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Abstract Comparative network analysis is an emerging line of research that
provides insights into the structure and dynamics of networks by finding similarities
and discrepancies in their topologies. Unfortunately, comparing networks directly is
not feasible on large scales. Existing works resort to representing networks with
vectors of features extracted from their topologies and employ various distance
metrics to compare between these feature vectors. In this paper, instead of relying on
feature vectors to represent the studied networks, we suggest fitting a network model
(such as Kronecker Graph) to encode the network structure. We present the directed
fitting-distance measure, where the distance from a network A to another network B
is captured by the quality of B’s fit to the model derived from A. Evaluation on five
classes of real networks shows that KronFit based distances perform surprisingly
well.

Keywords Complex networks · Comparative analysis · Generative models ·
Distance metrics

1 Introduction

Comparative network analysis and network classification on the basis of structural
similarity are at a nascent stage holding great potential. The topology of a network
often encompasses important information on the functionality and dynamics of the
system it represents. As case in point, structural similarity of road networks and
fungal networks are the result of low cost and robustness being the main driving
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forces in the network development [1]. Evaluation of network similarity is important
in diverse research fields, particularly in computational biology, where it reveals
previously unknown interactions and biological function of protein complexes.

So far network similarity does not have a concrete, rigorous definition. Therefore,
researchers employ vectors of features extracted from the networks at various scales
to compare networks. Existing features range from microscopic properties that
describe interactions between individual nodes to macroscopic features that describe
the network as a whole, e.g. average path length, degree distribution exponent, etc.
Lately, mesoscopic features such as network motifs [2], graphlets [3], and back-
bones [4] have been utilized.

An important limitation of comparing networks based on feature vectors is that no
single set of features can be claimed universal. Some network properties are good for
comparingbetweenprotein interaction networks, otherworkwell for social networks.
In addition, feature extraction is computationally expensive in large networks [5].
This makes use of approaches that do not involve feature vectors a lucrative research
problem. In this paper, we take a direction orthogonal to the conventional one and
represent a network by its model rather than a set of features.

There are several statistical models that can capture the topology of a given net-
work by fitting a small set of parameters [6–9]. The result of such fitting can be
regarded as a compressed (imperfect) representation of the original network i.e.
features of the network topology are recapitulated by a small number of metrics.
Similar networks should have similar models. We explore this claim using series
of distance metrics which are based on Kronecker Graphs model fitting algorithm
(KronFit) [9]. We also take into account distance metrics derived from network
features and compare them with KronFit based distance metrics in performing unsu-
pervised clustering. We analyze the quality of clusters produced using each of these
distance metrics, by evaluating against a number of cluster quality metrics. We show
that log-likelihood (LL) of one network being generated by a Kronecker Graph
model fitted to another network performs surprisingly well as a measure of similarity
between networks.

The rest of this paper is structured as follows: We recapitulate the Kronecker
Graphs generative model in Sect. 2. We proceed and develop series of network
similarity estimators based on KronFit algorithm in Sect. 3, followed by description
of baseline network distances in Sect. 4. In Sect. 5, we show that augmented network
similarity estimators derived from KronFit perform surprisingly well based on the
results of experiments performed with 5 classes of real networks. Sect. 6 discusses
relatedworks.Our conclusions on generativemodels as a tool in comparative analysis
of networks are summarized in Sect. 7.

2 Background on KronFit

Let G = (V ,E) denote a network where V = {1, . . . , n} is a set of n vertices and
E ⊆ V 2 is a set ofm directed unweighted edges.We represent all undirected networks
using the directed edges semantic ((u, v) ∈ E ⇔ (v, u) ∈ E). Although, we assume
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unweighted networks, the proposed approach can easily be extended to weighted
networks as well. Let A represent the n × n adjacency matrix of G such that for any
u, v ∈ V , Auv = 1 if (u, v) ∈ E and Auv = 0, otherwise.

LetMn×n be amatrix. LetM[k] be the kth Kronecker product of the matrix, then its
Kronecker square [10] is a matrix M[2] of dimensions n2 × n2. The items of M[2] are

M[2]
ij = Mdiv(i,n),div(j,n) · Mmod(i,n),mod(j,n)

where div(i, n) is the integer quotient of i divided by n andmod(i, n) is the remainder.
Leskovec et al. [9] have suggested using I2×2 initiator matrices, where Iij ∈ (0, 1),
raised to a Kronecker power of k as the basic building block in generation of large
scale probabilistic adjacency matrices P = I [k]. The dimension of all generated
probabilistic adjacency matrices P is thus 2k × 2k where k is some integer. Every
item Pij is the probability of having an edge between the vertices i and j in the
generated Kronecker networks. The log-likelihood of a given adjacency matrix A to
be generated by drawing each edge (i, j) with the probability Pij is:

LL =
∑

i∈V

∑

j∈V

log
(

P
(Aij)

ij

(
1 − Pij

)(1−Aij)
)

(1)

TheKronFit algorithm, suggested by the authors, finds the optimal initiatormatrix
such that LL is maximized. The authors observed that the 2×2 initiator matrices are
sufficient for a good match and choosing larger initiator matrices does not improve
the results significantly.

