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Preface

The International Workshop on Complex Networks-CompleNet (www.complenet.
org) was initially proposed in 2008, and the first workshop took place in 2009 in
Catania. The initiative was the result of efforts from researchers from the
(i) BioComplex Laboratory in the Department of Computer Sciences at Florida
Institute of Technology, USA, and the (ii) Dipartimento di Ingegneria Informatica e
delle Telecomunicazioni, Università di Catania, Italy. CompleNet aims at bringing
together researchers and practitioners working on complex networks or related
areas. In the past two decades we have indeed witnessed an exponential increase in
the number of publications in this field. From Biology to Computer Science, from
Economics to Social Systems, Complex Networks are becoming pervasive in many
fields of science. It is this interdisciplinary nature of complex networks that
CompleNet aims to address. CompleNet 2016 was the seventh event in the series
and was hosted by the Université de Bourgogne, France, from March 23 to 25,
2016.

This book includes the peer-reviewed list of works presented at CompleNet
2016. We received an unprecedented number of 121 submissions from 20 coun-
tries. Each submission was reviewed by at least 3 members of the Program
Committee. Acceptance was judged based on the relevance to the symposium
themes, clarity of presentation, originality and accuracy of results and proposed
solutions. After the review process, 22 papers and 6 short papers were selected to be
included in this book.

The 28 contributions in this book address many topics related to complex net-
works and have been organized into seven major groups: (1) Theory of Complex
Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms
for networks, (5) Community detection, (6) Dynamics and spreading phenomena on
networks, (7) Applications of Networks.

We would like to thank the Program Committee members for their work in
promoting the event and refereeing submissions. We are grateful to our speakers:
Alain Barrat (Aix-Marseille University, France), Ernesto Estrada (University of
Strathclyde, Scotland), Renaud Lambiotte (University of Namur, Belgium),

v

http://www.complenet.org
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Giovanna Miritello (Zed Worldwide, Spain), Nicola Perra (University of
Greenwich, England), Marco Quaggiotto (ISI Foundation, Italy), José Javier
Ramasco (IFISC, CSIC-UIB, Spain), Balazs Vedres (Central European University,
Hungary), Suzy Moat (University of Warwick, England); their presentation is one
of the reasons CompleNet 2016 was such a success.

Special thanks also go to Chantal Cherifi, Eric Leclercq, Sylvain Rampacek,
Marinnete Savonnet, Olivier Togni, from the Université de Lyon and Université de
Bourgogne, for their help in organizing CompleNet 2016.

Dijon, France Hocine Cherifi
March 2016 Bruno Gonçalves

Ronaldo Menezes
Roberta Sinatra
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Theory of Complex Networks



Spanning Edge Betweenness in Practice

Andreia Sofia Teixeira, Francisco C. Santos and Alexandre P. Francisco

Abstract In this paper we present a study about spanning edge betweenness, an
edge-based metric for complex network analysis that is defined as the probability
of an edge being part of a minimum spanning tree. This probability reflects how
redundant an edge is in what concerns the connectivity of a given network and,
hence, its value gives information about the network topology. We apply this metric
to distinct empirical networks and random graphmodels, showing that spanning edge
betweenness allows us to identify those edges that are more relevant for connectivity
and how removing them leads to disruption in network structure.

Keywords Spanning edge betweenness · Network analysis · Edge centrality
measures

1 Introduction

Networks are the simplest representation of interactions and relations between enti-
ties. Nevertheless, a network can express very complex processes and behaviours. In
this context, understanding structure and dynamics of a network is crucial to extract
valuable information. The analysis of complex networks, such as social networks,
biological networks, financial networks, electrical networks or even the world wide
web, have gathered efforts from mathematicians, physicists, social and computer
scientists to build several statistical measures and tools to evaluate the importance
of each node and/or each link. Some are very well-known [1–3]: degree centrality
indicates the fraction of connections that a given node has over the entire network;
node/edge betweenness states how important a node/edge is through the number of

A.S. Teixeira (B) · F.C. Santos · A.P. Francisco
INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
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4 A.S. Teixeira et al.

shortest paths between two nodes passing through it; and clustering coefficient is a
key measure for social network analysis that for a given node expresses how many
of its neighbours are neighbours of each other, evaluating the fraction of possible
triangles that the node is a member of. All of these measures can give us informa-
tion about centrality and connectivity of a network, but they are mostly focused on
nodes. On the other hand, although we can evaluate the centrality of an edge by using
betweenness centrality, there are many networks whose study can gain new insights
if new measures are used for evaluating edge centrality that do not depended on
shortest paths, as edge betweenness does. When we address phylogeny, telecommu-
nication/electric networks, among other networks, we are often interested in studying
measures that go beyond shortest path properties. If we want to know how resilient
a network is, i.e., which links are fundamental to keep the network connected and
which are redundant, none of the metrics described before provides that information.
In algorithms for inferring phylogenies, we aim to validate the trees that are gen-
erated to represent evolution patterns and to identify bridges that connect different
groups, in telecommunication/electric networks we are interested to know which
links are so important that could cause a breakdown if turned off, or which of them
are redundant. Recently, Morone [4] presented a work in which one of the goals is
to find the minimal set of nodes that, if removed, would break down the network,
but once again, the work is focused on the importance of the nodes and not on the
importance of the links.

These problems can be conveniently studied by relying on minimum spanning
trees. Recently, a new network measure was proposed for evaluating the importance
of edges taking into account information provided by minimum spanning trees—
spanning edge betweenness [5]. This new metric, which corresponds to the fraction
of minimum spanning trees that contains an edge, has the potential to not only help
on the evaluation and validation of phylogeny algorithms, for which it was originally
proposed, but also to evaluate how redundant an edge is in a given network. Because
of its probabilistic property, spanning edge betweenness provides direct information
about an edge preventing the relativity inherent to the other measures. Contrary
to what is evaluated in edge betweenness, we are not interested in knowing in how
many shortest paths the edge is present, but how important the edge is to maintain the
network connected. Given an edge, its spanning edge betweenness value can reflect
whether the edge removal can cause a disruption in a network or if there are some
alternative ways to keep the network connected, reflecting how resilient the network
can be and how redundant an edge is in the network. More recently spanning edge
betweenness has been object of further studies. An initial study on the importance of
themetric in phylogenetic treeswas reported in [6], an improvement inwhat concerns
the efficient computation of spanning edge betweenness was presented in [7], and
Qi et al. [8] introduced the concept of spanning tree centrality, that applies the same
principles of spanning edge betweenness although applied to the nodes in a weighted
network.

In this paper we study the applicability of spanning edge betweenness for eval-
uating edge redundancy on real and synthetic networks. For this aim, we compare
it with previously introduced measures and evaluate how turning on/off the links
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with highest spanning edge betweenness can affect networks topologies and how
can we identify potential bridges that are crucial to ensure networks integrity and
connectivity. We use real and artificial networks and for each one we remove all
the edges with three criteria: random selection, decreasing order of spanning edge
betweenness values, and decreasing order of edge betweenness values. We show that
removing edges with high spanning edge betweenness leads to a fast disruption in
the networks, rapidly increasing the number of components of the networks.

2 Edge-Based Measures on Minimum Spanning Trees

Minimum spanning trees have been used for decades for network design, cluster
analysis, among others. Given a network, a minimum spanning tree represents the
set of edges with minimumweight that connect all of the nodes. Let G = (V, E) be a
connected, undirected and weighted graph, with weight function w : E → IR, where
V is the set of vertices and E ⊂ V × V is the set of edges. A minimum spanning
tree T = (V, E ′) is a subgraph of G that is a tree and contains all the vertices of G,
i.e., that spans over all vertices in V , with |E ′| = |V | − 1, and such that

∑
e∈E ′ w(e)

is minimum among all spanning trees. For generality, we can assume an unweighed
graph as a graph with all edges’ weights equal to 1. If the network is a tree, then
there is only one minimum spanning tree, otherwise the network can have multiple
minimum spanning trees.

When constructing certain networks—such as electrical, computer, transportation,
and telecommunication networks—the major concern is to choose the cheaper path
for laying the connections. On the other hand, if we already have a network, how can
we know which are the links whose presence is imperative to connect all the nodes
and which provide a more flexible choice? On other perspective: given a computer
network, which connections should we choose to assure its resilience preventing a
massive disruption? Which connections/edges are critical? The study of spanning
edge betweenness on a network allows us to give some answers for these questions.

The first known edge-based centrality, edge betweenness, was initially proposed
by mathematician Anthonisse and later formalized and published by Freeman in
1977 [9]. It was developed in the context of communication networks. For a given
edge e it measures how central the edge is, i.e., how many geodesic paths transverse
that edge. In 2002, Girvan and Newman [10] applied this metric to the study of
finding and evaluating community structures in networks, but little has been done in
what concerns exploring new edge importance measures in a network. In 2012, Meo
et al. [11] developed a k-path centrality, initially developed for nodes, which is based
on random walks and is defined as the sum of the frequency with which a message
traverses an edge e from a given source to all k-edges-distance possible destinations.
These two centrality measures play a central role in reporting knowledge about data
flow in a network but few about the structure/topology of the network.

