M3on, Spares, EndRep

ew2bis
exp[1.8]

repSparesE
exp[0.1]

M1, M2, M

 M17: 
M1, M2, Spares, EndRep, M3ko

failM3
exp[0.07]

repSparesE
exp[0.1]

repSparesE
exp[0.1]

 M27: 
M1, M2, SpareBroken, EndRep, M3ko

 M29: 
M1, M2, SpareBroken

M3repairing

goReady
exp[0.5]

 M31: 
M1, M2, SpareBroken, EndRep

redoM3

repM3E
exp[0.15]

Fig. 5 TRG visualization

is usually not part of the normal workflow of model-based analysis because the size
of the graph when modeling realistic systems is most of the time too large to be
conveniently visualized.

Step 2: Computational Tree Logic (CTL) model checking

More sophisticated properties of the net can be investigated through the CTL [20]
model checker provided by the tool. The user defines one ormore “CTLmeasures” in
the measure panel, as shown in Fig. 6. The analysis is performed for S P = 3, K = 5
(assigned in the top part of the window), since the GreatSPN model checker [5] is

Fig. 6 CTL model checker of GreatSPN
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based on decision diagrams, much higher values of the parameters are verifiable. The
CTL model checker of GreatSPN assigns a variable to each place. As usual in model
checkers based on decision diagrams, a bound on each variable should be known
and a variable ordering should be defined. The central part of the window (Fig. 6)
is devoted to establish by which methods the bounds and the variable ordering have
to be computed. The syntax of the CTL operators is the classical one, with A and E
standing for “for all paths” and “there exists a path.” Operators G and F stand for “for
all states in the path” and “it exists a state in the path.” The term #p means “number
of token in place p”, while condition en(t)means “transition t is enabled.” The panel
displays the truth value of each formula (computed in the initial state), but a log is
available with more detailed information, including counterexamples or witnesses,
whenever feasible. The properties listed in Fig. 6 allow to investigate, from the top
of the list downwards, more and more detailed aspects of the system behavior.

The first point of the analysis is to check standard Petri net properties like absence
of deadlocks and liveness of transitions. Property 1◦ (AG deadlock) checks that on
all states of all paths reachable from the initial marking (the whole RG) it is true that
the state is not a deadlock. The panel of Fig. 6 shows that the property is true and
therefore the system has no deadlock. Property 2◦ (AG EF en(load)) is an example
of liveness check. This property reads as “from all reachable states (AG) it is possible
to find a path (EF) that enables load” (en(load)), which is equivalent to the classical
definition of transition liveness in Petri nets. The screenshot of Fig. 6 shows that this
property is true, so transition load is live.

Property 3◦ is instead an example of a model-dependent property, aimed at inves-
tigating the use of the spares. Do we really need all the S P spares that have been
included in themodel? Indeed property 3◦ checks if there is a reachable state in which
there is a failure at M2 and no spare is available. This property reads as follows: there
is a state on a path (EF) for which machine M2 has failed ( M2ko > 0) and no spare
is available (Spares = 0). The property is true and a system designer may be tempted
to add more spares to have a more efficient production process, but of course CTL
analysis is not enough to assert how convenient this addition will be. This objective
should be addressed by a quantitative (stochastic) analysis.

The fourth property investigates the need for the spares to be repaired (and for
the repairman to get into action). This requirement has been translated into a CTL
formula (4◦:) that checks if it is true that on all reachable states (AG), on all paths
that start from those states transition goReady is enabled (AF en(goReady)), that is
to say, repairman goes back to the ready state. This property is false, since in the RG
there are loops inwhichmachines never break down; again, only a stochastic analysis
can establish how often this happens, but it is well known that, in the long run, the
probability of having an execution in whichmachines never break down goes to zero.
This is an instance of the classical fairness problem in CTL, which, when considering
all paths, accounts also for the single (or the few), executions that will never happen
under a fair schedule. GreatSPN3.0 is not able to check fair CTL, but the modeler can
use stochastic analysis to discriminate these situations, as we shall illustrate later in
this section through the stochastic property of Fig. 12. A stochastic approach might
also be safer than a fair model checker: indeed in fair CTL the modeler explicitly
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Fig. 7 Log with a counterexample for property 6◦

indicates that the model checker should consider only the paths that verify certain
conditions. If the modeler identifies the wrong conditions the whole analysis process
can be severely impaired.

The last three properties (5◦–7◦) verify how the system uses the spares (for exam-
ple, if spares are always taken one by one). 5◦ is an existential until property that
investigates whether there is a path from the initial marking in which the spares
remain untouched (#Spares == S P) until the count of spares is diminished by one.
This property is true, but its value is limited. Indeed it does not say that there are
no other paths in which a different behavior is possible, not even on that same path
there could be a different behavior. Property 5◦ is more informative since it checks
that for all reachable states (AG) in which the number of spares is equal to S P all
the paths stemming from that state keep S P spares until they get to S P − 1. This
property is false, and the tool provides a counterexample in the log file. A portion of
this log is shown in Fig. 7, which lists the states of a cyclic execution that starts with
3 spares and, passing through a number of reachable states, all with 3 spares, comes
back to the initial state of the loop. Again, this is due to the presence of an infinite
path in which machine M2 never breaks down. Another line of investigation could
be to check whether there exists a path, from the initial marking, in which all spares
are available until two of them are taken in one step. This is formalized in property
7◦, which is false.

Step 3: Classical performance evaluation

Once the user is confident that the model faithfully represents the system (at the
desired level of abstraction), he/she can proceed to the standard performance index
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Fig. 8 GUI for performance indices of the FMS and plot of the token distribution in place Pallets

computation (throughput of transitions, average number of tokens in places and
distribution of tokens in places, for various settings of the transition parameters
and/or of the initial marking).

Figure8 depicts two windows of the GreatSPN3.0 GUI. The measure panel (left)
and a plot of the token distribution in place Pallets (right) show that most of the
time the place is empty. The measure panel is the same panel of Fig. 6, where the
target measures are performance indices instead of CTL properties. Measure ALL
computes the (steady-state) token distributions for all the places and the throughput
of all transitions, while specific performance indices (measure of type PERF) can
be defined with an appropriate grammar. Measure 3◦ defines the sum of the average
number of tokens in the two places that represent machine M2 correctly working, or
of the two places that represents machine M2 broken (measure 4◦).

The tool also supports dependability measures like “how long machine M2 will
survive if no repair on M2 can take place,” for example, for a varying number of
parts circulating in the system. The condition that machine M2 cannot be repaired
is implemented in the model by simply removing transition repSpares (repair of a
spare) so that machine M2 and its spares are not repaired any longer. Figure9 shows
on the left the specified performance index (1◦) and the range of variability of the
parameters. In this case the analysis is conducted for 3 spares and a number of parts
equal to 3, 4, and 5. The selected solution is the transient one at time t , where t ranges
in the interval [4 . . . 40] with Step 4. Measure 1◦ is the probability of finding all S P

Fig. 9 Distribution of the time for consuming all spares of machine M2 for a varying number of
parts
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spares in place SpareBroken. Results are plotted on the right side of Fig. 9. The plot
represents the distribution of the time needed to break all spares, for the three values
of parameter K . The plot has been obtained using Excel on data exported through
a specific GUI facility. Distribution of tokens in places and transition throughputs
may also be shown and exported in Excel.

GreatSPN plots directly inside the GUI the distribution of the number of tokens
in places (as in the case of the token distribution of Fig. 8) and the throughput of
transitions directly on the net elements in the net window of the GUI.

Step4: A “less classical” approach: performance and dependability through CSLTA.

Standard and nonstandard dependability/performance measures can be computed
using the stochastic model checker for the CSLTA[21] logic which is also part of the
GreatSPN. A CSLTA formula has the formΦ = Prob��α(A ), where �� is a compar-
ison operator (��∈ {≤,<,=}), α a probability value, and A is a timed automaton
with a single clock x that accepts/rejects timed paths of a GSPN. People familiar
with simulation can think of the timed path of a GSPN as a simulation trace, with
states, events, and time at which events happen. A formula Φ is true in a marking
m if the probability of the set of the GSPN executions that starts in m and that are
accepted by A is �� α. Model checking algorithms for CSLTA exist that return true
if the property is true for the initial marking. The CSLTA model checker of GreatSPN
[7] computes the truth value for the initial marking as well as, for each reachable
marking, the probability of the set of accepted executions stemming from that mark-
ing. The check of a CSLTA property has a cost which, in the worst case, is equivalent
to the cost of solving in steady state a Markov Regenerative Process.

Figure10 (left) shows the automaton that accepts the GSPN executions in which
the repairman completes two repairs before time t . The automaton has four locations,
including l0, the initial one, and l2, the acceptingone.The timedautomatonof aCSLTA

formula can have more than one initial and more than one accepting locations. There
is a single clock x that starts from zero and increases linearly unless it is reset to
zero. A condition x ≤ t on an arc implies that the arc can be taken only when the
value of the clock x is≤ t . Arcs are labeled with GSPN transition names (where Act
stands for “any transition”) and location have an associated property that is evaluated
over the GSPN marking. If the clock x is attached to the arc, taking the arc implies
that x is set to zero. When the GSPN moves from marking m to marking m ′ for the
firing of t , this move is accepted by the automaton only if there is an arc labeled t

Fig. 10 Probability of two repairs, any machine, before time t = 30 for a varying failure rate ρ
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out of the current location, the clock guard is satisfied, and the arc leads to a location
whose atomic proposition is satisfied by marking m ′. The only other way in which
an automaton can move is because of a condition x = β associated to an arc from the
current location of the automaton. When the clock reaches value β the automaton
“takes the arc” and changes location.

For a GSPN execution to be accepted by the automaton of Fig. 10, it must start
in a ¬EndRep marking, then move, in one of more transition firings, to an EndRep
marking, then, back to a ¬EndRep marking. The execution is finally accepted when
the GSPN goes back to an EndRep marking. Whenever the clock reaches t , the
path is discarded. When the atomic proposition EndRep is instantiated to the GSPN
condition “#EndRep = 1” and the value of t is instantiated to 30, the CSLTA model
checking algorithms compute the probability of the accepted paths. This probability
is listed in table reported in Fig. 10 (right). Parameter ρ is the rate of failure of both
M2 and M3.

Figure11 shows an example of a timed automaton used to compute the distribution
of a completion time. The automaton accepts all executions that take less than tmax

from the first failure at M3 (firing of failM3) to complete the part that underwent the
machine failure (firing of ew3bis). The analysis plotted in Fig. 11 for a varying value
of tmax is from 5 to 50.

Note that the automaton in Figure 10 accepts paths depending only on the visited
markings. Since there are no specific requirements for actions associated to arcs, the
automaton of Fig. 11 only accepts a path based on the transitions that occur along
that path (the atomic proposition associated to location is always the clause “True”).

There is another less common use of probabilistic verification that can be very
useful. As previously discussed, there are certain CTL formulas which are false
due to the presence of some anomalous behavior, like infinite executions in which
a machine never breaks down. Typically, these executions are not realistic. Indeed
the property “AGAF en(goReady) was shown to be false. We can define a similar
property in CSLTA through the automaton of Fig. 12, which accepts all paths in which
transition goReady fires at least once. The CSLTA model checker reveals that, for all
states, the set of paths accepted by the timed automaton has probability 1, clearly
indicating that in a probabilistic setting the path(s) that makes the CTL formula false
are negligible. This is indeed an example on the importance of having in a single tool
both qualitative and probabilistic model checking.

Fig. 11 Less than tmax time units from first M3 failure to completion of the part that underwent the
machine failure
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Fig. 12 Probability of
executing GoReady at least
once

6 Model-Based Analysis Through Colored GSPN
in GreatSPN3.0

GreatSPN supports also a formalism in the class of high-level Petri nets, namely
Stochastic Symmetric Nets3 (SSN) [18]. The newGreatSPNGUI supports the design
of SSN models as well as the interactive simulation with the colored token game. It
also includes the unfolding function that generates a GSPN model whose behavior
is equivalent to that of the SSN.

Figure13 shows a variation of theFMSmodel, enrichedwith colors, and expressed
through the SSN formalism. The model definition includes a set of finite basic color
classes, and set of place color domains which result from the Cartesian product of
basic color classes and define the possible colors of the tokens in each place. Tran-
sition color domains define the possible color instances of each transition. The arc
functions define the multiset of tokens withdrawn from or added to the input and
output places by a given transition instance. Colors may be useful in different situ-
ations, like when there is a need to identify a specific token among a set of tokens
residing in the same places (e.g., to compute first passage time distributions [11]).
This differentiates the qualitative behavior of some entities (hence making the mark-
ing evolution to depend on colors) or the stochastic delays of the activities involving
specific entities (hence defining color-dependent transition rates). In general colored
models are more compact and can highlight symmetries in the model.

The SSN model in Fig. 13 has two color classes, C (identifiers of parts being
processed by the FMS), partitioned into three static subclasses: C1, C2, and C3, and
C M (faulty machine identifiers: m2 and m3 corresponding to machines M2 and M3)
containing two static subclasses, one for each of the machine that may breakdown
and be repaired. The components in subclasses C2 and C3 skip the processing on
machine m2. This is modeled by the two guards associated with transitions t0 and
t1, namely [(x ∈ C2) ∨ (x ∈ C3)] and [(x ∈ C1)]. The repair procedure for the two
machines in this model is the same, and is based on the availability of spares. We
shall consider two configurations: an asymmetric one where we have three spares for
machine m2 and only one for machine m3, and a symmetric one, where there are two
spares for each machine. There is also a repairman who replaces the broken spares
of both machines. In the model we can observe that the broken spares of machine m3

are repaired with priority over those of machine m2 (indicated by the labels π = 3
and π = 2 next to transitions repSp3 and repS P2).

3The formalism was first introduced with the name of Well-Formed Nets, but recently it has been
replaced by the new name Symmetric Nets, better emphasizing its specific features.
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Fig. 13 A colored model of an FMS with faults and repairs

For an early check of the qualitative behavior of the colored model in the design
phase, it is possible to use the colored token game feature of the GUI, which in any
given marking highlights all the transitions that have at least one enabled instance.
Clicking on one such transition a list of enabled instances pops up so that the modeler
can choosewhich one to fire, leading to a new coloredmarking. The trace ofmarkings
reached along the interactive simulation is shown, and the user can return to one of
the visited markings by clicking on it to try another path originating in that marking.
During this initial phase the transition timing can be taken into account allowing the
GUI to generate random delays to be associated with transitions enabled in a given
marking.

The analysis of colored models can proceed in two directions: (1) through the
unfolding of the colored net (now available with one click through the new GUI) into
a (usually much larger) equivalent net without colors that can be processed using the
solvers illustrated earlier, or (2) by direct analysis of the colored model using SSN
specific solvers.

Table1 shows the number of places and transitions in the unfolded version of
model depicted in Fig. 13 for different sizes of color class C . The table reports also
the sizes of the ordinary reachability graph (RG), and that of the symbolic reachability
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graph (SRG and ESRG). In a symbolic RG, multiple markings are lumped together
into a single symbolic marking. SRG and ESRG have two different criteria for this
marking aggregation.

GreatSPNcan generate both the ordinaryRG, equivalent to theRGof the unfolded
model, and a more compact symbolic RG for any SN model. The latter exploits
model symmetries and aggregates equivalent states. A CTMC can be derived both
from the RG and from the SRG, on which both transient and steady-state analyses
can be performed. Extended and Dynamic SRG [9] (ESRG and DSRG) are also
available, to efficiently deal with partially symmetric systems. Finally, a simulator
allows to compute estimates of steady-state performance measures (with confidence
intervals). The simulator supports both the plain-colored marking representation and
the symbolic one (which can improve the efficiency of future event list handling
[12, 22]).

In Table1 it is possible to compare the size of the RG, SRG, ESRG, and DSRG for
the test cases. The number of states in the RG is derived directly from the information
contained in the SRG, but it can also be derived by direct generation from the model,
at the price of higher cost in both time and space, or from the unfolded model. The
state-space reduction becomes relevant as the cardinality of class C grows. The size
of the SRG is 17% of the RG size for the case |C1| = |C2| = |C3| = 2, 6% for the
case |C1| = 3, |C2| = |C3| = 2, and 3% for the case |C1| = |C2| = 3, |C3| = 2.
Observe that a coarser partition into static subclasses gives better results in terms
of state-space reduction. Indeed when transition rates do not depend on the color,
the two static subclasses C2 and C3 can be merged and the SRG shrinks further: in
the cases |C1| = 2, |C2| = 4 and |C1| = 3, |C2| = 4, where two static subclasses
of cardinality two have been merged, the SRG size are, respectively, 4 and 1.5% of
the corresponding RG.

In systems where there are (partial) symmetries which cannot be exploited by
SRG, it is still possible to take advantage of these symmetries bymeans of two solvers:
The Extended SRG and theDynamic SRG. The FMSmodel of Fig. 13 has three static
subclasses. The elements in the first subclass are routed to machine m2 after leaving
m1, while the others are routed to m3. The subclasses C2 and C3 are needed only in
some configuration where the rates of certain transitions (in our example ew3 and
RepM3) are different for elements in classes C2 and elements in the other classes.
By executing the ESRG module on the FMS model the algorithm automatically
detects and exploits partial symmetries. The generation of the CTMC according to
the ESRG method comprises two steps. First, a graph is built that overaggregates
the states. Then a refinement step derives a lumped CTMC based either on strong
lumpability or exact lumpability criteria [9]. The choice of the type of refinement
depends on the performance indices the user wants to compute. Exact lumpability
allows to retrieve the probability of detailed states, because it ensures equiprobability
of the states in the same aggregate. In Table1 the number of states generated with
the ESRG algorithm are shown for some configurations. In particular observe that
the size of the structure generated in the first phase of the ESRG derivation is much
smaller than the size of the SRG for the samemodel (the number of states of theESRG
structure includes both tangible and vanishing markings). However, the refinement
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with the exact lumpability condition results in a size that is close at the SRG one.
When the refinement is performed using the strong lumpability condition, the size
of the refined lumped CTMC is only slightly larger than that unrefined one. In the
strong lumpability case however only some color-dependent performance indices
can be computed.

Another possibility is to apply the DSRG solver. This aggregates the state space
yielding a lumped CTMC satisfying the exact lumpability condition. The model
specification in this casemust be completely symmetric (no static subclasses partition
of color classes, no guards, symmetric initial marking) while the asymmetries can
be expressed in a separate file where it is possible to indicate, for each transition,
restrictions on the colors that can be bound to each transition variable. In Table1
the DSRG size for the model with equal number of spares for both machines and
with or without color-dependent transition rates is shown. The type of lumpability
condition makes it possible to compute color-dependent performance indices based
on the information contained in the DSRG structure.

Measures can be defined for colored nets in the same way as for the uncolored
ones: their definition can be independent of the color (average number of tokens in a
place regardless of their color, or overall throughput of a transition corresponding to
the sum of the throughput of any instance of that transition) or be color dependent.
An interesting feature of the SRG is that, despite the relevant state-space aggregation,
it allows one to derive the same performance indices that could be computed on the
much largerRG.The same is true for theESRGwith exact lumpability refinement and
for the DSRG (which also ensures exact lumpability). The model checking facilities
of GreatSPN currently require that colored models have to be first unfolded for the
analysis to be performed.

Table2 shows some measures of interest computed using the GreatSPN solvers
exploiting the model (partial) symmetries. These measures include system through-
put (partitioned on the static subclasses of C), machines utilization, and probability
for machines m2 and m3 to be unavailable due to a breakdown. Applying Little’s
formula we also derive the average time spent in m2 queue (obtained as the ratio
between the average number of customers in queue and the throughput of machine
m2). The measures are shown for the configurations (a) 2,2,2, (b) 3,2,2, and (c)
3,3,2. Each of these three configurations are tested in four different scenarios, that
have/have not the same number of spares for each machine, as well as in case of
uniform or color-dependent rates of the ew3 and RepM3 transitions.

The analysis of the model for an increasing number of elements in class C is
limited by the state-space size that grows considerably despite the application of
techniques that able to exploit the model behavioral symmetries. It is however pos-
sible to estimate the measures of interest through the SSN simulator.

Table3 reports system throughput values, utilization of machine m1, and prob-
ability of the repairman being in waiting status (#Ready == 1, i.e., one token
in place Ready) or working (#SpareRapairing == 1, i.e., one token in place
SpareRepairing). Each of these four measures are computed for six different sizes
of the color classes, reported as triplets in the first column. The simulator can work
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Table 3 Performance indices obtained with the GreatSPN SSN simulator (confidence level 95%
accuracy 2%)

Color
class size

Performance
indices

Point estimate Confidence
interval

Time (s) Average event
list size

3,3,2 X(load) 0.7355 0.7306, 0.7406 31 4.3783

U(M1) 0.6134 0.6082, 0.6186

E(#Ready) 0.6398 0.6273, 0.6524

E(#SpareRep) 0.3003 0.2888, 0.3116

3,8,2 X(load) 0.9683 0.9580, 0.9788 165 4.9284

U(M1) 0.8108 0.8017, 0.8200

E(#Ready) 0.5509 0.5351, 0.5667

E(#SpareRep) 0.3751 0.3606, 0.3895

3,8,8 X(load) 1.0794 1.0671, 1.0920 172 5.1236

U(M1) 0.8970 0.8879, 0.9064

E(#Ready) 0.5006 0.4836, 0.5177

E(#SpareRep) 0.4158 0.4001, 0.4312

5,8,8 X(load) 1.0725 1.0623, 1.0850 180 5.2520

U(M1) 0.9012 0.8923, 0.9103

E(#Ready) 0.4811 0.4659, 0.4964

E(#SpareRep) 0.4304 0.4167, 0.4439

8,8,8 X(load) 1.0957 1.0827, 1.1089 283 5.4395

U(M1) 0.9219 0.9129, 0.9311

E(#Ready) 0.4765 0.4582, 0.4950

E(#SpareRep) 0.4340 0.4174, 0.45031

10,10,10 X(load) 1.1096 1.0975, 1.1218 291 5.4807

U(M1) 0.9226 0.9142, 0.9310

E(#Ready) 0.4383 0.4217, 0.4550

E(#SpareRep) 0.4687 0.4534, 0.4838

with the same symbolic marking representation used for the SRG, so that the future
event list size (shown in the last column of Table3) does not grow significantly when
the number of colors in the color classes increases.

7 Literature Review

GreatSPN3.0 has many features that can find in similar software packages for the
analysis of Petri net-based models. A full comparison of these tools would require a
chapter on its own. In this section, we only provide a brief overview of a few other
tools that share some of the features of GreatSPN3.0 with hints on similarities and
differences. Two characteristics that are unique to GreatSPN and that will not be
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listed explicitly as differences are the availability of a CSLTA model checker and of
solution techniques based on symmetries for colored Petri nets. Vice versa, some of
the tools listed below support compositionality through hierarchical models: this is
a feature that is not present in GreatSPN.

SPNP The software package SPNP ([28] was developed in the 90s at Duke Univer-
sity, by the group of Trivedi, and it has evolved over the years to account for new
research results in the field. SPNP basic formalism is that of SRNs, which incorporate
several structural extensions to GSPNs such as marking dependencies (as marking
dependent arc cardinalities and guards) and allow reward rates to be associated with
each marking. Type of measures that can be computed are steady state, transient,
cumulative transient, time-averaged, and up-to-absorption. A discrete-event simu-
lator is available for both SRN and its non-Markovian extension. Limited support
is provided for qualitative analysis of models, which is partially due to the choice
of using a powerful text-based modeling language, for which a smaller number of
qualitative analysis techniques are available. SRN definition was done in a C-like
language, but in 2000 a Tcl/Tk-based graphical interface was added to reduce the
need for the modeler to express the model in a purely textual form. SPNP graphical
interface can also be used to draw and simulate fluid Petri nets.

Möbius The tool Möbius [19] is an extensible dependability, security, and perfor-
mancemodeling environment for studying large-scale discrete-event systems. It sup-
ports multiple model formalisms which allow the modeler to represent each part of
a system in the formalism that is most appropriate for it. Among the available for-
malisms it supports StochasticActivityNetworks (SANs) [35] a superclass ofGSPNs
in which the primitive Input and Output gates allow one to specify complex tran-
sition behaviors by general functions written in a C-like language. Like GreatSPN,
Möbius provides multiple solution techniques. It supports time and space efficient
discrete-event simulation as well as numerical solutions based on compact MDD
representation of the state space. Möbius is probably the most mature tool for Petri
net (a commercial version is available as well). With respect to GreatSPN3.0 it has
better features for stochastic simulation, but it has a limited support to structural and
qualitative analyses.

TimeNET The software package TimeNET [38], now at version 4.3, was developed
starting back in 1995 at the Technische Universität of Ilmenau, as a successor of the
software DSPNexpress, which was partly inspired by GreatSPN. The main focus of
TimeNET is an efficient unified solution of DSPN and GSPN nets. Steady-state and
transient analysis techniques include either exact numerical solutions, approximate
solutions, or simulations. Firing delays of nonexponential transitions may have an
arbitrary distribution. The graphical user interface, initially developed in Motif and
then rewritten in Java, supports colored stochastic Petri nets as well as Markov
chains, and is designed to be extensible to graph-likemodeling formalisms. TimeNET
provides more support for general distribution than GreatSPN3.0, but it does not
include a complete qualitative analysis as provided by the CTL model checker of
GreatSPN.



30 Years of GreatSPN 251

Snoopy–Marcie–Charlie The University of Cottbus has developed a suite of tools for
the analysis of qualitative and stochastic properties of Petri nets which sharesmany of
the objectives of GreatSPN3.0. Snoopy [25] is a java-based graphical interface which
includes token animation.Marcie [26] is a set of analysis algorithms for various forms
of stochastic Petri nets. These algorithms implement CTL and CSL model checking
as well as CTMC solution and stochastic simulation of the net. CTL model checker
is very efficient, based on a specific class of decision diagrams called IDD which
are particularly efficient for Petri nets. Marcie is a command line tool, but it can be
called through Charlie [27], which is an “extensible” interface for solvers. Charlie
computes standard structural and behavioral properties of Petri nets, complemented
by nonsymbolic CTL and LTL model checking. Through the use of plug-in Charlie
can work as interface for the command line solvers included in Marcie.

The suite of tools has been developed over numerous years and it is now very
rich. It is not always easy to find the right solver to use and how to use it, so the wide
choice of available solvers is not very easy to use. We believe that the Cottbus suite
is facing a situation similar to that we experienced in GreatSPN before deciding to
rewrite the GUI and to link from the GUI all the available solvers. The Cottbus suite
puts emphasis on structural analysis and on the richness of Petri net extension the
tool is able to deal with. Great attention is devoted to stochastic simulation of Petri
nets of biological system. Features available in GreatSPN and not in the Cottbus
suite include CSLTA model checking and efficient solution of colored models.

Smart Smart [36] or Stochastic Model checking Analyzer for Reliability and Timing is
a software package providing command line environment for logic and probabilistic
analysis of complex systems. Its main input formalism are Stochastic Petri nets and
both discrete-time and continuous-time Markov chains. For the analysis of logical
behavior, both explicit and symbolic state-space generation techniques are available.
In the new release, currently under development, all the symbolic algorithms will
be based on Meddly library as in GreatSPN. For the study of stochastic and timing
behavior, sparse storage, symbolic and Kronecker numerical solution approaches are
available when the underlying process is a Markov chain. Discrete-event simulation
is also provided.

APNNtoolbox The APNNtoolbox [8] has been developed at the University of Dort-
mund as an open toolset around a common exchange interface denoted as theAbstract
Petri NetNotation (APNN). The tool provides support for stochastic Petri net, includ-
ing support for hierarchies and for a limited form of colors. The solvers in the APNN
toolbox are focused on state-space-based analysis methods, where state-space explo-
sion is dealt with through Kronecker representation. The toolbox also includes a
graphical user interface (APNNed) to draw the net and call the solvers.

QPME QPME [31] is a tool developed initially at the University of Darmstadt, and
currently maintained at the University of Würzburg. It is devoted to Stochastic Petri
nets with the extension of queueing places for which the tool provides discrete-event
simulation.

Oris The Oris tool [13] has been developed at the University of Florence to deal with
timed and stochastic Petri nets. The delay associated with transitions can either be



252 E.G. Amparore et al.

a nondeterministic value, between a pair of min–max boundaries, or stochastic over
a finite/infinite interval, thus subsuming also classical stochastic Petri nets. The tool
is equipped with a graphical interface for net specification and for the display of the
analysis results. Oris is oriented at the analysis of non-Markovian system, for which
it provides the most advanced solvers currently available.

8 Future Work

A future work list for GreatSPN strictly depends on what will be the research results
in the performance evaluation field in the coming years, given the willingness of
keeping GreatSPN always at pace with the most useful research advances. Such a list
is difficult to write, but there are nevertheless a few features of the current graphical
interface and associated solvers that are already planned for the (hopefully near)
future. The first enhancement is to develop a CTL model checker for colored models
to improve the analysis capabilities of GreatSPN3.0 already made unique by the use
of the CSLTA model checker. It could be interesting if suchmodel checker couldwork
directly on the symbolic reachability graph. Another approach to solve this problem
is to unfold a colored Petri net (like a SWN) into its uncolored (GSPN) equivalent
and then perform an (uncolored) model checking. Another point that deserves more
attention in the tool is the definition of the color-dependent performance indices that
would complement in an extremely useful manner the efficient solution techniques
based on symmetries for colored Petri nets already implemented in GreatSPN3.0.
Finally, compositionality of Petri net models is clearly a desired feature that would
make it easier to draw complex hierarchical models by separating the logic into
multiple nets, supporting both top-down and bottom-up approaches. In GreatSPN3.0
net composition can be performed through a command line program called algebra,
yet to be integrated in the GUI, which implements a parallel operator similar to the
parallel operator in process algebra (in CSP style) based on transition superposition;
additionally, the algebra program also implements place superposition. Upgrading
this feature to the level of the invocation of the other analysis capabilities of the tool
through the new GUI is obviously an enhancement that we would like to develop as
soon as possible.
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WebSPN: A Flexible Tool for the Analysis
of Non-Markovian Stochastic Petri Nets

Francesco Longo, Marco Scarpa and Antonio Puliafito

Abstract This chapter describes WebSPN, a modeling tool for the analysis of
non-Markovian stochastic Petri nets (NMSPNs). WebSPN is a flexible tool, pro-
viding different solution techniques to deal with the complexity of the stochastic
process underlying aNMSPN. The first solution technique that was developedwithin
WebSPN is based on a discrete-time approximation of the stochastic behavior of the
marking process which enables the analysis of a broad class of NMSPNmodels with
preemptive repeat different (prd), preemptive resume (prs), and preemptive repeat
identical (pri) concurrently enabled generally distributed transitions. One of themain
drawbacks of the discrete state space expansion approach is the state space explo-
sion that limits the tractability of complex models. For such a reason, a new solution
technique has been implemented in the WebSPN tool, which is based on the use of
multiterminal multi-valued decision diagram (MTMDD) and Kronecker matrices to
store the expanded process. Such a solution works in the continuous time domain
and enables the analysis of much more complex NMSPNs with prd and prs concur-
rently enabled generally distributed transitions. Finally, WebSPN also implements a
simulative solution, thus providing a complete and powerful tool for modeling and
analysis of real complex systems.

1 Introduction

Some of the available Petri net tools (ESP [1], GreatSPN [2], SPNP [3],
DSPNExpress [4], TimeNet [5], UltraSAN [6]) implemented the possibility of some
non-Markovian features, thus extending the range of applicability of Petri nets (PNs).
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Their main limitations include the kind and number of generally distributed (GEN)
transitions and their associated preemption policy. A very limited number of simul-
taneously enabled GEN transitions is allowed and usually restricted to only one.
Furthermore, the preemptive repeat different (prd) policy is the only one assumed.
The preemptive resume (prs) and the more recently proposed preemptive repeat
identical (pri) policies [7], although very powerful, are not yet implemented. The
first restriction can be relaxed by the analytical results available for the analy-
sis of PN with nonoverlapping prs general transitions [8], and there is an active
research to identify the proper way to analyze PN with concurrently active general
transitions [4, 9].

Some recently presented analytical results for the analysis of non-Markovian
PNs make use of Markov regenerative theory, but, as far as we know, an automatic
procedure based on this approach has not yet been developed. The only possible
approach for the analysis of PN models with prs and prd general transitions is the
phase-type (PH) approximation.With this technique, themarking process of the non-
Markovian SPN is approximated by an expanded Markov chain. The main drawback
of the PH approximation is the very large state space of the expanded Markov chain,
primarily if the random firing times have a low coefficient of variation. The pri policy
cannot be captured with the (PH) approximation.

In this chapter, we present a newmodeling tool for the analysis of non-Markovian
stochastic Petri nets that relax some of the restrictions present in currently available
modeling packages. This tool, called WebSPN,1 provides a discrete-time approxima-
tion of the stochastic behavior of the marking process which results in the ability to
analyze (both in transient and steady states) a wider class of Petri net models with
prd, prs, and pri concurrently enabled generally distributed transitions.

To solve the state space explosion problem, WebSPN also provides a more
advanced solution technique based on the use of multiterminal multi-valued decision
diagram (MTMDD) [10] and Kronecker algebra [11, 12]. Under the hypothesis that
continuous PH (CPH) distributions are associated to the firing times of the net tran-
sitions, a new method for efficiently computing and storing the derived expanded
reachability graphs is implemented. The main characteristic of such an approach
is that two layers of symbolic representation are used. The lower layer stores the
microstates in terms of the evolution of the expanded process within each macrostate
by providing a set of Kronecker expressions involving the matrices that represent
the CPH distributed events. The higher layer represents the reachability graph of the
untimed system annotated with information about active events for all system states
which is necessary in order to correctly manage event memory. This is done through
the use of a MTMDD. This higher layer is based on one of the classical symbolic
techniques used to generate the model state space, appropriately modified to collect
and store the information about active but not enabled events for all system states.
This information is necessary to algorithmically evaluate the expanded process on-
the-fly, as we do. The continuous time-domain solution enables the analysis of much

1The WebSPN tool can be downloaded from http://webspn.unime.it after a simple registration
procedure.

http://webspn.unime.it
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more complex NMSPNs with prd and prs concurrently enabled generally distributed
transitions [13–24]. In the unlikely case where an NMSPN model cannot be man-
aged by the two techniquesmentioned above,WebSPN also provides a discrete-event
simulator.

In this chapter, we present the WebSPN tool, introducing the reader to the theory
on which the solution techniques mentioned above are based and their algorithmic
implementation. The chapter is organized as follows. Section2 provides details about
the discrete-time state space expansion approach, showing how the expanded state
space approximating the stochastic process underlying an NMSPN model can be
constructed. Section3 shows the continuous-time approach, presenting the two-level
symbolic representation that is used to store the expanded process in a more efficient
way. Section4 presents a simple example to highlight the main characteristics of the
tool. Finally, Sect. 5 concludes the chapter with some final remarks.

2 Discrete-Time Expansion Approach

2.1 Introduction to Petri Nets and Preemption Policies

Here we give only a brief definition of timed Petri nets with generally distrib-
uted transitions and an intuitive explanation on the behavior of timed transi-
tions in the presence of different memory policies. A timed Petri net is a tuple
PN = (P, T ,G,A, I,O,H, M0) where P is the set of places; T is the set of tran-
sitions; G is the set of random variables γg associated with transitions; A is the set
of age variables ag associated with transitions; I,O andH are, respectively, the set
of input, output, and inhibitor functions (I ⊂ P × T , O ⊂ T × P , H ⊂ P × T ),
providing their multiplicity; and M0 is the initial marking.2

A transition t ∈ T is enabled when the number of tokens in each input place is
greater than multiplicity of input arcs and the number of the tokens in each inhibitor
input place is less than the multiplicity of the inhibitor arcs. The firing of an enabled
transition removes as many tokens as the multiplicity of the input arcs from the input
places, and adds as many tokens as the multiplicity of the output arcs to the output
places. The firing of an enabled transition, in a given marking Mi , generates another
marking M j , which is said directly reachable from Mi (Mi → M j ). Starting from
the initial marking M0, the transitive closure of → generates the reachability graph
RG(M0), which is the set of all markings reachable from M0.

A consistent way to introducememory into a SPN is provided in [25] and extended
in [8]. Each timed transition tg is assigned a general random firing time γg with
a cumulative distribution function Gg(t). A clock, associated to each individual

2A marking Mi is a tuple, whose cardinality is ||P||, recording the number of tokens in each place.
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Fig. 1 Petri net model of
one server

transition, counts the time for which the transition has been enabled. An age variable
ag , associated to the timed transition tg , keeps track of the clock count. A timed
transition fires as soon as the memory variable ag reaches the value of the firing
time γg .

Let us consider an example. ThePetri net in Fig. 1models a serverwith exponential
arrivals (transition t1) and general service time (transition t2). Waiting customers are
represented by the tokens in place P1. The server is randomly preempted by higher
priority jobs (transition t3) for an exponentially distributed amount of time (transition
t4), as shown by the inhibitor arc from place P3 to transition t2.

When a customer arrives at a server, a specific service requirement γg must be
completed. The amount of computation required is sampled from the service time
distribution function Fg(t). The optimal case is when the server is able to complete
the job before an interruption occurs. However, the server may be interrupted after
having processed only a portion of the job submitted. In this case, the behavior is
strongly affected by the preemption policy and the performance will depend on the
strategy adopted to deal with the preempted job, as described in the following:

• The server drops the customer it was dealing with before the interruption, meaning
that it looses the portion of work ag already completed. The server then starts with
a new customer possessing a new work requirement, i.e., a new sample from the
same distribution is taken. Of course, the server starts serving this new customer
from the beginning.

• The server goes back to the preempted customer with work requirement γg . The
server does not loose the portion of work ag already executed, resuming the work
from the point at which it was interrupted.

• The server also returns to the same customer with work requirement γg . However,
this server looses the portion of work ag already completed and starts the service
for this same customer from the beginning.

According to [26], the previous policies are referred to as preemptive repeat differ-
ent (prd),preemptive resume (prs), andpreemptive repeat identical (pri), respectively.
From the previous discussion, it is clear that the main difficulty in the analysis of
stochastic Petri nets with general transitions is related to the fact that the underlying
discrete state marking process is no longer a CTMC because its future evolution
depends on the past history.
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Based on this memory concept, at any time instant the marking and the individual
memory associated with the GEN transitions of a NMSPN uniquely determine the
future stochastic behavior of the NMSPN, which means that the marking process
together with the memory process of the GEN transitions is a Markov process. The
main idea behind our proposed discrete-time approach is to discretize the continuous
memory process and the time to obtain a discrete-time Markov chain (DTMC) that
approximates the stochastic behavior of the compound Markov process. The time
axis is divided into equal intervals of length δ, while we use the concept of discrete
phase-type distributions (DPH) to discretize thememory process when possible [27].

2.2 Discrete-Time Approach

Here, we present the discrete-time approach to analyze NMSPN that is implemented
in WebSPN.

In order to explain how to approximate the stochastic behavior of continuous-
time SPNs, the SPN shown in Fig. 2 is considered as an example. This SPN models
a system that alternates between two conditions: a fully operative state (token in
place P2), where useful work can be performed, and a failure state (token in place
P1), where the system does not perform any work. The EXP transitions t1 and t2
describe the changes in the system state from operational to failed and vice versa.
Transition t3 models the duration of the work to be performed and is assumed to be
non-exponentially distributed. In this example, the DPH [28] distribution, depicted
in Fig. 3a, with generator P = {Pi j } and initial probability α = {1, 0, 0, . . .} is used
to approximate the firing time of t3. Based on thisDPH structure, transition t3 can fire
when the DPH is either in phase 2 or in phase 4 because those phases possess arcs
to absorbing phase 5 of DPH. Similarly, Fig. 3b depicts the DPH we have adopted
to approximate the firing of an exponentially distributed transition, where λ is the
firing rate and δ is the approximation step.

P1

P2

P3

t1 t2

t3

M1

M2

M0
t1

t3

t2

M  = 1000
M  = 0101
M  = 0012

Fig. 2 SPN with one GEN transition
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Fig. 3 DPH approximation of the firing time of t3

2.2.1 SPN with one generally distributed prd transition

Let us suppose that the GEN transition t3 is associated with a prd memory policy.
Using DPH distributions, the state of the expanded DTMC is defined as a pair of
nonnegative integers (i, u), where i is the index of a marking (Mi ∈ RG(M0)), and u
is a phase of the DPH associated with the GEN transition. Thus, u is used to capture
the “memory” that is necessary to model the GEN transitions. u = � denotes that
the process is in a state where the general transition has no influence (i.e., it has no
memory). If 1 ≤ u ≤ ν the GEN transition is enabled. The pair (i, u) will be called
a descriptor and identifies the state of the expanded DTMC.

Figure4 shows the DTMC constructed to approximate the stochastic behavior of
the Petri net depicted in Fig. 2. The chain is derived from the reachability graph. All
states in the reachability graph are examined, and the DTMC is generated depending
on the transitions enabled in each of them. Each marking in the original continuous
process produces a set of states of the expanded DTMC characterized from the same
index i in the descriptor (i, u). All the states with the same marking index in its
descriptor constitute a macrostate. Of course, the expanded process has as many
macrostates as the number of markings of the continuous process. In Fig. 4, the three
macrostates are outlined by ellipses with the name of the marking depicted nearby.

Fig. 4 DTMC approximation of the SPN in Fig. 2 with prd transition
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Fig. 5 DTMC approximation of the SPN with prs transition

2.2.2 SPN with One Generally Distributed prs Transition

If the GEN transition is associated with a prs policy, the DTMC structure must
be organized in order to keep track of the amount of time the prs transition was
enabled before being preempted. This is because the transition has to restart with
the same age memory value once it becomes enabled again. For this purpose, a
different expanded DTMC is needed. Figure5 shows the DTMC that approximates
the stochastic behavior of the SPN depicted in Fig. 2 when t3 possesses a prs memory
policy.

The only difference with respect to the prd case is the macrostate related to the
marking M0. With a prs policy, four states with descriptors (0, u), 1 ≤ u ≤ 4, are
added to the macrostate. These descriptors remember the value of the age memory
of transition t3 when it is disabled by the firing of the EXP transition t2.

2.2.3 SPN with One Generally Distributed pri Transition

If a pri policy is assumed for the GEN transition t3, an interrupted job must be
repeated with an identical work requirement. To capture the stochastic behavior of
this case, a different expanded DTMC is constructed. The stochastic behavior of
an enabled pri-type transition is described by two continuous variables: the actual
sample of the firing time and the remaining firing time, or alternatively, the actual
sample of the firing time and the amount of time during which the transition has been
enabled. In the proposed expansion method, the descriptor (i, u, w), with u ≤ w,
describes the state of the process, where i indicates the marking, u the duration of
time while the transition is enabled (measured in integer time slots δ), and w the
sampled value (measured in integer time slots δ). The descriptor (i, 0, w) indicates
that the pri transition is disabled but has not fired so the sampled firing time w is
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Fig. 6 DTMC approximation of the SPN with pri transition

maintained. After becoming enabled again, the process enters state (i, 1, w). The
descriptor (i,�,�) is used for states where the process has no memory. In other
words, the marking itself completely determines the state of the process.

The evolution of the GEN transition tk with pri memory policy in isolation can
be described by qk columns. The w-th column consists of w states with descriptors
(i, u, w), where 1 ≤ u ≤ w. Recalling that w is the sampled firing time, when the
discrete process enters a state with descriptor (1, 1, w), w slots of time must pass
before firing. This is exactly the time spent transitioning among the states of the
column.

Figure6 shows the DTMC that approximates the behavior of the SPN shown in
Fig. 2. In this case, the macrostate corresponding to the marking M1 is composed of
the states approximating the GEN transition t3, as described before.

2.2.4 General Solution

In the last three subsections, we have described amethod to build a DTMC to approx-
imate the stochastic behavior of Petri nets containing only one GEN transition. Using
a similar approach, this section shows how to derive the underlying DTMC for SPNs
with more than one simultaneously enabled GEN transition. Similar reasoning can
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be followed in the case where more EXP transitions are simultaneously enabled in
the same time slot δ.

The following notation has to be introduced:

• N D , N S , and N I are the number of prd, prs, and pri transitions in the SPN,
respectively.

• AD(i), AS(i), and AI (i) are the set of enabled prd, prs, and pri GEN transitions
in marking Mi , respectively.

• Pk
i, j is the probability of moving from phase i to phase j in the DPH structure

of the transition tk , which describe how a prd or prs GEN transition changes its
phase.

• Qk
i is the approximated probability that the pri GEN transition tk fires in the i th δ

interval.
• Lk is the number of phases in the DPH structure of the prd or prs transition tk .

As discussed earlier, one variable is needed to handle transitions with prd and
prs policy (to store the current phase of the expanded DTMC), and two variables to
handle transitions with pri policy (one to store the age of the transition and the other
to store the sampled value of the firing time).

When a pri transition is enabled, the associated random variable is sampled and
the age variable is set to 1.3 If the pri transition is preempted in the next state the age
variable is reset to 0 and the associated sampled value remains the same.

Thus a generic state of the DTMC will be Zr = ( j, Dr , Sr , I r , Xr ), where

• j is the index of marking M j of the SPN.
• Dr is a vector of length ||T ||, the number of the transitions in the SPN, storing the
possible phases of a prd transition. In particular, its kth element (Dr

k ) is the phase
of transition tk when the DTMC is in the state Zr . The sign � in the kth position
indicates that the prd GEN transition tk has no memory (it is not enabled).

• Sr is the same as Dr but for prs GEN transitions; Sr
k = � means that the prs

transition tk is not active, and thus it has no memory.
• I r is a vector of length ||T ||. The kth element of I r (I r

k ) is the age of the pri
GEN transition tk when the DTMC is in the state Zr . Similar to the case of prs
transitions, I r

k = � indicates that transition tk is not active.
• Xr is a vectorwhose kth element (Xr

k) is the sampled value of thepriGENtransition
tk when the DTMC is in the state Zr .

Given a state Zr = (i, Dr , Sr , I r , Xr ) of the DTMC, it is possible to build the
adjacent states both in the casewhen none of the enabled transitions fires in a time slot
δ as well as the more complex cases when one or more firings occur. The interested
reader can find such details in [29].

3Note that as time increases by δ, the total elapsed time at step i is i ∗ δ. This explains why only
the index indicating the time interval needs to be recorded.
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2.3 The Algorithm

The algorithm uses discretization of the continuous random variables to approximate
the continuous process. The phase-type distributions, used in case of prd and prsGEN
transitions, are given by the users, whereas the probabilities Qk

i are directly computed
from the cdf associated with tk .

The main steps of the solution method implemented are

1. generation of the reachability graph (with tangible and vanishing states) and
reduction of the reachability graph to tangible states only;

2. generation and analysis of the expanded DTMC;
3. evaluation of the final measures at the net level, based on the solution of the

expanded DTMC.

Based on the results shown in the previous sections, given the reachability graph
and the discrete phase-type distributions associated to the GEN transitions, step 2 of
the approximation method is as follows:

• Initialization Step
Initialization creates the set of states originating in the initial marking M0. More-
over, it is necessary to compute the initial state probability vector on the generated
states. Note that if no pri transition is enabled in M0 only one state is built in
this step of the algorithm. The states created are put in a list of states to expand
(list_expand).

• Iteration Step
It performs

1. a state Zr to be expanded is extracted from list_expand;
2. new expanded states Zr ′

are computed in case of no firing events;
3. the transition state probabilities from Zr to Zr ′

are computed and stored;
4. all the states Zr ′

, not previously created, are stored in list_expand;
5. sets F r

p, with p = 1, . . . , 2||F r || − 1, are computed; based on these sets, other
reachable markings M j are computed, and expanded states Zr ′

are built (these
states are the states associated with the firing of one or more transitions);

6. the transition probabilities from Zr to Zr ′
are computed and stored;

7. all states Zr ′
, not previously created, are stored in list_expand; the state Zr

is stored in another list named expanded;
8. if list_expand is not empty the algorithm proceeds with step 1, otherwise it

terminates.

Similar to [30], the system behavior is approximated by a discrete-time Markov
chain (DTMC) over an expanded state space determined by the cross product of the
system states (the markings of the Petri net) and the discretized values of the asso-
ciated age variables. This approach is also closely related with the DPH expansion
method proposed by Cumani in [1]. The main difference is that, in this case, the
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Fig. 7 Example of CPH with its matrix representation

system behavior is approximated by an expanded DTMC, while PH approximation
obtains an expanded CTMC. The present approach also inherits some similarities
from the supplementary variable approach [31], since the supplementary (age) vari-
ables are constrained to assume values in a discretized set.

WebSPNalso implements a solution techniquewhich is based on aCTMCapprox-
imation. In fact, the technique described in this section is subject to the state space
explosion problem which strongly limits its applicability to real system models. To
solve this issue, we apply symbolic representation techniques as described in the
following section.

3 Two-Layer Symbolic Representation for CPH-Models

3.1 Model Definition and Basic Concepts

In this section, we assume that the firing time of each transition is described by a
CPH distribution [32]. An example of a CPH distribution is reported in Fig. 7. We
will refer to such a model as a CPH-model. It can be formally defined as follows.

Definition 1 A CPH-model is a tuple CPHM = (S, Sinit , E,N , C,P), where

• S (of cardinality ‖S‖) is the model state space;
• Sinit ∈ S (of cardinality

∥∥Sinit
∥∥) is the set of initial states;

• E (of cardinality ‖E‖) is the set of the possible events;
• N : S → 2S is the next-state function, specifying the states that can be reached
from a given state in a single step;

• C (of cardinality ‖E‖) is the set of CPH distributions associated with the model
events; the CPH distribution assigned to event e is of order νe with representation
(αe,Ge) and αeνe+1 = 0.

• P : E → {prd, prs} is a function that assigns a preemption memory policy to
each event.
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(a)

(b)

Fig. 8 Example of NMSPN model

Given the model state space S, RG(Sinit ) is the model reachability graph whose
nodes are represented by system states and edges are labeled with system events.
RG(Sinit ) represents the possible evolution among the states of the system. When
the timing associated with each system event is considered, the reachability graph
represents the stochastic process underlying the model.

A CPH-model can be described using several different modeling formalisms.
The only required restriction, due to Definition 1, is that all events have timers
characterized by CPH distributions defined over support [0, b] (with b > 0) and
that no immediate events are possible (distributions have no probability mass at
t = 0). The latter hypothesis can be relaxed if more complex symbolic techniques
and data structures are exploited, e.g., as done in [33]. In Fig. 8a, a non-Markovian
stochastic Petri net (NMSPN) [34] is depicted. In the following, we will refer to
it as a running example under the hypothesis that the CPH distribution depicted in
Fig. 7 is associated with each of the NMSPN transitions. The reachability graph of
the NMSPN is depicted in Fig. 8b, assuming that N = 2 tokens are present in place
p in the initial marking of the net. The state space is characterized by ‖S‖ = 10
states, indexed with s = 0, . . . , 9. The correspondence between state indices and
token distributions is also shown. The number of tokens in each place (if not null) is
reported as superscript of the place name.

As mentioned above, in order for a CPH-model to be correctly represented and
managed, we have to consider that the memoryless property does not hold and, in
general, it is necessary to keep track of the time during which an event has been
enabled while moving among states. For this purpose, an age variable ae is usually
assigned to each event e ∈ E , behaving as a local clock. The way in which ae is man-
aged during state transitions determines the different preemptive memory policies,
according to the following definition:

Definition 2 If an event e ∈ E possesses a prd memory policy, its corresponding age
variable ae is reset to zero each time e either fires or is disabled in a new state. In case
of a prs memory policy, ae is reset to zero only when e fires, otherwise it maintains
its value.
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The prs memory policy allows an event to have an associated age variable greater
than zero over the process time evolution, including states in which the event itself is
not enabled. Thus a state classification can be performed with respect to event e ∈ E
and to the possible values of the associated ae. Specifically, we define the active
events in a state as follows:

Definition 3 An event e is said to be active in a state s ∈ S if and only if its age
variable ae can be strictly greater than 0 when the model is in state s.

Note that if an event e is enabled in a state s0 then it is also active in that state,
given that its associated age variable ae increases its value over time. If such an event
is disabled while moving from s0 to a new state s1 and if it is associated with a prs
policy, then the value of its age variable is not reset to 0, according to Definition 2,
and the event will be active in s1 even if it is not enabled. Also, note that even though
Definition 3 is widely used in the context of non-Markovian models [7, 8, 35] it is
slightly different from the definition of active events given in [8] because we allow
an event e to be active even if its associated age variable ae is equal to 0. According
to this definition, the property for an event to be active is primarily related to the
potential for the age variable to increase than the actual value it assumes. This is
due to the fact that we want to classify the states independently from particular time
instants during the evolution of the process. Definition 3, in fact, refers to the range
of values ae could assume during the evolution of the process.

Given a state s ∈ S, according to Definitions 2 and 3, we identify two sets of
events T (s)

e and T (s)
a as the set of enabled events and active but not enabled events

in state s ∈ S, respectively. Due to their definitions, T (s)
e ∩ T (s)

a = ∅.
As a consequence of such definitions, we introduce the following theorem for an

event to be active but not enabled in a system state of a CPH-model:

Theorem 1 Given a CPH-model M, a state s0 ∈ S and an event e ∈ E with a prs

memory policy associated, e ∈ T (s0)
a iff e /∈ T (s0)

e and one of the following statements

holds:

1. ∃ s1 ∈ S, ∃ e1 ∈ E, s1 = s0, e1 = e | s0 ∈ Ne1(s1) ∧ e ∈ T (s1)
e

2. ∃ s1 ∈ S, s1 = s0 | s0 ∈ N (s1) ∧ e ∈ T (s1)
a

where Ne1 is the next-state function associated with event e1.

The theorem states that an event e ∈ E belongs to set T (s)
a if it is not enabled

in state s ∈ S and if, for some path within the reachability graph RG(Sinit ), it is
possible for its age memory variable ae to be greater than 0 in s. In fact, if event e is
enabled in state s and it is disabled by the firing of another conflicting event e then,
according to Definition 2, it will retain its memory level after reaching state s if it
has a prs memory policy associated (statement 1 of Theorem 2). Moreover, if event e
has memory in s and it is not enabled then it will retain its memory level in each state
s reached by the process until it becomes enabled again (statement 2 of Theorem 1).
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Table 1 Sets T (s)
e and T (s)

a
for each of the states in the
running example

s T (s)
e T (s)

a

0 {a, d} {b′′ }
1 {a, b

′
, d} {b′′

, c}
2 {a, d, e} {b′′ }
3 {b′ } {b′′

, c, d}
4 {e} {a, b

′′ }
5 {b′

, e} {a, b
′′
, c, d}

6 {a, b
′′
, c, d} {}

7 {b′
, b

′′
, c} {d}

8 {b′′
, c} {d}

9 {b′′
, c, e} {a, d}

Considering our running example, event a is enabled in state 1 and is disabled in
state 5 by the firing of event d. Thus, event a is active in state 5 and, as a consequence,
it is active also in all the states reachable from it, e.g., state 9. Table1 reports sets
T (s)

e and T (s)
a for each state s ∈ S of the running example, under the hypothesis that

all the events possess a prs memory policy.
In the following, we will show that computation of sets T (s)

e and T (s)
a for each sys-

tem state s ∈ S is a crucial requirement in order to be able to symbolically represent
the expanded CTMC (ECTMC) underlying a CPH-model.

3.2 Lower Layer of Symbolical Representation: The Q matrix

In the continuous time domain, the technique that we use to account for the firing
time of system events in a CPH-model consists of adding all the dynamics of the
CPHs associated with model events into all the states where they are active [34, 36],
producing aMarkov model whose reachability graph is larger than the original. Sim-
ilar to the discussion in the context of the discrete-time approach, depending on the
dimension of the CPH-model’s reachability graph and the order of the CPH distrib-
utions associated to system events, the state space explosion can make this explicit
representation too large for a computer’s memory. The use of symbolic techniques
to represent the infinitesimal generator matrix associated with the expanded reacha-
bility graph can alleviate the problem. Before providing details about the symbolic
approach implemented in WebSPN, we briefly recall some basic concepts on the
expansion technique which are helpful to understand this discussion.
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3.2.1 Continuous-Time State Space Expansion

The reachability graph RG(Sinit ) of a CPH-model M (without considering
any temporization) can be explicitly represented in the form of a square matrix
R (of dimension ‖S‖) in which each entry Ri j is the set of events whose firing
changes state si ∈ S into state s j ∈ S. For example, the matrix representation of the
reachability graph of the running example is as follows:

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a d 0 0 0 0 0 0 0
0 0 0 a 0 d b′ 0 0 0
e 0 0 0 d a 0 0 0 0
0 0 0 0 0 0 0 b′ 0 0
0 0 e 0 0 0 0 0 0 0
0 e 0 0 0 0 0 0 0 b′
c b′′ 0 0 0 0 0 a 0 d
0 c 0 b′′ 0 0 0 0 b′ 0
0 0 0 0 0 0 c b′′ 0 0
0 0 c 0 0 b′′ e 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to the state space expansion approach [34], the evolution of the stochas-
tic process underlying aCPH-model can be represented by anECTMC {Z(t) : t ≥ 0}
whose states are defined over the pairs (s,A) where s ∈ S is a reachable system state
and A is a vector containing the values of the age variables assigned to system events.
In such a vector, the generic entry ae (1 ≤ ae ≤ νe) represents the firing stage cur-
rently reached within the CPH distribution associated with event e ∈ E . The basic
idea is to combine the phases of the CPHs of the events that are active in a system
state according to the structure of the associated CTMCs. Thus, the state space Z
of Z possesses a cardinality much greater than ||S||, in which we call the elements
of Z microstates. All the microstates with the same value of s represent the same
state in M with different evolution levels of the active events. For this reason, we
define a macrostate as a set of microstates characterized by the same value of s. Of
course, the number of macrostates is ||S||. In WebSPN, we use a set of relations able
to represent the infinitesimal generator matrix of Z exploiting Kronecker algebra
[37, 38].

The relations we will build are based on the following features:

• let Q be the infinitesimal generator matrix of the ECTMC Z(t), then Q can be
represented as an ‖S‖ × ‖S‖ block matrix;

• non-null blocks in Q correspond to non-null elements in R;
• the generic diagonal block Qi i (i = 0, . . . , ‖S‖ − 1) is a square matrix that
describes the evolution of Z(t) inside the macrostate related to state si ∈ S.

• the generic off-diagonal block Qi j (i, j = 0, . . . , ‖S‖ − 1, i = j) describes the
transition from the macrostate related to state si ∈ S to the macrostate related to
state s j ∈ S.
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In classical or explicit approaches, Q would be represented and stored in memory
as a sparse matrix. In WebSPN, an ad-hoc method is implemented based on two
layers of symbolic representation. The approach is inspired by several works already
present in the literature. However, at the best of our knowledge, WebSPN is the first
tool in which a two-layer symbolic representation technique is implemented.

The first layer deals with storing microstates, i.e., the storage of blocks
Qi j (i, j = 0, . . . , ‖S‖ − 1) through the use of Kronecker algebra operators [37–39]
based on the knowledge of the system reachability graph, the CPH representation,
and the memory policy of each event in the model.

Kronecker algebra is based on two main operators [40], the Kronecker product
(⊗) and Kronecker sum (⊕). Given two rectangular matrices A and B of dimensions
m1 × m2 and n1 × n2, respectively, their Kronecker product A ⊗ B is a matrix of
dimensions m1n1 × m2n2. More specifically, it is a m1 × m2 block matrix in which
the generic block i, j has dimension n1 × n2 and is given by ai, j · B. On the other
hand, if A and B are square matrices of dimensions m × m and n × n, respectively,
their Kronecker sum A ⊕ B is the matrix of dimensions mn × mn written as A ⊕
B = A ⊗ In + Im ⊗ B, where In and Im are the identity matrices of order n and m,
respectively.

In this context, operators ⊕ and ⊗ assume particular interpretation. Let us con-
sider two CTMCs X1 and X2 with infinitesimal generator matrices Q1 and Q2. The
Kronecker sum of such matrices (Q1 ⊕ Q2) is usually interpreted as the infinitesimal
generator matrix of the CTMC that models the concurrent evolution of X1 and X2.
Figure9a shows a graphical representation of this situation. It is important to note
that the states of the resulting CTMC are obtained from the combination of all the
states in the two initial CTMCs.

On the other hand, let us consider a CTMCX1 with a single absorbing state and let
U be the column vector containing the transition rates to such a state. Moreover, let
us consider a CTMC X2 and let P be the matrix containing the probabilities to enter

1
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Fig. 9 Graphical representation of the semantic of operator ⊕ (a) and ⊗ (b)
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states in X2. The Kronecker product of U and P (U ⊗ P) is usually interpreted as the
matrix containing the transition rates to the CTMC resulting from the combination
of the absorbing state of X1 with all the states of X2. Figure9b graphically depicts
this situation.

Here, we do not provide the details of the Kronecker representation of the infini-
tesimal generatormatrixQ of a CPH-model implemented inWebSPN. The interested
reader is referred to [11] for additional details.

3.3 Higher Layer of Symbolic Representation: Annotated
Reachability Graph

The Kronecker representation of microstates is the first step to overcome the state
space explosion problem encountered in CPH-models. However, in order to imple-
ment a complete solution technique, it is still necessary to explicitly store the system
reachability graph RG(Sinit ) in some form, e.g., as matrix R. Moreover, in order to
use the previously introducedKronecker algebra relations on-the-fly, the information
about sets T (s)

e and T (s)
a for all the system states must be stored.

Sets T (s)
e can be easily obtained by querying the high-level model, given that

the conditions for an event to be enabled only depend on the model structure. For
this reason, the information about sets T (s)

e can be obtained on-the-fly each time it is
needed by exploiting numerical solutionmethodwith little overhead.On the contrary,
sets T (s)

a need to be computed by exploiting Theorem 1 whose statements require
explorations of the reachability graph of the untimed system and they are strictly
related to its structure. Computing sets T (s)

a on-the-fly would require exploration of
the system reachability graph multiple times, incurring in non-negligible overhead.
As a consequence, it is convenient to compute sets T (s)

a only once, annotating the
model reachability graph with such an information.

In practical cases, the explicit representation of such an annotated reachability
graph can become unmanageably large preventing it from fitting in a computer’s
memory. Thus, it is necessary to employ technique to efficiently store both matrix
R and the sets T (s)

a . A higher layer of symbolic representation is needed. Before
describing such a layer, we recall some fundamental symbolic representation tech-
niques upon which our approach is based.

3.3.1 Background on Symbolic Techniques

Symbolic techniques [41] generate a compact representation of huge state spaces
by exploiting a model’s structure and regularity. A model has a structure when it is
composed of K sub-models, for some K ∈ N. In this case, a global system state can
be represented as a K -tuple (s1, . . . , sK ), where sk is the local state of sub-model k
(having some finite size nk).
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(a) (b)

Fig. 10 Running example with a partitioning of its places (a) and the MDD associated to it in the
case of N = 2 (b)

The use of multi-valued decision diagrams (MDDs) [42] to encode model state
spaces was introduced by Miner and Ciardo in [43]. MDDs are rooted, directed,
acyclic graphs associated with a finite ordered set of integer variables. When used to
encode a state space, an MDD has the following structure:

• nodes are organized into K + 1 levels, where K is the number of sub-models;
• level K contains only a single nonterminal node, the root, whereas levels K − 1
through 1 contain one or more nonterminal nodes;

• a nonterminal node at level k possesses nk arcs pointing to nodes at level k − 1;

A state s = (s1, . . . , sK ) belongs to S if and only if a path exists from the root node
to the terminal node 1, such that at each node the arc corresponding to the local state
sk is followed.

Figure10a shows our running example with a partitioning of its places into three
sub-nets. Figure10b shows the local state space of each sub-net with the corre-
sponding integer encoding for each sub-marking, the global state space in terms
of sub-markings, and its encoding through an MDD where N = 2. Only paths to
terminal node 1 are shown.

In [44], and then in [45], Ciardo et al. proposed the Saturation algorithm for
the generation of reachability graphs using MDDs. This iteration strategy improves
both memory and execution-time efficiency. While the first version of Saturation
proposed in [44] needs to know a priori the local state spaces of the sub-models,
SaturationUnbound [45] produces anMDDrepresentation of the final state space and
a separate representation of the minimal local state spaces without such a knowledge.
Anefficient encodingof the reachability graph is built in the formof a set ofKronecker
matricesWe,k with e ∈ E and k = 1, . . . , K .We,k[ik, jk] = 1 if state jk of sub-model
k is reachable from state ik due to event e. According to such a definition, the next-
state function of the model can be encoded as the incidence matrix given by the
Boolean sum of Kronecker products

∑
e∈E

⊗
K≥k≥1 We,k . As a consequence, the

matrix representation R of the reachability graph of the model can be obtained by
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filtering the rows and columns of the matrix corresponding to the reachable global
states (our macrostates) encoded in the MDD and replacing each non-null element
with the labels of the events that cause the corresponding state transition.

Returning to the running example, the Kronecker matrices associated with event
a produced by Saturation Unbound are

Wa,1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
Wa,2 =

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ Wa,3 =
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦

Performing the Kronecker product of such matrices and filtering the rows and
columns corresponding to the reachable states encoded by the MDD produce the
following matrix:

Ra =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which represents the portion of matrix R related to event a if the non-null elements
are replaced by the label of such an event.

3.3.2 Encoding Sets T (s)
a Through MTMDDs

The combination of the MDD and K · ||E || Kronecker matrices produced by Sat-
uration Unbound is a very effective way to represent the reachability graph of the
model analyzed. Since RG(Sinit ) is the data input to algorithmically generate the
infinitesimal generator matrix Q of the ECTMC, we will use Saturation Unbound
to generate it.4 The use of Saturation together with the Kronecker representation of
macrostate presented in Sect. 3.2 further improves memory consumption compared
to the approach presented in [46].

4The use of Saturation is incidental. The methodology we propose is independent of the algorithm
used to generate the reachability graph of amodel.We use SaturationUnbound due to itswell-known
efficiency.
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Knowledge of the reachability graph of the untimed system as produced by Sat-
uration is not enough to manage the matrix Q on-the-fly according to the lower
layer of symbolic representation. Considering that the information about the events
enabled for all the system states is contained in the high-level description of the
model and it can be evaluated on-the-fly when needed with a negligible overhead,
the only additional information needed is the knowledge of the sets T (s)

a . In this case,
using Saturation to evaluate the reachability graph requires a further analysis step
to compute this information and more advanced data structure to store it. We use
MTMDDs [10] for this purpose.

The main differences with respect to MDDs are that (1) more than two terminal
nodes are present in an MTMDD, and (2) such nodes can be labeled with arbitrary
integer values, rather than just 0 and 1. An MTMDD can efficiently store both the
system state space S and the sets T (s)

a of active but not enabled events for all s ∈ S that
are necessary in our approach to evaluate non-null blocks of matrix Q. In fact, while
an MDD is only able to encode a state space, an MTMDD is also able to associate
an integer to each state. Next, the encoding of sets T (s)

a can be done, associating to
each possible set of events a unique integer.

In WebSPN, we exploit a simple code. Let us associate to each event a unique
index n such that 1 ≤ n ≤ ‖E‖. The integer value associated to one of the possible
sets T (s)

a is computed starting from the indexes associated with the system events
that belong to it in the following way:

b‖E‖ · 2‖E‖ + · · · + bn · 2n + · · · b1 · 21 + 1 =
‖E‖∑

i=1

bi2
i + 1

where

bi =
{
1, if event ei ∈ T (s)

a
0, otherwise

Figure11 shows the MTMDD associated to the running example and the sets T (s)
a

for each model state in the case where all the events in the NMSPN possess a prs
policy.

3.3.3 Computation of Sets T (s)
a

Using Theorem 1, it is possible to compute the sets T (s)
a for all system states by

traversing the reachability graph along all the possible paths and storing this infor-
mation in an explicit data structure as it is discovered. Such a computation can even
be performed on-the-fly during state space generation if classical approaches are
used given that they usually discover new states by traversing the reachability graph
in a breadth-first-search (BFS) or in a depth-first-search (DFS) order. Since symbolic
algorithms work in a highly localized manner, adding states out of the BFS or DFS
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Fig. 11 The MTMDD associated to the running example in the case of N = 2

(a) (b)

Fig. 12 A graphical example of (a) s0 � EF [pUq] and (b) the algorithm of Table2

order, the computation of all the sets T (s)
a by directly applying Theorem 1 becomes

inefficient or, in most of the cases, impossible.
In [47], Ciardo et al. applied Saturation to efficiently evaluate computation tree

logic (CTL) formulas. In [11], we demonstrated how the CTL operator EU can be
used to compute the sets T (s)

a and we defined an algorithm that takes advantage of
the efficiency of the Saturation algorithm to store such an information in aMTMDD.

Figure12a shows an example of a path of states satisfying the formula EF [pUq]:
state s0 satisfies the formula EF [pUq] because there exists a path starting from state
s0 to state s3, where logical condition p holds on s0, s1, s2, q holds on s3, and each
state in the path is reached according to the next-state function F(s).

The theorem upon which our algorithm is built on is as follows:

Theorem 2 An event e ∈ E , with an age memory policy associated, belongs to T (s0)
a ,

with s0 ∈ S, iff s0 � EF [pUq] over a path at least one step in length, where p
and q are the statements “e is not enabled” and “e is enabled,” respectively, and
F(s) = N−1(s) \ N−1

e (s).
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Theorem 2 states that it is possible to compute the states in which event e is active
but not enabled simply evaluatingCTL formula EF [pUq] over the system state space
considering condition p as “e is not enabled” and condition q as “e is enabled.”
Moreover, the next-state function F(s) considered is the inverse of the system next-
state function N (s) but dropping the paths due to event e. Note that Theorem 1 is
not applicable if BFS or DFS order is not used to explore symbolic data structures of
the reachability graph. However, Theorem 2 is applicable both when traditional and
symbolic data structures and algorithms are exploited even when BFS and DFS are
not used. Thus, the approach takes advantage of the efficiency of symbolic approaches
in the field of state space expansion, representing one of the principal contributions
implemented in the WebSPN tool.

3.3.4 The Algorithm

The traditional computation of the set of states satisfying E[pUq] uses a least fixed
point algorithm that starts with the set Q of states satisfying q and iteratively adds
all the states that reach them on paths where property p holds. The set of states in
which property p holds is called P . In [47], Ciardo et al. proposed a new approach
to compute the EU operator based on Saturation called EUsat. It can be easily
demonstrated [11] that the set of all system states in which event e is active but
not enabled can be obtained by applying just one forward Saturation step to the
set of states in which event e is enabled, neglecting e itself. This behavior offers
great advantages in terms of execution time and memory occupation compared to
traditional explicit expansion approaches.

Figure12b shows the computation of the set of states in which event a is active
in our running example. States in double non-dashed line have transition a enabled
and are used as the starting point of the computation. States in double dashed line are
obtained through a forward Saturation step, performed without considering the firing
of a as a possible event. Transition a is active but not enabled in these states. States
in normal dashed line belong to the state space, but transition a is neither enabled
nor active in them. These states cannot be obtained through Saturation because we
ignore event a.

From Theorem 2 and the considerations above, it is possible to state the algorithm
presented in Table2 in the form of pseudocode.

The algorithm described above includes all the steps needed to generate our higher
layer symbolic representation of the annotated reachability graph. In order to better
clarify how such steps interact with each other and with the lower layer symbolic
representation, we depict the overall procedure in Fig. 13 in graphical form. In this
figure, the most relevant data structures involved in the procedure are also reported.
Four main steps are represented:
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Table 2 Pseudocode for the algorithm

GenerateMT M DD(in m : model, p : parti tioning, Si : set of state, Em : set of event) : mtmdd

Build the MTMDD encoding the state space S and the sets T (s)
a for model m considering the set of initial states

Si , partitioning p, and the set Em of events with age memory policy associated.

1. declare a, t : mdd;
2. declare u : mtmdd;
3. a ←− I ni tiali zeM DD(m, p, Si );
4. Explorer SaturationUnbound(p, a,m);
5. u ←− a;
6. foreach e ∈ Em do

7. t ←− Extract M DD(m, p, e, a);
8. Explorer SaturationClassical(m, p, e, t);
9. Sum(t, e, u);
10. return u;
I ni tiali zeM DD(in m : model, p : parti tioning, Si : set of state) : mdd

Build the MDD encoding the set of initial states Si for model m considering partitioning p.

Explorer SaturationUnbound(in p : parti tioning, inout a : mdd, m : model)

Recursively explore the MDD a saturating its node and generating the state space S for model m considering the

partitioning p. Saturation Unbound is used. Information about the local state spaces and the next-state function are

stored in m.

Extract M DD(in m : model, p : parti tioning, e : event, a : mdd) : mdd

Extract from MDD a a new MDD encoding the set of states enabling event e for model m considering partitioning p.

Explorer SaturationClassical(in m : model, p : parti tioning, e : event, inout a : mdd)

Recursively explore theMDD a saturating its node and generating the set of states reachable from states initially encoded

by a considering all the event in Em except event e. The first version of Saturation is used.

Sum(in t : mdd, e : event, inout u : mtmdd)

For every state s encoded by MDD t if s doesn’t enable event e then add 2n to the value associated to s in MTMDD u

where n is the integer associated to event e. If s enables event e then skip to the following state.

• State space generation: this step specifies the high-level model through some
formalism (e.g., Petri nets, queuing network, process algebra) together with a par-
titioning of the model and runs the I ni tiali zeM DD() and Explorer Saturation
Unbound()procedures in order to generate themodel reachability graph RG(Sinit )

stored in the form of an MDD and a set of Kronecker matrices We,k .
• Active events search: the data structures generated are the input for the second
step that produces an MTMDD encoding all the information about the active but
not enabled events which is needed by the lower layer representation in order
to generate all the Kronecker expressions representing the expanded reachability
graph.

• Kronecker expression generation: based on the information stored into the
MTMDD and on the high-level model, the set of Kronecker expressions can be
computed, thus generating a compact representation for the expanded
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Fig. 13 Activity diagram of the two-layer representation algorithm

reachability graph. In an efficient implementation of the overall method, these
expressions would not be explicitly stored but computed on-the-fly when needed,
while evaluating the state probabilities.

• Model solution: the state probabilities of the expanded process are numerically
evaluated.

TheModel solution phase has been depicted in dashed line because it is not discussed
in this chapter. This step has been reported to show how the proposed method works
in the context of the overall problem to evaluate the process state probabilities.

4 A Numerical Example

In this section, we develop and solve a nontrivial Petri net model with several con-
currently enabled general transitions. The example studies the completion time of a
set of applications running in a time-sharing system. The application’s architecture
follows the producer–consumer scheme. It is relevant because the Petri net model is
characterized by several generally distributed transitions enabled in the same mark-
ing, and different kinds of preemption policies can be used according to the different
behaviors of the application. This model can be used as a basis to analyze differ-
ent types of systems such as transactional databases, manufacturing systems, and
client/server communication systems.
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Fig. 14 Petri net model of producer–consumer applications

4.1 Model Description

The system moves between an operational phase, during which useful work is
produced, and a maintenance phase in which the processing capacity is temporarily
interrupted and no useful work is produced. The task of the system in the operational
state is to process a certain number of jobs. The execution of each job consists of two
sequential phases: the first one preprocesses the job, while the second one performs
the processing. These two phases are executed in fixed time slots. We study the sys-
tem in order to obtain the probability distribution of the time required to complete a
fixed number of jobs.

ThePetri netmodelwe developed is shown in Fig. 14 directly in theWebSPNGUI,
which represents themodel of the system that, according to the description, consists of
three functional blocks generically referred to as Block1, Block2, and Block3. Block1
models the alternation of the systembetween the operational andmaintenance phases.
Block2 models the two sequential phases of a job processing. Finally, Block3 models
the system turnover between the preprocessing and the processing job phases. The
two phases are performed in time-sharing fashion.
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WithinBlock1, the two operating stateswhere the system can be are represented by
places operational and maintenance and by transitions O_time and M_time. A token
in place operational denotes the operational state, while a token in placemaintenance
denotes the maintenance state. The time duration of the operative phase is denoted
by transition O_time, while the maintenance phase is denoted by transition M_time.

Block2models the job processing. In particular, the number of jobs to be processed
is denoted by the number of tokens contained in place work, while the time pre-
processing job is represented by transition producer. Preprocessed jobs are therefore
queued in a buffer (place buff1) where they wait for the second phase of processing
(transition cons1).

In Block3, the alternation between the preprocessing phase and the job process-
ing is represented through places slot1 and slot2 and transitions busy_prod, busy2,
idle_prod, idle2. A token in place slot1 denotes the system is executing the pre-
processing of a job, while a token in place slot2 denotes the execution of a phase
of processing. An inhibitor arc between slot1 and cons1 deactivates the phase of
processing when preprocessing is active. In the same way, the inhibitor arc between
slot2 and producer deactivates the phase of preprocessing when processing is active.
The times that the system spends in these two activities are represented by transitions
busy_prod and busy2.

The measure to evaluate from the analysis of the model is the probability dis-
tribution of the time required to complete the set of jobs assigned to the system at
the beginning. It corresponds to the probability distribution of having a number of
tokens equal to the number of jobs in place Stop.

For the firing time distributions of assigned to timed transitions, let us assume
that transitions O_time, M_time, busy_prod, busy2 are deterministic. Furthermore,
we assume that firing time of transition producer follows a Weibull distribution and
cons1 is exponentially distributed.

4.2 Numerical Results

The following parameters have been fixed:

• transition producer is distributed according to a Weibull distribution with scale
factor λ = 0.05 and shape factor k = 2;

• transitions O_time and M_time are deterministic with a firing time equal to 1.0;
• transitions busy_prod and busy2 are deterministic with a firing time equal to 0.1;
• transition cons1 is distributed exponentially with a firing rate μ = 1.0;
• the total number of jobs to be processed is 2.

Since the solution methods are based on approximating generally distributed fir-
ing times with DPH or CPH distributions, we provided the two solution runs with
the appropriate phase-type distributions. In particular, in the case of discrete-time-
based method, it is sufficient to set the transition properties with the parameter of the
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Fig. 15 Transition
properties window in
WebSPN

selected distribution through the transition properties’ window (Fig. 15). The asso-
ciated DPH is automatically computed using the discretization step and sampling
the distributions with the same discretization step as described in [34]. When the
continuous-time approach is used, in the actual implementation, the CPHs must be
given by the modeler. Some files are used to store their infinitesimal generator matrix
and the initial probabilities’ vector. We used the PhFit software tool [48] to compute
the CPH approximating theWeibull distribution associated with the producer transi-
tion, generating eight CPH phases. Deterministic events have been modeled through
Erlang distributions with 25 stages.

The results obtained are shown in Fig. 16. The completion time distributions com-
puted using the two different methods implemented in WebSPN are denoted with
DPH and CPH, respectively. As it can be noted, the two curves are consistent. The
differences are due to the approximation of distributionswith different kinds of phase-
type distributions. In fact, it is a well-known result [49] that DPHs unlike CPHs can
precisely capture behaviors characterized by very small, or also null, coefficient of
variation. Due to this limit, the continuous-time method results into a less accurate
result with respect to the one given by the discrete-time method. In this specific case,
the absence of steps in the CPH curve is given by the use of Erlang distributions to
approximate deterministic behaviors.
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Fig. 16 Distribution of the completion time when transition producer has a prd memory policy

5 Conclusions

In this chapter, we presented WebSPN, a flexible tool for the analysis of NMSPNs.
WebSPN implements a discrete-time expansion approach algorithm, providing an
approximation of the stochastic process underlying an NMSPN in the case of mul-
tiple concurrently enabled generally distributed transitions with prd, prs, and pri
memory policies. To overcome the explosion of the state space that might affect this
approach, WebSPN also implements a continuous-time expansion, where two layers
of symbolic representation are used to store the underlying reachability graph of the
considered stochastic process in an efficient way. An example was provided to show
the effectiveness of the WebSPN tool.
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Modeling Availability Impact in Cloud
Computing

Paulo Romero Martins Maciel

Internet-based services have become critical to several businesses in which many
aspects of our lives depend on (e.g., online banking, collaborative work, video-
conferencing). Business continuity is a remarkable property and it is a chief concern
for many companies, since service disruption may cause huge revenue and market
share losses.

In recent years, cloud computing has turned into a remarkable alternative due
to its resource on-demand and pay-as-you-go models. More specifically, additional
resources, such as virtual machines (VMs), are only allocated when disaster takes
place, and the automated virtual platform also performs a transparent recovery to
minimize the service time to restore. This chapter presents availability models to
evaluate cloud computing infrastructures.

1 Introduction

The 80s saw the emergence and proliferation of personal computers. This prompted
one of the greatest growths in computing. The 90s witnessed the network bandwidth
advances that made the Internet available to general public. The lessons learned
from the bursting of the financial bubble in 2000 required computing companies to
rethink their business models. In the pursuit of converting computational resources
into capital, many organizations came to understand that they could provide their
solutions and resources as services.
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Cloud computing refers to the access to computing resources across a network.
These resources include but are not limited to networks, storage, servers, and services.
Clouds usually have common characteristics such as being allocated as required,
accessibility across Internet devices, and metered and billed based upon resource
usage. These services have a number of different terms, such as Software as a Service
(SaaS), IaaS (Infrastructure as a Service), andPaaS (Platformas a Service) to describe
their classes of products. Nevertheless, the terminology still varies widely [1, 2].

The deployment models are usually classified as Private Cloud, Public Cloud,
Community Cloud, and Hybrid Cloud. A Private Cloud is usually adopted by a single
organization and Public Clouds provide service to the public. Private clouds that are
used by more than one organization, but not to the public, have commonly been
named Community Clouds. Hybrid Clouds mix Public Clouds and Private and/or
Community Clouds [2].

Business continuity is a remarkable asset and its assurance is essential to compa-
nies in general, since service disruption may cause huge revenue and market share
losses. In recent years, cloud computing has become a prominent solution for many
players due to its resource on-demand and pay-as-you-go models.

Failures are inevitable in complex systems, such as cloud systems, since hardware
fails, dormant residual software bugs are activated, electrical power may be inter-
rupted, etc. In such a system, service failures may be caused by service response time
degradation, service request responses beyond defined time constraints, and recur-
rent service requests, which may produce service denial [3]. Therefore, regardless of
class of resources provided, the architecture and deployment models adopted, cloud
computing supported services can experience denial-of-service attacks, performance
slowdowns, resource outages, and natural disasters.

Dependability is an umbrella expression that encompasses subjects such as avail-
ability, reliability, safety, and fault tolerance [4]. Dependability of a system can be
understood as the ability to deliver a specified service that can be justifiably trusted.
This chapter presents four studies evaluating cloud computing infrastructures and
services availability related measures.

This chapter is structured in eight sections. Section2 provides a brief histori-
cal view and describes some seminal works, their motivation, and the succeeding
advances. Section3 presents some basic concepts on dependability. After this, four
case studies are discussed. Section4 offers an availabilitymodel for redundant private
cloud architectures. Section5 describes an availability model for Video on Demand
(VoD) Streaming service. Section6 studies the availability impact on cloud com-
puting infrastructure deployed into geographically distributed data centers and the
effects related to disaster occurrence. Section7 introduces an availability model to
evaluate the impact of live VM migration as a software rejuvenation mechanism
to mitigate aging-related failures and improving system availability. Finally, Sect. 8
presents some final considerations.
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2 Reliability and Availability Models: History at a Glance

Dependability is an expression related to subjects such as availability, reliability,
safety, and fault tolerance. The concept of dependable computing first appeared in
the 1820s when Charles Babbage conceived his mechanical calculating engine for
removing the possibilities of human errors [5].

In 1907, A.A. Markov began the study of processes in which the outcome of an
experiment can affect the outcome of the next. This type of processes is now named
a Markov chain. In the 1910s, A.K. Erlang studied reliable service provisioning in
telephone traffic planning [6]. In 1931, Kolmogorov, in his famous paper “Über die
analytischen Methoden in der Wahrscheinlichkeitsrechnung” (Analytical methods
in probability theory) set the grounds for the present theory of Markov processes [7].

The first electronic computers were quite undependable, thus many strategies
were studied to enhance their reliability. In the 1950s, reliability turned out to be
a subject of remarkable interest. Epstein and Sobels 1953 paper on the exponential
distribution was a milestone [8], and radar system availability was studied through
Markov chains by Anselone [9].

In 1961 Birnbaum, Esary, and Saunders published a landmark paper introducing
coherent structures [10]. The reliability models might be classified as combinatorial
(non-state-space model) and state-space models. Reliability Block Diagrams (RBD)
and Fault Trees (FT) are combinatorial models and the most widely adopted models
in reliability evaluation. RBD is probably the oldest combinatorial technique for
reliability analysis. Fault Tree Analysis (FTA) was originally developed in 1962
at Bell Laboratories by H.A. Watson to evaluate the Minuteman I Intercontinental
Ballistic Missile Launch Control System. Afterward, in 1962, Boeing and AVCO
expanded use of FTA to the entireMinuteman II [11]. In 1967,A.Avizienis integrated
masking methods with practical techniques for error detection, fault diagnosis, and
recovery into the concept of fault-tolerant systems [12].

In the late 1970s, some works were proposed for mapping Petri nets to Markov
chains [13–16]. These models have been widely adopted as high-level Markov chain
automatic generation models as well as for discrete event simulation. Natkin was the
first to apply what are now generally called Stochastic Petri nets to dependability
evaluation of systems [16].

3 Basic Concepts

This section defines somebasic concepts and quantitativemeasures for dependability.
Asmentioned, dependability of a system is its capability to deliver a set of trustable

services that are observed by outside agents.A system failure occurswhen the system
fails to provide its specified functionality. A fault is the basic abnormal condition
or event which may lead to a system failure. A fault can be defined as the failure
of a component of the system, a subsystem of the system, or another system which
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interacts with the system considered. Hence, every fault is from some point of view.
A fault can cause other faults, a system failure, or neither. A system with faults that
delivers its specified functionality is said to be fault tolerant, that is, the system does
not fail even when there are faulty components.

Consider an indicator random variable X (t) that represents the system state at
time t . X (t) = 1 represents the operational state and X (t) = 0 the faulty state. More
formally:

Xs(t) =
{
0 if S has failed
1 if S is operational

(1)

Consider a random variable T that denotes the time needed to reach the state
X (t) = 0, since the system started in state X (0) = 1. T is the system S time to
failure , FT (t) its cumulative distribution function, and fT (t) the respectivedensity
function, where:

FT (0) = 0 and lim
t→∞ FT (t) = 1,

fT (t) = dFT (t)

dt
, (2)

fT (t) ≥ 0 and

∞∫

0

fT (t)dt = 1.

The probability that the system S survives to time t (Reliability) is

P{T > t} = R(t) = 1 − FT (t) and (3)

R(0) = 1 and lim
t→∞ R(t) = 0.

The hazard rate may be obtained through

λ(t) = dFT (t)

dt
× 1

R(t)
= fT (t)

R(t)
= −dR(t)

dt
× 1

R(t)
. (4)

From 4,

R(t) = e− ∫ t
0 λ(t)dt = e−H(t) (5)

is obtained, where H(t) is defined as the cumulative failure rate function.