Leskovec et al. also suggest a method to reduce the complexity of LL calculation
toO(m) by first computing the probability of a network with 2k vertices and no edges
being generated from P. However, the number of vertices in real networks is not a
power of two. Therefore, the network G is padded with 2k −n disconnected vertices.
In the following discussions, we will assume a padded adjacency matrix Â whose
dimensions are 2k × 2k where k = �log2 n�. Â is constructed from A by padding
2k − n rows and 2k − n columns with zeros. Â can be interpreted as an adjacency
matrix of a network that is similar to G but has additional 2k − n isolated vertices,
which we refer to as synthetic vertices in following discussions.

3 KronFit Network Distances

Model distance (MD). An initiator matrix I2×2 =
[

a b
c d

]
contains four values that

lie in the range of [0, 1] and are considered equally important for fitting a correct
model. Lescovec et al. [9] proposed to compare networks by comparing their initiator
matrices. We use euclidean distance (ED) to perform such kind of comparison. An
ED heatmap on 500 networks of five different types1 is presented in Fig. 1a.

1Details on evaluated data set are presented in Sect. 5.1.
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Fig. 1 Network similaritymetrics. a MD. b FD. c SFD. d NFD. eDensity. f Clust.Coef. gDiameter.
h Degree distr.

Fitting Distance (FD). Given a networkG, an initiator matrix I found by the KronFit
algorithm maximizes the log-likelihood of G being generated using I . The likeli-
hood of similar networks being generated by the same model is maximized as well.
Structurally dissimilar networks should, therefore, have lower likelihood of being
generated by the model. In the rest of this paper we denote the initiator matrix fit to
a network G as IG. We will refer to the network G as prototype. We denote by LLGS

the log-likelihood of a subject network S being generated from IG.
These LLGS values can be used as inverse distance measure between the networks.

LLGS values are negative numbers ranging from−2.6E + 08 to−376 in current study.
The value LLGS = −2.6E + 08 was obtained for a prototype being a community
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in the Live Journal social network tested against one of the Autonomous Systems
topologies. In the rest of this paper, we denote the negation of LLGS as the fit-distance
(FD) measure between networks.

LL computation time is linear at the number of edges. Thus the time complexity of
computing the FDmatrix isO(k2m̂)where k is the number of networks in the data set
and m̂ is the average number of edges. In contrast, MD is easier to compute because
for each pair of networks it requires calculating the euclidean distance between the
respective initiator matrices, an operation which can be regarded as constant time.

See Fig. 1b for a heatmap of FD. The columns in this figure correspond to proto-
type networks and rows correspond to subject networks. We can clearly notice the
large horizontal strips in this heatmap. In contrast to MD which is a symmetric
measure, LLGS can differ significantly from LLSG. There are several factors that
affect this asymmetry. For example, KronFit does not work equally well for all kinds
of networks. We notice that types of prototype networks with high average FD (the
yellow horizontal stripes in Fig. 1b) are better differentiated from other networks
using this measure. Network size is another significant factor that affects the LL
calculation. The more nodes a network S has the lower is its LLGS value w.r.t. any
prototype G.
Scaled Fitting Distance (SFD). The log likelihood metric for a network crudely
measures how well the synthetic networks generated from the initiator matrix will
match the original network. The larger the networks we strive to generate, the more
variations can be there and thus, the likelihood of generating a particular subject
network of the same size drops. Figure2 shows that LL scales as the number of
elements in the padded adjacency matrix Â2k×2k

.
Next, we adjust the −LLGS values by the factor of 1/22k . The resulting distance

measure is presented in Fig. 1c. It is clear that the adjusted LL measure is more
informative but the asymmetry is still there. The fitting distance obtained from SLL
is referred to as Scaled Fitting Distance (SFD), in the rest of the paper.