In fact, when analysing minimum spanning trees, shortest-paths or random walks
approaches yield insufficient information to infer how much resilient a network is or
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how redundant are some connections, depending on the subject in study. Recently,
Teixeira et al. [5] introduced an edge-based centralitymeasure that relies onminimum
spanning trees to evaluate how important is an edge in the structure of a network.Here,
we extend the evaluationmade on phylogenetic trees [6], providing information about
the metric behaviour in real well-known networks, including social, technological
and electric networks. The fact that it tells directly the probability of an edge being
in a minimum spanning tree, thus reflecting how important it is for the network
structure, ensures a high confidence in the analysis of network resilience and edge
redundancy.

2.1 Spanning Edge Betweenness

For a given edge e, the spanning edge betweenness is defined as:

δG(e) = τG(e)

τG
,

where τG is the number of different minimum spanning trees for G and τG(e) is the
number of different minimum spanning trees for G where e occurs.

There are many applications for this new measure, as exemplified by Teixeira
et al. [6] in the context of inferring phylogenies. As we said before, a network can
have many minimum spanning trees. Spanning edge betweenness comes to help
in the confidence evaluation of the tree generated. Because this metric takes values
between [0,1] we can infer: (1) if spanning edge betweenness is 1 than the edge has to
be on the network to keep it connected; (2) if it is 0, which only can occur in weighted
networks, than the edge is completely redundant; (3) being the value between 0 and 1
it means that there are other edges that can keep the network connected, i.e., there is
a different minimum spanning tree for the network, thus expressing the redundancy
of an edge. As we will see, the proportion of these values can provide information
about the network topology.

3 Methods and Results

To evaluate the significance of the spanning edge betweenness we chose eight dif-
ferent networks, with different sizes and from different contexts. Four are real well-
known networks (Karate, Power Grid, Political Blogs and NetScience),1 and four
are random networks: two generated from Barabási-Albert model [12] and two net-
works with community structure.2 The properties of these networks are in Tables1, 2

1http://www-personal.umich.edu/~mejn/netdata/.
2https://sites.google.com/site/santofortunato/inthepress2.

http://www-personal.umich.edu/~mejn/netdata/
https://sites.google.com/site/santofortunato/inthepress2
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Table 1 Detail for real networks

Network # nodes # edges

Karate 34 78

PowerGrid 4941 6594

Polblogs 1490 2742

NetScience 1589 1252

Table 2 Barabási-Albert model parameters for generating random networks

# nodes # edges Average degree

1000 2975 4

1000 4939 4

Table 3 Model paraemters for generating random networks with community strcuture

# nodes # edges Min/Max degree Min/Max community
size

1000 2222 4/8 20/40

1000 3985 8/16 20/40

and 3. In practice, we computed fivemeasures: node degree centrality, node between-
ness, edge betweenness, cluster coefficient and spanning edge betweenness. Than
we correlated spanning edge betweenness with the other metrics. Spanning edge
betweenness and edge betweennesswere directly correlated; for the other node-based
metrics—node betweenness, degree centrality and cluster coefficient—we correlated
with the minimum/maximum/average metrics between the source and destination
nodes of each edge.

The first conclusion is that spanning edge betweenness has no correlation with the
other measures. When we correlated it with the other measures mentioned, none of
them showedmeaningful correlation values. This reinforces the idea that thismeasure
provides novel information thatwas not given before. In Fig. 1,we show that spanning
edge betweenness has a different expression than edge betweenness. While spanning
edge betweenness took values between 0 and 1, expressing directly the importance
of an edge, edge betweenness took all of its values below 0.3. Comparing directly
both measures, it is possible to see that the values of edge betweenness do not allow
to infer clear information about network structure. Edge betweenness is about how
much information flow passes through an edge in shortest paths, while spanning edge
betweenness is about the significance of and edge, potentially identifying edges that
can break the network and reflecting if the network has a strong or weak redundancy.
We can also see that PowerGrid has a very different behaviour from other three
chosen networks. This is because the topology of the network is like a tree, or a star,
with only ten redundant edges, being one example that if a link is disconnected, most
probably the network will break. The other networks illustrate the redundancy that
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Fig. 1 Edge betweenness versus spanning edge betweenness. In panels a and c we show the values
of edge betweenness for three empirical networks and two random generated networks. In panels b
and d we show the values of spanning edge betweenness for the same networks.While spanning edge
betweenness shows a wide range of values, expressing edge significance in network structure, edge
betweenness is limited to a very small set of values not being possible to infer directly information
about network structure

is expected from that kind of networks. As friends are friends from each other, as
one cites another, there can be much alternatives to maintain the network connected
and reachable between all nodes.

To reinforce the idea that spanning edge betweenness provides information about
the redundancy and the connectivity of a network, we also present an evaluation
on how removing edges from a network affects network structure. For all networks
mentioned before, after we calculated the values of each measure, we sorted them
by decreasing order and then, one by one, we removed each edge from the networks,
registering the number of connected components after each removal. The result was
as expected, removing by decreasing order of spanning edge betweenness speeds
up the disruption of the networks when comparing with decreasing order of edge
betweenness. In Fig. 2, we show four examples—two from real networks and two
from generated networks—but for all networks the results were similar on what
concerns the number of connected components growth. For the same proportion of
edges removed, removing edgeswith decreasing order of spanning edge betweenness
breaks the network structure into more components than with decreasing order of
edge betweenness.
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Fig. 2 Analysis of removing edges: randomly, in decreasing order of spanning edge betweenness
and edge betweenness values in NetScience, PoliticalBlogs, Barabási-Albert and Community net-
works. It is possible to see that for all networks, empirical and randomgenerated networks, removing
edges in decreasing order of spanning edge betweenness leads to a earlier break down into more
components of each network when comparing with the other two methods

4 Final Remarks

Centrality measures are important in a large number of graph applications, from
search and ranking to social and biological network analysis. Most of these mea-
sures are calculated upon the nodes/vertices, but sometimes our interest is to study
the importance of links/edges on a network. Spanning edge betweenness is a use-
ful measure that can be applied both in weighted and unweighed graphs, allowing
different types of evaluations—from confidence in phylogenetic trees to the identi-
fication of edges that are critical to keep the network connected, passing through the
ones that express redundancy and alternative network configurations. In this paper
we compared it with another measures, namely with traditional edge betweenness,
and on several real and synthetic networks, concluding that spanning edge between-
ness performs better at identifying the relevance of edges for maintaining networks
connectivity. Since spanning edge betweenness gives direct information about the
importance of a link, on further research we plan to investigate other application
fields as epidemic spreading, identifying which links are critical in the spreading
process, following some of the ideas introduced in [13].

Acknowledgments This work was partly supported by national funds through FCT—Fundação
para a Ciência e Tecnologia, under projects Incentivo/EEI/LA0021/2014, EXCL/EEI-ESS/0257/
2012, UID/CEC/50021/2013, PTDC/EEI-SII/5081/2014, and PTDC/MA T/STA/3358/2014.



10 A.S. Teixeira et al.

References

1. Borgatti, S.P., Everet, M.G.: A Graph-theoretic perspective on centrality. Soc. Netw. 28(4),
466–484 (2006)

2. Costa, L.A., Rodrigues, F.A., Travieso, G., Villas, P.R.: Boas, characterization of complex
networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007)

3. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47
(2002)

4. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal per-
colation. Nature 524, 65–68 (2015)

5. Teixeira, A.S., Monteiro, P.T., Carriço, J.A., Ramirez, M., Francisco, A.P.: Spanning edge
betweenness. In: Eleventh Workshop on Mining and Learning with Graphs (2013)

6. Teixeira, A.S., Monteiro, P.T., Carriço, J.A., Ramirez, M., Francisco, A.P.: not seeing the forest
for the trees: size of the minimum spanning trees (msts) forest and branch significance in
mst-based phylogenetic analysis. PLOS one 10(3), e0119315 (2015)

7. Mavroforakis, C., Garcia-Lebron, R., Koutis, I., Terzi, E.: Spanning edge centrality: large-scale
computation and applications. In: Proceedings of the 24th International Conference on World
Wide Web (WWW ’15), PP. 732–742 (2015)

8. Qi, X., Fuller, E., Luo, R., Zhang, C.: A novel centrality method for weighted networks based
on the Kirchhoff polynomial. Pattern Recogn. Lett. 58, 51–60 (2015)

9. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41
(1977)

10. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc.
Natl. Acad. Sci. USA 99, 7821–7826 (2002)

11. De Meo, P., Ferrara, E., Fiumara, G., Ricciardello, A.: A novel measure of edge centrality in
social networks. Know. -Based Syst. 30, 136–150 (2012)

12. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

13. Grady, D., Thiemann, C., Brockmann, D.: Robust classification of salient links in complex
networks. Nat. Commun. 3, 864 (2012)



Predictive Partitioning for Efficient BFS
Traversal in Social Networks

Damien Fay

Abstract In this paper we show how graph structure can be used to significantly
reduce the computational bottleneck of the Breadth First Search algorithm (the foun-
dation of many graph traversal techniques) for social networks. In particular, we
address parallel implementations where the bottleneck is the number of messages
between processors emitted at the peak iteration. First, we derive an expression for
the expected degree distribution of vertices in the frontier of the algorithm which is
shown to be highly skewed. Subsequently, we derive an expression for the expected
message along an edge in a particular iteration. This skew suggests a weighted, iter-
ation based, partition would be advantageous. Empirical simulations show that such
partitions can reduce the message overhead in the order of 20% for graphs with
common social network structural properties. These results have implications for
graph processing in multiprocessor and distributed computing environments.