Modeling Availability Impact in Cloud Computing 291

The hazard rate λ(t) may be decreasing, increasing, or constant. If λ(t) =
λ, R(t) = e−λt . The mean time to fail (MTTF) is defined by:

MTTF = E[T ] =
∞∫

0

t fT (t)dt. (6)

From 6,

MTTF = E[T ] =
∞∫

0

R(t)dt (7)

is obtained.
The simplest definition of Availability is expressed as the ratio of the expected

system uptime to the expected system up and downtimes:

A = E[U pT ime]
E[U pT ime] + E[DownT ime] . (8)

The system availability may also be expressed by:

A = MTTF

MTTF + MTR
= MTTF

MTTF + MNRT + MTTR
, (9)

where MTR is mean time to restore, MTTR mean time to repair, and MNRT is the
mean no-repairing time.

If MNRT ≈ 0,

A = MTTF

MTTF + MTR
= MTTF

MTTF + MTTR
. (10)

AsMTBF = MTTF + MTR = MTTF + MNRT + MTTR, and consideringMNRT
≈ 0, then MTBF = MTTF + MTTR. Therefore:

A = MTBF

MTBF + MTTR
, (11)

where MTBF is the mean time between failures. The instantaneous availability
(A(t)) is the probability that the system is operational at t .

A system may provide a set of services. The correct provision of a service defines
an operational mode. Therefore, the system services may be represented by a set
of operational modes. If the system performs more than one service (function or
operation), a Boolean function should define each operationalmode (for each service,
function, or operation). The meaning of intended functionality must be specified
and depends on the objective of the study. Hence, the system being operational for
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a particular service does notmean it also is operational for another service. The system
state may also be described by the respective structure functions of its components
or subsystems, so that the system structure function evaluates to 1 whenever at least
a minimal number of components is operational [17]. A failure mode specifies one
way (mode) in which the system might fail. Hence, for the system services, the
system failures may be specified by a set of failure modes.

Reliability and availability models may be broadly classified into combina-
torial and state-space models. State-space models may also be referred to as
non-combinatorial, and combinatorial can be identified as non-state-space models.
Combinatorial models capture conditions that make a system fail (or work) in terms
of structural relationships between the system components. These relations observe
the set of components (and subsystems) that should be correctly working (faulty) for
the system to be working properly (faulty).

State-space models represent a system’s behavior (failures and repair activities)
by its states and event occurrences expressed as labeled state transitions. Labels can
be probabilities, rates, or distribution functions. These models allow representation
of more complex relations between components of the system, such as dependencies
involving subsystems and resource constraints. Some state-space models may also
be evaluated by discrete-event simulation. The most prominent combinatorial mod-
els are Reliability Block Diagrams (RBD) and Fault Trees (FT). Markov chains,
stochastic Petri nets, and stochastic process algebras are the most widely used
state-space models [11, 13, 16, 18–21].

4 Case Study 1: A Private Cloud Infrastructure Platform

Cloud computing infrastructures must rely on various fault tolerance mechanisms to
cope with software and hardware failures, so that resources are accessible anywhere
and anytime as expected [1, 22]. The replication of components and subsystems
is an important approach to guarantee high system availability [17]. Even relatively
small infrastructures, such as those that support private clouds, should consider repli-
cation as a key requirement by employing multiple clusters and redundant service
endpoints [23].

An availability model is useful to define expected metrics that may be included in
service level agreements (SLAs). Hierarchical and composite modeling approaches
are useful to deal with the complexity of such systems, especially when using redun-
dancymechanisms [24, 25]. This section presents an availabilitymodel for redundant
private cloud architectures. The environment considered follows the common archi-
tectural components of cloud frameworks such as Eucalyptus, OpenNebula, and
CloudStack.
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Fig. 1 Eucalyptus cloud with three clusters

4.1 Infrastructure—An Example

Figure1 shows an architecture with three clusters and redundancy for some Euca-
lyptus components, according to the study presented in [26]. A front-end computer
plays the role of Cloud Manager and runs the Eucalyptus components known as the
Cloud Controller (CLC), and Walrus. A warm standby host is capable of keeping
the Cloud Manager subsystem working if the primary host fails. Each cluster has
one machine called the Cluster Manager, which runs the Cluster Controller (CC)
and Storage Controller (SC) components. Warm standby redundancy also empowers
each Cluster Manager. Each cluster also has three machines that run the Eucalyptus
component known as the Node Controller (here named as NC’). The set of three
nodes in each cluster is a Nodes Subsystem.

The system infrastructure is available if the Cloud Subsystem is running and at
least one Cluster Subsystem is available with one or more nodes completely opera-
tional in that cluster (operational mode).

4.2 Infrastructure Model

The proposed model is depicted in three levels: a high-level RBD system model,
Markov Reward models (MRM) to represent the warm standby redundancy
mechanisms, and RBD models to evaluate nodes and managers (cloud and clus-
ter) component stacks. The components’ stacks are presented in Fig. 2. An accurate
representation of thewarm standby redundancymechanisms requires the use of state-
basedmodels, such as anMRM,which is a Continuous TimeMarkov Chain (CTMC)
extended with a reward rate assigned to each state [27].

The system-level RBD describes the availability at the highest view (see Fig. 3),
whereas the MRM represents the detailed behavior of subsystems that employ an
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Fig. 2 Component’s stack. a Node component stack, b cluster manager component stack, c cloud
manager component stack

Fig. 3 RBD model for
three-cluster private cloud



Modeling Availability Impact in Cloud Computing 295

Fig. 4 RBD model for one cloud node

Fig. 5 Nonredundant Cloud Manager RBD

Fig. 6 Nonredundant Cluster Manager RBD

active redundancy mechanism [17]. The block named CLC represents the Cloud
Manager Subsystem. Blocks CC j represent each of the Cluster Subsystems, where
j ∈ [1, N ], and N is the number of clusters. Each block NCi CC j represents the i th
node that integrates the j th cluster.

Each node is composed of hardware, an operating system, hypervisor (e.g., KVM),
a virtual machine (VM), and a Eucalyptus Node Controller (NC’). For the sake of
simplicity, in each node, the Eucalyptus Node Controller, and the respective VM
are represented as only one component, named NC. A node is properly working
only if all these components are active (non-failed). Figure4 shows the RBD model
that represents one node in each Node Subsystem (NM). The Cloud Manager stack
(depicted in Fig. 2.a) consists of hardware, the operating system, and software com-
ponentsCLC (CloudController), andWalrus. Figure5 depicts anRBD that represents
a single host that composes the Cloud Manager Subsystem (ClM). A similar RBD
model represents a nonredundant Cluster Subsystem (CM), which is composed of
hardware, operating system, Cluster Controller (CC) and Storage Controller (SC),
as depicted in Fig. 6. As this study considers redundancy in both the Cloud Manager
and Cluster Subsystems, these RBDs enable obtaining the equivalent MTTF and
equivalent MTTR values that will be parameters in the MRM for the corresponding
redundant subsystem.

The redundant Cloud Manager (RClM) and redundant Cluster Subsystem (RCM)
steady-state availabilitywere computed through theMRMshown inFig. 7. TheMRM
has five states: UW, UF, FF, FU, and FW, and considers one primary and one spare
server, respectively. The state UW represents the primary server, S1, is functional
(U ) and secondary server, S2, in standby (W ). When S1 fails (F), the system goes
to state FW, since a time interval is required to detect S1 failure. FU represents the
state where S2 leaves the waiting condition and assumes the active role, whereas S1
is down. If S2 fails before taking the active role, or before the repair of S1, the system
goes to the state FF. This model represents a setup where the primary server repair
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Fig. 7 Markov Reward Model for redundant Cloud Manager

has priority over the secondary server repair. Therefore, when both servers have
failed (state FF), there is only one possible outgoing transition: from FF to UF. If S2
fails when S1 is up, the system goes to state UF, and returns to state UW when the S2
repair is accomplished. Otherwise, if S1 also fails, the system transitions to the state
FF. The failure rates of S1 and S2 are λs1 and λs2, respectively. The rate λis2 denotes
the failure rate of the secondary server when it is inactive. The repair rates assigned
to S1 and S2 are μs1 and μs2. The rate sas2 represents the switchover rate, i.e., the
reciprocal of the mean time to activate the secondary server after a failure of S1.

The state reward rate ρ(s) assigned to UW, UF, and FU is equal to 1, since the
subsystem is available in these states. The state reward rate assigned to FF and FW
(shaded states) is equal to 0, since the subsystem is down in these states. Therefore, the
steady-state availability of the subsystem can be computed as the steady-state reward
rate of the MRM, so A = Σs∈Sπs × ρ(s), where πs is the steady-state probability of
being in the state s, and ρ(s) is the reward rate assigned to state s.

4.3 Scenario Evaluation and Results

The input parameters for such models are presented in Table1 [24]. It is possible
to compute measures for systems with one and two clusters using similar models.
Table2 presents the values for all the mentioned parameters of the MRM. The value
of μs1 is equal to the value of μs2, the rates λs1 and λs2 also have equal values.

These λ and μ values were obtained from the equivalent MTTF and MTTR esti-
mated from the CloudManager subsystem (ClM) RBD (Fig. 5). When the secondary
Cloud Manager subsystem is inactive, its failure rate (λis2) is assumed to be 20%
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Table 1 Input parameters for the controllers and nodes

Component MTTF (h) MTTR

HW 8760.0 100min

OS 2893.0 15min

CLC 788.4 1.0h

CC 788.4 1.0h

SC 788.4 1.0h

Walrus 788.4 1.0h

NC 788.4 1.0h

KVM 2990.0 1.0h

Table 2 Input parameters for the MRM

Parameter Description Value (h−1)

λs1 = λs2 = λ Host failure rate 0.00553

λis2 Inactive host failure rate 0.00461

μs1 = μs2 = μ Host repair rate 1.03000

sas2 Rate for spare host activation 2.00000

smaller than the failure rate of the respective active subsystem (λs2). The value of sas2

comes from default monitoring interval and activation times found in softwares such
as Heartbeat [28]. After evaluating MRM (RClM and RCM subsystem), the Clus-
ter subsystems RBDs, and Node subsystems’ RBDs, the corresponding availability
values of each subsystem were used in the high-level system RBD model.

Table3 presents the availability measures of the cloud system considering the
architectures with one, two, and three clusters, called hereinafter A1, A2, and A3.
Besides the steady-state availability, Table3 also shows the number of nines, which
constitutes a logarithmic view of the availability, and the downtime, which clearly
describes the impact of service unavailability from the user’s perspective.

Table3 reveals that architectures A2 and A3 decrease system downtime by about
50% when compared to A1. When comparing A2 and A3, very small differences
are traceable. Therefore, increasing the number of clusters beyond three will have

Table 3 Availability results

Architectures

Measure A1 A2 A3

Steady-state Availab. 0.999938749 0.999969376 0.999969377

Number of 9s 4.21288 4.51394 4.51395

Annual downtime (min) 32.194 16.096 16.095
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Fig. 8 Sensitivity analysis: four most impacting parameters

negligible impact on the availability, andwould be justified only by a need to increase
computing capacity and performance. The sensitivity analysis depicted in Fig. 8
shows the parameters that produce the highest impact on the steady-state availability
and, therefore, deserve priority in their enhancement. The failure and repair rates of
the Cloud Manager subsystem, the activation of the spare warm standby server, and
the failure rate of inactive spare server are the most important points of improvement
shown in the results.

5 Case Study 2: Redundant VoD Streaming Service

In recent years, VoD service has been dominant in Internet traffic [29]. This class
of traffic requires secure, scalable, and highly available infrastructures and cloud
services to maintain users’ confidence and avoid revenue losses due to events such
as hardware failures, planned maintenance, resources replacement, software bugs,
or updates [24, 30].

This section studies an availability model for Video on Demand (VoD) Streaming
service and evaluates the impact of different component parameters on the overall
system availability. The analysis employs a heterogeneous modeling strategy by
merging RBD and Markov chains. A sensitivity analysis is also applied to identify
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Fig. 9 Architecture of video streaming service

the critical components with respect to availability. We examine how the system
availability is affected by the adoption of redundant mechanisms.

5.1 VoD Service Infrastrucutre

Figure9 shows an architecture with one front-end and two redundant Nodes based
on some Eucalyptus components [31, 32]. A front-end computer runs the Eucalyptus
components known as the Cloud Controller (CC), Storage Controller (SC), Walrus,
and Cluster Controller. A Node computer runs the Eucalyptus components known as
NodeController (NC) andonehypervisor (KVM) that is responsible for virtualization
management, in addition to bringing hardware (HW) and operating system (OS)
components [33, 34]. A storage volume is allocated in the front-end to store the
videos. A Virtual Machine (VM), running the Apache web service [35] and a VoD
server (VLCplayer configured as server—VLC server) applications, is instantiated in
the cloud Nodes. VoD server provides the video streaming features, whereas Apache
is responsible for hosting the service on a dedicated web page.

When a user requests a video hosted on a specific web page, VLC server, in turn,
captures the requested video from the remote storage volume and relays the stream
to the user. Users connect to the video streaming server through the Internet and a
storage volume is allocated in the front-end for storing videos. In order to conduct
the evaluation, a baseline architecture was first considered. The baseline architecture
consists of one front-end and only one Node.

5.2 VoD Service Model

This section presents the availability models proposed to evaluate the system. First,
a model is introduced to represent the baseline architecture (nonredundant) depicted
in Fig. 9. This infrastructure is composed by the following components: a front-end,
a storage volume, a cloud node, and service.
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Fig. 10 Nonredundant system top-level RBD

Fig. 11 Nonredundant front-end subsystem RBD

Fig. 12 RBD model for nonredundant cloud Node

The top-level system RBD represents these four parts, depicted by the blocks
front-end, volume, node, and vm-service (see Fig. 10). The front-end subsystem con-
sists of hardware (HW), and operating system (OS), and the following Eucalyptus
components: CLC (cloud controller), CC (cluster controller), SC (storage controller),
and Walrus. The front-end subsystem RBD is shown in Fig. 11.

A node subsystem is composed of hardware (HW), operating system (OS), a
hypervisor (KVM), and node controller (NC) (see Fig. 12). The vm-service compo-
nent represents the VoD server, which is composed of: one virtual machine—VM,
VLC application, and Apache application. Due to interdependency between these
components, the service subsystem is further refined by a CTMC (see Fig. 13). The
respective availability is calculated from the CTMC and then fed into the top-level
RBD (Fig. 10) for the computation of overall system availability.

This CTMC is composed of five states:UP,Fap,Fapvlc,Fvlc, andFall. The white
circles denote the downstates (when the service is unavailable due to failure in at
least one component) and the gray circle indicates the operational state. The state

Fig. 13 CTMC model
service
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Fapvlc represents that both Apache and VLC have failed. The state Fall represents
a VM failure. The rates λap, λvlc, and λvm denote the failure rates for Apache, VLC,
and VM, respectively. As the failure and repair rates (λi and μi ) are constant, the
related mean time to failure and repair are given by MTTFi = 1

λi
, and MTTRi = 1

μi
.

The repair rate for Apache and for the VLC are, consequently, μap and μvlc. μin is
the rate for starting a new VM instance combined with Apache web service and a
VoD server application. μin is the reciprocal of the mean time to initiate a VM after
it has been requested.

In order to improve the availability of the VoD Service, a redundant mechanism
can be adopted. The proposed architecture has two redundant nodes working in
warm standby mode. The VM service is switched between a working node and
standby node, when the operational node fails. The analyticalmodel used to represent
this redundant architecture is given by the RBD in Fig. 14, which is composed by:
frontend, volume and vm-service+nodes.

The respective frontend and volume blocks are the same as in the baseline model.
The vm-service+nodes block is composed of two redundant nodes (Node1 andNode2)
and vm-service. Due to dependencies between the nodes and vm-service, a CTMC
(see Fig. 15) was conceived to compute the vm-service+nodes subsystem availability.

This CTMC is composed of 11 states: UUW, UUD, UWU, UDU, DUW, DUD,
DDD, DDW, DDU, DWU, and DWD. The three letters represent the operating con-
dition of the three components, that is, vm-service, the Node1 and the Node2, respec-
tively.

Fig. 14 RBD model for redundant architecture

Fig. 15 CTMC model for the service module



302 P.R. Martins Maciel

The vm-service may be up (U) or down (D). The Nodes Nodei works alternately
in warm standby mode, and only one of them should be up (U ) at any one time,
whereas the other is either in warm standby (W ) or down (D). In this model, the
initial state is denoted by UWU, where the vm-service is available, Node1 in warm
standby, and Node2 is operational.

5.3 Scenario Evaluation

The input parameters for FrontEnd, nonredundant and redundant Node system are
presented in Table4. Tables5 and 6 present the values for all the mentioned parame-
ters of the CTMC. The value of μin comes from the monitoring of start-up time of a
virtual machine.

The value of λN1 is equal to the value of λN2 and it is represented by λN , the
rates μN1 and μN2 also have equal values and it is represented by μN . These λN

and μN values were obtained from the equivalent MTTF and MTTR estimated from
Node subsystem RBD (Fig. 12). When the Node2 subsystem is inactive, its failure
rate (λwN ) is assumed to be 20% smaller than the failure rate of the respective

Table 4 Input parameters for frontend and node cloud systems

Component MTTF (h) MTTR

HW 8760.0 100min

OS 2893.0 15min

CLC 788.4 1.0h

CC 788.4 1.0h

SC 788.4 1.0h

Walrus 788.4 1.0h

NC 788.4 1.0h

KVM 788.4 1.0h

Volume 100000.0 1.0h

Table 5 Input parameters for nonredundant service—CTMC

Rate Description Value (h−1)

λA Mean time to Apache failure 0.001268

λVLC Mean time to VLC failure 0.002976

λVM Mean time to VM failure 0.000347

μA Mean time to Apache repair 2.000000

μVLC Mean time to VLC repair 2.000000

μin Mean time to instantiate a new
VM

52.164841
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Table 6 Parameters—redundant service+nodes CTMC

Rate Description Value (h−1)

λN1 = λN2 = λN Mean time to node failure 0.002075

λwN1 = λwN2 = λwN Mean time to standby node
failure

0.001730

μN1 = μN2 = μN Mean time to node repair 1.098901

μwN1 = μwN2 = μwN Mean time to standby node
repair

30.303030

λVOD Mean time to service failure 0.004592

μVOD Mean time to service
instantiate

37.037037

Table 7 Steady-state availability results

Measure Nonredundant system Redundant system

Steady-state availability 0.9886 0.9944

Number of 9s 1.9420 2.5118

Annual downtime (h) 100.12 49.05

active subsystem (λN ). The λVOD and μVOD values were obtained from the equiva-
lent MTTF and MTTR estimated from vm-service CTMC (Fig. 13). The availability
values obtained in CTMCs (see Figs. 13 and 15) were used as input parameters for the
high-level system RBD models for the nonredundant and the redundant architecture
(see Figs. 12 and 14).

Table7 gives the dependability results for these scenarios. The values of 0.9886
and 0.9944 were obtained for the availability of the nonredundant and redundant
architecture, respectively. The availability growth of 2.5118 nines represents 51.01%
annual downtime reduction when compared to the baseline architecture. The sen-
sitivity analysis depicted in Fig. 16 shows the parameters that produce the highest
impact to the steady-state availability, hence deserving priority for enhancement.
The failure and repair rate availability impact related to the frontend components are
depicted in Fig. 16a, b, respectively.

The sensitivity analysis for the vm-service (see Fig. 13) shows that theVLC failure
rate has greater impact on system availability in comparison to the Apache and VM
(see Fig. 16c) and the nonredundant architecture. The result also reveals that the
greatest attention should be paid to frontend and VLC components.
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Fig. 16 Sensitivity analysis: a frontend failure rate;b frontend repair rate; cMTTFofVLC,Apache,
and VM

6 Case Study 3: Modeling Disaster Tolerant Cloud
Infrastructures

This case study presents an availability model for cloud computing systems deployed
into geographically distributed data centers as well as taking into account disaster
occurrence.

A disaster recovery plan requires the utilization of different data centers located far
enough apart to mitigate the effects of unforeseen disasters (e.g., earthquakes) [36].
If multiple data centers are located in different geographical locations (considering
disaster independent places), the availability level of the whole system is likely
to improve. On the other hand, VM backup time will probably increase due to the
distance between data centers. Additionally, failures and overloads can lead to system
downtimewhen considering cloud computing systems. Consequently, performability
evaluation considering VM data backup time and different user load levels is of
utmost importance when considering the analysis of distributed cloud systems.

In order to address these concerns, a model is presented to evaluate dependability
metrics in IaaS systems deployed into geographically distributed data centers as
well as taking into account disaster occurrence. The proposed model represents IaaS
providers distributed in different sites and allows the sensitivity evaluation of VM
transmission time on performability metrics. A tool is also conceived to support the
evaluation by automatically creating the systemmodels, namely Geoclouds [37–39].
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6.1 An Architecture

This section introduces a case study to illustrate the proposedmodel. In this case study
the systems are deployed into two different data centers, which are located in five
different sites. The pairs of data center locations are: Rio de Janeiro (Brazil)-Brasilia
(Brazil), Rio de Janeiro-Recife (Brazil), Rio de Janeiro-NewYork (USA), Rio de
Janeiro-Calcutta (India), and Rio de Janeiro-Tokyo (Japan). The Backup Server is
located in São Paulo (Brazil).

Each data center consists of two physical machines and each machine is capable
of running two virtual machines. This study assumes that all physical machines
(PMs) are identical. PMs may share a common network attached storage (NAS) or a
storage area network (SAN) to provide distributed storage and to allow the migration
of a virtual machine from one server to another in the same data center [40]. In
case of failure, a VM must be instantiated in another physical machine. If there is
no available PM, the VM image is migrated to another data center. Furthermore,
a Backup Server (BS) is assumed to provide VM data backup. This component
periodically receives a copy of each VM image during data center operation. Hence,
whenever a disaster renders one data center unavailable, BS periodically sends VM
copies to an operational data center.

Figure17 presents a cloud infrastructure, which is composed of a data center
located in Site 1 (Data Center 1), a second data center in Site 2 (Data Center 2), and
a Backup server in Site 3. Each data center consists of two physical machines and
each machine is capable to run up two virtual machines. The evaluation will consider
performance and dependability metrics to assess the system quality.

Fig. 17 Cloud system architecture
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Table 8 Dependability parameters for components of Fig. 18

Component MTTF (h) MTTR (h)

Operating System (OS) 4000.0 1.0

Hardware of Physical Machine (PM) 1000.0 12.0

Switch 430000.0 4.0

Router 14077473.0 4.0

NAS 20000000.0 2.0

VM 2880.0 0.5

Backup server 50000.0 0.5

Table8 presents the dependability parameters associated with the devices
[41–43]. The default approach adopted to assess the network throughput consid-
ers the distance between the communication nodes [44, 45]. Nevertheless, other
methods may also be adopted, for instance, experiments can be conducted to esti-
mate the available bandwidth between sites. Expressions 12–14 estimate an upper
bound on the transfer rate.

Rate <
MSS

RTTmin × √
p
, (12)

RTTmin = 2 × D

α × Vp
, (13)

α = EED

HD
, (14)

where MSS is the maximum segment size (typically 1460 bytes), p is the packet loss
probability, andRTTmin is the minimumRTT (Round Trip Time), D is distance (Km),
Vp is propagation speed in Km/ms, and α is the Directness. α ∈ (0, 1] is a measure
that relates the hop distance (HD) and the end-to-end distance (EED) of two nodes,
where EED ≥ HP.

In this particular study, we adopted p = 1%, MSS = 1460 bytes, α = 0.45,
Vp=200 Km/ms, and the VM size as 4GB. We considered the mean time between
disaster to be 100years and the data center to take 30days to be repaired. Moreover,
a VM takes 5 min to set up and the mean time between requests is half an hour. The
mean time for using a VM is 720h.

In order to perform the evaluation, the user should provide the parameters and
execute the evaluation. The assessment process can be conducted in a transparent
way directly on GeoClouds tool or creating the SPN models from scratch using the
Mercury [46–48], TimeNET [49], and Sharpe [20] tools.
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6.2 Architecture Model

The SPN model related to the previous example is presented in Fig. 18, which is
composed of four VM performability submodels, and one transmission submodel as
well several generic submodels.

A generic model represents components without redundancy. These components
maybe in two states, operational or failed.MTTFs andMTTRs are the only parameters
needed for computing their availability. OSPM_1, OSPM_2, OSPM_3, OSPM_4,
DISASTER1,DISASTER2,NAS_NET_1, andNAS_NET_2 are genericmodels. Places
UP andDOWN (e.g.,DC_UP_1 andDC_DOWN_1) denote component’s operational
and failed states, respectively. OSPM_1 and OSPM_2 represent physical machines
in Data Center 1, and OSPM_3 as well as OSPM_4 represent PMs in Data Center 2.
DISASTER1 and DISASTER2 depict disasters in Data Centers 1 and 2, respectively.
NAS_NET_1 and NAS_NET_2 correspond to network devices in Data Center 1 and
2 [38, 39].

The VM performability model represents VM requests to a single physical
machine, considering failures and repairs on the underlying infrastructure.Whenever
a user request is performed, a new VM is started (considering that the infrastructure
is operational) and becomes available for some time. This component interacts with
three generic components: (i) disaster occurrence (DC), (ii) network infrastructure
(NAS_NET ), and (iii) the physical machine (OSPM).

If while executing a VM, the external infrastructure or the VM fails, a VM image
shouldmigrate to other physicalmachine. If no physicalmachine is available, the task
is rejected and a new request should bemade. Figure19 presents theVMperformabil-
ity model, which is composed of three main parts: (i) VM_PART represents the VM;
(ii) DC_PART depicts incoming requests to data center; and (iii) CLOUD_PART
models generation of requests.

In VM_PART, places VM_UP, VM_DOWN, VM_STRTD, and VM_WAIT denote,
respectively, the number of operational and failed VMs as well as those starting and
waiting for instantiation requests. VM_LT represents the VM operational period.
Transitions VM_F, VM_R and VM_STRT represent VM failure, repair and start-
ing activities, respectively. A VM is provided if the respective infrastructure is
capable of supporting the service, otherwise no VM is granted. If the system is
providing a VM and the physical machine or a network device fails or a disaster
occurs, every VM instance in the infrastructure is freed. This event is represented
by the transition EXT_FAIL firing. Physical machine and network device failures
as well as a disaster are denoted by #OSPM_UP=0 OR #NAS_NET_UP=0 OR
#DC_UP=0. This condition turns the EXT_FAIL guard expression true (see Table9).
At this marking,EXT_FAIL fires. Its firing removes every token from placesVM_UP,
VM_DOWN and VM_STRTD (denoting VMs in the respective conditions) and stores
#VM_UP + #VM_DOWN + #VM_STRTD in place VM_WAIT. Transition VM_Subs
denotes virtual machine starting. Its execution requires an operational infrastructure,
represented by (#OSPM_UP>0) AND (#NAS_NET_UP>0) AND (#DC_UP>0).
DC_PART models incoming requests to a data center, and events denoting failed
VMs that should be migrated to other machine. Incoming requests are denoted by
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Fig. 18 Case study output model
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Fig. 19 VM performability SPN model

tokens in place CHC_RES. If no VM instance could be created, the request is can-
celed. Request canceling is represented by transitionDC_IRJC. Its firing occurswhen
#NAS_NET_UP=0 (network infrastructure failure), #DC_UP=0 (disaster incident),
#VM_WAIT=0 (server cannot instantiate a VM), or #OSPM_UP=0 (the underlying
physical machine is not operational). The guard expressions are presented in Table9.

Table 9 Guard expressions

Transition Condition Description

EXT_FAIL (#OSPM_UP=0) OR
(#NAS_NET_UP=0) OR
(#DC_UP=0) AND
((#VM_UP + #VM_DOWN +
#VM_STRTD) > 0)

Failure of physical machine or
infrastructure

VM_Subs (#OSPM_UP>0) AND
(#NAS_NET_UP>0) AND
(#DC_UP>0)

Physical machine and
infrastructure working

DC_IRJC (#NAS_NET_UP=0) OR
(#DC_UP=0) OR
(#VM_WAIT=0) OR
(#OSPM_UP=0)

Task rejection

DC_CH (#NAS_NET_UP>0) AND
(#DC_UP>0) AND
(#VM_WAIT>0) AND
(#OSPM_UP>0)

Request acceptance to data
center

DC_RJC (#NAS_NET_UP=0) OR
(#DC_UP=0) OR
(#VM_WAIT=0) OR
(#OSPM_UP=0)

Task rejection
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CLOUD_PART model clients’ requests for VM instantiation and request denial
when all data centers are unavailable. It is assumed that a client requests a single
VM.TransitionUSER_RQ denotes theVM instantiation request.DC_RJC represents
instantiation request denial. This event arises when all data centers are unavailable.
Both transitions have single server semantics (sss). A data center cannot support a
VM instantiation request if the underlying infrastructure has failed or the servers
have no further capacity to instantiate additional VMs. It is important to stress that
the guard expressions assigned to DC_IRJC, DC_CH, and DC_RJC are evaluated
considering the numbers of physical machines and data centers. In this particular
case, two physical machines are provided by each data center. However, the model
is generic enough to consider multiple physical machines and data centers.

A VM should migrate to another data center whenever the current data center
capacity does not allow additional VM instantiations or the underlying infrastructure
has failed. Moreover, Backup Server is responsible for transmitting the VM image in
case of disaster or network error. Transmission component (see Fig. 18) represents
the data transfer from a data center to another and the data transference from Backup
Server to the data center.

Two metrics have been considered in the evaluation: VM Utilization (U ) and the
Probability of Successful Task Completion (P). U is computed considering:

U =
∑M

j=1 E{#VM_UPj}
M × N

, (15)

where M denotes the number of PMs and N is the maximum number of VMs
supported by a physical machine. P is depicted by:

P = (
∑Pm

j=1 E{#VM_UPj})(1/T )

P{#CLTS > 0}(1/R)
, (16)

where T and R are delays assigned to transitionsVM_LT andUSER_REQ. P divided
by incoming request rate provides the percentage of completed requests, and the
probability of a task to be rejected is (R = 1 − P).

6.3 Results and Discussion

This section presents the evaluation results related to different workload intensity
(#C—number of users) and different pair of locations.

A task rejection considering the proposed approach happens if the infrastructure is
broken or the servers are full. Figure21 presents the P percentage increase consider-
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Table 10 P and U for the baseline architecture (Rio de Janeiro-Brasilia)

Client load U P

#C = 2 0.2497989 0.9999299

#C = 4 0.4989833 0.9952341

#C = 6 0.7471487 0.9338905

#C = 8 0.9861435 0.4542866

#C = 10 0.9867157 0.2934411

Fig. 20 Utilization for different distributed cloud configurations

ing the same set of scenarios. It is possible to observe that, in this
particular case, P rises with the distance between the data centers (until #C = 6).
With the growth of system load (#C > 6), P decreases depending on the data cen-
ters distance. Therefore, for this particular system we can conclude that P is highly
impacted by server utilization. Table10 depicts U and P of the baseline architecture
(Rio de Janeiro-Brasilia) considering #C = 2, 4, 6, 8 and 10 users.

Figure20 shows utilization variation between pairs of cities and the baseline (Rio
de Janeiro-Brasilia), taking into account different number of clients (#C). The results
show that the utilization decreases with the distance when considering light work-
loads (#C ≤ 6). In case of heavy workloads (#C > 6), on the other hand, the effect
of distance on the utilization is reversed.

Figure21 presents the P rise for the same set of scenarios. P increases with the
distance between the data centers (until #C ≤ 6). For heavier workloads (#C > 6),
P decreases with distances between the data centers.
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Fig. 21 P increase for different cloud configurations

7 Case Study 4: Live VM Migration in Cloud Computing

Cloud Computing absorbs characteristics of various previous technologies like Grid
Computing and Virtualization for better utilization of computational resources and
load balancing [50]. An important feature inherited from virtualization is the ability
to move VirtualMachines (VMs) from one physical host to another. This characteris-
tic is known as LiveVirtualMachineMigration (Live VM Migration) [51]. In general,
Live VM Migration supports significant gains to systems, such as manageability by
allowing server consolidation, resources remapping before scheduled maintenance
and VM rearrangement to implement fault tolerance [52]. Therefore, system admin-
istrators can perform Live VM Migration-based actions in order to improve system
dependability.

One such opportunities is the adoption of Live VMMigration for improving sys-
tem availability when coping with software aging-related failures in both VM and
VMM. A software component aging consists of performance degradation and/or
failure rate growth as the software component executes [53, 54]. This study con-
siders that the VMM is affected by software aging [55]. Software rejuvenation is a
proactive fault management, since it can either prevent or postpone failures in VMs
and VMMs [56, 57]. Nevertheless, exceedingly often rejuvenation actions directed
to a VMM may cause too many VM interruptions or termination, thus jeopardizing
the infrastructure availability. Therefore, to cope with these conflicting aspects, Live
VMMigration strategies may be applied before carrying out rejuvenation actions so
as to reduce system downtime [51]. It is also important to stress that live migration
is an intensive process, so it may also degrade the system availability.

Finding a suitable rejuvenation frequency, adopting a proper class of redundant
mechanism, and speeding up the migration process are key aspects to be evaluated
and tuned for reaching required availability levels.
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7.1 An Example

Consider a system with three main components: Management Server, Main Node,
and Standby Node. Management Server is a component responsible for controlling
the cloud environment. The Main Node represents the main physical host in which a
VMM controls a VM that executes a software application. Standby Node is a spare
hostwhich assumes the role ofMainNodewhen aVMmigrates to it. Thismechanism
is similar to warm standby replication [58]. The system’s organization is presented in
Fig. 22. Besides these three components, a remote storage volume is accessed by the
VM and managed by the Management Server. All components are interconnected
through a private network.

The system operational mode is described as follows: the MainNode and its VM
should be running and working properly, Management Server also should be oper-
ational, because it controls the cloud environment. If the Standby Node fails, the
system does not stop, the migration mechanism, however, would be disabled. It is
worth highlighting that the roles of Standby Node and Main Node are swapped when
the VM migrates, hence the respective host availability becomes essential to system
availability as soon as an incoming migration is completed.

When the Main Node is up and running, the VMM is aging (what can lead to fail-
ure), and the VM or other Main Node components (hardware and operating system)
may also fail. The Standby Node fails if its hardware or operating system goes down.
If the Main Node or Standby Node suffer a nonaging failure all the aging effects
are cleared due to the repair mechanisms, which encompasses restarting the related
components, and, subsequently, starting over the VMM.

In order to clear aging effects on VMM, rejuvenation is periodically scheduled,
which is supported by VM live migration to minimize the downtime. When a VM
migration is requested, the Main Node moves the VM to the Standby Node. When
the VM migration completes, the Standby Node assumes Main Node role and a
rejuvenation process is performed on the previous Main Node. When this process
finishes, the original Main Node assumes the Standby Node role. The rejuvenation
process allows to clear aging status by taking the VMM (on the node) to a fresh state,
and prepares to receive a VM again when needed.

Fig. 22 System organization
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7.2 System Model

The availability of proposed models are represented by an extended Deterministic
Stochastic Petri Nets (eDSPNs) [59, 60]. The models cover the occurrence of both
nonaging and aging-related failures in the system. Such a characteristic enables the
analysis of the rejuvenation impact on the whole system. The evaluation performed
does not take into neither account failure detection time nor remote storage volume
and network failures.

Figure23 presents the eDSPN model for the system under study. The model is
composed of three submodels: (a) ManagementServer Model, (b) Clock Model, and
(c) System Model. The ManagementServer Model is a straightforward availability
model that represents the Management Server cloud behavior. The failure event is
represented byMS_fail transition and repair event is denoted byMS_repair tran-
sition. The Clock Model depicts the rejuvenation scheduling. Transition Trigger
fires after a specified deterministic delay. Its firing stores a token in the place
ReadyToMigrate. Transition ResetClock is guarded by an enabling func-
tion. This function is evaluated as true only when the migration process is over (see
Table11). The System Model represents the main events related to the Main Node,
Standby Node, and VM. A token in place MN_UP denotes the Main Node and its
VM as operational (see Fig. 22). At this marking, several transitions may be fired for

(a) (c)

(b)

Fig. 23 eDSPN model for a cloud computing environment with scheduled live VM migration to
support software rejuvenation. a ManagementServer Model, b Clock Model, c System Model

Table 11 Enabling function Transition Enabling function

ResetClock #LiveM = 1

DoLiveMigration #ReadyT oMigrate = 1

Clear Aging and
Clear Aging2

#V M_DW = 1 OR
#M N_DW = 1 OR
#LiveM = 1
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representing the respective systemevent.MN_failfireswhen an internal (nonaging)
failure occurs in the Main Node. As the VM is on the top of the node infrastructure,
the VM also becomes unavailable. The recovering process is carried out in two steps:
first, the Main Node is repaired, then the VM is restarted.

Another possible issue is the VM failure. This is represented by the transition
VM_fail firing, which stores one token in place VM_DW. This place represents a
failed VM. At this marking, two events are possible: VM repairing, so the system
returns to the operational state, or theMain Node failure. If the later occurs, the same
two-step recovery process is carried out. In any case, the system only goes up when
both the VM and Main Node are.

In this case study, the software aging phenomenon related to VMM is represented
by a sub-net that depicts a 4-phase Erlang probability distribution.1 This model has
been adopted since the respective process has an increasing failure rate. The sub-net
depicted by transitions Aging, AgingPhase, FailureAging, ClearAging,
ClearAging2, and places GetOld and Old represents the 4-phase Erlang dis-
tribution. Therefore, this sub-net denotes the aging phenomenon. The transitions
ClearAging and ClearAging2 represent events that clear the VMM aging
effects. The model consider that these events occur when the Main Node or the
VM fails, since the respective repair actions involve rejuvenation actions. When a
Live VM migration is performed the VM is moved to a fresh VMM environment,
therefore justifying the removal of aging effects. If none of these events occurs,
the VMM will reach a critical age, that leads to a failure (represented by the tran-
sition FailureAging firing). After failure, the node reaches an inactive state
(represented by a token in place MN_Dead). When place MN_Dead is marked, it
enables transition RecoverFromAging (that represents a repairing action). Its
firing depicts the aging failure system repairing.

A token in SN_upmeans the spare machine is operational and can receive a VM
by live migration. However, if SN_fail fires, the Standby Node reaches an inactive
state and needs to be repaired to return to active state (SN_repair is fired). It is
important to stress that when the Standby Node fails, the system will fail only if the
Main Node or the Management Server also fails.

The rejuvenation process, supported by the live migration, is modeled as follows.
The transition DoLiveMigration represents the live migration start event. This
transition will fire if some conditions are observed. The MainNode and StandbyNode
must be properly executing and the clock should reach the time to migrate (denoted
by token in place ReadyToMigrate of Clock Model). If only one of these two
conditions is satisfied the migration cannot occur. When both conditions are sat-
isfied, DoLiveMigration fires and stores a token in place LiveM. Live VM
Migration consists of moving a VM to other host, which is represented by transition
MigrationTime [51]. Thus, a token in place LiveM denotes that the system is
down. After finishing the Live VMmigration, the source node will undergo a rejuve-
nation process, the Standby Nodewill take theMain Node role, and the systemwill be
up again. Therefore, in this model, the VM live migration mitigates long downtimes

1Erlang distributions (with number of phase large than one) have increasing failure rate [61].
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due to rejuvenation action by keeping a spare machine clear of aging effects. The
rejuvenation process is depicted by transition RejuvenationNode.

7.3 Scenario Evaluation and Results

The model parameters used for evaluation (presented in Table12) are based on
[56, 57]. The main objective is to evaluate the impact that different rejuvenation
policies based on Live VM migration will produce on the steady-state availability.
For this purpose, a scenario was conceived in which a set of different rejuvenation
policies was considered and evaluated for estimating steady-state availability and
annual downtime. A suitable rejuvenation trigger interval was estimated for maxi-
mizing the system availability.

The rejuvenation time interval varied from1 to 12h, using a 1-h step. It is important
to highlight that these values represent the mean time interval between migrations.
The values adopted for each phase of the Erlang sub-net (that represents the aging
phenomenon) were obtained from [55]. Figure24 presents the evaluation results.
Table13 shows a comparison with the baseline, where BL A is baseline availability,
AR is availability achieved when applying rejuvenation schedules, T r denotes the
rejuvenation time interval, and DT r denotes the downtime avoided in hours per year.

Table 12 SPNs parameters

Transition name Description Mean time

MS_fail MS internal failure 481.50h

MS_repair MS repair 1.03h

MN_fail, MN_fail1 MainNode internal failure 1236.70h

MN_repair MainNode repair 1.09h

SN_fail StandbyNode internal failure 1236.70h

SN_repair StandbyNode repair 1.09h

VM_fail VM failure 2880.00h

VM_repair VM repair 0.50h

VM_Rb VM reboot 5min

AgingPhase Time to aging (phases) 25.00h

RecoverFromAging Time to recover from aging
failure

1.00h

MigrationTime Time to live migrate a VM 4s

RejuvenationNode Time to rejuvenate node 0.50h
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Fig. 24 Sensitivity analysis of rejuvenation policies on steady-state availability

Table 13 Results from model analysis

BLA AR Tr DTr (hr/yr)

0.9873428 0.9966080 8h 81.1631

The results show that Live VM Migration may substantially improve the system
availability. We can also observe that overly frequent Live VMMigrations can harm
the system availability. The models provide support for tuning rejuvenation policies
to achieve availability improvements.

8 Final Considerations

Nowadays, Internet-based services are essential for businesses, and many aspects of
our lives depend on its continuous provision. Cloud computing became a remarkable
means to provide on-demand resources, since the respective costs may be propor-
tional to the business actual computational demand. This book chapter presented a
set of availability models for evaluating cloud computing infrastructures.

Four case studies were discussed. Section4 presented an availability model for
redundant private cloud architectures. Section5 showed an availability model for
Video on Demand (VoD) Streaming service. Section6 evaluated the availability
impact on cloud computing infrastructure deployed into geographically distributed
data centers and the effects related to disaster occurrence. Section7 presented an
availability model to evaluate the impact of VM live migration as a software rejuve-
nation mechanism for mitigating aging-related failure.
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Abstract In this chapter, we present a novel state space exploration method for dis-
tribution automation power grids built on top of an analytical survivability model.
Our survivability model-based approach enables efficient state space exploration in
a principled way using random-greedy heuristic strategies. The proposed heuristic
strategies aim to maximize survivability under budget constraints, accounting for
cable undergrounding and tree trimming costs, with load constraints per feeder line.
The heuristics are inspired by the analytical results of optimal strategies for sim-
pler versions of the allocation problem. Finally, we parameterize our models using
historical data of recent large storms. We have looked into the named storms that
occurred during the 2012 Atlantic hurricane season as provided by the U.S. Govern-
ment National Hurricane Center and numerically evaluated the proposed heuristics
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with data derived from our abstraction of the ConEdison overhead distribution power
grid in Westchester county.

1 Introduction

The impact of superstorm Sandy on the New York metropolitan area has triggered
several initiatives for investments in storm hardening of the Con Edison nonnetwork
overhead system [15]. Nonnetwork or non-reliability regions are areas where relia-
bility features as fully automated restoration are not yet implemented. The total cost
of undergrounding the nonnetwork overhead power distribution in New York City
and Westchester has been estimated at $42.9 Billion [15]. Therefore, there is a need
to develop an optimization approach to select the most cost effective investments
while minimizing the impact of large storms on customers.

In this chapter, we assess the performance of greedy [1] and randomized greedy
heuristic [18] algorithms, when applied to the selection of investment alternatives for
storm hardening of distributed automation power grids [2] to minimize the AENS
metric (Average Energy Not Supplied) resulting from storm-related failures. The
AENSmetric is computed using a phased-recovery survivability model that is imple-
mented as a Markov-chain with reward rates [2]. The reward rate associated to each
state of the Markov-chain is the energy that is not supplied in that state for the dura-
tion of the recovery of the cyber-physical system.We introduce a new random-greedy
heuristic for storm hardening and evaluate the approach introduced in this chapter
using data from several storms [9].

There is a vast literature on the infrastructure upgrade problem accounting for
survivability in the context of transport [5, 13, 16] and computer networks [22]. In
transport networks, researchers usually consider additive metrics such as delay to
assess the cost of a path as a function of the cost of the links. Computer networks
usually consider the probability that a path is functional as a function of its con-
stituent links, which is a multiplicative metric. In this chapter, we consider power
networks and a weighted multiplicative metric when establishing the budget alloca-
tion problem.

The domainmodel of interest is a cyber-physical systemmodeled as an abstraction
of theConEdisonoverheaddistribution power grid inWestchester county. This power
grid consists of 154 auto-loops line feeders [9]. The electric power research institute
is modeling distribution line storm hardening by conducting tests to assess how to
physically harden the overhead structure [7]. Alternatives that can be used for storm
hardening of the electric overhead distribution system are the addition of reclosers
and sectionalizer switches, tree trimming, and selective undergrounding [15].

Optimal constrained security hardening of power grids has been presented in [1].
The authors present a dynamic programming solution to the maximization of overall
network security under a fixed budget constraint. They propose a set of strategies
with independent cost and coverage and show that the combinatorial aspects of the
problem make the enumeration of all possibilities an NP-Hard problem. The authors
assume that the optimal strategy decided for a particular substation at step i depends
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only on the budget expended up to step i . In contrast, the decision points at step i in
our optimization problem for selective undergrounding of 154 auto-loop line feeders
are dependent not only on the budget expended up to step i but also on the impact of
the selection on the objective function. In particular, the energy not supplied due to
a physical failure in a distributed automation network depends on the distribution of
repair time and the load demanded in the section affected. Our greedy heuristic takes
advantage of known polynomial time approximations for the knapsack problem.

In [2], the authors introduced a scalable approach to model and analyze complex
power distribution networks to evaluate investment alternatives for storm hardening
of the nonnetwork overhead power system. There, heuristics have been developed
to assess the impact of using reclosers and tie-switches for storm hardening. Specif-
ically, superstorm Sandy wind gusts were used to build a survivability model of the
Con Edison overhead distribution power grid in Westchester county.

Survivability is the ability of the system to sustain performance conditioned on
the occurrence of a failure event [11]. More formally, survivability is defined as
conditional performability. In this chapter, we present a novel approach for power
distribution optimization accounting for survivability metrics.

The main contributions introduced in this chapter are the following:
Storm historical data: Incorporation of storm history into the failure model

introduced in [2]. Engineering for storm hardening requires the characterization of
failures. As extremeweather conditions are becomingmore frequent in the Northeast
of the United States, it is important to use a recent history of large storms. In this
chapter, we considered the named storms that occurred during the 2012 Atlantic
hurricane season as provided by the U.S. Government National Hurricane Center.

Analytical model and problem formalization: Presentation of an analytical sur-
vivabilitymodel and associated optimization problem formulation. The survivability-
relatedmetric (AENS) isminimized under budget constraints, using undergrounding,
tree trimming costs, and load constraints per feeder line. We prove that a simple ver-
sion of the optimization problem is NP-hard, which motivates the use of heuristics.

Investment recommendations: Application of survivability modeling based on
analytical transient solution to assess investment alternatives to support FDIR (Failure
Detection Isolation andRestoration) in distribution automation smart-grids.Whereas
the state of the art in power systems optimization is based on detailed simulation of
generation and transmission, our survivability model-based approach enables effi-
cient state space exploration in a principled way using random-greedy heuristic
strategies. We illustrate our results through the numerical evaluation of the proposed
heuristics impact on AENS for the 2012 Atlantic hurricane season with data derived
from our abstraction of the Con Edison overhead distribution power grid in Westch-
ester county.

The chapter outline is as follows. In Sect. 2, we describe the overhead power grid
distribution automation system, the modeling of multiple storms, and the wind gust
map derived for superstorm Sandy. Section3 presents alternative formalizations of
the optimization problem. Section4 describes the heuristics used for optimization.
Section5 contains the evaluation of the proposed heuristics using numerical data and
Sect. 6 concludes.
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2 Power Grid Distribution Automation System

In this section, we present (a) an overview of the proposed methodology, (b) the Con
Edison non-network overhead system, (c) the incorporation of large storm history
into the model, and (d) a description of storm hardening strategies being proposed
to increase survivability of the nonnetwork overhead system.

Figure1 shows an overview of the proposed methodology. Calligraphic symbols
correspond to measurements obtained from traces. Each section of the power grid
has its associated measurements. Let W and L be the historical wind gust and
load (power demand) measurements, respectively. Let C and D be the distributed
generation capacities and section lengths, respectively.

Given historical data about hurricanes, W , we parameterize a failure model. The
failure model yields the probability that each section of the power grid fails after
a hurricane, and is affected by survivability-related investments. The failure model,
together with a power grid logical model, is used to parameterize the survivability
model. The parameterization also relies on the load of each section, L , and dis-
tributed generation capacities, C . The survivability model outcome, in turn, leads to
new investments. The cost of the investments is a function of the section lengths,D ,
and is restricted by a budget B. The investments will affect the failure model, which
will be used to issue new investment recommendations. The cycle repeats until a
satisfactory result is obtained or the budget is met.

In Sects. 2.2 and 2.3, we describe the power grid logical model and the hurricane
model. The failure model together with hardening strategies and costs are introduced
in Sect. 2.4. The survivability-related heuristics for investments, inspired by the for-
mal results presented in Sect. 3, are presented in Sect. 4. Section4.4 of [2] contains the
methodology used to parameterize the survivability model. The survivability model
was introduced in [2], and is presented in Appendix A for completeness.

Fig. 1 Overview of methodology
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2.1 Abstraction of the Con Edison Nonnetwork Overhead
System

The system under study is an abstract model based on the Con Edison overhead dis-
tribution power grid [9]. The network consists of 154 auto-loops and 219 substations
that supply power toWestchester County, Staten Island, as well as parts of the Bronx,
Brooklyn, and Queens. This model of the Con Edison nonnetwork overhead system
was developed by capturing the most important aspects required to assess the impact
of large storms on the distribution power grid. Each main feeder line is modeled as
a sequence of sections with the following data associated with it: (1) Ls—average
load demanded at section s, (2) Cs—distributed generation capacity at section s, (3)
Wsi—maximum wind gust observed at section s for storm i , and (4) Ds—length of
section s in miles.

The length of overhead power lines in each county is reported in [9]. In our study,
we assume that in each county the number of loops is proportional to the length of
overhead power lines, as we did not have access to the exact number of loops in
each county. The segmentation of each auto-loop is sampled from an interval of a
minimum of 8 and a maximum of 12 sections. The segmentation interval is based
on the loop description given by [9]. The load for the sections are based on the
load profile introduced in [19]. To build a sampling interval for wind gust values of
hurricane Sandy, we took measured maximum wind gust in locations close to the
Con Edison overhead power grid as described in [15].

2.2 Power Grid Logical Model

The logical power grid model considered in this chapter is illustrated in Fig. 2.
Figure2a presents a single feeder line, which connects a substation to a tie switch.
It comprises upstream and downstream sections, separated by failed sections. In
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Fig. 2 aA feeder line connects a substation to a tie switch, and comprises upstream and downstream
sections, separated by failed sections; b A failure at Sect. 6 causes a tie switch to close so as to feed
Sect. 5. Power flows are represented by arrows
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the power grid logical model, two logical substations might correspond to the same
physical substation in the real power plant. For instance, substations A and B in
Fig. 2a could correspond to one single physical substation of an auto-loop. Figure2b
shows how power flows in the network. At each section, power can only flow in one
direction at any point in time. After a failure, reclosers might be closed so as to feed
sections that otherwise would be disconnected.

2.3 Large Storms History

Until now, we considered investment alternatives for storm hardening against the
impact of superstorms such as Sandy. However, the engineering of storm hardening
strategies requires characterization of the largest storm which the electric utility
is planning to harden the network against. To evaluate optimality of a hardening
strategy, it is important to use a history of large storms in the observed region. We
scaled our approach to aggregate data about the storms that occurred in the 2012
Atlantic hurricane season as provided by the U.S. Government National Hurricane
Center [14].

We incorporated a large storm history into the model to support evaluation of
different investment alternatives under fixed budget constraints. In the dataset con-
sidered, 14 of 19 storms achievedwind gust of less than 80 knots. As such, we assume
the most effective investment before the 2012 Atlantic hurricane season would be to
harden the network against the 74% percentile storm (e.g., Sandy is a storm of 100%
strength), which would correspond to a wind strength of 80 knots in our dataset. In
the following, we denote the wind strength observed for the 74% percentile storm
in section s as ωs (or simply ω when referring to a typical section).

The effect of wind gust on overhead power lines has been investigated by several
researchers. For the effect of flying debris from trees on overhead line fragility,
Winkler et al. [21] used the model from Canham et al. [6], which identified a logistic
regression model for effect of storm severity on the probability of wind-throw, for
example. Canham’s model yields the probability of wind-throw p̃ based on species-
specific parameters ã, b̃, c̃, the diameter of a tree d̃ , and the normalized observed
storm severity S in their data, which ranges between 0 (lowest observed storm) and
1 (highest observed storm),

p̃ = exp(ã + c̃Sd̃ b̃)

1 + exp(ã + c̃Sd̃ b̃)
(1)

As historical data of the effect on flying debris on probability of section failure is
not available for the Con Edison network, we assume the following parameters in
this work: ã = −2.261, b̃ = 0.426, c̃ = 1.140 (as given by Canham et al. [6] for
red maple), d̃ = 40 and map the 74% percentile of our observed wind gusts to S
so that ω = 10 knots correspond to S = 0 and ω = 80 knots correspond to S = 1.
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The resulting mapping is S = (ω − 10)/70. Additionally, because we do not have
data about the exact number of trees in the different sections, this work assumes
a uniform number of trees in each section and uses the resulting probability as
the failure probability per section. Note that more sophisticated models mapping
observed maximum wind gust to probability of failure of a section could be used
in our approach as well, such as a model taking into account the actual density of
growth, the length of the section, the terrain, and the fragility of lines and trees.

2.4 Storm Hardening Strategies

The most effective strategies for storm hardening of nonnetwork overhead system
are undergrounding and tree trimming. However, because of the large investments
required for undergrounding feeder lines [15], the tradeoffs between undergrounding
and tree trimming need to be carefully assessed. In addition, as the length and load
of sections vary greatly, electric utilities must conduct systematic evaluations of the
investment alternatives for storm hardening before large investments are commit-
ted to the storm hardening effort. The phase recovery model introduced in [2] and
the optimization approach introduced in Sect. 4 can be employed to support these
required studies.

In [12], the 4-year Con Edison 1 billion dollar program to protect New Yorkers
from the next major storm is presented. The most important aspects of the plan are:
(1) to ensure that new equipments located in the NY flood zone be flood proof, (2)
mandate that new connections be located above flood level, and (3) ensure that new
nonnetwork distribution equipments be integrated with Con Edison storm hardening
strategies. The storm hardening strategies to be implemented by Con Edison 4-year
plan are: (1) increase the number of sections and reduce the length of feeder line
segments to reduce the customer impact of feeder line failures, (2) add tie-switches
to improve feeder line design by allowing power to be fed fromboth ends of the feeder
line, and (3) structural reinforcement of nonnetwork overhead poles. For example,
structural poles will be required to withstand wind gusts of up to 110 mph. Other
survivable structural designs are also being considered to ensure faster repair times
of nonnetwork overhead components.

Wood poles can lose their structural integrity by decay leading to high failure
probability during large storms [4]. Therefore, it is recommended that power utilities
conduct regular tests for wood poles [4]. The objective of this test program is to
ensure that the structural integrity of the poles under test will not fail the strength
requirement (e.g.,measured strength shall not be less than 30%of designed strength),
anytime before the next scheduled inspection.

To improve the survivability of the network described in Sect. 2.1, we consider
two types of investments used by Con Edison [10], namely (1) more aggressive tree
trimming in selected sections to prevent branches falling onto the overhead lines and
(2) placing selected sections underground. Undergrounding costs about $8.2 million
per mile [10]. For tree trimming, we assume costs of $210 per mile when using
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mechanical tree trimming equipment [20]. Normally, Con Edison trims the trees of
a section every 2 years [8]. In our more aggressive tree trimming investment option,
we consider one additional tree trimming per year for a section. To compare the more
aggressive tree trimming investment with the one-time undergrounding investment,
we consider the net present value of the tree trimming investment as a perpetuity at
an interest rate of 1%. Then, the annual investment of trimming one mile has a net
present value of $21,000. We assume that all sections have tree growth with uniform
density and trimming effort, but this is just an assumption of the case study data, not
of the approach in general.

The effect of tree trimming is a reduced probability of failure per section. Con
Edison trims trees close to 27 and 33 kV distribution lines more often than trees
close to 4 and 15 kV distribution lines, which indicates a higher risk of failure if
trees are trimmed less often [8]. In this chapter, we assume that tree trimming yields
a shift of the original failure probability by 4 knots, so that after tree trimming
S = max(0, (ω − 14)/70).

3 Formal Problem Definition

In this section, we consider simplified versions of the combinatorial optimization
problem to be addressed in Sect. 4. Accordingly, we aim to (a) show that even under
simplified assumptions the problem is already NP-hard and (b) illustrate further
simplifications and alternative formulations that yield tractable analysis motivating
the heuristics evaluated in Sect. 5. Generally, the optimization problem goal is to
allocate a given budget in order to maximize the expected energy supplied under a
failure occurrence. The allocation process consists of two main decisions, namely
which equipment to invest in and where to install the investment.

The topology considered consists of auto-loops, where each loop comprises two
feeder lines (also referred to simply as lines). Let N be the number of feeder lines.
Each line starts at a source and ends at a sink, and comprises M sections. We assume
that lines are independent of each other. Each section j of line n is associated with
two parameters, namely a probability of failure pn, j and a load �n, j . If a section k
fails, all sections between k and the sink of that line are not supplied. Therefore, a
failure on a specific section affects succeeding sections in the direction of the sink.
Let un, j ∈ {0, 1} be the indicator variable that characterizes whether an investment is
applied in the j-th section of line n. Let qn, j be the price of an investment in section
j of line n, whereas hn, j is the additive increase in the probability of success due to
the investment. Table1 summarizes the previous definitions.

Note that in this section, we assume that there is only one path from the source
to each node in the line. Therefore, if a section fails all upstream sections also fail
and cannot be fed by any backup substation or alternative path. In our numerical
evaluations, we remove this assumption and assume that the upstream sections can
be fed by alternative routes if available.

Let U be the system utility,
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Table 1 Table of notation

Variable Description

U Expected energy supplied

�n, j Load at section j of line n

B Budget

hn, j Increase in success probability after investing in section j of line n

qn, j The price of an investment in section j of line n

un, j 1 if investment at section j of line n is made, 0 otherwise

pn, j Probability that section j of line n fails

U =
N∑

n=1

M∑

i=1

�n,i∑
n

∑
i �n,i

ϕ

⎛

⎝
i∏

j=1

(1 − pn, j + hn, j un, j )

⎞

⎠ (2)

ϕ(x) is a function which yields the revenue per unit of supplied load, i.e., the utility,
of a set of sections as a function of the probability that all sections in the set are
functioning. When ϕ(x) = x , U is the normalized expected energy supplied after
a failure; the numerator of U corresponds to the non-normalized expected energy
supplied after a failure and can also be obtained from Eq. (8) in [2].

We proceed to define the following optimization problem.

Definition 1 Survivability Budget Allocation Power Distribution Problem
(SBAPDP): Given a budget B, for each section and line, find an indicator variable
assignment {un, j } such that:

max U (3)

s.t.
N∑

n=1

M∑

j=1

qn, j un, j ≤ B (4)

un, j ∈ {0, 1} (5)

hn, j ≤ pn, j (6)

In most cases, we consider the expected energy supplied with ϕ(x) = x . We also
study the case ϕ(x) = log(x) which yields weighted proportional fairness. Let Ũ
and Û be obtained from (2) by setting ϕ(x) = x and ϕ(x) = log(x), respectively.

Û =
N∑

n=1

M∑

i=1

�n,i∑
n

∑
i �n,i

i∑

j=1

log(1 − pn, j + hn, j un, j ) (7)

The logarithmic utility function is used in the proof of Theorem 1, while the opti-
mization in Sect. 4 considers a linear utility. The former inspires heuristics for the
latter.
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3.1 Hardness of Budget Allocation

We next establish that the optimal budget allocation problem is NP-hard.

Theorem 1 The budget allocation problem is NP-hard.

Proof We show that an instance of knapsack can be reduced to an instance of the
budget allocation problem. To this end, as in [13], we let cn, j be the cumulative
expected benefit of an investment. The cumulative expected benefit is given by

cn, j =
M∑

i= j

�n,i∑
n

∑
i �n,i

(log(1 − pn, j + hn, j ) − log(1 − pn, j )) (8)

Therefore, we can reformulate the problem as

max
∑

n

∑

j

cn, j un, j (9)

s.t.
N∑

n=1

M∑

j=1

qn, j un, j ≤ B (10)

un, j ∈ {0, 1} (11)

The problem above is an instance of the knapsack optimization. Given an instance
of the knapsack with budget B, where each item (n, j) has utility cn, j and cost
qn, j , solving the optimization problem above generates a solution to the knapsack
problem. Therefore, the budget allocation problem is NP-hard. ��

Note that for the knapsack problem the greedy strategy is optimal as long as the
goods are infinitesimally divisible (fractional knapsack [17]). In reality, we do not
have infinitesimally divisible goods. The smaller generation options tend to be less
efficient than the larger ones. Nonetheless, in the remainder of this section our results
rely on this assumption. Our aim is to motivate heuristics which are analyzed in our
numerical experiments.

3.2 Infinitesimally Divisible Investments

The main reason for the intractability of the SBAPDP problem is the fact that the
allocation vector {un, j } is integer. We proceed to show that the relaxation of the
integrality assumption by considering an infinitesimal version of the SBAPDP prob-
lem results in a well-known convex optimization problem formulation, namely geo-
metric programming.

Let xn, j be the investment applied in the j-th section of line n. Moreover, assume
that fn, j (xn, j ) be a polynomial function representing the additive increase in the
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probability of success of the j-th section of the line n due to investment xn, j . For
simplicity of presentation, in the remainder of this chapter we assume fn, j (xn, j ) =
xn, j , i.e., the additive increase in the probability of success due to investment is given
by xn, j . We proceed to formalize the following optimization problem:

max
N∑

n=1

M∑

i=1

�n,i∑
n

∑
i �n,i

i∏

j=1

(1 − pn, j + xn, j ) (12)

s.t.
N∑

n=1

M∑

j=1

xn, j ≤ B (13)

xn, j ≤ pn, j (14)

The problem above is an instance of a geometric program [3] which can be easily
transformed into convex problems. The field of geometric programming has been
studied for several decades.Once aproblemcanbedefined as an instanceof geometric
programming, an optimal solution for the problem can be found by employing con-
vex optimization methods. We note that convex optimization methods often employ
numerical methods, while only a few problems can be solved analytically. Therefore,
we omit a specific solution for the above problem from this discussion.

We proceed to consider the special homogeneous case where all sections initially
support the same survivability conditions. Without loss of generality, we assume that
the j-th section of line n is fully faulty, i.e., pn, j = 1. For this special case, which we
named SBAPDP HG, we provide the following insight about the optimal solution.

Theorem 2 The optimal solution for the SBAPDP HG problem is such that xn, j ≥
xn,i ,∀ j < i .

Proof We begin by rewriting the numerator of the objective function (12) in a sim-
plified form

N∑

n=1

M∑

i=1

�n,i

i∏

j=1

xn, j =
N∑

n=1

xn,1(�n,1 + xn,2(�n,2 + xn,3(�n,3 + · · · xn,M�n,M)))

Assume for the sake of contradiction that there is an optimal solution such that
xn, j < xn,i for j < i , i.e., xn,i = xn, j + δ. Next, we show that if this were the case
we could increase the value of the objective function by increasing xn, j by δ and
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decreasing xn,i accordingly. Let x̃n, j = xn, j + δ, x̃n,i = xn,i − δ and x̃n,k = xn,k for
k �= i and k �= j . Then,

∑N
n=1 xn,1(�n,1 + . . . xn, j (�n, j + . . . (xn, j + δ)(�n,i + . . . xn,M�n,M)))

<
∑N

n=1 xn,1(�n,1 + . . . (xn, j + δ)(�n, j + . . . xn, j (�n,i + . . . xn,M�n,M)))

Therefore,
∑N

n=1

∑M
i=1 �n,i

∏i
j=1 xn, j <

∑N
n=1

∑M
i=1 �n,i

∏i
j=1 x̃n, j which contra-

dicts our assumption that {xn, j } is optimal. ��
According to Theorem 2, sections closer to substations (associated to smaller

indices) should receive more investment (xn, j is nondecreasing as a function of
index j). Theorem 2 motivates heuristics proposed in Sect. 4 prioritize investment at
sections closer to substations.
Discussion of Analytical Results
Theorems 1 and 2 naturally yield heuristics that we explore in our numerical eval-
uations. According to Theorem 1, the budget allocation problem can be mapped
into the knapsack problem. For the knapsack problem, a greedy strategy consists
of selecting, at each step, the option with maximum benefit-cost ratio. In case we
have infinitesimally divisible goods, the greedy strategy is optimal. This motivates
our greedy heuristic to maximize the ratio of investments benefit over cost at each
step. Accordingly, Theorem 2 motivates allocating resources at the sections closer to
substations. We numerically investigate this and other heuristics in our experimental
evaluations.

4 Optimization Approach

In this section, we present a new random-greedy heuristic to minimize AENS under
budget constraints, using undergrounding, tree trimming costs and load constraints
per feeder line. As the budget is limited, we choose a local search approach starting
from the given distribution network. We first discuss the individual heuristics used
to select the feeder line and section in which to invest, and the investment decision to
make in the selected section. Then, we describe the algorithm composed from these
heuristics.

4.1 Investment Heuristics

Next, we introduce the investment heuristics considered in this chapter.
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4.1.1 Select Section Within Feeder Line

Within a feeder line, we use static heuristics to apply investments. For underground-
ing, our heuristic starts undergrounding at the substation, at section 1 of each feeder
line (in accordance to Theorem 2). Thus, the load of the now underground section can
no longer be affected by storms. If sections other than the first are put underground
first, these would still be subject to storm damage in case the preceding vulnerable
overhead sections fail. The tree trimming investment is applied for all (remaining)
overhead sections of a feeder line. As machinery has to be moved to the loop, the
trimming of single individual sections is not efficient. Thus, when deciding for the
next investment during the local search, the first overhead section of a given feeder
line a is considered and its index is denoted oa .

4.1.2 Select Feeder Line

To select the feeder line a ∈ A to invest in, we approximate the cost-benefit ratio of
the investment. Let pa be the current failure probabilities for feeder line a with Ma

sections, pa = (pa,1, ..., pa,Ma ). An investment x changes the failure probabilities.
We let pa(x) denote the changed vector of failure probabilities. Let �a denote the
vector of load values of feeder line a, �a = (�a,1, . . . , �a,Ma ). In the following para-
graph, we consider a given feeder line a and drop the subscript a from the variables
considered.

The load at section i after a failure depends on the failure probability of the section
itself and all preceding sections, with expected value given by �i

∏i
j=1(1 − p j ). The

expected load in a feeder line immediately after a failure is given by L(p, �),

L(p, �) =
M∑

i=1

�i

i∏

j=1

(1 − p j ) (15)

Note that after a failure occurs, backup paths require a setup time before they can be
used. L(p, �) is the expected load supplied exclusively by primary paths immediately
after a failure at the feeder line considered. L(p(x), �) is the corresponding expected
load after investment x . Then, the expected gain of an investment x in terms of how
much more load will be connected to the primary substation after a failure for feeder
line a is

gain(x, a) = L(pa(x), �a) − L(pa, �a) (16)

Additionally, we consider the cost of the investment, which is calculated based on
section oa’s length and the subsequent section lengths. The cost of undergrounding a
section oa is denoted cu(oa). The cost for annually trimming trees in section oa and
all subsequent sections of feeder line a is denoted ct (oa) (see Sect. 2.4). Then, we
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rank all feeder lines based on the expected benefit-cost ratio of the investment. The
benefit-cost ratio of investment x for x ∈ {u, t} is calculated as follows:

gx(a) = gain(x, a)/cx (oa) (17)

4.1.3 Select Investment

Based on the current configuration of the network, we generate and evaluate two new
configurations.

1. Undergrounding is applied in the feeder line au that has the maximum expected
benefit-cost ratio, i.e., that maximizes gu . Consequently, section oau is placed
underground. Note that undergrounding can be applied multiple times to each
feeder line. At each application, one additional section is undergrounded.

2. Tree trimming is applied to all sections of the feeder line at that has the maximum
expected benefit-cost ratio, i.e., thatmaximizes gt . For each feeder line,we assume
that only one investment in tree trimming is possible. Thus, the tree trimming
investment, which consists of performing one additional tree trimming per year
in all overhead sections of a feeder line, is applied at most once to each feeder
line.

For both investments, the AENS and cost are evaluated. Then, our heuristic selects
the most efficient investments, i.e., the investment that minimizes AENS/cost.

4.2 Optimization Algorithms

Based on the heuristics described above, we implemented a greedy hill climbing
algorithm in MATLAB, denoted Grdy in the following and explained below. The
algorithm pseudocode is shown in Appendix B, and the numbers below refer to the
lines in Algorithm 1.

The main input of Grdy is the network model, characterized by a the set of
auto-loop feeder lines, each with a list of sections. Each section comes with the data
described in Sect. 2.1. Additionally, a budget B and a survivability requirement τ
can be specified to restrict the search to interesting regions. The budget can be set to
infinity and the survivability requirement to zero to get a full search. The output is a
sequence of network models, one per algorithm iteration.

In each iteration of the algorithm (between lines 4 and 20 in Algorithm 1), the
heuristics are applied as follows. Both investments are considered, tree trimming
(denoted t in the algorithm) and undergrounding (denoted u in the algorithm). Let x
be the current investment, x ∈ {t, u}. The algorithm first selects the feeder line that
maximizes gx(a) as described in Eq. (17) (line 8). If multiple feeder lines have the
same benefit-cost ratio, the first one in the underlying data structure is taken. The
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selected feeder line is denoted a(x). Next, the failure probabilities of the sections
of the selected feeder line are reduced in the function applyInvestment (line 10).
In the case of the Con Edison network, this means that the failure probability of
underground sections is set to zero and the failure probability of the sections with
trimmed trees is set according to Eq. (1) with S = max(0,ωs − 14)/70), i.e., based
on the 74%percentilewind gustωs observed for the section s in the considered storm.
The tree trimming investment is only applied once per feeder line at maximum and
undergrounding is only applied once per section at maximum.

Given two sets A and B, let A\B denote the set difference of A and B. Let
(A ∪ {a′(i)})\{a(i)} be the adjusted network model after adding the updated feeder
line a′(i) and after removing the old version, a(i). Then, the survivability of the
adjusted network model is evaluated in function evaluateSurvivability, using
the probability of section failure and loads as input. The Markov model of Fig. 4
yields the average expected energy not supplied (AENS). Finally, the costs of an
investment are calculated (line 13). As introduced above, cx (s) denotes the costs of
applying investment x to section s. Then, evaluateCost(A) is defined as follows,

evaluateCost(A) =
∑

a∈A

⎛

⎝
∑

s∈Sa(A)

cu(s) +
∑

s∈Ta(A)

ct (s)

⎞

⎠ (18)

where
Sa(A) = {s ∈ a : s underground in A} (19)

and
Ta(A) = {s ∈ a : s /∈ Sa and s has trees trimmed in A}. (20)

The two candidate networks created (one by placing a section underground, one
by adding tree trimming) are compared based on the benefit-cost ratio (line 16 in
Algorithm 1). The one that maximizes the benefit-cost ratio is taken as a basis for
the next iteration (line 18). The algorithm terminates if the survivability result meets
the given requirements, reaches 0, or if the budget is met (line 20).

Additionally, to avoid local optima, we implement a randomized greedy version
(denoted RndGrdy) of the proposed algorithm. RndGrdyuniformly at random
selects (a) the feeder line to invest in from the top 5 feeder lines based on expected
benefit-cost ratio (line 8) and (b) the investment to apply (tree trimming or under-
grounding, line 16). In the following section, we compare Grdyagainst RndGrdy.

5 Evaluation

This section presents our numerical results for the two algorithms presented when
applied to the Con Edison network described in Sect. 2.1. Figure3 shows the results
of running different algorithm variants (Grdy once, RndGrdy three times). Each
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Fig. 3 Comparison of algorithm variants: average energy not supplied versus cost

run took about 1 h 10min on a single 3GHz core of a standard notebook machine. In
each run, 1856 candidate networks were generated and their AENS and costs were
evaluated.

We observe that the Grdy variant and the RndGrdy variant perform quite simi-
larly. In some portions of the search space, Grdy performed slightly better than our
three runs of the RndGrdy. In some other parts (not all shown in Fig. 3), a random
run performed slightly better, but all four runs perform similarly overall.

As a reference for comparison, we also evaluated alternative investments (shown
as circles in Fig. 3) which use the static heuristic to select the section to invest within
a feeder line, i.e., always the first sections that can fail are placed underground and if
trees are trimmed all trees in a feeder line are trimmed. The decisions about in which
line to invest, and whether to perform undergrounding or tree trimming, are selected
uniformly at random. Figure3 illustrates the gains obtained as a consequence of
exploring the state space in a principled way.

The heuristics evaluated in this section allowed us to explore the state space to find
solutions which balance costs and survivability. The precise study of these solutions,
accounting for stability and power flow analysis, must be performed in order to
guarantee their feasibility. We envision the methodology introduced in this chapter
as a first step to assist in the planning of a network.

6 Conclusion

In this chapter, we have introduced a new scalable methodology to assess the surviv-
ability impact of storm hardening investments. We have developed an abstraction of
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the Con Edison overhead system using number of loops, sections, loads, and avail-
able distributed generation. We have also developed a failure model for the hurricane
impact on the overhead system that estimates the section failure probability as a func-
tion of the maximum wind gust produced by the hurricane in a certain location. As
a case study, we considered the series of named storms for 2012 Atlantic hurricane
season.

We have shown that the budget allocation problem in the context of survivabil-
ity optimization of distribution automation networks is NP-hard. However, as the
budget allocation problem can be mapped into the knapsack problem, in the case
of infinitesimally divisible goods, the greedy strategy that selects at each step the
maximum improvement in the ratio of survivability improvement over cost would
be optimal. Therefore, we were motivated to evaluate the performance of greedy and
random-greedy heuristics.

Our evaluations of investment alternatives for storm hardening, which were based
on the abstraction of Con Edison overhead system, shows that investment selections
based on our greedy and random-greedy heuristics perform significantly better than
randomly selected investments. Our heuristics are efficient and scalable as they use
analytical solutions of the phased-recovery model for each circuit evaluation. We are
encouraged by the efficiency and practicality of our approach as demonstrated by
these initial results. As topics for future research, we envision the implementation
of these heuristics into distribution automation optimization tools that could be used
by power electric utilities to plan for storm hardening investments by taking into
account different topologies, the impact of distributed generation, demand response,
and failure detection and restoration features.

Appendices

Appendix A: Survivability Model

We describe the survivability model already presented in [2], which is one of the
building blocks of the proposed power distribution optimization approach. Figure4
illustrates the model.

As shown in Fig. 4, after a failure, the system transitions to one of three states
depending on the availability of backup power, distributed generation, and commu-
nication. If communication is available, the system transitions to state 1 if backup
power from a backup substation is available and to state 3 if distributed generation
(e.g., from solar panels) will be tried. These transitions occur with rates p̂q̂/ε and
p̂(1 − q̂)/ε, respectively. From state 1, the system is amenable to automatic restora-
tion, which produces a transition to state 5. In state 5, manual repair is required in
order to finalize the repair procedure. Manual repair occurs with rate δ. From state
3, distributed generation is activated with rate βr̂ . In case of success, the system
transitions to state 2. In state 2, automatic repair occurs at rate α′. Note that in case
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communication is not available after the failure, it is restored with rate γ, and the
system transitions to states 1 if a secondary backup path is available and to state 3
otherwise. In any other state, the system is also amenable to manual repair, which
occurs at rate δ.

We use the model in Fig. 4 to compute the survivability metric of interest, namely
average energy not supplied (AENS). To this end, we parametrize the model using
the constants presented in Table2. The default values of the parameters are set based
on expert knowledge. Note that q̂ and r̂ are additional parameters of themodel, which
are derived from the probabilities of section failure as explained in [2, Sect. 4.4]. In
order to compute the expected energy not supplied, to each state prior to repair in
the model we associate reward rates, which are the expected energy not supplied
per time unit at that state. These reward rates are derived from the probabilities of
section failure and the section loads as explained in [2, Sect. 4.4]. Thus, the inputs

Table 2 Table of parameters

Parameter Description Value (1/h)

α′ = α Automatic restoration rate 30

δ Manual repair rate 0.25

γ Communication restoration rate 1

β Automatic repair rate 4

1/ε Detection rate ∞
p̂ Probability that communication is working after failure 0.5

Variable Description

r̂ Probability that automatic use of DG is effective

q̂ Probability that secondary path is available after failure
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to the survivability model for use in this chapter are the probability of failure in each
section and the average load in each section.

Appendix B: Algorithm Pseudocode

Algorithm1 shows the pseudocode of the optimization solution discussed in Sect. 4.2.

input : network model, i.e. set of auto-loop feeder lines A
budget B
survivability requirement τ

output: sequence of network models T = (t0, t1, ...)
1 j ← 1; // iteration counter
2 t0 ← A;
3 I ← evaluateSurvivability(A); // initial
4 repeat
5 // t = tree trimming; u = undergrounding
6 for x ∈ {t, u} do
7 // select feeder line a with highest expected benefit-cost ratio gx (a)

8 a(x) ← argmaxa∈A(gx (a));
9 // apply selected investment to feeder line, reducing failure probabilities

10 a′(x) ← applyInvestment(a(x), x);
11 // compute AENS using survivability model
12 Aens(x) ← evaluateSurvivability(A ∪ {a′(x)}\{a(x)});
13 o(x) ← evaluateCost(A ∪ {a′(x)}\{a(x)});
14 end
15 // select investment to apply
16 i ← argmaxx∈{t,u}(I − Aens(x))/o(x);
17 // update power network model
18 A ← (A ∪ {a′(i)})\{a(i)};
19 t j ← A; j ← j + 1;
20 until (Aens(i) < τ ) or (o(i) ≥ B);

Algorithm 1: Component allocation algorithm
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Model Checking Two Layers of Mean-Field
Models

Anna Kolesnichenko, Anne Remke, Pieter-Tjerk de Boer
and Boudewijn R. Haverkort

Abstract Recently, many systems that consist of a large number of interacting
objects have been analysed using the mean-field method, which allows a quick and
accurate analysis of such systems, while avoiding the state-space explosion problem.
To date, the mean-field method has primarily been used for classical performance
evaluation purposes. In this chapter, we discuss model-checking mean-field mod-
els. We define and motivate two logics, called Mean-Field Continuous Stochastic
Logic (MF-CSL) and Mean-Field Logic (MFL), to describe properties of systems
composed of many identical interacting objects. We present model-checking algo-
rithms and discuss the differences in the expressiveness of these two logics and their
combinations.

1 Introduction

Present-day computational technologies are massive and can cope with a huge
amount of data. However, for modelling or simulation of a large system of inter-
acting objects this computational power is often not enough. The mean-field method
can be used to model such large systems efficiently. This method [1, 2] does not
consider the state of each individual object separately. Instead, only their average

A. Kolesnichenko (B)
UL Transaction Security Division, De Heyderweg 2, 2314 XZ Leiden, The Netherlands
e-mail: anna.kolesni4enko@gmail.com

A. Remke
Department of Computer Science, University of Münster, Einsteinstrasse 62,
48149 Münster, Germany
e-mail: Anne.Remke@wwu.de

P.-T. de Boer · B.R. Haverkort
Department of Computer Science, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands
e-mail: p.t.deboer@utwente.nl

B.R. Haverkort
e-mail: b.r.h.m.haverkort@utwente.nl

© Springer International Publishing Switzerland 2016
L. Fiondella and A. Puliafito (eds.), Principles of Performance and Reliability
Modeling and Evaluation, Springer Series in Reliability Engineering,
DOI 10.1007/978-3-319-30599-8_13

341



342 A. Kolesnichenko et al.

behaviour, i.e. the fraction of objects in each possible state at any time, is considered.
The model obtained possesses two levels: (i) the local level describes the behaviour
of a random individual; (ii) the global level addresses the overall model behaviour.
On the global level, the mean-field model computes the exact limiting behaviour of
an infinite population of identical objects, which is a good approximation when the
number of objects is not infinite but sufficiently large. Examples of systems for which
themean-field method has been successfully applied include gossiping protocols [3],
disease spread between islands [4], peer-to-peer botnets spread [5] and many more.

Thus far, the mean-field method was primarily used for classical system per-
formance measures, however, also more involved measures might be of interest.
Therefore, methods for efficient and automated model-checking of such non-trivial
measures (or properties) are essential andnon trivial.One challenge lies in the fact that
the model has two layers. Therefore, it is desirable to be able to formulate properties
on both levels. Another challenge is that the local model is a time-inhomogeneous
Markov chain (ICTMC). Therefore, the results of the model-checking procedure
depend on time. Finally, the state-space of the global mean-field model is infinite.
Hence, finding the satisfaction set is difficult.

In this chapter we discuss two logics, namely Mean-Field Continuous Stochastic
Logic (MF-CSL) and Mean-Field Logic (MFL) together with the corresponding
model-checking algorithms. While MF-CSL was proposed in Ref. [6], MFL is a
valuable addition, since it enables reasoning about timed properties on the global
level. MF-CSL first expresses the property of a random node in a system (including
timed properties) and then lifts this to the system level using expectation operators.
In contrast, MFL expresses the property of the whole system directly and it does not
take into account the behaviour of the individual objects.

The contributionof this chapter is to adapt the existing logicSignal Temporal Logic
(STL) [7] to mean-field models. This is done by defining global atomic properties
of the mean-field model, which define binary trajectories based on the real-valued
behaviour of the mean-field model. Moreover, three ways to approximate the full
satisfaction set of an MFL formula are discussed. One of the methods is specifically
tailored toMFL and may be very computationally expensive. The two other methods
are based on existing algorithms, proposed in Refs. [8, 9], where sensitivity analysis
is used to partition the parameter set, which results in more efficient algorithms. We
adapt these methods to approximate the satisfaction set of an MFL formula. This
chapter compares the three methods and discusses available tools. Moreover, we
compare the previously proposed logic MF-CSL to the logic MFL and motivate the
existence of both. The possible combination of both logics is also discussed and
illustrated by an example.

This chapter is further organized as follows. Section2 discusses related work
on model-checking mean-field models. In Sect. 3, a brief overview of the mean-field
model andmean-field analysis is provided. The logicMF-CSL is described in Sect. 4,
whereas Sect. 5 introduces MFL. The two logics are compared in Sect. 6. Section7
concludes the chapter.
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2 Related Work

Model-checking analyses whether a system state satisfies certain properties. It was
initially introduced for finite deterministic models, for the validation of computer
and communication systems, and later extended to stochastic models and models
with continuous time. Checking models of large systems is complicated by the state-
space explosion problem. Hence, model-checking mean-field models is considered
a valuable continuation. For an overview, we refer the reader to Ref. [10].

The first work on model-checking mean-field models was presented in Refs. [6,
11]. Reference [11] presented first steps towards approximate model-checking of
bounded CSL properties of an individual object (or group of objects) in a large
population model. The Fast Simulation Theorem is used to characterise the behav-
iour of a single object via the average system behaviour, as defined by mean-field
approximation. The proposed method is called fluid model-checking, which has been
supplemented with next and steady-state operators in Ref. [12].

In contrast to fluid model checking, cf. [6], focuses on the properties of the whole
population and proposes the logic MF-CSL. Such formulas consist of two layers,
namely the local CSL formula, which describes the property of an individual object
and a global expectation formula describing the fraction of objects, satisfying the
local formula. The algorithm to check the until operator on the local level is based on
the algorithm presented in Ref. [11]. An extra layer on top of local CSL properties
allows the description of global properties of the whole system.We discuss this logic
in more details later in this chapter.

Another two-layer logic is introduced in Ref. [13]. The time-bounded local prop-
erties are described using 1-global-clock Deterministic Timed Automata. Next, the
global probability operator is introduced to estimate the probability that a certain
fraction of local objects satisfies the local property, instead of the fractions of objects
satisfying a certain property as in Ref. [6].

A different approach for model-checking mean-field models was proposed in
Ref. [14]. There, the authors focus on the properties of an individual object, which is
modelled as a discrete-time model in contrast to previously mentioned works. The,
so-called, on-the-fly model-checking approach examines only those states that are
required for checking a given property instead of constructing the entire state space.

Another way of looking at the mean-field model is to consider the behaviour
of the whole system without addressing its local behaviour. Having in mind the
representation of the global behaviour as a real-valued signal, one can use STL-like
properties [7], as will be discussed further in this chapter. Moreover, a great effort
has recently been made to enhance temporal properties with a real value, which is
addressed as quantitative semantics or robustness degree [9, 15–17]. These methods
can be successfully applied tomean-fieldmodels aswell. The robustness of stochastic
systems (including mean-field or fluid models) has been discussed in Ref. [18]. The
design problem has also been addressed, where the parameters of the model can be
optimized in order to maximize robustness. Several tools are available which allow
calculating the robustness degree [19–21].
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3 Mean-Field Models

The main idea of mean-field analysis is to describe the overall behaviour of a system
that is composed of many similar objects via the average behaviour of the individual
objects. In Sect. 3.1we briefly recall the definition of the local model, which describes
the behaviour of each individual object as well as how to build the overall model
that describes the complete system. In Sect. 3.2, we then describe how to compute
transient and steady-state occupancy measures using mean-field analysis.

3.1 Model Definition

Let us start with a random individual object which is part of a large population.
We assume that the size N of the population is constant; furthermore, we do not
distinguish between classes of individual objects for simplicity of notation. However,
these assumptions can be relaxed, see, e.g., [22].

The behaviour of a single object can be described by defining the state space
Sl = {s1, s2, . . . , sK } that contains the states or “modes” this object may experience
during its lifetime, the labelling of the state space L : Sl → 2L AP that assigns local
atomic propositions from a fixed finite set of Local Atomic Properties (LAP) to each
state and the transitions between these states.

In the following we will consider a large population of N objects, where each
individual is modelled as described above, and denoted asMi for i ∈ {1, . . . , N }. Let
us first try to preserve the identity of each object and build the model, describing the
behaviour of N objects individually. It is easy to see that when the population grows
linearly the size of the state space of the model grows exponentially. Fortunately, the
mean-field approach allows modelling such a system of indistinguishable objects
and avoids exponential growth of the state space (state-space explosion).

Given the large number of objects, where each individual is modelled by M ,
we proceed to build the overall model of the whole population. We assume that all
objects behave identically, therefore, we canmove from the individual representation
to a collective one, that does not reason about each object separately, but gives the
number (or fraction) of individual objects in a given state of the modelM . It is done
by taking the following steps:

Step 1. Lump the state space. When preserving the identity of the objects in a
population (M1,M2, . . . ,MN ) the sequence of the models of individual objects
can be considered as a model of the population. However, the size of such sequence
depends on N . Due to the identical and unsynchronized behaviour of the individual
objects, a counting abstraction (or, stated differently, a transition from the individual
to a collective representation) is used to find a smaller stochastic process, denoted
as M(N ), of which the states capture the number of the individual objects across the
states of the local model M :
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M(N )
j =

N∑

i=1

1{Mi = j}.