y = -0.0097x2 - 97.134x + 31223
R² = 0.9997
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Fig. 2 Log-likelihood (averaged over all prototype networks and subject networks having the same
k = �log2 n�) as a function of the dimension of the padded adjacency matrix (2k)
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Normalized Fitting Distance (NFD). Equation1 inadvertently incorporates an extra
factor that affects the magnitude of log likelihood. While calculating log likelihood,
they also consider the probability of edges formed by vertices that weren’t part of
the initial network. The largest deviations are found in networks whose size is just
above a power of two (n = 2k + i where i is some small integer). In such networks,
the number of synthetically added vertices (zero padding discussed in Sect. 2) grows
to the scale of original network size and notably affects the log likelihood value. Kim
and Leskovec [11] propose a corrected log-likelihood LLNZ that disregards padded
nodes. In this paper we focus on KronFit and the original LL rather than LLNZ and
KronEM proposed in [11].

While comparing a subject network to the existing prototypes one would like
to find the closest prototypes. In this case, maintaining consistency among subject
networks is not required. We define a Normalized Fitting Distance (NFD) such that
the most similar network (self) is at distance zero and the farthest network is at
distance unity.

NLLGS = LLGS − maxG′ LLG′S

minG′ LLG′S − maxG′ LLG′S

Since all values are negative, NLLGS is a positive real number in range [0, 1]. The
distance metric obtained from NLL is termed as Normalized Fit-Distance (NFD).

4 Baseline Network Distances

We compare the KronFit-based network distances to four common baseline metrics:
Density, Clustering Coefficient, Diameter, and Degree distribution [12].
Density of a network is the fraction of existing edges out of possible edges in the
network. For undirected networks Density = 2m

n(n−1) where m is the number of edges
and n is the number of nodes. The Density network distance is simply the absolute
difference between the densities of two networks.
Clustering Coefficient (CC) of a node is the fraction of existing edges between
node’s neighbors out of all possible edges between them. CC of a node can be
regarded as the density of its ego network. AverageCC is a commonmacroscopic net-
work feature. Similar to Density, the CC network distance is the absolute difference
between the networks’ average CCs.
Diameter is the distance between the two farthest nodes in the network. We consider
the absolute difference between network diameters as theDiameter network distance.
Degree Distribution is one of the the most common microscopic properties that are
used to describe networks. In this paper, we consider an euclidean distance between
normalized degree distributions [3] as the eighth network distance measure.



Comparative Network Analysis Using KronFit 369

Table 1 Details of the evaluated networks (all values are averaged over 100 networks of each type)

Network
type

n m Avg. degree Avg. CC Diameter LLGG

AS 6,060 23,891 7.78 0.362 10 −188,666

Amazon 96 326 7.12 0.560 8.7 −1,422

DBLP 662 2,224 10.1 0.832 10 −13,406

LiveJournal 270 14,320 116.2 0.857 3.5 −38,279

Youtube 288 862 5.64 0.366 6.7 −5,098

5 Evaluation

5.1 Data and Procedure

We conducted experiments on 500 networks containing five different types of net-
works. 100 snapshots of the Autonomous Systems relationships between the years
1997 and 2000 were obtained from [13]. The rest of the networks were obtained
from the SNAP network collection [14] where we selected 100 largest network files
from each one of the following data sets: Amazon (AM), DBLP, LiveJournal (LJ),
and YouTube (YT). The evaluated data is briefly summarized in Table1.

First we have computed the degree distribution, diameter, average clustering coef-
ficient, and density for each network. We normalized the degrees of vertices to
fit the range (0, 1]. Then for every pair of consecutive deciles of the normalized
degrees (di, di+1), we calculated the fraction of vertices whose normalized degrees
are between di and di+1. Along with diameter, average clustering coefficient, and
density this results in 13 features that describe each network.

We proceed by calculating the initiator matrices for all 500 networks in the data

set. We set the initiator matrix, I [1] =
[
0.9 0.5
0.5 1

]
(these are the default values used

in Leskovec et al. [9] and these represent the general trend in fitted values for most
networks) and configure the KronFit algorithm with the following parameters: 50
iterations for gradient descent; learning rate equal to 105; minimal and maximal
gradient steps equal to 0.005 and 0.05 respectively; 100, 000 samples per gradient
estimation; and 10, 000 warm-up samples. The initiator matrices add four features
to the description of each network. Based on this data set we compute the distances
between each pair of network using the eight metrics defined in Sects. 3 and 4,
namely: Model Distance MD, Fitting Distance (FD), Scaled Fitting Distance (SFD),
NormalizedFittingDistance (NFD),Density, ClusteringCoefficient (CC),Diameter,
and Degree Distribution (Deg). In the next subsections we analyze the quality of the
distance metrics.
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Table 2 Comparison of quality of clusters obtained using different distance metrics using purity,
prediction strength (PS), adjusted Rand index (Rand), and Fowlkes-Mallows index (FM)