Keywords BFS · Graph structure · Social network properties

1 Introduction

Breadth First Search (BFS) is a fundamental graph algorithm which is applied con-
stantly to huge social network graphs in distributed and parallel systems consuming
large amounts of energy and resources. BFS is central to several more complicated
graph algorithms such as identifying connected components, testing for bipartiteness,
belief propagation, finding community structures in social networks and computing
the max flow-min cut for a graph [1]. As such it has drawn much attention from the
parallel processing community as a benchmark algorithm with several competing
variants focused on efficient implementation [1–14]. However, despite its impor-
tance known structural properties of social networks have not been leveraged to
improve the algorithms efficiency. The aim of this paper is to prove the concept that
a simple adjustment of the partitioning vector based on common graph structure can
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greatly improve the efficiency at the algorithms bottleneck. We also show (theoreti-
cally and empirically) that it is the graph properties that result in this improvement,
and absence of these properties can lead to little or no improvement. The graph the-
oretic analysis of the BFS frontier in this paper is novel and should be of interest to
researchers in the parallel and distributed graph traversal communities.

The setting here envisages that BFS is performed repeatedly on an unweighted,
undirected graph from random root vertices. In addition, we assume basic statistics
about the graph can be collected after each run or alternatively offline. It is assumed
the graph is traversed in parallel by several processors thus requiring a-priori a parti-
tion of the graph vertices across each processor. In this setting the basic computation
step of BFS is dominated by the communications costs (messages) between proces-
sors after each iteration (as noted in [6] amongst others). The messages emitted after
the peak iteration further dominate the communication costs amounting to ∼70% of
the total (Sect. 4), thus this is the bottleneck of the whole algorithm.

With the exception of a few papers (Sect. 2) most approaches ignore information
about the structure of the graph focusing instead on CPU-GPU architecture specifics.
We show that the incident degree distribution per iteration is highly skewed away
from a power law distribution. Thus the number of edges crossing a partition is a
biased estimate of the messages between partitions at the peak iteration. Further we
propose a new weighted graph construction which reflects the expected number of
messages per edge. Finally, we show empirically that using a weighted partitioning
algorithm that the subsequent reduction in messages emitted across partitions can be
reduced in some individual cases by ∼50%, for some graphs on average by ∼20%.

The paper is laid out as follows. Section2 discusses related work, Sect. 3 gives the
background behind the BFS algorithm, partitioning and develops the theory showing
that the degree distributions are highly skewed. Section4 presents empirical results
and finally in Sect. 5wemainly focus on futurework and discussing the consequences
of the findings.

2 Related Work

Implementing BFS in parallel is a well established approachwhich generally consists
of three stages: graph pre-ordering, graph partitioning and parallel architecture spe-
cific implementation. This research is most pertinent to graph partitioning however
there are several aspects of architecture specifics of interest.

Graph partitioning seeks to reduce the number of messages sent between parti-
tions during processing which can be achieved in several ways. The most obvious
mechanism is to use a 1-D partition; each vertex and associated edges are sent to an
individual processor [1, 4, 9, 15]. An excellent overview of 1-D graph partitioning
methods can be found in [13] with techniques designed specifically for scale-free
networks exist such as [16]. Although [16] considers partitioning for social network
graphs they do not do so in the context of BFS, indeed the two approaches are
complimentary as here we provide a weighted social network graph for partitioning.
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Shang and Kitsuregawa [4] consider partitioning edges across processors (as
opposed to vertices). The edges may be uniformly distributed by either the source
or the target vertex. They propose that when the degree of the target vertex exceeds
a pre-defined threshold the algorithm performs best by switching to a target vertex
partitioning, while Hong et al. [17] note that for low degree vertices partitioning
should be based on vertex but for large degree vertices the partitioning should be
based on edge. In contrast a 2-D partition [2, 8, 10, 11] distributes the edges of a
vertex across several processors. The 2-D approach is based on the observation that
an exploration from a set of vertices is equivalent to the product of the adjacency
matrix and a vector of the vertices touched. Thus they partition the adjacency matrix
into two dimensions (blocks along the rows and columns) and then collect the row
products in one set of messages and the unique column entries in another. Thus the
messages produced are between particular processors and not all to all as in the 1-D
case. It would appear from the literature that the 2D partitioning approach results in
more efficient BFS traversals but we do not consider this approach in this research
(see future work, Sect. 5).

Skewed graph structure is a central topic in many papers [1, 2, 5, 12, 17]. The
non-locality of neighbours in a graph, and the fact that some vertices can have degrees
several factors larger than the average, leads to load imbalances across processors
and randommemory access patterns. Yuan et al. [12] examines the expected distance
between two pairs of nodes being explored in a BFS and show that they can predict
the vertex locality. This is perhaps the closest work to this research. In contrast our
approach looks at the expected use of a vertex of a given degree in a particular
iteration, though the two approaches are similar in spirit. Alternative approaches
include implementing BFS from multiple sources [18]. However, to the best of our
knowledge this research is the first to use the non-uniform frontier distribution to
improve the parallel BFS algorithm.

3 Background

Given a graph G(V, E) and a source vertex s, where V , E refer to the vertex and
edge sets respectively the BFS algorithm returns a route from s to every reachable
vertex in G. The BFS algorithm begins with a set V0 = {s} and explores the graph
by identifying neighbours of s, denoted as the set V +

0 , where + denotes neighbour
expansion. At the next iteration all vertices connected to V +

0 minus those already
visited are V1 = V +

0 \ {V0}. We call the set of unique vertices in the τ th iteration,
Vτ , the frontier set. In general the frontier consists of

Vτ = V +
τ−1 \ {

τ−1⋃

i=0

Vi } (1)
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and the set of vertices alreadyvisited, {⋃τ−1
i=0 Vi }, are said to be touched. The algorithm

continues until Vτ = {∅} and all vertices have been explored.
The BFS algorithm may be implemented on P parallel processors by partitioning

V into P subsets V1, . . . ,VP , where Vi
⋂

V j = {∅} ∀i �= j , and
⋃

i Vi = V , such
that each vertex is assigned a processor which performs the neighbour expansion
of that vertex. This is the basic format of most parallel BFS (P-BFS) algorithm
implementations. At the end of each iteration the processor owning each element in
the next frontier must be notified that this vertex is now to be explored. We define
a message M τ

Vi →V j
(u, v) to be a notification from processor i to processor j that

vertex u has identified vertex v to be a member of the next frontier set. If u and
v reside in the same processor then there is no communication cost and thus the
communications cost for P-BFS is here defined as the sum of all messages that cross
a partition:

Cτ =
∑

u∈Vτ−1,v∈Vτ

M τ
Vi →V j

(u, v) ∀i �= j (2)

The aim of a partitioning algorithm is to partition a graph into equal sets, |Vi | ≈
|V j |, such that a specific objective is achieved such as the number of edges that cross
the partitions, the edge-cut, is minimized as:

argminC
V1,...,VP

=
∑

u∈Vi ,v∈V j ,∀i �= j

wu,v (3)

There are several methods for graph partitioning (a recent review of such methods
may be found in [13]) and the one adopted here is the popularMETIS [19]multi-level
k-way algorithm. Likemany partitioning algorithmsMETIS can operate onweighted
graphs; the weights themselves are the core of our technique as now discussed.

The development here initially follows that ofKurant et al. [20]who derive expres-
sions for the observed degree distribution of a graph sampled by BFS (i.e. a different
problem). The configuration model [21] is a construct which allows construction of
graphs with a desired degree distribution. N vertices are each assigned k stubs sam-
pled uniformly from a desired degree distribution, pk , i.e. k ∼ pk . The configuration
model then pairs these stubs at random thus constructing edges and thus a graph
with the desired degree distribution. The order in which these stubs are connected is
irrelevant as the pairing is random. Thuswemay assign to each stub an arbitrary time,
t ∈ [0, 1] and moving from t = 0 → 1 connect the stubs as their randomly assigned
time is passed. This converts a discrete graph generation process into a continuous
time process and is a useful framework to derive expressions for the bias inherent
in BFS sampling [20, 22]. Kurant et al. interweave the stub matching step with the
exploration phase of BFS. Thus the stubs are connected only when the frontier is
being explored and the unconnected stubs with the lowest time are chosen first. A
vertex enters the frontier when all of its stubs have been paired and this happens with
probability (1 − t)k therefore the expected fraction of vertices of degree k touched
before time t is [20]:
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fk(t) = pk(1 − (1 − t)k) (4)

where pk is the probability a vertex has degree k (i.e. the degree distribution). The
fraction of nodes of any degree visited before time t is [20]:

f (t) = 1 −
∑

k

pk(1 − (1 − t)k) (5)