The state of M(N ) at time t is a counting vector M(t) = (M1(t), M2(t), . . . , MK (t)),
where Mi ∈ {0, . . . , N }, and ∑K

i=1 Mi = N . The initial state is denoted as M(0).
Step 2. Defining transition rates. Given M(N ) and M(0) as defined above the

Continuous-Time Markov Chain (CTMC) M (N )(t) can be easily constructed. The
transition rates are defined as follows [23]:

Qi, j (M(t))=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

limΔ→0
1
Δ
Prob

{
M (t + Δ)) = j |
M (t) = i, M(t)

}
, if Mi (t) > 0,

0, if Mi (t) = 0,
− ∑

h∈Sl ,h �=i Qi,h(M(t)), for i = j,

whereM (t) indicates the state of the individual object at time t . The transitionmatrix
depends on time viaM (t).

Step 3. Normalize the population. For the construction of the mean-field model,
which does not depend on the size of the population, the state vector is normalized
as follows:

m(t) = M(t)

N
,

where 0 ≤ mi (t) ≤ 1 and
∑K

i=1 mi = 1.
When normalizing, first we have to make sure that the related transition rates are
scaled appropriately. The transition rate matrix for the normalized population is
given by:

Q(m(t)) = Q(N · m(t)).

Secondly, the initial conditions have to scale appropriately. This is commonly called
convergence of the initial occupancy vector [24, 25]:

m(0) = M(0)

N
.

The overall mean-field model can then be constructed as follows:

Definition 1 (Overall mean-field model) An overall mean-field model MO

describes the limit behaviour of N → ∞ identical objects and is defined as a tuple
(So, Q), that consists of an infinite set of states:

So =
⎧
⎨

⎩m = (m1, m2, . . . , mK )| ∀ j ∈ {1, . . . , K }, m j ∈ [0, 1] ∧
K∑

j=1

m j = 1

⎫
⎬

⎭ ,
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Fig. 1 The model describing computer virus spread in three groups of computers

where m is called occupancy vector, and m(t) is the value of the occupancy vector
at time t ; m j denotes the fraction of the individual objects that are in state s j of the
model M . The transition rate matrix Q(m(t)) consists of entries Qs,s ′(m(t)) that
describe the transition rate of the system from state s to state s ′.

Note that for any finite N the occupancy vector m is a discrete distribution over K
states, taking values in {0, 1

N , 2
N , . . . , 1}, while for infinite N , themi are real numbers

in [0, 1].
Example 1 We describe amodel of virus spread in a system of interacting computers
(see Fig. 1). We divide the whole computer system into three groups (e.g. different
departments or geographical locations). We name these groups X, Y and Z. Each
group has a fixed number of nodes (computers) NX , NY and NZ , respectively, where
N = NX + NY + NZ . Communication between the groups is possible, but less prob-
able than within a group. The system we model has three different locations and two
different types of hardware (or software), where for each type the same computer
virus would behave differently, i.e. computers in group X differ from the computers
in groups Y and Z . The model of computer behaviour must take into account the
possibility of being (i) in each of the three groups and (ii) being in each of the states
of infection. Let us now consider the spread of the infection.

States represent the modes of an individual computer, which can be uninfected,
infected and active or infected and inactive in all three groups; in addition, in group
X a computer must first stay in the initially connected state before the virus is
fully embedded in the computer system and the computer is infected. An active
infected computer spreads the virus, while an inactive computer does not. Given this
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information, the state-space of the local model must be extended to incorporate the
possibility of being in each of the three groups. This results in the finite local state-
space Sl = {sX,1, sX,2, sX,3, sX,4, sY,1, sY,2, sY,3, sZ ,1, sZ ,2, sZ ,3},with |Sl | = K = 10
states, which are labelled as infected X , uninfected X , initial connectionX , activeX and
inactiveX , etc., as indicated in Fig. 1.

The transition rates for computers in thefirst group are as follows: the infection rate
k∗

X,1 is the rate for the initial connection; after that a computer must first try to pass the
initially connected state with rate kX,3 or return to the uninfected state with rate kX,2.
The recovery rate for an inactive infected computer is kX,5, the recovery rate for an
active infected computer is kX,7, the rate with which computers become active is kX,4

and they return to the inactive state with rate kX,6. Rates kX,2, kX,3, kX,4, kX,5, kX,6

and kX,7 are specified by the individual computer and the properties of the computer
virus and do not depend on the overall system state. The infection rate k∗

X,1 does
depend on the rate of attack kX,1, the fraction of computers that is infected and active
and, possibly, the fraction of uninfected computers. The dependence on the overall
system state is intended to reflect real-world scenarios and might be different for
different situations. We discuss the infection rate of the current model further in this
example.

Given a system of N computers, we can model the average behaviour of the
whole system through the global mean-field model, which has the same underly-
ing structure as the individual model (see Fig. 1), however, with state-space So =
{m X,1, m X,2, m X,3, m X,4, mY,1, mY,2, mY,3, m Z ,1, m Z ,2, m Z ,3}, where m X,1 denotes
the fraction of uninfected computers in group X · m X,2 represents the fraction of
computers in the initially connected state, and m X,3 and m X,4 denote the fraction of
active and inactive infected computers in group X , etc.

The infection rate can then be seen as the number of attacks performed by all active
infected computers in group X , which is uniformly distributed over all uninfected
computes in a chosen group, that is, kX,1 · m X,4(t)

m X,1(t)
. Note that we assume here that

computer viruses are “smart enough” to only attack computers which are not yet
infected, see [5, 26]. As discussed above, the computers from the different groups
might interact with a certain probability. In the context of our virus spread model,
this interaction plays a role when infected computers from groups Y and Z might
contact uninfected computers in group X and vice versa. In this example model,
we describe a virus which chooses one of the groups of computers with probability
pX,X , pX,Y , pX,Z (for an infected computer from group X ). The complete infection
rates are composed by multiplying the above rates for one group with the probability
of choosing a given group and accumulating all possible interactions between the
three groups. Given the reasoning above, the infection rate in group X is

k∗
X,1 = pX,X · kX,1 · m X,4(t)

m X,1(t)
+ pY,X · kY,1 · mY,3(t)

m X,1(t)
+ pZ ,X · kZ ,1 · m Z ,3(t)

m X,1(t)
.

The infection rates of groups Y and Z are constructed in a similar way.
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For example, a completely healthy system without infected computers would

be in state m =
(

N1

N
, 0, 0, 0,

N2

N
, 0, 0,

N3

N
, 0, 0

)
. A system with 50% uninfected

computers and 40 and 10% of inactive and active computers in group X , and no
infected computers in groups Y and Z would be in state:

m =
(
0.5 · N1

N
, 0, 0.4 · N1

N
, 0.1 · N1

N
,

N2

N
, 0, 0,

N3

N
, 0, 0

)
.

3.2 Mean-Field Analysis

Here we express a reformulation of Kurtz’s theorem [27] which relates the behaviour
of the sequence of models M1,M2, . . . ,MN with increasing population sizes to
the limit behaviour. We reformulate the theorem to make it more suitable for our
purposes.

Before the theorem can be applied one has to checkwhether the overall mean-field
model satisfies the following two conditions:

1. the model preserves the so-called density dependence condition in the limit N →
∞ for all N > 1. This means that transition rates scale together with the model
population, so that in the normalized models they are independent of the size of
the population.

2. The rate functions are required to be Lipschitz continuous (informally it means
that rate function are not too step).

When the three steps for constructing the mean-field model are taken and the above-
mentioned conditions are satisfied, Kurtz’s theorem can be applied, which can be
reformulated as follows: For increasing values of the system size (N → ∞) the
sequence of the individual models converges almost surely [28] to the occupancy
vector m, assuming that functions in Q(m(t)) are Lipschitz continuous, and for
increasing values of the system size, the initial occupancy vectors converge to m(0).
The above statement can be formally rewritten as in Ref. [23].

Theorem 1 (Mean-field convergence theorem) The normalized occupancy vector
m(t) at time t < ∞ tends to be deterministic in distribution and satisfies the following
differential equations when N tends to infinity:

dm(t)

dt
= m(t) · Q(m(t)), given m(0). (1)

The ODE (1) is called the limit ODE. It provides the results for the population of size
N → ∞, which is often an unrealistic assumption for real-life systems. However,
when the number of objects in the population is finite but sufficiently large, the
limit ODE provides an accurate approximation and the mean-field method can be
successfully applied.
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Fig. 2 Distribution of the computers over the states of themodel for each group. The dashed, dotted,
dash-dotted and solid lines show the fraction of uninfected, initially infected, infected inactive and
infected active computers respectively

The transient analysis of the overall system behaviour can be performed using the
above system of differential equations (1), i.e. the fraction of objects in each state of
M at every time t is calculated, starting from some given initial occupancy vector
m(0), as illustrated in the following example.

Example 2 We provide an example, applying the mean-field method to the virus
spread model, as in Example 1. We describe how to construct the mean-field model
and obtain the performance results. The model below will be used throughout the
chapter as a running example. The distribution of objects over three groups in this
example is uniform, where N1 = N2 = N3 = N

3 .
Theorem 1 is used to derive the system of ODEs (1) describing the mean-

field model. These ODEs are solved, given the following initial vector1 m(0) =
1
3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}), and the following parameters:

kX,1 = 0.2, kY,1 = 0.9, kZ ,1 = 0.25, pX,X = 0.93,
kX,2 = 0.01, kY,2 = 0.005, kZ ,2 = 0.001, pY,Y = 0.94,
kX,3 = 0.2, kY,3 = 0.01, kZ ,3 = 0.001, pZ ,Z = 0.97,
kX,4 = 0.0001, kY,4 = 0.1, kZ ,4 = 0.05, pX,Y = 0.05,
kX,5 = 0.0001, kY,5 = 0.06, kZ ,5 = 0.001, pX,Z = 0.02.
kX,6 = 0.005, pY,X = 0.05, pZ ,X = 0.02,
kX,7 = 0.005, pY,Z = 0.01, pZ ,Y = 0.01,

The distribution of the objects between the states of the model over time (see Fig. 2)
is obtained using Wolfram Mathematica [29].

In the following we discuss a couple of topics which lie beyond the convergence
theorem discussed above. We first explain how the behaviour of individual objects
within the overall population can be modelled. Second, possible relaxations of the
assumptionsmade for this theoremare discussed. Then the behaviour in the stationary
regime is briefly recalled.

Local model. The rates of themodel for an individual object within the population
may depend on the overall system state, which means that the local model is a Time-
Inhomogeneous Continuous-Time Markov Chain (ICTMC). To formally describe

1Note that for ease of interpretation, we group the elements of the vector according to the three
submodels.
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the behaviour of a single individual in the population the asymptotic decoupling of
the system is used, and the result is often referred to as Fast Simulation [25, 30].
The main idea of this method lies in the fact that every single object (or group of
objects) behaves independently from other objects, and can only sense the mean of
the system behaviour, which is described by m(t). The model of one object within
the population is called “local mean-field model” in the following and is defined as:

Definition 2 (Local model) A local model M l describing the behaviour of one
object is defined as a tuple (Sl , Q, L) that consists of a finite set of K local states
Sl = {s1, s2, ..., sK }; an infinitesimal generator matrix Q : (Sl × Sl) → R; and the
labelling function L : Sl → 2L AP that assigns local atomic propositions from a fixed
finite set of Local Atomic Properties (LAP) to each state.

Relaxing the assumptions. For models considered in practice the assumption of
density dependence may be too restrictive [25]. Furthermore, also the assumption
of (global) Lipschitz continuity of transition rates can be unrealistic [31]. There-
fore, these assumptions can be relaxed and a more general version of the mean-field
approximation theorem, having less strict requirements and which is applied to pre-
fixes of trajectories rather than to full model trajectories, can be obtained. We will
not focus on this reformulation of the convergence theorem here, instead we refer
to [2].

Moreover, the mean-field approach has recently been expanded to a class of mod-
els with both Markovian and deterministically timed transitions, as introduced for
generalized semi-Markov processes in Ref. [32]; and generally distributed timed
transitions for population generalized semi-Markov processes [33]. In addition, an
extension towards hybrid Markov population models has recently been made in
Refs. [34, 35].
Stationary behaviour. The convergence theoremdoes not explicitly cover the asymp-
totic behaviour, i.e. the limit for t → ∞. However, when certain assumptions hold,
the mean-field equations allow to perform various studies including steady-state
analysis. In the following we briefly recall how to assess the steady-state behaviour
of mean-field models as in [36].

The stochastic process (M(N )), which was approximated by themean-field model,
has to be studied in order to find out whether the stationary distribution exists. It has
been shown that, if the stochastic process is reversible, the fixed point approximation
addressing the limiting behaviour of the overall mean-field model is indeed valid.
Fixed point is an approximation of the stationary behaviour of the stochastic process
by the stationary points of the mean-field (fluid) limit [36]. The reversibility of
the stochastic process implies that any limit point of its stationary distribution is
concentrated on stationary points of the mean-field limit. If the mean-field limit has
a unique stationary point, it is an approximation of the stationary distribution of the
stochastic process. The stationary distribution m̃ = limt→∞ m(t), if it exists, then is
the solution of:

m̃ · Q(m̃) = 0. (2)
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For some models the above equation can not be applied straightforwardly and more
advanced methods are required in order to approximate the stationary distribution or
its bounds [37]. This, however, lies outside of the scope of this chapter.

4 Overall System Properties. The Logic MF-CSL

In this section, we briefly recall the logic MF-CSL for checking properties of mean-
field models, as introduced in Ref. [6]. MF-CSL is a two-layer logic, where (i) on
the local level the property of a random object is specified; (ii) on the global level
the fraction of objects satisfying this local property is expressed.

4.1 CSL and MF-CSL

Let us first recall how the properties of a randomobject can be expressed and checked.
As discussed in Sect. 3, the model of one object in a mean-field system is an ICTMC.
Therefore, the logic CSL [38] can be used to describe properties on the local layer.

Definition 3 (CSL Syntax) Let p ∈ [0, 1] be a real number, ��∈ {≤,<,>,≥} a
comparison operator, I ⊆ R≥0 a non-empty time interval and LAP a set of atomic
propositions with lap ∈ LAP. CSL state formulas Φ are defined by:

Φ:: = t t | lap | ¬Φ | Φ1 ∧ Φ2 | S��p(Φ) | P��p(φ),

where φ is a path formula defined as:

φ:: = χ I Φ | Φ1 U I Φ2.

When the local model is time homogeneous, the semantics of CSL formulas is well
known. However, in any non-trivial mean-field model, the transition rates of the local
model M l are not constant. According to Definition 2, the rates of the local model
M l may depend on the state of the global model M O , which changes with time.
There are two ways to formalize this: the local rates depend on (i) the current state
m, which changes with time, or (ii) on global time. While the first is more intuitive,
it does not allow transition rates to depend explicitly on global time. For ease of
notation we restrict ourselves to models that only depend on the overall state. Note
that this approach can easily be extended to models that explicitly depend on global
time.

Since the local model changes with the overall system state, the satisfaction rela-
tion for a local state or path depends on the global state m. Therefore, the satisfaction
relation |=m , was introduced in Ref. [6]. Due to the lack of space we do not provide
the extended semantics of CSL for the local model and refer to [6] for more details.

In order to reason at the level of the overall model in terms of fractions of objects
we introduce an extra layer “on top of CSL” that defines the logic CSL for mean-field
models, denoted MF-CSL.
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Definition 4 (MF-CSL Syntax) Let p ∈ [0, 1] be a real number, and ��∈ {≤,<,>,

≥} a comparison operator. MF-CSL formulas Ψ are defined as follows:

Ψ :: = t t | ¬Ψ | Ψ1 ∧ Ψ2 | E��p(Φ) | ES��p(Φ) | EP��p(φ),

where Φ is a CSL state formula and φ is a CSL path formula.

This definition introduces three expectation operators: E��p(Φ), ES��p(Φ) and
EP��p(φ), with the following interpretation:E��p(Φ) denotes whether the fraction of
objects that are in a (local) state satisfying a general CSL state formulaΦ fulfils �� p;
ES��p(Φ) denotes whether the fraction of objects that satisfyΦ in steady state, fulfils
�� p; EP��p(φ) denotes whether the probability that an object chosen uniformly at
random satisfies path formula φ fulfils �� p.

Example 3 In the following, we provide a couple of example MF-CSL formulas.

• No more than 5% of all computers are infectedY (i.e. these computers belong to
the group Y and are infected), is expressed as E≤0,05 infectedY .

• The percentage of all computers which happen to belong to group X and have
a probability of less than 10% of going from an uninfected to an active infected
state within 3h is greater than 40%, i.e.

E>0,4
(
P<0.1(uninfectedX U [0,3] activeX )

)
.

• EP<0.5(ttU [0,2] infectedZ ) ensures a probability below50% that amachine, chosen
uniformly at random, is in group Z and becomes infected within two hours from
now.

• In the long run a very low proportion (less than 2%) of all computer should be
infected group Z machines: ES<0.02 infectedZ .

Definition 5 (MF-CSL Semantics) The satisfaction relation |= for MF-CSL for-
mulas and states m = (m1, m2, . . . , mK ) ∈ So of the overall mean-field model is
defined by:

m |= t t ∀ m ∈ So,
m |= ¬Ψ iff m �|= Ψ ,
m |= Ψ1 ∧ Ψ2 iff m |= Ψ1 ∧ m |= Ψ2,

m |= E��p(Φ) iff

(
K∑

j=1
m j · I nd(s j |=mΦ)

)
�� p,

m |= ES��p(Φ) iff

(
K∑

j=1
m j · πM l

(s j , Sat (Φ, m))

)
�� p,

m |= EP��p(φ) iff

(
K∑

j=1
m j · ProbM l

(s j , φ, m)

)
�� p,
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where Sat (Φ, m), πM (s, Sat (Φ, m)), ProbM l
(s, φ, m) are defined in the seman-

tics ofCSL formula [6]; and I nd(s j |=mΦ) is an indicator function,which showswhether
a local state s j ∈ Sl satisfies formula Φ for a given overall state m:

I nd(s j |=mΦ) =
{
1, if s j |=m Φ,

0, if s j �|=m Φ.

Although m is referred to as the m vector at time 0, this is only for ease of discussion,
without loss of generality.

To check an MF-CSL formula at the global level, the local CSL formula has to be
checked first, and the results are then used at the global level. As discussed above,
the local model M l is a time-inhomogeneous CTMC, i.e. transition rates vary with
the state of the overall model M O , which makes model-checking at the local level
non-trivial. The full algorithms for checking CSL properties of the local model are
based on the methods presented in Ref. [11], and have been adapted for the MF-
CSL semantics in Ref. [6] according to Definition 5. These algorithms enable the
identification of the satisfaction set of a CSL formula for a given initial occupancy
vector (i.e. at time t = 0), as well as the time-dependent satisfaction set of a CSL
formula for a given initial occupancy vector and time bound θ .

Traditionally, the satisfaction set of a given formula is the set of states which
satisfies that formula. In the context of MF-CSL model-checking, this would result
in the set of all occupancy vectors m that satisfy a given formula. While such a set
can be built for time-independent MF-CSL operators, it is not a trivial task for time-
dependent operators, since model-checking on the local model M l must be done
without knowing the initial occupancy vector. Theoretically speaking, partitioning
of the whole state-space into sets which satisfy a givenMF-CSL formula and the rest
is possible, but it is computationally very expensive, as model-checking the local
time-inhomogeneous CTMC is very demanding.

Since obtaining the full satisfaction set of an MF-CSL formula is not practically
feasible, the notion of Time Validity Set of the MF-CSL formula for a given initial
occupancy vector and time interval is defined in Ref. [6] as follows:

Definition 6 (Time Validity Set) Let θ > 0 be a predefined time bound,Ψ be anMF-
CSL formula, and initial conditions of the mean-field model M O be an occupancy
vector m(0) = m. The T ime Validity Set (TVS) contains all time intervals, where
Ψ holds, for a given m, and θ :

TVS(Ψ, m, θ) = {t ∈ [0, θ ] | m(t) |= Ψ }.

The time validity set is a set of time intervals, where a given MF-CSL formula holds
for fixed initial conditions.Wewill use this notion later in the chapterwhen discussing
MFL and comparing the two logics. For the details of model-checking MF-CSL we
refer to [6]. However, we provide an example that illustrates the general procedure
of model-checking two-layer properties.
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Example 4 We show how to check whether a given occupancy vector satisfies an
MF-CSL formula (Case A), and how to compute the corresponding TVS (Case B)
for the model provided in Example 1.3.2.

Case A. Let us consider the following formula

Ψ = EP<0.2(uninfectedY U [0,3] infectedY )

and the occupancy vector m = 1
3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}). In

order to check the satisfaction relation m |= Ψ , we first compute the satisfaction
set of the until formula on the local level, and then check the satisfaction relation
m |= Ψ using Definition 5. We use algorithms from [6] as follows.

To find the probability that the until formula holds, the following reachability
problem must be solved: Is state infectedY reached within 3 time units by only
visiting uninfectedY states? This is done by calculating transient probabilities on
the modified local model, where all states satisfying infectedY , and states in groups
X and Z are made absorbing. The Kolmogorov equation is used to calculate the
transient probability matrix of the modified local model. The transient (reachability)
probabilities for state sY,1 to reach states sY,1 and sY,2 are equal to 0.77 and 0.23,
respectively. The probability to reach any state s starting at this state is, obviously,
one. All other transient probabilities are equal to zero.

To compute the probability that the until formulaφ = uninfectedY U [0,3] infectedY
holds for each starting state, we have to accumulate the probabilities to start at this
state and end at the infectedY state. Therefore, the probability that the until formula
holds equals 0.23, since for all states, but sY,1, this probability equals zero. According
to Definition 5, the weighted sum of the entries of the occupancy vector m and the
respective probabilities in the local model define the expected probability EP(φ) as
follows:

K∑

j=1

m j · ProbM
l
(s j , φ, m) = mY,1 · 0.23 + mY,1 · 1.0 = 0.3 · 0.23 + 1

30
· 1 = 0.102.

Therefore the occupancy vector m satisfies EP<0.2(uninfectedY U [0,3] infectedY ).
Case B. Let us consider the same formula Ψ and occupancy vector m and com-

pute TVS(Ψ, m, 15) for θ = 15. The calculation of the time-dependent probabilities
ProbM l

(s, uninfectedY U [0,3]infectedY , m, t) requires the initial transient probabil-
ity (for time t = 0), as done inCaseA.Next, theODEs describing the time-dependent
transient probability of the modified local model are constructed using both forward
and backward Kolmogorov equations [6]. These equations are solved using the ini-
tial transient probability (as computed in Case A) as initial condition. The solution
of these ODEs defines the required time-dependent reachability probabilities. The
time-dependent probability that state sY,1 satisfies the until formula is depicted in
Fig. 3. The probability equals zero for all other starting states, since these states do
not satisfy uninfectedY . To calculate TVS(Ψ, m, 15) the time-dependent expected
probability is calculated using the time-dependent probability that the until formula
holds (see Fig. 3). Then, the time points where the expected probability equals 0.2
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Fig. 3 The dashed line (top) shows ProbM
l
(sY,1, uninfectedY U [0,1]infectedY , m, t). The

(increasing) solid line shows the time-dependent expected probability that the formula
EP<0.2(uninfectedY U [0,1] infectedY ) holds. The horizontal and vertical dotted lines
delimit the period for which the probability is below 0.2, and hence the formula
EP<0.2(uninfectedY U [0,1] infectedY ) holds

are found. In the current example, this is only t = 6.228. The time validity set of
the formula EP<0.2(uninfectedY U [0,3] infectedY ) then consists of all time inter-
vals, where the probability EP(uninfectedY U [0,3]infectedY ) is less than 0.2, i.e.
TVS(Ψ, m, 15) = [0, 7.45).

5 Timed Properties of the Global Model: MFL

In the previous section, we introduced a way to express and check properties of the
global mean-field modelM O via properties of a random local object. The properties
whichMF-CSL can describe include CSL properties (possibly temporal) of the local
model and the expected number of objects for a global model to satisfy this property.
However, timed properties of the global model can not be expressed using MF-CSL,
but can be beneficial for understanding the behaviour of large systems. For that
purpose, the new Mean-Field Logic (MFL) is introduced in Sect. 5.1. Algorithms for
model-checking MFL properties are presented in Sects. 5.2 and 5.3.

5.1 MFL Syntax and Semantics

To be able to express timed properties of the overall model, we adapt the existing
Signal Temporal Logic (STL) which was developed to monitor discrete temporal
properties of continuous signals [7, 39]. In order to do so, we address the solution
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of the ODEs (1) for given initial conditions m(0) as a signal or a trajectory of the
global/overall mean-field model M O . In the following, we express properties of
real-valued trajectories of mean-field models m(t) using STL-like properties. We
first introduce the mapping of the model trajectory to a Boolean signal.

Definition 7 (Global atomic property) An atomic propertyGAP of the globalmodel
is a characteristic function (Boolean predicate) So → {0, 1}, from occupancy vector
m to a Boolean value.

Applying the concept of GAP to a given trajectory of a mean-field model m(t)
results in a Boolean function of time GAP(m(t)). In order to guarantee decidability,
we require that the output Boolean trajectory GAP(m(t)) has finite variability, i.e.
the number of time points where GAP(m(t)) changes value is finite; the output
trajectory is a Boolean robust (cadlag2) function [7]. For simplicity, in the following
we use inequalities of the form

∑
i∈N ai · mi �� p as global atomic properties of

mean-field models, where ai is an indicator factor equal to 1 or 0. However, more
advanced functions, satisfying the above requirements, can be used as GAP. Given
the definition of a global atomic property, the syntax of Mean-Field Logic (MFL)
can be introduced.

Definition 8 (Syntax of MFL) Let I = [a, b], where 0 ≤ a < b, be a non-empty
bounded time interval and function GAP defining global atomic properties. MFL
formulas Υ are defined as:

Υ :: = t t | GAP | Υ1 ∧ Υ2 | ¬Υ | Υ1 U
I Υ2.

We can define not only a property of the global model at a given time point but also
the evolution of the model over time, as shown in the following example.

Example 5 Wefirst start with the properties of the global model at a given time point
(time-independent properties). To define such a property, G APs are combined with
the time-independent operators ¬ and ∧.

The following property describes a system in which the fraction of computers that
belong to group Y and that are infected is smaller than 0.2:

Υ1 = mY,2 + mY,3 < 0.2,

where mY,2 and mY,3 denote the number of infected computers in group Y (inactive
and active respectively). The same property can be expressed using atomic properties
of the local model as follows: infectedY < 0.2. Here and in the following, we use
labels of the local model instead of fractions in G AP to ease the interpretation of
the formula.3 A more involved property can be defined by a conjunction of G APs.

2A function is called cadlag if it is defined on the real numbers (or a subset of them), if it is
everywhere right-continuous and if it has left limits everywhere.
3Note, however, a global atomic property is not always connected to the properties of the local
model (unlike the expectation operator in MF-CSL).
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For example, the property that a system has more than 20% infected computers and
less than 1% active infected group-Z computers is formalized as:

Υ2 = infected < 0.2 ∧ activeZ < 0.01.

Note that the first part of the property Υ2 includes all infected computers in all three
groups. The timed properties of the global system are constructed by combining
GAPs (or other MFL formulas) using the until operator. The following property
describes the system in which the fraction of computers which belong to group X
and are infected is smaller than 0.1 at all times until in the time interval between 3
and 5 time units the fraction of computers that are members of group Z and active
exceeds 0.4:

Υ3 = (infectedY < 0.1) U [3,5] (activeZ > 0.4).

Definition 9 (Semantics of MFL) The satisfaction relation |= forMFLstate formulas
and state m ∈ So is defined as:

m |= t t ∀ m ∈ So,

m |= G AP iff G AP(m) = 1,
m |= Υ1 ∧ Υ2 iff m |= Υ1and m |= Υ2,

m |= ¬Υ iff m � Υ,

m |= Υ1U I Υ2 iff ∃t ∈ I : (m(t) |= Υ2) ∧ (∀t ′ ∈ [0, t] m(t ′) |= Υ1),

where m = m(0) at time t = 0, and m(t ′) is a solution of the ODEs (1) at time t = t ′
with m as the initial condition.

The definition of the until formula is different from the usual representation [40],
because it requires both Υ1 and Υ2 to hold at time t , in order to guarantee closure [7].

As was explained in the previous section, in this chapter we discuss mean-field
models, where the dependency on time is only implicit (via m(t)). Therefore, the
entire model trajectory (the solution of the ODEs (1)) is defined through the cur-
rent system state; the time when this state is reached does not influence the future
behaviour of the system. The occupancy vector for which the satisfaction relation is
checked is therefore denoted m(0), and the time intervals in the until formulas are
relative. However, all the arguments and algorithms presented in this section can be
generalized to models with an explicit time dependence. The next section overviews
the algorithms used for checking MFL properties of mean-field models.

5.2 Checking an MFL Property

To check an MFL formula, its parse tree has to be built and all sub-formulas have
to be checked recursively. Therefore, the algorithms for checking each individual
operator have to be introduced. Checking a given occupancy vector m against time-
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independent operators is straightforward, which follows directly from Definition 9.
However,MFL formulas containing the Until operator can not be checked that easily,
since the behaviour of the system (trajectory) influences the result. Therefore, we
introduce the notion of the time validity set for a given MFL formula, mean-field
model and an occupancy vector, as done in the previous section forMF-CSL formulas
(seeDefinition 6). It is easy to see that if theTVS(Υ, m, θ) contains t = 0, the formula
holds for m. The TVS of a general MFL formula is again built recursively by finding
the TVSs of sub-formulas. The computation of the TVS for the time-independent
operators is straightforward:

TVS(t t, m, θ) = [0, θ ],
TVS(GAP, m, θ) = {t ∈ [0, θ ] | GAP(m(t)) = 1},
TVS(¬Υ, m, θ) = [0, θ ] \ TVS(Υ, m, θ),

TVS(Υ1 ∧ Υ2, m, θ) = TVS(Υ1, m, θ) ∩ TVS(Υ2, m, θ).

Computing the TVS for the until operator (Υ1U [a,b]Υ2) (with 0 ≤ a < b) is more
challenging. The algorithm described in the following is based on the method of
monitoring temporal properties as in Refs. [7, 39]; we refer to these papers for more
details and proofs.

To compute the TVS for the until formula Υ = Υ1U [a,b]Υ2 we first find the sets
of time intervals where the sub-formulas Υ1 and Υ2 hold. Note that both sets may
containmultiple intervals. Thereforewe denote them as TVS(Υ1, m, θ) = υ1

1 ∪ υ2
1 ∪

. . . ∪ υ
n1
1 , and TVS(Υ2, m, θ) = υ1

2 ∪ υ2
2 ∪ . . . ∪ υ

n2
2 , respectively.

TocalculateTVS(Υ, m, θ)onemust obtain all time intervalswhereΥ = Υ1U [a,b]
Υ2 holds. Hence, we search for time intervals where both Υ1 and Υ2 hold, since these
are the time intervals, where the validity of the until formula can be confirmed, in case
at least one such time interval lies between a and b. Recall that the time interval in the
until formula is relative to the starting point. Therefore, to check whether a given vec-
tor fulfils the until formula, one must check whether the intersection interval can be
reached from the vector within the predefined time interval [a, b]. Hence, to directly
compute the set of all time points from which the formula can be fulfilled, we shift
TVS(Υ1 ∩ Υ2, m, θ) backwards, i.e. move the left interval bound back with b and the
right with a time units. This is defined for each pair of sub-intervals in TVS(Υ1, m, θ)

and TVS(Υ2, m, θ) as a backwards shift, denoted asBS [a,b](υ i
1;υ

j
2 ). For each pair

of the intervals (υ i
1;υ

j
2 ), the backward shift is computed as follows:

BS [a,b](υ i
1;υ

j
2 ) = ((υ i

1 ∩ υ
j
2 ) � [a, b]) ∩ υ i

1, (3)

where [x1, x2] � [a, b] := [x1 − b, x2 − a] ∩ [0,∞). This backward shift can be
understood as follows (from left to right):

1. The intersection (υ i
1 ∩ υ

j
2 ) defines all time points where both Υ1 and Υ2 are valid.

2. The �-operation (or backwards shift) ensures that:
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a. the earliest starting point is taken such that after at most b time units one
can reach a state where Υ2 holds;

b. the latest starting point is taken such that one can still switch to a state in
which Υ2 holds for at least a time units.

3. The intersection with υ
(i)
1 ensures that on the way to the state where Υ2 holds, Υ1

always holds.

After the backwards shift is applied to each pair (υ i
1;υ

j
2 ), the resulting intervals are

then combined to find the TVS of the overall until formula:

TVS(Υ1U
[a,b]Υ2, m, θ) =

n1⋃

i=1

n2⋃

j=1

BS [a,b](υ i
1;υ

j
2 ). (4)

In practice, only the pairs of intervals which actually intersect must be considered.
Given the above, the TVS of any MFL formula can be found. After the TVS of
the formula is found, we can validate whether a formula holds for a given initial
occupancy vector m by checking whether t = 0 lies in the TVS. Note that the TVS
can also be seen as an independent measure of interest, if one is looking for the time
slots where the system satisfies a given property, for a given initial state (as in the
previous section). In the following, model-checking MFL formulas is illustrated by
an example.

Example 6 We again address the model of Example 1, with the same parame-
ters as given in Example 2. We explain in detail how to calculate the time valid-
ity set TVS(Υ, m(0), θ) for both time-independent and time-dependent formulas,
given m(0) = 1

3 ({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}), and θ = 25. Next,
we check whether 0 ∈ TVS(Υ, m(0), θ), which would indicate that the initial occu-
pancy vector m(0) satisfies the formula.

Case A. We first consider the time-independent property, describing the situation
in which the fractions of active computers in groups Y and Z are “sufficiently small”,
i.e. the fraction of active infected computers in group Y is bounded by 0.015, and
the fraction of active infected computers in group Z is at most 0.01:

Υ A = (activeY ≤ 0.015) ∧ (activeZ ≤ 0.01).

To check this property the following steps are taken:

1. The trajectory of the model is obtained by solving the ODEs given m(0).
2. The TVS of the sub-formulas Υ A

1 = (activeY ≤ 0.015) and Υ A
2 = (activeZ ≤

0.01) are calculated using a root finding procedure for mY,3(t) = 0.015 and
m Z ,3(t) = 0.01:

• TVS(Υ A
1 , m(0), θ) = [6.79; 21.69];

• TVS(Υ A
2 , m(0), θ) = [15.14, 25] (see Fig. 4a).

3. The TVS of the whole formula then consists of all intervals, where both sub-
formulas hold: TVS(Υ A, m(0), θ) = [15.14; 21.69] (see Fig. 4b).
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Fig. 4 a TVS of
Υ A
1 = (activeY ≤ 0.015)

(solid line) and
Υ A
2 = (activeZ ≤ 0.01)

(dashed line). b Intersection
of TVS(Υ A

1 , m(0), θ) and
TVS(Υ A

2 , m(0), θ)

Fig. 5 a TVSs of
Υ B
1 = active ≤ 0.05 (dashed

line) and
Υ B
2 = (uninfected ≤ 0.6)

(solid line). b Intersection of
TVS(Υ B

1 , m(0), θ) and
TVS(Υ B

2 , m(0), θ). c TVS
of Υ B = (active ≤ 0.05)
U [0,3] (uninfected ≤ 0.6)

4. The validity of the formula for a given initial vector is checked by verifying
whether t = 0 lies in TVS(Υ A, m(0), θ). It is easy to see that 0 /∈ [15.14, 21.69],
therefore m(0) �|= Υ A.

Case B. We now consider a time-dependent property of the global model, which
describes that the fraction of active infected computers in all three groups together
(denoted as active) remains smaller or equal to 0.05 until within 3 time units the
fraction of all uninfected computers becomes less or equal to 0.6. This property
ensures that the virus is “quiet enough” and will not be detected until a sufficient
number of computers in the system is infected:

Υ B = (active ≤ 0.05) U [0,3] (uninfected ≤ 0.6).

We first find the time validity sets for this formula and check whether the initial
occupancy vector m(0) satisfies this property:

1. The time validity sets of the sub-formulas Υ B
1 = active ≤ 0.05 and Υ B

2 =
uninfected ≤ 0.6 are calculated using a root findingprocedure form X,3 + mY,3 +
m Z ,3 = 0.05 and m X,1 + mY,1 + m Z ,1=0.6; and are given as TVS(Υ B

1 , m(0), θ)

= [0; 3.64] and TVS(Υ B
2 , m(0), θ) = [2.5; 25] (see Fig. 5a).

2. The intersection of TVS(Υ B
1 , m(0), θ) and TVS(Υ B

2 , m(0), θ) is [2.5; 3.64]
(Fig. 5b).

3. To find TVS(Υ B, m(0), θ) the backwards shift is performed as in Eq. (4)
TVS(Υ B, m(0), θ) = [2.5 − 3; 3.64 − 0] = [0; 3.64] (see Fig. 5c). Note that
the behaviour of the system in the past (before time t = 0) is not relevant. There-
fore, the lower bound of the TVS is set to zero.
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4. Formula Υ B = (active ≤ 0.05) U [0,3] (uninfected ≤ 0.6) holds for m(0), since
0 ∈ TVS(Υ B, m(0), θ).

Wolfram Mathematica [29] was used to calculate the results above. We compared
them with results obtained from the Breach toolbox [19], which has been built to
check STL properties, confirming that the results coincided.

5.3 Satisfaction Set of an MFL Formula

In this section, we discuss how to compute the complete satisfaction set of an MFL
formula, which is formally defined as follows:

Definition 10 (Satisfaction Set) Given an MFL formula Υ and a mean-field model
M O , the satisfaction set of an MFL formula consists of all occupancy vectors m
that satisfy Υ :

Sat(Υ ) = {m | m |= Υ }.

The mean-field model has an infinite state-space. Therefore, the computation of the
satisfaction set is not straightforward. The ultimate goal is to partition the state-space
of the model SO into two parts: (i) states satisfying a given formula, i.e. Sat(Υ ) and
(ii) states which do not satisfyΥ . Since exact methods for computing the satisfaction
set of an MFL formula are not available, numerical (approximate) algorithms will
be discussed in the following, which means that it might not always be possible to
partition the state-space into two sets. Hence, a third set, namely, a set of uncertain
states, may be necessary. In such cases, this third set should be as small as possible.
The satisfaction set of a given formula is constructed recursively, by building and
combining the satisfaction sets of sub-formulas.

5.3.1 Time-Independent Operators

The computation of satisfaction sets for operators which are not time dependent, is
straightforward and does not imply any additional computations. It follows directly
from Definition 9 and is formalized as follows:

Sat(t t) = So,

Sat(GAP) = {m | GAP(m) = 1},
Sat(Υ1 ∧ Υ2) = Sat(Υ1) ∩ Sat(Υ2),

Sat(¬Υ ) = So\Sat(Υ ).



362 A. Kolesnichenko et al.

5.3.2 The Until Operator

The computation of the satisfaction set of the time-boundeduntil operatorΥ1U [a,b]Υ2

is not trivial and involves additional methods.We discuss three ways that can be used
to calculate this set. Twoof thesemethods are directly applicable to the completeMFL
formula, andone is only suitable for a single until operator.Hence, the satisfaction sets
of the time-independent sub-formulas must be computed separately (see Sect. 5.3.1).

Discretization of the state-space. One of the ways to approximate the satisfac-
tion set of an MFL formula is to discretize the continuous state space and check the
MFL formula for each point of the discrete state space obtained using the standard
method (see Sect. 5.2). The discretization can be done, for example, by a grid-based
approach. However, this approach is computationally intensive and produces only
an approximation of the satisfaction set. Moreover, the quality of such an approx-
imation and the computational demand depend directly on the granularity of the
grid. Moreover, the complexity of the problem grows with the number of dimensions
(local states). Although the method is applicable to any MFL formula, applying it
to a model with a large local state-space to obtain high quality approximations is
simply not feasible.

Solving two reachability problems. Another way to numerically develop the
satisfaction set of a given until formula would be to divide the formula Υ1U [a,b]Υ2

into two reachability problems, similar to standard methods, as e.g. in Ref. [38]:
(i) starting from the states which satisfy Υ1, the trajectory evolves such that only
states satisfying Υ1 are visited during time interval [0, a]; (ii) starting from the states
which satisfy Υ1 and are reachable during the first step, the trajectory evolves such
that only states satisfying Υ1 are visited until a state satisfying Υ2 is reached during
time interval [0, b − a]. The reachability problems for mean-field models can be
solved using techniques proposed in Ref. [8]. Their method partitions the parameter
set of the ODE-based model into three sets, namely, (i) Sgoal, which comprises all
states that satisfy the reachability problem, (ii) Sbad, including all states which do
not satisfy it, and (iii) Sunc, which combines all states for which reachability can not
(yet) be decided. Instead of partitioning the parameter space, we use the proposed
methods to partition the state-space of the mean-field model. Note, however, that this
approach is only applicable for a single until operator. To compute the satisfaction
set of an until formula, we need to solve the two reachability problems in reverse
order. We first find all states from which we can reach an Υ2 state in at most (b − a)

time units, while visiting only Υ1 states. We denote the set of all these states as S′
goal.

We then find the set of all states, denoted as Sgoal, from which we can reach S′
goal,

while visiting only Υ1 states. The satisfaction set of the overall until formula then
equals Sgoal.

The general approach of the method given in Ref. [8] is as follows. The reachable
set is found using sensitivity analysis and the satisfaction set is obtained by using a
parameter synthesis algorithm based on refining partition, which iteratively refines
the state-space of the mean-field model and assigns the subsets obtained to one of the
three sets, namely: Sgoal, Sbad, or Sunc by checking the reachability problem for this
set. Each refinement introduces only subsets that are strictly smaller than the refined
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set to guarantee that the process ends. The algorithm is designed to stop when the
uncertain set is either empty or smaller than a predefined value.

The Breach Toolbox [19] was used to implement the above algorithm. However, a
tool for the automated solution of the reachability problem is not available. Although
the numerical algorithms in Ref. [8] can not provide formal guarantees on the cor-
rectness of the results, asymptotic guarantees exist. Therefore, results can always be
improved by decreasing the tolerance factor in the numerical computations.

Robustness-based method. Another method to obtain the satisfaction set of an
arbitrary MFL formula, including nested until operators, partitions the state-space
based on refining partition algorithms. However, this approach requires introducing
a quantitative semantics of MFL. This allows both Boolean and real values as a
result of amodel-checking algorithm (R ∪ {�,⊥}). The result of themodel-checking
procedure shows that a given occupancy vector satisfies anMFL formula (in case the
obtained value is greater than zero), and also estimates the quality of satisfaction.We
introduce the quantitative semantics of MFL, similarly to [15], where a quantitative
semantics was introduced for STL. For simplicity of notation, we use global atomic
properties in the form f (m1, m2 . . . mK ) ≥ c, where c ∈ R.

Definition 11 (Quantitative semantics) Given an MFL formula Υ , a mean-field
model M , and initial occupancy vector m, the quantitative semantics ρ(Υ, m) is
defined as follows:

−� = ⊥,

ρ(t t, m) = �,

ρ(GAP, m) = f (m1, m2 . . . mK ) − c,
ρ(Υ1 ∧ Υ2, m) = min(ρ(Υ1, m), ρ(Υ2, m)),

ρ(¬Υ, m) = −ρ(Υ, m),

ρ(Υ1U I Υ2, m) = supt ′∈I min
(
ρ(Υ2, m(t ′)), inf t ′′∈[0,t ′] ρ(Υ1, m(t ′′))

)
,

where m = m(0) at time t = 0, and m(t ′) is a solution of the ODEs (1) at time t = t ′
with m as the initial condition.

Time and space-time robustness of satisfaction for a quantitative semantics is dis-
cussed in Ref. [15], where ρ(Υ, m) is called a robustness estimate. The robustness
estimate is found using an inductive procedure for model-checking MFL formulas.
Efficient algorithms to find robust estimates are described in Ref. [9], and the Breach
toolbox [19] can be directly used for that purpose. Given algorithms to find the robust
satisfaction of an MFL formula, the satisfaction set of such formula, Sat(Υ ), can be
calculated by partitioning the state-space SO of the mean-field model. The latter can
be done using refining partition, as proposed in Refs. [8, 15].

The robustness analysis can also be performed with tools like S-TaLiRo [20]
and BIOCHAM [21]. Note also that here no formal guarantees on the correctness
of results can be provided. The advantage of the robustness-based method lies in
the fact that the procedure is ununiform for any MFL formula, unlike reachability-
based methods. Moreover, there are tools available for robustness analysis of the
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time series, numerical solutions of the ODEs, or even measured data in the context
of satisfaction set development. Finally, more advanced numerical methods may be
applied to partition the state space.

6 Relation Between the Two Logics

As discussed in the previous sections, there are two ways to describe properties of
the overall mean-field model. One way is reasoning about the fraction of objects
satisfying a given local property by checking whether this number meets a given
threshold using the logic MF-CSL. Another way is to describe the properties of the
whole system, including timed properties, which can be done with the logic MFL.
In Sect. 6.1, we discuss the difference between these two logics and argue that both
possess value. The possibility of combining both logics is discussed in Sect. 6.2.

6.1 Comparison of MFL and MF-CSL

Table1 depicts the main differences between the MFL and MF-CSL logics. As pre-
viously discussed, both logics are used in order to describe (and check) properties
of mean-field models. Moreover, the time validity set can be defined for MF-CSL,
while model-checking MFL properties require the computation of TVSs.

All properties in MF-CSL are based on the structure and labelling of the local
model, and expectation operators lift these properties to the global level. MFL
expresses properties of the global mean-field model independently from the labelling
and structure of the local model. AGAP can be defined both on the local model struc-
ture and labelling, as well as via labelling-independent functions of the occupancy
vector m. For example, properties such as “there are infected computers in all three
groups” can easily be described by MFL, while MF-CSL needs “workarounds” by

Table 1 The MF-CSL logic versus the MFL logic

Property MF-CSL MFL

Applicable for mean-field models + +

Operates on both local and global levels + −
Timed property on the local level + −
Timed property on the global level − +

Depends on the local labelling + −
Uses expectation relations + −
Has notion of TVS + +

Satisfaction set can be obtained −/+ +
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either introducing different labelling on the local level, or expressing the infected
properties for each group separately on the local level, then on the global level, and
finally combining these properties by concatenation and/or negation.

The largest difference lies in the application of timed properties. Both logics may
use the until operator. However, in MFL the until operator is used on the global level,
while inMF-CSL only the evolution of an individual random object can be described
with the until operator. Approximating the full satisfaction set is possible for MFL
properties, as defined in Sect. 5. The calculations on the local level of MF-CSL are,
however, quite demanding and the partitioning of the state-space using MF-CSL
property as an indicator function is impractical.

For some models, such as models of chemical reactions [41], the behaviour of
a random individual (one molecule) is not of interest. Therefore, MF-CSL may
not be of interest and only the logic MFL would be applicable. Despite this, there
are many systems that can be modelled using the mean-field method, where the
behaviour of a random object would still be important, for example in the virus
spread models, as discussed in this chapter. Clearly, both logics can be of interest,
albeit for different users and different systems. Some properties can be expressed
in both logics. However, the majority of properties can only be described using
one of the two logics, which explains the necessity of introducing both these logics
separately.

6.2 Combination of the Two Logics

Wenowdiscuss the combination of the two logics to achieve the greatest expressivity.
As described in Sect. 5, a GAP can be defined by any Boolean function which, when
applied to the model trajectory, produces as output a robust cadlag function. As
MF-CSL properties can be interpreted as a Boolean function So → {0, 1}, combined
properties can be expressed and analysed.

The above can be generalize as follows: in order to describe the combined property
of the global mean-field model, a linear combination of the MF-CSL properties is
used as a global atomic property:

∑

j

a j · 1Ψ j �� p, (5)

wherea j is a real number and1Ψ j is the indicator function of theMF-CSLpropertyΨ j

being satisfied.
Due to the cadlag restriction on the GAP function, the set of MF-CSL formulas

that can be used asGAP is restricted in order to guarantee decidability, e.g. properties
which are only valid at one time point are not allowed for the combination. Apart
from this, anyMF-CSL formula whose TVS consists of a finite number of sets can be
used as GAP in MFL. As an example of such a property, we consider the following
formula:
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Υ = (E≤0.1activeY ) U [0,5] (EP≤0.1t t U [0,3] infectedY )

This property is useful for a system administrator, who wants to be sure that with the
current activity of the anti-malware software not more than 10% of the computers
in group Y are infected and active until within 5 time units a system state is reached,
where the probability that a random computer will become infected within 3 time
units is less or equal than 0.1.

The example below provides a more detailed explanation on how to check such
properties. Note that, the calculation of the satisfaction set of such combined proper-
ties may not be practically feasible, due to the high computational costs on the local
level of MF-CSL sub-formula.

Example 7 The virus spread model is used in the following example with the para-
meters as given in Example 4. We will construct a combined property using both
logics. Then we find the time validity set for the property obtained given a predefined
time interval θ = [0, 20], and initial distribution

m(0) = 1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}).

Finally, we check the combined property against the initial occupancy vector m(0).
For simplicity, we use theMF-CSL property, described in Example 4 as one of global
atomic properties in the combined property:

Υ1 = EP<0.3(uninfectedY U [0,3] infectedY ).

We combine Υ1 with Υ2 = active ≤ 0.1 using the until operator and obtain the fol-
lowing combined formula:

Υ = EP<0.3(uninfectedY U [0,3] infectedY ) U [1,2] (active ≤ 0.1).

This property describes a system where the expected probability that a random com-
puter is from group Y and becomes infected within 3 time units is less than 0.3, at
all times until within time interval [1, 2] the number of active infected computers in
all three groups is less or equal than 0.1.

To check such a combined property we must first find the TVSs of all sub-
formulas, including the time validity set of the MF-CSL formula Υ1, which equals
TVS(Υ1, m, θ) = [0, 11.86] (see Example 4). The time validity set of the MFL
sub-formula TVS(Υ2, m, θ) is found by solving m X,3 + mY,3 + m Z ,3 = 0.1; and
equals TVS(Υ2, m, θ) = [9.925, 20]. Figure6a displays the time validity sets of sub-
formulas Υ1 and Υ2. The time validity set of the combined formula is computed as
described in Sect. 5.2. First, the intersection of TVS(Υ1, m, θ) and TVS(Υ2, m, θ) is
found: TVS(Υ1 ∩ Υ2, m, θ) = [9.925, 11.86]. Then, TVS(Υ1 ∩ Υ2, m, θ) is shifted
backwards: TVS(Υ, m, θ) = [9.925 − 2, 11.86 − 1] = [7.925, 10.86] (see Fig. 6b).
As one can see, the occupancy vector m does not satisfy the combined property Υ ,
since 0 /∈ [7.925, 10.86].
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Fig. 6 a TVSs of Υ1
(dashed line) and Υ2 (solid
line). b TVS of Υ

7 Conclusions

Over the last decade, many systems that consist of a large number of interacting
objects have been analysed using the mean-field method. This method avoids the
well-known state-space explosion problem, which is encountered in many classical
Markovian analysis techniques. However, the mean-field method has primarily been
used for classical performance evaluation purposes. In this chapter,we have discussed
model-checking algorithms formean-fieldmodels, in order to be able to address non-
standard system properties.

In this chapter, we define and motivate two logics, called Mean-Field Continuous
Stochastic Logic (MF-CSL) and Mean-Field Logic (MFL), to describe properties
of systems composed of many identical interacting objects. The logic MF-CSL [6]
uses local CSL properties as a basis for the global expectation operator. Therefore,
it is fully dependent on the structure of the local model. The logic MFL, on the other
hand, does not take into account properties of the individual objects and only reasons
on the global level. Therefore, time-dependent properties of the global model can be
described using MFL, while MF-CSL allows only time-dependent properties on the
local level.

The algorithms to check MFL properties against a given occupancy vector and to
find the so-called time validity set are based on the methods of monitoring temporal
properties as in Refs. [7, 39]. We adapt these methods to check global properties of
the mean-field model, and illustrate these algorithms in examples. All computations
were done in Wolfram Mathematica and compared against results produced by the
Breach Toolbox, which were consistent with one another.

Furthermore, three possible ways to calculate the satisfaction set of an MFL
formula were discussed. One of these methods relies on the Boolean semantics of
MFL presented and a discretization of the continuous state space. The secondmethod
makes use of the existing technique to find the parameters of themodel, which satisfy
a given reachability problem [8] using sensitivity analysis. The third method adapts
an existing notion of robustness [15] of a temporal logic and sensitivity analysis. This
technique is based on defining a quantitative semantics ofMFL. The resulting robust
estimate is then used as an indicator in order to guide the partitioning algorithm.

The expressivity and applicability of the two logics were also compared in this
chapter. Despite the fact that both logics are applicable to mean-field models, both
are clearly of interest and can not be fully replaced by the other. Another interesting
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insight related to the use of the logics presented is that they can be combined if
the global atomic property of the mean-field model is represented by one of the
expectation operators. This allows the combination of MF-CSL and MFL properties
on both levels, including timed properties. Such properties can be easily checked for
a given occupancy vector. However, the satisfaction set development may be even
more challenging.
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Standby Systems with Backups

Gregory Levitin and Liudong Xing

Abstract This chapter presents a numerical methodology to model and evaluate
reliability, expected mission completion time, and expected total mission cost of
1-out-of-N : G standby sparing systems subject to periodic or non-periodic backup
actions. The backups are performed to facilitate effective system recovery in the
case of the occurrence of an online operating element failure. The methodology is
applicable to dynamic data backup and retrieval times as well as nonidentical system
elements with different time-to-failure distributions, different performance, and dif-
ferent standby modes. This chapter also presents applications of the methodology to
a set of optimization problems that find the optimal backup distribution and/or ele-
ment activation sequence, maximizing mission reliability or minimizing expected
mission completion time or minimizing total mission cost. Examples are provided
to illustrate the presented methodology as well as optimized solutions.

Keywords Even or periodic backup · Uneven or non-periodic backup · Cold
standby ·Hot standby ·Warm standby ·Backup distribution ·Mission cost ·Mission
time · Optimization · Element sequencing
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R Mission reliability or success probability
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Tmax Maximum allowed mission time
Ymax Maximum allowed number of time intervals in the mission
Ymin Minimum possible number of time intervals in the mission

wj, zj Per time unit operation, standby cost of element j
vj, λj Replacement cost, time of warm standby element j
Fj(t) Time-to-failure cdf for element j

Gj Performance (number of operations per unit time) of element j
dj Deceleration factor for element jduring the standby mode
Δ Number of operations in each discrete portion of work
gj Number ofwork portions performed by element j in a time unit: gj = Gj/Δ

πh Fraction of the entire mission task that should be performed between the
(h − 1)-th and h-th backups

π Backup distribution vector: π = (π1, . . . ,πH)

Bh Number of operations needed for the h-th backup
Uh Number of operations needed to retrieve the data stored in the h-th backup

procedure
δh Number of work portions needed for the h-th backup: δh = Bh/Δ
γh Number of work portions that should be completed between the (h − 1)-th

and h-th backups: γh = πhM/Δ

μh Number of work portions needed to retrieve data stored by the h-th backup:
μh = Uh/Δ

αh Number of work portions that should be performed between the beginning
of the mission and the end of the h-th backup

m Total number of work portions needed to accomplish the mission when no
failures occur

s(k) Index of the element that should be initiated, given it is still working, after
elements with indices s(1), . . . , s(k − 1) have failed

hk Index of the last backup procedure completed by the element sequence
s(1), . . . , s(k − 1)

Yk Index of the time interval when the last element from the sequence
s(1), . . . , s(k − 1) fails

Qk(a, b) Pr{hk = a, Yk = b}
b(x) Number of operations needed to save data generated after performing

fraction x of the entire mission task
u(x) Number of operations needed to retrieve data saved after performing frac-

tion x of the entire mission task
[x] Integer closest to x
τ Minimal recognized time interval

ψ (t) Discretization function: ψ(t) = [t/τ ]



Standby Systems with Backups 375

1 Introduction

Application of standby sparing techniques abounds in diverse systems, where one
or multiple elements are operating and online with additional elements serving as
standby spares. When an on-line element fails, it is switched out of operation. The
system operation resumes when an available standby element is activated to take
over the mission task from the failed element [3, 31, 36]. Examples of standby spar-
ing systems include power [41], storage [11], flight control [14], high performance
computing [13], and space mission [35] systems.

Standby sparing effectively enhances a system’s reliability and availability. How-
ever, this benefit comes with overhead [14, 40]. Particularly in standby systems
performing computing related tasks, to enable effective system reconfiguration each
online operating element typically performs periodic or non-periodic data backups
during its lifetime based on a pre-specified backup policy. These backup operations
incur additional mission time as well as additional capital cost for storage. The data
backup time is dynamic, which is dependent on the amount of work accomplished
since the last backup point or since the beginning of the mission. The overhead also
includes the time and cost required for performing replacement procedures. Specif-
ically, in case of an on-line element experiencing a failure, a replacement procedure
is initiated to activate an available standby element and to retrieve the previously
saved data from the backup storage and then transfer to the newly activated standby
element. In addition, before performing the remaining uncompleted task the newly
activated standby element needs to re-execute all work portions that have been com-
pleted by the failed element since the last successful backup, incurring additional time
and cost.

To achieve reliable and cost-effective system operation under limited time and
budget constraints a trade-off study among mission reliability, time, and cost is
essential. This chapter presents a numerical methodology to facilitate such a trade-off
analysis for 1-out-of-N : G standby systems subject to backups. The methodology
simultaneously evaluates three mission performance indices (reliability, expected
mission time, and expected total mission cost). The method is applicable to dynamic
data backup and retrieval times. System elements are not necessarily identical; they
can have different time-to-failure distributions, different performance, and different
standby modes (cold, hot, and warm). An element in a hot standby mode operates
concurrently with the online active element, and is ready to take over the task at
any time [14]. Hence, a hot standby element can provide fast system recovery but at
the cost of high maintenance or operation overhead because it consumes energy and
materials as much as the online element does. An element in a cold standby mode
is unpowered and fully isolated from the working stresses. It does not consume any
energy or materials until being activated to replace a failed on-line element. Thus,
it has the minimal maintenance cost and its failure rate can be assumed to be zero
before being activated. However, a cold standby element incurs high startup costs
or significant restoration delays [38, 39]. As a more general case, an element in a
warm standby mode is partially exposed to working stresses and partially ready to
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take over the mission task from the failed element [17, 33]. Both standby cost and
restoration delay for a warm standby element are in-between those for a hot standby
element and a cold standby element.

This chapter also presents applications of the suggested numerical evaluation
method to solving a set of unconstrained and constrained optimization problems
including the optimal backup distribution problem, the optimal standby element
sequencing problem, and the combined backup distribution and element sequencing
optimization problem. The objective of these optimization problems is to maximize
mission reliability or to minimize expected mission completion time or to minimize
total mission cost of the standby sparing system considered in this work.

2 Relevant Work

Numerous efforts have been expended on formulating and solving optimization prob-
lems for different types of standby systems [15]. For example, exact methods of
dynamic programming, integer programming, and Lagrange multipliers have been
applied to solve the redundancy allocation problem (RAP) for 1-out-of-N : G series-
parallel hot standby systems adopting a homogeneous backup strategy [12, 27, 28].
Meta-heuristic methods such as the genetic algorithm (GA), ant colony optimiza-
tion algorithm, and Tabu search have been applied to solve RAP for K-out-of-N : G
series-parallel hot standby systems adopting a heterogeneous backup strategy [6, 7,
10, 30]. As compared to the homogeneous backup where one type of element can be
substituted only with the same type of elements, in a heterogeneous backup scheme,
one type of element can be substituted by a different type of element with equivalent
functionality.

Example works on solving RAP for cold standby systems include an integer pro-
gramming method [8], and a hybrid algorithm using a GA and fuzzy theory [43].
In [9], the integer programming approach was extended to solve RAP for hetero-
geneous series-parallel systems with either hot or cold standby elements configured
in different parallel subsystems. In [4], the GA was adapted to solve RAP for het-
erogeneous series-parallel systems with cold and hot standby elements co-existing
within one parallel subsystem. In addition, a multi-objective version of the GA [5],
and a hybrid intelligent algorithm using the GA, neural networks, and fuzzy theory
[42] have been developed to solve RAP for systems with a mix of cold standby and
active redundancy technique. Recently, the GA was also applied to solve the optimal
element sequencing problem for heterogeneous cold standby systems performing
single-phased [18, 19], or multi-phased [20] mission tasks.

Example optimization works for general warm-standby systems include inte-
ger programming and GA-based methods for solving RAP of series-parallel warm
standby systems in [1, 37]. The GA-basedmethod was also implemented to solve the
optimal element sequencing problem for 1-out-of-N : G heterogeneous warm standby
systems with perfect [17], or imperfect [21] switching mechanisms.
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Despite the extensive research efforts on standby system modeling and optimiza-
tion, effects of backups were not considered until the recent work [23], where a
restricted backup model with even backups, fixed data backup time, and negligi-
ble data retrieval time was assumed. In [24], the methodology of [23] was further
extended to consider uneven backups as well as dynamic backup and retrieval times
[24]. However, the methodologies suggested in [23] and [24] are only applicable to
the special class of 1-out-of-N : G cold-standby systems; they cannot be applied to
the general, more complex warm-standby systems. There are also studies on optimal
backup policies considering different backup techniques for database systems [29,
32] and computer disks [34]; these works do not consider effects of standby sparing.

This chapter presents a numerical methodology that considers effects of uneven
backups with dynamic data backup and retrieval times for modeling and analyzing
1-out-of-N : G warm standby systems. Both hot and cold standby systems with even
or uneven backups appear as special cases of the proposed model. This chapter
also presents formulation and solution for a set of optimization problems relevant
to these systems considering mission reliability, expected mission completion time,
and expected total mission cost.

3 Standby System Model and Assumptions

There are N nonidentical elements in the considered 1-out-of-N : G standby sys-
tem, which performs a mission consisting of M operations (i.e., the computational
complexity of the mission is M). Each element j is characterized by a specific time-
to-failure distribution with cumulative distribution function (cdf) Fj(t) and its per-
formance in number of operations completed per unit time Gj. In case of no failures
or backups happening, element j needs time M/Gj to accomplish the entire mission
task. At any time, only one system element is online and operatingwith remaining un-
failed elements waiting in different standby modes. Particularly, at the beginning of
the mission, according to a prespecified element activation sequence s(1), . . . , s(N),
the first element s(1) is activated and online while elements s(2), . . . , s(N) wait in
the standby mode. When the online element fails, an available standby element at
the beginning of the sequence is activated to replace the failed element and take over
the mission task.

During the mission, H data backup actions are performed. The h-th backup is
performed when a fraction πh (h = 1, . . . , H) of the entire mission task is completed
since the previous backup and it requires Bh operations. The value of Bh is dynamic,
depending on the work x completed since the last backup, or since the mission
beginning defined by function Bh = b(x). Specifically, if an incremental backup
technique is used, the amount of data saved during a backup action, and thus the
number of operations needed for the backup (i.e., Bh) depends on the amount of
work completed since the last successful backup. If a total backup technique is used,
Bh depends on the amount of total work completed since the beginning of themission.
Thus,
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Bh =

⎧
⎪⎨

⎪⎩

b(πh), incremental backup

b

(
h∑

j=1
πj

)
, total backup

(1)

Refer to [26] for a study of repairable systems subject to combined total and incre-
mental backups during the mission.

In case of failure of the online operating element, the status of the first remaining
standby element s(j) in the sequence is checked. If it fails before it should be acti-
vated, then the next element s(j + 1) is checked, and so on until an available standby
element is found. Then a replacement or activation process starts immediately, which
includes element startup (installing, powering up, and connecting the element to the
system) and warming up (preparing the powered element for a typical function, e.g.,
a hard disk drive should reach its nominal speed before being used). The replace-
ment process can be performed automatically or by technical personnel. During the
replacement process, the activated element is exposed to operational stresses. In this
work, replacement cost vj and time λj are assumed to be fixed for each element j,
which are logically independent from status (success or failure) of the replacement
procedure. This assumption is made because the replacement procedure may not be
stopped immediately after its failure, and the failed element should be switched off
or removed, which takes time and effort. Upon finishing a successful replacement
or activation procedure, the newly activated element first retrieves the previously
saved data from that backup storage. Equation (2) gives the number of operations
Uh required for a retrieval process performed after the h-th backup procedure, which
depends on the amount of total work completed before the last successful backup
procedure (i.e., the h-th backup) .

Uh =

⎧
⎪⎨

⎪⎩

0, h = 0

u

(
h∑

j=1
πj

)
, h > 0

. (2)

As illustrated in Fig. 1, each activated standby element, after retrieving the data,
starts performing the mission task from the operation immediately following the last
successful backup action. A standby element j activated after the h-th backup can
successfully perform the next k backups if it does not fail during the time

(
Uh +

k∑

i=1

(Mπh+i + Bh+i)

)
/Gj. (3)

In the case of no failures occurring at all during the mission, the mission time is

(
M +

H∑

h=1

Bh

)
/Gs(1). (4)
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Fig. 1 Example of a successful mission with 3 backups, 4 replacements

Note that this time may not be the minimal possible mission time if the performance
of element s(1) is not the highest. For example, consider a case where element s(1)
fails immediately after performing the first backup, and element s(2) is activated and
completes the remaining part of the mission successfully. In this case, the mission
time is

(π1M + B1) /Gs(1) + λs(2) +
(

M(1 − π1) + U1 +
H∑

h=2

Bh

)
/Gs(2). (5)

If the inequality in (6) is true, then the mission time of (5) is less than the mission
time of (4).

Gs(1) < Gs(2)

⎛

⎝M(1 − π1) +
H∑

h=2

Bh

⎞

⎠

⎛

⎝λs(2)Gs(2) + M(1 − π1) + U1 +
H∑

h=2

Bh

⎞

⎠
−1

.

(6)
The standby system considered in this work is a real-time system that must complete
the entiremission taskwithin amaximumallowed valueTmax. Otherwise, themission
fails.

The following assumptions are also made in the model.
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(1) The system possesses a perfect fault detection and switching mechanism, and a
perfect backup mechanism.

(2) A replacement procedure can be activated as long as the allowed mission time
Tmax has not elapsed, even if the remaining time does not allow completing the
mission.

(3) The mission task is executed evenly in time by any operating element.
(4) The system elements are not repairable during the mission.

4 Evaluation Algorithm of Mission Performance Indices

This section presents detailed derivation of numerical algorithms for evaluating mis-
sion reliability, expected mission completion time and expected total mission cost of
1-out-of-N : G warm standby systems subject to uneven backups and dynamic data
backup and retrieval times.

4.1 Mission Performance and Time Discretization

The entire mission task M + ∑H
h=1 Bh is divided into equal work portions, each con-

tainingΔ operations. Equation (7) gives the total number of work portions performed
in the entire mission.

m = 1

Δ

(
M +

H∑

h=1

Bh

)
. (7)

No element should perform greater than m work portions. In other words, once
m work portions are completed, the entire mission is accomplished successfully and
the operating element is switched off.

gj = Gj/Δ gives the processing speed of element j in number of work portions
performed in a time unit. Equations (8) and (9) give the number of work portions
performed in the h-th data backup and retrieval procedures, respectively.

δh = Bh/Δ (8)

μh = Uh/Δ (9)

The number of work portions that should be performed between the (h − 1)-th and
h-th backup procedures is

γh = πhM/Δ. (10)

Wedefine δ0 = μ0 = γ0 = 0 sinceh = 0 corresponds to the beginningof themission.
Equation (11) gives the number of work portions that should be completed when

the k-th backup procedure (1 ≤ k ≤ H) is completed (see Fig. 1 for illustration).
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αk =
k∑

i=0

(γi + δi) (11)

By definition, αH+1 = m, corresponding to the completion of the entire mission.
For any number of completed work portions i, the number or index of the last

successfully completed backup procedure can be obtained as ϕ(i) such that αϕ(i) ≤
i < αϕ(i)+1.

If an element, which is activated after h backups, successfully retrieves backup
data (involving μh work portions), and then keeps functioning during performing∑k

i=1 (γh+i + δh+i) = αh+k − αh work portions, it completes the k next backup pro-
cedures successfully. Thus, the accomplished αh+k − αh work portions should not
be re-performed again; only work portions that follow the last successful backup (or
from the beginning of the mission in the case where no backups have been success-
fully performed yet) should be re-performed.

Consider, for example in Fig. 1 element s(2) that fails after completion of the
first backup but before completion of the second backup. Element s(3) is acti-
vated after the failure of s(2). First, element s(3) retrieves data saved by the first
backup, which requires performing μ1 work portions and takes μ1/gs(3) time inter-
vals. If element s(3) fails after performing more than γ 2 + δ2 =α2 −α1 but less than
γ 2 + δ2 +γ 3 + δ3 =α3 −α1 work portions, the index of the last backup performed by
s(3) is h=2. Thus, the next activated element s(4) should retrieve data saved after
the second backup, which requires performing μ2 work portions and takes μ2/gs(4)

time intervals. Upon finishing the data retrieval, element s(4) should continue the
mission task from a work portion immediately following the second backup. Note
that μh < γh, otherwise the data backup is not beneficial.

To discretize time, a time interval τ is introduced and a time period t is measured
using an integral number of time intervals through functionψ(t) = [t/τ ], where [t/τ ]
represents the integer closest to t/τ . Thus, given the maximal allowed mission time
Tmax, the maximal number of time intervals in the entire mission is Ymax = ψ(Tmax).

4.2 Single Element Failure Probability

The cumulative exposure model (CEM) that uses the equivalent age concept [2] is
applied to account for effects of different modes (standby, replacement, and opera-
tion) during the lifetime of an element. Consider element j that stays in the standby
mode for a time period of tWS, then undergoes replacement taking time λj and
then operates for a duration of tOM. According to CEM, a stress-dependent cumula-
tive exposure time t∗ is calculated, where the time element j spends in the standby
mode is multiplied by a deceleration factor dj < 1 reflecting lower stresses, that is,
t∗ = djtWS + λj + tOM [2]. Given the cdf Fj(t) of element j in the operation mode,
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Fig. 2 Determination of the cumulative exposure time t∗

the cumulative time-to-failure distribution function of element j that experiences all
three modes is thus Fj(t∗) = Fj(djtWS + λj + tOM). If element j should be activated
at time t0, then its cdf at time t is

Fj(t
∗) = Fj

(
dj min (t, t0) + λj · 1 (t > t0) + max

(
0, t − t0 − λj

))
. (12)

In (12), tWS =min(t,t0) is the time spent in the standby mode, λj · 1 (t > t0) the
time in the replacement mode, and tOM =max(0, t − t0 −λj) the time exposed to
the operational stresses (see Fig. 2 for an illustration). If element j fails before its
activation, then Fj(t∗) = Fj

(
djt

)
.

The probability that element j, which should be activated at time t0, fails in an
interval between t1 and t2 ≥ t1 is thus Fj(t∗2 ) − Fj(t∗1 ), where t∗k = dj min (tk, t0) +
λj · 1 (tk > t0) + max

(
0, tk − t0 − λj

)
for k = 1, 2. Notice that the probability that

an element fails during a certain time interval x (e.g., from t0 to t0 + x) depends on
the origin of the interval t0 as expressed in (12).

Equation
Fj(djt0 + λj + (i + 1)/gj) − Fj(djt0 + λj + i/gj) (13)
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gives the probability that element j activated at t0 fails after performing exactly i
work portions, which is equivalent to the probability that element j fails between
t0 + λj + i/gj and t0 + λj + (i + 1)/gj.

Fj(djt0) and Fj(djt0+λj)−Fj(djt0) are respectively probability that standby ele-
ment j, which should be activated at t0, fails in standby mode, or during the replace-
ment procedure.

Equation
1 − Fj

(
djt0 + λj + (μh + m − αh) /gj

)
. (14)

gives the probability that standby element j, which is activated at t0 after h backups,
completes the mission successfully.

4.3 Distribution of Performed Work and Time
for an Element Sequence

Let (hk, Yk) be a pair of random values, where hk represents the number or index
of the last backup procedure completed by the element sequence s(1), . . . , s(k), and
Yk represents the number or index of the time interval when the last element from
this sequence fails. By definition, (h0, Y0) = (0, 0) since the mission starts at time
0 and no backups were performed before time 0. The pair (hk, Yk) is characterized
by its probability mass function (pmf ), defined by matrix Qk = {Qk(a, b)} where
Qk(a, b) = Pr{hk = a, Yk = b}.

Consider element s(k) that is activated in the time interval Yk−1 given the
index of the last completed backup is hk−1. The element can operate without
failure until mission completion, or until Tmax when the mission is terminated
due to reaching the time limit or deadline. Therefore element s(k) should per-
form no more than m − αhk−1 + μhk−1 remaining work portions, and no more than
[(Tmax −τYk−1 −λs(k))gs(k)] work portions (corresponding to the remaining mission
time). Thus given (hk−1, Yk−1), Eq. (15) gives themaximum number of work portions
that can be performed by element s(k).

ζs(k)(hk−1, Yk−1) = min{m − αhk−1 + μhk−1 , [(Tmax − τYk−1 − λs(k))gs(k)]}. (15)

The following four cases of (hk−1, Yk−1) → (hk, Yk) transition are possible.
Case 1: If element s(k), which is activated at time interval Yk−1 after the

hk−1-th completed backup, fails immediately after executing i ≤ ζs(k)(hk−1, Yk−1)

work portions, then

hk = ϕ
(
αhk−1 + max

(
0, i − μhk−1

))
, Yk = Yk−1 + ψ(λs(k) + i/gs(k)), (16)
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and the occurrence probability of this event is

Qk−1(hk−1, Yk−1) × (Fs(k)(ds(k)Yk−1τ + λs(k) + (i + 1)/gs(k))

− Fs(k)(ds(k)Yk−1τ + λs(k) + i/gs(k))). (17)

Case 2: If element s(k), which is activated at time interval
Yk−1 after the hk−1-th backup, does not fail before performing the remaining
ζs(k)(hk−1, Yk−1) work portions, then it is switched off. In this case,

hk = ϕ
(
αhk−1 + max

(
0, ζs(k)(hk−1, Yk−1) − μhk−1

))
, (18)

Yk = Yk−1 + ψ(λs(k) + ζs(k)(hk−1, Yk−1)/gs(k)), (19)

and the occurrence probability of this event is

Qk−1(hk−1, Yk−1)(1 − Fs(k)(ds(k)Yk−1τ + λs(k) + (ζs(k)(hk−1, Yk−1) + 1)/gs(k))).

(20)

Case 3: If element s(k) fails in the standby mode before being activated given
(hk−1, Yk−1), then

hk = hk−1, Yk = Yk−1, (21)

and the occurrence probability of this event is

Qk−1(hk−1, Yk−1)Fs(k)(ds(k)Yk−1τ). (22)

Case 4: If element s(k) fails during the replacement procedure given (hk−1,Yk−1),
then

hk = hk−1, Yk = Yk−1 + ψ(λs(k)), (23)

and the occurrence probability of this event is

Qk−1(hk−1, Yk−1)(Fs(k)(ds(k)Yk−1τ + λs(k)) − Fs(k)(ds(k)Yk−1τ)). (24)

For example, as illustrated in Fig. 3, for the first activated element s(1) hk−1 =
Yk−1 = λs(1) = 0. Thus, if the first element fails in the i-th time interval, h1 =
ϕ(i), Y1 = ψ(i/gs(k)) and Q1(h, i) = Fs(1)((i + 1)/gs(1)) − Fs(1)(i/gs(1)) when h =
ϕ(i), i ≤ min(m, Ymax) and Q1(h, i) = 0 otherwise.

In summary, having Qk−1 and Fs(k)(t), Qk can be obtained using the following
iterative algorithm.
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Fig. 3 Obtaining joint pmf Q1(h, i) based on time-to-failure distribution of element s(1)

Algorithm 1.
1. Initialize Qk(h,Y)=0 for h=0,…,H+1; Y=0,…,Ymax
2. For h=0,…,H:

2.1. For Y=0,…,Ymax-1:
2.1.1. Qk(h,Y)=Qk (h,Y)+Qk-1(h,Y)Fs(k)(ds(k)Yτ). //Case 3
2.1.2. z=min(Y+ψ(λs(k)), Ymax); 
2.1.3. Qk(h,z)=Qk(h,z)
+Qk-1(h,Y)(Fs(k)(ds(k)Yτ+λs(k))-Fs(k)(ds(k)Yτ)). //Case 4
2.1.4.  ρ=h;
2.1.5. For i=0,…, ζ s(k)(h,Y):

2.1.5.1. If(αh+max(0,i-μh)≥αρ+1 ) ρ =ρ+1;
2.1.5.2. z=Y+ψ(λs(k)+i/g s(k)); q=d s(k)Yτ+λ s(k);
2.1.5.3. Qk(ρ, z)=Qk(ρ, z)+Qk-1(h,Y)(Fs(k)(q+(i+1)/g s(k))
-Fs(k)(q+i/gs(k))); //Case 1

2.1.6. Qk(ρ, z)=Qk(ρ, z)
+Qk-1(h,Y)(1-Fs(k) (q+(ζ s(k)(h,Y)+1)/gs(k))). //Case 2
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4.4 Evaluation of Mission Reliability, Expected
Completion Time

Qk(H + 1, Y) represents the probability that the element sequence s(1), . . . , s(k)

completes the entire mission at time τY . Notice that for some values of Y , partic-
ularly, for Y < Ymin = ψ

(
m/max1≤j≤N gj

)
, Qk(H + 1, Y) = 0. The reason is that

the mission time cannot be less than the time required by the fastest element to
accomplish the entire mission task without failures.

In Algorithm 1, each Qk is obtained using Qk−1(h, Y), for h running from 0
to H and Y running from 0 to Ymax −1. Qk−1(H + 1, Y), and Qk−1(h, Ymax) are
excluded from consideration. The reason is that Qk−1(H + 1, Y) corresponds to a
successful completion of the entire mission by elements s(1), s(2), . . . , s(k − 1), and
Qk−1(h, Ymax) for h < H + 1 corresponds to failure of the mission. Under both of
these cases, elements s(k), . . . , s(N) are not activated.Hence,Qk(H + 1, Y) gives the
probability that elements s(1), . . . , s(k) successfully complete the mission at time
τY given that elements s(1), . . . , s(k − 1) cannot complete the mission: Pr{hk =
H + 1|hk−1 < H+1∪ Yk < Ymax}.

Themission reliability is evaluated as a sum of probabilities of mutually exclusive
events:

R =Pr{h1 = H + 1|Y1 < Ymax} + Pr{h2 = H + 1|Y2 < Ymax, h1 < H + 1}
+ · · · + Pr{hN = H + 1|YN < Ymax, hN−1 < H + 1}. (25)

Having Qk(H + 1, Y) for 1 ≤ k ≤ N , the mission reliability is

R =
N∑

k=1

Ymax∑

Y=Ymin

Qk(H + 1, Y), (26)

and the conditional expected mission completion time conditioned on a successful
mission is

D = τ

R

N∑

k=1

Ymax∑

Y=Ymin

YQk(H + 1, Y). (27)

4.5 Evaluation of Expected Mission Operation Cost

The following gives the operation cost associated with using element s(k) for each
of the four cases described in Sect. 4.3.
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Case 1:
ws(k)i/gs(k) + zs(k)Yk−1τ + vs(k). (28)

The probability of this event is given in (17). Yk−1 = Y0 = vs(1) = 0 for k = 1, and
thus the operation cost associated with using element s(1) is ws(1)i/gs(1).

Case 2:
zs(k)Yk−1τ + ws(k)ζs(k)(hk−1, Yk−1)/gs(k) + vs(k). (29)

The probability of this event is given in (20).
Case 3:

zs(k)

τYk−1∫

0

tfs(k)(ds(k)t)dt, (30)

where fs(k)(t) is the probability density function (pdf) of time-to-failure of element
s(k). This expression can be approximated as

Θs(k)(Yk−1) = zs(k)τ

Yk−1∑

i=0

i
{
Fs(k)

(
ds(k)(i + 1)τ

) − Fs(k)

(
ds(k)iτ

)}
. (31)

The probability of this event is given in (22).
Case 4:

zs(k)Yk−1τ + vs(k). (32)

The probability of this event is given in (24).
Integrating these four cases, the expected operation cost associated with using

element s(k) given (hk−1, Yk−1) for hk−1 < H + 1 and Yk−1 < Ymax (implying the
mission is not completed by the previous k − 1 elements) is

Es(k)(hk−1, Yk−1) = Qk−1(hk−1, Yk−1){Θs(k)(Yk−1)

+ (zs(k)Yk−1τ + vs(k))(Fs(k)(ds(k)Yk−1τ + λs(k))

− Fs(k)(ds(k)Yk−1τ)) + ws(k)/gs(k)

ζs(k)(hk−1,Yk−1)∑

i=0

iε(i)

+ (zs(k)Yk−1τ + vs(k))

ζs(k)(hk−1,Yk−1)∑

i=0

ε(i)

+ (zs(k)Yk−1τ + ws(k)ζs(k)(hk−1, Yk−1)/gs(k) + vs(k))ϑ}, (33)
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where
ε(i) = (Fs(k)(ds(k)Yk−1τ + λs(k) + (i + 1)/gs(k))

−Fs(k)(ds(k)Yk−1τ + λs(k) + i/gs(k))),
(34)

ϑ = (1 − Fs(k)(ds(k)Yk−1τ + λs(k)+ζ s(k)(hk−1, Yk−1)/gs(k))). (35)

If any element s(j) for j < k completes the mission at time interval Y ≤ Ymax

or works until the maximum allowed time interval Ymax, then element s(k) is not
activated and remains in the standby mode until the end of the mission. Equation
(36) gives the expected costs of using element s(k) in this case.

EW S(s(k)) =
k−1∑
i=1

Ymax∑
Y=0

Qi(H + 1, Y)
(
Θs(k) (Y) + Γs(k)(Y)

)

+
k−1∑
i=1

(
Θs(k) (Ymax) + Γs(k)(Ymax)

) H∑
h=0

Qi(h, Ymax).

(36)

In (36), Θs(k)(Y) and Γs(k)(Y) are expected costs of using element s(k) when it
fails, and when it does not fail in the standby mode before the end of the mission
respectively, given the mission ends in the time interval Y . Θs(k)(Y) can be obtained
using (31). Because element s(k) is switched off in interval Y , Γs(k)(Y) is obtained
as

Γs(k)(Y) = zs(k)

(
1 − F(ds(k)Yτ)

)
Yτ. (37)

The total expected cost of using element s(k) is thus

Etot(s(k)) = EW S(s(k)) +
H∑

h=0

Ymax−1∑

Y=0

Es(k)(h, Y). (38)

The total expected mission operation cost for the standby system with N elements is
thus

C =
N∑

k=1

Etot (s(k)). (39)

4.6 Summary of Evaluation Algorithm

Algorithm 2 gives the pseudo code of the numerical evaluation algorithm for analyz-
ing mission reliability R, expected mission completion timeD, and expected mission
cost C for 1-out-of-N : G standby systems subject to backups.
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Algorithm 2.
1. Given πh (h=1,…,H) and functions b, u, determine αh and μh using (1), 

(2), (8)-(11); 
2. Initialize vs(1)=λs(1)= R=D=C=0;
3. For h=1,…,H: For Y=0,…, Ymax: Initialize Q0(h,Y)=0; Q0(0,0)=1;
4. For k=1,…,N: For Y=0,…, Ymax: Compute Θk(Y) using (31) for given cdf 
Fk(t);

5. For k=1,…,N:
5.1. Initialize Qk(h,Y)=0 for h=0,…,H+1; Y=0,…,Ymax
5.2. For h=0,…,H:

5.2.1. For Y=0,…,Ymax-1:
5.2.1.1. Φ =Fs(k)(ds(k)Yτ); Ω = Fs(k)( d s(k)Yτ+λ s(k));
5.2.1.2. Qk(h,Y)=Qk(h,Y)+Qk-1(h,Y)Φ;
5.2.1.3. C=C+Qk-1(h,Y)Θ s(k)(Y);
5.2.1.4. z=min(Y+ψ(λs(k)), Ymax);
5.2.1.5. Qk(h,z)=Qk(h,z)+Qk-1(h,Y)(Ω -Φ);
5.2.1.6. C=C+(zs(k)Yτ+vs(k))Qk-1(h,Y)(Ω -Φ);
5.2.1.7.  ρ=h;
5.2.1.8. For i=0,…, ζs(k)(h,Y):

5.2.1.8.1. If(αh+max(0,i-μh)≥α ρ+1 ) ρ=ρ+1;
5.2.1.8.2. z=Y+ψ(λs(k)+i/g s(k)); 
5.2.1.8.3. Φ=Fs(k)( d s(k)Yτ+λ s(k)+(i+1)/g s(k)); 
5.2.1.8.4. Qk(ρ, z)=Qk(ρ, z)+Qk-1(h,Y)(Φ -Ω);
5.2.1.8.5. C=C+(zs(k)Yτ+vs(k)+ws(k)i/gs(k))Qk-1(h,Y)(Φ -Ω);
5.2.1.8.6. Ω =Φ;

5.2.1.9. Qk(ρ, z)=Qk(ρ, z)+Qk-1(h,Y)(1-Ω);
5.2.1.10. C=C+(zs(k)Yτ+vs(k)+ws(k)ζs(k)(h,Y)/gs(k))Qk-1(h,Y)(1-Ω);

5.3. For Y=Ymin,…,Ymax: 
5.3.1. R=R+Qk(H+1,Y);
5.3.2. D=D+τYQk(H+1,Y);

5.3.3. C=C+Qk(H+1, Y) ( )∑
+=

+
N

kj
jsjs YΓYΘ

1
)()( )()( ;

5.4. C=C+ ∑
=

H

h
k YhQ

0
max ),( ⋅ ∑

+=
+

N

kj
jsjs YΓYΘ

1
max)(max)( )()( .

The computational complexity of Algorithm 2 is O(NHYmaxm).
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5 Examples of Mission Performance Indices Evaluation

Consider a 1-out-of-5 standby clustered computer system using nonidentical proces-
sors, which can perform the same computational task. Depending on processor type,
their locations (ambient conditions) and exploitation history, the five processors have
different performance (computation speeds) and different time-to-failure distribu-
tions. Due to the sequential nature of the computational task, when one of the proces-
sors works on the mission task, the remaining ones wait in an idle mode or perform
other low-priority tasks. Based on a prespecified sequence, the standby processors
take over the computational task in the case of failure of the operating processor.

Time-to-failure of each element j follows a Weibull distribution with scale para-
meter ηj and shape parameter β j. The exponential distribution appears as a special
case of theWeibull distributionwithβj = 1. Equation (40) gives the cdf of theWeibull
distribution.

Fj(i) = 1 − exp
{
− [

�i/ηj
]βj

}
. (40)

Table1 presents values of ηj and β j, deceleration factor dj, replacement cost vj,
per time unit standby cost zj, per time unit operation cost wj, replacement time λj,
and processing speed Gjfor each element j (j = 1, 2, 3, 4, 5).