Distance Metric Purity PS Rand FM

MD 0.608 0.340 0.398 0.555

Density 0.502 0.268 0.192 0.426

Degree 0.592 0.360 0.348 0.486

CC 0.634 0.432 0.381 0.518

Diameter 0.516 0.288 0.215 0.412

FD 0.765 0.503 0.637 0.724

SFD 0.435 0.258 0.162 0.437

NFD 0.393 0.237 0.104 0.518

5.2 Cluster Analysis

The standard way of evaluating the quality of a distance metric is through application
of unsupervised clustering or supervised classification algorithms which require
distances between entities to be evaluated. Examples of such algorithms are
k-means [15] or Ward’s algorithm [16] for unsupervised or k-nearest neighbors [17]
for supervised methods. Here we focus on the clustering algorithms.

In order to measure the quality of a clustering algorithm with respect to a given
distance metric, a variety of measures can be used. Average inter-cluster distance
(ICDO), average intra-cluster distance (ICDI ), the Dunn index [18], Calinski and
Harabasz index [19, 20] are only a few examples of such measures. Some algorithms
directly optimize one of the cluster quality measures. For example, k-means mini-
mizes the sum of square distances between elements and centers of their clusters.
FD is clearly superior according to all these metrics as depicted in Table2.

Given a dissimilarity matrix the objective of a clustering algorithm is partitioning
the elements into a set of clusters such that every element is similar to other elements
within its cluster and not similar to elements of other clusters. Next, we evaluated
the distance metrics with all hierarchical clustering algorithms available in standard
distribution of the R programming language. The best overall results were obtained
with the Ward’s clustering algorithm which takes a square of the input dissimilari-
ties (distances). Thus, in the rest of this subsection we depict the results using this
algorithm.

Figure3 compares the cluster hierarchies based on the Model Distance (MD) and
the proposed Fit Distance (FD). The FD hierarchy is strict with a clear partition
into four clusters while the MD hierarchy is more detailed and results clusters of
uneven size when cut at any level. We cut all hierarchies to produce five clusters
due to the five network types in the data set. By color-coding the leaf nodes based
on the types of the respective networks we can visualize the purity of the produced
clusters. The networks in the MD hierarchy are mixed up while in the FD hierarchy
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Fig. 3 Ward hierarchical clustering based on a the Model Distance and b the Fit Distance

the clusters are much more pure with YouTube cluster being the easiest to identify
in both hierarchies.

In order to quantitatively evaluate the accuracy of the clustering, we calculate
cluster purity, prediction strength [21], adjusted Rand index [22], and Fowlkes-
Mallows index [23]. Purity evaluates the extent to which clusters are homogeneous.
Purity of a clustering C1, ...,C5 of the 500 networks is

Purity =
∑

j

max
i

nij

500

where nij is the number of networks of type i in a cluster j. Other measures also
evaluate the produced clustering versus a gold standard, which is derived from the
types of the networks as listed in Table1.

From Table2, we can clearly see that FD is superior to MD and all other distance
metrics. Purity of 0.76 means that only 24% of the networks were included as a
minority group in their cluster. Note that SFD andNFD are both extremely inefficient
performing worse than the baseline in most cases. Based on these results we can
conclude that FD is better suited for unsupervised clustering than other metrics and
that normalizing the log-likelihood to produce a goodfit distance should be performed
with a great care.
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Table 3 Average distances between networks and the inter-cluster/intra-cluster distance ratio for
then gold standard and the random reference

Distance
Metric

Gold Random

ICDO ICDI ICDO/ICDI ICDO ICDI ICDO/ICDI

MD 0.374 0.169 2.210 0.334 0.334 1.000

Density 0.339 0.154 2.200 0.303 0.303 1.000

Degree 0.822 0.408 2.010 0.740 0.741 0.999

CC 0.324 0.119 2.710 0.283 0.283 1.000

Diameter 5.594 3.737 1.500 5.230 5.230 1.000

FD 1,165,784 53,503 21.800 943,813 950,231 0.993

SFD 0.207 0.186 2.320 0.328 0.325 1.009

NFD 0.181 0.061 2.930 0.842 0.842 1.000

5.3 Separation of Network Types

In previous subsection we showed that fit-distance is a good distance (a.k.a. dis-
similarity) measure for unsupervised analysis of network collections. Unfortunately,
many clustering algorithms are sensitive to the distributions and scale of the distance
values. We, therefore, strive to evaluate the quality of the distance metrics directly,
without proxies such as classification or clustering algorithms.