Kurant investigated the bias of BFS samples but here we are concerned with the
degree distribution of the frontier. In addition, we are only interested in particular
times; those that correspond to the iterations. It is assumed that the number of vertices
touched up to each iteration nτ = ∑τ

i=1 |Vi | is known.1 Herewe depart fromKurant’s
analysis [20]. Define times, tτ :

tτ = f −1(nτ /N ) (6)

where f −1 denotes the inverse of f (t) as (5) cannot be inverted explicitly. This
inverse consists of finding the minimum of a smooth function in one dimension and
may be solved easily using gradient descent or any similar search algorithm. The
frequency of degrees of type k in the τ th frontier, nτ

k , can be calculated iteratively
by removing those seen in the previous frontiers as:

nτ
k = pk(1 − (1 − tτ )k)

∑
k pk(1 − (1 − tτ )k)

nτ −
τ−1∑

i=1

pi
kni (7)

where n0 = 0 and pτ
k is the frontier degree distribution defined as:

pτ
k = nτ

k∑
k nτ

k

(8)

The probability that a vertex of degree k is used in the frontier is then the number of
vertices of degree k in the frontier divided by the total number in the graph:

πτ
k = pτ

k nτ

pk N
(9)

Figure1 shows fk(t) for pk ∝ k−2.2 Up to iteration 3, 25% of the degrees touched
are of degree 1which rises to∼50%by iteration 5. That is, BFS is biased (proportion-
ately) towards higher degree vertices initially, moving towards lower degree vertices

1A good estimate of the number of vertices expected in each iteration of BFS can be obtained from
a single graph traversals.
2Here we use the YouTube friendship graph as an example: the power law exponent = −2 and tτ =
{0.0006, 0.02, 0.19, 0.53, 0.81, 0.93, 0.97, 0.99, 1}, the results are similar for the other graphs we
examined.
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Fig. 1 Proportion of vertices of degree k seen before iteration τ (α = −2)

at later iterations. Note that Fig. 1 shows the accumulated proportion as the algorithm
progresses, however, it is the difference in these proportions that are touched at each
iteration and this has a very different shape (Fig. 2).
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Fig. 2 Probability a vertex of degree k will be used in iteration τ (theoretical)
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Figure2 shows πτ
k for the YouTube friendship graph (Sect. 4). The distribution

of nodes used in iterations 2 and 3 is biased towards high degree nodes. In iteration
4 the bias centres on vertices of degree 10 with 40% being touched but only 15%
of degree 1 nodes are touched. In iteration 5 the bias switches, ∼40% of degree 1
vertices are touched but only ∼25% of degree 10 vertices are touched. There is a
similar switch between iteration 5 and 6. The interesting thing about this behaviour
is that the degree distribution of vertices used is highly skewed and during the main
iterations (4, 5, 6) those used in one iteration tend not to be used in the next and visa
versa (as illustrated with arrows in Fig. 2). Thus at a specific iteration we have a prior
probability over the vertices that will be used and a different prior over the vertices
they are connected to in the next frontier, and these distributions are different from the
initial power-law distribution, i.e.πτ

k �= πτ+1
k �∝ pk . The transition fromπτ

k → πτ+1
k

involves connecting vertices with degree distribution πτ
k to those with πτ+1

k . It would
be tempting to assume that the probability of a node of degree k connects to a node
of degree k ′ is just the product of πτ

k and πτ+1
k , however the two events are not

independent. Real-world graphs are generally assortative and as has been shown
graph generators that take into account the correlation structure in the joint degree
distribution pk,k ′ produce far better approximations to real-world graphs [21] and
have very different properties from those that assume independence [23]. Here we
assume that the joint degree distribution, pk,k ′ , [21] gives a good approximation of
the expected edges between the vertices in iteration τ and τ + 1, therefore we may
define the probability of transitioning from a vertex with degree k to an edge with
degree k ′ in iteration τ , pτ

k,k ′ as:

pτ
k,k ′ = πτ

k pk,k ′π ′τ+1
k (10)

The probability of using a particular edge, {u, v}, in iteration τ is equal to the prob-
ability of passing from u → v, or from v → u but not both, u ↔ v, as this would
imply u and v have already been touched in iteration τ , therefore:

wτ
k,k ′ = pτ

k,k ′ + pτ
k ′,k − pτ

k,k ′ pτ
k ′,k (11)

where wτ
k,k ′ can be used to weight each edge in G where the weights represents

the expected message along that edge in iteration τ . The total number of expected
messages given a particular partition is then:

E[Cτ ] =
∑

u∈Vτ ,v∈Vτ+1

wτ
ku ,kv

IVi →V j (u, v) (12)

whereIVi →V j (u, v) is an indicator variable s.t. u → v crosses a partition. To imple-
ment this approach requires estimates of; pk , pk,k ′ , nτ . Given these aweighted version
of G, W (V, E), may be constructed, and partitioned using a weighted partitioning
algorithm (here we use the popular METIS algorithm).
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4 Results

The simulations presented below consist of randomly choosing a source node, per-
forming a BFS using the competing algorithms (described below), and recording the
number of messages generated. Code and examples may be found on the project
webpage.3 The simulations are based on 500 randomly chosen root vertices. There
are four competing algorithms which represent different levels of knowledge:

1. The original graph with no weighting is used as a baseline,
2. Using the results from 1. We calculate the actual messages counts and use these

to give an empirical weighted matrix, Wemp. Note that in essence we are using
the answer to derive the partition which is unrealistic. The aim here is to give an
upper bound on the algorithms performance,

3. Using the pτ
k,k ′ from all 500 iterations we combine and smooth these estimates

to produce a single weighted graph called, Wsmooth . The aim here is to give an
estimate of performance without the approximation error inherent in Eq.9, and

4. Using Eqs. (9,11,12) we form a single weighted graph, Wavg .

The joint degree distribution, pk,k ′ , can present problems of storage and estimation
especially when the maximum degree is high. However, as the graphs studied have
a power law distribution, the number of vertices with a high degree falls rapidly. In
this paper we calculate pk,k ′ where nodes with k ≥ 300 are counted in a single bin.
Therefore, pk,k ′ is formed of a, 300 × 300 grid. We choose the number of partitions
to be 100 as this reflects the order of processors in a GPU (the number of proces-
sors varies greatly depending on the machine; the NVIDIA GeForce GTX280, for
example, has 30 [9] while the NVidia Kepler architecture has 4,096 GPU’s [10]).

The datasets used in this study are taken from the Konect graph repository.4

We are specifically interested in social network graphs and so the RMAT graphs
used in studies such as [1, 7] are not included though we do include a synthetically
generated ER graph with a single large component. We also did not consider graphs
with N > 2M for computational reasons. These graphs are listed in Table1.

Figure3 shows the empirical distribution of πτ
k (based on a sample of 500 random

root nodes) for the YouTube Graph versus the theoretical (Fig. 2). As can be seen for
low degrees the approximation is excellent but deviates at higher degrees, especially
during iteration 4. This occurs because high degree nodes in real networks cluster
together in the network core (breaking the uniform assumption in the configuration
model). That said, most nodes in power-law network are of low degree where the
approximation is excellent and as will be seen the results are not effected adversely.

Figure4 shows the average number of messages per iteration using the 4 algo-
rithms above applied to the YouTube graph. As can be seen the three weighted graph
versions perform better than the unweighted graph. The average number of mes-
sages (over all iterations) transmitted using Wavg is the lowest at 681K while those
for the unweighted graph are 790K. The results differ on closer inspection however.

3https://sites.google.com/site/structuralgraphproperties/home.
4http://konect.uni-koblenz.de.

https://sites.google.com/site/structuralgraphproperties/home
http://konect.uni-koblenz.de
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Fig. 5 Histogram of iteration at which the number of vertices in the frontier reached a peak

Figure5 shows the histogram of the iteration at which the peak iteration occurred in
each BFS run. For most source vertices the iteration at which the number of vertices
in the frontier reaches a peak is 5 or 6.

Figure6 shows the distribution of messages for a particular root node and as can
be seen here the peak occurs at iteration 4 and the number of messages in the peak far
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Fig. 6 Example showing number of messages per iteration for YouTube graph (root u=157, 298)
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exceeds those in the other iterations. Next we turn our attention to how the algorithm
performs relative to the baseline. Figure7 shows the percentage improvement in
messages over the baseline algorithm. The savings are in the order of 15% for
this graph which is quite significant. In this particular case the three algorithms
perform reasonably similarly but note that Wavg leads to the lowest improvement in
messages at the peak but interestingly the highest improvement in the overall number
of messages (Fig. 4).

Figure8 shows the improvements observed with the Epinions graph. Here there
is a distinct bi-modal distribution, with one distribution centred around 4% and
another centred∼35%. For this graph about half the iterations peak at τ = 3 and the
remainder at τ = 4. If we look at the improvement for those that peak at τ = 3 alone
then a clearer picture emerges. For these vertices the improvement is very small (the
4%mode in the distribution). One possibility is that vertices which reach the peak at
τ = 3 lie in the core of the graph and have less hops to the periphery; thus the BFS
algorithm has less time to achieve the random mixing assumed in Eq. 11 (Kurant
similarly notes that the starting vertex can significantly effect their estimates [20]).