Table2 presents values ofmission parametersM,H,π i and Tmax. The total backup
technique in (1) is assumed for the example. Equation (41) defines the number of
operations required for the h-th data backup and retrieval as linear functions of the
total amount of work accomplished before the backup. Values of coefficients b1, b2,
u1, and u2 are given in Table2.

Bh = b1 + b2M

⎛

⎝
h∑

j=1

πj

⎞

⎠ , Uh = u1 + u2M

⎛

⎝
h∑

j=1

πj

⎞

⎠ . (41)

Table 1 Element parameters for the example standby system

Element ηj β j dj vj zj wj λj Gj

1 130 1.0 0.3 60 2.0 9.0 24 110

2 140 1.1 0.5 54 1.7 6.0 15 92

3 165 1.2 0.15 50 1.4 6.0 37 85

4 200 1.0 0.2 50 1.0 5.0 30 78

5 230 1.1 0.4 43 1.2 4.0 20 60

Table 2 Mission parameters for the example standby system

M Tmax H π1 π2 π3 u1 u2 b1 b2

10,000 400 3 0.3 0.3 0.15 100 0.2 100 0.2
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The minimal total number of operations required to complete the mission (including
H = 3 backups) is M + B1 + B2 + B3 =13,600. Thus, the minimal mission time
given the fastest element 1 activated at the beginning of the mission completes the
mission task successfully is Tmin = (M + B1 + B2 + B3)/G1 =13,600/110=123.6.

Assume the five elements are activated in an increasing numerical order, the mis-
sion reliability, expected total cost, and expected time obtained using
Algorithm 2 are R = 0.91, C = 1866, and D = 186.7, respectively.

5.1 Effect of Maximum Allowed Mission Time Tmax

Figure4presentsmission reliabilityR, expectedmission costC, and expectedmission
completion time D as functions of deadline Tmax. Values of the rest of the mission
parameters are the same as those in Table2.

For Tmax < Tmin = 123.6, R = 0 simply because there is no chance to accomplish
the mission in time less than Tmin. However, mission cost is nonzero since some
elements are activated and have worked until time Tmax.

For Tmin < Tmax < 161, R is equal to the probability that the first fastest element
completes the mission, and D = Tmin. The reason is that T2 = 161 is the minimal
time needed by the second fastest element 2 to replace element 1 (when element 1
fails at time 0) and to accomplish the mission. Thus, only the first fastest element is
able to accomplish the mission in time less than 161.

WhenTmax becomes greater than themaximal possible time ofmission completion
523.6, the value of Tmax does not affect R, C, and D any more as shown in Fig. 4.
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Fig. 4 Effects of Tmax on R, C, and D [25]
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5.2 Effect of Even Backup Distribution

Assume backups are evenly distributed, i.e., πi =π for all i. This section studies
effects of even backup distribution indicated by the value of πon the mission perfor-
mance. Figure5 presents the number of backups H, mission reliability R, expected
cost C, and time D as functions of π . Values of the rest of the mission parameters
are the same as those in Table2.

In this case, H = �1/π� represents the greatest integer not exceeding 1/π . Due to
two-fold impacts of π on mission performance indices, mission reliability, expected
completion time, and expected total cost are non-monotonic functions of π as shown
in Fig. 5. Specifically, on the one hand, increasing the value of π leads to less frequent
backups, increasing the work to be re-performed when an element fails. On the other
hand, an increase in π results in a reduction in the number of backups H during the
mission, which can reduce the total time required to complete the entire mission.

Abrupt jumps in functions R(π), C(π), and D(π) take place when the value of H
changes at π = 1/y with y being an integer, corresponding to theH = y − 1 backups
throughout the mission. If π is decreased by a negligibly small value, the value of
H changes immediately from y − 1 to y, causing a sharp increase in the minimal
possible mission time. Because the change in π ’s value is negligible, there is no
considerable variation in work portions that should be re-done in the case of an
element failure occurring. Hence, due to the decrease in the value of H the mission
reliability increases and the expectedmission time and total cost decrease abruptly. In
the case of even backups, the maximal mission reliability and the minimal expected
mission time and total cost are always achieved when π= 1/(H + 1).

For specific examples, π = 0.2499 implies H = 4 backups with the last backup
being conducted when 99.96% of the entire mission task is accomplished; π = 0.25
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Fig. 5 Effects of π on H , R, C, and D [25]
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implies H = 3 backups with the last backup being performed when 75% of the
entire mission task is accomplished. Performing the fourth backup when the mission
is close to finish is ineffective because the probability that the mission fails after this
backup is negligible. Therefore, when π increases from 0.2499 to 0.25, the expected
mission completion time and total cost drop abruptly while the mission reliability
increases drastically.

5.3 Effect of Element Scale Parameter ηj

Figure6 illustrates mission reliability R, expected cost C, and time D as functions
of element j’s scale parameter ηj for j = 1, 2, and 4. When ηj for a certain element
changes, the rest of the element parameters remain unchanged and their values are
taken from Table1. The same values of mission parameters as in Table2 are used.

When the first element fails between the completion of the n − 1-th and n-th
backupprocedures, the next element continues themission task from thework portion
that follows termination of the n − 1-th backup procedure regardless of the timewhen
the first element fails. Thus, the sooner the first element fails, the sooner the standby
element activation starts, which decreases the time it spends in the standbymode. The
overall exposure time of the next element needed to complete the mission decreases
and the total time remaining for this element to complete themission increases. Thus,
the next element has a greater chance to complete the mission. Figure7 presents two
mission scenarios in the “performed work”—“cumulated exposure time” space. In
case A, the first element s(1) fails later than in case B, though in both cases it fails
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Fig. 6 Effects of ηj on R, C, and D [25]
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Fig. 7 Two scenarios of mission execution by two elements (a late failure of the first element; b
early failure of the first element)

between completion of the first and the second backups. The cumulative exposure
time t*s(2) of element s(2) in case A is greater than that in case B. Thus, in case A
element s(2) has lower chances to complete the mission without failure. Moreover,
since in case A element s(2) is activated later (it has to perform the same amount
of work as in case B though), the time remaining before the mission termination
in case A is less than that of case B and the element may not have enough time to
complete the mission in case A. Therefore, when the first element is very unreliable,
an increment in its reliability (or its expected failure time) leads to a decrease in the
entire mission reliability as well as an increase in the expected mission time and cost.
When the reliability of the first element continues to increase, the probability that
the first element completes several backups and even completes the entire mission
task increases. This change results in a decrease in the expected mission cost and
time, and an increase in the mission reliability. Such a non-monotonic functional
dependence effect of mission reliability, time, and cost on a single element’s reliabil-
ity (usually referred to as system noncoherency) is more distinguished for elements
activated earlier than for elements activated later. The reason for this effect is that
the elements that should be activated later have larger chances to fail in the standby
mode before being activated if they are more unreliable. Refer to [22] for studies of
such noncoherency of standby systems with backups.
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6 Standby System Operation Optimization Problems

In this section, application of the presented numerical evaluation algorithm to the
solution of several optimization problems is discussed.

6.1 Optimal Backup Distribution Problem

As discussed in Sect. 5.2, mission reliability, expected time, and cost depend on the
number of backups H and their distribution π in a non-monotonic manner. Hence the
optimal backupdistribution problemcanbe formulated for the standby systemsubject
to backups as: Find backup distribution vector π that maximizes R (or minimizes
C or minimizes D), subject to constraints on the rest of the mission performance
indices. Equation (42) presents two examples of such optimization problems.

minC(π) s.t. R(π) ≥ R∗, D(π) ≤ D∗,
maxR(π) s.t. C(π) ≤ C∗, D(π) ≤ D∗. (42)

Using Algorithm 2 in Sect. 4.6, the above optimization problems can be solved
using any algorithm applicable to multidimensional optimization. The GA [16] is
applied in this work, which generates K numbers π1, . . . ,πK such that each πh

belongs to interval (0, 1.1). Value of H is decided by conditions∑H
h=1 πh ≤ 1,

∑H+1
h=1 πh > 1 and can vary from 0 to K (K = 8 is used in this work).

For each vector π generated by GA, C(π), R(π ), and D(π) are evaluated using
Algorithm 2. The objective function minimized by the GA is

Ξ = ξc max(0, C(π) − C∗) + ξr max(0, R∗ − R(π)) + ξd max(0, D(π) − D∗)
(43)

where ξ c, ξ r , ξ d are penalty coefficients. The expected mission cost minimization,
mission reliability maximization, and expected mission time minimization problems
are special cases of (43) when ξ r = ξ d =C*= 0, ξ c = ξ d = 0 and R*= 1, ξ r = ξ c =
D*=0, respectively.

Table3 presents optimal solutions for the example 1-out-of-5 standby systemwith
elements being activated in an increasing numerical order.

Solutions to the optimal backup distribution problems using different backup
times reveal that as the data backup time increases, the optimal value of H always
decreases and eventually becomes zero, and the optimal value of H for maximizing
R is usually larger than that for minimizing C and D.
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Table 3 Optimal backup distribution solutions [25]

Type of problem R C D H π1 π2

max R 0.935 1644 161.5 2 0.24 0.29

min C 0.922 1560 150.4 1 0.22 –

min D 0.890 1578 148.7 0 – –

max R s.t. C < 1600 0.932 1599 155.8 2 0.15 0.22

min D s.t. R > 0.91, C < 1580 0.910 1573 150.4 1 0.14 –

min C s.t. R > 0.93, D < 155 0.931 1574 153.2 1 0.37 –

6.2 Optimal Element Activation Sequencing Problem

In the case of nonidentical system elements, the optimal element activation sequenc-
ing problem is relevant and is formulated as follows. Find sequence s(1),
s(2), . . . , s(N) that maximizes R (minimizes C or D) subject to constraints on the
rest of mission performance indices. When N is small, a brute-force enumeration of
all possible permutations of numbers 1, 2, . . . , N can be used; when N is large, some
heuristic algorithms can be used [15, 16] instead. Table4 gives sample solutions of
the optimal activation sequencing problem for the 1-out-of-5 standby system with
the parameters given in Tables1 and 2.

6.3 Optimal Backup Distribution and Element
Sequencing Problem

Table5 presents sample solutions to integrated optimization problems that find com-
binations of vector π and sequence s(1), s(2), . . . , s(N) maximizing R (minimizing
C or D) subject to constraints on the rest of mission performance indices for the
example 1-out-of-5 standby system. It can be observed that the fastest elements 1
and 2 tend to be activated first when R or D is the main concern; the inexpensive

Table 4 Optimal element activation sequencing solutions for fixed π

Type of problem R C D Sequence

max R 0.918 1984 190.0 1, 2, 5, 4, 3

min C 0.897 1810 218.1 4, 2, 5, 3, 1

min D 0.911 1975 185.0 1, 2, 4, 3, 5

min C s.t. R > 0.91, D < 210 0.911 1959 206.9 2, 1, 5, 4, 3

max R s.t. C < 1980, D < 187 0.916 1965 186.5 1, 2, 4, 5, 3
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Table 5 Optimal element activation sequencing and backup distribution solutions

Type of problem R C D Sequence H π1 π2

max R 0.940 770 163.9 1, 2, 5, 4, 3 2 0.25 0.27

min C 0.914 1505 175.6 4, 2, 5, 3, 1 1 0.22 –

min D 0.893 1692 147.6 1, 2, 4, 3, 5 0 – –

min C s.t. D < 150,
R > 0.91

0.917 1677 148.6 1, 2, 4, 3, 5 1 0.17 –

max R s.t. C < 1680,
D < 150

0.917 1677 148.6 1, 2, 4, 3, 5 1 0.17 –

Table 6 Comparison of optimal solutions [25]

Type of
problem

Optimal
backup

Optimal
sequencing

Integrated
optimization

max R 0.935 (0.5%) 0.918 (2.3%) 0.940

min C 1560 (3.7%) 1810 (20.3%) 1505

min D 148.7 (0.7%) 185.0 (25.3%) 147.6

element 4 is activated first when C is minimized; and the minimal expected mission
time is obtained when no backups are used.

Table6 compares results of max R, min C, and min D problems when only
backup distribution, only element activation sequencing, or both backup distribution
and element sequencing are optimized. The relative difference between solutions of
each separate optimization problem and corresponding integrated optimization prob-
lem is presented within parentheses. It can be seen that the integrated optimization
achieves better results than both backup distribution optimization and element acti-
vation sequencing optimization, and the backup distribution optimization provides
better solutions than the element activation sequence optimization for the cases con-
sidered.

7 Conclusion

This chapter presents a numerical method that evaluates mission reliability, expected
completion time, and expected total cost of 1-out-of-N: G standby sparing systems
subject to backups. The method is applicable to systems with even or uneven back-
ups, cold, hot, and warm standby modes, dynamic data backup and retrieval times, as
well as nonidentical system elements. This chapter further presents formulation and
solution of a set of optimization problems that is relevant to the optimal design and
operation planning of heterogeneous standby systems subject to backups. As demon-
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strated through examples, the proposed methodology can identify optimal decisions
for system backup and standby policies, promoting reliable and cost-effective oper-
ation of real-time standby systems.
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Reliability Analysis of a Cloud Computing
System with Replication: Using Markov
Renewal Processes

Mitsutaka Kimura, Xufeng Zhao and Toshio Nakagawa

Abstract Cloud computing is an important infrastructure for many industries. There
are increasing needs for such new techniques in data protection, short response time,
reduced management cost, etc. A cloud computing system with distributed infor-
mation and communication processing capabilities has been proposed [1–3] which
consists of some intelligent nodes as well as a data center. A short response time in
delivering data could be made by using multiple intelligent nodes near each client
rather than a data center. In order to protect client data, all of intelligent nodes need
to transmit the database content to a data center via a network link, which is called
replication. There are two replication strategies which are known as synchronous
and asynchronous schemes [4–6]. Using techniques of Markov renewal processes,
this chapter summarizes reliability analyses of a cloud computing system with the
above two replications, and focuses on some optimization problems to make regular
backups of client data from all of the intelligent nodes to a data center.

1 Introduction

Recently, cloud computing has been widely used in managing server and storage on
the Internet [7, 8]. It is therefore unsurprising that demands for such new techniques
in data protection, early recovery, short response time, and reduced management cost

M. Kimura (B)
Department of Cross Cultural Studies, Gifu City Women’s College,
7-1 Hitoichibakita-machi, Gifu 501-0192, Japan
e-mail: kimura@gifu-cwc.ac.jp

X. Zhao
Department of Mechanical and Industrial Engineering, Qatar University,
Al Tarfa, Doha 2713, Qatar
e-mail: kyokuh@qu.edu.qa

T. Nakagawa
Department of Business Administration, Aichi Institute of Technology,
1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
e-mail: toshi-nakagawa@aitech.ac.jp

© Springer International Publishing Switzerland 2016
L. Fiondella and A. Puliafito (eds.), Principles of Performance and Reliability
Modeling and Evaluation, Springer Series in Reliability Engineering,
DOI 10.1007/978-3-319-30599-8_15

401



402 M. Kimura et al.

have increased. A cloud computing system with distributed information and commu-
nication processing consists of some intelligent nodes as well as a data center, which
manages all of the client information and application software [1–3]. The intelli-
gent node provides application service near clients, enabling the client to enjoy short
response times to their requests for service [1]. This also enables high availability
as a switching technique to continue the service when an intelligent node breaks
down [2]. In the previous research, a messaging scheme based on service dependen-
cies between data centers and clients has been proposed in order to reduce response
times experienced by a client [9], and the parallel transmission system with Stream
Control Transmission Protocol (SCTP) has been proposed in order to achieve high
speed data communication between data centers and clients [3].

It is also important to consider the actions to protect client data in intelligent
nodes. That is, it is necessary to consider how to make regular backups of client data
from all of the intelligent nodes to a data center. The intelligent node stands by and
serves as a backup when another intelligent node breaks down and all of the intelli-
gent nodes need to transmit the database content to a data center via a network link,
which is called replication. There are two ways of performing replication, namely
synchronous and asynchronous schemes [4–6]. The synchronous scheme guarantees
consistency of database content but also imposes a prohibitive cost. The synchro-
nous scheme has lower costs, but it can compromise consistency [6]. This chapter
summarizes reliability analyses of a cloud computing system with synchronous and
asynchronous replications, using techniques of Markov renewal processes. Markov
renewal processes plays an important role in the analysis of probability models with
sums of independent nonnegative random variables. Trivedi discussed the renewal
theory for a duplex system with two processors and Triple Modular Redundancy
(TMR) system with three active units and one spare [10].

In Sect. 2, we introduce the fundamental example of Markov renewal processes
[11, 12]. Let us sketch one-unit system, in which an operating unit is repaired at
failures and preventive maintenance (PM) is made at suitable times. When the repair
and PM are completed, the unit becomes as good as new and begins to operate. The
system can be described by a Markov renewal process. In general, a Markov renewal
process has the Markovian property in which the future behavior depends only on
the present state and not its past history. We mention only the theory of stationary
Markov chains with finite-state space for analysis of one-unit system and it is shown
that one-step transition probabilities and renewal functions are given in terms of
them.

In Sect. 3, we consider a reliability model of a cloud computing system with
synchronous and asynchronous replications. We have formulated a stochastic model
of a cloud computing system with n intelligent nodes, a data center and a monitor,
in which the client service can be made to operate until one of n intelligent nodes
break down. The monitor orders each intelligent node to serve the request for each
client. That is, the server in the intelligent node provides the application service
when a client requests the use of an application. We consider how to make regular
backups of client data from all of the intelligent nodes to a data center. When the
server in the intelligent node updates the data by requesting from client at times k,



Reliability Analysis of a Cloud Computing System … 403

the monitor orders n intelligent nodes to transmit all of the client data to a data center,
and furthermore, it orders n intelligent nodes to receive the update information of
the application from a data center. That is, when k = 1, synchronous data replication
executes from all of the intelligent nodes to a data center. When k > 1, asynchronous
data replication executes. When one of n intelligent nodes breaks down by a failure
such as a disaster or crash failure, the client service is migrated from the intelligent
node to another one. We derive the expected number of replications and updating
the client data in intelligent nodes before a failure of an intelligent node. Further, by
using these expected numbers, we derive the expected cost and discuss an optimal
replication interval to minimize it [14]. Next, we discuss an optimal policy to reduce
the costs for replications while managing the intelligent nodes. That is, we discuss
an optimal number of intelligent nodes to minimize the expected cost.

In Sect. 4, we consider an extended stochastic model of distributed communica-
tion processing for a cloud system with n intelligent nodes, in which the service
continues to operate until all of the intelligent nodes break down. That is, the client
service is migrated from the intelligent node to another one repeatedly whenever
one of them breaks down, which continues until n intelligent nodes break down. We
assume a server system model is identical to Sect. 3 and derive the expected num-
ber of replications and updating the client data in intelligent nodes before failures
of n intelligent nodes. Further, we derive the expected cost and discuss an optimal
replication interval to minimize it.

2 Markov Renewal Processes

This section briefly presents Markov renewal processes for a fundamental system
with maintenance [13, p. 123]. Consider a simple one-unit system with repair and
preventive maintenance (PM). Using one-step transition probabilities and renewal
functions of Markov renewal processes, we derive the expected number of repairs
and PMs.

2.1 One-Unit System with Repair and PM

This system consists of one operating unit that is repaired at failures and undergoes
preventive maintenance at suitable times. It is assumed that the failure time of the unit
has a general distribution F(t) with finite mean 1/λ, and the repair time has a general
distribution G1(t) with finite mean 1/μ1(0 < μ1 < ∞). Furthermore, when the unit
operates at a planned time T (0 < T ≤ ∞) without failure, its operation is stopped
and PM is made. The PM requires the time according to a general distribution G2(t)
with finite mean 1/μ2(0 < μ2 < ∞).
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Fig. 1 Transition diagram
between system states 02 1

We form the stochastic model of a one-unit system with repair and PM, and
derive the expected number of repairs and PMs, using techniques of Markov renewal
processes [13, p. 136]. We define the following states:

State 0: Unit is operating.
State 1: Unit is under repair.
State 2: Unit is under PM.

A transition diagram between system states is shown in Fig. 1.
We define the one-step transition probabilities Qi, j (t) from State i to State

j (i, j = 0, 1, 2). Moreover, for convenience, we denote that D(t) is a degenerate
distribution placing unit mass at T ; i.e., D(t) ≡ 0 for t < T and 1 for t ≥ T . Then,
one-step transition probabilities are

Q0,1(t) =
∫ t

0
D(u)dF(u), Q0,2(t) =

∫ t

0
F(u)dD(u),

Q1,0(t) = G1(t), Q2,0(t) = G2(t),

where Φ(t) ≡ 1 − Φ(t).
Let Mi, j (t)(i, j = 0, 1, 2) denote the expected number of visits to State j during
(0, t], starting from State i . For instance, M0,2(t) represents the expected number of
PMs during (0, t], given that the unit begins to operate at time 0. Then, we have the
following renewal equations:

M0,0(t) = Q0,1(t) ∗ M1,0(t) + Q0,2(t) ∗ M2,0(t),

M0,1(t) = Q0,1(t) ∗ [1 + M1,1(t)] + Q0,2(t) ∗ M2,1(t),

M0,2(t) = Q0,1(t) ∗ M1,2(t) + Q0,2(t) ∗ [1 + M2,2(t)],
Mi,0(t) = Qi,0(t) ∗ [1 + M0,0(t)] = Gi (t) ∗ [1 + M0,0(t)] (i = 1, 2),

M1, j (t) = Q1,0(t) ∗ M0, j (t) = G1(t) ∗ M0, j (t),

M2, j (t) = Q2,0(t) ∗ M0, j (t) = G2(t) ∗ M0, j (t) ( j = 1, 2).

where the asterisk denotes the pairwise Stieltjes convolution; i.e., a(t) ∗ b(t) ≡∫ t
0 a(t − u)b(u), Φ(i)(t)(i = 1, 2, . . .) denotes the i-fold convolution of any function

Φ(t) and Φ(i)(t) ≡ Φ(i−1)(t) ∗ Φ(t) = ∫ t
0 Φ(i−1)(t − u)dΦ(u),Φ(0)(t) ≡ 1.

Forming the Laplace-Stieltjes (LS) transforms of the above equations,
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M∗
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,
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2(s)e
−sT F(T )

,

where Φ∗(s) denotes the LS transform of any function Φ(t), i.e., Φ∗(s) ≡ ∫ ∞
0 e−st

dΦ(t) for Re(s) > 0.
Furthermore, the limiting values M j ≡ limt→∞ M0, j (t)/t = lims→0 s M∗

0, j (s);
i.e., the expected numbers of visits to State j per unit of time in the steady-state
are

M0 = 1
∫ T

0 F(T )dt − F(T )/μ1 − F(T )/μ2

,

M1 = F(T )
∫ T

0 F(T )dt − F(T )/μ1 − F(T )/μ2

,

M2 = F(T )
∫ T

0 F(T )dt − F(T )/μ1 − F(T )/μ2

.

3 Cloud Computing System Consisting of Intelligent
Nodes with Replication

This section formulates a stochastic model of a cloud computing system with n (n =
1, 2, . . .) intelligent nodes and a data center. It is shown that there exists an optimal
number n∗ to minimize the expected cost including management cost for intelligent
nodes. The server in the intelligent node provides the application service when a client
requests the application. In this model, we make consideration of the data for client,
i.e., we consider how to make regular backups of client data from all of the intelligent
nodes to a data center. When the server in the intelligent node updates the data by
requesting of client at times k (k = 1, 2, . . .), the monitor orders n intelligent nodes
to transmit all of client data to a data center, that is, the data replication executes from
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all of intelligent nodes to a data center. When one of n intelligent nodes breaks down,
the client service is migrated from the intelligent node to another one. We derive the
expected numbers of replications and updating the client data in intelligent nodes
before a failure of an intelligent node, using techniques of a Markov renewal process.
In order to reduce replication and loss costs for the client data, it is shown that there
exists an optimal replication interval k∗ to minimize the expected cost including these
costs.

3.1 Reliability Quantities

A cloud computing system consists of a monitor, a data center, and n intelligent
nodes as shown in Fig. 2.

Both a data center and n intelligent nodes consist of identical server and storage,
and each intelligent node can serve as backup when another intelligent node breaks
down. A data center manages all of the data and application data for client. The mon-
itor orders each intelligent node to serve the request of each client, i.e., the monitor
assigns each intelligent nodes to each client. The operation of a cloud computing
system is shown in Fig. 3.

The server in the intelligent node provides the application when a client requests
the use of an application. The monitor orders n intelligent nodes to transmit all of
client data to a data center, and furthermore, orders n intelligent nodes to receive
the update information of the application from a data center, after the server in the
intelligent node updates the data by requesting of client at times k. When one of n
intelligent nodes breaks down by some failures such as a disaster or crash failure,
the client service is migrated from the intelligent node to another one.

Then, we formulate the stochastic model as follows:

(1) A client requests an application whose time has a general distribution A(t). The
monitor orders the intelligent node to serve the request of the client. The server

Fig. 2 Outline of a cloud
computing system [1, 2]
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Data center

Intelligent node n

Intelligent node 1

Intelligent node n-1

Intelligent node n-2

Clients

...

k = 4
....... Loss of updated data
....... Request of use application and data update

...... Checkpoint ...... Replication .......Failure ...... Server transfer

Time

Fig. 3 Operation of a cloud computing system

in the intelligent node updates the storage database when a client requests the
data update. The completion of the data update requires the time according to a
general distribution B(t).

(2) The monitor orders n intelligent nodes to transmit all of client data to a data center,
and furthermore, it orders n intelligent nodes to receive the update information of
application from a data center, after the server in the intelligent node has updated
the data by requesting of client at times k. In other words, the replication executes
after the server in the intelligent node has updated the client data at times k.

(a) The completion of an intelligent node’s replication requires the time accord-
ing to a general distribution W (t). That is, the replication time of n intelligent
nodes has a general distribution W (n)(t).

(b) If the server in the intelligent node breaks down while the replication is
executing, the monitor immediately orders migration of the client service
from the intelligent node to another one.

(3) When one of n intelligent nodes breaks down, the client service is migrated from
the intelligent node to another one.

(a) The intelligent node breaks down according to an exponential distribution
F(t) = 1 − e−λt with finite mean 1/λ (0 < λ < ∞). The monitor and a data
center do not break down.

(b) When the client service is migrated from the intelligent node to another one,
the monitor searches for another intelligent node which can serve the request
of the client.
(i) If the monitor finds another intelligent node which can serve the request

of the client, the monitor immediately migrates the client service to the
intelligent node.

(ii) If the monitor does not find another intelligent node, the monitor imme-
diately prepares the intelligent node to serve the request of the client.
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Fig. 4 Transition diagram
between system states

0 R F

Under the above assumptions, we define the following states of the cloud com-
puting system:

State 0: System begins to operate or restart.
State R: Replication begins when the server in the intelligent node updates the data

at times k (k = 1, 2, . . .).
State F: A client service temporary stops when one of n (n = 1, 2, . . .) intelligent

nodes breaks down, and the client service migrates from the intelligent node
to another one.

The system states defined above form a Markov renewal process [11, 12], where F
is an absorbing state. A transition diagram between system states is shown in Fig. 4.

The LS transforms of one-step transition probabilities Qi, j (t) from State i to State
j in [0, t](i = 0, R, F; j = 0, R, F) are given by the following equations:

Q∗
0,R(s) =

∫ ∞

0
e−st F(t)dD(k)(t) = [H∗(s + λ)]k,

Q∗
0,F (s) =

∫ ∞

0
e−st [1 − H (k)(t)]dF(t) = λ

s + λ
{1 − [H∗(s + λ)]k},

Q∗
R,F (s) =

∫ ∞

0
e−st [1 − W (n)(t)]dF(t) = λ

s + λ
{1 − [W ∗(s + λ)]n},

Q∗
R,0(s) =

∫ ∞

0
e−st F(t)dW (n)(t) = [W ∗(s + λ)]n,

where H(t) ≡ A(t) ∗ B(t). Clearly, Q∗
0,R(0) + Q∗

0,F (0) = 1 and Q∗
R,0(0) +

Q∗
R,F (0) = 1.
Expression for expected number of replications before State F , denoted by MR , is

derived as follows: Let M0,R(t) be the expected number of replications before State
F in [0, t]. Then, we have the following renewal equation:

M0,R(t) = Q0,R(t) ∗ Q R,0(t) ∗ [1 + M0,R(t)]. (1)

and its LS transform M∗
R(s) is

M∗
0,R(s) = Q∗

0,R(s)Q∗
R,0(s)

1 − Q∗
0,R(s)Q∗

R,0(s)
. (2)
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Hence, the expected number MR before State F is

MR ≡ lim
s→0

[M∗
0,R(s)] = 1 − X (k, n)

X (k, n)
, (3)

where

X (k, n) = 1 −
∫ ∞

0
F(t)dH (k)(t)

∫ ∞

0
F(t)dW (n)(t),

= 1 − [H∗(λ)]k[W ∗(λ)]n, (4)

which increases with k from X (1, n) to 1 and increases with n from X (k, 1) to 1.
Similarly, expression for the expected number of updating the client data in intel-

ligent nodes before State F , denoted by MA, is derived as follows: The expected
number MA(t) in [0, t] is given by following equation:

MA(t) =
k∑

i=1

∫ t

0
(i − 1)H (i−1)(t) ∗ H(t)dF(t)

+k

[∫ t

0
F(t)dH (k)(t)

]
∗

∫ t

0
[1 − W (n)(t)]dF(t) + Q0,R(t) ∗ Q R,0(t) ∗ MA(t),

(5)

and its LS transform is

M∗
A(s) =

k∑

i=1

[
∫ ∞

0
e−st H (i)(t)dF(t) −

∫ ∞

0
e−st H (k)(t)dF(t)]

+k[∫ ∞
0 e−st F(t)dH (k)(t)][∫ ∞

0 e−st [1 − W (n)(t)]dF(t)]
1 − [∫ ∞

0 e−st F(t)dH (k)(t)][∫ ∞
0 e−st F(t)dW (n)(t)] . (6)

Hence, the expected number MA before State F is

MA ≡ lim
s→0

[M∗
0,A(s)] = Y (k, n)

X (k, n)
, (7)

where

Y (k, n) ≡
k∑

i=1

[∫ ∞

0
F(t)dH (i)(t) − 1 + X (k, n)

]
,

=
k∑

i=1

{[H∗(λ)]i − [H∗(λ)]k[W ∗(λ)]n
}
, (8)

which increases with k to H∗(λ)/[1 − H∗(λ)] and increases with n to
∑k

i=1[H∗(λ)]i .
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3.2 Optimal Policies

We consider two optimal policies to make regular backups of client data from n
intelligent nodes to a data center. First, we propose an optimal policy to reduce the
loss costs for the client data in the intelligent node. That is, when one of n intelligent
nodes breaks down, the client service is migrated from one intelligent node to another
one. Then, the backup data is transmitted from a data center to the intelligent node and
the interrupted service is restarted. Therefore, the client data before backup is lost.
In Sect. 3.2.1, to reduce the loss costs for the client data, we calculate the expected
cost before State F and derive an optimal replication interval k∗ to minimize it. Next,
we propose an optimal policy to reduce the waste of managing the intelligent nodes.
In Sect. 3.2.2, to reduce the management costs for the intelligent node, we derive
an optimal number n∗ to minimize the expected cost. Furthermore, we compute
numerically both optimal k∗ and n∗ to minimize the expected cost.

3.2.1 Optimal Replication Interval k∗

We propose an optimal policy to reduce the waste of costs for replications and the
loss costs for the client data in the intelligent node. That is, we calculate the expected
cost before State F and derive an optimal interval k∗ to minimize it. Let cA be the
loss cost for an updated data, cR be the cost for a replication and cM be the cost for
managing an intelligent node. We give the expected cost C1(k, n) as follows:

C1(k, n) ≡ cR MR + cA MA + cM n,

= cR[1 − X (k, n)] + cAY (k, n)

X (k, n)
+ cM n. (9)

We seek an optimal replication interval k∗(1 ≤ k∗ ≤ ∞) to minimize C1(k, n)

for given n(n ≥ 1). From the inequality C1(k + 1, n) − C1(k, n) ≥ 0,

Y (k + 1, n) − Y (k, n)

X (k + 1, n) − X (k, n)
X (k, n) − Y (k, n) ≥ cR

cA
(k = 1, 2, . . .). (10)

Denoting the left-hand side of (10) by Ln(k),

Ln(k) − Ln(k − 1) =
[

Y (k + 1, n) − Y (k, n)

X (k + 1, n) − X (k, n)
− Y (k, n) − Y (k − 1, n)

X (k, n) − X (k − 1, n)

]
X (k, n).

If [Y (k + 1, n) − Y (k, n)]/[X (k + 1, n) − X (k, n)] increases strictly with k and
Ln(∞) > cR/cA, then there exists a finite and unique minimum k∗ which satisfies
(10).
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In this case,

Y (k + 1, n) − Y (k, n)

X (k + 1, n) − X (k, n)
= k[1 − H∗(λ)]W ∗(λ)n + H∗(λ)[1 − W ∗(λ)n]

[1 − H∗(λ)]W ∗(λ)n

= H∗(λ)

1 − H∗(λ)

1 − W ∗(λ)n

W ∗(λ)n
+ k,

which increases strictly with k from {[1 − H∗(λ)]W ∗(λ)n + H∗(λ)

[1 − W ∗(λ)n]}/{[1 − H∗(λ)]W ∗(λ)n} > 1 to ∞. Thus, there exists finite and unique
minimum k∗(1 ≤ k∗ < ∞) which satisfies (10). If {[1 − H∗(λ)]W ∗(λ)n + H∗(λ)

[1 − W ∗(λ)n]}/{[1 − H∗(λ)]W ∗(λ)n} ≥ cR/cA then k∗ = 1. Furthermore, if cR/cA

≤ 1 then k∗ = 1.

Example 1 We compute numerically an optimal interval k∗ to minimize C1(k, n) in
(9) when A(t) ≡ 1 − e−αt , B(t) ≡ 1 − e−βt and W (t) ≡ 1 − e−wt , i.e.,

H∗(λ) = αβ

(λ + α)(λ + β)
, W ∗(λ) = w

λ + w
.

Suppose that the mean time 1/β is required for the completion of the data update.
It is assumed that the number of intelligent nodes is n = 2–4, the mean interval
of requests of application is (1/α)/(1/β) = 2–8, the mean interval in which an
intelligent node is down is (1/λ)/(1/β) = 1000, 5000, the mean time required for the
replication is (1/w)/(1/β) = 10–30, Further, we introduce the following costs: The
loss cost rate of the cost for updated data to the cost for replication is cR/cA = 5, 10.
Table 1 presents the optimal interval k∗ to minimize the expected cost C1(k, n)/cA.

For example, when cR/cA = 5, n = 2, β/α = 2, β/w = 10 and β/λ = 1000, the
optimal replication interval is k∗ = 52. This indicates that k∗ increase with β/λ and
cR/cA. On the other hand, k∗ decrease with β/w and roughly decrease with β/α. This
shows that we should execute the replication at short intervals when the time required
for the use of application is large. Optimal k∗ decrease with n, i.e., we should execute
the replication at short intervals when the number of intelligent nodes is large.

Next, Fig. 5 draws the expected cost C1(k∗, n)/cA and k∗ for n when cR/cA =
5, cM/cA = 2, β/λ = 1000, β/w = 30 and β/α = 2. From this figure, k∗ decrease
rapidly with n and asymptotically converge to 1, and C1(k∗, n)/cA decrease notably
with n and converges to C1(k∗, n∗)/cA when n∗ = 9 and k∗ = 1. It would be enough
for the server system to be composed of nine intelligent nodes.

3.2.2 Optimal Number n∗

We propose an optimal policy to reduce the waste of costs for replications and
managing the intelligent nodes. That is, we calculate the expected cost and derive
an optimal number n∗(1 ≤ n∗ ≤ ∞) to minimize C1(k, n) for given k(k ≥ 1). From
the inequality C1(k, n + 1) − C1(k, n) ≥ 0,
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Table 1 Optimal interval k∗ to minimize C1(k, n)/cA

n cR/cA β/w β/λ

1000 5000

β/α

2 4 8 2 4 8

2 5 10 52 42 33 124 98 74

20 45 38 30 117 93 72

30 36 33 28 109 89 69

10 10 78 63 49 179 141 107

20 71 58 46 172 137 104

30 63 54 44 165 132 102

3 5 10 49 40 32 120 96 73

20 36 33 28 109 89 69

30 21 25 24 97 82 66

10 10 75 61 47 176 139 106

20 63 54 44 165 132 102

30 50 46 40 154 126 98

4 5 10 45 38 30 117 93 72

20 26 28 25 101 84 67

30 3 16 19 85 75 62

10 10 71 58 46 172 137 104

20 54 49 41 157 128 100

30 35 38 36 142 119 95
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Fig. 5 Optimal cost C1(k∗, n)/cA and optimal interval k∗ for n when cR/cA = 5, cM/cA =
2, β/λ = 1000, β/w = 30 and β/α = 2
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Y (k, n + 1) − Y (k, n)

X (k, n + 1) − X (k, n)
X (k, n) − Y (k, n) + cM

cA

X (k, n + 1)X (k, n)

X (k, n + 1) − X (k, n)
≥ cR

cA

(n = 1, 2, . . .).(11)

Denoting the left-hand side of (11) by Lk(n),

Lk(n) − Lk(n − 1) =
{ [

Y (k, n + 1) − Y (k, n)

X (k, n + 1) − X (k, n)
− Y (k, n) − Y (k, n − 1)

X (k, n) − X (k, n − 1)

]

+cM

cA

[
X (k, n + 1)X (k, n)

X (k, n + 1) − X (k, n)
− X (k, n)X (k, n − 1)

X (k, n) − X (k, n − 1)

] }
X (k, n).

If [Y (k, n + 1) − Y (k, n)]/[X (k, n + 1) − X (k, n)] and X (k, n + 1)X (k, n)

/[X (k, n + 1) − X (k, n)] increases strictly with n and Lk(∞) > cR/cA, then there
exists a finite and unique minimum n∗ which satisfies (11). In this case,

Y (k, n + 1) − Y (k, n)

X (k, n + 1) − X (k, n)
= k,

X (k, n + 1)X (k, n)

X (k, n + 1) − X (k, n)
= {1 − [H∗(λ)]k[W ∗(λ)]n+1}{1 − [H∗(λ)]k[W ∗(λ)]n}

[H∗(λ)]k[1 − W ∗(λ)][W ∗(λ)]n
,

which increases strictly with n from

{1 − [H∗(λ)]k[W ∗(λ)]2}{1 − [H∗(λ)]k W ∗(λ)}
[H∗(λ)]k[1 − W ∗(λ)]W ∗(λ)

to∞. Thus, there exists a finite and unique minimum n∗(1 ≤ n∗ < ∞)which satisfies
(11).

Example 2 We compute numerically an optimal number n∗ to minimize C1(k, n)

in (9) when A(t) ≡ 1 − e−αt , B(t) ≡ 1 − e−βt and W (t) ≡ 1 − e−wt . It is assumed
that the replication interval is k = 20, 30 and for the mean time 1/β of B(t), the mean
interval of requests is (1/α)/(1/β) = 2–6, the mean interval of an intelligent node
being down is (1/λ)/(1/β) = 3000, 5000, the mean time required for the replication
is (1/w)/(1/β) = 20, 30. Further, we introduce the following costs: For the loss cost
rate of the cost for an updated data to the cost for replication is cR/cA = 5, 10, and
the cost of managing of an intelligent node is cM/cA = 2, 3.

Table 2 presents the optimal number n∗ to minimize C1(k, n)/cA. For exam-
ple, when cR/cA = 5, cM/cA = 2 and k = 20, β/α = 2, β/w = 20, β/λ = 3000,
the optimal number is n∗ = 16.

This indicates that n∗ increases with β/λ and cR/cA. On the other hand, n∗
decreases with β/w and decreases with β/α and cM/cA, and also, decrease with
k. That is, it is only necessary to have fewer intelligent nodes when the replication
interval k is large.

Next, Fig. 6 draws the optimal cost C1(k, n∗)/cA and optimal number n∗ for
k when 1/β = 1, cR/cA = 5, cM/cA = 2, β/λ = 3000, β/w = 20 and β/α = 2.
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Table 2 Optimal number n∗ to minimize C1(k, n)/cA

k cR/cA cM/cA β/w β/λ

3000 5000

β/α

2 4 6 2 4 6

20 5 2 20 16 14 11 22 19 17

30 14 12 10 18 17 15

3 20 12 10 8 17 15 13

30 11 9 8 14 13 12

10 2 20 24 22 20 32 30 28

30 20 19 17 27 25 24

3 20 19 17 15 26 24 21

30 16 15 13 21 20 19

30 5 2 20 14 10 7 20 16 13

30 12 10 7 17 14 12

3 20 11 7 4 15 12 9

30 9 7 4 13 11 9

10 2 20 22 19 15 30 27 24

30 19 16 14 25 23 21

3 20 17 14 11 24 21 17

30 15 13 10 20 18 16

Fig. 6 Optimal cost
C1(k, n∗)/cA and optimal
number n∗ for k when 1/β =
1, cR/cA = 5, cM/cA =
2, β/λ = 3000, β/w = 20
and β/α = 2

0

5

10

15

20

0

20

40

60

80

100

120

140

1 10 20 30 40 50 60 70 80 90 100

nC1(k,n)/cA

k

C1(k, n*)/cA

From this figure, n∗ decrease rapidly with k and converges to 1, and C1(k, n∗)
increases remarkably with k and tends to C1(k∗, n∗) when k∗ = 1 and n∗ = 19.
This indicates that we should execute synchronous replication when the number of
intelligent node is n∗ = 19.

Next, we derive both optimal k∗ and n∗ to minimize C1(k, n)/cA in (9), i.e., we
solve the simultaneous equations (10) and (11). It is easily computed that first, we
compute k0 for given n0 from (10), compute n1 for given k0 from (11) and repeat such
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Table 3 Optimal interval k∗ and number n∗ to minimize C1(k, n)/cA

β/λ cR/cA cM/cA β/w β/α

2 4 6

k∗ n∗ k∗ n∗ k∗ n∗

1000 5 2 10 56 1 44 1 38 1

20 1 11 42 1 37 1

30 1 9 1 9 1 9

3 10 56 1 44 1 38 1

20 1 9 42 1 37 1

30 1 7 1 7 35 1

10 2 10 82 1 65 1 56 1

20 1 16 63 1 54 1

30 1 13 1 13 1 13

3 10 82 1 65 1 56 1

20 1 13 63 1 54 1

30 1 10 61 1 53 1

5000 5 2 10 127 1 100 1 85 1

20 1 25 1 25 83 1

30 1 20 1 20 1 20

3 10 127 1 100 1 85 1

20 1 20 98 1 83 1

30 1 17 1 17 82 1

10 2 10 183 1 143 1 122 1

20 1 35 141 1 120 1

30 1 29 1 29 1 29

3 10 183 1 143 1 122 1

20 1 29 141 1 120 1

30 1 23 139 1 119 1

computing procedures until ki = ki+1 = k∗ and ni = ni+1 = n∗. Table 3 presents
optimal k∗ and n∗ to minimize C1(k, n) when A(t) ≡ 1 − e−αt , B(t) ≡ 1 − e−βt

and W (t) ≡ 1 − e−wt .
This table indicates that both n∗ and k∗ increase with β/λ and cR/cA. On the

other hand, when β/w is small, n∗ = 1, that is, we should execute asynchronous
replication and should not perform distributed management of client data by mul-
tiple intelligent nodes. Conversely, when β/w is large, k∗ = 1. That is, we should
execute synchronous replication and manage client data with multiple intelligent
nodes. When β/λ, β/α and cM/cA are large, n∗ do not depend on β/w, and become
constant n∗ = 1. That is, we should execute asynchronous replication and should
not perform distributed management of client data with multiple intelligent nodes.
Comparing with Table 1, optimal k∗ are close to the value of k∗ in Table 1 when β/α

is large and β/w is small. On the other hand, by comparison with Table 2, optimal
n∗ are close to the value of n∗ in Table 2 when β/α is small and β/w is large.
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4 Cloud Computing System with Intelligent Nodes
for Changing at Failure

This section considers an extended stochastic model of a cloud system with n intel-
ligent nodes, in which the service continues to operate until all of intelligent nodes
break down. That is, when one of n intelligent nodes breaks down, the client service
is migrated from the intelligent node to another one, and the cloud system continues
to provide the application service with alternative intelligent nodes until n intelligent
nodes break down. We assume the same server system model as Sect. 3, and derive
the expected numbers of replications and updating the client data in intelligent nodes
before failures of n intelligent nodes. Further, we derive the expected cost and discuss
an optimal replication interval k∗ to minimize it for given n.

4.1 Reliability Quantities

A cloud computing system consists of a monitor, a data center, and n intelligent
nodes as shown in Fig. 2 [1, 14], its operation is shown in Fig. 7.

The server in the intelligent node provides the application when a client requests
the use of an application, and updates the data by requesting the client. The replication
executes after the server in the intelligent node has updated the client data at times
k. Whenever one of intelligent nodes breaks down, the client service is migrated
from the intelligent node to another one repeatedly until n intelligent nodes break
down. Then, we formulate the stochastic model in the same manner as Sect. 3. The
migration of the service requires the time according to a general distribution G(t),
and define the following states of a cloud computing system:

Data center

Intelligent node n

Intelligent node 1

Intelligent node n-1

Intelligent node n-2

Clients

...

...... Loss of updated data 

...... Request of use application and data update

...... Checkpoint ...... Replication ...... Server transfer......Failure

k = 4

Time

Fig. 7 Operation of a cloud computing system
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Fig. 8 Transition diagram
between system states

0 R Fn n n

0n-1 Rn-1 n-1F

...
0 R F1 1 1

... ...

State 0i : System begins to operate or restart by normal i (i = 1, 2, 3, . . . , n) intel-
ligent nodes.

State Ri : When the server in the intelligent node updates the data at times k (k =
1, 2, . . .), the replication begins.

State Fi : One of i (i = 2, 3, . . . , n) intelligent nodes breaks down.
State F1: All of n intelligent nodes break down.

The system states defined above form a Markov renewal process [10, 12], where F1

is an absorbing state. A transition diagram between system states is shown in Fig. 8.
The LS transforms of transition probabilities Q�, j (t) (� = 0i , Ri , F; j = 0i ,

Ri , Fi ) are given by the following equations:

Q∗
0i ,Ri

(s) =
∫ ∞

0
e−st F(t)dH (k)(t) = [H∗(s + λ)]k,

Q∗
0i ,Fi

(s) =
∫ ∞

0
e−st [1 − H (k)(t)]dF(t) = λ

s + λ
{1 − [H∗(s + λ)]k},

Q∗
Ri ,Fi

(s) =
∫ ∞

0
e−st [1 − W (i)(t)]dF(t) = λ

s + λ
{1 − [W ∗(s + λ)]i },

Q∗
Ri ,0i

(s) =
∫ ∞

0
e−st F(t)dW (i)(t) = [W ∗(s + λ)]i .

Clearly, Q∗
0i ,Ri

(0) + Q∗
0i ,Fi

(0) = 1 and Q∗
Ri ,0i

(0) + Q∗
Ri ,Fi

(0) = 1. The expected
number MR(t) of replications before State F1 in [0, t] is given by the following
equation:

MR(t) = M0n ,Rn (t) + H0n ,Fn (t) ∗ G(t) ∗ M0n−1,Rn−1(t)

+H0n ,Fn−1(t) ∗ G(t) ∗ M0n−2,Rn−2(t) + H0n ,Fn−2(t) ∗ G(t) ∗ M0n−3,Rn−3(t)

+ · · · + H0n ,F2(t) ∗ G(t) ∗ M01,R1(t), (12)
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where

M0i ,Ri (t) ≡ Q0i ,Ri (t) ∗ Q Ri ,0i (t) ∗ [1 + M0i ,Ri (t)] (i = 1, 2 . . . , n),

H0n ,Fj (t) ≡ H0n ,Fn (t) ∗ G(t) ∗ H0n−1,Fn−1(t) ∗ G(t) ∗ H0n−2,Fn−2(t) ∗ G(t)

∗H0n−3,Fn−3(t) ∗ G(t) ∗ · · · ∗ H0 j ,Fj (t), ( j = 2, 3, . . . , n − 1),

H0i ,Fi (t) ≡ Q0i ,Fi (t) + Q0i ,Ri (t) ∗ Q Ri ,Fi (t) + Q0i ,Ri (t) ∗ Q Ri ,0i (t) ∗ H0i ,Fi (t),

(i = 1, 2 . . . , n).

and its LS transform is

M∗
R(s) = Q∗

0n ,Rn
(s)Q∗

Rn ,0n
(s)

1 − Q∗
0n ,Rn

(s)Q∗
Rn ,0n

(s)
+ G∗(s)n−1

×
n∑

i=2

Q∗
0i−1,Ri−1

(s)Q∗
Ri−1,0i−1

(s)

1 − Q∗
0i−1,Ri−1

(s)Q∗
Ri−1,0i−1

(s)

⎡

⎣
n∏

j=i

Q∗
0 j ,Fj

(s) + Q∗
0 j ,R j

(s)Q∗
R j ,Fj

(s)

1 − Q∗
0 j ,R j

(s)Q∗
R j ,0 j

(s)

⎤

⎦ .

Hence, the expected number MR before State F1 is

MR ≡ lim
s→0

[M∗
R(s)] =

n∑

i=1

1 − X (k, i)

X (k, i)
, (13)

where X (k, i) is given in (4).
Similarly, we derive the expected number MA of updating the client data in intelli-

gent nodes before State F1. The expected number MA(t) in [0, t] is given by following
equation:

MA(t) = M0n ,An (t) + H0n ,Fn (t) ∗ G(t) ∗ M0n−1,An−1(t)

+H0n ,Fn−1(t) ∗ G(t) ∗ M0n−2,An−2(t)

+H0n ,Fn−2(t) ∗ G(t) ∗ M0n−3,An−3(t) + · · · + H0n ,F2(t) ∗ G(t) ∗ M01,A1(t),

(14)

where

M0i ,Ai (t) =
k∑

i=1

∫ ∞

0
(i − 1)H (i−1)(t) ∗ H(t)dF(t)

+k

[∫ ∞

0
F(t)dH (k)(t)

]
∗

∫ ∞

0
[1 − W (i)(t)]dF(t) + [Q0i ,Ri (t) ∗ Q Ri ,0i (t)] ∗ M0i ,Ai (t),
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and its LS transform is

M∗
A(s) = M∗

0n ,An
(s) + G∗(s)n−1

n−1∑

i=1

M∗
0i ,Ai

(s)

⎡

⎣
n∏

j=i+1

Q∗
0 j ,Fj

(s) + Q∗
0 j ,R j

(s)Q∗
R j ,Fj

(s)

1 − Q∗
0 j ,R j

(s)Q∗
R j ,0 j

(s)

⎤

⎦ ,

where

M∗
0i ,Ai

(s) =

∑k
j=1[

∫ ∞
0 e−st H ( j)(t)dF(t) − ∫ ∞

0 e−st H (k)(t)dF(t)]
+k

∫ ∞
0 e−st F(t)dH (k)(t)

∫ ∞
0 e−st [1 − W (i)(t)]dF(t)

1 − ∫ ∞
0 e−st F(t)dH (k)(t)

∫ ∞
0 e−st F(t)dW (i)(t)

.

Hence, the expected number MA of updating the client data before State F1 is

MA ≡ lim
s→0

[M∗
A(s)] =

n∑

i=1

Y (k, i)

X (k, i)
, (15)

where Y (k, i) is given in (8).

4.2 Optimal Policy

We propose an optimal policy to reduce the waste of costs for replications and the
loss costs for updates in an intelligent node. That is, we calculate the expected cost
and derive an optimal replication interval k∗ to minimize it for given n. Let cA be
the loss cost for an updated data and cR be the cost for a replication. We give the
expected cost C2(k, n) as follows:

C2(k, n) ≡ cR MR + cA MA. (16)

We seek an optimal replication interval k∗(1 ≤ k∗ ≤ ∞) to minimize C2(k, n)

for given n (n ≥ 1). From the inequality C2(k + 1, n) − C2(k, n) ≥ 0,

n∑

i=1

L1(k, i)

[
L2(k, i) − cR

cA

]
≥ 0 (k = 1, 2, . . .), (17)

where

L1(k, i) ≡ 1

X (k, i)
− 1

X (k + 1, i)
,

L2(k, i) ≡ Y (k + 1, i) − Y (k, i)

X (k + 1, i) − X (k, i)
X (k, i) − Y (k, i).
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Furthermore,

L2(k, n) − L2(k − 1, n) =
[

Y (k + 1, i) − Y (k, i)

X (k + 1, i) − X (k, i)
− Y (k, i) − Y (k − 1, i)

X (k, i) − X (k − 1, i)

]
X (k, i).

If 1/X (k, i) − 1/X (k + 1, i) and [Y (k + 1, i) − Y (k, i)]/[X (k + 1, i) − X (k, i)]
increases strictly with k and

∑n
i=1 L1(∞, i)[L2(∞, i) − cR/cA] > 0, then there

exists a finite and unique minimum k∗(1 ≤ k∗ < ∞) which satisfies (17).
In particular, from (4) and (8),

1

X (k, i)
− 1

X (k + 1, i)
= [1 − H∗(λ)]W ∗(λ)i

[
1

H∗(λ)k − W ∗(λ)i
] [

1
H∗(λ)k − H∗(λ)W ∗(λ)i

] > 0,

Y (k + 1, i) − Y (k, i)

X (k + 1, i) − X (k, i)
= H∗(λ)

1 − H∗(λ)

1 − W ∗(λ)i

W ∗(λ)i
+ k > 0,

and limk→∞ L(k, n) = ∞. Therefore, there exists a finite and unique minimum
k∗(1 ≤ k∗ < ∞) which satisfies

n∑

i=1

H∗(λ)k[1 − H∗(λ)]W ∗(λ)i

[1 − H∗(λ)k W ∗(λ)i ][1 − H∗(λ)k+1W ∗(λ)i ]

×
{ [

H∗(λ)

1 − H∗(λ)

1 − W ∗(λ)i

W ∗(λ)i

]
[1 − H∗(λ)k W ∗(λ)i ] +

k∑

j=1

[1 − H∗(λ) j ] − cR

cA

}
≥ 0,

whose left-hand side increases strictly with n to ∞. So that, optimal k∗ decreases
with n to 1.

Example 3 We compute numerically an optimal interval k∗ to minimize C2(k, n)

in (16). Suppose that A(t) ≡ 1 − e−αt , B(t) ≡ 1 − e−βt and W (t) ≡ 1 − e−wt . It
is assumed that the number of intelligent nodes is n = 2–4, the mean interval of
requests of application is (1/α)/(1/β) = 2–8, the mean interval of an intelligent
node breaking down is (1/λ)/(1/β) = 1000, 5000, the mean time required for the
replication is (1/w)/(1/β) = 10–30. Further, we introduce the following costs: The
loss cost rate of the cost for updated data to the cost for replication is cR/cA = 5, 10.
Table 4 presents the optimal interval k∗ to minimize the expected cost C2(k, n)/cA.

For example, when cR/cA = 5, n = 4, β/α = 4, β/w = 10 and β/λ = 1000, the
optimal interval is k∗ = 41. This shows that k∗ increases with 1/λ and cR/cA. On the
other hand, k∗ decreases with 1/α and 1/w. This shows that we should execute the
replication at short intervals when the time required for replication is large, and k∗
decreases with n. That is, we should execute the replication at short intervals when
the number of intelligent nodes is large. By comparison with Table 1, optimal k∗
is smaller than then k∗ in Table 1. That is, when we assume n intelligent nodes for
changing at failure, we should execute the replication at short intervals.
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Table 4 Optimal interval k∗ to minimize C2(k, n)/cA

n cR/cA β/w β/λ

1000 5000

β/α

2 4 8 2 4 8

2 5 10 54 43 33 126 99 75

20 49 40 32 121 96 73

30 43 37 30 115 92 71

10 10 80 64 49 181 142 107

20 75 61 47 176 139 106

30 69 57 46 171 136 104

3 5 10 53 42 33 124 98 74

20 45 38 31 117 94 72

30 38 34 28 110 89 69

10 10 78 63 49 179 141 107

20 71 59 46 172 137 104

30 64 54 44 165 133 102

4 5 10 51 41 32 122 97 73

20 42 36 29 114 91 71

30 33 31 26 105 86 68

10 10 77 62 48 178 140 106

20 68 56 45 169 135 103

30 59 51 42 160 129 100

1
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Fig. 9 Optimal cost C2(k∗, n)/cA and optimal interval k∗ for n when 1/β = 1, cR/cA = 5, β/λ =
1000, β/w = 10 and β/α = 2
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Figure 9 shows the optimal cost C2(k∗, n)/cA and optimal interval k∗ for n
when 1/β = 1, cR/cA = 5, 1/λ = 1000, 1/w = 10 and 1/α = 2. From this figure,
k∗ decrease rapidly with n and tends to 1. C2(k, n∗)/cA increases visibly with n
and tends to C2(k∗, n∗)/cA when k∗ = 67 and n∗ = 1. That is, we should execute
asynchronous replication when the number of intelligent node is n∗ = 1.

5 Conclusions

This chapter has analytically studied two reliability models of a cloud computing
system consisting of n intelligent nodes with replication in Sect. 3 and for changing
at failure in Sect. 4. Furthermore, we have derived the reliability measures by using
techniques of Markov renewal processes, and have discussed the optimal policies to
minimize the expected cost.

From numerical examples, we have shown that the optimal replication interval
decreases as the number of intelligent nodes increases and approaches one when
the number of intelligent nodes become a constant value. That is, we should execute
replication at short intervals when the number of intelligent nodes is large and should
apply synchronous replication when the number of intelligent nodes is a constant
value. Further, the optimal number of intelligent nodes decreases as the replication
interval increases. That is, it is only necessary to have fewer intelligent nodes when
the interval is large.
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Service Reliability Enhancement
in Cloud by Checkpointing
and Replication

Subrota K. Mondal, Fumio Machida and Jogesh K. Muppala

Abstract Virtual machines (VMs) are used in cloud computing systems to handle
user requests for service. A user’s request cannot be completed if the VM fails.
Replication mechanisms can be used to mitigate the impact of VM failures. In this
chapter, we are primarily interested in characterizing the failure–recovery behavior
of a VM in the cloud under different replication schemes. We use a service-oriented
dependability metric called Defects Per Million (DPM), defined as the number of
user requests dropped out of a million due to VM failures. We present an analytical
modeling approach for computing the DPM metric in different replication schemes
on the basis of the checkpointing method. The effectiveness of replication schemes
are demonstrated through experimental results. To verify the validity of the proposed
analytical modeling approach, we extend the widely used cloud simulator CloudSim
and compare the simulation results with analytical solutions.

1 Introduction

Cloud computing is a realization of the endeavor to provide computing as a utility.
Users submit their work requests to the cloud to be processed and the results are
delivered. Typically, users’ demands are met by deploying Virtual Machines (VMs)
on Physical Machines (PMs) [1]. The proclivity of resources to failures, especially
while executing long running computations, renders them vulnerable. Consequently,
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a user’s request may not be completed successfully. Thus, our goal is to ensure
dependability of the cloud in terms of job requests.

Traditional dependability metrics defined from a system-oriented perspective [2]
like availability, reliability, continuity, and maintainability may not adequately cap-
ture the dependability experience from a user’s perspective. Since most of the com-
ponents in a modern cloud computing system are reliable, it is better to focus on
the much smaller number of unreliable service events or service defects [3]. These
service defects are conveniently normalized as the number of customer demands
or user requests (in this chapter, a request or demand is referred to as a job) not
served or dropped or lost, per million attempts—referred to as defects per million
(DPM) [3–5]. DPM is considered from the perspective of a user’s request (i) not
being accepted or (ii) not being handled properly within the specified time or dead-
line. Note that the former is primarily governed by the availability of resources to
serve the request, while the latter is governed by whether the allocated resources are
available for the entire duration of the job execution until its completion.

In this chapter, we concentrate on the second perspective. We present a new
formulation for computing DPM with respect to the violation of the deadline for
job completion time by computing the number of requests that are not completed
within the deadline. Our DPM analysis is based on the VM provisioning model for the
cloud [1], where a VM is deployed on a PM upon arrival of user request. Any failures
of VMs or PMs result in the interruption/preemption of job execution. Our model
takes into account replication (active as well as passive replication—hot, warm,
and cold) [5] of job execution as a viable means to provide sufficient deterrence
against failure to complete a user’s request. Warm and hot replication schemes can
employ checkpointing [6, 7] in order to resume job execution and ensure/maintain/
provide service reliability and performance at an optimum level. On the other hand,
cold replication schemes do not provide the support for resuming, i.e., no check-
pointing is adopted. In this chapter, we use the terminology checkpointing method
to formulate the problem whether a system adopts checkpointing or not during the
job execution (The formulation of job completion time considering with and without
checkpointing is presented in [6], which we refer to as the checkpointing method in
this chapter). In order to compare the effectiveness of replication schemes, we also
consider the drop policy as a baseline case to be compared with. In the drop policy,
a job is considered to have been dropped if the system fails before the job completes
its execution.

In this chapter, we use the checkpointing method to model the cloud service
execution under different replication schemes. The framework for checkpointing
method [6] is used to get the job completion time distribution. From this distribution,
we can compute the DPM where we count the expected number of jobs that violate
the deadline under the given distribution. The different replication schemes: cold,
warm, and hot and their corresponding DPM values are compared with each other
in our numerical experiments.

The rest of this chapter is organized as follows: we discuss the related work in
Sect. 2. In Sect. 3.1, we describe the system model, which depicts the life cycle of
a job. The basic concept of replication in a cloud computing system is presented
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in Sect. 3.2. A brief discussion on job completion time formulation is presented
in Sect. 4. In Sect. 5, we show the models and closed form expressions for DPM
computation by employing replication of job execution. Experimental results are
shown in Sect. 6. Conclusion and future work are given in the final section.

2 Related Work

Cisco’s report [8] presents a simple approach for calculating DPM, multiplying the
unavailability by a constant of proportionality. To the best of our knowledge, this is
the first attempt at relating the DPM metric to system unavailability.

Johnson et al. [9] state that DPM is a reliability metric that only counts customer
demands not served and they referred to DPM as the average number of blocked
requests (rejected jobs before service establishment) and cutoff requests (dropped
jobs due to outages after service establishment) per million attempted requests.

Trivedi et al. [4] developed a novel method for computing DPM metric which
takes into consideration system availability and impact of service application as well
as the transient behavior in the failure–repair process. This method takes into account
software/hardware failures, different stages of recovery, different phases of job flow,
retry attempts, and the interactions between job flow and failure/recovery behavior.
This approach is used in [10] for computing DPM in a cloud architecture. Structure-
state process [11] under different replication schemes is used in [10] for the modeling
of cloud service execution. Further, DPM formulation in [10] is shown considering
only the failures of virtual resources, but no failure of physical resources is taken
into account. This paper extends the work by taking into account these features in
the DPM formulation.

In this work, we employ the ideas in [10] for computing DPM using checkpointing
method under different replication schemes and show how we can use checkpointing
optimally for enhancing service reliability and performance at an optimum level.
Checkpointing [6] is one of the approaches empirically/practically used to enable
resuming the preempted job. In addition, preemptive resuming of structure-state
process theoretically assumes perfect checkpointing (resumes from the failed state
and does not take into account the downtime overhead), but usually warm and hot
replication follows the underlying principles of equidistant checkpointing or period-
ical checkpointing and downtime overhead is taken into account. In this chapter, we
take into account these ideas and show the modeling of job execution under different
replication schemes using the checkpointing method [6]. On the other hand, if a job
has to be restarted/resumed upon failure occurrence, the completion time of the job is
prolonged accordingly. If the job completion time exceeds its deadline, then the user
refuses the service and job is considered as lost or dropped. We incorporate this idea
for computing DPM by modeling checkpointing method under different replication
schemes. Further, note that we show the analysis of DPM formulation simply using
checkpointing for a cloud service implementation in [12] without considering any
replication of execution. We propose to use replication so that if one fails, another
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one can takeover shortly. In particular, adoption of checkpointing without replica-
tion lacks the contribution in service reliability enhancement if it takes long time for
failure–recovery of a system. Further, if we do not use replication, we may loose the
saved execution states due to the failure of the standalone machine. Thus, we analyze
the service reliability having checkpointing and replication altogether.

In addition, the analysis of the Google Cluster Dataset [13] indicates that single-
task jobs occupy 64 % of the total jobs. In this chapter, we develop an analytical
model with respect to a single-task job and leave the modeling of the other kinds of
jobs such as batch tasks, sequential tasks, and mix-mode tasks [13] for future work.

3 Job Execution in the Cloud

In this section, we first present the system model which discusses about resource
provisioning and implementing steps of cloud services. Second, we introduce VM
replication mechanism and describe how the system can enhance service reliability
of job execution by using replication.

3.1 System Model

In cloud computing systems, especially in IaaS cloud, when a request is processed,
a pre-built image is used to deploy one or more Virtual Machine instances or a
pre-deployed VM may be customized and made available to the requester. VMs are
deployed on Physical Machines (PMs) each of which may be shared by multiple
VMs. The deployed VMs are provisioned with request specific CPU, RAM, and disk
capacity [1]. We assume that all requests are homogeneous (statistically equivalent)
and each request is for one VM with request specific CPU core, RAM, and disk
capacity. Figure 1 shows the life-cycle of a request as it moves through the system [1].
User requests (i.e., jobs) are submitted to a global resource provisioning decision
engine (RPDE) that processes requests on a first-come, first-served (FCFS) basis.
The request at the head of the queue is provisioned on a PM if there is any capacity
to run a VM on it. If no PM is available, the request is rejected. When a running job

Fig. 1 Request provisioning and servicing steps
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exits, the capacity used by that VM is released and becomes available for provisioning
and executing the next job [1].

The situations for which a job will be rejected or dropped are as follows:

1. A job is rejected if the global RPDE buffer is full or if there are insufficient capacity
of physical and virtual resources, i.e., a job is rejected due to the inadequacy of
the resources. In this chapter, we do not show the computation of DPM for this
scenario. This will be considered in the future. We show the computation only
for run-time execution, i.e., during the actual service time.

2. A job is dropped either by VM failure or by PM failure after starting the execution
on the VM.

3.2 Replication in Cloud

A job in a system may be interrupted/preempted due to any failure of the system
components. In order to alleviate the impacts of job interruption, replication of job
execution gives a viable mean [3, 14, 15]. Further, data replication and software
process redundancy are common practices in cloud computing systems [3, 14, 15].
In addition, Bauer et al. [3] presents different types of VM redundancy for enhancing
service reliability in cloud. Thus, in a cloud environment, a VM can be replicated for
reliability/availability enhancement purpose. When a primary VM fails, a replicated
VM can take over the job running on the failed VM by using a failover mechanism.
Note that the primary and the replicated (standby) VMs should be deployed on
different PMs to prevent underlying hardware from being a single point of failure.
The PM on which primary VM is deployed is referred to as the primary PM. Similarly,
the PM on which standby VM is deployed is referred to as the standby PM. In this
chapter, we address the cloud service implementation under different replication
schemes as in [3] in the following way:

• Cold Replication Scheme: In this replication scheme, a standby (cold) acts as
the backup for the primary. Both the primary and standby VMs are provisioned
with request-specific demand. The cold standby is not running when the primary is
functioning normally and no job execution state is copied to standby. Traditionally,
the standby VM is kept in suspended state [3]. In suspended state, the VM and
its resources are disabled from executing jobs and the state of the VM and its
resources are saved to nonvolatile data storage. Resources may be deallocated.
The state is considered enabled but offline. VM instances can be activated when
required. Suspended VM instances are sleeping “deeply.” In case the primary
fails, the suspended standby is activated immediately and restarts the execution of
jobs [3]. This process is usually automated using a cluster manager.

• Warm Replication Scheme: In this replication scheme, both the primary and
standby VMs are provisioned with request specific demand, but the job is not
executed by standby VM [3]. Execution states and data as well (if necessary)
are periodically mirrored to standby. Usually, the standby VM is kept in paused
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state [3]. In paused state, the VM and its resources are disabled from performing
tasks; however, the VM and its resources are still instantiated; resources remain
allocated. The state is considered temporarily inactive (or quiescent). Paused VM
instances can be activated and made available instantly to recover service when
necessary. Paused VM instances are sleeping “lightly,” but fewer platform (e.g.,
CPU) resources are consumed to maintain paused VMs nearly online. In case
the primary fails, the standby is activated instantly and resumes the execution of
jobs from the last mirrored state. This process is usually automated using a cluster
manager. The advantage of this scheme is that it resumes execution after the failover
by standby, does not wait for recovery of the failed instance and failure–recovery
is done in the background while the job is being executed.

• Hot Replication Scheme: In this method, both the primary and standby (redundant
active) start executing the same job in parallel. The job execution continues as long
as either a primary or a standby is up. If we assume two systems (either PM or VM)
do not fail at the same time and we can recover the failed one before encountering
another failure, the job never drops in this scheme. In addition, the probability
of subsequent failures of the two VMs is negligible [5]. Thus, the job dropping
probability is also negligible. Finally, we do not show the formulation for hot
replication.

4 Job Completion Time Formulation

We show the job completion time formulation of a single job executed by a VM
deployed on a PM. Before computing the job completion time, we introduce some
basic concepts to formulate our problem and use the theory developed in [6, 7, 11]
to obtain the Laplace–Stieltjes transform (LST) of the job completion time.

We consider the execution of a job with a given work requirement (as measured by
the computation time on a failure-free environment with full processing rate) in the
presence of failures. We can elaborately express that work requirement is measured
in work units, e.g., the number of instructions to be executed as in the CloudSim
simulator [16, 17]. Let x be the work processing requirement of the job, T (x) be the
amount of time needed to complete the job, and Td be the deadline for the completion
of the job.

Let the cumulative distribution function (CDF) of the job completion time be
FT (t, x) = P(T (x) ≤ t), t ≥ 0. The LST of job completion time transforms FT (t, x)

to a function F̃T (s, x) with complex argument s, given by the integral

F̃T (s, x) =
∞∫

0

e−st dFT (t, x)
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Assume that interruption/preemption of job execution due to failure, recovery,
and restarting/resuming can be represented by a semi-Markov process (SMP) and
each state i (1 ≤ i ≤ n) of the SMP represents a specific state of job execution.
If a job has failed and successfully restarted (in case not using checkpointing) or
resumed (with checkpointing) from failure, then in these circumstances the SMP
will transit to a state which is called recovery state, here denoted by G. Assume Ta

is the recovery time to state G for the SMP. It is assumed that there is no further
failure during the VM recovery period. Ta is a random variable and its cumulative
distribution function, FTa (t), can be easily computed from the failure–recovery SMP
model. FTa (t) = πG(t), where πG(t) is the transient probability that the SMP is in
state G at time t and its LST by F̃Ta (s).

4.1 Without Checkpointing (Conventional Method)

Let H be the time to the first failure after starting job execution, then conditioning
on H = h, we have

T (x)|H=h =
{

x, if h ≥ x
h + Ta + T (x), if h < x

(1)

If h ≥ x , then the job will complete in x units of time. If h < x , then a failure occurs
before the completion of the job. In this case, there is the recovery time Ta after
which the job execution is restarted from its beginning, thus, again, requiring x units
of uninterrupted processing time to complete. Writing the LST of T (x), we have

F̃T (s, x)|H=h =
{

e−sx , if h ≥ x
e−sh F̃Ta (s)F̃T (s, x), if h < x

(2)

Unconditioning on H , we get

F̃T (s, x) =
∞∫

h=0

F̃T (s, x)|H=hγvme−γvm hdh

= e−(s+γvm )x + γvm F̃Ta (s)F̃T (s, x)(1 − e−(s+γvm )x )

s + γvm

= (s + γvm)e−(s+γvm )x

s + γvm(1 − F̃Ta (s)(1 − e−(s+γvm )x ))
(3)

where γvm is the rate of VM failure.
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Without checkpointing, the mean job completion time in the presence of failures
is given by

Tc = (
1

γvm
+ Tr )(e

γvm x − 1) (T.1)

It follows directly from the LST in Eq. (3), using the relation Tc = − ∂ F̃T (s,x)

∂s |s=0,

where Tr is the mean time to recovery (MTTR), which follows from Tr = − ∂ ˜FTa (s)
∂s |s=0.

4.2 Adoption of Checkpointing

There are different types of checkpointing strategies. The working principles of the
replication scheme in which checkpointing is adopted for/during execution, is similar
to the equidistant checkpointing (refer to Sect. 3.2). Thus, we employ the equidistant
checkpointing [5–7] strategy herein and review the formulation presented in [6]. Let
the total work requirement of the job be divided into n equal parts. Note that there
is a checkpoint at the end of each part, except the last one, thus a total of (n − 1)

checkpoints. We take into account the possibility of failure during checkpointing.
A failure during a checkpoint causes a rollback to the previous checkpoint. Assume
that Cd is the checkpoint duration. We denote its CDF by FCd (t) and LST by F̃Cd (s).

Each of the first n − 1 job segments requires x/n + Cd units of uninterrupted
processing time to complete. The execution times of the first n − 1 job segments
are independent and identically distributed (i.i.d) random variables, each is given by
T (x/n + Cd). Note that the checkpoint duration Cd is a random variable; however,
it is fixed for a given job segment. Following similar steps, as those used in Sect. 4.1,
we obtain the following for the LST of T (x/n + Cd)

F̃T (s, x/n + Cd) = (s + γvm)F̃Cd (s + γvm)e−(s+γvm )x/n

s + γvm(1 − F̃Ta (s)(1 − F̃Cd (s + γvm)e−(s+γvm )x/n))

The last job segment requires x/n units of uninterrupted processing time (it does
not include a checkpoint) and its execution time is given by T (x/n). The LST of
T (x/n) is obtained directly from Eq. (3)

F̃T (s, x/n) = (s + γvm)e−(s+γvm )x/n

s + γvm(1 − F̃Ta (s)(1 − e−(s+γvm )x/n))

The total job execution time is the sum of n independent random variables (corre-
sponding to the execution times of the n parts). The first n − 1 of which are identically
distributed and having the LST F̃T (s, x/n + Cd), and the last one having the LST
F̃T (s, x/n). It follows that
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F̃T (s, x) = F̃T (s, x, n)

=
[

F̃T (s, x/n + Cd)
]n−1[

F̃T (s, x/n)
]

= [ (s + γvm)e−(s+γvm )Cd e−(s+γvm )x/n

s + γvm(1 − F̃Ta (s)(1 − e−(s+γvm )Cd e−(s+γvm )x/n))
]n−1 (4)

× [ (s + γvm)e−(s+γvm )x/n

s + γvm(1 − F̃Ta (s)(1 − e−(s+γvm )x/n))
]

With n − 1 equally spaced checkpoints, the mean job completion time in the
presence of failures is given by

Tc = (
1

γvm
+ Tr )

[
(n − 1)(eγvm (x/n+Cd ) − 1) + (eγvm x/n − 1)

]
(T.2)

In this formulation, the inversion of the Laplace transform F̃T (s, x)/s yields the
distribution of the job completion time FT (t, x),

FT (t, x) = Inverse LST
[ F̃T (s, x)

s

]
(5)

5 DPM Computation

DPM is defined as the number of dropped requests per million. A job is dropped
when the job is not completed within the deadline Td . Thus, DPM is defined by

DPM = [1 − FT (Td , x)] × 106 (6)

In this section, we show the DPM formulation based on job completion time com-
putation for different replication schemes.

5.1 Drop Policy

Assume that when a job arrives, the system is up. The job is considered as dropped
if the VM or PM fails before completing the job with the assigned work require-
ment x . This scheme is referred to as drop policy and the distribution function of job
completion time is expressed by a defective distribution

FD = e−(γvm+γpm )x · u(t − x)
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where γvm and γpm are the rates of VM and PM failure, respectively. Further, u(t − x)

is the unit step function and can be expressed as,

u(t − x) =
{1, t≥x

0, t<x

Thus, the DPM value in this scheme is computed by,

DPM = [1 − FD] × 106

5.2 Cold Replication Scheme

We present the CTMC (it is a special case of an SMP where all the holding times are
exponentially distributed) [10, 18] for cold replication scheme as shown in Fig. 2. In
this model, state 0 represents the state that both the primary and the standby systems
are UP and both the primary and the standby VMs are successfully provisioned where
only the primary is executing the job. Any of them can fail with rates γvm for VM
failures and γpm for PM failures. If the primary VM fails, the system enters state 1,
in which it is not able to execute the job, i.e., unavailable. The unavailability in states
1 is not observable until the failure is detected. The failure is detected at the rate δvm

upon which the system enters state 3. In this state, we perform failover, and standby
assumes the role of primary (system enters state 5) and restarts the execution. The
failover time is assumed to be exponentially distributed with rate τc. In the meantime,
provisioning of a backup VM is started on another PM at the rate τpv and the system
returns to 0.

01 2

3 45

6

γvm γpm

γpm

δvm δpm

τc τc

τpv

δpm

Fig. 2 CTMC model for system with cold replication
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Fig. 3 Approximated
CTMC model for system
with cold replication

1 3 2

0

γvm γpm

δvm δpm

τc

The PM on which the primary VM is executing may also fail at the rate γpm upon
which the system goes to state 2. A PM failure (system is in state 2) is detected at
the rate δpm and the system transits to state 4. As in the case of primary VM failure,
the standby is switched to primary (system is in state 5). A new backup is started
with rate τpv on an available node to take the system back to state 0. It accumulates
the time for the allocation of physical and virtual resources and the provisioning of
the VM.

Note that in this model, the standby VM does not execute the job and no execution
state is copied from primary to it. It is kept ready so that it can immediately take the
role of primary if there is any failure of primary. Standby VM is in deep sleep mode
where the probability of VM failure in this mode is negligible. Thus, no standby VM
failure is considered; only the underlying standby PM failure causes the standby VM
to fail.

In case of standby PM failure, the model traverses in a similar manner as in the
case of primary PM failure except the transition of switchover. If it fails, the system
transits to state 6, and after detecting the failure system is in state 5. In state 5, a new
backup is started on an available node and the system returns to state 0.

For the completion time distribution we reduce the model shown in Fig. 2, because
standby PM failure–recovery and backup provisioning do not have any impact for
executing jobs. Thus, we use the approximated CTMC model for the cold replication
scheme as shown in Fig. 3.

In this scheme, a failed job is restarted upon recovery, thus checkpointing is not
adopted.

5.2.1 Formulation Without Checkpointing

The CTMC model shown in Fig. 4 shows the state transitions after a failure (either
VM or PM) has occurred. State G is a recovery (or absorption) state, which represents
the state in which the job has been successfully restarted from failure. Let Ta be the
time to recover to state G for this CTMC. It is assumed that there is no further failure
during recovery period. Suppose a failure occurs at time t = 0, hence the CTMC
of Fig. 4 has just entered state 1 if it is the failure of VM or entered state 2 if it is
the failure of PM. Since the state G is the absorbing state of the CTMC, the time to
absorption can be represented by FTa (t) = πG(t). With probability γvm/(γvm + γpm),
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Fig. 4 Failure–recovery
model for cold replication

1 3 2

G

δvm δpm

τc

the time distribution is HYPO(δvm, τc), while with probability γpm/(γvm + γpm), the
time distribution is HYPO(δpm, τc). Therefore,

FTa (t) = γvm

γvm + γpm

(
1 − τc

τc − δvm
e−δvm t + δvm

τc − δvm
e−τct

)

+ γpm

γvm + γpm

(
1 − τc

τc − δpm
e−δpm t + δpm

τc − δpm
e−τct

)
, t ≥ 0 (7)

where γvm/(γvm + γpm) is the probability of VM failure, and the segment associated
with it is the failure–recovery time distribution of VM. We can derive the mean time
to recovery for a VM failure from this segment of distribution. Similarly, γpm/(γvm +
γpm) is the probability of PM failure, and the segment associated with it is the failure–
recovery time distribution of PM. Mean time to recovery from a PM failure can be
derived from this segment of distribution as well.

We represent the job completion time distribution, F̃T (s, x) using Eq. (3) by

F̃T (s, x) = (s + γvm + γpm)e−(s+γvm+γpm )x

s + (γvm + γpm)(1 − F̃Ta (s)(1 − e−(s+γvm+γpm )x ))
(8)

where F̃Ta (s) can be derived from Eq. (7).
Now, we can represent the mean job completion time, Tc by,

Tc =
( 1

γvm + γpm
+ Tr

)
(e(γvm+γpm )x − 1) (9)

where the mean time to recovery, Tr is

Tr = γvm

γvm + γpm

( 1

δvm
+ 1

τc

)
+ γpm

γvm + γpm

( 1

δpm
+ 1

τc

)
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Applying Tr in Eq. (9), we can get the value of mean job completion time in the
cold replication. If the completion time exceeds the deadline, then we compute the
deadline violating probability, 1 − FT (Td , x) by Eq. (5). Afterwards, we substitute
the value in Eq. (6) and get the DPM value.

5.3 Warm Replication Scheme

Figure 5 shows the CTMC for warm replication scheme. State 0 represents the state
that both the primary and the standby systems are UP and both the primary and the
standby VMs are successfully provisioned where only the primary is executing the
job. In addition, the execution states and data (if necessary) are periodically mirrored
to standby. Any of the VMs or PMs can fail with rates γvm for VM failures and γpm

for PM failures. If the primary VM fails, the system enters state 1, in which it is
not able to execute the job, i.e., unavailable. The failure is detected at the rate δvm

upon which the system enters state 3. In this state, we perform failover, and standby
assumes the role of primary (system enters state 5). The failover time is assumed to
be exponentially distributed with rate τw. In the meantime, provisioning of a backup
VM is started on another PM at the rate τpv and the system returns to state 0.

The PM on which the primary VM is executing may fail at the rate γpm upon
which the system goes to state 2 and is unavailable. After detection with rate δpm ,
the system transits to state 4. In state 4 (as in the case of primary VM failure), the
standby PM is switched to primary (system is in state 5). A new backup is started on
an available node to take the system back to state 0.

In case of standby VM failure, upon which the system is in state 6, the primary
is still executing the job. After the standby failure detection (system is in state 5), a
VM is provisioned on another PM with rate τpv and the system returns to state 0.

01 2

3 5 4

6 7

γvm

γvm γpm

γpm

δvm δpm

τw

τpv

δvm

τw

δpm

Fig. 5 CTMC model for system with warm replication
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Fig. 6 Approximated
CTMC model for system
with warm replication

1 3 2
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γvm γpm

δvm δpm

τw

In case of standby PM failure, the model traverses in a similar manner as in the
case of primary PM failure except the transition of switchover. If it fails, system
transits to state 7, and after detecting the failure system is in state 5. In state 5, a new
backup is started on an available node and the system returns to state 0.

For the completion time distribution, we reduce the model shown in Fig. 5, because
standby failure–recovery and backup provisioning do not have any impact for exe-
cuting jobs. Thus, we use the approximated CTMC model for the warm replication
scheme as shown in Fig. 6.

In this scheme, a failed job is resumed from the last saved checkpoint state upon
recovery.

5.3.1 Formulation with Checkpointing

The CTMC model shown in Fig. 7 shows the state transitions after a failure (either
VM or PM) has occurred. state G is a recovery (or absorption) state, which represents
the state in which the job has been successfully resumed from failure. Let Ta be the
time to recover to state G for this CTMC. It is assumed that there is no further failure
during recovery period. Suppose a failure occurs at time t = 0, hence the CTMC
of Fig. 7 has just entered state 1 if it is the failure of VM or entered state 2 if it is
the failure of PM. Since the state G is the absorbing state of the CTMC, the time to
absorption can be represented by FTa (t) = πG(t). With probability γvm/(γvm + γpm),
the time distribution is HYPO(δvm, τw), while with probability γpm/(γvm + γpm), the
time distribution is HYPO(δpm, τw). Therefore,

Fig. 7 Failure–recovery
model for warm replication

1 3 2

G

δvm δpm

τw
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FTa (t) = γvm

γvm + γpm

(
1 − τw

τw − δvm
e−δvm t + δvm

τw − δvm
e−τw t

)

+ γpm

γvm + γpm

(
1 − τw

τw − δpm
e−δpm t + δpm

τw − δpm
e−τw t

)
, t ≥ 0 (10)

With equidistant checkpointing, we represent the job completion time distribution,
F̃T (s, x) using Eq. (4.2) by

F̃T (s, x, n)

= [ (s + γvm + γpm)e−(s+γvm+γpm )Cd e−(s+γvm+γpm )x/n

s + (γvm + γpm)(1 − F̃Ta (s)(1 − e−(s+γvm+γpm )Cd e−(s+γvm+γpm )x/n))
]n−1

× [ (s + γvm + γpm)e−(s+γvm+γpm )x/n

s + (γvm + γpm)(1 − F̃Ta (s)(1 − e−(s+γvm+γpm )x/n))
] (11)

where F̃Ta (s) can be derived from Eq. (10).
Now, we can represent the mean job completion time, Tc by,

Tc =
( 1

γvm + γpm
+ Tr

){
(n − 1)(e(γvm+γpm )(x/n+Cd ) − 1) + (e(γvm+γpm )x/n − 1)

}

(12)

where the mean time to recovery, Tr is

Tr = γvm

γvm + γpm

( 1

δvm
+ 1

τw

)
+ γpm

γvm + γpm

( 1

δpm
+ 1

τw

)

Applying Tr in Eq. (12), we can get the value of mean job completion time in the
warm replication. If the completion time exceeds the deadline, then we compute the
deadline violating probability, 1 − FT (Td , x) by Eq. (5). Afterwards, we substitute
the value in Eq. (6) and get the DPM value.

6 Experiments

To verify the validity of our proposed analytical modeling approach, we extend
CloudSim [16, 17] for our experiments. The following sections outline the experi-
mental settings. We then compare the analytical modeling approach with simulation
in terms of job completion time. Furthermore, the results of sensitivity analysis of
parameter values are presented.
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6.1 CloudSim Extension

CloudSim [16, 17] is a widely used extensible simulation framework that supports
modeling of virtual resource allocation, job scheduling, and other functionalities. We
use CloudSim in the following way to support our experiments:

• A data center network is constructed to connect the host servers that can deploy
more than one VMs.

• VM or PM failure, and recovery events are triggered. An event can be generated
according to a specified distribution. The failure event data and the recovery event
data can be saved to a file so the experiment can be repeated.

• A checkpoint state is generated, transferred, and stored based on the checkpointing
method and replication scheme. This module is extensible.

• A job is resumed from a failure based on the checkpoint state and replication
scheme. If there is no accessible checkpoint state, it restarts the job from the
beginning.

6.2 Experimental Setup

We construct a data center network in CloudSim in which each host server can deploy
four VMs individually. We configure each host server and each VM in the following
way:

• The miph (millions of instructions per hour) of each host server is 4,000,000, the
disk size is 100 GB, the memory size is 4 GB, and the bandwidth is 4000 bps.

• The miph of each VM is 1,000,000, and the disk size is 25 GB, the memory size
is 1 GB, and the bandwidth is 1000 bps.