In the following analysis we use the gold standard, data set partitioned by the
network types, for evaluation of the distance metric quality using standard cluster
quality metrics (ICDI , ICDO, Dunn Index, etc.). We use random partition as a refer-
ence point. An appropriate cluster quality metric should produce the same value for
the random partition regardless the scale of the distance metric used. This require-
ment is especially important in current study because the log-likelihood values differ
by several orders of magnitude from other distance metrics as presented in Table3.
Therefore we employ the intra-cluster/inter-cluster distance ratio (ICDO/ICDI ), as it
the most stable according to the random reference (see rightmost column in Table3).
This measure can be regarded as a normalized separation index since it is agnostic
to the scale of the evaluated distance metric.

High ICDO/ICDI value indicates good separation between the clusters. In our
case, ICDO/ICDI is the upper bound on the cluster quality that can be produced by
any clustering algorithm. For example, if the degree distribution distance is accurate,
then for this particular set of 500 networks the best partition can be at most twice as
good as the random partition.

For this purpose, inter-cluster distance and intra-cluster distance of clusters formed
by different distance metrics were calculated. A low value for ICDI implies that the
networks in the same cluster were very similar to each other, which is desirable.
Similarly, a higher ICDO implies that different clusters were far away from each other
and easily distinguishable. Note that different scales are introduced with clustering
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using different distance metrics and we divided ICDO and ICDI , to normalize the
scales. From Table3, it can be easily seen that FD performs better than all the other
distance metrics by a large factor. Comparing with the model distance, FD produces
clusters that are considerably more distinguishable.

No clustering algorithm can perform better than the gold standard. Thus, cluster
quality measure applied to the gold standard with respect to a distance metric results
in the highest quality that can be achieved.

6 Related Work

Przǔlj [3] uses 73 constraints in the form of graphlets to compare PPI networks with
their synthetically generated counterparts. The approach is especially appropriate for
partially known networks where global topology characteristics are biased but some
parts of the networks are well studied and contain reliable local information. This
approach also requires munificent computing resources.

In [24], the focus is on comparing mesoscopic properties of networks. Networks
are decomposed into communities of different sizes, starting with a single node
and a maximum of n nodes. They compare networks based on different parameters
calculated for different community sizes. In [25], networks were compared based on
ameasure called n-tangle density, which is basically the edge density in sub-graphs of
n nodes from the network. The n-tangle density is calculated for different values of n
and these densities are compared to evaluate network similarity. This method cannot
find node to node correspondence between similar networks, therefore, making it
difficult to pinpoint the source of anomaly (if any) in a network.

Aliakbary et al. [26] used several network features like average shortest path,
degree distribution, average density, average clustering, etc. to compare networks
for unsupervised machine learning task. They also compare the effectiveness of
their approach to Euclidean distance metric based on KronFit initiator matrix and
demonstrate its inferiority. It may be noted here that there are many different initiator
matrices that can encode the original network with the same likelihood. For example,

two initiator matrices

[
1 1
1 0

]
and

[
0 1
1 1

]
have non zero euclidean distance of

√
2,

while both encode isomorphic graphs yielded by Kronecker product of any degree.
As demonstrated in Sect. 5, the correct way of utilizing the full power of KronFit is
by calculating the likelihood of a network being generated from an initiator matrix
and not by comparing the initiator matrices directly.

7 Discussion and Future Work

Network comparison is an emerging research area with wide applications in social
and biological networks analysis. In this paper, we propose a fit-distance (FD) dis-
tance metric between a subject network and the model derived from a prototype
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network. We demonstrated FD with the Kronecker Graphs model and showed that
it is superior to direct comparison between the models using euclidean distance and
to the baseline network distance measures.

One of the interesting features of FD is that prototype networks that can easily
be distinguished from other types of networks using this measure, receive high FD
values in general (see the yellow stripes in Fig. 1b).Although, the differences between
subject networks are not comprehensible to the eye in this sub-figure, they are quite
significant as can bee seen from the normalized values in Fig. 1d. We attribute the
success of FD in clustering and its extremely high ICDO/ICDI value to this natural
weighting of “easy” and “hard” prototype networks.

The primary objective of this paper was to draw the attention of scholars to
the network comparison opportunities opened by some generative and descriptive
networkmodels. In the nearest future, more accurate fitting distancemeasures should
be developed based on new network models such as MAGFit [7] or KronEM [8].
With the advance of model-based network comparison methods, we expect to see
machine learning models that classify networks directly, without the need for feature
extraction.
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