Next we examine a graph with no structure, an Erdos Renyi (ER) graph, where the
joint degree distribution is uniform and the degree distribution is concentrated around
the mean. As there is no structure in the graph we expect the algorithm to fail and this
is exactly what is seen in Fig. 9.5 The % (dis)improvement is a distinctive Gaussian
distribution centred on zero. Moving onto a collection of graphs, Table1 summarizes

5Alternatively one could insert a concentrated degree distribution for pk in (4) and see that
π tau

k = pk .
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Fig. 10 Degree distribution
for Google hyperlink graph
(loglog scale)
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our results. These results are quite mixed; for some graphs the reduction in messages
can be very significant and in the order of ∼15% while for others it can be quite
low. For the epinions and YouTube graphs the improvement is 12.80 and 14.59% on
average which is not far from the upper bound of 16.90 and 16.57%. For the Catster,
Wikipedia, and DBLP graph the results are reasonable and in the region of 5% (3.8,
4.8 and 6.7%). The Google graph does not show any improvement as the degree
distribution for this graph is not power law (Fig. 10). While the distinctive power
law tail exists the distribution for low degree nodes is more uniformly distributed
breaking the underlying assumption required for the algorithm to work.

For the Epinions graph the result for the non-core vertices increases to 17.20%
but for the YouTube graph it actually decreases to 12.37%. For the DBLP graph,
there is no difference. For Wikipedia the difference is quite significant with non-
core vertices reporting a reduction in messages up from 4.80 to 13.96%. The main
conclusion here is that the position of a vertex in the graph certainly has an effect on
the performance but it is unclear what the effect will actually be.

5 Conclusion

Social networks with power law characteristics are an important and common class
of real-world graphs. This paper has clearly demonstrated the principle that their
structure can be leveraged to improve the efficiency of BFS; in some cases signifi-
cantly by up to 20%. The computational overhead is minimal; the quantities required
for the algorithm to work {pk, pk,k ′ , nτ } can be easily estimated from an initial burn
in period (several BFS runs). Future work will look at extending this approach to
weighted, directed graphs, we also note that as vertices and edges are added to a
real-world graph its degree distribution does not change rapidly and so there is scope
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for application in dynamic and streaming graph analysis. The skew present in πτ
k is

such that (the standard) unweighted edge partition is not optimal for any iteration.
This is why in Fig. 4 we see that the total number of messages (not just at the peak)
can also be significantly reduced.

As the techniques mentioned in the Related work (Sect. 2) are not graph struc-
ture dependent, it would be interesting to examine if the highly skewed BFS frontier
statistics can be usefully incorporated. Future work will investigate a GPU imple-
mentation, collecting a taxonomy of graphs for which the technique gives signifi-
cant improvement and integration with 2-D approaches for improved performance.
Finally, further work is required to determine why the algorithm works better for
some start vertices, if those vertices can be identified in advance, and in a computa-
tionally efficient manner. It is also possible that Eq. 4 could be made conditional on
known information about the root vertex.
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Temporal Multi-layer Network Construction
from Major News Events

Borut Sluban, Miha Grčar and Igor Mozetič

Abstract Good news should answer the following questions: ‘Who?’, ‘Where?’,
‘When?’, ‘What?’, and possibly ‘Why?’. We present an approach which extracts
interesting events from thousands of daily news. We construct a time-varying, three-
layer networkwhere the nodes are entities of interest in the news. The temporal aspect
of the network answers the ‘When?’ question. The layers are: (1) the co-occurrence
of entities which answers the ‘Who?’ or ‘Where?’, (2) the summary layer which
answers the ‘What?’, and (3) the sentiment layer which labels the links as ‘good’ or
‘bad’ news. We demonstrate the news network evolution over a period of four years
in an interactive web portal.

Keywords Multi-layer networks ·Temporal networks ·Sentiment ·Summarization

1 Introduction

News inform people about interesting events around the world. We monitor a large
number of newsweb sites around the globe and analyze the structure and the contents
of the news. The paper addresses the following question: how to characterize and
extract the ‘unusual’, highly publicized events? We apply a set of network analysis,
text mining, sentiment analysis and visualization methods to extract and highlight
major news.

The theory of complex networks characterizes systems in the form of entities
(nodes) connected by some interactions (links) [1, 3, 11]. A special case of networks
extracted from the data are co-occurrence networks, used in diverse fields, such
as linguistics [7], bioinformatics [5], ecology [10], scientometry [21], and socio-
technological networks [4].Co-occurrencenetworks are defined as networks inwhich
nodes represent some entities (for example persons, companies, countries, etc.), and
links represent an observation that these entities exist together in some data collection
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(for example database, news article, etc.). For textual sources, it is important to extract
the links between the entities that represent real relations, and are not created by
chance.

In our previous work, we have developed a method to estimate the significance
of co-occurrences, and a benchmark model against which their robustness is evalu-
ated [14]. The method was applied to analyze the contents of financial news in com-
parison to empirical networks, constructed from other data sources, like geographical
proximity, trade volumes, and correlations between financial indicators [19].

The above co-occurrence detection method models well the persistent, ‘every-
day’ contents of news. However, one is often interested in unusual events, reported
by multiple media sources in high news volume. In this paper, we report on a
method which detects days with news peaks, and construct a time-varying multi-
layer network. In particular, at the daily time resolution, we construct a three-layer
networkwith the co-occurrence layer, the summary layer, and the sentiment layer. The
co-occurrence layer consists of all the links at peak days, when the news volume is
significantly higher than in the past. The summary layer consists of top news for
the peak days, where the top news are summarized by the most distinguished titles.
The sentiment layer might have a longer time span. We aggregate the sentiment of
the top news over all the peak days within a time period. Finally, we are concerned
with the presentation of such a temporal multi-layer network. The network evolution
over time, with drill-down inspection of details, is demonstrated in a public, interac-
tive web portal at http://newsstream.ijs.si/occurrence/major-news-events-map. The
portal facilitates access to over 35 million news, predominantly financial, collected
from 170 English news sites, over a period of the last four years.

The paper is organized as follows. In Sect. 2 we describe the entity recognition
in news, detection of days with news peaks, and identification of distinguishing
topics which summarize major events at peak days. We also describe a lexicon-
based approach to sentiment analysis in the news, and the network construction
method. In Sect. 3 we give details about the financial news collected, and illustrate the
detection of significant events. Some interesting topics recently reported in the news
are highlighted, together with the estimated sentiment. We compare the sentiment
distribution of all the news, peak news, and top news, and show that there are small,
but statistically significant differences. Finally, we show the network visualization
implemented in our web portal. We conclude in Sect. 4 with ideas for future work.

2 Methods

We describe a multi-stage approach to construct a multi-layer network of major news
events. The stages consist of entity recognition (which identify nodes of the network),
event detection (which identify links between the nodes and the co-occurrence layer),
content identification (the summary layer), and sentiment analysis (the sentiment
layer).

http://newsstream.ijs.si/occurrence/major-news-events-map
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2.1 Entity Recognition

News are about events related to politicians, countries, companies, etc., which we
call entities. The process of identifying entities in textual documents requires three
components: an ontology of entities and terms, gazetteers of the possible appearances
of the entities in the text, and a semantic annotation procedure that finds and labels
the entities. We describe the entity recognition approach, as implemented in our
NewsStream portal (http://newsstream.ijs.si) [12].

The ontology we use for information extraction consists of three main categories:
financial entities, financial terms, and geographical entities. Most of the ontology
is automatically constructed from various data sources. The geographical entities
(continents, countries, cities, organizations) were extracted from GeoNames (http://
www.geonames.org). MSN Money (http://money.msn.com) was used to organize
stock indices and link them to the companies that issue these stocks. The hierarchy
of financial terms related to the financial crisis was developed in collaboration with
financial experts.

Each entity in the ontology has associated a gazetteer, which is a set of rules
that specify the lexicographic information about possible appearances of the entity
in text. For example, ‘The United States of America’ can appear in text as ‘USA’,
‘US’, ‘the United States’, etc. The rules include capitalization, lemmatization, POS
tag constraints, must-contain constraints (i.e., another gazetteer must be detected in
the document or in the sentence) and followed-by constraints.

Finally, a semantic annotation procedure recognizes the entities of interest. It
traverses each document and searches for entities from the ontology. The gazetteers
of the entities in the ontology provide information required for the disambiguation
of different appearances of the observed entities.

2.2 Event Detection—Peak Days

The next step of content analysis of news is detection of relevant events in the news.
We use the daily volume of news articles as a proxy for identifying exceptional events
in the news. Given a set of entities of interest E = {e1, . . . , el}, we identify all events
related to all pairs of entities (ei , e j ). We monitor the volume of news about these
pairs and construct a network of exceptional events between the observed entities.

In [14] we proposed to establish a co-occurrence link between a pair of entities
(ei , e j ) when the number of observed co-occurrences is significantly greater than
expected by chance. The probability of a random co-occurrence was estimated
from the observed individual occurrences. In this paper, we propose an alternative
approach, where we compare the daily number of observed co-occurrences to a
longer time period.