6.3 Model Parameterization

Table 1 shows the default parameter values used in the experiments. Two different
sets of values are used. The values of Set1 proposed by us as well as with reference
to [1, 3], and Set2 by [1, 3, 19]. Note that we take the reference of Fig. 5.15 [3] for
considering the mean time for VM recovery and provisioning in different replication
schemes. The work processing rates of every individual states of CTMC are measured
by (unit/h) where 1 means 1,000,000 miph which is equal to the miph of each VM
in the UP state.
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Table 1 Default value of parameters

Parameters Description Values

Set1 Set2

1/γvm Mean time to failure of
VM (MTTF_VM)

48 h 240 h

1/γpm Mean time to failure of
PM (MTTF_PM)

192 h 720 h

1/δvm Mean time for failure
detection of VM

2 s 2 s

1/δpm Mean time for PM
failure detection of PM

5 s 5 s

1/τrb Mean time for VM
recovery by rebooting

5 min 5 min

1/τpv Mean time for VM
provisioning in a new
PM

15 min 30 min

a Coverage factor of
VM recovery by
rebooting

0.80 0.80

1/τc Mean time for failover
in cold replication

2 min 2 min

1/τw Mean time for failover
in warm replication

1 min 1 min

Cn Number of
checkpoints (n − 1)

3 3

Cd Checkpoint duration 1 min 1 min

x Amount of work
requirements

50 unit 300 unit

6.4 Numerical Results

In this section, we show the numerical results for job completion time, CDF of job
completion time, and DPM of the models analyzed in Sect. 5. Note that we show
the computation for both sets of parameter values side by side. Any deviations from
these parameter values are explicitly noted.

6.4.1 Comparison Between Simulative Solution and Analytical
Modeling Solution

Note that in our simulation, the sample size for every individual execution is 100,000.
In Figs. 8 and 9 we show the comparison of mean job completion time between

simulative solution and analytic modeling solution in cold and warm replication
schemes, respectively. We show the computation with different work requirements
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For Set1 parameter values For Set2 parameter values

(a) (b)

Fig. 8 Comparison of mean job completion time between simulative solution and analytic modeling
solution in cold replication for different work requirements

For Set1 parameter values For Set2 parameter values

(b)(a)

Fig. 9 Comparison of mean job completion time between simulative solution and analytic modeling
solution in warm replication for different work requirements

Table 2 95 % confidence interval of job completion time computed by simulation

Work
requirement

95 % confidence interval of job completion time (h)

Cold replication (Set1) Warm replication (Set1)

Lower limit Mean Upper limit Lower limit Mean Upper limit

25 35.1995 35.3057 35.4119 25.7373 25.7448 25.7524

50 102.8789 103.3031 103.7273 52.9143 52.9356 52.9569

75 233.8017 234.9451 236.0886 81.5254 81.5646 81.6038

100 484.2511 486.8565 489.4619 111.6056 111.6663 111.7271

125 956.1904 961.6283 967.0663 142.5971 142.6783 142.7594

150 1840.1 1850.9 1861.7 175.4717 175.5823 175.693

for both sets of parameter values. As can be seen, the difference in completion time
between these two approaches is negligible when the work requirement is less than
or around the MTTF (either VM or PM which one is smaller, here MTTF of VM is
smaller than PM, and it is 48 h in Set1, 240 h in Set2), but beyond that the difference
increases gradually.

In Table 2, we show the 95 % confidence interval of job completion time computed
by simulation in cold and warm replication schemes for the first set of parameter
values. The lower limits and the upper limits are in close agreement with the means.
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Cold replication scheme (Set1) Warm replication scheme (Set1)

(a) (b)

Fig. 10 Mean job completion time and its standard deviation (STD) obtained from simulation

The difference between upper limit and lower limit increases gradually as the work
requirement increases.

Figure 10 shows the mean job completion time and its standard deviation obtained
from simulation in cold and warm replication schemes. We show the computation
for the first set of parameter values. The standard deviations are plotted in both sides
around the mean values by filled rectangles. In cold replication, mean job completion
time as well as its standard deviation increases rapidly with gradual increase in work
requirement. On the other hand, in warm replication, completion time as well as its
standard deviation increases gradually as the work requirement increases. Further,
Fig. 11 compares the mean job completion times by the different replication schemes.
As can be seen, the job completion time in cold replication is comparatively much
higher than in warm replication scheme, because in this scheme we need to restart
the job every time upon the occurrence of a failure and rises rapidly especially if the
work requirement is greater than the MTTF (either VM or PM which one is smaller,
here MTTF of VM is smaller than PM, and it is 48 h in Set1, 240 h in Set2). On the
other hand, in warm replication we can resume the job execution from the last saved
checkpoint state after recovery and the time for activating the paused standby VM
is comparatively quite short [3]. Consequently, the mean job completion time with
warm replication is much shorter than cold replication case regardless of the amount
of work requirements.

For Set1 parameter values For Set2 parametes values

(a) (b)

Fig. 11 Mean job completion time for different work requirements
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x = 50 unit (Set1) x = 100 unit (Set1)

(a) (b)

Fig. 12 Mean job completion time by varying the MTTF of VM

x = 50 unit (Set1) x = 100 unit (Set1)

(a) (b)

Fig. 13 Mean job completion time by varying the MTTF of PM

In Fig. 12, we show the mean job completion time by varying the MTTF of VM.
We show the computation for two different work requirements, x = 50 unit, and
x = 100 unit in the replication schemes considering the first set of parameter of
values. Mean job completion time in warm replication scheme improves a little as
the MTTF increases. On the other hand, in cold replication scheme, the completion
time decreases gradually as MTTF increases. This is because, in warm replication
scheme, we can resume the execution of the failed job from the last saved checkpoint
state upon recovery, thereby the job completion does not vary significantly. On the
other hand, in cold replication, we need to restart the failed job upon recovery, and
as the MTTF increases, the frequency of failure decreases, consequently resulting in
the improvement of completion time.

Similar to Fig. 12, we show the mean job completion time by varying the MTTF
of PM in Fig. 13. The graphs behave similarly as in Fig. 12.

Figure 14 plots the mean job completion time versus work requirement for the dif-
ferent number of checkpoints in warm replication scheme. As can be seen, with the
increase in the number of checkpoints, the job completion time gradually improves,
but beyond a certain number of checkpoints, the improvement becomes marginal.
Further, when the work requirement value is less than or around the MTTF (as dis-
cussed above—refer to Fig. 11), then we get almost the same output by any number of
checkpointing value. In general, increasing the number of checkpoints increases the
operational overhead that also increases complexity. Thus, a cloud service provider



Service Reliability Enhancement in Cloud by Checkpointing and Replication 445

0 25 50 75 100 125 150
0

103

206

309

Work Requirement (Unit)

M
ea

n 
Jo

b 
C

om
pl

et
io

n 
T

im
e 

(H
ou

r)

Number of Checkpoints = 2
Number of Checkpoints = 3
Number of Checkpoints = 4
Number of Checkpoints = 5
Number of Checkpoints = 10
Number of Checkpoints = 15
Number of Checkpoints = 25
Number of Checkpoints = 40

For Set1 parameter values

0 100 200 300 400 500 600 700 800 900 1000
0

726

1452

2178

2904

Work Requirement (Unit)

M
ea

n 
Jo

b 
C

om
pl

et
io

n 
T

im
e 

(H
ou

r)

Number of Checkpoints = 2

Number of Checkpoints = 3

Number of Checkpoints = 4

Number of Checkpoints = 5
Number of Checkpoints = 10

Number of Checkpoints = 15

Number of Checkpoints = 25

Number of Checkpoints = 40

For Set2 parameter values

(a) (b)

Fig. 14 Mean job completion time versus work requirement for different number of checkpoints
in warm replication

needs to design the frequency of checkpoints in consideration with the trade-off
between the impact on job completion time and its overhead.

6.4.2 Job Completion Time Distribution

In Fig. 15, we show the CDF of job completion time in the replication schemes.
If the system (either VM or PM) does not encounter any failures for 50 h, the job
execution completes at t = 50 (work requirement is 50 units for the computation in
Fig. 15a). Similarly, if the system (either VM or PM) does not encounter any failures
for 300 h, the job execution completes at t = 300 (work requirement is 300 units
for the computation in Fig. 15b). Further, the probability of job completion in cold
replication scheme approaching 1 is slower than in warm and replication scheme,
because we cannot save the execution states of jobs, but in warm replication scheme
we can save the execution states using checkpointing, and resume the execution from
the last saved checkpoint state upon failure–recovery. Since the job completion time
distribution in the drop policy is defective, the probability does not reach 1.
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Fig. 15 CDF of job completion time
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Fig. 16 DPM versus deadline

Table 3 DPM in cold and warm replication

Required DPM Minimum deadline (h)

Cold replication Warm replication

DPM < 20 6225 887

DPM < 15 6400 890

DPM < 10 6655 938

DPM < 5 7000 963

DPM < 1 7950 1029

6.4.3 Defects per Million (DPM)

Figure 16a shows the DPM by varying the values of deadline Td ≥ 50. Similarly,
Fig. 16b shows the DPM by varying the values of deadline Td ≥ 300. As can be
seen, DPM values decrease with longer deadline Td . Note that in the drop policy
the DPM values are not influenced by the deadline. Further, the minimum deadlines
to achieve the required DPM are summarized in Table 3. If we need to make the
DPM value less than 20, the deadline needs to be set to 6225 h at minimum in cold
replication scheme. In warm replication scheme, the minimum deadline to guarantee
the required DPM value is less than one seventh of that in cold replication scheme.
Note that the computation in Table 3 is shown considering the second set of parameter
values only.

7 Conclusion and Future Work

In this chapter, we developed analytical models of job execution through VM for
cloud computing systems. The method to compute the DPM based on the check-
pointing method for job execution in different replication schemes is provided. The
analytical modeling approach was validated with simulation using CloudSim. The
impact of a different number of checkpoints was considered to identify a suitable
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value. In the numerical examples, we showed the effectiveness of replication schemes
on DPM as well as job completion time in the cloud computing systems.

A future direction is to extend this work for nonhomogeneous jobs with different
priorities and batch-task jobs. Further, in future work, we will take into account the
computation of DPM due to the limited queue (buffer) as well as inadequacy of
resources (e.g., VM or PM).
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Linear Algebraic Methods in RESTART
Problems in Markovian Systems

Stephen Thompson, Lester Lipsky and Søren Asmussen

Abstract A task with ideal execution time � is handled by a Markovian system
with features similar to the ones in classical reliability. The Markov states are of
two types, UP and DOWN, such that the task only can be processed in an UP state.
Upon entrance to a DOWN state, processing is stopped and must be restarted from
the beginning upon the next entrance to an UP state. The total task time X = Xr(�)

(including restarts and pauses in failed states) is investigatedwith particular emphasis
on the expected valueEEE[Xr(�)], for which an explicit formula is derived that applies
for all relevant systems. In general, transitions between UP and DOWN states are
interdependent, but simplifications are pointed out when the UP to DOWN rate
matrix (or the DOWN to UP) has rank one. A number of examples are studied in
detail and an asymptotic exponential form exp(βm�) is found for the expected total
task timeEEE[X(�)] as � → ∞. Also, the asymptotic behavior of the total distribution,
Hr(x|�) → exp(−xγ (�)), as x → ∞ is discussed.

1 Background

For some systems, failure is rare enough that it can be ignored or dealt with as an
afterthought. For many systems, failure is so common that the design choice of how
to deal with it may have a significant impact on the performance of the system.
Many papers discuss methods of failure recovery and analyze their complexity in
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one or more metrics, like restartable processors in [6], or Stage Checkpointing in [7],
etc. There are many specific and distinct failure recovery schemes, but they can be
grouped into three broad classes

RESUME, also referred to as preemptive resume (prs);
REPLACE, also referred to as preemptive repeat different (prd);
RESTART, also referred to as preemptive repeat identical (pri).

For RESUME, when the system fails, it is repaired and then the job continues
where it is left off. For REPLACE, after being repaired, the system selects a new job
from the same distribution. Under RESTART the system must start the job from the
beginning, necessarily repeating everything that had been done previously.

The first two classes are well understood and discussed in detail in the literature.
The analysis of the distribution of completion time when the policy is RESUME
or REPLACE was carried out by Kulkarni et al. [11]. The task distribution for the
RESTART policy was defined and examined in Kulkarni et al. [12]. The work in [3, 8,
11, 12] clearly suggested that if the task time, L, with distribution function, F(t) and
density f (t) had a Matrix Exponential (ME) distribution, then the resulting total ser-
vice time,X, with distributionH(x) and density h(x) for theRESUME andREPLACE
policies could also be represented by ME distributions.

But the RESTART policy resisted detailed analysis. All they could show was that
it definitely was not ME. However, by assuming that the failures are iid one can
derive the Laplace transform of the total time distribution, H(x), from which the
mean time, EEE[X], can be found. By numerically taking the inverse Laplace trans-
form (see Jagerman [10]), Chimento and Trivedi [5] (following a model proposed by
Castillo [4]) were able to find the RESTART time distribution for a few cases, but
for a limited range (x ≤ 3EEE[X]). However, the properties of H(x) for large x were
still unknown. Asmussen et al. [1, 15], showed that if the task time distribution, F(t),
has finite support, H(x) is asymptotically exponential. But if its support is infinite,
then H(x) decays slower than any exponential. Furthermore, if the tail of the failure
distribution decays exponentially at rate β and F decays at exponential rate μ then
the tail of H is essentially of order 1/xα where α = μ/β. To be precise, let

μm = sup

{
μ |

∫ ∞

o
eμtf (t) dt < ∞

}
(1)

also

α = sup

{
ρ |

∫ ∞

o
xρh(x) dx < ∞

}
(2)

then α = μm/β. More recently, Asmussen [2] extended this to non-exponential fail-
ure distributions. Most recently [16], the present authors found an expression for the
exponential tail that also includes dependence between repair and failure times.
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2 Introduction

In this paper, we take a linear algebraic approach and model the RESTART problem
via a finite-state Markov chain that is also relevant in Dependability Theory (see e.g.,
[17]). We partition the state space into Up and Down states so that the transitions
between the two sets generate a Markov Renewal Process (MRP). The times spent
alternately in the two sets are not necessarily independent or even identically distrib-
uted. We then show how this relates to many results in Dependability theory. (See
e.g., [4, 16, 17] for details.)

Next, we focus on the RESTART process where we are primarily interested in the
total time to complete a single job, EEE[Xr(�)] (the subscript, r, indicates inclusion of
all repair times). In this case, the system stays in the UP states for a time U < �,
or the job ends, where � is the time the job would have taken if there had been no
failures. If the job fails, then it goes to Down states until repair is complete, and then
returns to the Up states to try again. Since the job must ultimately complete, this is
not an MRP, but can be called a Truncated Markov Renewal Process (TMRP). We
then derive the mean total time under RESTART EEE[Xr(�)]. This includes not only
the repair times but the dependence between successive failures and repairs. After
all, there may be several ways that a system could fail, and several degrees of repair.
The matrix expression given forEEE[Xr(�)] is amenable to computation using standard
software. We then show how this can be extended to systems where � comes from
some distribution, F(�).

We provide several examples, including systemswith (hot or cold) backup servers,
including online repair, and also consider systems where RESTART can begin after
only one server has been repaired. Some of these examples have non-exponential
failure and repair distributions. Finally, we discuss γ (�), the exponential tail for
Hr(x|�), and how the formula for its computation simplifies under certain conditions.

We adhere to the notation that upper-case boldfaced characters (except for the
expectation symbol EEE) are matrices, lower-case bold faced characters are vectors,
where the “ ′ ” symbol denotes column vector.

3 Properties of the Intensity Matrix QQQ

The intensity matrix,QQQ is also called the infinitesimal generator byGross and Harris
[9], the transition rate matrix by Lipsky [13], as well as other names. Some of this
material may be found, perhaps from a different point of view in, e.g., [1, 2, 8, 13].

Consider a finite state Markovian system with c exponential states, where M is a
diagonalmatrix such that (M)ii is the departure rate of state i, andPij is the probability
the system will transition from i → j after leaving i. Let ε′ε′ε′ be a column vector of
dimension c with all 1’s. Assume that P is irreducible, and since the row sums of
P add up to 1, we can write Pε′ε′ε′ = ε′ε′ε′. From the transition and rate matrices, P and
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M, the generating matrix, QQQ = M(P − I) can be constructed. Clearly, QQQ has the
property QQQ ε′ε′ε′ = o′, where o′ is a column vector of all 0’s.

The state space is partitioned into two sets, Eu and Ed of dimension cu and cd,
respectively, (cu + cd = c), which we call the UP states and the DOW N , (or repair)
states. QQQ can be written as

QQQ =
[

Quu Qud

Qdu Qdd

]
=

[ −Bu Bu Yu

Bd Yd −Bd

]
· (3)

Since P is irreducible, it follows that Bu and Bd have inverses, then Yu = Vu Qud
1

and Yd = Vd Qdu. Obviously, Bv = −Qvv and Vv = B−1
v for v ∈ {u, d}. Because

QQQ ε′ε′ε′ = o′, we have

Quuεεεu
′′′ + Qudεεεd

′′′ = o′
u or − Buεεεu

′′′ + BuYuεεεd
′′′ = o′

u

and
Qddεεεd

′′′ + Qduεεεu
′′′ = o′

d or − Bdεεεd
′′′ + BdYdεεεu

′′′ = o′
d,

from which it follows that

Yu εεεd
′′′ = εεεu

′′′ and Yd εεεu
′′′ = εεεd

′′′ .

εεεu
′′′ and εεεd

′′′ are column vectors of all 1’s, of dimension cu and cd, respectively, while
o′

u and o′
d are column vectors of all 0’s. The Y matrices contain the correlation for

transitions between the UP and DOWN states.
TheBmatrices generate distributions for the time spent in each subsystem.Assum-

ing that the process started in state j ∈ Eu, then

[Ḡu(t)]ji := [exp(−t Bu)]ji (i, j ∈ Eu)

is the probability that the system is still UP and in state i ∈ Eu at time t. Also, define
the auxiliary matrix

Gu(t) := Iu−Ḡu(t).

The matrix
[gu(t)]jk := [Ḡu(t) Bu Yu]jk (j ∈ Eu, k ∈ Ed)

is the probability density that the system will fail at time t, and transfer to state
k ∈ Ed. Note that it can also be written as gu(t) = exp(−tBu)Qud. Then,

Yu =
∫ ∞

o
gu(t)dt,

1For clarity, note that in general the boldfaced subscripts identify the entire matrix, not its compo-
nents. The components are identified by the notation, (Qud)ij, i ∈ Eu, and j ∈ Ed.
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showing that [Yu]jk is the probability that k ∈ Ed is the first state in Ed after a period
in Eu starting from j ∈ Eu.

In a similar fashion, we define

[Ḡd(x)]km := [exp(−x Bd)]km (k, m ∈ Ed)

and
[gd(x)]kj := [Ḡd(x) Bd Yd]kj (j ∈ Eu, k ∈ Ed).

Let us suppose that the system starts in an UP state with initial probability vector
po, and let

U1, R1, U2, R2, . . . Un, Rn, . . .

be the random variables denoting the time spent sequentially in UP and DOWN
states. The complementary distribution for the first time to failure is

H̄U1(t) := Pr[U1 > t] = poḠu(t)εεεu
′′′ = po exp(−tBu)εεεu

′′′

Expressions of this form are often called Matrix Exponential (ME) distributions.
As is well-known, such functions can be written as a sum of exponentials times
polynomials (See, e.g., Chap. 3 of Lipsky [13]),

H̄U1(t) =
ru∑

k=1

qk(tβk)e
−tβk

where βk is an eigenvalue of Bu, qk is a polynomial of degree one less than the
multiplicity of the kth eigenvalue, and ru ≤ cu is the number of roots. The roots must
all have positive real parts, and in particular βm, the minimum eigenvalue, must be
real. Then for large t,

H̄U1(t) ∼ qm(tβm)e−tβm . (4)

The density and distribution functions are

hU1(t) = poḠu(t) Buεεεu
′′′ = po exp(−tBu) Buεεεu

′′′ ,

and
HU1(t) = 1 − H̄U1(t) = Pr[U1 ≤ t] = poGu(t)εεεu

′′′ .

The moments of the distribution can also be calculated by using the well-known
formula

EEE[ Un
1 ] = n! poVn

u εεεu
′′′ ,

where Vu = B−1
u .
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The repair times depend on the previous failure process. Consider that the system
goes from failure to repair to failure indefinitely. The joint distribution for the first
failure and repair cycle is given by

hU1 R1(t, x) = poḠu(t) Bu Yu Ḡd(x) Bd Yd εεεu
′′′ (5)

If we integrate over t, we get

hR1(x) :=
∫ ∞

o
hU1 R1(t, x)dt = po Yu Ḡd(x) Bd εεεd

′′′ ,

where we used ∫ ∞

o
Ḡu(t)Budt = Iu.

From this we see that poYu is the initial vector for the start of the first repair epoch,
averaged over all possible t, the initial failure time.

As with U1 the moments of R1 are

EEE[Rn
1] = n! po Yu Vn

d εεεd
′′′

where Vd = B−1
d . In general

hUn(t) = po(Yu Yd)
n−1 Ḡu(t)Bu εεεu

′′′ , (6)

hUn Rn(t, x) = po(Yu Yd)
n−1 Ḡu(t)Bu Yu Ḡd(x) Bd εεεd

′′′ ,

and
hRn(x) = po(Yu Yd)

n−1 YuḠd(x)Bd εεεd
′′′ .

hRn Un+1(x, t) = po(Yu Yd)
n−1 YuḠd(x)Bd Yd Ḡu(t) Buεεεu

′′′ .

More complicated orderings can be written down without difficulty.
In any case, notice that

lim
n→∞(Yu Yd)

n−1 = εεεu
′′′ pu,

where pu is the left eigenvector of Yu Yd with eigenvalue 1, and normalized so that
puεεεu

′′′ = 1. That is,
pu(Yu Yd) = pu. (7)

Therefore,
hU∞(t) := lim

n→∞ hUn(t) = puḠu(t)Buεεεu
′′′ .
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Similarly,
hR∞(x) := lim

n→∞ hRn(x) = pu Yu Ḡd(x) Bdεεεd
′′′ .

Also, define pd := pu Yu. It follows directly that pu = pd Yd, and pd = pd Yd Yu.
As n grows large, [hUn(x) − hUn+1(x)] −→ 0. So, the Un’s become identically

distributed, but they are not necessarily independent. We show this by finding the
auto-covariance, lag-k coefficient, namely

Cov(U, U+k) := lim
n→∞Cov(Un, Un+k) = lim

n→∞ {EEE[Un Un+k] −EEE[Un]EEE[Un+k]} =

pu Vu(Yu Yd)
k Vuεεεu

′′′ − pu Vuεεεu
′′′ pu Vuεεεu

′′′ = pu Vu[[[ (Yu Yd)
k − εεεu

′′′ pu ]]] Vuεεεu
′′′ .

It is possible that Cov(U, U+k) �= 0, and in fact, Cov(U, U+1) �= 0 unless
(Yu Yd) = εεεu

′′′ pu.2 We explore that next, and give examples later.

3.1 What if Yu and/or Yd Is of Rank 1?

We have seen that Yu and Yd govern the dependence between epochs, even nonse-
quential ones. Now, suppose that both Yu and Yd are of rank 1. Then, they can be
written as

Yu = εεεu
′′′ pd and Yd = εεεd

′′′ pu

where pu εεεu
′′′ = pd εεεd

′′′ = 1. In this case, hU1(t) is the same as before, but

hUn(t) = pu exp(−t Bu)Bu εεεu
′′′ , for n > 1

and
hRn(t) = pd exp(−t Bd)Bd εεεd

′′′ for n ≥ 1.

So, we can state the following theorem.

Theorem 1 If Yu and Yd are both of rank 1, then all UP and DOWN periods are
independent, all repair periods are iid, and except perhaps for the first UP period,
all failure times are iid. The system then reduces to a two-server loop, with failure
distribution given by hUn(u) (except for n = 1) and repair time distribution given by
hRn(y). �

2Of course, even if all the Cov coefficients were 0, that would not be sufficient to have independence.
Just one nonzero coefficient proves dependence.
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If only oneof theYa’s, (a ∈ {u, d}) is of rank1, thenonly certain joint distributions
are iid. For instance, suppose that Yd = εεεd

′′′ pu, then (5) becomes

hUn Rn(t, x) = p1 exp(−tBu) Bu Yu exp(−xBd) Bd εεεd
′′′

for n > 1. (For n = 1 replace pu with po.)
Similarly, suppose that Yu = εεεu

′′′ pd, then

hRn Un+1(x, t) = pd exp(−x Bd)Bd Yd exp(−tBu) Buεεεu
′′′ .

Since the right-hand side of both expressions are independent of n, we state this as
another theorem.

Theorem 2 If Yd = εεεd
′′′ pu then hUn Rn(t, x) is independent of n and the cycle times,

Un + Rn, are iid (except, perhaps, for n = 1). similarly, if Yu =εεεu
′′′ pd then hRn Un+1(x, t)

is independent of n and the cycle times, Rn + Un+1, are iid. �

The Theorem is still true even if neither Yu nor Yd is of rank 1, but their product is
(e.g., Yu Yd = εεεd

′′′ pu).

4 Relation to Dependability Theory

Before moving on to the major objective of this paper, we touch on the broad subject
of Dependability Theory which has come to be the umbrella name for Reliability,
Availability and Checkpointing as well as other subjects including RESTART. There
have been innumerable papers and books written on the subject, which we will not
even attempt to summarize here. One might start with the books by Trivedi [17],
and Rubino and Sericola [14], to name just two. Our purpose is to link our linear
algebraic approach to that of the broader field.

4.1 Reliability Theory

Reliability theory involves, among other things, the Mean Time To Failure (MTTF).
In many applications it is critical to avoid the failure states for as long as possible.
The time to repair takes a back place. As an extreme example, it is of no use to be
told that Your parachute can be repaired as soon as you land after you’ve jumped out
of an airplane. But still, there are other applications where both MTTF and MTTR
(Mean Time To Repair) are important.

A standard technique for computing this is to just consider

MTTF1 := EEE[U1] = poVuεεεu
′′′ .
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But this is only the first UP time. Another way is to find the solution to

ΠΠΠ QQQ = o,

whereΠΠΠ = [πuπuπu, πdπdπd]. This translates to the simultaneous equations

πππuBu = πππdBd Yd,

πππdBd = πππuBu Yu,

yielding the eigenvector equations

πππuBu = πππuBu Yu Yd,

πππdBd = πππdBd Yd Yu.

But we have already seen from (7) that pu Yu Yd = pu, so cu pu = πππuBu, or

πππu = cu pu Vu, and πππd = cd pu Yd Vd = cd pd Vd,

where cu and cd are normalization constants. The steady-state times, then, are (no
subscript)

MTTF := lim
n→∞EEE[Un] = pu Vuεεεu

′′′ , and MTTR = pd Vd εεεd
′′′ .

In fact, their distributions are given by hU∞(x) and hR∞(t), as given above.
We have actually already derived the pdf’s for the nth failure times and repair

times, namely hUn(x) and hRn(t). In particular, we can write down the mean times
for each epoch,

MTTFn = po(Yu Yd)
n−1Vuεεεu

′′′ ,

and
MTTRn = po(Yu Yd)

n−1Yu Vdεεεd
′′′ .

In many examples, Yu and Yd are of rank 1, in which case, all the MTTF’s are equal.

4.2 Availability

In the systems where parallel processing goes on, it may be important to know how
many processors are available (i.e., functional) at any time. Let ai be the number
of processors available when the system is in state i ∈ Eu, and define the diagonal
matrix, [A]ii = ai. Let Nn be the random variable denoting the expected number of
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processors that are available during the nth UP interval, then

EEE[Nn] = po(Yu Yd)
n−1Vu Aεεεu

′′′

po(Yu Yd)
n−1Vu εεεu

′′′ .

Its range is 0 < EEE[Nn] ≤ max[ai]. If one is dealing with servers with different service
rates, then ai is the sum of the service rates of the servers that are functional when
the system is in state i ∈ Eu. ThenEEE[Nn] is the expected processing power available
during the nth UP cycle. In this paper, we assume that the base service rate is 1.0.

5 Application to RESTART

The previous sections describe infinite looping. Now, consider a system that must
execute a job that takes a timedenoted by the randomvariable,L. For now, assume that
the job takes a fixed time, � (i.e., L = �). UnderRESTART the process ends whenever
the time spent in Eu exceeds �. This is a Transient Markov Renewal Process (the
processmust end eventually). The equations abovemust bemodified to accommodate
this.

5.1 Time in Eu Cannot Exceed �

All the equations up to (5) do not involve �, but now H̄U1(t) must be modified to

H̄U1(t) =
{

poḠu(t)εεεu
′′′ for t ≤ �

0 for t > �
.

Clearly, if the systemwould have failed in a time t > � then the process ends with the
job completion. In order tomove on, wemust have t < �. The conditional probability
distribution for failure to occur by time t ≤ � is

HU1(t | �) := Pr[U1 ≤ t | U1 ≤ �] = po Gu(t)εεεu
′′′

po Gu(�)εεεu
′′′ = HU1(t)

HU1(�)
·

Clearly, in order to reach the nth repair cycle, the system has to fail n times first.
Equation (5) is modified to

hU1 R1(t, x | �) = poḠu(t) Bu Yu Ḡd(x) Bd εεεd
′′′

po Gu(�)εεεu
′′′ ,
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from which it follows [using
∫ �

o exp(tBu)Budt = Iu − exp(�Bu) = Gu(�)],

hR1(x | �) = po Gu(�) Yu Ḡd(x) Bdεεεd
′′′

po Gu(�)εεεu
′′′ = po Yu(�)

po Yu(�)εεεd
′′′ Ḡd(x)Bdεεεd

′′′ ,

where we have defined
Yu(�) := Gu(�)Yu.

Then, in general,

hUn(t | �) = po [Yu(�)Yd]
n−1 Ḡu(t)Buεεεu

′′′

po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′ (8)

and

hRn(x | �) = po [Yu(�)Yd]
n−1 Yu(�) Ḡd(x)Bdεεεd

′′′

po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′ · (9)

These are the density functions for Un and Rn, given that at least n failures occur,
and the denominators are the probabilities that they occur. The conditional densities
for two consecutive events are now [compare with the equations following (5)]

hUn Rn(t, x | �) = po [Yu(�)Yd]
n−1 Ḡu(t)Bu Yu Ḡd(x)Bdεεεd

′′′

po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′

and

hRn Un+1(x, t | �) = po [Yu(�)Yd]
n−1 Yu(�) Ḡd(x)Bd Yd Ḡu(t)Buεεεd

′′′

po [Yu(�)Yd]
n Gu(�)εεεu

′′′ ·

In all these equations, we see that the nth repair interval begins with the initial
probability vector:

pRn := po[Yu(�)Yd]n−1Yu(�)

po[Yu(�)Yd]n−1Yu(�)εεεu
′′′ · (10)

Similarly the nth UP period begins with:

pUn := po[Yu(�)Yd]n−1

po[Yu(�)Yd]n−1εεεu
′′′ · (11)

Note that the function, X = pUn Ḡu(t)Bu Yuεεεu
′′′ , is defective (the system can’t fail if

t > �), so to satisfy the conditional probability that it will fail, the function must
be divided by the probability of failure (i.e., be normalized to 1). That is, divide by∫ �

o X dt = pUn Yu(�)εεεu
′′′ . This yields the expressions given.
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Observe that for any invertible matrix, B with inverse, V,

∫ �

o
t exp(−t B) B dt = [

I − (I + � B ) exp(−�B)
]

V.

We use this to find expressions for mean times for Un and Rn, which are

EEE[Un] =
∫ �

o
t hUn(t|�) dt = po [Yu(�)Yd]

n−1 {Iu − (Iu + � Bu) Ḡu (�)} Vu εεεu
′′′

po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′ ,

and

EEE[Rn] =
∫ ∞

o
x hRn(x|�) dx = po [Yu(�)Yd]

n−1 Yu(�) Vd εεεd
′′′

po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′ ·

Alternatively, their sum can be calculated with

EEE[Un + Rn] =
∫ �

o

[∫ ∞

o
(t + x) hUn Rn(t, x | �) dx

]
dt.

This yields the sum of the two previous equations.
For any square matrix, Z,

lim
n→∞ Zn = σ n v′ u,

where σ is the largest eigenvalue in magnitude3 of Z (i.e., spr[Z] = σ )4 and u, v′
are the corresponding left and right eigenvectors (uZ = σu and Zv′ = σv′). Now,
let us look at (10) and (11), where [Yu(�) Yd]n is replaced by σ n v′ u (σ, u and v′
depend on �).

pR(�) := lim
n→∞ pRn = lim

n→∞
σ n−1pov′u Yu(�)

σ n−1pov′u Gu(�)εεεu
′′′ = uYu(�)

u Gu(�)εεεu
′′′ ,

and

pU(�) := lim
n→∞ pUn = lim

n→∞
σ n−1pov′u

σ n−1pov′uεεεu
′′′ = u

uεεεu
′′′ . (12)

So, pU(�)Yu(�) Yd = σ(�)pU(�). Observe that u, v′, pR and pU all depend on �.
Also, pU is not the same as pu defined in (7), but

lim
�→∞ pU(�) = pu.

3Strictly speaking, this is only true if σ is unique. If it is a multiple root then the formula is more
complicated.
4spr[X] = SPectral Radius := Largest eigenvalue in magnitude of matrix X.
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Also note that σ has a physical interpretation.

σ(�) = pU(�) Yu(�) Yd εεεu
′′′ .

Since
Yu(�) Yd εεεu

′′′ = Gu(�) Yu Yd εεεu
′′′ = Gu(�)εεεu

′′′ ,

it follows that
σ = pU(�) Gu(�)εεεu

′′′ , (13)

which is the probability that the system will fail at least one more time when n is
large. It follows from (4) that as � becomes large,

1 − σ = pU(�) Ḡu(�)εεεu
′′′ ∼ q(�βm)e−�βm

where q is a polynomial of degree one less than the multiplicity of βm.

5.2 Mean Time Under RESTART

To get the mean total time for the process to finally finish, we must calculate

EEE[Xr(�)] =
∞∑

n=1

Pr[N = n]
⎡

⎣
n∑

j=1

EEE[Uj + Rj]
⎤

⎦ + �,

where N is the rv for the number of failures before success. The sums can be inter-
changed using (for any xnj)

∞∑

n=1

n∑

j=1

xnj =
∞∑

j=1

∞∑

n=j

xnj,

so this can be written as (after changing j → n)

EEE[Xr(�)] =
∞∑

n=1

Pr[N ≥ n]EEE[Un + Rn] + �.

But Pr[N ≥ n] = po [Yu(�)Yd]
n−1 Gu(�)εεεu

′′′ , so

EEE[Xr(�)] =
∞∑

n=1

po [Yu(�)Yd]
n−1 {

[Iu − (Iu + � Bu) Ḡu (�)] Vu Yu + Yu(�) Vd
}
εεεd
′′′ + �.
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The formula for the geometric sum lets us write

∞∑

n=1

[Yu(�)Yd]
n−1 = [Iu − Yu(�) Yd]

−1 ,

so (after some manipulation) we get the following formula, which we state as a
theorem.

Theorem 3 Let Xr(�) be the total time required (including repair time) under
RESTART for a job of length � to complete, then

EEE[Xr(�)] = po[Iu − Yu(�) Yd]−1Gu(�)[Vu + Yu Vd Yd]εεεu
′′′ , (14)

It also follows that

EEE[N(�)] = po[Iu − Yu(�) Yd]−1Gu(�)εεεu
′′′ ,

where N(�) is the number of failures before completion. This holds for any system
that can be described by a QQQ matrix as described by (3).

For the simplest case (a single server with exponential failure rate Bu = β,
and a single repairman with repair rate Bd = λ, in which case
Yu = Yd = εεεu

′′′ = εεεd
′′′ = Iu = 1,) this reduces to the well-known formula

EEE[Xr(�)] = (eβ � − 1)

[
1

β
+ 1

λ

]
. (15)

�

The above equation is shown in Fig. 1 for various values of λ. Although this is the
simplest of systems, it is typical of all RESTART systems. As with all such systems,
EEE[Xr(�)] = �when β = 0. Here, the slope at that point is (�2/2 + �/λ). But for more
complicated systems (e.g., those with redundant servers) the slope can even be 0. But
as the failure probability increases, EEE[Xr(�)] grows unboundedly large at a rate that
is at least exponential (in this case, as eβ�). In fact, as shown by [1, 2], when averaged
over all � (see Sect. 5.3) it can become infinite even though the failure probability is
finite. So, these models can be most useful in separating those failure rates for which
{EEE[Xr(�)] − �} is acceptable from those for which {EEE[Xr(�)] − �} is so large that the
mode of operation must be changed. More examples are given in Sect. 6.

5.2.1 Mean Residual Times

Often it is of interest to estimate how long it will take for a job to complete, given
that it has already been running for a time, x. Formally, the mean time for this is
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Fig. 1 EEE[Xr(�)] as a function of β, from Eq. (15), For various values of λ, and � = 1. This figure
is typical of the performance of all systems under RESTART. When β = 0, EEE[Xr(�)] = �. As β

increases, the curves grow exponentially

EEE[Xr(� | x)] :=
∫ ∞
0 t h(t + x|�) dt

H̄(x|�) ,

where h(x|�) is the pdf for the time for a job of length � to complete under RESTART.
This is not possible to compute since we do not knowwhat h(x|�) is, but we can get a
good idea if we know how many failures have already occurred. Then, the vector for
starting another cycle is pUn given by (11). Let Xr(�|n) be the total time remaining
at the start of the nth cycle. Then, from (14)

EEE[Xr(� | n)] = pUn [Iu − Yu(�) Yd]−1Gu(�)[Vu + Yu Vd Yd]εεεu
′′′ .

As n → ∞ replace pUn with pU from (12) and get

EEE[Xr(� | ∞)] = pU[Iu − Yu(�) Yd]−1Gu(�)[Vu + Yu Vd Yd]εεεu
′′′ .

But, from (12) pU(�) is a left eigenvector of Yu(�) Yd with eigenvalue σ , so

EEE[Xr(� | ∞)] = 1

1 − σ
pU(�) Gu(�)[Vu + Yu Vd Yd]εεεu

′′′ .

From (13), it follows that (1 − σ) = pU(�) exp(−�Bu)εεεu
′′′ , so

EEE[Xr(� | ∞)] = 1

pU(�) exp(−�Bu)εεεu
′′′ pU(�) Gu(�)[Vu + Yu Vd Yd]εεεu

′′′ . (16)
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[noting that Gu(�) → Iu − e−�βmD(βm�), and that βm is the minimum eigenvalue of
Bu]5

EEE[Xr(� | ∞)] ∼ e�βm

p(�βm)
[pu(Vu + YuVdYd)εεεu

′′′ ] − O(1). (17)

A simple coupling argument, that we omit, shows that this is also true for EEE[Xr(�)].

5.3 Job Time Is Random

Instead of considering a job requiring a fixed time �, in this section, we consider the
performance of a large set of jobs taken from some distribution, F(t), with r.v. L.
Thus, F(t) = Pr[L ≤ t]. The average over all the samples is given by

EEE[Xr] :=
∫ ∞

o
EEE[Xr(t)] f (t) dt. (18)

It has been shown in (17) that EEE[Xr(t)] goes to ∞ as exp(tβm). Therefore f (t) must
go to 0 faster than exp(−tβm) in order for the integral to be finite. From (1) μm must
be greater than βm. Ifμm = ∞ (which includes functions that are 0 above some finite
value of t) then there is no problem, and if μm = 0 (f (t) is sub-exponential) there
is no hope. As stated previously, if 0 < μm < ∞ (f (t) has an exponential tail) then
HXr (x) (the distribution for the total time of the RESTART process) is power-tailed
with parameter α = μm/βm. That is,

lim
x→∞ xρ H̄Xr (x) =

{
0 for ρ < α

∞ for ρ > α
·

Therefore, it follows that EEE[Xr(t)] = ∞ if α ≤ 1, that is, if μm ≤ βm. In fact, if
2μm ≤ βm thenEEE[X2

r (t)] = ∞, implying that the variance ofHXr (x) is infinite.What
implication does this have for performance? Suppose that the failure distribution
(as represented by Bu) depends on a single parameter, β, in such a way that βm

increases monotonically (not necessarily linearly) with β. Then a performance curve
(as exemplified by Fig. 1) will become infinite at that point where βm(β) = μm.
Furthermore, one can expect the system to become unstable when βm(β) ≥ μm/2,
for then Xr has infinite variance.

There is a problemevaluating the integral inEq. (18) because the expression in (14)
is not in general conducive to analytic integration. Therefore, numerical procedures
must be used. This is discussed in Sect. 6.5 with a numerical example as shown in
Fig. 3.

5D(�βm) is a matrix whose components are polynomials of degree less than or equal to the degree
of p(�βm). Therefore, D(�βm)/p(�βm) ∼ O(1).
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6 Some Examples

We set up the QQQ matrix for various systems, including redundant servers, which
thereby yield non-exponential failure distributions, and variations in how the system
is restarted. We also consider non-exponential repair time distributions.

6.1 Simplest Case: Single Exponential Server/Repair

Here, we have a simple exponential server with failure rate, β, and a single expo-
nential repair stage with rate λ. The QQQ matrix is

−QQQ =
[

β | −β

−λ | λ

]
·

The various matrices and vectors trivialize to

Yu = Yd = pu = pd = εεεu
′′′ = εεεd

′′′ = Iu = Id = 1.

Also, Bu = β, Bd = λ and Eq. (14) reduces to (15) in Theorem 3, and is plotted in
Fig. 1 in Sect. 5.2.

6.2 Two Exponential Servers/‘r’ Exponential Repair Servers

Here, we have two structurally different systems. In the first, only one of the servers
performs useful work. The other either: (b = 1) sits idle, and starts up when the other
fails (cold backup); or (b = 2) duplicates the first one’s work, and takes over if it
fails (hot backup). In the latter case the backup server can fail while waiting. It could
also happen that the process of bringing up the backup server fails with probability,
p. We will assume this is the case only for cold backup.

We also allow for on-line repair to occur, with the same distribution as off-line
repair (system is down).When both servers are down, they can be repaired in parallel
(r = 2) or one at a time (r = 1).

We allow for one other variation. When the system is DOWN (both servers have
failed and are being repaired), it can restart when: (1) either one is repaired, or, (2)
must wait for both to be repaired.

In all cases, we assume that failures for each server are exponentially distrib-
uted with rate β. The mean time to repair a given server is 1/λ. We consider non-
exponential repair distributions in Sect. 6.3
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6.2.1 RESTART Begins Immediately When One Is Repaired

The system is DOWN only when both servers are down, and when one of them is
repaired the system shifts to the UP state. There are two up states (both up, one up
and one down), and one down state (both servers down). For notation, we use

↑ := Server is functional
↓ := Server is down

The states are
Eu = {↑↑, ↑↓}

Ed = {↓↓}

The QQQ matrix follows:

−QQQ =
⎡

⎣
bβ −(1 − p)bβ | −pbβ

−λ λ + β | −β

0 −rλ | rλ

⎤

⎦ ·

The matrices, Bu and Bd are obvious.

Yd = pu = [0 1], Yu = εεεu
′′′ =

[
1
1

]
, and pd = εεεd

′′′ = [1].

These arrays can be inserted into (14). One can either use matrix operators directly,
or find the analytic expression for exp(−� Bu) since it is a two-dimension matrix.
For higher dimensional matrices, it is probably best to stay with the matrix form,
since MATLAB (and other software) calculate matrices efficiently and easily.

The results of such a calculation are shown in Fig. 2 whereEEE[Xr(�)] is plotted as a
function of β for four different system configurations. This set of curves is typical for
the systems presented here. It is not our goal to give detailed performance analyses of
these systems, but only to show what might be studied using the equations derived.
Nonetheless, certain features are general. For example, if p = 0 (perfect transition
to the backup server), the slope of the curves at β = 0 is 0. The value of p = 0.1 was
assigned to cold backup (b = 1) because such systems are less likely to transition
smoothly when the primary server fails. Thus their slopes at β = 0 are positive. But,
as β increases each curve crosses the corresponding curve with the same value of r,
reflecting the ultimate cost of hot backup. After all, the hot backup server can fail
even while waiting. And as might be expected, the systems with two repairmen out-
perform the ones with one repairman. Of course this does not include the monetary
cost of having a second repairman constantly available. Ultimately all of the curves
grow exponentially as exp(�βm), where βm is the smallest eigenvalue of Bu, which
is always positive and real (Note that βm is different for each system.).
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Fig. 2 EEE[Xr(� = 1)] as a function of β for both cold and hot backup, and both 1 and 2 repairmen
with repair rate λ = 1. p = 0.1 for cold backup. In this example, the system restarts as soon as one
of the servers is repaired

6.2.2 RESTART Begins only When both Servers Are Functional

Here, there are again two up states, when both servers are up, and when one is up
and one is down, given that it got there from the 2 up state. There are now 2 down
states, when both are down and when one is down and the other is up, given that it
got there from the 2 down state. The states are Eu = {↑↑, ↑↓} and Ed = {↓↓, ↓↑}.
The QQQ matrix is now

−QQQ =

⎡

⎢⎢⎣

bβ −(1 − p)bβ | −pbβ 0
−λ λ + β | −β 0
0 0 | rλ −rλ

−λ 0 | 0 λ

⎤

⎥⎥⎦ ·

Again, Bu and Bd are clear, and

Yd =
[
1 0
1 0

]
=

[
1
1

]
[1 0] = εεεd

′′′ pu = Yu = εεεu
′′′ pd.

Just like the previous examples this system has the property that both Yu and Yd are
of rank 1. Note that in this case pu = po (the system always starts or restarts with
both servers functional), so all the intervals are iid, including U1.
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6.3 Non-exponential Repair Times

In this section, we present examples of systems where at least one of the Y’s is of
rank greater than 1. We will do this by requiring that the repair is matrix exponential.
This is rather easy to do for those nodes where only one server is being repaired. But
when two or more devices are active (e.g., hot backup or when one is up and one is
down during the UP time), then the node must be represented by a product space of
the two (or more) distributions. If the two devices are identical (during hot backup,
or two repairmen) the problem is somewhat simplified by using a so-called reduced
product space. There may be other complications, however, that require individual
treatment.

6.3.1 Erlangian-2 Repair Times

We can probably find a general formulation, but for this example, we assume that
the repair time is Erlangian-2, i.e.,

R̄(t) = (1 + 2λt)e−2λt,

where the mean repair time is the same as before for a single server, namely, 1/λ.
We examine two cases: (1) RESTART only begins when both servers are repaired;
(2) RESTART begins as soon as one server is repaired.

(a) Both Must Be Repaired Before System Can RESTART

We must have eight states to describe this system. For notation, we use

↑ := Server is functional
↓1 := Server is down and in phase 1 of repair
↓2 := Server is down and in phase 2 of repair.

Then, the set of UP states is

Eu = {↑↑, ↑↓1, ↑↓2}.

The set of DOWN states is:

Ed = {↓1↓1, ↓1↓2, ↓2↓2, ↓1↑, ↓2↑}.

The states {↑↓1, ↑↓2} seem to occur twice, once in Eu and once in Ed. They are
actually different states, since once the system fails it must wait until both servers
are repaired before returning to the UP state. We assume that the repaired machine
cannot fail while in a DOWN state, but can fail while in an UP state, but only in hot
backup (b = 2).
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The QQQ matrix, (the states are ordered as listed in Eu and then Ed),

−QQQ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bβ −(1 − p)bβ 0 | −pbβ 0 0 0 0
0 2λ + β −2λ | −β 0 0 0 0

−2λ 0 2λ + β | 0 −β 0 0 0
0 0 0 | 2rλ −2rλ 0 0 0
0 0 0 | 0 2rλ −2(r − 1)λ −2λ 0
0 0 0 | 0 0 2rλ 0 −2rλ
0 0 0 | 0 0 0 2λ −2λ

−2λ 0 0 | 0 0 0 0 2λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remember, 2λ is the rate at which a single stage is repaired, r ∈ {1 2} is the number
of repairmen available, and b ∈ {1 2} is cold, or hot backup.

Note the factor (r − 1) in the matrix. In leaving the state {↓1↓2}, two things can
happen. Either the machine in its first phase of repair goes to the second phase, or
the other machine is repaired. If there are two repairmen (r = 2), then the two events
are equally likely. But if there is only one repairman only one of the two events can
happen. Here, we assume that the machine that is already in its second phase will
be the one to finish, since the repairman was already working on it when the other
failed. Other assumptions are possible, and more complicated systems can introduce
ever more complex scenarios. The important point to note is that the overall structure
of the QQQ matrix remains the same, and all the formal conclusions we have derived
are valid.

It is not hard to find

Vu = B−1
u = 1

bβ(4λβ + β2 + 4pλ2)

⎡

⎣
(2λ + β)2 (1 − p)bβ (2λ + β) 2(1 − p)bλβ

(2λ)2 bβ (2λ + β) 2bλβ

2λ(2λ + β) 2(1 − p)bλβ bβ(2λ + β)

⎤

⎦ ·

From this, it follows that

Yu = 1

4λβ + β2 + 4pλ2

⎡

⎣
(2λ + β)(2pλ + β) 2(1 − p)λβ 0 0 0
β(2λ + β) + 4pλ2 2λβ 0 0 0

2λ(2pλ + β) (2λ + β)β 0 0 0

⎤

⎦ ·

(Yes, Yuεεεd
′′′ = εεεu

′′′ .) This is clearly not a rank 1 matrix because there are two indepen-
dent rows. But, the Qdu block has only one nonzero element, so it follows that

Yd =

⎡

⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1
1
1
1
1

⎤

⎥⎥⎥⎥⎦
[1 0 0] = εεεd

′′′ p1.

Therefore, Yd IS of rank 1, so the Un’s, n > 1, are iid.
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As an aside, observe that

Yu Yd =
⎡

⎣
1
1
1

⎤

⎦ [1 0 0] = εεεu
′′′ p1.

(b) The System Restarts as Soon as One Machine Is Repaired

This system only has a total of six states, because the two states, {↑↓1, ↑↓2} only
occur in Eu, which is the same as before, but now

Eu = {↑↑, ↑↓1, ↑↓2}, Ed = {↓1↓1, ↓2↓1, ↓2↓2}.

The QQQ matrix follows.

−QQQ =

⎡

⎢⎢⎢⎢⎢⎢⎣

bβ −(1 − p)bβ 0 | −pbβ 0 0
0 2λ + β −2λ | −β 0 0

−2λ 0 2λ + β | 0 −β 0
0 0 0 | 2rλ −2rλ 0
0 −2λ 0 | 0 2rλ −2(r − 1)λ
0 0 −2rλ | 0 0 2rλ

⎤

⎥⎥⎥⎥⎥⎥⎦

At last, we have an example where neither Yu nor Yd is of rank 1, even though Bu is
the same as in the previous case. Observe that (BuYu) is also the same, so Yu must
also be the same after deleting the last two columns of zeroes.

It is not hard to calculate Yu and Yd. They are

Yu = 1

4λβ + β2 + 4pλ2

⎡

⎣
(2λ + β)(2pλ + β) 2(1 − p)λβ 0
β(2λ + β) + 4pλ2 2λβ 0

2λ(2pλ + β) (2λ + β)β 0

⎤

⎦ , Yd = 1

r

⎡

⎣
0 1 r − 1
0 1 r − 1
0 0 r

⎤

⎦ ·

It is obvious that Yd εεεu
′′′ = εεεd

′′′ . Furthermore, observe that

εεεu
′′′ pu := Yu Yd =

⎡

⎣
1
1
1

⎤

⎦
[
0
1

r

(r − 1)

r

]
.

So, even though both Yu and Yd are of rank 2, their product is of rank 1. This tells
us that all Un + Rn for n > 1 are iid, and independent of U1 + R1. First, observe that

po Yu(�)Yd = poGu(�)εεεu
′′′ pu = go(�)pu,

where go(�) := poGu(�)εεεu
′′′ = Pr(U1 < �). Then, from (11), pU2 = pu. Next define

g1(�) := pu Gu(�)εεεu
′′′ , then

[Yu(�) Yd]n = (Gu(�)εεεu
′′′ pu)

n = g1(�)
n−1Gu(�)εεεu

′′′ pu,
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and
po[Yu(�) Yd]nεεεu

′′′ = go(�) g1(�)
n−1.

The interpretation of this is simple. It is the probability that the system will fail at
least n times.

Next recall that pUn = pUn−1 Yu(�)Yd. This leads to [again from (11)]

pUn = pogn−2
1 Guεεεu

′′′ pu

pogn−2
1 Guεεεu

′′′ puεεεu
′′′ = gogn−2

1 pu

go gn−2
1

= pu.

In a similar manner, using all the formulas we have already written down, it follows
that

pRn = 1

g1(�)
pu Gu(�) Yu.

Thus, both pUn and pRn are independent of n > 1 (although pRn depends upon �).

6.3.2 Hyperexponential-2 Repair Time Distributions

When we consider more complex systems, the QQQ matrix grows ever bigger. But so
far we have gained little insight as to the internal structure beyond what we already
have described. Next, we will look at the hyperexponential distribution for repair.
But it becomes ever so tedious to find analytic expressions for the various matrices
(e.g., Yu, Yd, Vu, Vd and g1 and go). Numerical solutions will have to suffice.

The hyperexponential distribution with two components is defined as

R̄2(t) := p1 e
−λ1 t + p2 e

−λ1 t,

where p1 + p2 = 1. Again let b = 1 be cold backup and b = 2 be hot backup, p is
the probability that the second server will fail when the first server fails, and β is the
nominal failure rate of each server.

(a) Both Servers Must Be up Before RESTART

This scenario requires three UP states and six failed states. Then

Eu = {↑↑, ↑↓1, ↑↓2}

where the notation should be obvious, and

Bu =
⎡

⎣
b β −(1 − p) p1 b β −(1 − p) p2 b β

−λ1 β + λ1 0
−λ2 0 β + λ2

⎤

⎦ ·
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The failed states are listed below, where we must keep track of which server failed
first. If there are two repairmen, then it does not make a difference, but if there is
only one repairman, then he must continue repairing the first one that failed when
the second one fails.

Ed = {↓1↓2, ↓1↓1, ↓2↓1, ↓2↓2, ↓1↑, ↓2↑}

Then,

Bd =

⎡

⎢⎢⎢⎢⎢⎢⎣

λ1 + (r − 1) λ2 0 0 0 −(r − 1) λ2 −λ1

0 r λ1 0 0 −r λ1 0
0 0 λ2 + (r − 1) λ1 0 −λ2 −(r − 1) λ1

0 0 0 r λ2 0 −r λ2

0 0 0 0 λ1 0
0 0 0 0 0 λ2

⎤

⎥⎥⎥⎥⎥⎥⎦
·

Qud =
⎡

⎣
p b p1 p2 β p b p21 β p b p1 p2 β p b p22 β 0 0

p2 β p1 β 0 0 0 0
0 0 p1 β p2 β 0 0

⎤

⎦

and

Qdu =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
λ1 0 0
λ2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
·

It is not hard to show that Yu Yd = εεεu
′′′ [100], so once again we have a simple system.

As a last try, we look at H2 with one server up.

(b) RESTART Begins After One Server Is Repaired

As in the previous case, Eu = {↑↑, ↑↓1, ↑↓2}, and Bu is the same. Bd is different,
with

Ed = {↓1↓2, ↓1↓1, ↓2↓1, ↓2↓2}.

Note that ↓1↓2 and ↓2↓1 are different states, denoting the state of server that failed
first.

Bd =

⎡

⎢⎢⎣

λ1 + (r − 1) λ2 0 0 0
0 r λ1 0 0
0 0 λ2 + (r − 1) λ1 0
0 0 0 r λ2

⎤

⎥⎥⎦ ·

Qud =
⎡

⎣
p b p1 p2 β p b p21 β p b p1 p2 β p b p22 β

p2 β p1 β 0 0
0 0 p1 β p2 β

⎤

⎦
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and

Qdu =

⎡

⎢⎢⎣

0 (r − 1) λ2 λ1

0 r λ1 0
0 λ2 (r − 1) λ1

0 0 r λ2

⎤

⎥⎥⎦ ·

It is not worth the effort to find an analytic expression for Yu and Yd, since they can
be calculated easily numerically for specific values of the parameter. But we see that
yet again Yu Yd is of rank 1, being Yu Yd = εεεd

′′′ [0 p1 p2 ].

6.4 Model of a System Where YuYd Has Full Rank

Here, we present a simple model that plainly shows how and why correlation can
persist for many cycles. Consider a system with two servers which can process at
the same rate, but fail at different exponential rates (βi). Only one can run at a time,
and if it fails the system goes to the Down states. The Down states consist of two
repairmen who repair at different rates (λi). If coming from server i repairman j is
chosenwith probability pij (so pi1 + pi2 = 1).When the server is repaired, processing
restarts, with server m chosen with probability qkm when coming from repairman k.
The starting vector, po determines which server begins the process.

The QQQ matrix is

QQQ =

⎡

⎢⎢⎣

−β1 0 p11β1 p12β1

0 −β2 p21β2 p22β2

q11λ1 q12λ1 −λ1 0
q21λ2 q22λ2 0 −λ2

⎤

⎥⎥⎦

It easily follows (from Yu = Vu Qud, etc.) that

[Yu]ij = pij and [Yd]km = qkm.

Un and Rn look like they have hyperexponential distributions, but the starting prob-
abilities can be different for each epoch, thereforeEEE[Un] could be different for each
n. However, if q1j = q2j then the Un’s are iid with the same hyperexponential distri-
bution, and rank[Yd] = 1. The corresponding situation is true for Rn as well.

We have calculated some expectations using the following parameters: β1 = 1,
β2 = 3, λ1 = 2, λ2 = 4, po = [0.4, 0.6], p11 = 0.7, p21 = 0.3, q11 = 0.2, and q21 =
0.9. These were used in evaluating EEE[Xr(�)] from (14). pu, the left eigenvector
of Yu Yd was found to be pu = [0.5390625, 0.4609375], and was used in (16) to
calculate EEE[Xr(�|∞)]. The two expectations are close, differing by less than 0.125
∀�.We then used (17) to calculate the asymptotic values ofEEE[Xr(�|∞)]. Sinceβ1 = 1
is the minimum eigenvalue of Bu, the formula is of the form

EEE[Xr(�|∞)] ∼ f (�) = c1e
�∗1 + c2
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where c1 = pu(Vu + YuVdYd)εεεu
′′′ /[pu]1. In our case, c1 = 1.7716145/0.5390625.

c2 was found by fitting to the curve and found to be −1.55951229. The relative
difference was found to be

∣∣∣∣
EEE[Xr(�|∞)] − f (�)

EEE[Xr(�|∞)]
∣∣∣∣ < 0.0001 for � > 4.0

going to <10−6 by � > 5.5.

6.5 An Example of Numerical Evaluation of EEE[Xr]

In Sect. 5.3, we discussed how to deal with random job times. That involved evalu-
ating the integral in (18). Unfortunately except for the simplest of systems,EEE[Xr(�)]
from (14) can only be solved numerically. Thatmeans (18)must be integrated numer-
ically. This can be a problem if f (t) has an exponential tail, because the portion of the
integral from large t to∞ can contribute significantly to the total. One method would
be to perform a numerical integration up to some large tm, and then replaceEEE[Xr(t)]
with its asymptotic approximation, exp(tβm)/qu(tβm), and then perform the rest of
the integral analytically. We have chosen the brute force method for our example
here, letting Mathematica grind away to its heart content. It was computationally
time consuming, and if one were to make a parametric study of several systems, the
former technique would have to be employed. None-the-less, the results presented
in Fig. 3 were quite satisfactory for our purpose (Fig. 4).
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Fig. 3 Mean total time for system described in Sect. 6.3.2b.EEE[L] = 1, with three different task time
distributions. Det Deterministic; Exp Exponential; H2 2 phase Hyperexponential. Also included is
βm. All four curves vary with β, the failure rate for a single server. The figure is discussed fully in
the text
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Fig. 4 EEE[Xr(�)], EEE[Xr(�|∞)] and the asymptotic approximation of the model given in Sect. 6.4, as
a function of �. The formulas come from (14), (16), and (17)

The example chosen is taken from the previous section, part (2). That is,EEE[L] = 1,
p = 0, two exponential servers in cold backup (b = 1), one repair server (r = 1),
and Hyperexponential repair time distribution, with mean time=1, C2

v = 2, p1 =
0.2113248, λ1 = 0.4226497 and λ2 = 1.57735.

Our purpose is to see how EEE[Xr] varies as β increases. Three different trial func-
tionswere chosen forFL(t), all withEEE[L] = 1. They are: (1)Deterministic distribution
(L = � = 1); (2) the exponential f (t) = exp(−t); and (3) the same Hyperexponen-
tial distribution as the repair time distribution. Thus, (2) and (3) have a μm of 1.0
and 0.422649, respectively. The computations are presented in Fig. 3, together with
βm(β). Observe that as βm → 1 (at β = 2.09885) curve (2) goes to ∞. Similarly,
curve (3) goes to ∞ as βm(β) → 0.422649 (at β = 1.126203).

Also note that when βm ≥ μm the variance of the total time distribution becomes
infinite. In the cases here, this occurs at βm = 1.267592. for (2) and βm = 0.702453
for (3). We would expect that at these values performance would become unaccept-
able.

The inset in Fig. 3 shows the same curves for smallβ. Of courseEEE[Xr(β = 0)] = 1
in all cases, and grows very slowly, with an initial slope of 0. This is due to the
redundant servers, since at least two failures must occur before the system fails. (If
p had been set to some positive number, then the initial slopes would have been
positive.) As β increases all the curves begin to increase rapidly as they go their
individual merry ways to infinity.

So, we see that each system, and each job distribution has a value for β above
which RESTART can no longer be neglected, and a larger β above which the system
can no longer function properly.
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7 Asymptotic Behavior of Hr(x|�): Finding γ

So far, we have focussed on the mean value of the total time under RESTART.
First, we considered EEE[Xr(�)] for a fixed L = �, and then used (18) to average over
any jobtime distribution. Previously, Asmussen et al. [1] examined the asymptotic
behavior of H(x|�), ignoring the repair time. Since the number of failures must be
geometrically distributed, it is clear that H(x|�) goes to 0 exponentially as x → ∞.
They proved that the exponential parameter, γ (�), is the solution of the equation

∫ �

o
esγ (�)g(s) ds = 1,

where g(s) is the failure distribution. Most recently, using an approach related to that
used here, they proved a theorem which yields a value for γ which includes repair
and the mutual dependence between UP and DOWN. We summarize that here, and
discuss simplifications if the Y’s are rank 1.

First, define the matrices

RRRdu(α) :=
∫ ∞

o
eαs [g(s)] ds =

∫ ∞

o
eαs[exp(−sBd)Bd Yd]ds

and

RRRud(α, �) :=
∫ �

o
eαs [g(s)] ds =

∫ �

o
eαs[exp(−sBu)Bu Yu]ds.

Then,

RRR(α, �) :=
[

0 RRRud(α, �)

RRRdu(α) 0

]
·

The matrix,RRR(α, �) has the same block structure as QQQ , where the diagonal blocks
are identically 0, and the off-diagonal blocks are as given above. Then using Theorem
3.1 from [1] that states

Theorem 4 There exists a γ = γ (�) such that spr[RRR(α = γ, �)] = 1 and constant
vectors cu(�) and cd(�) such that

Pr[X > x | i ∈ Eu] ≈ [cu]i e−γ x, and Pr[X > x | k ∈ Ed] ≈ [cd]k e−γ x

�

We note that the formula EEE[Xr] = ∫ ∞
0 Pr(Xr > x)dx and (17) suggest that γ (�) is

proportional to e−�βm for large �, and this can indeed be checked by comparison with
the expressions in [16]. This is also demonstrated in the example below.

spr[RRR(α, �)] can be brought into a more convenient form for computation by
observing the following.
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[RRR(α, �)]2 =
[
RRRudRRRdu 0

0 RRRduRRRud

]

so
spr[RRR(α, �)]2 = spr[RRR2] = max

[
spr[RRRudRRRdu], spr[RRRduRRRud]

]
.

It is straight-forward to show that

RRRud = {Iu − exp[−�(Bu − αIu)]} (Bu − αIu)
−1Bu Yu,

and
RRRdu = (Bd − αId)

−1Bd Yd.

For a given � these expressions can be evaluated for varying α, and by some root-
finding method, find where

spr[RRR(α, �)]2 = 1.

That value for α is γ (�).
Note thatRRRud andRRRdu do not commute, nor do Yu and Yd. But if either Yu or

Yd are of rank 1, the eigenvalue problem simplifies greatly. Note that if either is of
rank 1, then so are RRRudRRRdu and RRRduRRRud. Any such matrix can be written in the
form a′ b, where a′ and b are a column-row vector pair of appropriate dimension.
All such matrices have (at most) only one nonzero eigenvalue, and in fact,

spr[a′ b] = b a′.

(b a′ is a scalar.) This leads us to a corollary.

Corollary 4: Suppose that Yu = εεεu
′′′ pd, then

spr[RRRudRRRdu] = spr[RRRduRRRud] =
pd(Bd − αId)−1Bd Yd {Iu − exp[−�(Bu − αIu)]} (Bu − αIu)−1Bu εεεu

′′′ .
If Yd = εεεd

′′′ pu, then
spr[RRRudRRRdu] = spr[RRRduRRRud] =

pu {Iu − exp[−�(Bu − αIu)]} (Bu − αIu)−1Bu Yu (Bd − αId)−1Bd εεεd
′′′ .

Given any QQQ we are then presented with the task of finding that value of α which makes
these expressions equal 1, for each value of �.

7.1 Simplest Example for γ (�)

We take as our example the simplest case from Sect. 6.1, an exponential server with
failure rate, β, and a single exponential repair stage with rate λ. The various matrices
and vectors trivialize to:
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Yu = Yd = pu = pd = εεεu
′′′ = εεεd

′′′ = Iu = Id = 1.

Also, Bu = β, Bd = λ and Corollary 4 gives the following equation.

spr[RRR(α, �)]spr[RRRudRRRdu] = spr[RRRduRRRud] = spr[RRR]2 = λ

(λ − α)

β
[
1 − e−�(β−α)

]

(β − α)

γ (�) is that value of α which makes spr[RRR] = 1. This is a standard root-finding
problem with one difficulty. Even though α = β appears to be a root, it is not a
solution because it is also a root of the denominator. It turns out that γ (� = 0) = λ.
This makes sense for this simple system. When �β � 1 the probability that the job
will fail is also very small, but since we are looking at the tail of H(x|�), the job must
have failed at least once for x to be large. For this example, the repair distribution is
e−xλ.

In Fig. 5, log(γ ) approaches a straight line for every λ, and with the same slope.
In fact, as was asserted in the comment after Theorem 4, This infers that in general,

lim
�→∞ γ (�|λ) e�βm = a(λ),

where βm (the smallest eigenvalue of Bu) is the slope of the line, and is independent
of λ.
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Fig. 5 log[γ (�|λ, β)] as a function of � for λ ∈ {0.5, 1.0, 2.0, ∞ } and β = 1, for the simplest
system of one UP and one DOWN state. For this system, γ (0|λ, β) = λ
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8 Summary

We have examined arbitrary systems with repair that can be described by some
Markov model, and have derived a general equation for the mean system time for a
job that would take time � if there were no failures, but recovers under the RESTART
protocol. This includes dependence between failures and repairs. We then provided a
few examples. Next, we described systems where the job time comes from some dis-
tribution,F(t), and provide exampleswhereEEE[Xr] → ∞. Finally, we discussed γ (�),
the exponential tail for Hr(x|�), and how the formula for its computation simplifies
if either Y is of rank 1.
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Vacation Queueing Models of Service
Systems Subject to Failure and Repair

Oliver C. Ibe

Abstract We consider a queueing system that can randomly fail either when it is
idle or while serving a customer. The system can be modeled by a vacation queueing
system since it cannot serve customers when it is down; that is, the server is on a
forced vacation when the system fails. We provide the availability and performance
analysis of this system in this chapter.

Keywords Vacation queueing · Performance modeling · Availability analysis ·
Unreliable service

1 Introduction

System failure is a fact of life.No engineering device can be built such that it is failure-
free. When a system fails, it can either be repaired because the cost of repairing it is
far less than the cost of purchasing a new one, or it is abandoned because the cost of
repairing it is prohibitively high. Fortunately, most computer systems belong to the
first category of devices, and those are the subject of the discussion in this chapter.

A computer system can suffer one of two types of failures: hard failure and soft
failure. A hard failure requires the physical repair of the failed system, which usually
takes a long time because it requires the presence of the field services personnel. By
contrast, after a system has suffered a soft failure, no physical repair is required. The
system is restored to operation by means of a system reboot or some other repair
function that does not require the presence of the field services personnel. As long as
the system is down and is not being used for the intended service, it can be defined
as being on vacation.

In this chapter, we consider different ways of modeling system failure by vacation
models. Itmust be emphasized that the concept of server vacation as used by queueing
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theorists is slightly different from the way it is used to model systems that are subject
to failure and repair. In a classical vacation queueing system, the server takes a
vacation when there is no customer left in the system. There are two types of vacation
queueing systems: single vacation queueing systems and multiple vacation queueing
systems.

In a single vacation queueing system, when the server returns from a vacation
and finds at least one customer waiting, he exhaustively serves the customers, at the
end of which he takes another vacation. If there is no waiting customer when the
server returns from a vacation, the server waits until at least one customer is served
before commencing another vacation. Thus, in a single vacation queueing system,
the server takes a vacation after a busy period of nonzero duration.

In a multiple vacation queueing system, when the server returns from a vacation
and finds at least one customer waiting, he serves the customers exhaustively, as in
the single vacation queueing system, before commencing another vacation. However,
if he finds the system empty upon his return from a vacation, he immediately com-
mences another vacation. Thus, the difference between the single vacation queueing
system and the multiple vacation queueing system lies in the server’s behavior upon
his return from a vacation and finding the system empty.

The concept of server vacation in queueing systemswas first introduced byCooper
[1] and later analyzed more formally by Levy and Yechiali [2]. Vacation queueing
systems are widely used to model different communication and manufacturing sys-
tems. A good survey is given in [3], and complete textbooks have been dedicated to
the subject [4, 5].

In this chapter, we consider how to model different failure schemes by some form
of vacation queueing systems. In the next section, we define the system model and
introduce different vacation queueing systems to describe these models.

2 System Model

We consider a queueing system where customers arrive according to a Poisson
process with rate λ. The time to serve a customer is assumed to be exponentially
distributed with mean 1/μ, where μ > λ. The system is subject to breakdown and
repair. The breakdown can be scheduled or it can occur in a random manner. As
discussed earlier, when a breakdown occurs we define the system to be on vacation
since it can no longer serve customers when it breaks down. We consider two types
of vacations:

(a) A vacation scheme in which the server is forced to take a vacation at random
instants when a high priority event occurs. The high priority event is usually a
server breakdown. If the breakdown occurs while the server is busy serving a
customer, the customer’s service is abandoned and the repair of the system is
started. At the end of the repair, the preempted customer’s service is started from
the beginning. All customers that arrive while the system is being repaired are
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assumed to wait; that is, customer balking is not allowed. We refer to this case
as the “random vacation model.”

(b) A vacation scheme similar to case (a) above except that there are two types of
priority events, which occur independently of each other. In this case we assume
that there are two types of failures [6]:

(i) a hard failure that takes a long time to repair because it usually involves the
presence of the field services personnel who may not be on site when the
failure occurs

(ii) a soft failure that does not require the intervention of the field services
personnel because it can be fixed by an action such as system reboot and
thus takes a much shorter time to fix.

We refer to this case as the “differentiated random vacation model.”
The analysis of these models is the subject of the remainder of this chapter.

3 Analysis of the Random Vacation Model

In this model, we assume that only hard failures can occur and that customers can
continue to arrive and wait while the system is being repaired. The state of the system
is denoted by (r, k), where r is the number of customers and

k =
{
0 if the system is up
1 if the system is down

When the system is up, the time until it fails is assumed to be exponentially distributed
with mean 1/γ. Similarly, when the system is down, the time to repair it is assumed
to be exponentially distributed with mean 1/η. It is assumed that customers that
arrive while the system is down will wait for it to be repaired; that is, balking is not
allowed. Also, we assume that there is no defection from the queue when the server
is down; a customer will only leave the system upon the completion of its service.
Thus, the state transition-rate diagram of the model is shown in Fig. 1.

From local balance in Fig. 1 we have that

η

∞∑

r=0

Pr,1 = γ

∞∑

r=0

Pr,0 ⇒
∞∑

r=0

Pr,1 = γ

η

∞∑

r=0

Pr,0

1 =
∞∑

r=0

Pr,0 +
∞∑

r=0

Pr,1 =
(
1 + γ

η

) ∞∑

r=0

Pr,0 =
(

η + γ

η

) ∞∑

r=0

Pr,0

⇒
∞∑

r=0

Pr,0 = η

η + γ
,

∞∑

r=0

Pr,1 = γ

η + γ
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Fig. 1 State transition-rate diagram for the random vacation model

Thus, the availability of the system is

α =
∞∑

r=0

Pr,0 = η

η + γ
= (1/γ )

(1/γ ) + (1/η)
= MTBF

MTBF + MTTR
(1)

where MTBF is the mean time between failures and MTTR is the mean time to
repair; this is the traditional definition of availability.

Figure1 is a special type of Markov chain called a quasi-birth-and-death process,
which is usually analyzed via the matrix geometric method [7]. In this chapter we
propose an alternative solution method that uses the concept of state aggregation.
Specifically, let the states (r, 0) and (r, 1), r = 0, 1, 2, . . . , be lumped into a “super-
state” (r, x). That is, the superstate has the state transition-rate diagram shown in
Fig. 2.

The concept of state aggregation has been successfully used by other authors
such as [8, 9]. With respect to Fig. 2, the probability of being in the up phase (r, 0),
given that the process is in superstate (r, x), is α = η/ (η + γ ) . Let p0 denote the
probability that the process makes a transition from superstate (0, x) to superstate
(1, x). To make this transition, the process will be in phase 0, with probability α, and

Fig. 2 Superstate (r, x)
0,r

1,r



Vacation Queueing Models of Service Systems Subject to Failure and Repair 485

a customer arrives before a failure occurs, or the process is in phase 1 and a customer
arrives before repair is completed. Thus,

p0 = α

(
λ

λ + γ

)
+ (1 − α)

(
λ

λ + η

)
(2)

Similarly, let p1 denote the probability that the process makes a transition from
superstate (r, x) to superstate (r + 1, x), r ≥ 1. To make this transition, the process
will be in phase 0, with probability α, and a customer arrives before a failure occurs
or a customer departs, or the process is in phase 1 and a customer arrives before
repair is completed. Thus,

p1 = α

(
λ

λ + μ + γ

)
+ (1 − α)

(
λ

λ + η

)
(3)

Finally, let q1 denote the probability that the process makes a transition from super-
state (r, x) to superstate (r − 1, x), r ≥ 1. To make this transition, the process will
be in phase 0, with probability α, and a customer departs before a failure occurs or
a customer arrives. Thus,

q1 = αμ

λ + μ + γ
(4)

With these three probabilities defined we convert the continuous-time Markov chain
into a discrete-time birth-and-death process (equivalently, a random walk with a
reflecting barrier at 0 and with stay), as shown in Fig. 3. (A random walk with stay is
used to model a two-player game that can end in a tie. Thus, when a game ends in a
tie, neither of the players loses or gains; the value of each player’s net worth remains
unchanged, which is denoted by a self-loop as shown in Fig. 3.)

From local balance we have that

π0 p0 = π1q1 ⇒ π1 = π0

(
p0

q1

)

π1 p1 = π2q1 ⇒ π2 = π1

(
p1

q1

)
= π0

(
p0

q1

)(
p1

q1

)

x,1 x,2 x,3

0p

x,4

1p

x,0

01 p

1p 1p
1p

1q 1q
1q

1q 1q

111 qp 111 qp
111 qp 111 qp

Fig. 3 State transition diagram of superstates
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π2 p1 = π3q1 ⇒ π3 = π2

(
p1

q1

)
= π0

(
p0 p2

1

q3
1

)
= π0

(
p0

q1

) (
p1

q1

)2

π3 p1 = π4q1 ⇒ π4 = π3

(
p1

q1

)
= π0

(
p0

q1

) (
p1

q1

)3

In general,

πr = π0

(
p0

q1

) (
p1

q1

)r−1

r = 1, 2, . . . (5)

The normalization equation is

1 =
∞∑

r=0

πr = π0 +
∞∑

r=1

πr = π0

{
1 + p0

q1

∞∑

r=1

(
p1
q1

)r−1
}

= π0

{
1 + p0

q1

(
1

1 − [p1/q1]

)}

= π0

{
1 +

(
p0

q1 − p1

)}

where the sum holds only if q1 > p1; that is, we require that

q1 − p1 = α

{
μ − λ

λ + μ + γ

}
− (1 − α)

{
λ

λ + η

}
= α (1 − ρ)

{
μ

λ + μ + γ

}
− (1 − α)

{
λ

λ + η

}

= αμ (1 − ρ) (λ + η) − λ (1 − α) (λ + μ + γ )

(λ + μ + γ ) (λ + η)
> 0

that can be transformed to the inequality

αμ (1 − ρ) (λ + η) − λ (1 − α) (λ + μ + γ ) > 0.

From this it follows that

α {μ (1 − ρ) (λ + η) + λ (λ + μ + γ )} > λ (λ + μ + γ )

This means that

α >
λ (λ + μ + γ )

μ (1 − ρ) (λ + η) + λ (λ + μ + γ )
= ρ (λ + μ + γ )

(1 − ρ) (λ + η) + ρ (λ + μ + γ )
(6)

This implies that if the condition of Eq. (6) is satisfied, then

π0 = 1

1 +
(

p0
q1−p1

) = q1 − p1

q1 − p1 + p0
(7)
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Under the condition of Eq. (6), the expected number of customers in the system is

E[N ] =
∞∑

k=1

kπk = π0

(
p0
q1

) ∞∑

k=1

k

(
p1
q1

)k−1

= π0

(
p0
q1

) ∞∑

k=1

kβk−1 = π0

(
p0
q1

){
1

(1 − β)2

}

= π0 p0q1
(q1 − p1)2

= p0q1
(q1 − p1) (q1 − p1 + p0)

(8)

where β = p1/q1.

It is often assumed that a system that is subject to server breakdown can be
modeled by a preemptive priority queue. However, as noted by Heathcote [10],
one of the differences between a queue with server breakdown and a preemptive
priority queue is that a queue of breakdowns cannot occur. There can be only one
interruption at a time; multiple interruptions cannot be queued in the same way that
priority customers can be queued. Thus, the preemptive priority queue model cannot
represent a queue with server breakdown.

To obtain themean delay E[T ]weproceed as follows. Consider a tagged customer
who arrives at the system. Since Poisson arrivals see time averages [11], the mean
delay of the customer is made up of two parts:

(a) Themean time E[R] to complete the current service, if a customer was receiving
service upon the tagged customer’s arrival; or the mean time to complete the
server repair, if the system was down and was being repaired when the tagged
customer arrived.

(b) The mean time E[T1] to serve the customers that were waiting when the tagged
customer arrived.

Let M denote the number of times that a customer is preempted until service
completion. That is, the customer is preempted M − 1 times and at the M th attempt
the customer successfully completes service without interruption. Let v denote the
probability of service completion without interruption. Thus, M is a geometrically
distributed random variable with success probability v, mean E[M] = 1/v, and its
probability mass function (PMF) is given by [12]

pM(m) = v(1 − v)m−1 m = 1, 2, . . .

As discussed earlier, let X denote the time to serve a customer without interruption
and Y the time to repair the server when it fails. Since the service time and repair
time are exponentially distributed, from random incidence, the mean residual service
time of a customer is 1/μ, and the mean residual repair time is 1/η. Thus,

E[R] = 1 − α

η
+ αρ

{
1

μ
+

(
1

μ
+ 1

η

) (
1

v
− 1

)}

This result can be explained as follows. The first term on the right is themean residual
service time, which occurs when the server is being repaired. The second term is the
mean residual service time when the server is up but busy. The second term within
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the curly brackets accounts for the service time being interrupted on the average
(1/v) − 1 times and the first term within the brackets is the mean uninterrupted
service time. Similarly,

E[T1] =
{
1

μ
+

(
1

μ
+ 1

η

) (
1

v
− 1

)}
{E[N ] + 1}

which follows from the same reason given above. Thus,

E[T ] = E[R] + E[T1] = 1 − α

η
+

{
1

μ
+

(
1

μ
+ 1

η

) (
1

v
− 1

)}
{αρ + E[N ] + 1}

(9)
The probability that no failure occurs over an interval of a service time is

v =
∫ ∞

0
e−γ x fX (x)dx =

∫ ∞

0
e−γ xμe−μxdx = μ

μ + γ

where fX (x) is the probability density function (PDF) of X . Applying this result to
Eq. (9) we obtain

E[T ] = 1 − α

η
+

{
1

μ
+

(
1

μ
+ 1

η

)(
γ

μ

)}
{αρ + E[N ] + 1} (10)

Observe that when α = 1 ⇒ γ = 0, we obtain

E[T ]α=1 = 1

μ
{ρ + E[N ] + 1}

which is the sum of the mean residual service time, the mean service time for all
waiting customers when the tagged customer arrived and the mean service time of
the customer.

3.1 Numerical Results

The problemof the performance analysis of queueing systemswith server breakdown
has been studied byWhite and Christie [13], Miller [14], Gaver [15], Avi-Itzhak and
Naor [16], and Mitrany and Avi-Itzak [17] as preemptive priority queueing systems.
In this case, the times between occurrence of a breakdown is essentially the inter-
arrival time of the high priority customer, and the repair time is the service time of
the high priority customer. Since we assume that the service time of a high priority
customer (i.e., repair time) is exponentially distributed, both preemptive resume
and preemptive repeat disciplines have identical results because of the forgetfulness
property of the exponential distribution.
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For a two priority queueing system, it can be shown (see Ibe [18]) that the mean
delay in the system for the lower priority customer is given by

E[TPRIO] = (1/μ)

1 − u
+ γ E[Y 2] + λE[X2]

2 (1 − ρ − u) (1 − u)
= 1

μ (1 − u)
+ γ

(
2/η2

) + λ
(
2/μ2

)

2 (1 − ρ − u) (1 − u)

= 1

μ (1 − u)
+ u/η + ρ/μ

(1 − ρ − u) (1 − u)
(11)

where u = γ /η = (1 − α) /α.

We assume that α = 0.95, μ = 1 ⇒ λ = ρ, 1/γ = 1000. This implies that
γ = 0.001 andη = 0.019. Table1 compares the mean delay versus the server’s
utilization factor for the current model, denoted by E[T ], with the results from
the Mitrany–Avi-Itzak method, denoted by E[TMAvi]; the Avi-Itzak–Naor method,
denoted by E[TAvi-Naor]; and the priority model, denoted by E[TPRIO]. From the
table we observe that the different models perform approximately identically for low
to medium server utilization. However, at high values of server utilization there is
noticeable difference in their behavior, which stems from the way the models are
defined. As discussed earlier, the priority model assumes that a queue of breakdowns
can occur, which means that high priority customers (i.e., failures) can accumulate.
This tends to overestimate the mean delay of the low priority customers.

Table 1 Mean delay versus server utilization for different models

ρ E[T ] E[TMAvi] E[TAvi-Naor] E[TPRIO]
0.05 4.3612 3.8674 3.8889 4.3728

0.10 4.4935 4.0698 4.1176 4.6308

0.15 4.6301 4.2945 4.3750 4.9212

0.20 4.7767 4.5455 4.6667 5.2504

0.25 4.9372 4.8276 5.0000 5.6268

0.30 5.1155 5.1471 5.3846 6.0614

0.35 5.3166 5.5118 5.8333 6.5688

0.40 5.5476 5.9322 6.3636 7.1688

0.45 5.8184 6.4220 7.0000 7.8895

0.50 6.1440 7.0000 7.7778 8.7712

0.55 6.5477 7.6923 8.7500 9.8749

0.60 7.0685 8.5366 10.0000 11.2963

0.65 7.7760 9.5890 11.6667 13.1957

0.70 8.8090 10.9375 14.0000 15.8629

0.75 10.4891 12.7273 17.5000 19.8815

0.80 13.7683 15.2174 23.3333 26.6270

0.85 23.2677 18.9189 35.0000 40.3003



490 O.C. Ibe

4 Analysis of the Differentiated Random Vacation Model

We now extend the random vacation model to permit hard and soft failures. The hard
failure rate is γ1, the soft failure rate is γ2, the hard failure repair rate is η1 and the
soft failure repair rate is η2. The state of the system is represented by (r, k) where r
is the number of customers in the system and

k =
⎧
⎨

⎩

0 if the system is up
1 if the system is down due to hard failure
2 if the system is down due to soft failure

Figure4 is the state transition-rate diagram of the process. This is essentially a dif-
ferentiated forced vacation queueing system.

Note that this model is different from the standard differentiatedmultiple vacation
queueing model reported in [18]. In the standard differentiated multiple vacation
queueing model the server takes a type 1 vacation after completing a busy cycle that
includes serving at least one customer. If the server returns from a type 1 vacation
and finds no customer waiting, he commences a type 2 vacation of a shorter duration.
In the differentiated random vacation model, the vacation types are defined by the
type of failure that occurs rather than serving all waiting customers.

From local balance in Fig. 4,

η1

∞∑

r=0

Pr,1 = γ1

∞∑

r=0

Pr,0 ⇒
∞∑

r=0

Pr,1 = γ1

η1

∞∑

r=0

Pr,0

η2

∞∑

r=0

Pr,2 = γ2

∞∑

r=0

Pr,0 ⇒
∞∑

r=0

Pr,2 = γ2

η2

∞∑
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Fig. 4 State transition-rate diagram of the differentiated random vacation model
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Fig. 5 Superstate (r, y)
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Pr,0 +
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Pr,2 =
(
1 + γ1

η1
+ γ2

η2
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r=0

Pr,0

=
(

η1η2 + γ1η2 + η1γ2

η1η2

) ∞∑

r=0

Pr,0

⇒
∞∑

r=0

Pr,0 = η1η2

η1η2 + γ1η2 + η1γ2

∞∑

r=0

Pr,1 = γ1

η1

{
η1η2

η1η2 + γ1η2 + η1γ2

}
= γ1η2

η1η2 + γ1η2 + η1γ2

∞∑

r=0

Pr,2 = γ2

η2

{
η1η2

η1η2 + γ1η2 + η1γ2

}
= η1γ2

η1η2 + γ1η2 + η1γ2

The availability of the system is given by

α =
∞∑

r=0

Pr,0 = η1η2

η1η2 + γ1η2 + η1γ2
(12)

We use the same clustering scheme used for the hard-failure-only model by noting
that in the present case there are three phases in each level. Thus, the superstate
structure is shown in Fig. 5.

The only difference between this model and the previous one is the new value of
the availability, α. Thus, the analysis is exactly the same as that of the two-phase
superstate.

5 Extension of the Random Vacation Model: System
with Customer Balking

An extension of the random failure model is to introduce customer balking when the
server is down. This means that when the server is down some customers choose to
join the queue while others choose not to join the queue. Let φ denote the probability
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Fig. 6 Markov chain for system with customer balking

that a customer arriving when the server is down actually joins the queue; thus, with
probability 1 − φ an arriving customer does not join the queue. Thus, the effective
arrival rate when the server is down is λφ. The Markov chain for this case is shown
in Fig. 6.

The only modification to the original model is a new value for pi , i = 0, 1. These
new values are:

Table 2 Values of E[T ] for different values of φ

ρ φ = 1 φ = 0.5 φ = 0.4 φ = 0.3 φ = 0.2

0.05 4.3612 4.3503 4.3464 4.3416 4.3350

0.10 4.4935 4.4839 4.4800 4.4746 4.4665

0.15 4.6301 4.6211 4.6173 4.6117 4.6029

0.20 4.7767 4.7680 4.7641 4.7584 4.7489

0.25 4.9372 4.9283 4.9243 4.9182 4.9079

0.30 5.1155 5.1061 5.1018 5.0952 5.0838

0.35 5.3166 5.3064 5.3017 5.2944 5.2815

0.40 5.5476 5.5362 5.5309 5.5226 5.5078

0.45 5.8184 5.8052 5.7991 5.7894 5.7720

0.50 6.1440 6.1283 6.1209 6.1093 6.0882

0.55 6.5477 6.5283 6.5192 6.5047 6.4783

0.60 7.0685 7.0434 7.0315 7.0127 6.9781

0.65 7.7760 7.7415 7.7251 7.6991 7.6514

0.70 8.8090 8.7574 8.7329 8.6940 8.6225

0.75 10.4891 10.4012 10.3596 10.2937 10.1728

0.80 13.7683 13.5803 13.4920 13.3525 13.0992

0.85 23.2677 22.5758 22.2584 21.7664 20.9014

0.90 526.7141 267.4225 216.3477 165.5295 114.9660
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p0 = α

(
λ

λ + γ

)
+ (1 − α)

(
λφ

λφ + η

)

p1 = α

(
λ

λ + μ + γ

)
+ (1 − α)

(
λφ

λφ + η

)

Substituting these modified values of p0 and p1 into the mean delay obtained for the
original model we obtain the solution to the new problem.

Table2 shows the mean delay for different values of φ, where φ = 1 corresponds
to the original model where there is no customer balking. It can be observed that as
the probability of balking, 1 − φ, increases, the mean delay slightly decreases.

6 Extension of the Random Vacation Model: System
with Full and Partial Service

In some applications the service rate is not completely zero when the system is down.
Instead the system operates at a reduced service rate when the system is down. Thus,
another extension of the random failure model is the case where the server can render
partial service when it is down and full service when it is up. This is similar to the
working vacation queueing model [19] where the server provides service at a reduced
rate rather than completely stopping service when he is on vacation. Thus, in this
extension we assume that there are two service rates: μ1, which is the service rate
when the system is up, and μ2 < μ1 is the service rate when the system is down.
Figure7 is the state transition-rate diagram of the model.
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3,1
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0,1
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1 1 1 1

2 2 2 2

Fig. 7 Markov chain for system with full and partial service
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In this case we obtain the following parameters:

p0 = α

(
λ

λ + γ

)
+ (1 − α)

(
λ

λ + η

)

p1 = α

(
λ

λ + μ1 + γ

)
+ (1 − α)

(
λ

λ + μ2 + η

)

q1 = α

(
μ1

λ + μ1 + γ

)
+ (1 − α)

(
μ2

λ + μ2 + η

)

Substituting these modified values of p0, p1 and q1 into the mean delay obtained for
the originalmodel we obtain the solution to the new problem.Assume thatμ2 = cμ1.

Table3 shows the mean delay for different values of c, where c = 0 corresponds
to the original model. From the table we observe that as c increases the mean delay
decreases. The impact is more drastic at high values of the offered loan.

Table 3 Values of E[T ] for different values of c

ρ c = 0 c = 0.2 c = 0.3 c = 0.4 c = 0.5

0.05 4.3612 4.3189 4.3152 4.3132 4.3118

0.10 4.4935 4.4437 4.4372 4.4333 4.4306

0.15 4.6301 4.5739 4.5646 4.5588 4.5547

0.20 4.7767 4.7134 4.7012 4.6931 4.6874

0.25 4.9372 4.8650 4.8495 4.8389 4.8312

0.30 5.1155 5.0320 5.0125 4.9988 4.9887

0.35 5.3166 5.2185 5.1940 5.1766 5.1635

0.40 5.5476 5.4301 5.3993 5.3770 5.3601

0.45 5.8184 5.6747 5.6356 5.6069 5.5849

0.50 6.1440 5.9637 5.9133 5.8759 5.8470

0.55 6.5477 6.3146 6.2482 6.1984 6.1597

0.60 7.0685 6.7550 6.6647 6.5969 6.5439

0.65 7.7760 7.3321 7.2043 7.1082 7.0334

0.70 8.8090 8.1331 7.9415 7.7982 7.6870

0.75 10.4891 9.3397 9.0263 8.7953 8.6181

0.80 13.7683 11.4021 10.8121 10.3910 10.0755

0.85 23.2677 15.8289 14.3767 13.4150 12.7312

0.90 526.7141 32.7260 25.3298 21.5480 19.2514
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7 Conclusion

This chapter analyzes the failures of service systems by vacation queueing models.
Specifically, when a system can encounter only one type of failure at any random
time, including when the system is idle, it can be modeled by a random vacation
queueing system. This differs from the traditional single vacation and multiple vaca-
tion queueing models because in the traditional vacation schemes, the server goes on
vacation when there is no customer in the system. However, in the random vacation
model, the server can go on vacation at any time when the system fails.

When a system can suffer either a hard failure or a soft failure at any time, we
model it by a differentiated random vacation queueing system. This is also different
from the traditional differentiated vacation queueing system where vacations are
taken when there is no customer in the system.

The random vacation models assume that there is neither customer reneging nor
customer balking when the system is down. They also assume that when the system
is down the service rate is zero. However, there are systems that provide partial
customer service in the downstate. The versatility of the state aggregation method is
demonstrated in its ease of use in the analysis of the models.
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Combined Simulation and Testing Based
on Standard UML Models
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Abstract The development of complex software and embedded systems is usually
composed of a series of design, implementation, and testing phases. Challenged
by their continuously increasing complexity and high-performance requirements,
model-driven development approaches are gaining in popularity. Modeling lan-
guages like UML (Unified Modeling Language) cope with the system complexity
and also allow for advanced analysis and validation methods. The approach of Test-
driven Agile Simulation (TAS) combines novel model-based simulation and testing
techniques in order to achieve an improved overall quality during the development
process. Thus, the TAS approach enables the simulation of a modeled system and the
simulated execution of test cases, such that both system and test models can mutually
be validated at early design stages prior to expensive implementation and testing on
real hardware. By executing system specifications in a simulation environment, the
TAS approach also supports a cheap and agile technique for quantitative assessments
and performance estimates to identify system bottlenecks and for system improve-
ments at different abstraction levels. In this chapter we will present the current status
of the TAS approach, a software tool realization based on the Eclipse RCP, and a
detailed example from the image processing domain illustrating the methodology.
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1 Introduction

Rapid and efficient development of complex hardware and software systems for
telecommunication, automotive, or medical applications needs support from dedi-
cated tool chains and customizedmodeling environments. Model-driven engineering
(MDE) [1] is a promising approach to address the complexity that is inherent in each
technical system. MDE is combining two technologies that may help to overcome
the complexity hurdle:

• Domain-specific modeling languages (DSML) focus on particular application
domains like automotive or telecommunications.

• Transformation and generation mechanisms support the analysis of specific model
artifacts in order to generate simulation or source code and alternative model
representations. An automated transformation process also ensures the consis-
tency between application development and the assurance of functional and extra-
functional requirements like timing aspects, reliability, or performance issues cap-
tured by model artifacts.

By providing different abstraction levels and distinct model types, which are
standardized by the Object Management Group (OMG) in the Unified Modeling
Language (UML) [2], the OMGModel-Driven Architecture (MDA) [3] offers basic
concepts and techniques to specify a system independently of the platform that sup-
ports it:

1. Starting from a Computation Independent Model (CIM) that specifies the system
functionality without showing constructional details,

2. a Platform-Independent Model (PIM) is derived by adding architectural knowl-
edge, at the same time hiding details of the platform used.

3. Finally, a Platform-Specific Model (PSM) arises when all elements and services
are added that complete the target platform.

The main advantage of having different views of the same system (see Fig. 1)
is to include domain and business experts, as well as software architects and IT

ViewViewViewViewAbstract views

Model
Transformation

Model

Complex
system

Functional and
extra-functional
abstractions

Fig. 1 Relationship between views, models, and system (Reproduced from [1])
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specialists in the overall development process, whereby dedicated models focus on
different tasks. In an iterative modeling process model transformations support the
refinement of the models up to a formal, precise, and detailed specification that will
be the basis for implementing and testing the system.

In order to handle specific issues, OMG provides standardized UML profiles that
can be combined with normal UML models. For example, the profile for System
Modeling Language (SysML) [4] enables modeling of requirements for embedded
systems in greater detail. Extra-functional properties, time, and analysis details are
expressed by the profile for Modeling and Analysis of Real-time and Embedded sys-
tems (MARTE) [5] profile, while UML Testing Profile (UTP) [6] is used to consider
testing aspects.

Test-driven Agile Simulation (TAS) [7] intends to improve the overall quality
of the development process by combining UML-based engineering, simulation, and
testing techniques [8]. The TAS approach assists the transformation of specification
models to executable simulation code and uses standardized model-to-text transfor-
mation methods. By simulating a given system and running tests on it, TAS provides
an agile technique to validate specification models at an early stage of the devel-
opment process. To express extra-functional requirements and testing details for
embedded systems, TAS offers the possibility to integrate model extensions that
conform to the SysML, MARTE, and UTP profiles.

This practice is also applied in recent industrial design and development processes,
and was evaluated in the European research project COMPLEX [9] for building
complex systems. In contrast to the methodology used in COMPLEX, the TAS
approach concentrates the verification and validation (V&V) activities on simulation
and testing and also involves the UTP profile.

Because UML profiles may handle the same modeling aspect in different ways,
model interferences and inconsistencies may appear. For instance, SysML and
MARTE provide quite different approaches for the specification of quantitative val-
ues, e.g., for time or duration. We therefore showed in a recent paper how to avoid
model interferences for test-driven agile simulations based on standardized UML
profiles [10].

Avoiding model interferences was also a topic that has been tackled within the EU
funded MADES [11] project. Using the MADES language it is possible to restrict
SysML andMARTE profiles to a consistent model subset. V&V activities during the
development cycle focus on analyzing temporal properties of the components instead
of testing. Hence, validation in the context of MADES is mostly time-related.

Since the benefits of standardized graphical languages and simulation-based test-
ing have been recognized, several efforts have been undertaken in that area. In
this context, mention can be made of the tool environments Matlab/Simulink1 or
SCADE 2 that are often used in practice for the development of embedded systems.
Both also offer solutions for the integration of UML-/SysML-based modeling tech-
niques within a combined simulation and test environment. However, the tools used

1http://mathworks.com/products.
2http://www.esterel-technologies.com/products.

http://mathworks.com/products
http://www.esterel-technologies.com/products
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are still very much tied to their own proprietary modeling languages. The notations
used in this case primarily support synchronous data flow-oriented paradigms. Thus,
both tool environments are rather more suitable for the development of control-
oriented systems. In contrast, TAS is seamlessly based on the standardized UML as
a more expressive and flexible common modeling language, which can also consider
nondeterministic, asynchronous systems.

Furthermore, numerous efforts have been considered so far to develop techniques
for deriving quality of service (QoS) properties from UML specifications using
diverse analytical techniques. For instance, in [12] the authors propose a frame-
work to transform UML models that are annotated, among others, with stereotypes
from the MARTE profile to Stochastic Reward Nets (SRNs). These SRNs are eval-
uated with the software package SHARPE3 [13] to obtain performability results. In
situations where the complexity of the system specification allows the application
of analytical techniques, these results will certainly provide a valuable insight in
the system under development. In contrast, however, the TAS approach aims on the
simulation-based, test-driven development and evaluation of complex systems.

In the following sections, we provide a modeling methodology for the TAS
approach by combining standardized UML profiles. We focus on strategies that
will avoid model interferences caused by overlapping specification parts that are
described by different UML profiles. We also show how tracing of functional and
extra-functional requirements can be achieved in the SimTAny tool environment.

2 Test-driven Agile Simulation

In this section, we introduce the concept of TAS. We start with the motivation for
the suggested approach, describing its main idea and the basic concept. Then, we
outline the most important features covered by TAS.

2.1 Idea and Concept of TAS

The development process of complex software and embedded systems usually con-
sists of a series of design, implementation, and testing phases, aligned to some formal
process model. Despite a large number of different process models, the development
typically starts with requirement definition followed by several specification, pro-
gramming, and testing steps. Due to a continuously increasing complexity of sys-
tems, the approaches based on formal modeling languages like UML are gaining in
popularity. On one side, modeling with graphical diagrams helps to deal with the
complexity. On the other side, formal specifications enable automated derivation of
the implementation code as well as of advanced analysis and validation capabilities.

3http://sharpe.pratt.duke.edu.

http://sharpe.pratt.duke.edu
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With our TAS approach, initially introduced in [7], we propagate the combination
of model-driven simulation and testing techniques to achieve an improved over-
all quality during the development process. Thus, our approach enables to derive
executable simulations from UML-based specifications of both the system and test
models in order to analyze a modeled system and to perform simulated tests on it at
early stages of the development process. This approach supports a cheap and agile
technique for design error detection as well as for first quantitative assessments and
performance estimates. Even prior to expensive implementation and testing on a real
system, potential drawbacks and bottlenecks in the system can be identified by the
use of simulation. By means of simulation it is also easily possible to investigate
and compare alternative designs and solutions at the level of models. Furthermore,
the early validation of the specification models helps to reduce development risks.
In order to achieve mutual validation of the system and test specifications, we sug-
gest starting with the specification of requirements and then to derive system and
test specifications independently and in parallel to each other from these common
requirements (see Fig. 2).

Solely based on UML and using its standardized extension profiles, the TAS
approach provides for the application of one common modeling language for differ-
ent design stages like requirements, system, simulation, and test design. Amongst
several obvious advantages of having a commonmodeling language, like simplifying
the communication between teammembers of different disciplines, ability to use only
one modeling tool, and cost savings, it also contributes to the quality improvement.
Thus, the traceability between relevant model parts can be easily created and exam-
ined. Furthermore, in distributed development teams and processes it is particularly
important to ensure a joint understanding of definitions and relations across different
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Fig. 2 Concept of test-driven agile simulation (Reproduced from [14])
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disciplines. Although specialized tools and languages have been established for each
discipline, it is nevertheless possible to use common UML-based specifications as
central documents shared during the development process, for instance, by applying
integration and transformation solutions as provided by ModelBus.4

2.2 Main Features

The TAS approach makes provisions for various aspects of the model-driven devel-
opment process. Among others, it covers modeling, model-based validation, simula-
tion code generation, and test as well as integrability and extendability for different
domains and development environments. In the following, we will shortly introduce
some of the main features of TAS (see also Fig. 2).

Modeling
As alreadymentioned, our approach is widely based onUML as a commonmodeling
language. Due to its general nature, UML is principally suitable for modeling in
several development stages, like requirements, system, simulation, and testmodeling,
which are addressed by the TAS approach. However, for specifications of domain-
specific aspects we propose a UML-based modeling methodology, which utilizes
several standardized UML extension profiles. As will be shown in detail in Sect. 3,
we apply a combined subset of OMG’s SysML, MARTE, and UTP profiles. In
particular, we use basic elements and diagrams of UML and apply SysML to specify
requirements, system blocks, port directions, and traces between requirements and
othermodel elements. A number of stereotypes of several sub-profiles ofMARTE are
used, for example, to characterize analysis aspects and extra-functional properties, to
introducenondeterminism, and todescribeHW/SWallocation.UTPprofile is utilized
to represent parts of the test model, like test contexts, test components, and test
cases. Additionally, our modeling methodology allows for use of the textual action
specification language ALF [15] and its library, which provides useful collection
types and operations.

However, the combination of different specialized profiles involves special chal-
lenges caused primarily by a number of semantic and syntactic overlappings between
different profiles. To overcome these challenges, we suggest a strategy of selective
combination of proper subsets of profiles presented in our previous work [10].

Verification and Validation
In order to improve the quality of a developed system and to increase the efficiency of
the development process itself, it is reasonable to perform verification and validation
activities as soon as possible. Our TAS approach enables validation of model-based
specifications at very early stages of the design phase. In addition to the known
verification andmodel checkingmethods, independent formal systemand testmodels
derived from the same requirements can serve for their mutual validation.

4http://www.modelbus.org.

http://www.modelbus.org
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At this point, our approach distinguishes between static and dynamic validation.
Static validation can be applied directly on the specificationmodels of both the system
and the test models. It consists of examination of constraints, which relates to the
staticmodeling aspects like structure, naming, constraints definitions and traceability
to requirements.

On the other side, dynamic validation aims to inspect the dynamic behavior of the
modeled system and its corresponding testmodel. On the level ofmodels the behavior
can be validated by executing test cases from the test model on the simulated system
model.

Transformation to Simulation Code
Since simulation plays an important role for validation and system’s behavior analysis
in TAS, our approach assists an automated transformation of the specificationmodels
to the executable simulation code. It consists of generation of the simulation code
from system models as well as from test models. Thereby, in the latter case we speak
about abstract test suites to differentiate the simulated test suites from those derived
for real tests on the implemented system.

Referring to the OMG standard for model-to-text transformationsMOFM2T [16],
a standardized transformation method can be applied to transform structural, behav-
ioral, and analytical elements fromUMLmodels to appropriate representations in the
desired simulation environment. The definition of such compatible mappings poses
the biggest challenge on this stage.

Above all, of course, discrete-event simulation tools are eligible for the purpose
of simulation due to the original time-discrete nature of UML and of most com-
puting systems. Thus, the focus of our approach is primarily on supporting the
transformation of time-discrete models for discrete-event simulators (see Sect. 4.3).
Nevertheless,with some limitations time-continuous aspects and systemsmay also be
represented with SysML and transformed to appropriate simulation tools, as shown
for instance in [17].

Simulation
On one side, the simulation code derived from a system model can be utilized for
design and performance analysis of the whole system. The generated simulation
represents in this case all active components of the system with their reproduced
behaviors. Running a simulation of the system one can first investigate its dynamic
behavior. Depending on the simulation tool, even interactive or stepwise execution
could be possible, which is particularly helpful for debugging. At the end of or even
during the simulation, predefined analytical values could be assessed. By modeling
different design solutions as specific parameter configurations, simulation tools can
provide support for parameter variation and searching for optimal solutions with
respect to the specified requirements.

Test
On the other side, abstract test suites generated from a test model serve for the sim-
ulated execution of tests. A test suite corresponds at the model level to the UTP’s
test context, which describes the configuration of a test consisting of a system under
test (SuT) with surrounding test components and contains a number of test cases.
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Depending on the type of a test, i.e., unit, integration, or system test, the SuT may
either be one system component, a set of components, or the whole system, respec-
tively. A test case is thereby usually represented as a sequence of interactions between
a SuT and test components.

After the transformation to a simulation code an abstract test suite largely consists
of simulated test components, which can create stimuli for the SuT and evaluate its
responses by comparing them with the expected results. While the behavior of test
components is simulated according to the currently executed test case, the behavior
of the SuT is coming from the embedded simulation code generated from the system
model. It is the task of each test component to determine its local verdict according to
the expected responses from the SuT. The verdict of a test case is then composed of
local verdicts of all containing test components. A failed or inconclusive test case first
indicates some inconsistencies in the system or test model, or event in the original
requirements model and requires a closer inspection of these models.

Analysis
The output provided by the simulation runs helps to assess different design solutions
or to predict the performance of a developed system. However, a comprehensive
statistical analysis of simulation results is often also needed. In order to facilitate this
task, our approach provides support for convenient calculation and visualization of
some basic measures.

Traceability
Traceability information about relationships between the requirements, the system
and test design, and their implementations is quite crucial for the development of
complex systems, since the traceability analysis can help to improve the develop-
ment process enormously. In general, traceability information helps to determine
the impact of an element on the other specification parts. Furthermore, traceability
analysis can provide coverage and traceability metrics to assist in localizing gaps or
inconsistencies in complex specifications.

Using SysML, requirements of the system to be developed can be represented
in UML models. They can be either directly defined in the model or imported from
specialized requirement management tools. Furthermore, SysML provides special
association types to define traceability links between requirements among themselves
or between requirements and elements that are determined to realize or to verify
requirements.

In order to maintain an overview of the many links and to advance traceabil-
ity analysis, the TAS approach summarizes traceability information in a dedicated
model. Such a traceability model largely includes references (traces) to the relevant
elements from the requirements, system, and test model. In addition, this model is
enriched with traceability links to the artifacts, like implementation or simulation
code, derived from the specification models. Our traceability model allows for clear
visualization of the traceability information and for easier navigation across different
modeling domains. Furthermore, traceability metrics can be easily calculated with
this model and potential gaps like unsatisfied or untested requirements can be easily
identified.
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Fig. 3 Service-oriented
architecture for TAS
(Reproduced from [14])
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Service-Oriented Architecture
The previously outlined features of the TAS approach require a broad tool support for
modeling, model transformations, simulation, and analysis. Of course, it is desirable
to have one integrated tool environment on a single workstation. For large distributed
processes or due to performance reasons it is, however, often required to source out
some designated functionality or rather to make it accessible as services over the
network. For instance, the simulation of large, complex models could be very time
and resource consuming or could require special system requirements.

Furthermore, to enable integration of the TAS approach into existing development
environments, the interoperability and loose coupling of heterogeneous tools via
ubiquitous standards is needed. Therefore, in [14] we suggested a service-oriented
architecture design [18] for the TAS approach (see also Fig. 3). The core of this
design consists of a central repository with several common services, for example,
services for registry, notification, or logging. The additional tools or components,
provided for TAS, can be either realized as external services or are even part of the
user front end. The communication between individual components is realized using
open standards and well-defined Web service interfaces.

3 The TAS Modeling Methodology for Image Processing
Systems

In this section, we illustrate how our modeling approach can be used for the design
of an image processing system. It should be mentioned that we have reported this
possible utilization of the TAS approach for the image processing domain in our



508 V. Schneider et al.

Fig. 4 Monocular vision
system for the autonomous
approach and landing using a
low-cost micro aerial vehicle
(MAV) system

previous works [19], but we now look at a concrete example. The system, which is
shown in Fig. 4, enables an off-the-shelf Parrot AR.Drone 2.0 low-budget quadrotor
micro aerial vehicle (MAV) to autonomously detect a typical helicopter landpad,
approach it, and land on it. To fly toward the landpad while accurately following
a trajectory, monocular simultaneous localization and mapping (SLAM) have been
used [20].

The workflow in this application is based on the monocular, stereo, and RGB-D
cameras as the main sensors and consists of the following steps: (1) exploitation of
the geometric properties of the circular landpad marker and detection of the landpad;
(2) determination of the exact flight distance between the quadrotor and the landpad
spot; (3) moving toward the landpad by means of monocular simultaneous local-
ization and mapping (SLAM); and (4) landing on the landpad. Development and
hardware details related to this application have been illustrated in [20].

The Parrot AR.Drone 2.0 is a low-cost quadrotor with a simple IMU and two
monocular cameras. The quadrotor features are 1 GHz, ARM Cortex-A8 processor,
32-bit 800 MHz DSP, and 1 GB of DDR2 RAM 200 MHz. Due to the complexity of
the computational tasks, the above-mentionedworkflowcannot be performeddirectly
on-board. Therefore, the quadrotor communicates with ground station through wire-
less LAN. The ground station receives video data, performs the computations, and
sends the generated steering commands back. In the example system, there are sig-
nificant delays in the communication between the quadrotor and the ground station,
as all the computations are performed externally. By means of simulation at the level
of models, we aim to investigate and to compare alternative designs and solutions
for the described system.
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Fig. 5 Simple SysML requirement model for the video stream control systems

3.1 Requirements Modeling

In the scope of TAS, the design specification starts with SysML-based modeling,
which involves the initial requirement specification. We have analyzed fundamental
requirements on the hardware and software architectures for the example system. The
requirements captured in text are represented and clustered directly in the model by
means of the SysML requirements and package diagrams.Main requirements, which
need to be considered to achieve a safe flying systemwith the minimum functionality
including the video stream control systems, are illustrated in Fig. 5.

The Camera requirement includes the description of the quadrocopt’s cameras: a
HD (1280*720) 30 fps front-facing camera and a QVGA (320*240) 60 fps bottom-
facing camera. During the video streaming, it shall be possible to switch between
two cameras in a short time (see Fig. 5).

3.2 Structure Modeling

Based on the specified requirements, the system model as well as the test model can
be created independent from each other in order to ensure their utilization for mutual
validation (see in Sect. 2.1). The aim of this specification phase is to design the sys-
tem architecture in terms of functional blocks. The functional and behavior aspects
of the block can be expressed using SysML block definition, internal block, and state
machine diagrams. Figure6 shows themain block definition diagram from our exam-
ple system. In addition to SysML concepts, the diagramwill include a set ofMARTE
concepts in order to specify a context in which the system should be analyzed. We
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Fig. 6 Example of a description of system components and their relationships using SysML block
definition diagram

Fig. 7 Example of data type and signal definitions

use the stereotype GaAnalysisContext applied to a separate block to specify which
of the blocks in the model should be analyzed. The platform attribute points to a
SystemArchitecture block that has a GaResourcesPlatfrom stereotype applied. It rep-
resents a logical container for the resources used in the analysis context. All system
components nested in this block will be simulated. The GaAnalysisContext block
can also include input and output parameters for the simulation, which are specified
with MARTE stereotype Var.

Figure7 shows the signals in our model. The signal ATcommand is used to man-
age the quadrotor during the flight. ImageSignal encapsulates application-level data
like images of the video stream for the transmission over the channel. Activate
CameraSignal is used to switch the camera during the video stream.
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Fig. 8 Composite structure for the system

The SysML internal block diagrams describe the internal structure of a block.
We use the SysML internal block diagram to model the system architecture.
Figure8 shows the internal structure of the SystemArchitecture block from our
model. The system consists of a Quadrotor Architecture and a groundStation.
ChannelControl is required for wireless simulation. It represents a system com-
ponent that keeps track of which nodes are within interference distance of other
nodes. IPv4NetworkConfigurator component assigns IP addresses and sets up static
routing for an IPv4 network. Using the SysML concepts of ports and the connectors,
it is possible to express communication links between various components.

3.3 Behavior Modeling

To model system behavior at a high level of abstraction, we primary use UML state
diagrams. The state machines representing the image processing algorithm for the
detection of the landpad in our model are shown in Figs. 9 and 10.

Figure9 shows the top-level behavior of the groundStation block. As the state
name wait for video stream indicates, the ground station waits in this state until it
receives an ImageSignal message. This is the trigger of the only transition leaving
from the wait for video stream state to the landpad detection state. The transition has
applied a MARTE stereotype GaStep that indicates subsequent occurrences of the
ImageSignal event which are of interest. The do behavior of the landpad detection
state invokes the detectionStateMachine behavior.

Figure10 shows the ground station behavior for the detection of the landpad.
The main transition is triggered by the reception of the Image signal. The algorithm
consists of the following main steps: (1) edge detection and (2) landpad matching.
In the first step, we detect the edges in the image. After that, we group detected
edges to a curve and check whether it contains the letter “H” [20], which indicates
the landpad. Once the letter is detected, the NotificationMsg must be sent out to the
quadrotor and the state machine moves into the final state.
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Fig. 9 State machine of the ground station

Fig. 10 System behavior building using SysML and ALF syntaxes

As exemplarily shown in Fig. 10 for the do activity of the state edge detection,
we can define detailed behaviors either using standard UML behavior diagrams, for
instance, like activity diagrams, or using a more compact high-level action language
ALF [15].

In order to express performance attributes of behavior steps, we can apply the
MARTE’s PaStep stereotype. For example, we specify that the response time of
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calling the landpad matching activity is required to match the given distribution.
To collect the statistics of interest during the simulation, one just have to apply an
additional MARTE expression source=calc on the corresponding property value.
In our example, we do so for rep and respT properties of PaStep stereotype on
landpad matching state to determine the number of repetitions and response time.
The collected data can then be analyzed for comparison with the expected result
by utilizing the analysis capabilities of our framework as it will be shown later in
Sect. 4.4.

3.4 Test Modeling

As a counterpart to the system modeling presented in the previous sections, the
modeling of test specifications can also be performed in UML. Thereby, quite similar
modeling paradigms can be applied as used for system modeling. Based on common
requirements a test designer has to specify proper tests for subsequent validation of
the system specification and later of its implementation. The purpose of these tests
is to determine whether the system satisfies the requirements.

To provide a complete test specification, one has first to define the context of a
test identifying the SuT and required test components. Figure11 shows an example
of a test context provided to test the behavior of the quadrotor component of our

Fig. 11 Example of a test context definition
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Fig. 12 Internal block diagram of a test context

example system. As already mentioned, we apply stereotypes of the UTP profile in
order to declare test relevant aspects.

Thus, using a SysML block definition diagram or UML class diagram, a test con-
text can be modeled as a structured block with the applied TestContext stereotype.
A test context consists of test components, SuT, and serves at the same time as con-
tainer for test cases.Whereas test components are simple blocks or classes containing
ports for communication and declared in the test model using the stereotype Test-
Component, SuT represents a block of the system specification model with its own
behavior. To identify the SuT in a test context, the property referencing the SuT is
marked with the SuT stereotype of UTP. The internal structure of the test context,
which defines connections between test components and SuT, can be represented by
the SysML internal block diagram, as shown in Fig. 12.

The behavior of test components is individually specified for each test case of
the owning context. Therefore, using UML sequence diagrams a test case can be

Fig. 13 Test case specification using UML sequence diagram
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Fig. 14 Modeling of traceability links to requirements from satisfying or verifying elements

defined in every detail. As shown in Fig. 13, a test case is represented as a sequence
of messages between the test component groundStation and the SuT sut_quadrotor.
This test case, for instance, checks whether the quadrotor is able to activate its front
camera and switch to the bottom camera appropriately after receiving appropriate
camera activation command messages from the ground station.

3.5 Traceability Modeling

Although it is not the case in themodeling example presented, in a strict requirement-
driven development process, nearly all system components and test cases shall relate
to corresponding requirements. To express these relations, SysML provides special
association links that can be assigned between requirements and other modeling
elements. In Fig. 14we showan example of traceability links defined for requirements
regarding camera switching of the quadrotor. As shown in the figure, elements exist
in the system specification, which satisfy the requirements and at least one test case in
the test model, which verifies them. Currently, an engineer has to specify andmanage
most traceability links manually. However, additional tool support for automatic
generation of traceability links while deriving model elements from requirements,
for instance, is certainly possible and is part of the ongoing work.

4 SimTAny Framework

The main features of the suggested TAS approach are widely supported by the
framework SimTAny (formerly introduced in [7] as ‘VeriTAS’) that will be fur-
ther extended. SimTAny integrates relevant tools with newly developed components
in a common environment based on the popular Eclipse RCP5 platform. Among
others, we utilize a UML modeling tool, a transformation framework, a simulation
engine, and an analysis tool (see Fig. 15). In the following, we will depict the main
features of our framework and describe their realization in some more details.

5http://wiki.eclipse.org/Rich_Client_Platform.

http://wiki.eclipse.org/Rich_Client_Platform
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Fig. 15 Overview of tools integrated in the SimTAny framework

4.1 Modeling

In order to support extensive modeling capabilities required for TAS, we apply the
open source modeling tool Papyrus,6 which is closely integrated with Eclipse. We
preferably use Papyrus, since it has been designed to exactly implement the UML
specification. All in all, it provides a very advanced modeling support for OMG
standards including UML-related SysML and MARTE profiles. Nevertheless, other
modeling tools, which can consistently export models into the OMG’ interchange
format XMI, can also be used instead of Papyrus.

In order to improve the modeling efficiency, our framework adds some exten-
sions to Papyrus. This primarily concerns the modeling of detailed behaviors and
expressions with ALF textual editors. The main reason for supporting ALF’s textual
notation is because specifying of a detailed behavior with a higher programming lan-
guage, in most cases, is much more compact, faster, and intuitive than with standard
UML behavior diagrams like state, activity, or sequence diagrams.

As it has been previously illustrated in Fig. 10 in Sect. 3.3, in principle, we can
always express detailed activities of a state with activity diagrams, for instance.
Because of the excessive complexity and inefficiency of this method, UML also pro-
vides the possibility to describe behaviors and expressions with a natural or program-
ming language encapsulated in a so-called OpaqueBehavior or OpaqueExpression
correspondingly. Thus, we apply the standardized action language ALF to directly
specify such expressions and behaviors at appropriate places in our models in a more

6http://eclipse.org/papyrus.

http://eclipse.org/papyrus
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compact and intuitive way. Among others, entry, exit, and do behaviors of a state as
well as guard conditions and effects of a transition in state diagrams are predestined
for ALF and thus are supported by appropriate text editors in SimTAny.

4.2 Static Validation and Verification

The special feature for static validation of system and test models, suggested for the
TAS approach, has been realized in our framework by means of the Eclipse EMF
validation framework.7 In order to achieve static validation and verification of the
models, we provide constraints to check, on the one hand, for inconsistencies in each
model separately and for compatible relations within the models to each other and to
their common requirements, on the other hand. The defects detected in thisway by the
framework are listed in the Eclipse problems’ view. Moreover, affected elements are
marked as erroneous in the model editor afterwards. It is further possible to navigate
from the problems listed in the view to corresponding elements in the model editor.
Although only few simple constraints are currently implemented in SimTAny, the
framework can be easily extended by new constraints.

4.3 Transformation to Simulation Code

Since the generation of the executable simulation code from UML models is one
of the most challenging issues in our approach, a solid methodology with exten-
sive tool support is required to perform this task. That is why we decided to build
upon the OMG’s standard MOFM2T [16] and its reference implementation, i.e., the
Eclipse Acceleo8 code generation framework. MOFM2T provides a template-based
model-to-text transformation language, where a template is a text containing spe-
cially marked areas that have to be generated accessing the elements of the input
model. Generally, any kind of text or code for any textual language (C++, Java,
Python) can be generated with this method. The framework Acceleo provides a code
generation engine along with tools to support the efficient development of code gen-
erators. Besides a comprehensive editor with syntax highlighting, error detection,
and auto-completion, it assists with a debugger, a profiler, and a traceability API.

With Acceleo we have implemented model-to-text transformation templates for
generation of the simulation code (see Fig. 16). In order to demonstrate the feasibil-
ity of our approach, we currently generate code that is executable with the simula-
tion engine OMNeT++.9 Nevertheless, our transformation module is designed to be

7http://projects.eclipse.org/projects/modeling.emf.validation.
8http://eclipse.org/acceleo.
9http://omnetpp.org.

http://projects.eclipse.org/projects/modeling.emf.validation
http://eclipse.org/acceleo
http://omnetpp.org
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M2T

Transformation templates

UML Artifacts (C++, NED)

Fig. 16 Template-based model-to-text transformation

extendable for other simulation engines, too. OMNeT++ is an open source discrete-
event simulator that is quite popular for simulation of communication networks.

An OMNeT++ simulation project (also called simulation model) typically con-
sists of active components (simple modules) programmed in C++ that are composed
of compound modules and networks using the OMNeT++’s ownNED language. Fur-
thermore, initialization files (ini) are used in OMNeT++ for additional configuration
of simulation experiments. Thus, as a result of the model-to-text transformation our
framework automatically generates C++, NED, and ini files of the complete simu-
lation model. As shown in Fig. 17 for our use case, the simulation model generated

Fig. 17 Simulation with OMNeT++
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can then be executed with OMNeT++ to analyze the behavior of the system (during
the simulation or afterwards using the event log).

4.4 Analysis

The output data collected during the simulation can be directly analyzed in our
framework, in the first instance, without prior external analysis tools being required.
Therefore, SimTAny provides a dedicated perspective for analysis where the simu-
lation results can be imported and visualized.

In the background, a very popular environment for statistical computing and
graphics, i.e., the R-Project,10 is applied to generate plots and to calculate statis-
tics of the data. Thus, for instance, the user can obtain an immediate overview about
the key statistical measures like the mean, median, deviation, or confidence intervals
of a data sample as well as to take a look at its time series, histogram, or box plots.
To illustrate this, Fig. 18 shows example plots and statistics generated for landpad
matching times observed during the simulation of our quadrotor model.

Fig. 18 Analysis of simulation results

10http://www.r-project.org.

http://www.r-project.org
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Fig. 19 TestView provides
an overview of tests
contained in a model, control
of test case execution, and
test verdict

4.5 Test

In order to support tests at the level of simulation models as described in Sect. 2,
along with the generation of simulation code from the system model our framework
provides the generation of executable OMNeT++ simulations for each test case con-
tained in the test model. In Sect. 3.4 we have demonstrated an example for modeling
of a test context and a test case. The user can obtain an overview of all test contexts
and test cases defined in the model in the dedicated test view (see Fig. 19). Once the
model has been transformed to the simulation code, the user can perform the execu-
tion of tests from this view. The verdict and eventual error reports of each completed
test run are then also accessible in the view.

4.6 Traceability

As already mentioned, our approach provides for a special model aimed to store
traceability information. Initially coming from specification models, this traceabil-
ity information is enriched with the traceability links to artifacts generated during
model-to-text transformations. Based on the Eclipse modeling framework EMF,11

the traceability meta model has been developed and integrated in our framework.
Instances of this model are created in SimTAny automatically from specification
models by performing a model-to-model transformation according to the OMG
standard specification (MOF) 2.0 Query/View/Transformation [21] supported by
the Eclipse component QVT Operational.12

Furthermore, using the traceability listeners mechanism provided by Acceleo,
SimTAny is able to collect traceability information during the code generation and
to add it to the related traceability model instance.

In order to provide a better overview about all available traceability information,
SimTAny provides a special traceability view (see Fig. 20). In this view the user can
inspect the relationships between elements in both directions starting either from the
requirements, from the system or test model elements, or even from the artifacts. The
view also provides special filters to show possible deficiencies such as unsatisfied or

11http://eclipse.org/modeling/emf.
12http://projects.eclipse.org/projects/modeling.mmt.qvt-oml.

http://eclipse.org/modeling/emf
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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Fig. 20 Traceability view to inspect traceability relationships between different model elements

untested requirements. Thus, for instance, the requirements that do not relate to any
test case can be easily detected for additional investigations.

Moreover, as depicted in Fig. 20, SimTAny allows easy switching from the trace-
ability view to other views or editors relevant for further inspection of the selected
element. In this manner, a model element occurring in the traceability view can be
opened in themodel editor, or a testmodel element can be shown in the corresponding
test view.

5 Conclusions

Due to the ever increasing complexity of hardware and software systems, model-
driven development methods and tools are gaining popularity as methods to fulfill
functional and extra-functional requirements like timing aspects, reliability, or per-
formance issues.

Model-driven engineering technique based on OMG’s UML and the MDA is a
promising practice to address the complexity that is inherent in each technical system.
The suggestedTASapproach improves the overall quality of the development process
by combining UML-based engineering, simulation, and testing techniques. TAS also
assists the transformation of specification models to executable simulation code and
uses MOFM2T, a standardized model-to-text transformation method.

By simulating a given system and running tests on it, TAS provides an agile tech-
nique to validate specification models at an early stage of the development process.
To express extra-functional requirements and testing details for embedded systems
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TAS offers the possibility to integrate model extensions that conform to OMG’s
SysML, MARTE, and UTP profiles.

In order to integrate the different tasks of the TAS approach we built the domain-
independent framework SimTAny, which is based on the Eclipse RCP platform.
Amongst other tools, we utilize the UMLmodeling tool Papyrus, the code generation
frameworkAcceleo, the simulation engineOMNeT++, and the analysis tool R,which
provides statistical measures and expressive plots. In addition, the Eclipse modeling
framework EMF is used to develop and integrate a traceability meta model in order
to store and exchange traceability information between different components.

Last but not least, we have shown how to apply TAS techniques for the develop-
ment of a concrete image processing system. Here, the main task was the design of
a system consisting of a quadrotor and a ground station that exchange image data
over a wireless IPv4 channel. Diverse models from different UML profiles are used
to specify functional and extra-functional properties of the overall system.

6 Future Work

Our ongoing work consists of proving more detailed hardware and software specifi-
cations for image processing systems by further elaboration of themodeling approach
presented and by extending the transformation rules for simulation code generation.

Since extensive improvements regarding theUMLmodeling tools are still required
to increase the efficiency of the model-based engineering, one part of our future work
will be to make the modeling in the context of the suggested approach more user
friendly. Thus, amongst others, to reduce the effort in creating and updating models,
dealing with different modeling views, profiles, and a large number of stereotypes,
we are developing appropriate extensions within the scope of our tool environment.
For the special domain of the modeling of image processing systems, we would like
to provide a modeling library, which will contain several predefined elements like
typical image operators and data types.

Furthermore, an extensive experiment design framework is being developed to
support model-based design and management of simulation experiments. Moreover,
in order to allow precise simulation of hardware, we intend to integrate SystemC13

in our simulation environment.
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Abstract Despite the fast evolution of cloud computing, up to now the characteri-
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standing of their properties and behavior is essential for an effective deployment of
cloud technologies and for achieving the desired service levels. While the general
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1 Introduction

Cloud technologies are being successfully deployed nowadays in many business
and scientific domains, such as e-commerce, e-government, engineering design and
analysis, finance, healthcare, web hosting, and online social networks. In particular,
these technologies provide cost-effective scalable solutions, thanks to the flexibility
and elasticity in resource provisioning and the use of advanced virtualization and
scheduling mechanisms [5, 13].

Cloud workloads consist of a collection of many diverse applications and ser-
vices, each characterized by its own performance and resource requirements and by
constraints specified in the form of service-level agreements (SLAs). A large number
of factors affect cloud performance, including, among others, the variability in the
resource and network conditions and the highly dynamic nature of the workloads,
whose intensity can suddenly grow or shrink as a consequence of the user inter-
actions. More specifically, the use of virtualized time-shared resources could lead
to performance degradation. This degradation is mainly due to the interference and
resource contention arising from the colocation of heterogeneous workloads on the
samephysical infrastructure and to the overheads caused by the resourcemanagement
policies being adopted. Similarly, the mix of workloads concurrently executed on a
given virtual machine (VM) can be responsible for some unpredictable effects on the
performance because of incompatible temporal patterns of the resource usage [74].
These performance issues could become even more critical in multicloud environ-
ments where the workload is distributed across different cloud infrastructures.

In these complex scenarios, mapping cloud resources to workload characteristics
is very challenging [43]. Nevertheless, it is of primary importance for an effective
deployment of cloud technologies and to achieve the desired service levels. Hence,
to address resource management, provisioning and online capacity planning, and,
more generally, to manage and predict performance and Quality of Service (QoS),
it is essential to gain a deep understanding of the properties and the evolution of
cloud workloads. Therefore, systematic and structured approaches toward workload
characterization have to be considered as an integral component of all these strategies.

Despite their importance, the characterization and forecasting of cloud workloads
have been addressed in the literature to a rather limited extent and mostly at the level
of the VMs without taking into consideration the features of the individual work-
load components running on the VMs themselves. The aim of this chapter is to
provide an overview of the main issues related to the entire life cycle of workload
deployment in cloud environments. More specifically, starting from the identifica-
tion of the most relevant behavioral characteristics of cloud workloads, we define
some broad workload categories described in terms of qualitative and quantitative
attributes. The chapter then focuses on the various workload categories and discusses
the challenges related to their monitoring, profiling, and characterization. This thor-
ough investigation of the state of the art is complemented by a literature review of the
exploitation of scheduling strategies and failure analysis and prediction mechanisms
of the framework of cloud workloads.



Workloads in the Clouds 527

The chapter is organized as follows. Section2 presents the categories identified for
cloud workloads, while Sect. 3 discusses the main issues related to their monitoring
and profiling. The workload structures and resource requirements are addressed in
Sects. 4 and 5, whereas the challenges related to workload scheduling and failure
analysis and prediction are briefly illustrated in Sects. 6 and 7, respectively. Finally,
Sect. 8 presents some concluding remarks.

2 Workload Categories

The term workload refers to all inputs (e.g., applications, services, transactions, data
transfers) submitted to and processed by an e-infrastructure. In the framework of
cloud computing, these inputs usually correspond to online interactions of the users
with web-based services hosted in the cloud or to jobs processed in batch mode. On
the contrary, cloud workloads almost never refer to hard real-time applications.

In this section, we analyze the behavioral characteristics of cloud workloads (i.e.,
their qualitative and quantitative attributes) to identify some broad categories speci-
fied in terms of various dimensions, namely:

• Processing model.
• Architectural structure.
• Resource requirements.
• Nonfunctional requirements.

The choice of these dimensions is mainly driven by their role in the formulation of
the cloud management strategies and in the assessment of the service levels foreseen
by the workloads.

Theprocessing model adoptedby theworkload, that is, online (i.e., interactive) and
offline (i.e., batch or background), is an important high-level dimension that identifies
two workload categories. These categories are characterized by very diverse behav-
iors and performance requirements as well as by a different impact on management
policies (e.g., resource scheduling, VM placement, VM migration). An interactive
workload typically consists of short-lived processing tasks submitted by a variable
number of concurrent users, whereas a batch workload consists of resource inten-
sive long-lived tasks. Hence, as we will discuss later on, these workload categories
exercise cloud resources to a rather different extent.

Another dimension chosen to classify cloud workloads focuses on their architec-
tural structure expressed in the form of processing and data flows characterizing each
individual application. More precisely, these flows are described by the number and
types of services or tasks being instantiated by a cloud application and their mutual
dependencies, and, as such, have a strong impact on the scheduling policies. In par-
ticular, multiple task applications can be organized according to different models,
namely:
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Fig. 1 Directed acyclic graph representing the data flow of a cloud application organized according
to a hybrid model

• Pipeline model.
• Parallel model.
• Hybrid model.

In the pipeline model, tasks need to be processed sequentially one after the other
with tight precedence constraints. On the contrary, in the parallel model, the tasks
are characterized by precedence constraints that allow for concurrent execution of
multiple tasks. In addition, these models are often combined in a sort of hybrid
architectural model where the relationships among tasks are usually more complex.
Figure1 shows an example of a directed acyclic graph that represents the data flow
of a simple cloud application organized according to a hybrid model. The nodes and
edges denote the datasets and relationships between them, respectively.

In the framework of scientific workloads, their description often relies on the
many-task computing (MTC) paradigm [67], an architectural structure consisting of
loosely coupled tasks and involving large volumes of data. Conversely, interactive
cloud applications are typically organized according to multitier architectures. As
we will discuss in Sect. 4, the interdependency among tiers and the patterns followed
by the applications strongly affect the deployment of scaling strategies in cloud
environments. Moreover, it is not always possible to derive a detailed view of the
workload structure because of the lack of specific design information.

The definitions of workload architectural structures do not include any details
about the behavioral characteristics of theworkload at runtime (e.g., resource require-
ments, scheduling events). Nevertheless, qualitative attributes (e.g., priority, termi-
nation status) andquantitative attributes (e.g.,workload intensity, demands andusage
patterns of cloud resources) are very relevant to devise accurate resource allocation
strategies. In particular, quantitative attributes provide a detailed characterization of
the computing, communication, and storage requirements of the workload and have
to be assessed very carefully to avoid overprovisioning or underprovisioning of the
resources (e.g., CPU, memory, I/O, network).
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Fig. 2 Examples of a diurnal pattern characterizing the workload arrivals (a) and a periodic pattern
describing the CPU usage (b)

Depending on the amount of resources used, workloads are classified as:

• Compute intensive or I/O intensive.
• Elastic or bandwidth sensitive.

Generally speaking, we can say that network bandwidth is more critical for online
interactive workloads, whereas storage and computing resources often characterize
batch workloads. Moreover, the resource requirements of some workloads are stable
(i.e., uniformly distributed over their execution), whereas other workloads (e.g.,
workloads associated with online services) exhibit some specific temporal patterns,
such as periodic, bursting, growing, and on/off. These patterns typically depend on
the intrinsic characteristics of the applications, aswell as on theworkload intensity. In
detail, patterns can refer to a single resource or multiple resources. A communication
intensive phase can be followed by a compute intensive phase. Similarly, during the
execution of an application, the bandwidth usage can change and follow some specific
patterns.

As already pointed out, cloud workloads consist of streams of jobs and requests
submitted at unpredictable times. Hence, their arrival process is seldom determinis-
tic. It is often characterized by various effects (e.g., diurnal patterns, seasonal effects,
flash crowd phenomena). In general, the burstiness in the workload intensity and
heavy load conditions cause sudden and unexpected peaks in the resource demands
that have a critical impact on resource provisioning strategies. Figure2 shows two
examples of qualitative patterns, namely, a diurnal pattern typically associated with
the intensity of interactive workloads and a periodic pattern corresponding to CPU
usage.

An additional dimension describing the workload refers to nonfunctional require-
ments related to SLA constraints (e.g., performance, dependability, security). Among
these attributes reliability is particularly important in cloud environments especially
when deploying business-critical or safety-critical applications. Reliability denotes
the probability that workloads can successfully complete in a given time frame. The
presence of failures decreases the reliability. Failures are due to various types of
events (e.g., software bugs, exceptions, overflows, timeouts). For example, for data
intensive workloads, a sudden increase in the rate at which data are submitted for
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processing can lead to failures, thus making the service unavailable. Moreover, fail-
ures are often correlated, that is, they often occur between dependent or colocated
services or applications.

The remainder of the chapter focuses on the approaches typically adopted for
monitoring and characterizing the workload categories presented in this section. The
issues related to workload scheduling and failure analysis will also be discussed.

3 Workload Monitoring and Profiling

Monitoring and profiling are the basis for measuring the qualitative and quantita-
tive attributes of the workloads. Generally speaking, monitoring keeps track of the
activities performed by the workloads being processed and of the status of the allo-
cated and the available resources. Profiling focuses on describing how workload
exploits the cloud resources. Monitoring and profiling in the clouds are particularly
difficult because of the heterogeneity and dynamicity of these environments [82].
Nevertheless, these activities play a critical role when addressing scenarios, such as

• Capacity planning and resource management.
• Performance tuning.
• Billing.
• Security and troubleshooting.
• SLA verification.

Various approaches have been devised to tackle specificmonitoring issues (e.g., mea-
surement sources and accuracy, sampling granularity, intrusiveness, and scalability).
In what follows, we focus on the workload attributes that can bemonitored at runtime
to describe the resource usage. The level of details of the measurements collected in
the clouds depends on the monitoring perspective adopted, namely, cloud providers
and cloud users. Three basic types of cloud monitoring targets can be considered:

• Client.
• Virtual machine.
• Physical machine.

More specifically, cloud providers can measure resource usage of physical machines
and of individual VMs from the vantage point of the hypervisor. On the other
hand, cloud users are restricted to measure their own workloads using client logging
and profiling facilities. Indeed, the VM isolation typical of virtualization technolo-
gies hides the characteristics and performance of the underlying physical machines
and the VM management policies. In detail, to collect measurements on resource
usage and cross-correlate themwith application-specific data and scheduling details,
cloud users have often to resort to profiling facilities made available by providers
(see, e.g., [29, 70]). To derive a more detailed description of the workloads being
processed, VM measurements can be complemented with additional information
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about the workload structure, as well as with guest operating system statistics. More-
over, application logs are exploited to correlate the resource usage with workload
intensity and characteristics.

Monitoring tools usually collect measurements by deploying distributed software
agents that periodically gather information about the usage of resources, such as
CPU, memory, and I/O devices. In general, monitoring approaches rely on system
tools and interfaces (e.g., vmstat, iostat, netstat) or on proprietary solutions
[1, 46].Moreover, depending on themonitoring capabilities of the virtualization tech-
nologies, ad hoc scripts can be used for sampling low-level quantitative attributes,
such as CPUwaiting times, number of virtual memory swaps, TLBflushes, and inter-
rupts [7]. The monitoring agents can also collect VM scheduling and provisioning
events, (e.g., number and types of allocated VMs) [11]. The granularity and level of
details of themeasurements have to be chosenwith the aim of limiting themonitoring
intrusiveness. Measurements are usually stored into tracelogs, that is, collections of
time-stamped recordings of various types of information (e.g., resource demands,
scheduling events, application specific data). Note that, despite the importance of
workload measurements for both researchers and practitioners, cloud providers are
seldom willing to publish detailed measurements about their own workloads often
to prevent leakage of confidential competitive information.

Profiling is another approach applied to measure the resource usage of individual
workload activities for driving performance tuning actions. In particular, profiling can
be exploited by cloud users for optimal dynamic resource provisioning and by cloud
providers for tuning VMs placement and scheduling policies [28]. In cloud environ-
ments, profiling has to copewith new challenges due to interference among colocated
VMs. Indeed, the sharing of hardware resources could result in unpredictable behav-
iors of hardware components, such as cache memories, CPU pipelines, and physical
I/O devices [85]. Typical solutions for collecting profiling measurements are based
on dynamic instrumentation and sampling hardware performance counters. An alter-
native approach is based on measuring at the hypervisor level the overall behavior
of the VMs hosting the target applications. In detail, the dynamic instrumentation
takes advantage of software probes that selectively record runtime events about the
application behavior (e.g., time stamps related to the execution of a given portion
of an application). On the other hand, hardware-based profiling exploits CPU per-
formance monitoring unit for sampling counters related to low-level events, such as
cachemisses, clock cycles per instruction, pipeline stalls, and branchmispredictions.

In general, profiling can cause significant intrusiveness. Indeed, fine-grained
instrumentation and high sampling frequency result in large volume ofmeasurements
and perturbations of the workload behavior. On the contrary, coarse grain sampling
and instrumentation could lead to ignore some rare though important events that
might have a significant impact on the overall resource usage. To reduce the intru-
siveness and the resource requirements of profiling activities various solutions, such
as adaptive bursty tracing technique, based on a sampling rate inversely proportional
to code execution frequency, have been devised [49].
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Althoughmonitoring and profiling are essential aspects of cloud computing, up to
now no portable, general purpose, and interoperable monitoring and profiling tools
exist. This lack results in a plethora of open source and commercial tools address-
ing specific targets and platforms [15, 32]. Examples of open source monitoring
tools are: Nagios,1 that is part of the OpenStack suite, Ganglia, Collectl,2

and MonALISA.3 Cloud providers offer several commercial tools (e.g., Amazon
Cloudwatch, Microsoft Azure Watch, IBM Tivoli Monitoring,
Rackspace, Rightscale, Cloudify, Aneka). While these monitoring facili-
ties are designed to be deployed to cloud environments, external monitoring services
like CloudHarmony,4 CloudSleuth,5 CloudClimate,6 and Up.time,7

focus on monitoring applications and infrastructures from multiple locations on the
Internet.

The development of a common framework for workload monitoring and profiling
in the clouds is an open issue, that might also prevent users to deploy their busi-
nesses in these environments [39]. To improve the scalability and effectiveness of
monitoring service consolidation and isolation, recent studies introduced the con-
cept of monitoring-as-a-service (MaaS) [60, 63]. The possibility for cloud users to
monitor the global state of their applications is a challenging research question that
deserves some further explorations.

4 Workload Structures

In this section, we present a literature review of the most common structures of
cloud workload introduced in Sect. 2, and the models used for their representation.
Workload architectural structure is the description of the tasks an application consists
of and of their relationships. This structure is usually known at design time,whereas it
can be difficult to derive it at runtime. Nevertheless, it is an important characteristic to
be taken into account for the dynamic provisioning and optimal allocation of cloud
resources and for identifying cost-effective solutions able to exploit the available
parallelism (see, e.g., [14, 58, 84]). From the cloud provider perspective the aim is
to maximize both resource utilization and energy savings, whereas from the cloud
user perspective the aim is to minimize the operational costs while achieving optimal
performance. The workload structures covered in this section refer to the following
frameworks:

1http://nagios.sourceforge.net.
2http://collectl.sourgefourge.net.
3http://monalisa.caltech.edu.
4http://cloudharmony.com.
5http://cloudsleuth.net.
6http://www.cloudclimate.com.
7http://www.suptimesoftware.com.

http://nagios.sourceforge.net
http://collectl.sourgefourge.net
http://monalisa.caltech.edu
http://cloudharmony.com
http://cloudsleuth.net
http://www.cloudclimate.com
http://www.suptimesoftware.com
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• MapReduce programming model.
• Workflow technologies.
• Many-task computing paradigm.
• Multitier architecture.

These structures are not restricted to a single processing model. For example, a
multitier architecture can be exploited for both batch and interactive applications. In
detail,batch applications often consist of taskswith parent–child relationships. These
applications are modeled as workflows describing the tasks in terms of data depen-
dencies and data and control flows. As stated in Sect. 2, typical workflow schemes
are pipeline, parallel, and hybrid, that is, sequential, concurrent, and combinations
of sequential and concurrent tasks, respectively.

Several approaches have been proposed to take advantage of the concurrency
of application workflows. For example, MapReduce [25] is a programming model
introduced to ease the exploitation of the parallelism in big data analytic workflows.
Applications based on this paradigm are executed according to a hybrid structure
consisting of multiple concurrent tasks (i.e., map and reduce workers), as illus-
trated in Fig. 3. The intermediate data shuffle addresses the data dependencies of
the workflow. To describe and predict interarrival times and resource demands of
MapReduce workloads, statistical techniques, such as kernel canonical correlation
analysis and fitting, have been proposed [6, 34]. Due to the heterogeneity of the
application domains in which MapReduce is exploited, the workloads are often
characterized in terms of different attributes (e.g., workload intensity, task dura-
tions, and constraints) [21, 71]. Very popular cloud technologies based on Map-
Reduce (i.e., Apache Hadoop,8 Spark9) perform automatic optimizations and data
distributions. However, the deployment ofHadoop applications requires the tuning of
manyconfigurationparameters thatmight heavily affect the overall performance [87].

8http://hadoop.apache.org.
9http://spark.apache.org.

http://hadoop.apache.org
http://spark.apache.org
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On the other hand, Spark applications take advantage of in-memory computations to
reduce the overhead of Hadoop distributed file system [45].

In the framework of scientific computing, workflow technologies are an approach
for easy and efficient development of applications with hybrid structures. In the
literature, the workflow of these applications has been analyzed in terms of resource
demands (e.g., number of tasks and their CPU, memory and I/O demands) [48, 92].
Similarly to workflow technologies, the many-task computing paradigm is widely
used to develop distributed loosely coupled scientific applications.MTC applications
typically require over short-time periods a large amount of computational resources
to process the so-called bag-of-tasks. Hence, MTC is well suited to take advantage
of dynamic provisioning of cloud resources. The studies related to the deployment
of these applications on the clouds mainly focus on performance analysis of various
types of infrastructures, such as commercial cloud computing services and federated
clouds [62, 72]. In particular, performance and resource demands of scientific MTC
applications have been investigated by analyzing workload tracelogs collected in
environments other than clouds (e.g., parallel production infrastructures, grids). The
behavior of scientific workflows is characterized in [41] in terms of number of jobs
and of bag-of-tasks to identify the bottleneck in the resources. Workload tracelogs
have also been analyzed for developing strategies aimed at reducing the impact of
transient failures on the overall behavior of MTC applications [17]. These strategies,
based on checkpoint and speculative execution policies, reduce the large overheads
due to the entire bag-of-tasks resubmission, although theymight affect resource usage
with unnecessary duplicated task executions. It is worth noting that clouds can be a
cost-effective and scalable alternative to the traditional high performance computing
environments for a large variety of scientific applications. However, performance
can be an issue. Indeed, bandwidth and jitters on network delays are among the most
critical factors that limit the performance of scientific applications [59].

Regarding interactive workloads, that usually need to cope with the dynamic
behavior of users, cloud computing is mainly adopted for deploying large-scale
applications in domains, such as e-commerce, financial services, healthcare, gam-
ing, and media servers. A common solution to address these highly variable load
conditions is based on multitier architectures, where each tier, deployed on one or
multiple VMs, addresses a specific functionality (e.g., web, database, application
logic, load balancing). As an example, Fig. 4 depicts an architecture of a five-tier
web application. The advantage of this solution is the possibility of dynamically
scaling each tier independently, both horizontally and vertically. Horizontal scaling
deals with varying the number of VM instances (see Fig. 4b). On the contrary, ver-
tical scaling is about varying the amount of resources allocated to individual VMs.
Figure4c shows that the VM deploying the web server scales up and doubles its
number of cores.

Resource provisioning for multitier architectures is challenging because of the
functional interdependence among the tiers and the network overhead. Therefore,
the sizing of each tier plays a critical role for this kind of applications [42].
Moreover, it is difficult to model multitier applications due to the dynamic and
unpredictable behavior of their users. In this framework, resource provisioning and
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Fig. 4 Example of a five-tier architecture typical of large-scale web applications with its initial
deployment (a), and the horizontal (b) and vertical (c) scaling of the web server tier, respectively

scaling have been investigated using stochastic models based on queuing networks
and control theory [40]. For vertical scaling, linear regression methods, Markov
chains and queuing network models are often used to represent the relationships
between workload being processed and resource demands. Many studies focus on
probability distributions and statistical bounds to derive performance metrics of
cloud environments, such as response time, throughput, and resource utilizations
(see, e.g., [10, 75]). These metrics are used to characterize the workload, predict
its behavior, and scale resources accordingly. An alternative approach is based on
multi-input multi-output control systems, where inputs are the resources allocated
to each tier and outputs are the measured performance metrics [93]. For horizontal
scaling, reactive heuristics leveraging a threshold-based set of rules are commonly
used. Thresholds on resource utilization trigger the start or the shutdown of VMs in
order to ensure given QoS levels [54]. Moreover, proactive approaches for resource
provisioning take into account the resource demands as a function of the workload
intensity. For example, queuing networks can be used for modeling the relationships
between number and characteristics of allocated VMs and metrics, such as block-
ing and immediate service probabilities [52]. Additionally, optimal resource provi-
sioning has been addressed by means of queuing network and simulation models
[37, 38].
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5 Workload Attributes

In this section, we present a literature review of the approaches typically applied to
characterize cloud workloads in terms of both qualitative attributes related to jobs
and tasks events and quantitative attributes describing workload intensity and the
demands of cloud resources (i.e., computing, communication, and storage). These
attributes are usually obtained from historical data (e.g., tracelogs) and runtime mea-
surements. It is important to point out that tracelogs published by Google [68] are
among the few publicly available cloudmeasurements. These logs store both qualita-
tive and quantitative anonymized attributes about the jobs executed on a large cluster
(i.e., demands and actual usage of CPU, memory and disk space, scheduling events
of jobs and tasks).

The workload models obtained as a result of characterization studies are very use-
ful when addressing the optimization of resource usage, the definition of scheduling
policies and energy aware solutions, the prediction of failures and many other cloud
management issues. In the literature, cloud workloads are characterized by focusing
on jobs and tasks and analyzing their attributes, referring to

• Resource usage.
• Workload intensity.

Commonly adopted approaches are based on various types of techniques, often used
in combination, such as

• Statistical and numerical techniques.
• Stochastic processes.

Some papers [55, 69] analyze the resource usage and its dynamics at job and task
levels, by applying a statistical approach based on a high-level exploratory analysis
(i.e., descriptive statistics, empirical distributions of resource usage, visual inspection
of their temporal behavior). These studies rely on the Google tracelogs. In particular,
patterns of task submissions, interarrival times, relationships between resource usage
and task status (i.e., killed, normally terminated, failed) are considered. For example,
the identification of jobs resubmitted because of failures or evictions provides some
interesting insights for predicting the resources actually required by the workload.

In order to derive realistic models that capture the heterogeneity of jobs and
tasks, more advanced statistical and numerical techniques (e.g., clustering, fitting)
are adopted.Clustering techniques are usually applied to identify groups of workload
components characterized by similar behaviors. Early papers [20, 61] classify jobs
and tasks based on their CPU and memory usage. In particular, a medium grain
classification of tasks highlights the presence of few tasks that consume a large
amount of resources. More recently, the statistical properties of the workload are
analyzed to classify cloud applications in terms of both quantitative (i.e., resource
requirements) and qualitative (i.e., task events) attributes [26]. In general, job and
task classification has been applied for devising scheduling and allocation policies.
For example, the approach proposed in [66] estimates the resource demands of tasks
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and predicts the cluster to which a new arriving job belongs to according to its initial
resource demands. As a consequence, resource utilization and energy saving can
be improved. In [9] clustering is applied to identify tasks characterized by similar
memory and CPU usage, as well as tasks whose memory usage is independent from
their CPU usage. Moreover, this study analyzes the dynamics of the CPU usage
to discover weekly and daily patterns and in particular synchronized peaks whose
presence is important for devising more efficient allocation strategies.

As pointed out in Sect. 3, it is difficult to obtain detailed measures on resource
usage of the specific workload components. Most studies rely on measurements col-
lected at the VM level. Although these measurements refer to the overall resource
usage of individual VMs, they provide an accurate description of the application
behavior in virtualized environments. Understanding and modeling this behavior are
important in many domains, such as workload scheduling, VM failure monitoring,
and intrusion detection. To highlight the variability in resource usage and the pres-
ence of temporal patterns, some studies combine statistical metrics (e.g., correlation
between attributes) with autocorrelation functions and time series analysis [7, 24].
The evolution of CPU,memory, and disk utilizations is analyzed in [11] by represent-
ing their dynamics and fluctuations as a time series at different time scales.Numerical
fitting techniques are applied to build models that capture the temporal variability
in resource usage. Moreover, by looking at the correlations among resource usage,
dependencies to be exploited in the design of effective consolidation strategies are
identified. A time series approach is also adopted in [51] to represent CPU usage
patterns. Additionally, a co-clustering technique identifies groups ofVMs with cor-
related workload patterns, whereas a Hidden Markov Model predicts the changes of
these patterns.

Workload intensity is another important aspect extensively analyzed in the litera-
ture because of its strong impact on cloud performance. In [78] workload intensity
is quantified in terms of task submission rate and clustering is applied to highlight
variability in the submission rate across groups of tasks. Other papers model the
workload intensity by means of stochastic processes. It has been shown that simple
Poisson processes generating independent identically distributed interarrival times
are not suited to represent real cloud workloads [47]. Burstiness, a well-known char-
acteristic of network traffic, has also been observed in cloud environments. Bursty
and fractal behaviors of the arrival processes affect in particular load balancing
strategies [81]. In addition, detecting, measuring, and predicting these phenomena
are important for devising efficient resource-provisioning and energy-saving strate-
gies. To describe the time-varying behavior and self-similar effects, metrics, such as
index of dispersion and coefficient of variation, are complementedwithmodels based
on 2-state Markovian arrival processes, parameterized with different levels of bursti-
ness [88]. The two states represent the bursty and nonbursty request arrival processes,
respectively (see Fig. 5). Markovian arrival processes are integrated in [64] with ana-
lytical queueing models to predict system performance. A different approach based
on fractal techniques is proposed in [16, 36] for representing workload dynamics in
terms of job arrivals. The arrival process is modeled using fractional-order differen-
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Fig. 5 Example of nonbursty and bursty arrivals (a) and the corresponding 2-state Markovian
arrival process (b)

tial equations with time-dependent parameters, whereas fitting is applied to identify
statistical distributions for CPU and memory usage.

The literature review presented in this section highlights the importance of taking
into account workload characteristics to effectively deploy cloud technologies. Even
though different approaches toworkload characterization in cloud environments have
been proposed, few studies focus on the attributes of the individual workload com-
ponents. In addition, there is the need to devise more systematic approaches toward
workload characterization. The lack of publicly available workload measurements
makes quite difficult to investigate real-life cloud computing scenarios.

6 Workload Scheduling

Workload scheduling, i.e., themapping between jobs/tasks andVMs, is a challenging
issue in cloud environments because of the heterogeneity of workload characteristics
(e.g., intensity and resource demands). The problem of finding an optimal mapping is
NP-complete and therefore intractable with exact methods when the number of VMs
and tasks is large, as it is typically the case of cloud environments. For this reason,
(meta)heuristics are currently used to find suboptimal solutions.Metaheuristics based
on methods, such as neural networks, evolutionary algorithms, or set of rules, are
proved to be efficient in solving optimization problems related to scheduling. In the
remainder of this section, we review the literature (see Table1 for an overview) by
briefly discussing the following aspects of workload scheduling:

• Scheduling objectives.
• Optimization approaches.
• Resource scaling.
• Load balancing.
• Scheduling of real-time applications.

Objectives of the scheduling problem are multiple (e.g., to minimize makespan,
data transfer, energy consumption, and economic cost, to satisfy SLAs). A sim-
ple approach takes into account one objective at a time. Alternative approaches are
aimed at combining multiple objectives into a single aggregate objective
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function (see, e.g., [79]) or considering multi-objective algorithms (see, e.g., [30,
90]). A recent survey summarizes the evolutionary approaches for scheduling in
cloud environments [89]. The different viewpoints for scheduling and the corre-
sponding objectives are identified as follows:

• Scheduling for user QoS, where objectives include the makespan and user costs
minimization, application performance, and reliability.

• Scheduling for provider efficiency, where objectives are load balancing, utilization
maximization, and energy savings.

• Scheduling for negotiation, where the goal is to satisfy both user and provider
objectives at the same time.

Exact methods for solving the optimization problem (e.g., constrained binary
integer programming) can be used in simple scenarios only, such as trivial parallel
workloads where tasks are fully decoupled without any precedence constraint [83].
For more general workload structures, the problem complexity increases and it is
necessary to devise heuristic optimizationmethods, such as particle swarm optimiza-
tion [65], genetic algorithms [50], ant colony optimization [24], and game theoretic
algorithms [30]. Another recent survey [86], focusing on the main issues related to
workflow scheduling, subdivides the scheduling methods into three main categories,
namely

• Static scheduling, where workload structure is known a priori and resources have
instantaneous availability.

• Dynamic scheduling, where workload structure can be obtained at runtime.
• Static planning with dynamic scheduling, where the structure and communica-
tion time can be estimated. Tasks are statically planned, although dynamically
scheduled to resources at runtime.

Examples of offline methods for static scheduling multitenant workflows in cloud
environments are presented in [44]. These methods take advantage of gaps in the
schedule due to communication overheads and task dependencies. In particular, the
gap search is performed on the entire task group or in a distributed fashion byworking
on its partitions. The scheduling problem can be even more complex when task
priorities are considered [91]. Low-priority tasks are often evicted because of the
overcommitment of physical resources. Moreover, changes in the cloud environment
properties can affect the priorities of jobs and tasks.

Job scheduling and resource scaling are often considered in conjunction [57].
Several frameworks have been recently introduced to address resource scalability.
For example, SmartScale [31] is an automated scaling framework that uses a com-
bination of vertical and horizontal approaches to optimize both resource usage and
reconfiguration overheads. Scaling mechanisms are also encountered in [4] where
different scalability patterns are considered and an approach to performancemonitor-
ing that allows automatic scalability management is proposed. Autoscaling is often
used in conjunction with load balancing strategies. Even though physical machines
are often the main target of these strategies, effective load balancing and resource
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allocation policies take into account the concurrent execution of different applica-
tion types, i.e., interactive, batch, and the mix of applications with different resource
requirements and workload structures (see Sect. 4) [22, 77, 80].

Hard real-time applications (i.e., applications characterized by hard deadlines that
are a priori guaranteed to be met) are not well suited to the current cloud infrastruc-
tures. In fact, the virtualization technologies and network protocols used in the clouds
are not designed to provide the timing guarantees required by these applications.
However, the so-called soft deadlines are often taken into account by the schedulers
because of the penalties associated with the negotiated SLAs [53, 56]. Despite hard
real-time applications, for online services hosted in cloud environments the main
goal of the scheduling is to maximize the profit by providing timely services.

The analysis of the state of the art presented in this section has shown that work-
load scheduling in the clouds is a very important research field. Although there are
numerous studies on workload scheduling on parallel and distributed systems, few
papers address real cloud environments, and even fewer cloudworkloadmanagement
systems. Nevertheless, all these topics need further investigation.

7 Workload Failures

As described in the previous sections, workloads typically consist of diverse appli-
cations with different priorities and deadlines that reflect the user requirements.
Unforeseen workload behaviors or incompatibility between workload requirements
and the resources offered in the clouds result in failures. Increasing functionality
and complexity of cloud environments are leading to inevitable failures that can
be caused by different types of events, such as outage, vulnerability, and automatic
updates [33]. Other examples of failures are software crashes due to hidden bugs, out
of memory exceptions due to the lack of resources, denial of service due to malicious
activities, deadline violations due to unexpected processing delays. There are also
failures caused by unknown events.

A decrease in the reliability associated with the workload does not necessarily
mean that the applications are not successfully completed because of bugs. The failure
rate often depends on the workload intensity and mixes. In particular, heavy load
conditions are often responsible of the increase of the overall failure rate. All failures
and in particular deadline violations are crucial in cloud environments because of
their negative impact onQoSandSLA.Hence,whenever anSLAhas been established
between a cloud provider and a cloud user, various strategies, such as replication and
checkpointing, have to be deployed in order to cope with failures.

In the literature (see Table2 for an overview) cloud failures have been addressed
under two different perspectives, namely

• Failure analysis.
• Failure prediction.
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Table 2 Summary of the state of the art in the field of cloud failure analysis and prediction

Reference Target Failure type Parameters Modeling
Approach

Garraghan et al. [35] Google tracelog Task and server Failure and
repair times and
task termination
status

Probabilistic

Chen et al. [18] Google tracelog Job and task Job and task
attributes

Statistical and
probabilistic

Chen et al. [17] Scientific
workflows

Transient Task runtime
and failure
interarrival time

Probabilistic

Di Martino et al. [27] Cloud data Operational Failure rate and
MTBF

Probabilistic

Chen et al. [19] Google tracelog Job and task Resource usage,
task priority and
resubmission

Machine
learning

Samak et al. [73] Scientific
workflows

Job VM attributes Machine
learning

Bala and Chana [8] Scientific
workflows

Task Resource
utilizations

Machine
learning

References are ordered as they appear in the text

In particular, to prevent wasting resources, avoid performance degradation, and
reduce costs and energy consumption, in the last years, extensive research has focused
on failure analysis. Failures are characterized using different statistical and analytical
techniques focused on resource usage (e.g., CPU, memory, disk I/O, bandwidth) and
on other workload qualitative attributes (e.g., priority, termination status). The basis
of these analyses is often represented by the large variety of workload information
collected in cloud production environments (see Sect. 3). For example, the analysis
of the Google tracelog presented in [35] focuses on the characteristics of failures of
cloud workloads. This empirical study considers the failure and repair times, and, in
particular, two important metrics, namely

• Mean Time Between Failure (MTBF).
• Mean Time To Repair (MTTR).

More specifically, the statistical properties of these metrics together with the the-
oretical distributions that best fit the empirical data (e.g., Weibull, lognormal) are
the basis for characterizing the behavior of the failures. The study shows that, in
general, the workload failure rates vary significantly and depend on the priority
associated with the individual tasks, thus reflecting the diversity in the workload
characteristics. The Google tracelog is also analyzed in [18] to evaluate the effects
exercised on failures byworkload attributes, such as job and task resource usage, task
resubmission for single and multiple task jobs and termination statuses. In addition,
the study investigates the relationships between user behavior and failures. Clustering
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techniques have been applied to identify groups of users submitting jobs with similar
characteristics and termination status, thus exhibiting similar reliability properties.
Transient failures associated with scientific workflows are investigated in [17] by
modeling failure interarrival times and system overheads.

Failed jobs typically consume a significant amount of resources. Hence, it is cru-
cial tomitigate their negative impact by predicting failures in a timelymanner. In [27]
the operational failures of a business data processing platform are characterized to
estimate common failure types, their rates and relationships with the workload inten-
sity and data volume. In addition, a trend analysis is performed to assess whether
failure arrivals significantly change over time.

Failure prediction usually relies on machine learning techniques, such as naive
Bayes, random forest, and artificial neural networks. In particular, recurrent neural
networks are applied in [19] to predict the failures of jobs and tasks by analyzing
their resource usage. In the framework of large-scale scientific applications repre-
sented as workflows, naive Bayes classifiers are used to study the behavior of jobs
and predict their failure probability [73]. Similarly, failure prediction models for
tasks in workflow applications are proposed in [8]. These models rely on various
machine learning approaches and are the basis of proactive fault tolerant strategies
for failure prediction to be used for the identification of tasks that could fail due to
the overutilization of resources (e.g., CPU, storage).

A special category of failures is related to software aging. The presence of these
failures is manifested as either an increase in their rate or in performance and QoS
degradations. Typical causes of software-aging failures are elusive bugs, such as
memory leaks, unterminated threads, and unreleased locks. The effects of these bugs
usually become evident whenever peaks and bursts appear in the workload. A com-
mon solution to cope with these problems is represented by software rejuvenation,
that is, a cost-effective softwaremaintenance technique based on preventive rollbacks
of continuously running applications. A recent survey [2] presents an interesting
classification of the most common approaches used in this framework (see Fig. 6).

Rejuvenation strategies

Time-based approaches Inspection-based approaches

Prediction-based approachesThreshold-based approaches

Fig. 6 Classification of the main rejuvenation strategies
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A detailed overview of the analysis techniques proposed in the literature for soft-
ware aging and rejuvenation (e.g., stochastic processes, time series analysis, machine
learning) is offered in [23]. In particular, in cloud environments, software rejuvena-
tion can be applied to either individual VMs and to the hypervisor. Techniques based
on live VM migrations and checkpointing are often exploited to reduce downtimes
due to failures [12]. Similarly, to reduce the downtime during the rejuvenation, time
series approaches are used to predict the proper time to trigger the process [3]. In
detail, to guarantee a safe scheduling of rejuvenation actions, the resource-aware
rejuvenation policy introduced in the paper considers multiple thresholds referring
to the resource usage (e.g., virtual memory).

Despite the effort already put in the domain of cloud failure analysis and pre-
diction, some open challenges remain to be investigated. In particular, to improve
workload reliability in the clouds, failure awareness resource provisioning and inte-
gration of failure prediction mechanisms in the schedulers should be devised.

8 Conclusions

A deep understanding of workload properties and behavior is essential for an effec-
tive deployment of cloud technologies and for achieving the desired service lev-
els. In this chapter, we discussed the main issues related to the entire life cycle
of the workloads in the clouds, starting with their characterization at design time
(i.e., workload categories, structures, and patterns), their matching at the deployment
phase (i.e., resource requirements and scheduling), and the issues in the execution
phase (i.e., failure analysis and prediction).

The list of topics and issues related to cloud workloads presented in this chapter
does not pretend to be exhaustive. However, the snapshot of the state of the art gathers
in one place the pointers to many different approaches and can be therefore seen as
a starting point in the design of a comprehensive framework dealing with all stages
of the workload life cycle. In particular, the analysis of the literature suggests some
interesting research challenges dealing with the design and the development of:

• Portable frameworks for workload monitoring and profiling.
• Systematic approaches toward workload characterization to be exploited in
resource management strategies.

• Management systems for workload scheduling in real cloud environments that
address the heterogeneity and variability in the resource requirements.

• Failure-aware resource provisioning and scheduling mechanisms that improve
workload reliability.

Finally, a major issue faced by the research in cloud environments is the lack
of publicly available large-scale workload measurements. In general, providers and
users are very reluctant to disclose data about their workloads to avoid leakage of
competitive and confidential information. Nevertheless, the availability of this data
would be very beneficial for accelerating cloud deployments.
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Reproducibility of Software Bugs

Basic Concepts and Automatic Classification

Flavio Frattini, Roberto Pietrantuono and Stefano Russo

Abstract Understanding software bugs and their effects is important in several
engineering activities, including testing, debugging, and design of fault contain-
ment or tolerance methods. Dealing with hard-to-reproduce failures requires a deep
comprehension of the mechanisms leading from bug activation to software failure.
This chapter surveys taxonomies and recent studies about bugs from the perspective
of their reproducibility, providing insights into the process of bug manifestation and
the factors influencing it. These insights are based on the analysis of thousands of bug
reports of a widely used open-source software, namely MySQL Server. Bug reports
are automatically classified according to reproducibility characteristics, providing
figures about the proportion of hard to reproduce bug their features, and evolution
over releases.

1 Introduction

Software is commonly characterized by the presence of defects—imperfections that
cause systems to improperly deliver the service they are intended for, resulting in
what is called a failure. Bugs are usually meant as defects in the code, thus with a
more narrow meaning than defects. Bugs have been classified according to various
characteristics from the perspective of software engineering, usually with the aim
of supporting product and process improvement activities by defect analysis [1].
Several schemes are available in the literature: some relevant examples are the HP
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classification [2], the IEEE 1044 classification [3], and Orthogonal Defect
Classification (ODC) [4].

As software systems grow in size and complexity and are increasingly used for
mission- and business-critical applications, attention is being devoted to the bug
manifestation process and its features with the aim of gaining a deeper understanding
of complex erroneous behaviors. Knowledge of the factors influencing the chain
by which a bug is activated, propagates into the system, and reaches its external
interface,1 serves, for instance, to reproduce the exposure of subtle bugs to then
locate and remove them.

Not all bugs are easily reproducible.2 In fact, software may behave differently
under apparently identical conditions. Attempting to recreate the same conditions
and repeating the steps that led to an observed failure is the usual way to try to
reproduce a bug. However, some bugs require rare combinations and/or relative tim-
ings of inputs, or a specific state to be reproduced; or there may be a long delay
between the fault activation and the failure occurrence. In other cases, the activation
of a fault makes the system traverse several error states. In all such cases it is dif-
ficult to identify the inputs and the conditions to reproduce the failure. Moreover,
concurrent programs are known to suffer from the probe effect, an “alteration in the
frequency of run-time errors observed when delays are introduced”: this effect can
mask synchronization errors [6]. Even when the input values and the system internal
state for an observed failure are known, there are cases where the failure occurs only
under specific environmental conditions, and “as the tester tries to reproduce them,
the environment changes, making the failure disappear” [7].

In this chapter, we survey taxonomies and experimental studies which led to the
current understanding of bugs reproducibility (Sect. 2). Then, we describe a proce-
dure to analyze a bug repository from the reproducibility perspective (Sect. 3). The
procedure is applied to thousands of bugs reported in the MySQL database man-
agement system. Results of the classification and prediction process are presented,
providing insights into the process of bug manifestation and the factors influencing
it (Sect. 4). This chapter ends with a brief discussion of the results (Sect. 5).

2 Studies on Bug Reproducibility

Reproducibility is the basic criterion of several bugs classifications. In the 1980s,
Gray distinguished Bohrbugs and Heisenbugs [7]: Bohrbugs exhibit a deterministic
behavior, hence they can be detected and removedwith testing and debugging—these
are also knownashard or solid ones, forwhich the failure occurrence is always repro-
ducible; Heisenbugs cause transient failures, which may not manifest on a software

1We follow the well-established notion of fault–error–failure chain [5]: a software fault (bug) is a
defect in the application code; when activated, faults cause errors; errors may lead to failures.
2We use the expression “bug reproducibility”—widely used in the literature—to indicate the repro-
ducibility of the failure caused by the bug.
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re-execution under the same input, thus appearing as “nondeterministic”. These are
known as soft or elusive faults, whose activation is not systematically reproducible;
they may be extremely difficult to identify through testing. Gray named the former
class alluding to the physicist Niels Bohr, who developed the atomic model, and
the latter class referring to the physicist Werner Heisenberg, who formulated the
uncertainty principle.

Grottke and Trivedi [8, 9] recognized that the term Heisenbug had originally
been coined in the 1960s by Lindsay (while working with Gray), referring to “bugs
in which clearly the behavior of the system is incorrect, and when you try to look
to see why it’s incorrect, the problem goes away”; this is a different definition than
the one published later by Gray. The class of bugs defined based on the notion of
non-determinism is not the same as soft faults (as claimed by Gray).

The nomenclature that Grottke and Trivedi revised in the past decade introduces
the category of Mandelbugs in lieu of Heisenbugs: by alluding to the mathematician
Benoit Mandelbrot and his work on fractal geometry, the name somehow suggests
a form of chaotic system behavior [8]. Unlike Heisenbugs, Mandelbugs are defined
in terms of inherent faults properties, that is, faults able to cause failures which are
not systematically reproducible.3

Four factors of complexity in the failure reproduction process are pinpointed by
Grottke, Nikora, and Trivedi as responsible for a bug to be classified as Mandel-
bug [10]: (i) a time lag between the fault activation and the failure occurrence; (ii)
interactions of the software application with hardware, operating system, or other
applications running concurrently on the same system; (iii) influence of the timing
of inputs and operations; (iv) influence of the sequencing of operations.

Several studies show that Bohrbugs aremuchmore common thanMandelbugs: for
instance, 463 out of 637 bugs are classified as Bohrbugs in [11]; 547 over 852 bugs
are considered as always reproducible in [12]. Other studies examine bugs according
to characteristics attributable to Bohr- or Mandelbugs (factors such as concurrency,
resource management), but adopting a different terminology [13–15].

Mandelbugs are often related to unusual hardware conditions (rare or transient
device faults), limit conditions (out of storage, counter overflow, lost interrupt, etc.,),
or race conditions [7]. Changing the environment and removing the chaotic state—
i.e., resetting the program to a proper state—is likely to enable the application to
work. This explains why and how some fault tolerance methods work. For example,
checkpointing is a technique that periodically saves a snapshot of an application
in permanent storage, enabling it to restart after a failure from an internal state
that should allow the proper execution. Similarly, replicating the execution in two

3Gray states: “Heisenbug may elude a bugcatcher for years of execution. The bugcatcher may
perturb the situation just enough tomake it disappear. This is analogous to Heisenberg’s Uncertainty
Principle in physics.” Indeed, Heisenberg ascribed the uncertainty principle to the disturbance
triggered by the act of measuring (observer effect). However, this argument is recognized to be
misleading by modern physicists: the principle states a fundamental property of conjugate entities;
it is not a statement about the observational success of the technology. Curiously, Mandelbugs are
closer than Heisenbugs to the principle these were originally meant to resemble.
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different environments can result in the proper execution of a replica even if the
other fails.

A third category of bugs introduced in [8] are aging-related bugs (ARBs): they
cause the accumulation of errors in the running application or in the system-internal
environment, which result in an increased failure rate and/or degraded performance.
They are viewed as a class of Mandelbugs. It is worth noting that ARBs are hard
to reproduce due to both the system internal state and the time necessary for the
failure to manifest. They might be easy to activate, but the time they take to manifest
themselves as failures make them hard to observe during testing.

In [16–20], we focused on the aging problem and on aging-related bugs, dis-
tinguishing memory-related problems (e.g., leaks), storage-related (e.g., fragmenta-
tion), wrong management of other resources (e.g., handles, locks), and numerical
errors, observing an impact of approximately 5%.