We construct a time series of co-occurrence volumes vi j = {vi j (t)} for a pair
(ei , e j ) and a time period T , t ∈ T . At a given time point t , we consider a window

http://newsstream.ijs.si
http://www.geonames.org
http://www.geonames.org
http://money.msn.com
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Wh(t) = {vi j (t − h − 1), . . . , vi j (t − 1)} of length h as a historical baseline, from
which we calculate the expected volume at the time point t .

We assume, for a pair of entities, that the volume of their co-occurrences fluctuates
around the average volume for a given time period, and that the fluctuations have
Gaussian distribution around the average.As the value of the average changes through
time, we use a sliding window Wh to compute a moving average.

Given the co-occurrence volume time series vi j , and the size h of the sliding
window,we calculate themean co-occurrence volume v̄i j (t) in Wh(t) and its standard
sample deviation σi j (t). Let zi j (t) denote the multiple of σi j (t)-deviations from the
mean v̄i j (t):

zi j (t) = vi j (t) − v̄i j (t)

σi j (t)
.

For a given Z0, we say that the co-occurrence volume, such that zi j (t) > Z0, is
unexpected and represents an exceptional event between the entities ei and e j at day
t . Such day t is named a peak day. The co-occurrence links between the entities at
peak days constitute the co-occurrence layer of the constructed network.

2.3 Identification of Relevant Topics—Top News

The goal of the next stage in network construction is to attribute a shallow semantics
to the links. The semantics is actually a summary of the top news at peak days, in
the form of the most relevant titles.

First we select all the news related to a particular link on a particular day. For
example, to attribute semantics to the link between the U.S. and China on a particular
day, we consider only the news that contain both these two entities and were pub-
lished on that day. All the titles of these news are merged into a single text document.
One such merged document is created for each day in the past two months (exclud-
ing weekends). We apply the standard text preprocessing approach to compute the
bag-of-words (BOW) vectors of these documents [9]. In this process, we employ
tokenization, stop word removal, stemming, and the TF-IDF weighting scheme [17],
standard in text mining. The TF (term frequency) weight, TFd,k , denotes the number
of times the word k occurs in the document d. The TF-IDF weight is a combina-
tion of the TF weight and the IDF weight, where IDF stands for inverse document
frequency. IDF of the word k is computed as follows:

IDFk = log
|D|
nk

,

where nk is the number of documents in the collection D that contain the word k.
The TF-IDF weight is then:

TFIDFd,k = TFd,k × IDFk .
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The TF-IDF scheme weights a word higher if it occurs often in the same document
(the TF component), and if it occurs in only a few documents from the corpus (the
IDF component).

The BOW vector for the current day contains information about how important a
certainword iswith respect to themost relevant events on that day. Instead of showing
the top-ranked words, we propagate the weights to the news titles and thus rank the
titles by their relevance. The weight-propagation formula computes the average of
the word-weights in a title c. The weight of the title, wc, is computed as follows:

wc = 1

|c|
∑

k∈c

TFIDFd∗,k,

where k denotes the words in the title c, and d∗ represents the merged document for
the day in question. Note that the weight wc penalizes long titles since it is inversely
proportional to the title length |c|. In our case, this is a desirable property because we
would like to find short and to-the-point titles that best describe the most important
events. The most distinguished titles at peak days represent the summary layer of
the constructed network. This layer enriches the co-occurrence links between a pair
of entities, by summarizing the news published at the peak days.

2.4 Lexicon-Based Sentiment Analysis

The final stage of the network construction attributes sentiment to the links. We
construct the sentiment layer of the news network by detecting sentiment orientation
and strength of news articles which mention pairs of entities. The sentiment attached
to a link between two entities indicates whether the news were ‘good’ or ‘bad’ for
a given day. However, in contrast to the co-occurrence and summary layers, which
have daily time granularity, it is often convenient to aggregate the sentiment links
over a longer time period, encapsulating all the top news at peak days.

A sentiment polarity is calculated by a lexicon-based approach. The sentiment
polarity of a document is computed from the counts of predefined sentiment terms
(positive and negative) in the document. The sentiment terms are from the Harvard-
IV-4 sentiment dictionary [22]. For a document d, the sentiment polarity s is calcu-
lated by the following formula:

sd = posd − negd

posd + negd
,

where pos and neg are the numbers of positive and negative dictionary terms found
in the document d, respectively. The sentiment polarities of a set of documents can
then be aggregated. An aggregate sentiment for a pair of entities (ei , e j ) is computed
from the top news documents d at peak day t , and from several peak days in a
period T :
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si j (T ) = 1

N

∑

t∈T

n(t) × si j (t) , si j (t) = 1

n(t)

∑

d

sd , where: (ei , e j ) ∈ d,

where N is the total number of documents selected at peak days t in the time period T .

2.5 Network Construction Parameters

The temporal news network consists of nodes and three layers of links, at daily
resolution. The nodes are entities of interest, E = {e1, . . . , el}. The links are pairs of
entities (ei , e j ), with different properties attached at each layer.

The co-occurrence layer links entities detected during unusual events, i.e., the
peak days. A link (ei , e j ) is created when the volume of documents containing ei

and e j significantly exceeds the average volume observed in the previous h days.
Assuming the volume of entity co-occurrences in news has Gaussian distribution
around the average for a given time period, the significance threshold is set to
Z0 = 3, and h = 44 (the number of weekdays in the past two months). In a doc-
ument, each entity must occur at least three times, and at least one entity must occur
in the document title. These constraints eliminate most of the noise due to the entity
occurrence in a boilerplate. The summary layer links the two entities by extracting
the most relevant news contents at peak days, thus providing a shallow semantics
of the links. A summary link consists of the titles of the top three news articles.
The sentiment layer presents the emotional attitude of the top news, in terms of the
balance between the positive and negative words used. A sentiment link value ranges
between −1 and +1, where −1 denotes the ‘bad’ news, 0 the neutral or balanced
news, and +1 the ‘good’ news.

3 Results and Discussion

Wehave been collecting articles from 170 English financial news and blog sites, from
November 2011. On average, there are about 35,000 articles per day, a total of over 35
million articles collected until September 2015. This data holds information about
temporal relations between different types of entities, such as people, companies,
stocks, countries, etc. In this paper, we describe how to detect major events involving
different countries, and the construction of the corresponding temporal network. The
network captures the major news events detected over the previous four years, and
reveals the semantics of the relations between the countries in terms of the contents
and sentiment.
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3.1 Significant Events

The NewsStream portal provides an API to collect all the news about any pair of
entities. We detect significant events by comparing the daily news volume to the
volume of the past two months. If on a particular day the news volume exceeds the
average volume of the past two months by more than three standard deviations, i.e.,
v̄i j + 3 · σi j , this day is identified as a significant event day for the observed pair of
countries (ei , e j ).

Figure1 shows the volume of the news involving ‘China’ and ‘United States’ from
November 2011 to September 2015. The significant increases in the news volume
are identified as volume peaks above the gray line.

In the period between January 2012 andSeptember 2015, 17,702 significant events
between 217 countries were detected. We analyze these events in terms of the most
relevant content and the associated sentiment.

3.2 Most Relevant Contents and Its Sentiment

We focus on the news related contents published at the peak days. We identify the
most relevant and distinguishing topics for each significant event day, as described
in Sect. 2.3. We compared our top news results to the major news timeline of Europe
Media Monitor (EMM, http://emm.newsexplorer.eu/NewsExplorer/timelineedition/
en/timeline.html), and reached an overlap of 45% with all EMM major news, and
60% overlap with major news topics mentioning at least two countries in the topic
title. These differences are mostly due to the following reasons. The major news
events of EMM are not limited to country relations (links), therefore they include
also news events mentioning only one country or none at all. Topics persisting for

Fig. 1 Volume of news articles about ‘China’ and ‘United States’ (blue line). The orange line
denotes the moving average volume over a two months window, and the gray line is three standard
deviations above the average. Significant events occur at days peaking above the gray line

http://emm.newsexplorer.eu/NewsExplorer/timelineedition/en/timeline.html
http://emm.newsexplorer.eu/NewsExplorer/timelineedition/en/timeline.html
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several days with little development are avoided by our approach as we are looking
for significant new events. Some countries that are involved in certain topics may
be overlooked in the evaluation process due to unresolved indirect mentioning, like
‘Merkel’ or ‘VW’ instead of Germany.

For each news article at a peak day we also compute its sentiment, as described
in Sect. 2.4. Some significant event days in August and September 2015 for three
country pairs are in Table1. Each event is characterized by the top news headlines
and the associated sentiment.

Table1 illustrates three examples of breaking news about a pair of countries. The
first two examples are about the events concerning French-built warships, which
were not delivered to Russia, but were later sold to Egypt. The third news example
highlights the ‘emissions scandal’ of a German automobile producer VW, which
broke out in the United States.