Other researchers focused on the ephemerality of bugs. Chandra and Chen [21]
distinguish environment-independent and environment-dependent bugs, and further
classify the latter as transient and non-transient. Environment-independent bugs
occur independently of the operating environment; if a bug of this kind occurs
with a specific workload, it will always occur with that workload. Environment-
dependent bugs depend on the operating environment: the subset of transient bugs
may appear only in some executions; on the contrary, non-transient bugs occur
always, in a specific environment. Environmental bugs are also examined in [22],
where authors focus on how to reproduce transient bugs by varying factors of the exe-
cution environment. Clearly, there is an overlap between Mandelbugs/Heisenbugs
and environment-dependent transient bugs: in both cases the main characteristics
are the apparent aleatory occurrence and the difficulty of reproduction. In [23],
environment-dependent bugs are categorized to conjecture a possible fault injection
framework for emulating environmental influence on systems failure.

Concurrency bugs are discussed in [13]: the authors select randomly 105 such bugs
from the repositories of 4 open-source applications, showing that their reproducibility
is very hard due to the large number of variables involved or to the dynamics of
memory accesses. Fonseca et al. [24] consider concurrency bugs fromMySQLServer
to understand their effects and how they can be detected or tolerated. In this case, it is
shown that concurrency bugs are likely to remain latent and to corrupt data structures,
but only later cause actual failures. In [14], it is shown that concurrency bugs in
operating system code commonly requires more effort to be identified. Moreover,
the analysis reveals that semantic bugs are the dominant root cause and, as software
evolves, their number increases while memory-related bugs decrease. Aging-related
concurrency bugs are shown in [18] to cause performance decrease over time in a
hard-to-predict way, and the failure rate does not depend on the instantaneous and/or
mean accumulated work.

Performance bugs are analyzed by Nistor et al. [25]. It is shown that: their fixing
may introduce new functional bugs; they appear more difficult to fix than nonperfor-
mance bugs; most performance bugs are discovered through code reasoning rather
than because of users experiencing failures due to bugs. In [26], some rules are
extracted from a set of bugs in order to identify performance problems in MySQL,
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Apache, andMozilla applications. Security bugs are studied in [27] with reference to
the Firefox software. It is shown that they require more experienced debuggers and
their fixes are more complex than the fixes of other kinds of bugs. For open source
software, an empirical study based on the automated analysis of 29,000 bugs [28]
shows that most bugs are semantic and that bugs related to memory are still the major
component, despite the recent introduction of detection tools.

These studies examine several high-level factors that can be (directly or indirectly)
attributed to the bug manifestation process, considering aspects such as concurrency,
memory, timing, interaction with the operating system or other applications, perfor-
mance, security, resource leaks, wrong error handling. Overall, the literature high-
lights the relevance of the topic, but there is insufficient knowledge of essential
bug reproducibility characteristics. With respect to other bug characteristics (e.g.,
detection or closing times, bug location, i.e., source code, fixing commits, sever-
ity, etc.), that are more amenable to be analyzed automatically, a relevant problem
is the absence of approaches to automatically distinguish bugs according to some
reproducibility characteristic. In the following, we attempt to address this issue by
proposing an automatic classification from reports, in order to enable future analyses
onwider datasets, so as to improve the knowledge about bug reproducibility similarly
to other defect analysis research areas.

3 Analysis of Bug Reproducibility

We describe a procedure to analyze bug reports from the reproducibility perspective,
i.e., considering how they can be exposed and reproduced. We refer to a system
model where we distinguish the application under analysis, its execution environ-
ment, the workload, and the user submitting it. The analysis is meant to discriminate
bugs depending on whether, under a given workload, they are always reproducible,
or not always reproducible, i.e., they may occur or not depending on the state of
the execution environment. The latter is considered as the hardware resources where
the application is deployed (processors, I/O devices, network), and software run-
ning concurrently on each node—including operating systems, middleware layers,
virtualization layers, and other applications sharing the hardware resources.

The user (not necessarily a human) interacts with the application by submitting
workload requests and getting the results.We assume aworkload request represented
as a generic request for service (e.g., a query to a DBMS), characterized by a type
(e.g., query type, like INSERT), and by a set of input parameters (e.g., values of an
INSERT), in turn characterized by a type and a value. To accomplish a well-defined
task, the user can submit a sequence of serial/concurrent requests. We denote with
environment the union of the execution environment and the user.

According to this model, we define two categories of bug manifestation.

• Workload-dependent (WL): the bug manifestation is “workload-dependent” if
resubmitting (at most a subset of) the workload requests that caused a failure
always produces the same failure, for every valid state of the environment (i.e.,
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for every state of the environment in which the traversed application states are
allowed to occur) and for every admissible user inputs’ timing/ordering in each
request of the sequence. In this sense, we talk about always reproducible bugs.

– An example of this kind of bug is the bug 13894 of MySQL Server,4 which
reports “Server crashes on update of CSV table” and also includes the sequence
of statements that crashes the server. The reporter specifies that every time the
sequence is repeated the MySQL Server crashes.

• Environment-dependent (ENV): the bug manifestation is “environment-
dependent” if resubmitting (at least a subset) of workload requests that caused
a failure, there exist at least one (valid) state of the environment or user inputs’
timing/ordering5 causing the same failure to not be reproduced. Note that, unlike
Mandelbugs, these do not include complex but “deterministic” bugs, namely those
bugs requiring a very complex workload but that, under such workload, always
reappear: in this categorization, such bugs fall in the WL category. We talk about
not-always-reproducible bugs.

– As an example consider the bug 18306 of MySQL Server “MySQL crashes
and restarts using subquery”; the report is about a delete operation; the reporter
specifies that “The DELETE query works X times and then mysql crashes.”
Thus, the bug does not manifest every time a specific load is submitted to the
system, further conditions are to be forced in order to reproduce the bug, instead.

The analysis aims at providing insights into the presence of workload-dependent
or environment-dependent bugs and of their evolution over several software versions.
The following procedure is followed: (i) first, manual classification of bugs as either
WL or ENV is performed, by inspecting bug reports of the target software; (ii) then,
webuild predictors forautomatic classification that takes bug reports as input, process
the text contained in the report by text mining techniques, and then automatically
classify the report as either WL or ENV; (iii) based on the predicted values, further
insight about WL versus ENV bugs on an enlarge dataset and on various versions
of the software is obtained; (iv) the most discriminating textual features are also
examined, so as to figure out the characteristics of a bug more related to the bug
manifestation type. The analysis steps are summarized in the next sections.

3.1 Manual Classification

Each problem report is manually inspected to check it documents a real and unique
bug: documentation and build issues, problems turning out to be operator errors,

4MySQL Bugs—https://bugs.mysql.com.
5Valid means admissible, compatible environment state with reference to the input requests; in the
case of user, it means that the same workload request(s) could be submitted in different timing/
ordering producing the same result.

https://bugs.mysql.com
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and requests for software enhancements (not erroneously marked as such) are put
in a NOT_BUG class and discarded. Then, reports containing insufficient details to
classify the bug (e.g., a bug closed as soon as it was reported, corrected by a new
minor release) are assigned to the class UNKNOWN, and discarded.

The remaining reports are searched for the following indications:
(i) what inputs are required (the failure-causing workload); reports often provide it
in the test case and/or in the steps to repeat the failure occurrence;
(ii) what is the application and the environment configuration;
(iii) if the corresponding failure is observed to be always repeatable (i.e., workload-
dependent) or not (i.e., environment-dependent) by the bug reporter or assignee;
(iv) in the case not always reproducible, what are the conditions hiding the bug
manifestation (i.e., if they are related to the execution environment, or to particular
user actions, such as timing of inputs).

Based on this, we assign a bug report to the workload-dependent (WL) or
environment-dependent (ENV) classes. It is wort noting that the manual analysis
is based exclusively on fixed bugs (as in [12, 15, 16]), since, for bugs that have not
yet been fixed, the reports may contain inaccurate or incomplete information. While
this allows relying on more stable information, results will not refer to non-closed
bugs, which could, in principle, have different patterns of WL or ENV bugs. More-
over, although results of the manual classification are cross-checked by the authors,
we cannot exclude, as any paper where manual inspection is needed, possible clas-
sification mistakes that can affect the results.

3.2 Automatic Classification

The bug classification aims at automatically assigning a bug to a class by analyzing
its report. It consists of two steps: text processing and classification.

3.2.1 Text Processing

The automatic classification is carried out by means of predictors, using bug report
textual description as input features. Some preliminary steps are required to render
text suitable for processing by classifiers. Specifically, in text mining, each term
occurring in the document is a potential dimension; to avoid dealing with a useless
large number, we apply common reduction methods [29, 30]:

1. Tokenization: a textual string is divided into a set of tokens; a token is a block of
text considered as a useful part of the unstructured text (it often corresponds to a
word, but it might also be an entire sentence). Tokenization includes filtering out
meaningless symbols, like punctuation, brackets, and makes all letters lowercase.
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2. Stop-word removal; this consists of removing the terms such as propositions,
articles, conjunctions, which do not convey much useful information and may
appear frequently—thus biasing the classification algorithms.

3. Stemming: reducing commonwords to a single term, e.g., “computerized”, “com-
puterize”, and “computation” are all reduced to “compute”.

3.2.2 Classifiers

To classify the bugs, we adopt two classifiers widely used in the literature of defect
prediction, namely Naïve Bayes and Bayesian Network.

ANaïveBayes (NB) classifier estimates the a posteriori probability of the hypothe-
sis H to be assessed (e.g., “bug is ENV”), that is the probability that H is true given an
observed evidence E . This is given the probability to observe E under the hypothesis
H multiplied by the a priori probability of the hypothesis H (i.e., when no evidence
is available) over the probability of evidence E :

P(H |E) = P(E |H)P(H)

P(E)
. (1)

The evidence E consists of features used to classify, namely the attributes of the
instances to classify, which are extracted through the mentioned text mining tech-
nique. A fundamental assumption of a Naïve Bayes classifier is that each feature Ei

is conditionally independent of any other feature E j , j �= i . Under this assumption,
the a posteriori probability can be obtained as:

P(H |E) =
[
∏

i

P(Ei |H)

]
P(H)

P(E)
. (2)

This assumption is apparently oversimplifying, since features usually exhibit some
degree of dependence among each other. Nevertheless, the Naïve Bayes classifier
performs well even when this assumption is largely violated [31].

A Bayesian network (BayesNet) is a directed acyclic graphical model represent-
ing a set of random variables and their conditional dependency (graph nodes and
edges, respectively). A conditional dependency exists between two nodes if the cor-
responding random variables are not conditionally independent. It is assumed that:

P(node|parents plus any other nondescendants) = P(node|parents). (3)

The joint probability distribution for a set of random variables X1, . . . , Xn is:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi |Xi−1, . . . , X1) =
n∏

i=1

P(Xi |Xi ’s parents). (4)
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Equation4 is used to compute the probability of a hypothesis H represented by
a node of the network, given the conditional probability distributions of each node,
and given a set of observed values.

Classifiers are evaluated by means of the common metrics precision, recall, and
F-measure. We adopt a k-fold cross-validation, with k = 3 and 10 repetitions: the
set is split into three disjoint sets, two of which are used for training, and the third
one for testing. Accuracy metrics are then calculated. The procedure is repeated until
each subset has been used as test set. Accuracy metrics of each step are averaged.
All the steps are repeated ten times; each time the three sets are generated by ran-
domly selecting reports from the set. Finally, the metrics values of each repetition
are averaged to obtain the final accuracy evaluation.

For each data sample in the test set, the predicted class is compared with the
actual class of the sample. Given a target class (e.g., ENV), samples of the test set
belonging to the target class are true positives if they are correctly classified, and are
false negatives otherwise. Similarly, samples belonging to the other class (i.e., WL)
are denoted as true negatives if they are correctly classified, and as false positives
otherwise. From these, we compute:

• Precision (Pr): Percentage of true positives (TP) that are classified as belonging
to the target class (true positives and false positives (FP)):

Precision = TP/(TP + FP). (5)

• Recall (Re): Percentage of true positives that actually belong to the target class
(true positives and false negatives (FN)):

Recall = TP/(TP + FN). (6)

• F-measure (F): Harmonic mean of precision and recall:

F-measure = (2 · Pr · Re)/(Pr + Re). (7)

The higher the precision and the recall (ideally, Pr = Re = 1), the higher the quality
of the predictor, since it avoids false positives and false negatives.

4 Case Study: Analysis of MySQL Bugs

The procedure described in Sect. 3 is here applied to the MySQL Data Base Man-
agement System. This is chosen as case study since it is a modern complex software
system widely adopted in business-critical contexts, and for which detailed bug
reports are publicly available.

We use bug reports related to MySQL Server version 5.1 for manual classification
and training. Then, the prediction is applied to bug reports from other versions of the
software. We consider both versions preceding the 5.1 (MySQL Server 4.1 and 5.0)
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and versions following the 5.1 (5.5 and 5.6). The aim is to figure out if there is a trend
for the types of bugs over various versions, and to understand which modifications
in the software are likely the cause of such a trend, if any.

4.1 Manual Classification

As a preliminary step, the following types of reports are excluded manually from
subsequent inspection:

• reports not marked as closed, so as to proceed with descriptions only of solved
bugs, relevant for the analysis;

• duplicate bugs, that is, from the description we deduced that the reported problem
was caused by the same bug of another report already classified;

• bugs marked as enhancement or feature request in the “severity” field.

This step produces a set of 560 bug reports, which are manually inspected according
to the steps reported in Sect. 3.1, considering the following reports’ sections:

• the textual description of the steps to repeat the failure;
• the textual discussion and comments of developers/users working on that bug;
• the final patch that has been committed, along with the description note in the
change log;

• the attached files (e.g., test cases, environment configuration files).

The manual inspection identifies:

• 402 workload-dependent (WL) bugs;
• 86 environment-dependent (ENV) bugs;
• 44 reports classified as NOT_BUG;
• 28 reports classified as UNKNOWN, because thy contained insufficient details.

We have that 82% of classified bugs areWL, and the remaining 18% are ENV. As in
other studies, workload-dependent bugs are the largemajority [10–12]. Nevertheless,
the minority of environment-dependent bugs are those hard to reproduce and to fix.

4.2 Automatic Classification

The automatic classification is performed on the set of bugs manually categorized as
WL or ENV; it includes the two steps of text processing and classification.

4.2.1 Text Processing

Text processing of reports is performed to identify the features and their occurrence.
To identify the features the three operations of tokenization, stop-word removal, and
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stemming are performed, as described in Sect. 3.2. 21,477 features are identified. For
each of them it is counted the number of occurrences in each report.

4.2.2 Classifiers

The classifiers are trained and their accuracy is evaluated by means of threefold
cross-validation. Results on the Naïve Bayes and Bayesian Network classifiers are
reported in Table1.

Results show that the Bayesian Network classifier presents a lower precision than
the Naïve Bayes classifier, but recall is better. Overall, the F-measure reveals that the
Bayesian Network is slightly better than the Naïve Bayes classifier.

We also report the confusion matrices, which show, for each class, the number of
bugs correctly classified and the incorrectly classified instances. Tables2 and 3 are
related to the Naïve Bayes the Bayesian Network classifiers, respectively.

The tables show that most of the incorrect classifications are related to environ-
ment-dependent bugs. In the case of the Naïve Bayes classifier, 73% of environment-
dependent bugs were not correctly classified. This may be due to the reduced
number of examples for training. However, the classification improves when using
the Bayesian Network, both for WL bugs and for ENV bugs.

It is also interesting to consider which features are the most discriminating.
The classifiers predict the type of a bug (i.e., workload-dependent or environment-
dependent) based on the terms used in its report. During the training, the probability,
for each feature, that a bug is of a certain type given that the feature appears in the
description is computed. In Table4, we report the most significant features for the
prediction process.

Table 1 Results of the training

Class Precision Recall F-measure

Naïve Bayes WL 0.94 0.81 0.87

ENV 0.41 0.73 0.53

Weighted 0.86 0.80 0.82

Bayesian
Network

WL 0.90 0.90 0.90

ENV 0.44 0.46 0.45

Weighted 0.83 0.83 0.83

Table 2 Confusion matrix of
Naïve Bayes classifier

Correct Incorrect

113 27 WL

7 19 ENV

In some cases there is just a root indicating a set of words; as an example, concurr
implies that there may be words such as concurrent, concurrency, etc. Note that
most features are commonly linked to hard-to-reproduce conditions, such asmemory
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Table 3 Confusion matrix of
Bayesian Network

Correct Incorrect

125 15 WL

14 12 ENV

Table 4 Most significant
features for prediction

Feature

Thread Memory Concurr

Deadlock Alloc Wait

Run Race Start

Schedul Valgrind

issues, deadlocks, or race conditions. Valgrind is a tool for solving memory issues;
thus, the feature with the same name is also related to memory issues.

It is worth noting that only 259 features, over the total 21,477, are actually used
by the classifiers.

4.3 Prediction Results

The prediction of bug types is performed for the two versions preceding the one used
for the training, and for the two following it: that is for MySQL Server versions 4.1,
5.0, 5.5, and 5.6. Results are shown in Figs. 1 and 2 for the Naïve Bayes classifier
and the Bayesian Network, respectively. In the figures, results achieved by means of
reports’ manual inspection (version 5.1) are marked differently.

As expected, workload-dependent bugs are more than environment-dependent
ones. This is even more evident using the Bayesian network. For preceding versions,
just 6.7% of bugs are ENV. The small number of environment-dependent bugs is
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Fig. 1 Results on bug type prediction with Naïve Bayes classifier
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Fig. 2 Results of bug type prediction with Bayesian Network

probably related to the type of software considered. The DBMS, in its early versions,
is not made up of many subsystems, each influencing the condition for which a fault
is activated. Environment-dependent bugs are more common for operating systems,
instead [12].

It is also worth noting the increasing trend of environment-dependent bugs’ per-
centage over versions, in line with the common opinion that the prevalence of simple
bugs decreases with time [12]. While in version 4.1 just 6% of the bugs are predicted
as ENV, this percentage increases up to 26% for version 5.6. This may be due to
the greater complexity starting from version 5.5. In the documentation, it is spec-
ified that one of the main changes in later versions, with respect to previous ones,
consists in multiple background I/O threads used to improve I/O performance. The
status of such threads may represent an environmental condition hard to reproduce.
Interestingly, we also found that thread is the most discriminating feature.

5 Discussion and Conclusion

Reproduction of software failures to locate and fix the corresponding bugs is not an
easy task, but it is very important tomake software reliable.We discussed the problem
of bugmanifestation and introduced the two classes ofworkload-dependent and envi-
ronment dependent bugs. For the former class, by resubmitting the same workload
requests that caused a failure, the same failure can be produced. For the latter, there
exists at least one (valid) state of the environment or user inputs’ timing/ordering
that may render the same failure unreproducible even when resubmitting the same
workload request that caused the failure.

The analysis of the literature and themanual inspection of 560 bug reports showed
that environment-dependent bugs are, commonly, in small number with respect to
workload-dependent bugs. They aremore difficult to fix, however. Also, studies in the
scientific literature are usually related to few hundreds of bugs, given the difficulty of
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inspection by hand. Thus, we applied text mining techniques and Bayesian classifiers
in order to automate the classification process.

Results from classification models show that automatic classification can be
performed with an F-measure up to 83%, but with environment-dependent bugs
being more difficult to discriminate. Future works will target the improvement of
environment-dependent bug discrimination by exploiting other sources of infor-
mation (e.g., complexity metrics). Results from the prediction of MySQL reports
confirm that, for large datasets, workload-dependent bugs are more numerous. Nev-
ertheless, it is worth noting that the number of environment-dependent bugs presents
an increasing trend from one version to another. This may be due to the addition of
more software components that may cause the necessity for particular conditions of
each of them in order to produce a failure.

More bug reports from different kinds of software (e.g., web servers, operating
systems, apart from DBMS) should be analyzed in order to understand the trend of
the two types of bugs. Also, how these and other classifiers can be improved in order
to increase the quality of the prediction.
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Constraint-Based Virtualization of Industrial
Networks

Waseem Mandarawi, Andreas Fischer, Amine Mohamed Houyou,
Hans-Peter Huth and Hermann de Meer

Abstract In modern industrial solutions, Ethernet-based communication networks
have been replacing bus technologies. Ethernet is no longer found only in inter-
controller or manufacturing execution systems, but has penetrated into the real-time
sensitive automation process (i.e., close to the machines and sensors). Ethernet itself
adds many advantages to industrial environments where digitalization also means
more data-driven IT services interacting with the machines. However, in order to
cater to the needs of both new and more automation-related communication, a better
restructuring of the network and resources among multitenant systems needs to be
carried out. Various Industrial Ethernet (IE) standards already allow some localized
separation of application flows with the help of Quality of Service (QoS) mecha-
nisms. These technologies also expect some planning or engineering of the system
which takes place by estimating worst-case scenarios of possible traffic generated
by all assumed applications. This approach, however, lacks the flexibility to add new
services or to extend the system participants on the fly without a major redesign
and reconfiguration of the whole network. Network virtualization and segmentation
is used to satisfy these requirements of more support for dynamic scenarios, while
keeping and protecting time-critical production traffic. Network virtualization allows
slicing of the real physical network connecting a set of applications and end devices
into logically separated portions or Slices. A set of resource demands and constraints
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is defined on a Slice or Virtual Network level. Slice links are then mapped over phys-
ical paths starting from end devices through forwarding devices that can guarantee
these demands and constraints. In this chapter, the modeling of virtual industrial net-
work constraints is addressed with a focus on communication delay. For evaluation
purposes, the modeled network and mapping criteria are implemented in the Virtual
Network Embedding (VNE) traffic-engineering platform ALEVIN [1].

Keywords Field buses · Local area networks · Scheduling · Telecommunication
network topology · Fieldbus technology · Industrial communication systems ·Opti-
mized datagram transfer · Real-time Ethernet system · Synchronous scheduling ·
Topology-based addressing · Auto configuration · Real-time Ethernet · Real-time
communication · Synchronous scheduling
1 Introduction

In VNE, high level virtual networks requested by users are usually called Virtual
Network requests (VNRs). In this chapter, the term ‘demands’ refers to the resource
capacity needs and constraints defined for individual network entities in the VNR.

Resource-constrained Network Virtualization is a concept that has been adopted
in industrial scenarios by Huth et al. in [17]. The network then has to define
the end-nodes hosting a certain application or tenant, which has a certain set of
requirements—called “demands”—that need to be treated separately or in an iso-
lated manner. These requirements could include specific demands for computing
resources such as CPU and network bandwidth resources, QoS demands such as
communication latency, and security demands. Network virtualization allows for a
demand-based efficient allocation of network resources to applications. It extends
traditional server virtualization that shares a single physical host among multiple
user virtual machines to allocate a complete Virtual Network of multiple virtual
nodes and a set of links among them. This mathematical problem is known as the
VNE problem [14]. In VNE, an algorithm tries to embed a set of virtual network
requests (VNRs) by efficiently mapping each virtual node to a physical host, and
each virtual link to one or more physical paths. Each virtual node and link carries a
set of demands that should be satisfied in the mapping process. These demands can
be classified in two main categories: consumable demands such as computing and
network bandwidth resources, and constraint-based demands. The constraint-based
demands can be either performance constraints such as communication latency, or
security constraints such as the security level of a physical node.

Defining and modeling the specific requirements of industrial networks for the
VNE problem is a challenging domain that has not been widely covered in research.
However, many models have been presented to calculate performance bounds of
small network samples using network calculus methods.ManyVNE algorithms have
been developed to consider different constraints in the optimized mapping but with a
generic view that is not easily applicable to the real networks and does not consider
the specific nature of industrial networks. These models also do not consider the real
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properties of network entities and how the output of the mapping algorithms could
be applied to configure the network devices.

In industrial networks, many applications share a large network of hundreds or
thousands of nodes. These applications have different topologies and classes of traf-
fic that might share the same network entities. The topology and communication
requirements of an industrial environment depend on the applications running in this
environment. All types of topologies could be used by industrial applications: line,
star, ring, and mesh. All types of traffic might be found in an IE network: traditional
user data, bandwidth-consuming video, and critical control data. The industrial net-
work must be able to give priority to different types of traffic and deliver real-time
network services: low latency and jitter and minimal packet loss when the network
infrastructure is under load [10]. Most control operations in industrial applications
can tolerate latencies of 10–50ms [10]. The capability to share a network with other
applications, yet maintain the priority of the critical traffic, is a key differentiating
factor of IE [10]. The IE networks should also provide redundant paths, avoiding the
situation of a single network entity failure taking down the entire network. Two net-
work topologies most often used to achieve higher availability are ring and redundant
star [10]. The introduction of network virtualization can relax these design criteria
of the network topology, since these kinds of requirements could still be defined per
application as a Virtual Network.

The network slicing approach adopted introduces a network controller, where the
requested Virtual Networks and resource demands are submitted. The controller runs
the algorithmic basis for deciding whether and how to embed the Virtual Network
and has the potential to configure each real network device in the physical substrate.
The details of the network slicing concept are given in Sect. 2.

In Sect. 3, the model used for the application of VNE to industrial networks
using Network Slices is covered. A general overview of VNE is presented in Sect. 3.
Section4 classifies the different types of communication constraints and describes
some specific constraints of industrial environments and how these constraints are
modeled by VNE research. A simple approach for modeling delay is developed and
presented by the authors in this Section. Section5 introduces the ALEVIN VNE
platform and describes how the delay model is implemented. Section6 introduces
the evaluation approaches of VNE algorithms. Section7 summarizes this chapter.

2 Network Slices in Industrial Networks

2.1 Overall System Architecture

To model the requirements of multiple applications that belong to the same service
class in an Industrial Network, a network abstraction layer is introduced, the ‘Slice
layer’ (Huth et al. [17]). The Slice layer (see Fig. 1) provides a graph view of the net-
work. Applications can only see edge nodes and intelligent traffic-engineering algo-
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Fig. 1 Layers of network
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rithms can operate on the graph without knowing details of the underlying substrate
implementation. Important architectural components are clean interfaces, meaning
they must provide clearly defined responsibilities and enforce a ‘separation of con-
cerns’ (Laplante et al. [24]).

Applications (including planning and management tools) use a ‘Communication
Service Interface’ (CSI) for setting up and using the network. The Slice view is
provided and controlled from a central component, the Slice Manager (SMGR). The
SMGR is responsible for a network, or a part of a network. If aNetworkVirtualization
(Slice)must be constructed, the SMGR receives the necessary specifications from the
application via the CSI. The SMGR then calculates an optimal routing subgraph and
finally commissions the required rules to the physical network using a ‘driver layer’.
The driver layer has knowledge of the concrete methods for accessing the devices
and this layer also provides device abstraction for the Slice view in the SMGR. The
driver layer forms the base for including a multitude of different standards or vendor-
specific device interfaces. It is an important component for making the Slice layer
agnostic to the underlying device and protocol heterogeneity.

Unlike traditional approaches, this layered approach does not mandate specific
interfaces. The SMGR can handle all of the interfaces simultaneously by means of
driver ‘plug-ins’. Because of this, the SMGR constitutes an upgrade-friendly, unified
solution, providing the means to integrate both legacy equipment and specialized
industrial elements or upcoming programmable/software defined networks under
one control platform. Devices, whether they are end devices or network elements,
must be able to perform routing or forwarding according to the policies defined by the
SMGR. In this architecture, the needed functionality along with signaling interface
to the SMGR are bundled in a logical function called a Slice Enforcement Point
(SEP), which is shown in Fig. 2. The SEP can be implemented on that device or
use other means (e.g., Simple Network Management Protocol (SNMP)) to remotely
perform its tasks. End devices that are not under the control of a SEP, hereafter called
‘legacy devices’, can be attached to an adjacent network element with a SEP (‘edge
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Fig. 2 Architecture birds view (Huth et al. [17])

SEP’as in Fig. 2). This edge SEP controls the corresponding network interfaces and
enforces the needed policies for the legacy devices. This solution is similar to a port-
based VLAN, which indicates a migration path from today’s Ethernet technology
toward our Slice solution. Devices that are specifically dedicated to support the new
approach will have their own local SEP (‘integrated SEP ’, Fig. 2) so that Slices can
reside in that device.

2.2 The Slice Manager

The SMGR controls all devices it is responsible for and provides the interface for
managing Slices. Figure3 shows the internal functional architecture of the SMGR.
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Fig. 3 Simplified SMGR architecture (Huth et al. [17])
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TheSMGRshould expose both amanagement interface and an interface for accessing
devices in the network. The management interface allows controlling (i.e., establish-
ing, tearing down, and changing) Slices without intervention by an application. The
management interface can also be accessed by planning tools or by an operator. The
interface to the physical devices follows an object-oriented paradigm with one proxy
object per device managed by this SMGR instance. These proxy objects also provide
a standardized abstract view of a device and they contain drivers for accessing the
device. For example, an industrial Ethernet device and a legacy-Ethernet device have
different proxy implementations and the algorithms in the SMGR only see different
device properties but access to the devices (viz. the interface) is of the same type for
both.

In order tomanage and optimize Slices, the SMGRmust not only know all devices
and their capabilities, but also the topology of the network. One way to accomplish
this is to collect all neighborhood information from the devices and infer the network
graph from the information collected. As SNMP and LLDP are already frequently
used in industrial devices, this info is usually present even in today’s devices.

Notice that Fig. 3 does not show an application interface. The device interface
(which uses SEP signaling) could be re-used as an application signaling channel for
several reasons: (a) it is easy for applications to discover a local SEP, so there is no
need for another service discovery, (b) access control becomes easier as it can already
be performed in the SEP, and (c) there is no need for an additional asynchronous and
multi-client interface, a fact that simplifies implementation of the SMGR.

2.3 The Slice Enforcement Point

As explained before, the SEP is a functionality bound to a device. It is responsible
for signaling to the SMGR or the applications, and it controls the network interfaces
of that device. For example, the SEP must be able to manipulate forwarding or
routing tables and to set QoS rules. The actual implementation can reuse existing
control interfaces such as SNMP (Case et al. [7] and Yang et al. [31]). However, a
small dedicated agent forming the SEP is beneficial because it can be tailored for
that purpose and it may add local intelligence that, e.g., enables quick recovery in
failure cases without contacting the SMGR. Notice that due to the object-oriented
architecture of the SMGR, a mix of different SEP implementations is of course
possible.

2.4 The Applications Interface to Communication Services

In order to use Slices, applications need a communication interface (User Plane) and
signaling means (Control Plane) for attaching to a Slice and for specifying properties
such as bandwidth constraints or QoS. For the user plane, a virtual layer-2 interface
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could be used, similar to solutions found in server virtualization environments. The
signaling can use the next SEP as an entry point, which is either located on a device
or on an adjacent edge device (switch or router).

Specification of a Slice includes at least a specification of the required QoS, but
in order to enable online traffic-engineering, a specification of the traffic is also
beneficial. Slices could be used for aggregate flows of an application and not for
single flows, although the latter is conceptually possible. Pure QoS, industrial appli-
cations may also have tight reliability requirements. Furthermore, some of them will
have a high importance (i.e., a safety application). Thus, a notion of resilience and
importance to the specification of traffic requirements should be added. A traffic-
engineering algorithm can use this information to, e.g., establish redundant paths or
to resolve resource shortages.

2.5 Use Cases

The following sample use cases illustrate how the Slice system can be used. First,
consider a data acquisition application accessingmany sensors and a server collecting
the sensor data. In the planning step, a trafficmatrix is calculated and aSlice is defined.
The Slice definition can be forwarded to the SMGR. The SMGR then calculates an
optimal path for the Slice and commissions it to the network devices. After that, the
end devices (sensors and server) simply attach to the predefined Slice. In the ‘attach’
process, a Virtual Network interface is created by the device SEP and the interface is
bound to the Slice in question. A second example is an automation application that
uses a controller unit connected to actuators and reading sensors. The application
requires hard real-time communication and is programmed by a planning tool. This
tool can estimate and generate the traffic matrix and also the Slice specification. The
latter is then pushed into the SMGR. Unlike today, the planning tool does not need
full knowledge of the topology and capabilities of the network. The SMGR in turn,
knowing the properties of the network, can construct an optimal Slice, eventually
reusing specific means from one of the many IE standards [21]

While the first two examples assume pre-planning, dynamic Slice setup in the
running system is also feasible. For instance, consider that remote support needs to
access a robot for maintenance. In this case, the network operator may install means
for granting access to the remote service over the firewall. In order to facilitate
this, the operator installs a Slice on the fly. This Slice might support best-effort
communication and an upper bandwidth limit. Additionally, this Slice only exposes
the devices needed for the remote service. These sample use cases also illustrate that
the ‘normal’ use of the Slice system is to construct semi-static or longer living Slices
for aggregates (i.e., flows belonging to one application). In many cases, the Slices
will be instantiated by means of a configuration/management interface rather than
application signaling.
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Fig. 4 A VNE instance
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3 Slice Embedding

With Network Virtualization becoming more and more widespread, the resource
assignment problem (VNE) has gained significant attention in the last years
(Fischer et al. [14]). The premise of this problem is that a given number of VNRs
are to be realized on a single physical (or ‘substrate’) network. Slice embedding is a
particular form of VNE. The term Slice introduced in the previous section denotes a
Virtual Network plus allocated resources and policy rules associated with that Vir-
tual Network. If physical network resources are scarce, the optimal assignment of
resources to the demands of a Slice becomes an interesting problem. Indeed, the gen-
eral VNE problem has been shown to be NP-hard (Zhu et al. [32]). Typically, node
and link resources are considered; CPU and bandwidth are usually taken as exam-
ples. For the VNE problem, it is assumed that resources and demands match each
other. A demand imposed by a Slice requires a corresponding resource provided by
the substrate network. Moreover, it is assumed that demands and resources remain
static over the course of time. This is, of course, a significant simplification from
reality, where particular demands may vary wildly (e.g., via traffic spikes). Place-
ment of virtual nodes is generally assumed to be unrestricted, apart from the generic
constraint that a substrate node must have sufficient available resources to host a
particular virtual node. Those nodes are interconnected by virtual links. Virtual links
differ from physical links in that they can be stretched over a path in the substrate
network to allow two virtual nodes that are adjacent in the VNR to be mapped to
two substrate nodes that are not directly connected to each other. Figure4 depicts an
example instance of the VNE problem. Here, a substrate network with four nodes
should be used to host two VNRs with three and four nodes, respectively. Node and
link resources/demands are indicatedwith vertex and edgeweight. Though a solution
exists in the example shown in the figure, it may not be immediately obvious, even
though the number of resources involved is still very small. It should be clear that
larger problems with realistic network sizes can be very challenging to solve.

Formally, the problem can be described as a graph problem. Given a substrate
network represented by a graph SN = (N , L) with resource capacity functions for
nodes and links, capn : N → R and capl : L → R, along with a number of VNRs
V N Ri = (N i , Li ) with respective demand functions for nodes and links, demi

n :
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N i → R and demi
l : Li → R, is it possible to assign substrate resources such that

all VNRs can be satisfied? Formulated as an optimization problem: What is the
minimum amount of substrate resources that must be spent to realize the given set
of VNRs? The NP-hardness of this problem extends in two dimensions. Focusing
on nodes, the problem is a variation of the bin-packing problem, where substrate
nodes are bins and virtual nodes are weights to pack into the bins. Focusing on links
instead, the problem is a variation of the unsplittable flow problem, provided that
virtual links are only allowed to use a single path in the substrate network. It is the
combination of those two problems that makes VNE challenging and interesting at
the same time.

4 Modeling of Communication Constraints

4.1 Performance Constraints

4.1.1 Delay

The end-to-end communication delay between end devices is the most critical per-
formance constraint in industrial environments. In real-time systems, both maximum
and minimum delays are critical. This adds an additional performance metric, jitter.
The jitter of the delay models the range in which the delay might fluctuate. Different
types of delays might be caused by different network entities. Since IE is the modern
technology in industrial environments, the main focus of this chapter is on the laten-
cies in a switched Ethernet network, and how to calculate the cumulative latency
over a network path on which a Slice link is mapped. However, latencies in other
networks such as wireless networks are considered by other researches. According
to [30], switched Ethernet networks may have the following sources of delay for an
Ethernet frame in practice:

1. Store and forward (transmission delay): the switch stores the received data in
memory until the entire frame is received. The switch then transmits the data
frame through the appropriate out port: L SF = F S/B R (F S is the frame size in
bits, and B R is the bit rate in bits/s). For example, for the maximum size of an
Ethernet frame (1500 bytes) at 100 Mbps bit rate, this latency is 120 µs.

2. Switch fabric processing (processing delay): the functions of the switch such as
maintaining the MAC address table and VLAN. In modern industrial switches,
this delay is about 5 µs.

3. Wireline transmission (propagation delay): about 2/3 of the speed of light (3 ×
108 m/s) in fiber optics. For example, the latency for a 100km link is 500 µs.

4. Frame queuing (queuing delay): the delay caused by other frames still waiting
for transmission in the switch.
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Queuing delay is non-deterministic since it depends on the exact traffic patterns that
traverse the switch and the scheduling policies. The traffic patterns define the maxi-
mum frame size, class of service, and time distribution and rate of frames. However,
a maximum queuing delay in an Ethernet switch can be estimated in a simple non-
preemptive and non-prioritized queuing. For example, in an N port switch, the worst
case in an egress port happens when a maximum size frame from each other ingress
port is scheduled for transmission through this egress port at the same time. In this
case, N−1 frames would be in the queue to be transmitted [30]. The maximum queu-
ing delay is then (F S(N − 1)/B R). For example, in the case of a 16-port switch,
and for the maximum size Ethernet frame (1500 bytes) and 100 Mbps bit rate, the
latency is 1.8 ms [30].

Modeling delay requirements in VNE is covered by some researchers. However,
the general approach is to assign delay demands to virtual links and assign certain
delay values as a cost factor to links. The delay is then considered in the optimal
embedding algorithm. In [18], Ivaturi et al. introduced a mixed integer programming
formulation for delay aware VNE (VHub-Delay). The original VHub algorithm tries
to reduce the inner-nodal distance between virtual nodes mapped on the substrate
network (SN). VHub-Delay is an improvement of VHub. During the mapping, delay
and bandwidth capacity of edges are considered. The evaluation of VHub-Delay
shows that VHub-Delay achieves a lower Delay Ratio over paths. The metric Delay
Ratio is the ratio of the delay to the length of a certain virtual link path.

In [29], Shengquan et al. introduced a delay aware algorithm based on a multi-
agent approach. The multi-agent architecture partitions a VNR into k parts and
computes a Node Rank for each part. The algorithm VNE-DC (VNE with delay
constraints) tries to map virtual nodes onto physical nodes, considering the delay
constraint and trying to minimize the bandwidth costs. After a successful mapping
of nodes, links are determined by the k-shortest path algorithm. The k-shortest path
algorithm chooses latency satisfying paths for determining links. The authors con-
sider two types of delays, the propagation and queuing delay. The authors compared
VNE-DC to the similar Hybrid-VNE algorithm that does not consider the delay. The
results show that VNE-DC has a small advantage in acceptance ratio (of Virtual
Networks) and bandwidth cost.

In [3], Basta et al. present a solution for QoS-awaremapping withminimum costs.
The authors describe the effect of service differentiation onVirtualNetworks. Service
differentiation can be performed either by the Physical Infrastructure Provider (PIP)
or the Virtual Network Operator (VNO). Three models are introduced. In the first
model, the VNO is responsible for guaranteeing the service and providing resiliency
in its own domain. In the secondmodel, the VNO guarantees the service quality in its
domain and the PIP guarantees the resiliency of the virtual links. In the last model, the
PIP is responsible for guaranteeing the service and resiliency. All models consider
threeQoS classes (Gold, Silver, andBronze)with specific values formaximumdelay.
The ‘Gold’ class is defined for delay sensitive services such as gaming applications
and guarantees a maximum delay of 20 ms. The ‘Silver’ class is defined for less
time sensitive applications such as VoIP and guarantees a maximum delay of 70 ms.
The ‘Bronze’ class guarantees a maximum delay of 170 ms, and can be used for



Constraint-Based Virtualization of Industrial Networks 577

QD, ProcD

QD, ProcD

QD, ProcD

TD,PD

TD
,P

D

TD
,P

D

TD
,P

D

Device 2Device 3

Device 1

VL
2:

 D

VL1: D

VL3: D

VL2

VL
3

A network slice with a ring 
topology and a delay demand D

TD
,P

D

TD
,P

D

TD: Transmission delay
PD: Propagation delay
ProcD: Processing delay
QD: Queuing delayDevice 1 Device 2 Device 3 Device 4

V
L1

Fig. 5 Assigning different delay types to network entities

non-critical applications such as web-browsing. The paths are categorized in these
classes. To verify if the path satisfies the delay demand, the path delay is calculated
as the sum of the end-to-end delays of each link. The evaluation shows that handling
QoS and resiliency by the PIP and not by the VNO improves the overall network
utilization.

Beck et al. [5] present a nonlinear delay model, based on queuing theory. Delay
is modeled, for substrate links, as a function. Four different delay types are consid-
ered: processing, transmission, propagation, and queuing delay. As an optimization
strategy for VNE, the increased queuing delay that results from intense traffic is con-
sidered in the model. Considering traffic intensity during the mapping stage, leads
to a different result and better resource utilization than traditional VNE approaches.
The total delay of a link is the sum of all delay types assigned to this link. Queuing
delay is calculated through a specific formula that considers the average number of
packets waiting in the queue of a link and the queue size of a system.

In the model being developed by the authors, the aforementioned types of delays
for both nodes and links are modeled in the ALEVIN VNE platform. In this model,
the propagation and transmission delays are link properties since they depend on the
transmission medium and the bit rate. The processing and queuing delay are node
properties. Figure5 reflects this model. To calculate the end-to-end delay between
two nodes, the different types of delays along the physical path between the two
nodes are accumulated. However, only intermediate forwarding nodes in the path
are considered in the delay calculation. The processing and queuing delay in the end
application devices are neglected.
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4.1.2 Reliability and Availability

Links and nodes may exhibit different quality expressed in terms of packet loss
probability or link availability (e.g., mean time between failures). Traffic flows on
the other hand may wish to have a certain availability and a maximum loss ratio.
The layout of a Slice should take this into consideration by choosing appropriate
paths or even by introducing redundancy. Many researches address the resilience-
aware VNE (RVNE) by developing algorithms to handle single node or link failures.
According to Markopoulou et al. [26], 20% of all failures happen during a period of
scheduled maintenance activity. Of the unplanned failures, almost 30% are shared
by multiple links and are most likely due to router-related and optical equipment-
related problems, while 70% affect a single link at a time. Table1 compares some
approaches for resilient VNE according to the following criteria:

• Failure model: Types of failures that the approach provides resilience for.
• Strategy: Resilience mechanisms such as capacity splitting, protection cycles, and
backup paths.

• Stages: Embedding stages.
• Solution: Mathematical model used by the embedding algorithm.
• Backup: Specifies weather this approach depends on reserving backup resources.

4.2 Security Constraints

Security constraints are notably different from either resource constraints such as
CPU and bandwidth, or performance constraints such as delay and reliability, in
that they are typically qualitative in nature. A virtual node might require a trusted
hypervisor environment. A virtual link might require encryption. Such requirements
are not optional, but have to be realized by specific hardware that is capable of
providing the desired level of security. The demands posed by the virtual nodes
and links refer to properties, rather than resources, of the physical environment. A
physical node might be equipped with a trusted hypervisor. A physical link might
use encryption for data transfer.

For the VNE problem, these constraints introduce qualitative differences between
nodes and links in the substrate network. Nodes that have a trusted hypervisor will
be differentiated from nodes that lack this particular capability. In the following, it
will be explained how these constraints can be modeled appropriately for the VNE
problem.

4.2.1 Node Capabilities

Node capabilities refer to particular properties of substrate nodes that can be
demanded by virtual nodes. Two particular types of node capabilities will be dis-
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Table 1 Comparing some approaches to RVNE

Approach Failure model Strategy Stages Solution Backup

Oliveira et al. [27] Single
physical link
failure

Multipath
capacity
splitting,
capacity
recovery
using
remaining
paths

Nodes, links,
capacity

Meta-
heuristic

No

Jarray et al. [20] Single
physical link
failure

Protection-
cycle

Nodes, links,
protection

Column
generation,
Hongbo
graph cycles
algorithm

Minimized

Jarray et al. [19] Single
physical node
failure

Protection-
cycle

N/A Column
generation

Minimized

Chen et al. [8] Single
physical
entity failure

Load
balancing,
reconfigura-
tion of
backup
resources

N/A Linear
programming
heuristic

Yes

Basta et al. [3] Single
physical
entity failure

QoS classes
with backup
baths,
minimum
cost

N/A Mixed
Integer
Linear
Problems
(MILPs)

Yes

cussed here as examples: Virtual Machine Introspection (VMI) and Trusted Hyper-
visors. VMI is a technology that allows the hypervisor to gain outside information
about a virtual machine. For security, this can be used to monitor virtual machines
and react to potentially malicious behavior (Garfinkel et al. [15]).

A Trusted Hypervisor represents the extension of the Trusted Platform Module
(TPM) principle to a virtualization environment. A virtual node with a high security
requirement may demand to be hosted only on hypervisors providing a trusted com-
puting environment to protect against adversaries that try to attack the hypervisor
directly.

Both types of node capabilities can be expressed as a property that is attached
to the substrate node and demanded by the virtual node. Unlike resources, these
properties are not spent when a virtual node is mapped to a substrate node. They
only limit the number of potential mapping candidates for each virtual node. This
means that a virtual node with the ‘Trusted Hypervisor’ constraint attached may only
be mapped to substrate nodes that provide the ‘Trusted Hypervisor’ property.

Node capabilities can be mixed and matched. In conventional VNE scenarios,
there is only a single node constraint, namely CPU, that is present on each node
(either as a demand or as a resource). In our scenario, we can have some nodes
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Fig. 6 A cross-VM attack

providing (or demanding) a particular property, or a set of properties. Thus, in our
example there will be substrate nodes that have no particular properties, nodes that
provide VMI, nodes that provide a Trusted Hypervisor, and nodes that provide both.
The same applies for demands of virtual nodes.Amandatory property is the limitation
of machine resources (disk/memory space, CPU load).

4.2.2 Isolation

Virtualization can be used for isolation purposes to support security of virtual ser-
vices. However, it will not solve all security problems (Cohen et al. [11]). Threats that
are specific to virtualized environments (e.g., cross-Virtual Machine (VM) attacks,
cf. Ristenpart et al. [28]) have already been discussed in the literature. Two examples
of isolation will be discussed here: Isolation between different VNRs and isolation
within a single VNR. The first one can be used to avoid cross-VM attacks. In partic-
ular, when virtual nodes of different customers are co-hosted on the same physical
node, attacks may be possible (cf. Fig. 6). A malicious VM might try to gain infor-
mation about a co-hosted VM, e.g., via side-channel attacks. To avoid these kinds
of attacks, two VMs that are potential adversaries should not be co-hosted on the
same hardware. In a scenario where multiple heterogeneous Virtual Networks are
supposed to co-exist on the same hardware, this means that security-critical virtual
nodes should not be co-hosted along with nodes that have low security. VNE must
take such additional constraints into account.

Another requirement is isolationwithin a topology. In the physicalworld, firewalls
are used to segment parts of the network and control network traffic closely. This
concept can be transferred into a virtualized environment. A hardware firewall that
is present in the substrate network can be used by the Virtual Networks to segment
and isolate parts of individual Virtual Networks with high security demands from
less secure parts. In this case, virtual nodes have to specify that they are part of
a network segment that should be protected by a firewall. Special substrate nodes
have to be tagged as possessing firewall capabilities. A VNE algorithm then has to
identify segments in both the virtual and substrate networks, making sure that any
pair of virtual nodes is connected via a firewall in the substrate network.
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5 Modeling Industrial Constraints in the ALEVIN VNE
Platform

ALEVIN is a Java-based open-source virtual embedding platform developed in the
VNREAL project [4, 13]. ALEVIN enables the creation of a substrate network and a
set of Virtual Networks using three different methods: manually via a GUI, imported
from a data file, or a randomly generated scenario with predefined ranges for the
network sizes. The resources are modeled in ALEVIN as properties of substrate
nodes and links. The demands of Virtual Networks are also modeled as properties
of virtual nodes and links. ALEVIN provides an abstract architecture that makes it
easy for the developer to add new pairs of resources/demands. When the mapping
algorithm identifies the substrate nodes and links on which the Virtual Network
will be mapped, each resource in each substrate network entity is occupied with the
capacity demanded by the mapped Virtual Network entity. ALEVIN also provides
the infrastructure to develop and use different VNE algorithms. A set of algorithms
are already implemented in ALEVIN such as subgraph isomorphism (Lischka et al.
[25]) and node ranking (Cheng et al. [9]). The subgraph isomorphism algorithm is
based on subgraph isomorphism detection. It maps nodes and links during the same
stage. The algorithm uses Dijkstra’s algorithm to find the shortest path between two
substrate nodes in which each link satisfies all the demands of the mapped virtual
link. The node ranking algorithm is a two-stage algorithm. In the node mapping
stage, a rank is calculated for each substrate node based on the CPU capacity and the
bandwidth of outgoing links. The rank is also calculated for virtual nodes. The virtual
node with the greatest node rank is mapped on the substrate node with greatest node
rank if the substrate node satisfies its demands. The link mapping stage calculates
k-shortest paths for each virtual link using the algorithm in by Eppstein et al. [12].
Each path is then verified for all the demands of the virtual link until a satisfying
path is found.

The Slices are modeled in ALEVIN as Virtual Networks that specify virtual links
among end devices. Each Slice defines certain topology and demands. ALEVIN con-
verts the Slice to a VNR with the required topology and copies the demands to each
Slice link to the Virtual Network. The node mapping stage is not actually performed
since the virtual nodes are identical to the substrate nodes. The network path con-
straints are modeled in ALEVIN by introducing a new type of resource/demand pairs
for which a different method is used in the mapping procedure. Instead of occupying
the capacity of the resources, these constraints are verified for candidate paths. The
discussed delay model has been implemented in ALEVIN using delay resources that
are assigned to physical nodes and links according to the specific type of the delay
and to delay demands assigned to virtual links. ALEVIN is also developed to sup-
port the verification of path constrains during the mapping of virtual links. A generic
architecture is built to intercept the link mapping stage of any embedding algorithm.
In the new architecture, each candidate path found by the link mapping algorithm
is verified for each path constraint of the mapped virtual link. This verification pro-
cedure is already used in ALEVIN to check the residual resource capacities of all
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network entities along the path and decide if this path can map the virtual link. The
new architecture adds the verification of path constraints to the available verification
procedure. For example, the delay constraint of a virtual link is compared to the
accumulated delays (all delay types) and for all network entities along the candidate
path. However, considering these constraints in the optimized mapping algorithm
has not yet been addressed. This will add multiple dimensions to the problem and
will greatly increase its complexity and execution time for large scenarios.

6 Evaluation Scenarios

In this section, the general evaluation approaches of VNE algorithms are discussed.
Possible extensions of these approaches to meet the requirements of industrial net-
works are proposed. To evaluate VNE algorithms in industrial networks, four differ-
ent issues should be considered:

• The topologies of the substrate and Virtual Networks:Traditional VNE approaches
use random topologies with varying network sizes and connectivity. Evaluation
of industrial networks should be able to consider the specific topologies used in
these networks such as the ring and redundant tree. The test scenarios should be
able to create specific topologies and support the creation of Slices with different
topologies.

• The classes of Virtual Networks: Evaluation of VNE in industrial networks should
be able to create different application classes with different requirements. For
example, different classes of delay demands should be included in a test scenario
and a delay class should be assigned to eachSlice to simulate the nature of industrial
networks where different applications with specific delay requirements share the
network. The distribution of these classes in the Virtual Network could then be
varied to evaluate the effect of this variation on the evaluation metrics.

• The parameters of the substrate network resources and Virtual Networks demands/
constraints: Defining the parameters of the resources/constraints used for evaluat-
ing VNE algorithms in industrial networks requires a deep analysis of these net-
works. To define the delay demand ranges for the test scenarios, the latency require-
ments of the industrial automation applications should be considered. According
to Kerschbaum et al. [22], each automation application requires a different QoS in
terms of communication latency. These requirements are divided into three classes:
100, 10, and 1 ms.

• The objectives of the algorithm and the evaluation metrics. Those issues will be
discussed in detail below.

Fischer et al. [14] described the main embedding objectives and evaluation metrics
that have been defined in VNE approaches. Metrics are used to compare the quality
of different VNE approaches. The main objectives and the main related metrics in
VNE approaches are described below.

• QoS-compliant embeddings:
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– Path length: Average number of substrate links that map a virtual link.
– Stress level: Number of virtual entities mapped over a substrate entity.
– Throughput: Real bandwidth between virtual nodes.
– Delay: Communication latency between virtual nodes.
– Jitter: Variance in the communication latency between virtual nodes.

• Maximizing the economic benefit of VNRs:

– Cost: Sum of all substrate resources utilized for embedding the VNRs.
– Revenue: Sum of all resource requirements of VNRs.
– Cost/Revenue: Ratio between reserved substrate resources and virtual resources
provided.

– Acceptance ratio: Number of successfully mapped VNRs.
– Active substrate nodes: Number of substrate nodes that have to be running to
realize the embedding. This metric is related to operation costs such as energy
usage.

• Survivable embeddings: Creating backup resources in the substrate network.
Backup nodes/links can be set up either for the whole Virtual Network or just
for certain heavily-loaded nodes/links that have high failure probability. Recovery
from failures should not interrupt the Virtual Network.

– Number of backups: Number of available backup resources.
– Path redundancy: Level to which the paths in multipath embeddings are disjoint.
– Redundancy cost: Number of additional resources used to provide resiliency.
– Recovery blocking probability: Ratio of unrecoverable failures vs. all possible
failures.

– Number of migrations : Number of virtual nodes that have to be migrated in
case of failure.

• Another genericmetric that is used to evaluate theVNE algorithms is the algorithm
runtime for different sizes of both the substrate and Virtual Networks.

These general evaluation objectives and metrics should be adapted to evaluate the
VNE algorithms in industrial networks. These networks have different requirements
from traditional networks since they host different application classes in one sub-
strate network with different requirements such as delay guarantees. The following
evaluation metrics are examples of new metrics that might be used to evaluate VNE
algorithms in industrial networks:

• The acceptance ratio of VNRs for different ranges of the demanded delays. In
this metric, only the delay constraints should be defined in the mapping scenario
to make sure that all rejections of Virtual Networks are due to the strict delay
constraints.



584 W. Mandarawi et al.

• Comparing the execution time of the algorithms when they do or do not consider
the delay constrains with an increased network size. The evaluation parameters
should guarantee a 100% acceptance ratio to check the performance overhead of
the algorithms without resulting in rejection.

• Average difference between the demanded delay of a virtual link and the actual
delay of the path mapped. The average should be calculated for all the paths of all
accepted (successfully mapped) Virtual Networks.

7 Summary

Industrial networks have special requirements that cannot be easily planned.Network
Virtualization can provide this planning by efficiently allocating network resources to
different industrial applications considering the specific constraints for each applica-
tion. To applyNetworkVirtualization in Industrial Networks, the concept of ‘Slice’ is
introduced. TheSlice defines aVirtualNetwork that specifies the application resource
requirements and constraints and the virtual links among end devices that are used
by the application. The VNE algorithms can then be used to efficiently map this Slice
on the Industrial Network and satisfy all the specified constraints. These algorithms
can provide online and automated reconfiguration of the Industrial Network to fit the
changing application requirements.

References

1. Alevin2: a tool for the evaluation of algorithms for embedding virtual networks. http://
sourceforge.net/p/alevin/wiki/home/

2. Bassiri B, Heydari SS (2009) Network survivability in large-scale regional failure scenarios.
In: Proceedings of the 2nd canadian conference on computer science and software engineering,
C3S2E ’09, pp 8387, New York, NY, USA. ACM

3. Basta A, Barla IB, HoffmannM, Carle G (2013) QoS-aware optimal resilient virtual networks.
In: IEEE international conference on communications (ICC), pp 2251–2255, 9–13 June 2013

4. Beck MT, Linnhoff-Popien C, Fischer A, Kokot F, de Meer H (2014) A simulation framework
for virtual network embedding algorithms. In: 2014 16th international telecommunications
network strategy and planning symposium (Networks), pp 1–6, 17–19 Sept 2014

5. Beck MT, Linnhoff-Popien C (2014) On delay-aware embedding of virtual networks. In: The
sixth international conference on advances in future internet, AFIN

6. Bui M, Jaumard B, Harter IBB, Develder C (2014) Scalable algorithms for QoS-aware virtual
network mapping for cloud services. In: 2014 international conference on optical network
design and modeling, pp 269–274, 19–22 May 2014

7. Case J (2002) Introduction and applicability statements for internet standard management
framework. In: RFC 3410, IETF, Dec 2002

8. Chen Q, Wan Y, Qiu X, Li W, Xiao A (2014) A survivable virtual network embedding scheme
based on load balancing and reconfiguration. In: Network operations and management sym-
posium (NOMS), 2014 IEEE, p 17, May 2014

http://sourceforge.net/p/alevin/wiki/home/
http://sourceforge.net/p/alevin/wiki/home/


Constraint-Based Virtualization of Industrial Networks 585

9. Cheng Xiang Su, Sen Zhang Zhongbao, Hanchi Wang, Fangchun Yang, Yan Luo, Jie Wang
(2011) Virtual network embedding through topology-aware node ranking. SIGCOMMComput
Commun Rev 41(2):38–47

10. Cisco (2010) Industrial ethernet: a control engineers guide. In: Cisco white paper
11. Cohen F (2010) The virtualization solution. IEEE Secur Priv IEEE Comput Soc 8:60–63
12. David Eppstein (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673
13. Fischer A, Botero JF, Duelli M, Schlosser D, Hesselbach X, De Meer H, Margaria T, Padberg

J, Taentzer G, Hellbrck H, Luttenberger N, Turau V (eds) (2011) ALEVIN—a Framework to
develop, compare, and analyze virtual network embedding algorithms. In: Electronic commu-
nications of the EASST, proceedings of the workshop on challenges and solutions for network
virtualization (NV2011), EASST, 37, pp 1–12

14. Fischer A, Botero JF, Beck MT, DeMeer H, Hesselbach X (2013) Virtual network embedding:
a survey. IEEE Commun Surv Tutorials 15:1888–1906

15. Garfinkel T, RosenblumM (2003) A virtual machine introspection based architecture for intru-
sion detection. In: Proceedings of network and distributed systems security symposium, pp
191–206

16. Harrison C, Cook D, McGraw R, Hamilton JA (2012) Constructing a cloud-based IDS by
merging VMI with FMA. In: IEEE 11th international conference on trust, security and privacy
in computing and communications (TrustCom), pp 163–169, 25–27 June 2012

17. Huth HP, Houyou AM (2013) Resource-aware virtualization for industrial networks. In: 4th
international conference on data communication networking (DCNET 2013), Reykjavik, Ice-
land, July 2013

18. Ivaturi K, Wolf T (2014) Mapping of delay-sensitive virtual networks. In: 2014 international
conference on computing, networking and communications (ICNC), pp 341–347, 3–6 Feb
2014

19. Jarray A, Yihong S, Karmouch A (2013) p-Cycle-based node failure protection for survivable
virtual network embedding. In: IFIP networking conference, pp 1–9, 22–24 May 2013

20. Jarray A, Yihong S, Karmouch A (2013) Resilient virtual network embedding. In: ICC’13, pp
3461–3465

21. Jasperneite J, Imtiaz J, Schumacher M, Weber K (2009) A proposal for a generic real-time
ethernet system. IEEE Trans Industr Inform 5(2):75–85

22. Kerschbaum S, Hielscher KS, Klehmet U, German R, Fischbach K, Krieger U (eds) (2014)
A framework for establishing performance guarantees in industrial automation networks. In:
Measurement, modelling, and evaluation of computing systems and dependability and fault
tolerance, vol 8376. Springer International Publishing, pp 177–191

23. Khan A, Herker S, An X (2013) Survey on survivable virtual network embedding problem and
solutions. In: ICNS 2013, the ninth international conference on networking and services, pp
99–104

24. Laplante P (2007) What every engineer should know about software engineering. In: CRC
Press. ISBN 0849372283

25. Lischka J, Karl H (2009) A virtual networkmapping algorithm based on subgraph isomorphism
detection. In: Proceedings of the 1st acm workshop on virtualized infrastructure systems and
architectures, VISA’09, pp 81–88, New York, NY, USA. ACM

26. Markopoulou A, Iannaccone G, Bhattacharyya S, Chuah C-N, Ganjali Y, Diot C (2008) Char-
acterization of failures in an operational ip backbone network. In: IEEE/ACM transactions on
networking 16(4):749–762

27. Oliveira RR, Marcon DS, Bays LR, Neves MC, Buriol LS, Gaspary LP, Barcellos MP (2013)
No more backups: toward efficient embedding of survivable virtual networks. In: ICC’13, pp
2128–2132

28. Ristenpart T, Tromer E, Shacham H, Savage S (2009) Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In: CCS ’09: proceedings of the 16th ACM
conference on computer and communications security, ACM, pp 199–212

29. Shengquan L, Chunming W, Min Z, Ming J (2013) An efficient virtual network embedding
algorithm with delay constraints. In: 2013 16th international symposium on wireless personal
multimedia communications (WPMC), pp 1–6, June 2013



586 W. Mandarawi et al.

30. Siemens Canada Limited: Application note 8: Latency on a switched Ethernet
network. 2014.03.21. https://w3.siemens.com/mcms/industrial-communication/en/
ruggedcommunication/Documents/AN8.pdf

31. Yang L, Dantu R, Anderson T, Gopal R (2004) Forwarding and control element separation
(ForCES) framework. In: RFC 3746, IETF, April 2004

32. Zhu Y, Ammar M (2006) Algorithms for assigning substrate network resources to virtual
network components. IN: Proceedings of FOCOM 2006, 25th IEEE international conference
on computer communications, pp 1–12

https://w3.siemens.com/mcms/industrial-communication/en/ruggedcommunication/Documents/AN8.pdf
https://w3.siemens.com/mcms/industrial-communication/en/ruggedcommunication/Documents/AN8.pdf


Component-Oriented Reliability Assessment
Approach Based on Decision-Making
Frameworks for Open Source Software

Shigeru Yamada and Yoshinobu Tamura

Abstract At present, the open source software (OSS) development paradigm is
rapidly spreading. In order to consider the effect of each software component on the
reliability of a system developed in a distributed environment such as an open source
software project, we apply AHP (Analytic Hierarchy Process) and ANP (Analytic
Network Process) which are well-established decision-making methods. We also
propose a method of reliability assessment based on the software reliability growth
models incorporating the interaction among the components. Moreover, we analyze
actual software fault count data to show numerical examples of software reliability
assessment for a concurrent distributed development environment. Furthermore, we
consider an efficient and effective method of software reliability assessment for actual
OSS projects.

Keywords Open source software · Software reliability · Decision-making · AHP ·
ANP · Software reliability growth model · NHPP · Stochastic differential equation ·
Software component · Cloud computing · Big data

1 Characteristics of OSS

At present, OSS systems serve as key components of critical infrastructures in our
society. OSS projects possess a unique feature known as software composition by
which components are developed by teams that are geographically dispersed through-
out the world. Successful OSS projects includes Apache HTTP server, MySQL
database server, OpenStack cloud software, Firefox Web browser, and GNU/Linux
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operating system. However, poor handling of quality issues and customer support has
limited the progress of OSS because the development cycle of OSS has no testing-
phase. Further, mobile OSS has been gaining a lot of attention in the embedded system
area, i.e., Android, BusyBox, Firefox OS, etc. However, the installer software devel-
oped by third-party developers have an effect on the reliability of a mobile device.
Therefore, it is difficult for many companies to assess the reliability of a mobile OSS
project, because a mobile OSS includes several software versions. Another closely
related issue is that of software vulnerability posed by the open source nature of the
code, raising the possibility of security loopholes. For the above-mentioned reasons,
it is difficult for the software managers to assess the reliability of OSS.

We compare the characteristics of software development under the OSS and the
proprietary software paradigms as follows:

OSS

1. The specification continuously changes with each version upgrade.
2. OSS has no specific testing-phase.
3. Several versions of OSS are uploaded to the website of the OSS project.
4. It is difficult to clearly distinguish between developers and users.
5. Many OSS possess different licenses.

Proprietary Software

1. The specification is fixed in the initiation phase.
2. The proprietary software has a specific testing-phase.
3. The delivery of software is specified as the software release time.
4. The user cannot access the source code. The maintenance is performed by the

software engineers.
5. The user of proprietary software must contract with the software development

company.

In particular, OSS have several licenses as follows:

1. GPL (GNU General Public License)
2. LGPL (GNU Lesser General Public License)
3. BSD License
4. X11 License
5. Apache Software License

There are many software licenses in a variety of OSS project areas. Therefore, it is
known that it is difficult for software managers to use OSS for commercial software.

At present, many OSS are developed under several open source projects. For exam-
ple, the Firefox Web browser, Firefox OS, and Thunderbird mailer are developed
and managed under the Mozilla.org project. Also, Apache HTTP server, Tomcat,
and Flex are developed and managed under the Apache software foundation. These
OSS projects control the development phase of many OSS projects. Moreover, the
specification of OSS continuously changes with the version upgrade, because the
software of several versions is uploaded to the website of OSS project.
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It is difficult for software managers to assess OSS reliability because of the dif-
ferences among the development style of OSS and traditional software. Therefore, it
is important to assess and manage OSS reliability by considering the characteristics
of the OSS development paradigm.

In particular, OSS have several versions of the development process as follows:

1. Bug Fix Version (most urgent issue such as patch)
2. Minor Version (minor revision by the addition of a component and module)
3. Major Version (significant revision for specification)

Also, the version number of OSS is generally described as the “(Major version num-
ber. Minor version number. Revision number. Build number)”, e.g., (2.1.2103.1104).
There are several versions for each OSS. Therefore, it is known that it is difficult for
software managers to select the appropriate OSS, because several OSS are available
from the website of an open source project.

This chapter is devoted to the reliability of OSS with the above-mentioned charac-
teristics. Three methods of reliability assessment for OSS are presented. Also, several
numerical examples for each method of reliability assessment are given using actual
fault data of OSS. These methods may be useful for software managers to assess the
reliability of a software system developed using the OSS paradigm.

2 OSS Reliability Assessment Based on NHPP Model
and AHP

In order to consider the effect of each software component on the reliability of the
entire system under such distributed development environment, we apply the AHP
which is known as a decision-making method. Moreover, we propose the method of
reliability assessment based on an SRGM incorporating the interaction among each
software component.

2.1 Component-Oriented Reliability Analysis for OSS

2.1.1 NHPP Models

Many SRGMs have been used as a conventional methods to assess the reliability,
quality control, and testing-process control of software development [1–4]. Among
others, nonhomogeneous Poisson process (NHPP) models have been discussed by
many research papers, since these NHPP models can be easily applied during the
software development. In this section, we discuss NHPP models to analyze software
fault-detection count data. Considering the stochastic characteristics associated with
the fault-detection procedures in the testing-phase, we treat {N(t), t ≥ 0} as a nonneg-
ative counting process where random variable N(t) indicates the cumulative number
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of faults detected up to testing-time t. The fault-detection process {N(t), t ≥ 0} is
described as follows [1]:

Pr{N(t) = n} = {H(t)}n

n! exp[−H(t)]
(n = 0, 1, 2, . . .). (1)

In Eq. (1), Pr{A} indicates the probability of event A, and H(t) is called the mean
value function which represents the expected cumulative number of faults detected
in the testing-time-interval (0, t].

According to the growth curve of the cumulative number of detected faults, we
assume that the software reliability in each software component is assessed by apply-
ing the following SRGMs based on the NHPP [1]:

Exponential SRGM
Inflection S-shaped SRGM

The NHPP models have been discussed by many research papers, since the models
can be easily applied in actual software projects. Moreover, we apply the method of
maximum-likelihood to estimate the model parameters. Below are the expressions
for various software reliability assessment measures from the NHPP models.

2.1.2 Exponential SRGM

The mean value function of the exponential SRGM is given as follows:

Ei(t) = ai(1 − e−bit)

(ai > 0, bi > 0), (2)

where Ei(t) represents the expected cumulative number of faults detected up to
the module testing-time t (t ≥ 0) is the mean value function for the i-th software
component. In Eq. (2), ai(i = 1, 2, . . . , n) is the expected number of initial inherent
faults for the i-th software component, and bi(i = 1, 2, . . . , n) the software failure
rate per inherent fault for the i-th software component.

2.1.3 Inflection S-shaped SRGM

The mean value function of the inflection S-shaped SRGM is given as follows:

Di(t) = ai(1 − e−bit)

(1 + ci · e−bit)

(ai > 0, bi > 0, ci > 0), (3)
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where ai(i = 1, 2, . . . , n) is the expected number of initial inherent faults for the i-th
software component, and bi(i = 1, 2, . . . , n) the software failure rate per inherent
fault for the i-th software component. Moreover, ci(i = 1, 2, . . . , n) represents the
inflection rate for the i-th software component.

2.1.4 Goodness-of-Fit Evaluation Criteria for Applied Model

We compare the model goodness-of-fit of two conventional SRGM’s for the observed
data set. We use the following goodness-of-fit evaluation criteria, i.e., the Akaike’s
information criterion (AIC) and the mean square error (MSE). Suppose that K data
pairs (tk, yk)(k = 1, 2, . . . , K) are observed during the system testing-phase, where
yk is the cumulative number of software failures observed in the time-interval (0, tk].
(i) AIC
AIC helps us to select the optimal model among ones estimated by the method of
maximum-likelihood. It is given by

AIC = −2 · (the logarithmic maximum-

likelihood) + 2 · (the number of

free model parameters). (4)

Differences among AIC values are significant, not their value themselves. It can
be judged that the model having the smallest AIC fits best to the actual data set
when their differences are greater than or equal to 1. However, there is no significant
difference among two models in the case where the differences of AIC’s are less
than 1.
(ii) MSE
The mean square error can be obtained by dividing the sum of square errors between
the observed value, yk , and its estimate, ŷk , by the number of pairs of data, n, i.e.,

MSE = 1

n

n∑

k=1

(yk − ŷk)
2. (5)

ŷk in Eq. (5) is obtained from the estimated mean value function Ĥ(t) as ŷk =
Ĥ(tk)(k = 1, 2, . . . , n). A small mean square error indicates that the selected model
fits the observed one well.

We compare the two conventional SRGM’s using the above-described goodness-
of-fit evaluation criteria. Concretely speaking, AIC is the first goodness-of-fit eval-
uation criterion, and MSE is the secondary goodness-of-fit measure, i.e., we select
the appropriate model when the difference of values in AIC is greater than or equal
to 1, otherwise we select the appropriate model based on the value of MSE.
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2.1.5 Software Component Assessment Based on AHP

The AHP developed in the 1970 s is utilized widely in Europe and the United States
for management issues, energy problems, decision-making, and urban planning. The
AHP is considered to be one of the most effective methods for decision-making
support [5].

When considering the effect of debugging process on an entire system in the
development of a software reliability assessment method for distributed develop-
ment environment, it is necessary to grasp the deeply intertwined factors, such as
programming path, size of a component, skill of fault reporter, and so on.

Also, it is rare that collected data sets entirely contain all the information needed
to assess software reliability, although these data sets for deeply intertwined factors
are collected from the bug tracking system. Therefore, it is difficult to estimate the
effect of each component on the entire system using the collected data sets only.

In this chapter, we propose a reliability assessment method based on the AHP
to estimate the effect of each component on the entire system in a complicated
environment. Specifically, we can assess the importance level of faults detected for
each component, the size of a component, the skill of fault reporter, and so on as
evaluation criteria for the AHP.

Let wi(i = 1, 2, . . . , n) be the weight parameters for evaluation criteria of the
AHP. Then, the pair comparison matrix is given as follows:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w1

w1

w2
· · · w1

wn

w2

w1

w2

w2
· · · w2

wn

...
...

. . .
...

wn

w1

wn

w2
· · · wn

wn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

We can obtain the weight parameter αi for each evaluation criterion from the above
pair comparison matrix using the following geometric average:

αi = n

√√√√
n∏

j=1

xij,

xij = wi

wj
. (7)

Therefore, the total weight parameter for each evaluation criterion is given by the
following equation:
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βi = αi∑n

i=1
αi

. (8)

Using the weight parameter βi in Eq. (8), we can obtain the total weight parameter
pi which represents the level of importance for each component.

2.2 Reliability Analysis for Entire OSS

2.2.1 Logarithmic Execution Time Model

The operating environment of OSS possesses characteristics of the susceptible to
various application software. Therefore, it is different from a conventional software
system developed by an identical organization. Then the expected number of detected
faults continues to increase from the effect of the interaction among application
software, i.e., the number of detected faults cannot converge to a fixed value.

As mentioned above, we apply the logarithmic Poisson execution time model
based on the assumption that the number of detected faults tends to infinity. Thus,
we consider the following structure of the mean value function μ(t) for the entire
system because an NHPP model is characterized by its mean value function:

μ(t) = 1

θ − P
ln[λ0(θ − P)t + 1]

(0 < θ, 0 < λ0, 0 < P < 1), (9)

where λ0 is the intensity of initial inherent failure, θ the reduction rate of the fail-
ure intensity rate per inherent fault. Moreover, we assume that the parameter P in
Eq. (9) represents the following weighted average in terms of the weight parameter
pi estimated by the AHP and the software failure rate per inherent fault bi for the i-th
software component in Eq. (2) or Eq. (3):

P =
n∑

i=1

pi · bi, (10)

where n represents the number of software components and pi(i = 1, 2, . . . , n) the
weight parameter for each component.

2.2.2 Reliability Assessment Measures

We can give the following expressions as software reliability assessment measures
derived from the NHPP model given by Eq. (9):
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• Software reliability
The software reliability can be defined as the probability that a software failure
does not occur during the time-interval (t, t + x] (t ≥ 0, x ≥ 0) after the testing-
time t. The software reliability is given by

R(x|t) = exp[μ(t) − μ(t + x)],
(t ≥ 0, x ≥ 0). (11)

• Instantaneous mean time between software failures
The instantaneous mean time between software failures (MTBFI) measures the
frequency of software failure occurrence, and is given by

MTBFI(t) = 1
dμ(t)

dt

. (12)

• Cumulative mean time between software failures
The cumulative mean time between software failures (MTBFC) is given as follows:

MTBFC(t) = t

μ(t)
. (13)

3 OSS Reliability Assessment Based on NHPP Model
and ANP

In order to consider the effect of each software component on the reliability of an
entire system in a distributed development environment, we apply the ANP (analytic
network process) which is a popular decision-making method. Moreover, we propose
a method of reliability assessment based on the SRGM incorporating the interaction
among software components. Also we discuss a method of reliability assessment for
OSS projects as a typical case of a distributed development environment.

3.1 Component-Oriented Reliability Analysis for OSS

3.1.1 Reliability Assessment Based on SRGM

We can give useful expressions for various software reliability assessment measures
from the NHPP models with specified mean value functions. Based on Sects. 2.1.2,
2.1.3, and 2.1.4, we can similarly select the suitable SRGM for each software com-
ponent.
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3.1.2 Weight Parameter for Each Component Based on ANP

To consider the effect of debugging process on entire system in the development of a
software reliability assessment method for distributed development environment, it
is necessary to grasp the deeply intertwined factors, such as programming path, size
of a component, skill of fault reporter, and so on.

Also, it is difficult to consider that collected data sets entirely contain the informa-
tion in terms of software reliability, although these data sets for deeply intertwined
factors are collected from bug tracking system. Therefore, it is difficult to estimate
the effect of each component on the entire system using the collected data sets only.

In this section, we apply the reliability assessment method based on the ANP [6,
7] to estimate the effect of each component on the entire system in a complicated
situation. Specifically, we apply the importance level of faults detected for each com-
ponent, the skill of the fault reporter, and the skill of the fault repairer as evaluation
criteria for the ANP.

For example, Fig. 1 shows the network structure in this section. “Severity”,
“Assigned to” and “Reporter” are evaluation criteria, whereas “general”, “other”,
“xfce4”, “xfdesktop”, “xffm”, and “xfwm” are components. The super-matrix is
given as follows:

S =
[

A1 0
B21 A2

]
(14)

(
A1 = 0, B21 =

[
v
0

]
, A2 =

[
0 W
U 0

])
.

Fig. 1 Network structure of ANP
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Then, Ai is the evaluation matrix in cluster i, and B21 the evaluation matrix from
cluster 1 to cluster 2. Moreover, v is the level of importance of each component, U the
evaluation matrix which influences from each component to evaluation criteria, and
W the evaluation matrix which influences from evaluation criteria to each component.

First, in order to standardize a matrix, the maximum eigenvalue λ1 and λ2 of the
partial matrix in a diagonal block A1 and A2 are calculated as

Ai = 1

λi
Ai (i = 1, 2), (15)

B21 = 1

λ1
B21. (16)

Then, let λi be 1 if Ai = 0. Then the super-matrix is given as follows:

S =
[

A1 0
B21 A2

]
. (17)

And,
[

B21 A2

]
is extracted from Eq. (17). The number of the positive factor of the

i-th line of this matrix is set to n2i, and the matrix which divided each factor of the
i-th line by n2i is set to

[
B̂21 Â2

]
. Thereby, we can calculate b̂2 as follows:

b̂2 = B̂21u1. (18)

When a cluster 1 consists of one element, it is estimated that it is u1 = 1. b̂2 is an
evaluation value given from cluster 1 to cluster 2.

The parameters pi representing the level of importance of each component for the
entire system reliability can be estimated using u2 expressed with Eq. (19) from the
above-mentioned results:

b̂2 + Â2u2 = u2. (19)

3.2 Reliability Assessment for Entire System

3.2.1 Inflection S-shaped SRGM

We apply the inflection S-shaped SRGM for reliability assessment of the entire sys-
tem. Thus, we consider the following structure of mean value function S(t) because
an NHPP model is characterized by its mean value function:

S(t) = a(1 − e−bt)

1 + C · e−bt
(a > 0, b > 0, C > 0), (20)
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where a is the expected number of initial inherent faults, and b the software failure rate
per inherent faults. Moreover, we assume that C represents the following weighted
average in terms of weight parameter pi estimated by ANP and inflection rate ci in
Eq. (3):

C =
∑n

i=1
pi · ci

∑n

i=1
pi

=
n∑

i=1

pi · ci, (21)

where n represents the number of software component, pi the weight parameter for
each component, and ci the inflection rate for the i-th software component.

3.2.2 Software Reliability Assessment Measures

We can give the following expressions as software reliability assessment measures
derived from the NHPP model given in Eq. (21):

• The expected number of remaining faults
The expected number of faults remaining in the system at testing-time t, which
is obtained as the expectation of random variable {N(∞) − N(t)}, is given as
follows:

Nc(t) ≡ E[N(∞) − N(t)] = a − S(t). (22)

• Software reliability
The software reliability can be defined as the probability that a software failure
does not occur during the time-interval (t, t + x](t ≥ 0, x ≥ 0) after testing-time
t. The software reliability is given by

Rc(x|t) = exp[S(t) − S(t + x)] (t ≥ 0, x ≥ 0). (23)

4 OSS Reliability Assessment Based on Stochastic
Differential Equation Model and AHP for Big Data
on Cloud Computing

4.1 Software Reliability Considering Big Data
on Cloud Computing

Many software reliability growth models (SRGM’s) [1–4] have been applied to assess
the reliability for quality management and testing progress control of software devel-
opment. On the other hand, the effective methods assisting dynamic testing manage-
ment for a new distributed development paradigm as typified by cloud computing
have not been studied as extensively [8–10]. Also, several research papers [11–15]
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have addressed the area of cloud computing and mobile clouds. However, these
papers focus on security, service optimization, secure control, resource allocation
technique, etc. Thus, research papers on the reliability of big data and cloud com-
puting have presented. When considering the effect of the debugging process on
the entire system in the development of a method of reliability assessment for the
software developed by third-party developers, it is necessary to understand the role
of installer software, network traffic, the installed software, etc. Therefore, it is very
important to consider the status of network traffic on the reliability assessment from
the following standpoint:

• For mobile devices, the network access devices are frequently used by many soft-
ware applications installed via the installer software.

• Using the installer software, various third-party software applications are installed
via the network.

• In case of open source, the weakness of reliability and computer network security
becomes a significant problem.

There are also some interesting research papers on cloud hardware, cloud service,
mobile clouds, and cloud performance evaluation [16, 17]. However, most of them
have focused on the case studies of cloud service and cloud data storage technologies.
The effective methods of dynamic reliability assessment considering the environment
such as cloud computing and OSS are limited [18]. In particular, it is very important
to consider the status of fault-detection and big data as they influence the reliability
assessment for cloud computing from the following standpoint:

• Cloud computing has a particular maintenance phase such as the provisioning
processes.

• Big data, as the results of the huge and complicated data using the internet network,
causes system-wide failures because of the complexity of data management.

• Various mobile devices are connected via the network to the cloud service.
• Data storage areas for cloud computing are reconfigured via the various mobile

devices.

From above reasons, it is important to consider the indirect influences of big data on
reliability. We have proposed several methods of software reliability for cloud com-
puting in the past [19, 20]. However, the effective methods of reliability assessment
considering both big data factors and faults are limited, because it is very difficult
to describe the indirect influence of big data and fault data as the reliability assess-
ment measures as shown in Fig. 2. Thus, we propose a new approach to describe the
indirect effect on reliability using three kinds of Brownian motions.

From the points discussed above, we consider that all factors of big data, cloud
computing, and network access have an effect on cloud computing, directly and
indirectly. In other words, big data and cloud computing have deep and complex
influences on reliability. Therefore, it is very important to consider big data from the
point of view of reliability for cloud computing, i.e., to ensure stable operation of
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Fig. 2 The relationship among big data, cloud computing, network, and reliability

cloud computing by offering several reliability assessment measures considering the
big data in terms of all factors of cloud computing, mobile clouds, and open source
software. We now introduce 3V’s model defined by Gartner Group, Inc. [21] for the
big data.

4.2 Weight Parameter Based on AHP

In case of considering the effect of debugging process on an entire system in the
development of a method of software reliability assessment for big data on cloud
computing, it is necessary to grasp the deeply intertwined factors, such as the char-
acteristics of big data, the application of cloud computing, the system reliability, and
so on.

We discuss a method of reliability assessment based on the AHP in terms of
estimating the effect of each factor on the entire big data on cloud computing in a
complex situation. In particular, we can apply the 3V’s model for describing big data,
to the evaluation criteria of the AHP. The 3V’s model in the big data means Volume,
Velocity, and Variety. The 3V’s model is defined by Gartner Group, Inc. [21]. The
Volume, Velocity, and Variety are very important to assess the big data in terms of
the external factor for reliability.

In Sect. 2.1.5, using the weight parameter βi(i = 1, 2, 3) in Eq. (8), we can
obtain the total weight parameter pi(i = 1, 2, 3) which represents the alternative of
AHP. In this paper, the Volume, Velocity, and Variety of 3V’s model are applied to
the evaluation criteria of the AHP. Moreover, we consider three probability as the
alternative of AHP, i.e., the changing rate of network traffic per unit time, the renewal
rate of data per unit time, and the detection rate of fault per unit time. Figure 3 shows
the basic concept of factor analysis for big data by using AHP in this chapter.
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Fig. 3 The basic concept of factor analysis for big data

4.3 Stochastic Differential Equation Modeling

Let M(t) be the cumulative number of faults detected by operation time t (t ≥ 0)

in the cloud software. Suppose that M(t) takes on continuous real values. Since
latent faults in the cloud software are detected and eliminated during the operation
phase, M(t) gradually increases as the operational procedures go on. Thus, under
common assumptions for software reliability growth modeling [1], the following
linear differential equation can be formulated:

dM(t)

dt
= b(t){R(t) − M(t)}, (24)

where b(t) is the software fault-detection rate at operation time t and a nonnegative
function, R(t), means the amount of changes of requirements specification [22]. Also,
R(t) is defined as follows:

R(t) = αe−βt, (25)

where α is the number of faults latent in the cloud OSS, and β the changing rate of
requirements specification. It is assumed that the fault-prone requirements specifica-
tion of OSS grows exponentially in terms of t [22]. Thus, the OSS shows a reliability
regression trend if β is negative. On the other hand, the OSS shows a reliability
growth trend if β is positive.

Considering the characteristic of the big data on cloud computing, the software
fault-reporting phenomena keep an irregular state in the operation phase, due to the
network access of several users. In case of OSS, we have to consider that OSS fault-
prone specification depends on the operation time. In particular, cloud computing
has the unique characteristics of provisioning process. At present, the amount of data
used by cloud users becomes large. Then we consider the big data in order to assess
the reliability for cloud computing. Therefore, we extend Eq. (24) to the following
stochastic differential equation modeling with three Brownian motions [23, 24]:
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dM1(t)

dt
= {b1(t) + σ1ν1(t)}{R1(t) − M1(t)}, (26)

dM2(t)

dt
= {b2(t) + σ2ν2(t)}{R2(t) − M2(t)}, (27)

dM3(t)

dt
= {b3(t) + σ3ν3(t)}{R3(t) − M3(t)}, (28)

where σ1, σ2 and σ3 are a positive constant representing a magnitude of the irregular
fluctuation, ν1(t), ν2 and ν3(t) a standardized Gaussian white noise. We assume that
M1(t) and R1(t) are related with the software fault-detection rate b1(t) depending
on the failure occurrence phenomenon. Also, M2(t) and R2(t) are related with the
software fault-detection rate b2(t) depending on the big data. Moreover M3(t) and
R3(t) are related with the software fault-detection rate b3(t) depending on the network
of cloud computing. Considering the independent of each noise, we can obtain the
following integrated stochastic differential equation:

dM(t)

dt
= {b(t) + σ1ν1(t) + σ2ν2(t) + σ3ν3(t)}{R(t) − M(t)}. (29)

We extend Eqs. (26)–(28) to the following stochastic differential equations of an
Itô type [25]:

dM1(t) =
{

b1(t) − 1

2
σ 2

1

}
{R1(t) − M1(t)}dt + σ1{R1(t) − M1(t)}dω1(t), (30)

dM2(t) =
{

b2(t) − 1

2
σ 2

2

}
{R2(t) − M2(t)}dt + σ2{R2(t) − M2(t)}dω2(t), (31)

dM3(t) =
{

b3(t) − 1

2
σ 2

3

}
{R3(t) − M3(t)}dt + σ3{R3(t) − M3(t)}dω3(t), (32)

where ωi(t) is i-th one-dimensional Wiener process which is formally defined as an
integration of the white noise νi(t) with respect to time t. Similarly, we can obtain
the following integrated stochastic differential equation based on the independent of
each noise:

dM(t) =
{

b(t) − 1

2
(σ1 + σ2 + σ3)

2

}
{R(t) − M(t)}dt

+ σ1{R(t) − M(t)}dω1(t) + σ2{R(t) − M(t)}dω2(t)

+ σ3{R(t) − M(t)}dω3(t). (33)

We define the three-dimension processes [ω1(t), ω2(t), ω3(t)] as follows [26]:

ω̃(t) = (
σ 2

1 + σ 2
2 + σ 2

3

)− 1
2 {σ1ω1(t) + σ2ω2(t) + σ3ω3(t)} . (34)
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Then, three Wiener processes, ω̃(t), are Gaussian processes and have the following
properties:

Pr[ω̃(0) = 0] = 1, (35)

E[ω̃(t)] = 0, (36)

E[ω̃(t)ω̃(t′)] = Min[t, t′], (37)

where Pr[·] and E[·] represent the probability and expectation, respectively.
Using Itô’s formula [23, 24], we can obtain the solution of Eq. (33) under the

initial condition M(0) = 0 as follows [25]:

M(t) = R(t)

[
1 − exp

{
−

∫ t

0
b(s)ds − σ1ω1(t) − σ2ω2(t) − σ3ω3(t)

}]
. (38)

Using solution process M(t) in Eq. (38), we can derive several software reliability
measures.