Table 1 Content and sentiment of the most relevant news on significant event days

Link (Sentiment) Day News Sentiment

FR–RU (0.265) Aug 6 2015 France to pay Russia under $1.31 billion
over warships

0.286

France to pay Russia under 1.2 billion
euros over warships

0.256

France says several nations interested in
Mistral warships

0.254

FR–EG (−0.072) Sep 23 2015 France sells 2 disputed warships to Egypt −0.091

France sells warships to Egypt after
Russia deal scrapped

−0.020

France to sell warships to Egypt after
Russia deal scrapped

−0.103

Sep 21 2015 VW rocked by US emissions scandal as
stock slides 17%

0.039

VW Rocked by U.S. emissions scandal as
stock Slides 17%

−0.036

VW shares plunge on emissions scandal
US widens probe

−0.026

DE–US (−0.015) Sep 24 2015 Will Volkswagen scandal tarnish Made in
Germany image?

0.007

After year of stonewalling Volkswagen
stunned U.S. regulators with confession

−0.042

Insight—After year of stonewalling
Volkswagen stunned U.S. regulators with ...

−0.030

Shown are significant links between France and Russia, France and Egypt, and between Germany
and the United States, in August and September 2015
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3.3 Sentiment Distribution

We examine the differences in the sentiment distribution over different sets of news
articles. The goal is to compare the sentiment distribution of ‘everyday’ news with
the sentiment at peak days, and with the top news at the peak days. Figure2 shows
the three sentiment distributions.

All three sentiment distributions are approximately Gaussian, and very similar.
There is a minor positive sentiment bias in all news, while the peak news are slightly
negative. The top news at peak days also seem relatively less positive than the all
news. However, the top news contain proportionally more extremely positive and
extremely negative news articles. The statistics are in Table2.

We test the null hypothesis that a pair of news populations (all, peak, or top)
has equal mean sentiment. We apply Welch’s t-test [23] which is robust for skewed
distributions [8]. The results are inTable3.With t values> 10, the degrees of freedom
� 100, and the p-values � 0.0001, the null hypothesis can be rejected for all pairs
of news populations.We conclude, with high confidence, that the three populations of
newshave significantly different sentimentmeans, though these differences are small.
Of course, with such large samples one always detects differences. Nevertheless, the
results are useful to hint atmeaningful differenceswhich are exploited by introducing
the neutral zone.

To distinguish ‘bad’ news from ‘good’ news, we introduce a neutral zone around
the sentiment mean. The s̄ value is the sample mean, and the population mean is in
the interval s̄ ± 9SEM with very high confidence. We take this interval band around

Fig. 2 Comparison of the sentiment distribution of all news articles, peak day articles, and top
news, i.e., most relevant articles at peak days
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Table 2 The sentiment distributions for different sets of news relating pairs of countries. s̄ is
sentiment mean, SD standard deviation, and SEM standard error of the mean

Documents s̄ SD SEM

All news 1,567,396 0.028 0.239 0.0002

Peak news 274,806 −0.003 0.231 0.0004

Top news 48,097 0.010 0.249 0.0011

Table 3 The results of t-tests for comparison of sentiment means. DF is the estimated degrees of
freedom

t DF

All news versus peak news 65.55 385,256

Top news versus peak news 10.67 63,425

All news versus top news 15.63 50,852

s̄ as the neutral zone. We classify the sentiment of the top news into three discrete
classes: negative if −1 ≤ s < 0, neutral if 0 ≤ s ≤ +0.02, and positive if +0.02 <

s ≤ +1. The neutral zone is very narrow, as shown in Fig. 2, and is used just to
clearly distinguish between the negative and positive sentiment of top news. This
classification is used to label the links in the network visualization with different
colors.

3.4 Network Visualization

A network visualization offers a unique way to understand and analyze complex
systems by enabling the user to easily inspect and comprehend relations between
individual units and their properties [16]. In addition to single layer network visual-
ization [2], also multi-layer visualization is increasingly popular [6, 13].

Wehave implemented a spatio-temporal visualizationof the country co-occurrence
network, constructed from the detected major news events, their most relevant con-
tent, and the associated sentiment. The visualization facilitates the inspection of
various aspects of the network: time dimension, news content, news sentiment, and
geography. We have embedded the network into the world map and included func-
tionality to explore the different aspects of the network. Figures3 and 4 show two
instances of the network in time and space. The visualization is an extension of
the NewsStream portal, publicly accessible at http://newsstream.ijs.si/occurrence/
major-news-events-map.

http://newsstream.ijs.si/occurrence/major-news-events-map
http://newsstream.ijs.si/occurrence/major-news-events-map
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Fig. 3 Temporal country co-occurrence network of major news events during Sep 2015

Fig. 4 The most significant news about Germany and the United States in Sep 2015

4 Conclusions

We describe a methodology for the construction of temporal multi-layer news net-
works. The network captures the links between entities during major news events,
summarizes the relations between them, and assigns the sentiment to them. In an
experimental setup, we have constructed a time-varying network of countries men-
tioned in the news over the past four years. We have detected 17,702 major news
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events involving 217 countries, in the period from January 1, 2012 until September
30, 2015. The interactive visualization of the network supports the spatio-temporal
exploration of the major news events.

One of the weaknesses of this approach is a simple, lexicon-based sentiment
analysis. We have already implemented much more sophisticated sentiment clas-
sification approaches, based on the SVM models, and applicable to short texts in
different languages and in various domains [15, 18, 20, 24]. In the future, we plan to
focus on key sentences around the entities of interest, and combine the model-based
and lexicon-based approaches to sentiment classification for evaluating longer news
articles.

Another direction of future research is to study the role of news in the policy
making process. In the context of policy debates about complex global issues, such
as climate change, financial crises, sustainable development, ormigrations, there is an
antagonism between the public and private interests. The news play an important role
in shaping the policy debates but they might be influenced by the ownership structure
of media companies and industrial corporations. We plan to analyze the news and
create multi-layer networks of corporations and legal issues, or corporations and
environmental issues, and study their sentiment leaning towards different issues. At
the same time we will take into consideration the (in)direct ownership structure of
the media companies, and analyze how this influences the reported news.
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Sensitivity of Network Controllability
to Weight-Based Edge Thresholding

Barnabé Monnot and Justin Ruths

Abstract In this study we investigate the change in network controllability, the
ability to fully control the state of a network by applying external inputs, as edges
of a network are removed according to their edge weight. A significant challenge to
analyzing real-world networks is that surveys to capture network structure are almost
always incomplete. While strong connections may be easy to detect, weak interac-
tions, modeled by small edge weights are the most likely to be omitted. The incom-
pleteness of network data leads to biasing calculated network statistics—including
network controllability—away from the true values [16]. To get at the sensitivity of
network control to these inaccuracies, we investigate the evolution of the minimum
number of independent inputs needed to fully control the system as links are removed
based on their weights. We find that the correlation between edge weight and the
degrees of their adjacent nodes dominates the change in network controllability. In
our surveyed real networks, this correlation is positive, meaning the number of con-
trols increases quickly when weaker links are targeted first. We confirm this result
with synthetic networks from both the scale-free and the Erdös-Rényi types. We also
look at the evolution of the control profile, a network statistic that captures the ratio
of the different functional types of controls.

1 Introduction

The topic of network controllability has yielded a variety of structural and functional
insights and, thus, has been added to the pantheon of statistics available for network
analysis. Like the diameter of a graph (of all the shortest paths between all pairs of
nodes, the diameter is the longest), network controllability depends on paths through
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a network and although it is a global statistic about a network, it is sensitive to small
changes in structure. In this work, we investigate the sensitivity of network control
to a specific type of preferential edge loss, namely edges with low weight. This type
of edge loss or omission is motivated from three different perspectives: omission in
sampling of real-world networks, robustness to failure or attack, and feasibility of
network controllability.

In order to digitize real-world networks, researchers must survey or sample them,
however, oftentimes these methods fall short of capturing a perfect reproduction of
the network. In some cases explicit thresholds are imposed as in, for example, when
social networks are constructedby askingparticipants to list their top k acquaintances.
In biochemical networks, scientists must run experiments to establish links in the
network of proteins. Due to the sensitivity of the experiments or the sheer number that
are required, scientists are limited in the scope of these experiments to only the most
significant interactions. Fundamentally, all recorded networks are an approximation
of the much more complete set of interactions that exist in a real-world system. In
all of these examples, the networks that are produced tend to omit the weaker, more
subtle dynamical connections that exist in the systems.

There is a growing literature of studies that investigate the robustness of network
controllability to node and edge failure or attack [13, 14, 18, 23]. Researchers seek
control configurations (the placement of controls in the network) such that under node
or edge removal, the property of network controllability is maintained as much as
possible. While a variety of factors may contribute to the failure of an edge, one with
low weight is likely to be more susceptible due to inherent weakness or overloading.

While network controllability has provided a valuable tool for network science,
there is a valid debate as to how to interpret these results specifically for the purpose
of controlling a network—i.e., driving the network to a desired state by applying
external inputs. In particular, several studies have pointed out that, in the presence
of self-loops in the graph, structural controllability analysis becomes trivial [6].
Other studies have characterized the input signals that would need to be used in
order to control a network using the minimum number of controls [15, 24]. The
general claim made by some of this work is that for real-world networks, the input
signals could be unrealistic. The triviality of the analysis and the singularity of the
input synthesis is again tied to the scale of the edge weights. Self-loops represent
self-dynamics, which are often characterized by timescales that are much longer
(therefore, their edge weights would be much smaller) than the inter-state dynamics.
This type of timescale separation can be seen in, for example, physics and sociology
[3]. Input synthesis requires calculation of the inverse of a matrix, which becomes
more singular based on properties of structure and edge weight combined [15, 24].
Thus in the context of these studies, our work here aims to determine to what extent
can low weight edges be safely omitted from the structural controllability analysis
without dramatically changing the outcomes.