Moreover, we define the software fault-detection rate per fault in case of b(t)
defined as

b(t)
.=

dI(t)
dt

a − I(t)

= b

1 + c · exp(−bt)
, (39)

where I(t) means the mean value functions for the inflection S-shaped SRGM, based
on a nonhomogeneous Poisson process (NHPP) [1], a the expected total number
of latent faults for SRGM, and b the fault-detection rate per fault. Generally, the
parameter c is defined as (1−l)

l . We define the parameter l as the value of fault factor
estimated using the method of AHP.

Therefore, the cumulative numbers of detected faults are obtained as follows:

M(t) = R(t)

[
1 − 1 + c

1 + c · exp(−bt)

· exp

{
− bt − σ1ω1(t) − σ2ω2(t) − σ3ω3(t)

}]
. (40)

In the proposed model, we assume that the parameter σ1 depends on the failure
occurrence phenomenon. Also, we assume that the parameter σ2 depends on the
network changing rate per unit time resulting from the cloud computing. Moreover,
we assume that the parameter σ3 depends on the renewal rate per unit time resulting
from the big data.
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5 Numerical Examples

In the above discussions, we have presented several methods of OSS reliability
assessment based on AHP and ANP. In this section, we show several numerical
examples OSS reliability assessment based on AHP and ANP.

5.1 Reliability Assessment for Application Software on X
Window System

As an example, we show several numerical examples based on Sect. 3. We focus on
the Xfce desktop environment which is one of the software developed under OSS
project. Xfce is a lightweight desktop environment for UNIX-like operating system.
It aims to be fast and lightweight, while still being visually appealing and easy to use.
The data used in this section is collected in the bug tracking system of the website
of Xfce [27].

We show the cumulative number of detected faults in each component for actual
data in Fig. 4. The estimated results of weight parameter pi(i = 1, 2, . . . , n) for each
component based on ANP in Sect. 3 are shown in Table 1. Especially, the applied
evaluation criterion are the importance level of faults detected for each component
(Severity), the fault repairer (Assigned to), and the fault reporter (Reporter). From
Table 1, we find that the level of importance for “other” component is largest. On
the other hand, we find that the level of importance for “general” component is the
smallest.

Fig. 4 The cumulative number of detected faults in each component for actual data
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Table 1 The estimated results of the weight parameter for each component based on ANP

Component Weight parameter pi

general 0.0550295

other 0.444284

xfce4 0.093274

xfdesktop 0.1827720

xffm 0.122944

xfwm 0.101697

Fig. 5 The estimated cumulative number of detected faults, Ŝ(t)

Based on the estimation results in Table 1, we show the estimated cumulative
number of detected faults in Eq. (20), Ŝ(t), for Xfce desktop environment in Fig. 5.

5.2 Reliability Assessment for Cloud Computing

As an example, we show several numerical examples based on Sect. 4. The OSS is
closely watched from the point of view of the cost reduction and the quick delivery.
There are several OSS projects in area of cloud computing. In particular, we focus on
OpenStack [28] in order to evaluate the performance of our method. In this section,
we show numerical examples of reliability assessment measures using the data sets
for OpenStack of cloud OSS. The data used in this chapter are collected in the bug
tracking system on the website of OpenStack OSS project.
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Fig. 6 The estimated results
of the alternative based on
AHP

0.00

0.25

0.50

0.75
Data

Fault

Traffic

The estimated results of the weight parameters of the alternative for each factor
based on AHP discussed in Sect. 2 are shown in Fig. 6. Then, the estimated consis-
tency index of AHP is 0.0678. From Fig. 6, we can find that the level of importance
for the changing rate of network traffic is largest. On the other hand, we can find that
the level of importance for the fault-detection rate is smallest. These results mean
that the cloud computing keeps the stable throughput because the cloud software
becomes stable.

The sample path of the estimated number of detected faults for the fault and
network factors in Eq. (40) is shown in Fig. 7. Similarly, the sample path of the
estimated number of detected faults for the fault and big data factors in Eq. (40) is
shown in Fig. 8. Moreover, the sample path of the estimated number of detected faults
for the network and big data factors in Eq. (40) is shown in Fig. 9. From Figs. 7, 8
and 9, we can confirm that the noise of network factor becomes large in the early
operation phase of cloud computing. On the other hand, we can confirm that the noise
of fault factor becomes small in all operating phase of cloud computing. Therefore,
we find that the cloud computing environment in this case keeps in stable condition
in terms of the reliability.

From above-mentioned results, we have found that our model can describe the
characteristics of the big data on cloud computing according to the changes of the
fault, the changing rate per unit time of network traffic, and the renewal rate per unit
time of big data. The proposed method will be useful to assess the reliability of the
characteristics of big data on cloud computing.

6 Concluding Remarks

In this chapter, we have focused on a software development paradigm based on
an OSS project. In order to consider the effect of software systems, each soft-
ware component on the reliability of an entire system under distributed development
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Fig. 7 The sample path of the number of detected faults (fault and network factors)
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Fig. 8 The sample path of the number of detected faults (fault and big data factors)
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Fig. 9 The sample path of the number of detected faults (network and big data factors)
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environment such as OSS project, we have applied AHP and ANP which are known
as one of the method of decision-making. Also we have discussed a method of relia-
bility assessment based on the software reliability growth models incorporating the
interaction among software components. Moreover, we have considered an efficient
and effective method of software reliability assessment for the actual OSS project.

We have focused on the cloud computing with big data. In particular, we have
applied AHP which is known as one of the method of decision-making in order
to consider the characteristics of cloud computing under big data. Using the AHP,
we have proposed the method of reliability assessment incorporating the interaction
among 3V’s on big data. The AHP and stochastic differential equation models applied
in this chapter have the simple structure. Therefore, we can easily apply our method
to actual cloud computing project under big data.

When considering the effect of external factors on an entire system in the devel-
opment of software reliability assessment methods for cloud computing, it is nec-
essary to grasp the deeply intertwined factors. In this chapter, we have shown that
the proposed method can grasp such deeply intertwined factors by using the weight
parameters of evaluation criteria for 3V’s model of big data in AHP. Moreover, we
have given several software reliability assessment measures based on the proposed
method. Also, we have analyzed actual data to show numerical examples of software
reliability assessment for the cloud computing. Our methods may be useful as the
OSS reliability assessment approach.
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Abstract This chapter presents a case study on how to characterize the resiliency
of large-scale computers. The analysis focuses on the failures and errors of Blue
Waters, the Cray hybrid (CPU/GPU) supercomputer at the University of Illinois at
Urbana-Champaign. The characterization is performed by a joint analysis of several
data sources, which include workload and error/failure logs as well as manual failure
reports. We describe LogDiver, a tool to automate the data preprocessing and metric
computation that measure the impact of system errors and failures on user applica-
tions, i.e., the compiled programs launched by user jobs that can execute across one
or more XE (CPU) or XK (CPU+GPU) nodes. Results include (i) a characterization
of the root causes of single node failures; (ii) a direct assessment of the effectiveness
of system-level failover and of memory, processor, network, GPU accelerator, and
file system error resiliency; (iii) an analysis of system-wide outages; (iv) analysis of
application resiliency to system-related errors; and (v) insight into the relationship
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1 Introduction

Failures are inevitable in large-scale, high-performance computing systems (HPCs).
Error resiliency (i.e., the ability to compute through failures) is strategic for providing
sustained performance at scale. In this context, it is important tomeasure and quantify
what makes current systems unreliable. Such analyses can also drive the innovation
essential for addressing resiliency in exascale computing.

Analysis of data from today’s extreme-scale HPC systems provides an unpar-
alleled understanding of the resilience problem as it relates to current and future
generations of extreme-scale systems, including fault and error types, probabilities,
and propagation patterns.

Although methods for the design and evaluation of fault-tolerant systems have
been extensively researched, little is known about how well these strategies work in
the field. A study of production systems is valuable not only for accurate evaluation
but also to identify reliability bottlenecks in system design.

Current large-scale supercomputers are equipped with an unprecedented number
of sensors generating events and numerical data for continuous collection and analy-
sis. Because of the extreme volume of data generated, in practice only a share of the
data is collected and analyzed, the purpose being to guide improvements of system
maintenance and resiliency. Computer logs represent a valuable source of data to
conduct resiliency analyses at different levels, i.e., to determine how systems and
applications can withstand run-time errors. The logs are machine-generated, often
human-readable files reporting sequences of entries (log events) generated by the
hardware, operating system and daemons, middleware, network devices, and appli-
cations in relation to regular and anomalous activities that occurred during the system
operational phase. The collected data contain a large amount of information about
naturally occurring errors and failures. Analysis of this data can provide understand-
ing of actual error and failure characteristics and insight into analytical models.

An important and often neglected step in addressing the resiliency challenge of
extreme-scalemachines is to understand how system errors and failures impact appli-
cations and how resiliency is affected by application characteristics. In HPC systems
to date, application resilience to failure has been accomplished by the brute-force
method of checkpoint/restart. This method allows an application to make forward
progress in the face of system faults, errors, and failures independent of the root cause
or end result. It has remained the primary resiliency mechanism because we lack a
way to identify faults and to project results early enough to take meaningful mitigat-
ing action. Because we have not yet operated at scales at which checkpoint/restart
cannot help, vendors have had little motivation to provide the instrumentation neces-
sary for early identification. However, as we move from petascale to exascale, mean
time to failure (MTTF) will render the existing techniques ineffective. An in-depth
characterization of the application failures caused by system-related issues is essen-
tial to assessing the resiliency of current systems and central to guiding the design
of resiliency mechanisms to handle the extreme-scale machines of the future.
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Modern supercomputers are equipped with fault-tolerant infrastructures that are
capable of protecting job and application executions from failures due to hardware
or software problems. The important question is: what are the errors and failures
that affect the resiliency of the system and of the jobs and applications executing on
supercomputers? This chapter presents an example measurement-based resiliency
analysis of Blue Waters, the sustained petascale hybrid machine at the University of
Illinois. The major findings of the study described in this chapter are as follows:

• Software is the cause of 74.4% of system-wide outages (SWOs). Close to two-
thirds (62%) of software-caused SWOs resulted from failure/inadequacies of the
failover procedures, such as those invoked to handle Lustre failures.More research
is needed to improve failover techniques, including the way failure recovery soft-
ware modules are tested in large-scale settings.

• Hardware is highly resilient to errors. Out of 1,544,398 machine check exceptions
analyzed, only 28 (0.003%) resulted in uncorrectable errors, showing the value
of the adopted protection mechanisms (Chipkill and ECC). The GPU accelerator
DDR5 memory, protected only with ECC, is 100 times more sensitive to uncor-
rectable errors than DDR3 node RAM. This finding shows the need for better
techniques to protect the memory of GPU accelerators memory when both CPUs
and GPU accelerators are used to create future large-scale hybrid systems.

• On average, an application failure caused by a system-related issue occurs every
15min. In total, those applications run for 17,952,261 node hours, i.e., about 9%
of the total production node hours. While the number of failed applications is low
compared to the number of executed applications, our measurements show that the
impact of errors on applications is nonnegligible. Considering an average power
consumption of 2KW/blade [1], failed applications that are not recovered through
checkpoint/restart add potentially $421,878 to the Blue Waters energy bill (based
on a cost of 0.047c/KW).

• 37% of failed applications fail during/after failover operations. Although the sys-
tem can survive a sustained number of failures while preserving high availabil-
ity, the level of resiliency perceived by the user may suffer. Our data shows that
failures tolerated at the system level can still be harmful to applications. System-
level resiliency mechanisms should interplay more profoundly with the workload
management system and application-level resiliency mechanisms; this will avoid
workload disruptions and reduce the impact of system outages on user activities.

• While our measurements show that 1.53% of the applications failed because of
system problems, the variation in failures is quite large. We measured an increase
of 20x in the application failure probability (from 0.008 to 0.162) when scaling
XE applications from 10,000 to 22,000 nodes. Similarly, for XK applications we
measured an increase from 0.02 to 0.129 in the application failure probability when
scaling the applications from 2000 to 4224 nodes. In both platforms, small-scale
applications (i.e., those not exceeding a blade) have a failure probability due to
system-related issues on the order of 1E − 5.

• Our measurements show that the probability of application failure can be modeled
with a cubic function of the node hours for XK applications and a quadratic func-
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tion of the node hours for XE applications. This finding emphasizes the need for
(i) dedicated resiliency techniques to be deployed for preventing error propagation
from the hardware to the application in the hybrid nodes, and (ii) effective assess-
ment techniques at extreme scale to harness hybrid computing power in future
machines.

2 Blue Waters Overview

Blue Waters is a sustained petaflop system capable of delivering approximately 13.1
petaflops (at peak) for a range of real-world scientific and engineering applications.
The system, schematized in Fig. 1, includes the following components:

• The Mainframe, consisting of 276 Cray liquid-cooled cabinets hosting 27,648
nodes and 1.47 PBofRAMacross 197,032RAMDIMMs. Each cabinet consists of
an L1 cabinet controller, several fan trays, power conversion electronics, breakers,
a blower and chiller, and related piping. Each cabinet is organized into 3 chassis,
and each chassis hosts 8 blades;

• 22,640 XE6 compute nodes (based on AMD Opteron processors) with a total of
724,480 integer cores;

• 4,224 GPU hybrid nodes equipped with Nvidia K20XGPU accelerators and AMD
Opteron processors;

• 784 service nodes with a total of 5,824 available cores;
• The high-speed Cray Gemini network to provide node connectivity;
• The online storage system, consisting of 36 Cray Sonexion 1600 racks, equipped
with 17,280 active disks, 864 hot spares, and 396 SSDs (used to store file system
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metadata) that provide access to 26 petabytes (36 raw) of usable storage over a
Lustre distributed file system.

CPU Nodes. Compute nodes are hosted in 5,660 Cray XE6 blades (see Fig. 1), 4
nodes per blade. A compute node consists of 2 16-core AMD Opteron 6276 proces-
sors at 2.6 GHz. Each Opteron includes 8 dual-core AMD Bulldozer modules, each
with an 8× 64 KB L1 instruction cache; a 16× 16 KB L1 data cache; an 8× 2 MB
L2 cache (shared between the cores of each Bulldozer module), and a 2× 8 MB L3
cache (shared among all the cores). Each compute node is equipped with 64 GB of
DDR3 RAM in 8 GB DIMMs.

GPU Nodes. GPU (hybrid) nodes are hosted in 768 Cray XK7 blades, 4 nodes
per blade (see Fig. 1). A GPU node consists of a 16-cores Opteron 6272 processor
equippedwith 32GBofDDR3RAMin8GBDIMMsand aNvidiaK20Xaccelerator.
The accelerators are equipped with 2,880 single-precision Cuda cores, 64 KB of L1
cache, 1,536 KB of dedicated L2 cache, and 6 GB of DDR5 RAM memory.

Service Nodes. Service nodes are hosted on 166 Cray XIO blades and 30 XE6
blades, 4 nodes per blade. Each XIO service node consists of a 6-core AMDOpteron
2435 Instanbul working at 2.3GHz and equipped with 16 GB of DDR2 memory in 4
GB DIMMs protected by ×4 Chipkill (with single symbol error correction and dual
symbol error detection capabilities, with 4-bit per symbol). Of the service nodes,
there are 582 that act as LNET router nodes for the three Cray Sonexion-1600 file
systems (described in the following).

The Gemini High-Speed Network (HSN). BlueWaters, high-speed network con-
sists of a Cray Gemini System Interconnect. Each blade includes a network mez-
zanine card that houses 2 network chips, each one attached on the HyperTransport
AMD bus shared by 2 CPUs and powered by 2 mezzanine dual-redundant voltage
regulator modules (Cray Verty). The topology is a 3-dimensional 23× 24× 24 reen-
trant torus: each node has 6 possible links toward other nodes, i.e., right, left, up,
down, in, and out.

Table 1 Main components of the Blue Waters’ lustre file systems

Home Project Scratch Total

Sonexion 1600 racks 3 3 30 36

MMU (Metadata Management Servers—running
Metadata Storage Servers MDS)

2 2 2 6

SSUs (Scalable Storage Unit) 18 18 180 216

OSSs (Object Storage Servers) 36 36 360 432

OSTs (Object Storage Targets) 144 144 1,440 1,728

Active disks 1,440 1,440 14,400 17,280

Hot spares 72 72 720 864

LNET router nodes 48 48 480 576

Capacity (PB) 3 3 20 26
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The Lustre File System. All blades are diskless and use the shared parallel file
system for IO operations. Blue Waters includes 3 file systems (project, scratch, and
home) and provides up to 26 PB of usable storage over 36 PB of raw disk space. Blue
Waters hosts the largest Lustre installation to date. It consists of a parallel file system
used to manage data stored in Cray Sonexion 1600 [2] racks. The main components
of the Lustre file systems used in Blue Waters are summarized in Table1.

Each rack of the file system is composed of 6 SSUs (Scalable Storage Unit,
for storing data) and 1 MMU (Metadata Management Unit, for storing file system
metadata). Each SSU is composed of 2 Object Storage Servers (OSSs, serving the
storage requests from clients, namely XE and XK nodes through the Lnet) that act
as each other’s High Availability (HA) partner. Therefore, there are 12 OSSs in each
rack. Each OSS controls 4 Object Storage Targets (OSTs, i.e., raid volumes of disks
for storing data).

Each rack comes with 2 InfiniBand (IB) switches for linking the MMU, SSUs,
and Lustre clients. The IB cabling within each rack is such that all OSSs on the
left side are plugged into 1 Top-Of-Rack (TOR) IB switch, while all OSSs on the
right side are plugged into another TOR IB switch. The rack also contains all power
supplies, InfiniBand and Ethernet cabling, and a dual Gigabit Ethernet switch for
management system connections to individual components. Both SSU andMMU run
a customized version of Linux combined with the Cray Sonexion System Manager
(CSSM) to provide status and control of all system components, including storage
hardware, RAID, operating system, and the Lustre file system.

Each MMU is configured in a 24-bay 2.5-in. drive enclosure with 22× 2TB 10K
RPM disk drives. An SSU is housed in drawers containing 84-bay 3.5-in. drive
enclosure with 80× 2TB disk drives used to provide data storage in an 8× (8 + 2)
RAID6 target configuration, 2 global hot spares to automatically provide failover for
a failed drive, and 2× 2TB solid-state drives in RAID 1 configuration for journaling
and logging. An SSU expansion enclosure, which has the same drive configuration
as the base SSU, can be added via SAS connections to double the usable capacity
for a given bandwidth.

System Software. Compute and GPU nodes execute the lightweight kernel Com-
pute Node Linux (CNL) developed by Cray. The operating system is reduced to a
bare minimum to minimize the overhead on the nodes. It includes only essential
components, such as a process loader, Virtual Memory Manager, and set of Cray
ALPS agents for loading and controlling jobs. Service nodes execute a full-featured
version of Linux, the Cray Linux Environment (CLE), which is based on the Suse
Linux Enterprise Server 11 kernel 3.0.42.

Jobs are scheduled through a suite of cooperating software that includes (i)
Cray ALPS (Application-Level Placement Scheduler) [3] for the placement, launch,
and monitoring of all the applications composing a single job, and (ii) Moab and
TORQUE [4] for resource management and scheduling decisions. Jobs are assigned
at the granularity of the node.

Job and Application Schedulers. Moab and Torque [4] provide batch scheduling
and workloadmanagement, respectively, for user jobs. Torque provides the low-level
functionality to start, hold, cancel, and monitor jobs. Moab applies site policies and
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Fig. 2 Example of script for job and applications execution in Blue Waters

extensive optimizations to orchestrate jobs, services, and other workloads across the
ideal combination of network, compute, and storage resources. Moab enables true
adaptive computing, allowing compute resources to be customized to changing needs
and failed systems to be automatically fixed or replaced.

Cray ALPS (Application-Level Placement Scheduler) is used for the placement,
launch, and monitoring of the applications that make up a job, i.e., the compiled
program that the user can execute across one ormore compute or GPUnodes. Parallel
jobs can spawn several applications at a time, i.e., different programs on one or
multiple nodes that can execute concurrently and/or sequentially. Figure2 shows a
commented snippet of a script for the execution of a job in Blue Waters.

Placement of jobs and applications. When a job is submitted to the batch system
(i.e., through Torque), it is held by the batch scheduler in the input queue until an
ALPS reservation ID is provided, indicating that a suitable set of nodes are available
to fulfill the user computing requirement (e.g., XK nodes and a number of CPUs).
To this end, the batch scheduler communicates with ALPS through the Batch and
Application Scheduler Interface Layer (BASIL).

Once the batch job has been placed in the scheduling queue, the batch system
must initialize the job and create an ALPS reservation for the job, i.e., list of nodes
assigned by the scheduler to the job in order to ensure resources will remain avail-
able throughout the job’s lifetime. When the resources are available, the batch job
is executed by a MOM (node manager, which executes commands other than the
ones preceded with the “aprun” keywords that are launched on the node part of the
reservation assigned to the job). During the execution of a batch job, there could be
several calls to aprun to launch applications on the reserved resources. ALPS recog-
nizes when an application’s launch originates from a specific batch job and assigned
resources according to the pool of booked resources.
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Table 2 Summary of the system specifications and error/failure detection and recovery techniques
employed in Blue Waters

2.1 System Resiliency Features

Table2 summarizes the resiliency techniques of the principal components of Blue
Waters as well as the impact that errors/failures can have on them. Every node in
the system is checked and managed by the Hardware Supervisory System (HSS).
Core components of the HSS system, highlighted in Fig. 1, are (i) the HSS network;
(ii) blade (L0) and cabinet (L1) controllers in charge of monitoring the nodes, reply-
ing to heartbeat signal requests, and collecting data on temperature, voltage, power,
network performance counters, and run-time software exceptions; and (iii) the HSS
manager in charge of collecting node health data and executing the management
software. Upon detection of a failure, e.g., a missing heartbeat, the HSS manager
triggers failure mitigation operations. They include (i) warm swap of a XE/XK blade
to allow the system operator to remove and repair system blades without disrupting
the workload; (ii) service node and Lustre node failover mechanisms, e.g., replace-
ment of IO nodes with warm standby replicas; and (iii) link degradation and route
reconfiguration to enable routing around failed nodes in the topology.

Nodes are not checkpointed at the system level. Jobs have to be checkpointed
by the user based on his/her needs and specifications. Periodic queries to specific
software agents are used to monitor jobs and compute node health. In the case of
inactivity or a miscommunication by one of the agents, the node state is switched
from up to down by the HSS manager, and the jobs currently running on the node, if
not failed, are allowed to complete.
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Fig. 3 Machine check architecture for the Opteron 6300 family processor used by Blue Waters

2.1.1 Blade Resiliency Features

All the blades are powered though 4 dual-redundant Cray Verty voltage regulator
modules (see Fig. 1), 1 per node, fed by a power distribution unit (PDU) installed
in the cabinet and attached to the blade through a dedicated connector. CLE fea-
tures NodeKARETM (Node Knowledge and Reconfiguration). If a user’s program
terminates abnormally, NodeKARE automatically runs diagnostics on all involved
compute nodes and removes any unhealthy ones from the compute pool.More details
on application-level resiliency features are available in [5].

2.1.2 Processor and Memory Protection

Figure3 sketches the protectionmechanisms enforced in theAMDOpteron processor
used in Blue Waters’ nodes. System memory is protected with ×8 Chipkill [6, 7]
code that uses 18 8-bit symbols to make a 144-bit ECCwordmade up of 128 data bits
and 16 check bits for each memory word. The ×8 code is a single symbol correcting
code, i.e., it detects and corrects up to 8-bit errors. L3, L2, and L1 data caches are
protectedwith ECC,while all other on-chipmemory structures (tag caches, TBLs, L2
and L1 instruction caches) are protected with parity. In the case of an uncorrectable
error, the operating system is configured to panic. Figure3 summarizes the main
error protection and detection techniques enforced in the machine check architecture
of the AMD Opteron 6272 used by Blue Waters nodes.
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2.2 File System Resiliency Features

The Lustre file system is accessed through specific IORouters (LNET routers) bridg-
ing the Gemini Network to the InfiniBand network used by Lustre nodes.

Each Lustre rack in the Sonexion cabinets comes with a dual-redundant Infini-
Band (IB) switch connecting the Lustre nodes with the LNET routers. Disk modules
are organized in RAID 6 and RAID 1 for Object Storage Targets (OST) and Meta-
data Storage Targets (MDT), respectively. All targets include dual RAID control
elements that operate independently, with independent power supplies and cross
failover capability. Failures of the RAID arrays are automatically recovered using
spare disks without triggering any failover operation.

HSS is responsible for detecting failure of the primary Lustre server node and
controlling the failover. Lustre failover requires 2 nodes configured as a failover
pair, which must share 1 or more storage devices. For MDT failovers, 2 MDSs are
configured to serve the same MDT. Only 1 MDS node can serve an MDT at a time.
TwoMDSs are configured as an active/passive failover pair. The state is shared using
a network Raid 1 technique to ensure short latency between the propagation of state
between the primary and standby replica. The primary (active) MDS manages the
Lustre system metadata resources. If the primary MDS fails, the secondary (passive)
MDS takes over and serves the MDTs and the MGS.

MDS Failover. When clients detect anMDS failure (either by timeouts of in-flight
requests or idle-time ping messages), they connect to the new backup MDS and use
the Metadata Replay protocol. Metadata Replay is responsible for ensuring that the
backup MDS reacquires state resulting from transactions whose effects were made
visible to clients but not committed to the disk. Transaction numbers are used to
ensure that operations are replayed in the order they were originally performed. All
metadata and lock replay must complete before new, non-recovery operations are
permitted. Only clients that were connected at the time of MDS failure are permitted
to reconnect during the recoverywindow; this avoids the introduction of state changes
that might conflict with what is being replayed by previously connected clients.
Recovery fails if the operations of one client directly depend on the operations of
another client that failed to participate in recovery (i.e., evicted or failed clients).

OSS Failover. OSTs are configured in a load-balanced, active/active failover con-
figuration. Multiple OSS nodes are configured to be able to access the same OST.
However, only 1 OSS node can serve the OST at a time to avoid race conditions.
Each OSS serves as the primary node for half the managed OSTs and as a failover
node for the remaining OSTs. In this mode, if 1 OSS fails, the other OSS takes over
all the failed OSTs. When the OST is in recovery mode, all new client connections
are refused until the recovery finishes. The recovery is complete when either all pre-
viously connected clients reconnect and their transactions are replayed or a client
connection attempt times out. If a connection attempt times out, then all clients wait-
ing to reconnect (and their transactions) are lost. OST failovers can last up to several
minutes. The policy enforced in Blue Waters is to declare a failed failover when (i)
the failover fails, or (ii) when the recovery time surpasses 30min.
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Client Eviction Failover. Lustre also enforces recovery actions on misbehaving
clients by means of client eviction. In general, a server evicts a client when the
client fails to respond to a request in a timely manner or fails to ping within 70 s.
For example, a client is evicted if it does not acknowledge a glimpse, completion, or
blocking lock callback within the timeout. An evicted client must invalidate all locks,
which in turn results in all cached inodes becoming invalidated and all cached data
being flushed. This enables other clients to acquire locks blocked by the dead client’s
locks; it also frees resources (file handles, export data) associated with that client.
Note that this scenario can be caused by a network partition (i.e., Gemini failures as
well as LNET router node failures), as well as an actual client node system failure.
Eviction means that all outstanding I/O from a client is lost and unsubmitted changes
must be discarded from the buffer cache. Typically, applications do not handle these
failures well and exit.

All Lustre failover procedures require power control and management capability
to verify that a failed node is shut downbefore I/O is directed to the failover node. This
avoids double mounting the two nodes, and the risk of unrecoverable data corruption.
The enforced procedure is called Shoot The Other Node In The Head (STONITH).
It ensures that the failed node does not prematurely wake up and unexpectedly begin
writing to a failed over storage target. The health of MDS and OSS is monitored
through the Hardware Supervisory System (HSS) system. If there is a node-failure
or service-failure event the HSS starts up the failover process. The status of Lustre
automatic failover is recorded in syslog messages.

2.2.1 Network Resiliency Features

Gemini uses error-correcting codes (ECC) to protect major memories and data paths
within the device. Fault detection and recovery of the network are managed through
the supervisory block that connects Gemini to an embedded control processor (L0)
for the blade, which in turn is connected to the Cray Hardware Supervisory System
(HSS) network. The firmware on the L0 blade controller detects failed links and
power loss to Gemini mezzanine cards. System responses to failures are logged and
orchestrated by the System Management Workstation (SMW).

Lane Failover. The availability of 4 lanes in each link allows the network to
tolerate up to 2 lane failures and operate in a degraded mode before triggering a
system-wide network failover. Each time a lane goes down, an error is written in the
logs and a lane recovery (lane failover) is triggered that attempts to recover the lane
10 times in a fixed time window of 60s.

Link Failover. The failure of all 3 lanes causes the link failure that in turn trig-
gers a link failover. The failover procedure in this case consists of (i) waiting 10 s
to aggregate failures; (ii) determining which blade(s) are alive; (iii) quiescing the
Gemini network traffic; (iv) asserting a new route in the Gemini chips (performed
by the SMW); and (v) cleaning up and resuming Gemini. The total time to execute
this procedure is around 30–60 s.
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Links can also become unavailable when there is a power loss in a mezzanine,
blade, or cabinet and if the cable connection becomes faulty. A faulty cable causes 32
link endpoints to become unavailable. Power loss in a mezzanine, blade, or cabinet
causes 64, 64, or 960 end points to fail, respectively.

Rerouting. The algorithm that computes the routing tables fails when it is not
able to reroute around failed nodes (e.g., the network is partitioned). In this case,
the torus topology is declared unrouteable and the system is declared failed (system-
wide outage), i.e., the entire system must be halted, fixed, and rebooted. This occurs
when the configuration has multiple Gemini router chips disabled.

2.2.2 Job and Application-Level Resiliency Features

Torque and Moab are configured to run in a dual-redundant active/passive config-
uration. This mechanism enables Torque to continue running even if the scheduler
server is brought down. Only the first server to start will complete the full start-up.
The second server to start will block very early in the start-up. When the second
server cannot obtain the lock, it will spin in a loop and wait for the lock to clear.
The sleep time between checks of the lock file is 1 s. In case of failure of the main
scheduler server process of Torque, the operating system releases the lock on the
shared file and the standby replica takes over. The state of the scheduling queue is
managed by an external database that is also replicated using a warm standby replica
approach.

The ALPS client provides two main options to cope with system failures at run-
time: application relaunch and application reconnect. Application relaunch is a fea-
ture that automatically relaunches an application when associated nodes experience
certain failures. Relaunch provides the flexibility for users to specify a processing
element shrink tolerance so that an application can complete in a possibly degraded
mode in spite of compute node failures.

Application reconnect attempts to reconnect the application control fan-out tree
around failed nodes and to complete the application run. This option requires the user
program to include a specific library and to programwell-defined exception handlers.
When using this feature, the ALPS client receives HSS (Hardware Supervisory Sys-
tem) compute node failure events and relays the information to the remaining appli-
cation processes to trigger an application-specific recovery action. Applications that
experience these types of failures may be able to complete in a degraded manner.

2.3 Workload

Theworkload processed byBlueWaters consists of large-scale scientific simulations,
including those in the scientific areas shown in Table3 alongwith high-level statistics
on the workload features. Each area includes different software (code) that is used to
create specific studies (applications). Each code is characterized by different features
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summarized in Table3. Blue Waters jobs may use compute nodes, GPU nodes, or
both. The following are representative (for size and duration) of the large-scale appli-
cations executed on Blue Waters: (i) NAMD, an application to perform molecular
simulations of biomolecules and dynamic evolution of the system with a time step
of 1 fs. It is used to determine the precise chemical structure of the HIV virus protein
shell on a 64M-atommodel, enabling research on new antiretroviral drugs to stop the
progression of AIDS. (ii) VPIC, an application for kinetic simulations of magnetic
reconnection of high temperature plasmas, executing on 22,528 nodes with 1.25
PFLOPS sustained performance over 2.5 h. (iii) Inertial Confinement Fusion (ICF)
involving the simulation of turbulent mixing and combustion in multifluid interfaces,
producing 14 TB of data in less than 1 h of execution across 21,417 XE and achieving
1.23 PF of sustained performance. (iv) QMCPACK, an application used to study the
high-pressure hydrogen problem. It executes up to 18,000 XE nodes with a sustained
performance of 1.037 PF/s for less than 1 h of execution. (v) The largest Weather
Research and Forecasting (WRF) simulation ever documented [8].

3 Characterization of Blue Waters Resiliency

3.1 Blue Waters Failures

BlueWaters components are continuouslymonitored by theHSS. In case ofmalfunc-
tioning of any component, the HSS starts an alerting process to require the attention
of the system administrators. Upon each of those HSS events, system administrators
decide whether the event is related to a component or to system failures and act
accordingly. In particular, if the event notifies of a failure, the system administrator
is required to complete a failure report describing the event.

3.1.1 Failure Data

System failure reports are human-written documents that record each event in the
system that required the attention of the system managers. These include failures,
maintenance, system upgrades, and bugs reported to the manufacturer. After fixing
the problem, the staff updates the error report with the identified cause of the event,
the fixes that were applied, and where applicable, the field unit that was replaced. To
minimizemisdiagnosis, failures andSystem-WideOutages (SWOs) are only reported
after positive acknowledgment by both Cray and NCSA personnel. Failure reports
include the fields reported in Table4.

The Blue Waters maintenance specialists classify each entry added to the failure
report using the categories below:
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Table 4 Fields of Blue Waters failure reports

S/N Numerical id indicating the affected component (e.g., file system or
blades)

Component serial number Numerical id to identify to the specific hardware component related
to the recorded event (e.g., one specific blade)

BW# Numerical id indicating the Blue Water event (e.g., system boot,
maintenance time) when the entry was reported

CLSTR# Unique numerical id indicating the specific maintenance operation
performed to resolve the event logged in the report

Failure cause area Area of impact of the event (e.g., processing blade, storage nodes)

Description Textual description of the event

SFDC# Unique numerical id of the event

BUG# Id of the bug causing the failure (where applicable)

Failure type Classification of the failure event in specific failure categories

#Compute Number of computing resource affected by the event

Date start/fixed Start/fixed date of the event

• Failure (No Interrupt): A failure that is naturally tolerated by the architecture,
i.e., does not cause node/system downtime or trigger failover actions (e.g., cooling
hardware or performance problems).

• Interrupt (Failover): A critical problem that is successfully handled by the auto-
matic failover mechanisms.

• Link and Node Failure (Job Failed): A failure of one or more nodes and one or
more links that causes the failure of one or more user jobs.

• Link Failure (No Job Failed): A failure of a single or multiple node(s) that causes
a link failure that is successfully handled by the automatic network failover mech-
anisms;

• Link Failure (Job Failed): A link failure that causes job loss.
• Single/Multiple Node Failure: A failure of single or multiple node(s) that requires
repair but does not impact core system functionalities.

• Interruption (System-Wide Outage): A failure that makes the whole system
unavailable, e.g., because of a system-wide repair or restart. A system-wide outage
occurs if a specific requirement cannot be met, such as (i) the ability to access all
data blocks of all files in the file system; (ii) user ability to log in; (iii) full intercon-
nection between nodes; (iv) access to external storage server (esDM, or external
data mover); (v) ability to support a user application’s submission, scheduling,
launch, and/or completion; (vi) ability to recover from file system or network fail-
ures through automated failover operations; or (vii) performance (e.g., network
bandwidth or file system throughput) above acceptable levels.
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3.1.2 Failure Characterization Methodology

Human-generated reports present several challenges. They contain textual descrip-
tions in natural language and cannot be readily analyzed by automatic tools. Failure
reports must be filtered from reports on non-failure events to avoid biasing the analy-
sis. Therefore, first steps in the analysis include (i) purging the non-failure entries,
(ii) reorganizing the content into a structured database, and (iii) reviewing failure
events to remove redundant or overlapping records (in partnership with NCSA and
Cray engineers). The characterization process then consists of performing the fol-
lowing analysis: (i) associating failures with their corresponding root cause cate-
gories (i.e., hardware, software, network, environment, heartbeat/node down, and
unknown), depending on the repaired element or corrective action, (ii) analysis of
failure rates and repair times across the root causes; (iii) measurement of how the
hardware and software failure rates evolve in the considered measurement window;
(iv) evaluation of the hardware error resiliency; and (v) evaluation of system-wide
failure and repair time distributions and their statistical properties.

Assignment of Failure Categories. The assignment of an outage to the hardware
or software category is guided by the type of corrective action (e.g., replacement
using a spare part, or installation of software patches) and based on interactions with
system administrators. After assigning categories, we reduced the number of reports
from 1,978 to 1,490 entries. These entries include only failure events identified from
the reports classified into the following exclusive categories: hardware, software,
missing heartbeat, network, environment, and unknown. “Unknown” applies are
those failures for which the cause could not be determined; they are considered a
separate category, detected by the system but automatically recovered from before
they can be diagnosed.

3.2 Blue Waters Errors

Usually, logs contain a large amount of redundant and irrelevant information in
various formats. Thus, datafiltering,manipulation, andprocessingmust be performed
to classify this information and to put it into a flat format that facilitates subsequent
analyses. This section provides an overview on how we employed advanced log
analysis techniques to analyze the error resiliency of Blue Waters.

3.2.1 Error Data

Errors are captured by many detectors that store information on various automated
logs. Examples include system-generated syslogs,machine check logs, andworkload
logs, including job and application scheduler logs.

System logs include system events logged by the OS and by HSS as well as entries
generated by the Sonexion cluster. Events collected in these logs include (i) the time
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stamp of the event, (ii) the facility, indicating the type of software that generated
the messages, (iii) a severity level, indicating how severe the logged event is, (iv)
identification of the node generating the message, (v) the process, including the PID
(process identifier) of the process logging the event, and (vi) the event description.
Machine check logs keep track of errors detected by the machine check architecture
in the north bridge of the processor. Machine check data include a time stamp,
the ID of the node that experienced the machine check, and information on the
type (e.g., correctable/uncorrectable or detected by the hardware scrubber), physical
address, error syndrome, and operation involved (e.g., reading from the memory or
loading the L2 data cache) encoded into a 64-bit word in the logged data obtained
after fetching the content machine check status register [6]. Torque logs include
information on created, canceled, scheduled, and executed jobs in the system. Each
entry in aTorque log consists of 45fields containing time informationon all the phases
of the job (creation, queue, execution, and termination times), user, group, queue,
resources, the type and the list of used nodes, and wall-time used. ALPS logs include
information on node reservation management, job/application launching, periodic
monitoring and termination of user applications, and detected internal problems and
cleanup operations. ALPS logs are redirected by the system console to the syslogs
and merged with other system events.

3.2.2 Error Characterization Methodology: The LogDiver Approach

The analysis of automated logs requires amix of empirical and analytical techniques:
(i) to handle the large amount of textual data; (ii) to decode specific types of system
events and exit statuses obtained from multiple data sources; (iii) to match different
sources of information, such as workload and error data to extract signals of interest
(e.g., error rates); and (iv) to measure error propagation and application resiliency.
LogDiver is a tool created to measure both system and application-level resiliency
of extreme-scale machines in a holistic manner using different logs. LogDiver-based
analysis allows us to create a unique dataset encapsulating events that are central
in (i) performing resiliency and performability measurements, (ii) supporting the
application ofmachine learning techniques to create application-level error detectors,
and (iii) measuring how multiple factors (e.g., application scale and system errors)
impact applications. Specifically, this tool does the following:

• Allows a precise identification of the reasons behind application termination,
• Directly relates system errors and failures (e.g., Gemini ECC errors, GPU MMU
errors, and Lustre file system failures) to application failures, and

• Provides a unified representation of the workload/error/ failure logs, permitting
workload-failure analysis and computation of a range of quantitative performance
and dependability metrics.

Such in-depth understanding of application error sensitivity is essential to achiev-
ing realistic performance evaluation of current systems and to guiding design of
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Fig. 4 The LogDiver workflow

resiliency mechanisms. In the following, we briefly describe the LogDiver work-
flow.

LogDiver operates in four main steps, depicted in Fig. 4 and summarized in
Table5. Each step produces several output files that are fed downstream to the subse-
quent step. Data in intermediate output files can also be used by external tools (e.g.,
MATLAB and SAS to perform workload characterization) to conduct additional
analyses beyond what LogDiver supports.

All theLogDiver steps are fully automated except one, the second step,which aims
to understand the content of the logs by generating a list of log message templates.
The categorization of error templates requires frequent interactions with technical
personnel for validation purposes. The categorization consists of assigning a specific
unique numerical template ID, tag, category, and group to each error template. The
tag is a textual description of the event of interest, e.g., GPU_MMU_ERROR or
LUSTRE_EVICT. The category refers to the subsystem generating the event, e.g.,
NVIDIA_GPU or LUSTRE. The group corresponds to the subsystem involved in
the event, e.g., NODE_HW or STORAGE. For example, in the bottom left corner of
Fig. 4, we assigned the tag CPU_MACHINE_CHECK and category NODE_HW to
the template with ID 56724. The details of the generated list of error templates are
reported in [5, 9].
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Table 5 Description of the steps of the LogDiver workflow

Step Objective Input Output

Data collection To collect data from
multiple sources
including a subset of the
data generated by the
various hardware
sensors deployed in
Blue Waters

syslogs, Torque
logs, ALPS logs

Parsed logs: data transformed
to an internal format that is
system agnostic

Event tagging
and filtering

To identify, categorize,
and filter the error
events contained in the
collected data

Parsed Logs (i) a list of categories
containing only events of
interest, i.e., the error data,
referred as message template;
(ii) the filtered dataset (error
dataset)

Workload
consolidation

To create a consolidated
dataset that includes
information on jobs,
application runs, used
resources (e.g., type and
ID of used nodes), user
options (e.g., used
resiliency features), in
order to enable the
matching of workload
data with error data,
performed in the next
step

Parsed Torque
and Alps logs

Extended data set of user
applications (referred to as
“application data” in Fig. 11),
which include 46 fields for
each application. Important
fields are (i) start and end
time, (ii) reservation ID, job
ID, user, group, application
name, (iii) resources data, e.g.,
number, ID and type of nodes,
memory, and virtual memory,
(iv) application exit code and
job exit code, (v) job- and
application required and used
wall time, and (vi) command
used to launch the application

Workload–Error
Matching

To match and collate
relevant error data with
the consolidated
workload data

Filtered error
events and
application data

(i) apid2Error dataset
(Fig. 11a) where each
application run by Blue
Waters is paired with all the
errors that the application
experienced while executing;
(ii) Coalesced Errors dataset,
where all the errors occurring
with high correlation on nodes
executing the same instance of
application (including the
service nodes serving XE and
XK nodes related to the
application) are grouped
together to form error tuples
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Error-Application Matching. The error-application association is performed by
overlapping the workload data with errors occurring between the start time and the
end time of the application considered on one of the nodes executing the application
or on one of the service/IO nodes serving the application. To correlate application
failures with error data, LogDiver uses a mix of empirical and analytical techniques
that can be classified into two categories: (i) correlation analysis to separate local
from global effects across events generated by different nodes and/or different error
categories, and (ii) event coalescence to group specific errors occurring with high
correlation. The first operation executes a change point detection analysis [10] to
determine changes in the mean and variance of different estimators that LogDiver
evaluates from the error data. Given that software and hardware sensors generate
events using different sampling periods and applying different generation rules (e.g.,
periodic or impromptu), estimators are computed on a uniform representation of
the data in the form of (stochastic) point processes. A set of events is generated at
random points in time Ti using different representations and transformations based
on both the event inter-arrival process and the count of events during specific time
intervals. Finally we group together all the error tags that occur with statistically high
correlation (estimated using Pearson’s lagged cross-correlation coefficients among
estimators) and that are generated by the nodes executing the same application. The
organization of the output of the workload–error matching is shown in Fig. 7a.

Example of correlation analysis. To determine the symptoms of system-wide
outages, we conduct a preliminary analysis based on a cross-correlation analysis
to study relations among errors captured by Blue Waters sensors and stored in the
system logs.

The example in Fig. 5 is limited to a few sensor signals monitored over about
one month, but it is representative of longer and more detailed studies. The top
four graphs present: the aggregated rates of error events logged per hour reported
by hardware/software sensors corresponding to GPU errors (i.e., GPU double-bit
errors and MMU errors), nodes down (at least one of the computing nodes is down
because of a failure), HSN Gemini errors (network or communication-related errors,
e.g., a corrupted routing table or hung routes), and machine check exceptions (errors
captured by hardware mechanisms embedded in the microprocessor, e.g., uncor-
rectable memory errors). The bottom two graphs in Fig. 5 plot the percentage of
application failures (system-caused application failures per hour divided by the num-
ber of applications running in the hour) for Blue Waters XE6 and XK7 nodes.

Because the system failures are consequences of the errors reported by the soft-
ware and/or hardware sensors, we expect to find a correlation between the sensor
readings and the observed system failures. Figure6 shows clear indications (observ-
able visually) of such dependencies. The shaded regions depict examples of depen-
dencies among sensor readings from different subsystems.

• Cases a, g, and i: Multiple node failures (i.e., nodes were down) led to a burst
of network (Gemini and Lustre network) errors; nodes detected the interconnect
problems; the interconnect was quiescent and then reconfigured; and the system-
level failover kicked in, attempting to prevent application failures. However, only
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Fig. 5 Examples of potential fault propagation among signals and applications

in Case i was the failover successful in stopping application failures. In Cases a and
g, the failover mechanism was unable to prevent failures of multiple applications.

• Cases b and d: A burst ofmachine check exceptions coincidedwithmalfunctioning
of the voltage regulator module powering a node. (The cause of the exception
was revealed by an in-depth analysis of the failure.) As a consequence, many
applications failed.

• Case c: A burst of GPU errors occurred, e.g., a bus reset and a double-bit error led
to failures of multiple applications executing on XK and XE nodes, respectively.

Capturing fault propagation and signal cross-correlation. Figure6 shows the
value of Pearson’s cross-correlation function, computed minute by minute for Case i
in Fig. 5. Case i consisted of a node’s failing because of an uncorrectable machine
check, causing a Gemini topology reconfiguration and, eventually, a burst of applica-
tion failures because of file system unavailability. The cross-correlation is computed
between the rate of application failures per minute and the rate of error events gener-
ated from the sensors considered. The example suggests that it is possible to identify
windows of high correlation between the signals looking at specific patterns in the
sensor streams.
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Fig. 6 Cross-correlation
analysis among signals for
case i in Fig. 5

3.2.3 Event Coalescence

LogDiver employs different coalescence techniques, making it possible to perform
analyses at different levels of detail. Specifically, it can coalesce errors generated
by (i) the same error category/tag, (ii) the same node, (iii) nodes allocated to the
same job and/or application, and (iv) the whole system, considering only console
logs. The last type of technique employs hypothesis testing and domain expertise to
avoid grouping independent events (e.g., two ECC memory errors on two different
nodes). We use domain expertise to create an adjacency matrix of signals that can
be mutually influenced, e.g., GPU_MMU errors with GPU voltage level. We group
the events (i) temporally when they show high (lagged) cross-correlation values, and
(ii) spatially (i.e., events generated across different nodes, blades, and cabinets) only
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Fig. 7 Organization of the LogDiver’s main output
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when they are generated by nodes executing the same application. The organization
of the output of the event coalescence is shown in Fig. 7b.

3.2.4 LogDiver Resiliency Metrics

The last part of the tool is in charge of estimating various metrics of interest.
These include: Mean Node Hours Between Failures (MNBF) computed as a ratio
between the total number of production node hours and the total number of appli-
cation failures; Mean Time Between Interrupt (MTBI) computed as a ratio between
the total number of production hours and the total number of application fail-
ures; probability of an application failure; load figures such as system load, rate of
active users/groups/applications, and cumulative number of node hours per user; and
application and job success/failure rate. All these metrics are computed with respect
to (i) the whole system, (ii) application names, (iii) the user ID, (iv) the node type
(i.e., xe and xk nodes), (v) node hours, and (vi) the application/job scale. For each of
the metrics mentioned, LogDiver estimates both empirical distributions (cumulative
and density functions) and synthetic statistics, including mean, standard deviation,
and confidence intervals.

4 Analysis of Blue Waters Failure Causes

In this section, we analyze the data and information in the failure reports, addressing
howoftenBlueWaters fails and howmuch time is needed to fix the causes of a failure.
We report on (i) the distribution of the failures’ root causes across all the failure
categories defined in Sect. 3, and (ii) the root causes of the failures, as identified by
the Cray and BlueWaters maintenance specialists. This analysis is based on analysis
of manual reports generated by Blue Waters system maintenance engineers over a
period of 261days, from January 3, 2013 to November 17, 2013. Over 1,978 distinct
entries (including scheduled maintenance, system expansions, and failure events)
were reported during this time.

4.1 Distribution of Failure Types

Table6 provides a breakdown of the failure reports, MTBF, and MTTR across the
defined failure categories. In themeasured period of 261days, the systemexperienced
1,490 failures, of which 1,451 (97.4%) were tolerated and 39 (2.6%) resulted in
system-wide outages. Key observations are:

• On average, there was 1 failure (across all categories) every 4.2 h, while the system
suffered system-wide outages approximately every 160 h.
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• 58.3% of failures resulted in single/multiple node failures (category 6 in Table II)
that caused node unavailability. Such failures were the most common, occurring
every 4.2 h; they were allowed to accumulate in order to optimize the cost of field
intervention, and they were repaired, on average, in 32 h.

• About one-fourth (25.7%, categories 2 and 4) of failures were potentially severe
events from which the system recovered by means of system-level failover (see
Sect. 2) without job failures. Only 2.6% caused job failures (categories 3 and 5)
without resulting in an SWO.

• 11% of failures (category 1) consisted of noncritical events that were tolerated by
the redundant design of BlueWaterswithout requiring any automatic failover oper-
ation. Such events included, for instance, failures of (redundant) power supplies
in the blades, failures of cooling hardware (fan trays or water cooling valves), job
scheduling performance problems, and resource manager crashes. Such failures
caused no machine downtime and little or no unavailability of software services
(e.g., the job scheduler). They occurred on average every 35.12 h, and their inter-
arrival times showed high variance due to the heterogeneity of the root cause.

4.1.1 Software Related Failures

Software failures contributed to 53% of the node downtime hours. Figure8 shows
how hardware, software, network, heartbeat, and environment root causes are dis-
tributed across the failure categories given in Table6. As seen in other systems [11],
failures with hardware root causes were the predominant cause of single/multiple
node failures. They occurred 442 (51%) times over 868 single/multiple node fail-
ures documented in the failure reports, and they constituted 42% of the total number
of failures across all the categories (rightmost bar in Fig. 8). Conversely, failures with
software root causes represented 20% of the total number of failures and only 7.9%

Table 6 Failure statistics

Failure category Count % MTBF (h) MTTR (h) σT B F (h) σT T R (h)

(1) Failure (No interrupt) 164 11 35.17 13.5 70.8 35.3

(2) Interrupt (Failover) 99 6.6 58 14.7 92 42.2

(3) Link and Node
failure (Job failed)

19 1.3 297.7 6.1 427.3 5.4

(4) Link failure
(No job failed)

285 19.1 19.9 32.7 51.9 91.2

(5) Link failure
(Job failed)

19 1.3 291.6 16 444 26.7

(6) Single/Multiple
node failure

868 58.2 8.7 26.7 6.3 72

(7) Interruption
(system-wide outage)

39 2.62 159.2 5.16 174.2 8.1

All 1490 100 8.8 34.5 13.3 50.5

The last row refers to the statistics calculated across all the failure categories
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of the single/multiple node failures. However, an interesting conclusion can be drawn
from the relative impact that hardware and software causes have on the total number
of node repair hours (hours required to repair failures due to the same root cause,
multiplied by the number of nodes involved in the failure) shown in Fig. 9. The key
observation is that failures with software root causes were responsible for 53% of the
total node repair hours, although they constituted only 20% of the total number of
failures. Hardware root causes, however, despite causing 42% of all failures, resulted
in only 23% of the total repair time. As we shall see, hardware problems are well
managed by the Cray architecture.

To identify a reason for those differences, we analyzed the distribution of the
number of nodes involved in failures with hardware or software root causes. We
found that failures with hardware root causes that did not cause system-wide outages
propagated outside the boundary of a single blade in only 0.7% of the cases. Cases
in which failures caused by hardware impacted a full blade involved failures in
the voltage converter module (VRM) of the mezzanine and/or problems with the
cabinet controller. Data show that failures with hardware root causes were limited
to a single node or a single blade (i.e., 4 nodes) 96.7 and 99.3% of the times they
occurred, respectively. Conversely, software failures, if they did not cause a system-
wide failure, propagated to more than 1 node in 14% of the cases, i.e., 20 times more
often than those caused by hardware. In addition, hardware is easier to diagnose than
software. Hardware failures are fixed in bulk to reduce the cost of field intervention,
e.g., after a given number of node failures. Although this does not impact the system
MTTR (5.16 h), it does result in a larger MTTR for single nodes (32.7 h), as reported
in Table6.

4.1.2 Lustre Failures

Lustre, the CLE OS, and Sonexion/storage software are the top three software root
causes among the failure categories. In particular, the Lustre file system and related

Fig. 8 Breakdown of the failure categories across the failure types considered



Measuring the Resiliency of Extreme-Scale Computing Environments 635

Fig. 9 Breakdown of the
downtime hours across the
failure types considered

Fig. 10 Breakdown of the
Lustre failure root causes
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software caused 44% of the single/multiple node failures attributed to software root
causes, while the CLE OS and Sonexion/Storage caused as much as 28% and 9% of
the total single/multiple node failures, respectively. Lustre includes a rich software
stack of more than 250k lines of code and plays a crucial role in Blue Waters, since
all the compute nodes are diskless and rely on Lustre and Gemini for the I/O.

Figure10 shows the breakdown of the root causes of Lustre failures. Blue Waters
experienced a total of 104 different failures attributed to Lustre. The failure of any
Lustre component triggered a failover operation that was successful 75% of the time
they were invoked. If the automated failover procedures are unable to recover the
normal state of the system, the technical staff managing Blue Waters overrides the
automated procedures and the system is manually recovered. A common cause of
Lustre issues is detection of the so-called LBUG (19%), i.e., a panic-style assertion in
the storage node kernel. The unavailability of the Object Storage Target (OST) or of
the metadata (i.e., MDS, MDT, and MGS in Lustre) that provide low-level support
for the storage system is another important Lustre failure category. Configuration
problems contributed to 5% of the Lustre failures, but they were not critical and
often manifested as performance issues, i.e., Lustre became slow. About 14% of
Lustre failures were due to hardware problems (RAM, 3%, and Controller Module,
11%), and the failover mechanism recovered from all of them.
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Table 7 System-wide outage
statistics

Availability 0.9688

Total time 261days

Unscheduled downtime 8.375days

MTBF (SWO) 6.625days

MIN TBF 3.35 h

MAX TBF 37days

MTTR 5.12 h

Min TTR 0.58 h

Max TTR 12 h

4.2 System-Wide Outages

Table7 shows the statistics for 39 system-wide outages (Interruption failure category
in Table6) presented in the failure reports. On average, the system experienced a
system-wide outage every 159.22 h. In 90% of those cases, the system was brought
back to full capacity within 3.28h from the start of the outage, with an MTTR of
5.12 h. The quick repair time contributed to a system availability of 0.9688.
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Fig. 11 Example of system-wide outage event and impact on applications
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4.2.1 Example of System-Wide Outage and Related Errors

Figure11 shows a real failure scenario in Blue Waters, highlighting the impact on
running applications. The chain of events starts with a voltage regulator failure due
to bad cooling, which leads to a cabinet Emergency Power Off (EPO). As a result, the
subsequent change of the topology is detected by the HSS, which triggers a network
failover that includes a reroute of the HSN Gemini network. However, the network
failover is only partially successful and leaves the BladeModule Controllers (BMCs)
in an inconsistent state, one in which another HSN reroute would result in a system-
wide outage. At this stage, all applications executing on the failed blade are either
failed or recovered, depending on the effectiveness of the protection mechanisms
(e.g., application-level checkpoint) as well as on the sensitivity of the run code to
transient network shutdowns.

In this example, the cabinet EPO also impacts the Lustre file system, causing a
mass client disconnect from file servers, which in turn results in file server instability
and consequent file system failover (started just after the network reroute). File
system slowness (e.g., due to failover and drive rebuild) causes slowness in the job
scheduler, impacting application productivity. Applications accessing the file system
are suspended waiting for the failover to conclude. Recovery from client failure
in Lustre is based on lock revocation and other resources, so surviving clients can
continue their work uninterrupted. As a consequence,many applications are quiesced
and put on wait for the lock acquisition by the Distributed Lock Manager managing
the failover process.

Further, we observe that accumulation of hung I/O threads on the file server from
disconnected clients can eventually cause the file server to crash. These cascading
failures ultimately result in a nonresponsive System Console and HSN throttle with
the following chain of events. The unavailability of the file server causes a surge of
logs containing Lustre file system errors to be redirected to the local file system of
the system management workstation (SMW). This fills up all the available storage,
causing the SMW to be unresponsive and triggering an SMW replica swap. The high
network traffic generated by the file system failover and by the variety of anomalous
conditions detected causes HSN congestion that reacts by first throttling and then
by forcing a reroute. However, the HSN reroute can only be completed with at least
one available SMW (not yet replaced by the replica), hence the system-wide outage.
In the end, the system in the example was rebooted, hence all running applications
were terminated. In summary, the scenario described shows how a local blade/cabinet
failure could not be contained and led to a file system failover that propagated across
the entire system.

4.2.2 SWO Measurements

Figure12 shows the PDF and CDF of the distribution of the times between SWOs
and the SWO repair times. It is interesting to note that the statistical fitting of the time
between SWO can be modeled as indicated in Table8. The exponential, Weibull, and
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Fig. 12 Distribution fitting for the time between SWOs. a PDF, b CDF

Table 8 Parameters estimated for the distributions of the time between SWO in Fig. 12a

Distribution G.O.F. (Kolmogorov) Parameters

Lognormal 0.072 μ = 4.58, σ = 1.08

Weibull 0.073 α = 1.07, β = 152

Exponential 0.08 λ = 0.006

Table 9 AFR, MTBF and FIT for processor, memory DIMM, GPU, and storage devices

Total AFR (%) MTBF FIT/Device FIT/GB

Processor 49,258 0.23 3,771,492 265.15 NA

DIMMs 197,032 0.112 7,821,488 127.84 15.98

GPU card [6 GB] 3072 1.732 506,394 1974.11 329.02

Disks [2 TB] 20196 0.312 2,807,692 356.16 0.174

SSD [2 TB] 392 0.717 1,230,795 812.48 0.397

lognormal distributions obtain an acceptable goodness of fit (p-value less than 0.1),
as reported in Table9. Note that the good fit for the lognormal distribution indicates
a hazard rate that first increases and then decreases (α > 1), modeling the case in
which a system-wide outage might depend on the preceding one. Interestingly, the
reports document only one case: a system-wide outage was attributed to the same
cause as the preceding one, which had occurred 3 h 51min earlier (both outages were
associatedwith Lustre). The other caseswere clearly unrelated. In addition, after each
system-wide repair, the system is rebooted and cleared of remaining problems. These
factors contribute to the good fit of the exponential distribution in Fig. 12.

Figure13a shows the breakdown of the system-wide outages across the three
categories of causes: hardware, software, and environment. About 74.4% (29 out of
39) of the system-wide outages (SWOs) had software causes. Hardware contributed
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(a)

(b)

Fig. 13 Breakdown of the SWO root causes and repair times (a), Lustre failures cascading in
SWO (b)

to 15.4% of system-wide outages (6 out of 39), and environmental issues (power
failures in our case) caused 10% of them (4 out of 39). Failures with network root
causes brought down the system in two cases or 0.6% of the recorded network
failures. However, as we will discuss in the next section, those failures occurred
when the network became partitioned and was hence unable to route around failed
nodes due to a lack of redundant paths.

Impact of Lustre Failures. 46%of SWOswere caused by Lustre failures (18 out of
39, about 62% of all software related SWOs). Figure13b shows the types of Lustre
failures that can escalate to system-wide outages. The key observations are (i) about
20% of Lustre failures (18 out of 104) cascade and manifest as system-wide outages,
and (ii) for about half (47%) of them, a failure of the failover can be identified as a
direct reason for the SWO.

Impact of single node failures. About 0.7% (6 out of 831 cases) of single-node
failures led to SWOs because of an inability to reroute network traffic around the
failed blades. Data show that node failures due to hardware problems become crit-
ical when they affect the Gemini routing or access to the Lustre file system. The
full 3D torus topology is effective in providing a number of redundant paths, and
the link degradation mechanisms and distributed routing tables ensure protection
against transient errors, e.g., corruption of the routing table. The Gemini network
uses dimension-ordered routing. In an error-free network, a packet first travels along
the X dimension until it reaches the destination node’s X coordinate. The packet then
travels in the Y dimension to the destination node’s Y coordinate. Finally, the packet
moves in the Z dimension until it reaches the final destination. If the standard X-Y-Z
ordering does not work, Gemini tries an alternative route until it finds a workable
path.

Certain failure patterns, such as multiple errors in the same loop along the Z
dimension, can leave Gemini unable to find a valid route. While such failures are
rare, they require the longest time to recover from, with an MTTR of 8.1 h. The
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failure reports contain three cases of system-wide outages due to routing problems:
(i) a mishap of the failover procedure during the warm swap of a failed service
causing a system partition; (ii) a partial failure of the Gemini network that did not
trigger the link recovery procedure, causing all the jobs to abort because of lack of
communication; and (iii) a crash of the Gemini routing algorithm that caused the
routes to hang. In the last case, while the Gemini crash’s cause is unknown, system
logs revealed a high rate of misrouted packets and routing data corruption within a
1h time window before the incident.

4.3 Hardware-Related Failures

The procedure enforced at NCSA for BlueWaters hardware replacement is to replace
(i) the processor when uncorrectable or parity errors are observed, and (ii) memory
when the rate of corrected ECC errors over a single address is above a programmed
threshold. A similar policy is replacement of storage devices and GPU accelerators
when uncorrectable errors are detected, e.g., when a raid controller detects uncor-
rectable disk errors or when an NVidia GPU accelerator manifests a double-bit error.
In fact,GPUacceleratormemory is protected only byECCand therefore is vulnerable
to multiple-bit errors.

Table9 reports the annualized failure rate (AFR, which is the percentage of failed
units in a population, scaled to a per-year estimation), MTBF per device, and FIT rate
for processor,memoryDIMM,GPU, and storage devices (including disks andSSDs).
Table9 also gives the estimated failure rate expressed in FITs/device. The MTBF for
a single component is computed as the total number of working hours divided by
the AFR. Interestingly, the DDR3 DIMMs show the highest value of MTBF, with
7,821,488 h. The processors and the disks show a figure for the MTBF of about half
the DDR3 DIMM MTBF, specifically 3,771,492 h for processor and 2,807,692 for
the disks. The GPU accelerators show an MTBF of 506,394 h, i.e., 15 times smaller
than the DDR3 DIMM MTBF (about 200 times smaller if comparing the FIT/GB).
In fact, the disks provided a high level of reliability. During the measured 261days,
only 45 disks were replaced from the pool of 20,196 devices. The computed AFR for
disks is lower than the observed values of 2–6% given in other studies of disk failures
[12], although the population of disks in Blue Waters is smaller than that considered
in other studies. Our numbers, however, confirm the MTBF values provided by the
manufacturer and show no tangible evidence of defective disk units; we measured a
SSD MTBF lower than the manufacturer’s declared value of 2,000,000 h.

5 Blue Waters Hardware Errors

Blue Waters maintenance specialists diagnose processor and memory related prob-
lems by looking at the machine check exceptions contained in the system logs. In
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looking at the system logs produced by Blue Waters nodes, we counted 1,544,398
machine check events in the measurement period (i.e., on average, a rate of 250
errors/h), of which only 28 consisted of uncorrectable errors, i.e., errors that cannot
be corrected by either ECC or Chipkill and may cause loss of data, corruption of
processor state, or both. This indicates an unusual degree of containment of hardware
problems that we further investigate in this section. Table10 shows the breakdown
of the machine check errors over the different node types.

In total, 12,721 nodes (46% of the total Blue Waters nodes) experienced at least
1 memory error; 82.3% of the nodes that manifested machine checks were compute
nodes; 19.4% were GPU nodes, and 7.34% were service nodes. 6.6% of all the
memoryDIMMsgenerated at least 1 correctable error during theobservationwindow.
In our data, 55% of the nodes generated only 1 machine check, while 92% of the
machine checks were generated by only 19% of the nodes.

5.1 Processor and Memory Errors

Table11 shows a breakdown of the memory errors in Blue Waters. The table shows
that about 70.01% of the memory errors involved a single bit and that 29.98%
involved 2−8 consecutive bits, similar to the results in [13] for a smaller scale Cray
supercomputer. TheChipkill can correct errors affecting up to 2 symbols (×8Chipkill
on compute and GPU nodes), and without it, 30% of the memory errors analyzed
would be uncorrectable (e.g., if only ECC were used). Hence, a key finding is that
ECC/Chipkill techniques were effective in correcting 99.997% of the memory errors
that occurred, i.e., we observed only 28 uncorrectable errors out of 1,544,398 errors.
The data also show that about 8.2% of the DIMMs manifest correctable errors,
matching with the data in earlier large-scale studies [14]. However, in our study,
we found that fewer than 0.1% of the machines and 0.014% of the total DIMMs
generated uncorrectable errors, i.e., 1 order of magnitude lower than the incidences
of 1.3–4% for the machines and 3.5−5.7 times lower than the number of DDR2
DIMMs with uncorrectable errors (0.05–0.08%) reported in [14]. In particular, the
number of uncorrectable errors over the total number of errors handled is more than
3 orders of magnitude lower than that for DDR2 memory systems reported in other
large-scale studies [14], even though Blue Waters generates 2 orders of magnitude
more machine checks than previous generations of HPC systems [11, 14]. This
shows a substantial improvement of resiliency to multiple-bit errors of DDR3 over
DDR2. A key implication is that the joint use of ECC and Chipkill techniques in
Blue Waters was able to fix 99.998% of the errors generated in 1.476 PB of DDR3
RAM and 1.5 TB of L1, L2, and L3 caches across all Blue Waters processors.
Only 0.002% of errors were uncorrectable, compared to the 1.29% reported for the
previous generation of HPC systems [14] employing only ECC and/or ×4 Chipkill
(single symbol correction, dual symbol detection). The expectation among hardware
designers has been that both transient and permanent hardware failures may rise
uncontrollably as device sizes shrink, especially in large-scale machines like Blue
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Waters. However, results indicate that we are far from that situation. Because of the
high numbers of nodes and errors, we claim that the results provided in this section
have a strong statistical significance for the characterization of processor andmemory
error resiliency features.

5.2 Rate of Uncorrectable Errors for GPU Cards

Table12 reports the rates of uncorrected memory errors in Blue Waters nodes and
NVidia GPU accelerators. We note the following: (i) for uncorrectable memory
errors, the DDR5 memory on the GPU accelerator shows an MTBF 1 order of mag-
nitude smaller than that for the DDR3 constituting the GPU node RAM and 2 orders
of magnitude smaller than that of compute nodes (a similar comparison holds for the
FIT/GB reported in Table12); and (ii) the disparity is even higher if we look at the
number of uncorrectable errors per GB reported in Table12. In particular, we note
that the rate of uncorrectable errors per GB on GPU node DDR3 memory is 2 orders
of magnitude smaller than that on the NVidia accelerator DDR5 on-board memory
and that the FIT rate per GB of memory of GPU accelerators is 10 times higher
than that for the DDR3 RAM of the nodes. An implication is that enforcement of
Chipkill coding for compute, and service and GPU node DDR3 RAM can decrease
the rate of uncorrectable errors per GB by a factor of 100, compared to the rate
for the ECC-protected memories (e.g., the DDR5 memory on the GPU card). The
rate of uncorrectable ECC errors on supercomputer GPU accelerators has not been
successfully quantified by any former study for enterprise-level GPU accelerators.
The impact of memory errors in GPU accelerator memory could represent a serious
threat to creation of future large-scale hybrid systems. For instance, Titan [15] at
ORNL adopted about 5 times the number of GPU nodes and cards as Blue Waters,
making a substantial step toward fully GPU-based supercomputers.

Table 11 Breakdown of the count of memory errors

Type Count %

Total memory errors 1,031,886 66.81

ECC/chipkill single bit 722,526 70.01

Chipkill (more than 2 bit) 309,359 29.98

Uncorrectable ECC/Chipkill 28 2.71E-05
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Table 12 Breakdown of the uncorrectable memory errors (UE)

RAM [GB] Errors/node UE UE/GB MTBF (UE)

Compute 1,448,960 37.1 14 1.08E-05 1617h

GPU 127,104 31.1 4 3.88E-05 768h

Service 23,232 48.1 10 6.22E-05 193h

GPU card 18,432 9.76E-3 38 2.06E-03 80h

6 Errors Affecting Application-Level Resiliency

Weconducted the analysis of data producedbyBlueWaters during the 365production
days (August 1, 2013 to August 1, 2014) to create an initial error categorization. Our
dataset includes 2,359,665 user application runs of more than 1,500 code bases,
769,321 jobs, and 296,114,457 error events stored in about 4TB of syslog. During
the measured period, we measured an MTBF of 8.8h, and an overall availability
of 0.968, computed after excluding scheduled downtimes, system upgrades, and
programmed maintenance actions.

6.1 Application Exit Status

Table13 shows the breakdown of the job and applications in our dataset. 64.53% of
the total user runs are XE applications (i.e., 1,522,694), and 35.46% are XK applica-
tions (i.e., 836,971) using CPU and GPU accelerators. To compare the composition
of XE and XK applications with respect to application scale, we subdivided the
applications into 6 classes following the rules in Table14. Blue Waters data include
only a limited number of applications that can effectively use full-scale executions.
Even when running at full scale, many applications do not execute for a long time,

Table 13 Blue Waters Workload across different scales

Scale XE XE % XE apps % XK apps

Single <=4 (1 blade) 53.89 84.86

Nano <= 96 (1 cabinet) 39.24 14.13

Low <= 512 (1 row) 5.33 0.88

Med ≤5896 (25% sys) ≤1056 (25% sys) 1.35 0.09

High ≥11792 (50% sys) ≥2122 (50% sys) 0.16 0.03

Full >11792 >2122 0.04 0.01

Total application runs 3,365,617 1,724,126



Measuring the Resiliency of Extreme-Scale Computing Environments 645

e.g., 75% of the full-scale XE applications in the measured data ran for less than
5 h, with a median of 1.2 h.

6.1.1 Dissecting the Application Exit Status

There are more than 256 possible application exit codes, many of which are ambigu-
ous or application dependent. An example of an ambiguous exit code is exit code
143 (application terminated by issuing a TERM signal), which can be issued when
the application is killed either by system errors or by the user. LogDiver is able to
disambiguate and categorize an application exit reason by matching error data with
application exit code data. Exit reasons are classified into the following categories:
(i) Success, for applications completing successfully; (ii) Wall time, for applica-
tions not completing within the allocated wall-clock time; (iii) User, for abnormal
terminations caused by user-related problems, including compiler/linking/job script
and command errors, missing module/file/directory or wrong permissions, and user-
initiated actions such as a control-C signal or termination/kill commands; (iv) System,
when an application is terminated due to system-related issues caused by any of the
considered system errors; and (v) User/System, when an application is terminated
for causes that can be related to both user and system events, such as errors detected
by the applications (e.g., through assertions) and handled by means of legitimate
exit.

Figure14 gives the breakdown of the application exit statuses. 61.2% of XE
applications (Fig. 14a) and 76.4% of XK applications (Fig. 14b) exited successfully.
The remaining applications failed due to several reasons, including the following:
(i) application execution time exceeded the time limit (3.4% for XE and 7.1% for

Table 14 Failure statistics of Blue Waters components estimated from the failure reports with
respect to production hours

Components Failure statistics (MTBI (h) and MNBF (h) )

XE/XK node • XEsys = 8.6 (MTBI) • XEnode = 128, 832 (MNBF)

• XKsys = 25.1 (MTBI) • XKnode = 63, 598 (MNBF)

Interconnect (Gemini HSN
and Lustre Network)

• Gemini = 857.7 (MTBI) • LNetsys = 359.8 (MTBI)

• LNethome = 10,294 (MTBI)

• LNetproject = 10,294 (MTBI)

• LNetscratch = 571.88 (MTBI)

File system/Storage • Home = 343.2 (MTBI) • Home (storage node)
= 12,348 (MNBF)

• Project = 263.1 (MTBI) • Project (storage node)
= 9,468 (MNBF)

• Scratch = 35.4 (MTBI) • Scratch (storage node)
= 10,292 (MNBF)
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XK, category ‘wall time’); (ii) user-related problems (22.2% for XE and 12.2%
for XK, category User); (iii) system-related problems (1.4% for XE and 1.83% for
XK) caused by hardware, software, configuration, or network issues at the system or
node levels and occurred with aMTBI (production hours/total application interrupts)
of 15min; and (iv) a combination of user- and system-related causes, e.g., excep-
tions raised because of issues with Gemini rerouting (12% for XE and 2% for XK
applications, category ‘user/systems’). In further analysis conducted in this study,
we remove the contribution of the categories User, User/System, and Wall time and
focus on characterization of application failures due to system-related problems (the
category System).

Despite the fact that only 1.53% of applications failed due to system problems,
these problems contribute account for about 9% (see Fig. 15) of total production
node hours. Those applications ran for 17,952,261 node hours (i.e., the equivalent
of about 28days of continuous 100% use of the system) and eventually have to be
relaunched or executed multiple times. Considering an average power consumption
of 2KW/blade [1], reexecuting the applications that failed because of system errors
(when a checkpoint is not available) would theoretically add as much as $421,878
to the Blue Waters’ energy bill. (This is based on a cost of 0.047c/KW and does not
consider other costs for cooling and infrastructures.) Therefore, the impact of system
errors on applications and costs of ownership is substantial and destined to grow
for larger machines.

Figure16 illustrates the breakdown of the application exit statuses for all those
applications that experienced at least 1 error during their execution. In particular,
Fig. 16 shows the joint distribution of how applications terminate when operating
under error conditions. XK applications show little resiliency to error compared to
XE applications. In particular, the success rate of XK application goes down from
76.6% to 49% when the applications operate under error. At the same time, the
percentage of applications failing because of system problems grows from 1.83%
to 40.55%. The same phenomenon has a more modest yet substantial manifestation
for XE nodes, where the success rate goes down from 61.27 to 56.54%. Another
interesting observation is the percentage of applications exitingwith unknown status:

(a) (b) (c)

Fig. 14 Breakdown of the application exit reasons generated by (a) all applications, (b) XE appli-
cations, (c) XK applications decoded by LogDiver
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Fig. 15 Breakdown of the
application node hours
corresponding to the exit
reasons generated by
LogDiver for XE and XK
applications

(a) (b)

only 0.002% of XE applications that suffered error are in this category compared
to 0.475% for XK applications. We speculate that this is because of the poor error
detection mechanism currently used on the K20X GPUs of XK7 nodes. As will
be detailed later, XK applications are more sensitive to system errors for a variety
of reasons. Recovering from GPU errors without appropriate support from error
detection mechanisms is a hard task, sometimes impossible.

7 Application Resiliency at Different Scales

In this section, we use the output produced by LogDiver to measure the resiliency
of XE and XK applications. Measurements are produced by LogDiver with respect
to different application scales, from single node applications up to full scale.

To provide a comparison between platform failures and application failures, we
analyze the data extracted from the failure reports analyzed in Sect. 4. Failure events
considered include node interrupts (e.g., uncorrectable hardware exceptions), file
system and network failures, and system-wide outages (i.e., the entire system is not
usable and needs to be repaired). Results are shown in Table14.

Table15 shows MTBI (Mean Time Between Application Interruptions) number
obtained for different scales and error categories. MTBI is computed as the total
number of system hours spent computing at scale x divided by total number of
failures occurring because of category c during that time period.

(a) (b)

Fig. 16 Distribution of exit status for application experiencing ≥1 errors
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Comparing theMTBI figures computed for system components and applications,1

shown in Table15, we observe that, when running at full-scale, XE applications are
able to perform with an MTBI which is about the same as that of the underlying
computing platform, i.e., 8.8 h (see Table7). This observation implies that resiliency
mechanisms of XE applications do an excellent job of protecting large-scale appli-
cations from various errors. For full-scale XK applications, the MTBI achieved is
15.1 h. Unlike XE applications, XK applications at full scale are not able to match
the theoretical MTBI (of the underlying platform) of 25.1h, thus, leaving room for
improvement. In particular, concerning GPU nodes, our measurements show that
the MTBI of XK applications is about 60% lower than the MTBI of the underly-
ing GPU platform (25.1h). An in-depth analysis of GPU/Hybrid applications shows
that they are more difficult to handle during error recovery procedures (e.g., check-
point/restart). Many GPU-related modules are not restartable or replaceable without
impacting other software parts. In addition, the lack of communication between dif-
ferent software stacks on XK nodes (e.g., GPU drivers with OpenMP or Charm++)
makes it difficult for the resiliency mechanisms (e.g., heartbeats in Charm++ or con-
nection fan-out inMPI) to detect errors related to the GPU stack. For instance, a node
may reply to heartbeat messages while manifesting errors in the GPU stack that can
kill the application without starting any recovery. As a consequence, the resiliency
mechanisms adopted are only partially effective. These results also show that, when
running at full-scale, the checkpoint/restart mechanisms are severely stressed. This
not onlymeans that a computationmakes little progress because of the overhead intro-
duced by the checkpoint/restart necessitated by frequent failures. This also means
that fault-handling protocols may need to handle multiple errors, e.g., the failure of
two nodes sharing the same copy of the checkpoint file in Charm++ applications. In
this case, even for the most advanced resiliency mechanism employed by the system,
the failure may be catastrophic and the application may fail inexorably.2

7.1 General Relationship Between Scale and Resiliency

In this section,we estimate theMTBI and the probability of application failure caused
by system errors as a function of the number of nodes and node hours. This analysis is
performed by grouping the entries in the data set produced by LogDiver into several
buckets of fixed size representing the scale of the application in terms of both node
hours used and nodes used. The metrics considered are then computed with respect
to each bucket. For instance, the MTBI for applications executing on 1 to 96 nodes
(i.e., 1 cabinet, see Table13) is computed as the ratio between the sum of the number
of hours used by all the applications in the bucket and the number of application
failures in that bucket caused by system errors.

1A detailed description of the comparative analysis between Tables14 and 15 is reported in [5, 9].
2An example of an efficient checkpoint/restart at full scale is that of the rhmd application, which
shows an MTBI of 34h when running on 20,000 nodes.
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Fig. 17 Probability of application failure plotted against: node hours on XE (a) and XK (b);
application scale (number of nodes) on XE (c) and XK (d). The shaded area represents the 95%
confidence interval of the smoothing polynomial function

7.1.1 Failure Probability Across Different Scales

Figures17a, b show the probability of an application terminating because of a sys-
tem problem as a function of the application scale, for XE and XK nodes, respec-
tively. Data in these plots include applications implemented with and without check-
point/restart. The error bars show the 95% confidence intervals. Larger bars for
large-scale applications are due to the limited number of applications that can effec-
tively use full-scale executions (about 0.04% of the XE applications and 0.01%
of XK applications use more than 75% of the system). We observe two different
trends of increasing failure probability for XK and XE applications when they scale
up. In particular, for medium-scale XE applications executing on fewer than 10,000
nodes, we observe only a small increment in the failure probability, which stays
below 1%. When scaling up further, we see a substantial change in the slope of the
plot. We measured a failure probability of 0.162 for applications running on more
than 22,000 nodes against a failure probability of 0.008 for applications running on
fewer than 10,000 nodes. We analyze the causes of the application failures occurring
before and after the change of the slope (approximately 10,000 nodes) and observe
that the percentage of applications that fail because of interconnect-related issues
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increases following a similar trend. For example, we measure that, for large-scale
runs (≥10,000 nodes), 66% of the failures of namd when running on XE nodes
were because of Gemini- and LNet-related problems, but 23% for small–medium
scale runs (<10,000 nodes). This finding shows that interconnect resiliency starts to
become a major concern when scaling up to more than 50% of the system size.

7.1.2 Failure Probability Across Processed Node Hours

Figure17c, d show the effect of the number of node hours on the probability of
application failures for XE and XK applications using log–log plots. To formalize
our observation above, we fit the data in the plots with a linear regression model
(in the log–log space). The probability of application failures for both XE and XK
applications can be described with good approximation (as measured by the R2

score shown in Fig. 17c, d by a monomial relationship3 of the form y = αxk , which
appears as a straight line in a log–log graph, with the power and constant term
corresponding, respectively, to the slope and intercept of the line. Examining the
fitting, we observe that the probability of an application failure follows a power-of-3
function of the node hours for XK applications and a power-of-2 function of the node
hours for XE nodes. In other words, the number of processed node hours has a more
pronounced effect on the resiliency of XK applications than on the resiliency of XE
applications. This finding emphasizes the need for (i) dedicated resiliency techniques
(e.g., memory protection using the chipkill technique) to be deployed for preventing
error propagation from the hardware to the application-level and (ii) effective testing
of extreme-scale hybrid applications to harness hybrid computing cores in future
machines.

8 Related Work

Several studies have attempted to evaluate large-scale systems [11, 12, 16–21]. They
have addressed one or more of the following issues: basic error characteristics [16,
17, 19, 22–25], modeling and assessment [20, 26–28], and failure prediction and
proactive checkpointing [29–31]. In this chapter, we provide the first study charac-
terizing the failures, errors, and related root causes of a sustained petascale system.
Following a process similar to [11], we base our study on the manual failure reports
produced by NCSA technical staff managing Blue Waters. In addition to the manual
reports, we use system logs to conduct deeper analysis and characterize the resiliency
of the hardware protection mechanisms.

3Given a monomial equation y = axk , taking the logarithm of the equation (with any base) yields
(log y) = k (log x)+ log a. Setting X = log x and Y = log y (i.e., moving to log–log graph), yields
the equation Y = m X + b.
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A number of researchers have classified failures in relation to their root cause, e.g.,
hardware or software [11, 32]. Hardware failures are identified in [32] as contributing
6% of the total failures, whereas 42% were due to software failures. Hardware
is identified in [11] as the single largest cause of node failures, with percentages
ranging from 30% to more than 60% with respect to the systems analyzed; software
percentages range from 5 to 24%. The authors focus only on single node downtime
and failure causes, and they do not explicitly characterize system-wide outages.
In our work, by comparing the earlier generation with current HPC systems, we
demonstrate that there has been a strong technological improvement in hardware
resiliency features. Data show that the majority of system outages in BlueWaters are
due to software errors (74.4%), while hardware contributes only to single node/blade
downtime node hours in 99.4% of documented failures. In addition, because of
their crucial role in large-scale systems, we characterized effectiveness of failover
and protection mechanisms at different scales, i.e., network, file system, processor,
memory, and high-performance GPU accelerators.

Improved fault tolerance comes from detecting and autocorrecting a greater per-
centage of high-impact errors. However, most studies do not consider the impact of
errors and failures in their analysis, making reactive methods less effective. While
much of the mentioned work provides novel filtering approaches, little of it includes
in the analysis those errors that really impact the production workload. As a result,
the available error/failure characterization studies and techniques for extreme-scale
machines do not provide enough fidelity of understanding to enable researchers and
system architects to learn how applications behave when exposed to errors or to
assess requirements for future architectures. Some errors do not pose a real threat
to either system or application operations. In this chapter, we quantify the impact of
system errors on production workload. We show that many applications are able to
complete during system-wide outages thanks to the containment of system failures
to a limited portion of the system, e.g., to specific file systems or cabinets. As we
demonstrate in this chapter, it is advantageous to analyze system-level error events
as a function of the application. Blue Waters logs, however, contain more than 150
different types of errors that can impact user applications [9]. The analysis and the
LogDiver tool presented in this chapter are the first to correlate errors with user
application failures in extreme-scale environments.

9 Conclusions

This chapter presents an in-depth study of the resiliency of Blue Waters. The overall
failure characterization indicates that failures due to software are the major contribu-
tors to total repair time (53%), although they represent only 20% of the total number
of failures. More importantly, software is also the primary cause (74.4%) of SWOs
(system-wide outages). The analysis points out that the real system bottleneck is the
inadequacy of mechanisms behind complex failover operations (e.g., timeout and
distributed locks managers), such as those employed in the Lustre file system. Blue
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Waters is a configuration corner case on a scale well beyond that at which hard-
ware and software have been methodically tested, so our findings have significant
value. To our surprise, hardware, regardless of its complexity, is highly resilient. In
particular, the use of error-correcting codes (including Chipkill) provides extremely
high coverage (99.997%) for memory and processor errors, and hence high overall
system resiliency. This benefit is seen even in the presence of high error rates (250
errors/h in our case). In the future, we plan to collect data from similar systems and
conduct a detailed analysis of Lustre error resiliency at different scales.

The lessons learned from the analysis of application-level resiliency include:

• In terms of efficiently handling the large volume of heterogeneous textual data,
we developed LogDiver, a tool to automate the data preprocessing and metric
computation, e.g., the mean node hours between failures and the probability of an
application failure. Through LogDiver, it is possible to correlate system-related
errors and failures with application features. The results of the analysis allow the
design of novel data collectionmechanisms to support application-aware fault clas-
sification and to derive new metrics to predict the resiliency of the next generation
of extreme-scale systems.

• In terms of application susceptibility to system problems, our analysis shows that
1.53% of applications fail due to system problems. One may argue that this is a
small percentage of the overall application runs (more than 5,000,000) considered
in this study. However, the failed applications contribute to about 9%of production
node hours. As a result, the system consumes computing resources and encounters
significant energy cost from the work that must be redone.

• In terms of resiliency technique, our data show that application-level check-
point/restart plays an essential role in improving application resiliency to system
problems. The MNBF ((Mean Node Hours Between Failures) of applications pro-
tected with checkpoint/restart techniques is at least 2 (or more) times greater than
the MNBF of applications that do not have checkpoint/restart support.

• In terms of the design of future extreme-scale (or exascale) systems, our study indi-
cates that one must be cautious when using a massive number of hybrid computing
nodes. For example, in the analyzed system, the application failure probability
increases following the cubic function of the number of node hours when execut-
ing on GPU nodes. Consequently, dedicated resiliency techniques (e.g., memory
protection using the chipkill technique) must be deployed to prevent errors from
propagating to the application level.
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