Thiswork, then, requires a database of both directed andweighted networks. There
are surprisingly few publicly available datasets fitting these simple requirements.
This work is based on all of the networks that we could find; we then supplemented
these real-world datasets with tests on synthetic networks to support our empirical



Sensitivity of Network Controllability to Weight-Based Edge Thresholding 47

observations. There is likewise very little work done on the correlations with edge
weights. A notable exception is the study conducted by Li et al., which looks at a
very large network dataset of Chinese phone records [8].We expect this reality is due
to the challenge of being able to accurately capture the strengths of the interactions
in a large-scale network. In addition, networks are often used so that attention is paid
only to structure and not to edge weights. We anticipate that our work and others like
it will begin to emphasize the need for weighted network datasets.

2 Network Controllability

By studying network controllability, we implicitly assume a corresponding linear
dynamical systemwhose states evolve according to the structure of the connectivity of
the graph. A linear system ẋ(t) = Ax(t) + Bu(t) is said to be controllable if for any
initial condition x(0) the state can be driven the system to any terminal condition x(T )

in finite time T , using the set of controls u(t). We let x(t) = [x1(t), . . . , xN (t)]T ∈
R

N represent the state of the N nodes at time t , the network adjacency matrix A ∈
R

N×N codes the dynamical interaction between the nodes (states) and the weight
of these connections, and u(t) = [u1(t), . . . , uM(t)]T , M ≤ N is the set of external
controls. Each control is attached to one or more nodes according to the input matrix
B ∈ R

M×N .
The analytic test for controllability involves checking the rank of a N × N M

matrix and so is computationally costly [4]. In addition, issues of numerical precision
become important when the rank of very large matrices is computed. Structural
control provides a more computationally efficient approach that scales well with
system size. Since it is based on structure, this approach also avoids the numerical
issues tied to taking edge weights into account. Structural control was originally
introduced to study the relationship between the dynamic structure of a system and
its control properties; namely to investigate the properties of a system even when
physical parameters, such as stiffnesses and moments of inertia, were not known
[9, 21]. More recently the opportunity to use this machinery to draw insights about
large-scale real-world networks has brought renewed attention to structural control
from both the control and network science communities. In [10], Liu et al. leveraged
thewealth of datasets developed in network science to apply structural controllability
theory on real-world complex networks. The number and location of the minimum
set of independent inputs required to fully control the system can be determined by
computing amaximummatching on the bipartite representation of the directed graph
[5, 11]. Structural controllability states that when separate controls are applied to the
unmatched nodes, the system can be driven to any state. The minimum number of
inputs Nc needed to control the system is a fixed statistic based on the structure of
the network, even though the maximum matching (and, therefore, the exact location
of the controls) is in general not unique.
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Ruths and Ruths developed a statistic that categorizes controls according to one
of three functional roles in controlling a network [20]. A control may arise because
a node only possesses outbound neighbors and no inbound neighbors; this source
node must be controlled (because there is no matching that can include this node)
and we call this a source control. The remaining controls are due to dilations in the
network, some internal and some external. Controls arising from external dilations
are added so that sink nodes can be driven independently, while controls arising due
to internal dilations are those not due to source or sink nodes. In both situations, one
more control will be required. A useful finding is that in spite of the non-uniqueness
of the maximum matching, the number of source (Ns), external dilation (Ne) and
internal dilation (Ni ) controls remain constant. This leads the authors to define a
control profile statistic η discriminating between source dominated, external dilation
dominated or internal dilation dominated networks according to the largest fraction
of the control profile,

η = (ηs, ηe, ηi ) =
(

Ns

Nc
,

Ne

Nc
,

Ni

Nc

)

.

2.1 Robustness of Network Control

This work is closely related to the topic of robustness of network controllability,
which seeks to quantify the loss of network controllability as edges (and/or nodes)
are removed from the network. Like robustness of network connectivity (e.g., [1])
addition of edges cannot reduce controllability but removal may (although it is pos-
sible to have “redundant” edges for which network controllability does not change
if they are removed). As with the studies on connectivity, resilience to both failures
(random events) and attacks (targeted events) are of interest.

In [14], the authors provide a measure of how robust network controllability is
to node and edge removal, including both random failure and targeted attacks. They
make the distinction between control-based robustness, which reports the increase
in the number of controls required to control the network, and reachability-based
robustness, which reports the decrease in the number of controllable nodes given
the same fixed set of external inputs. To date, most of the work on robustness of
network controllability has centered on the control-based approach (e.g., [13, 18,
23]), however, it was shown that these two metrics for robustness yield different
results since the relationship between the two metrics is, in general, nonlinear [14].

For this work, we aim to understand how the omission or loss of low weight
edges changes the characteristics of network controllability. As in the robustness
discussion above, we could define this in terms of control-based or reachability-
based robustness. We determined that in this context, we are most interested in
understanding how both the control profile defined previously and the number of
controls required to drive the system to any point evolve as edges are removed from
the graph.
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3 Edge Weights of Real Networks

While structural control does not explicitly dependon the linkweights of a network, in
this paper we seek to understand the relationship between edges and their importance
in network controllability, based on their weight. We operationalize this hypothesis
by using structural control to analyze different snapshots of the network as edges are
removed according to their weight. Our results point to a strong connection related to
the correlation that edge weight has with node degree. Therefore, in this section we
discuss this correlation in general and specifically for the networks in our datasets.

We consider real networks arising from a variety of applications. Two networks
capture the volume of air traffic between airports internationally and in the United
States; one is the graph of neuronal connections of the C. Elegans worm; several
correspond to food webs in different environments; and the remaining represent
communication traffic in a social network including email, twitter mentions, and
messaging. These networks were selected because they provided edge weights, cap-
turing the intensity of the connectivity between nodes, such as the number of pas-
sengers transiting between two airports, or the number of emails exchanged between
two addresses.

Our first observation is that inmost of these networks and likemany statistics (e.g.,
clustering, centrality) of real-world networks, the distribution of edgeweights follows
a power law, with a large share of lightweight edges and relatively few heavyweight
edges (Fig. 1a, b) [12]. More precisely, denoting w weight of an edge, we have that
the frequency of edge weight w will be follow the formula p(w) = Cw−γ , where
C is a constant and γ the exponent of the power law. We give in Table1 under the
column γ , the computed exponents of these power laws when they make sense. We
plot two of these weight distributions, for the Twitter mention network (Fig. 1a) and
the UC Irvine exchanged messages network (Fig. 1b), on a logarithmic scale to better
appreciate the power law property.

Fig. 1 Edge weight distribution of two empirical networks, demonstrating the scale-free nature
of the distributions. a Twitter mention network. b UC Irvine exchanged messages dataset
one_mode_message
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3.1 Edge Weight Correlations with Node Degree

We find substantial correlations between edge weights and other network properties.
These connections seem to be the main drivers of the behavior we observe regarding
sensitivity of network controllability to edge weights.

In a directed graph G = (V, E), where V is the set of nodes and E ⊆ V × V the
set of edges, we say that a node u ∈ V is an in-neighbor of v ∈ V if there exists a
link e ∈ E such that e = (u, v), i.e., there is a link pointing from u to v. Similarly,
in this situation we call v an out-neighbor of u. The in-degree of a node v ∈ V is
the number of in-neighbors of v. The out-degree of a node v ∈ V is the number of
out-neighbors of v. The degree of v ∈ V deg(v) is then the sum of the in-degree and
the out-degree, thus the total number of edges entering and exiting v. We call a node
disconnected if it has degree zero, i.e., no edges are entering or leaving the node.

One observation made in most of our real networks under analysis is the concen-
tration of heavier links (edges with relatively large weights) around the nodes that
possess higher degree. To validate this, we compute the Spearman rank correlation
coefficient [7], giving us a measure of how good a monotonic function could capture
the relation between node degree and total average link weights around a node. A
value close to 1 means there is a positive correlation between the two quantities,
close to -1 indicates a negative correlation, and close to 0 reveals no correlation.

The correlation computations are collected in Table1 under the column ρ. The
positive correlation is particularly striking in the airport networks and some of the
food webs (although the smaller size of these networks means this value is less
significant here). This table also reports the size of the network (nodes and edges)
and the computed measures of the power law exponent approximation γ .

Letρin denote the coefficient of correlation between the in-degrees and the average
weights of incoming edges per node and ρout the coefficient of correlation between
the out-degrees and the average weights of outgoing edges per node. The series
of average weights is obtained by iterating over the nodes and computing for each
node the average weight of their incoming/outgoing edges. We will later see that in
addition to ρ, these correlation coefficients also play a role in the evolution of the
control profile. Both ρin and ρout are given in Table1.

4 Results and Discussion

To study the sensitivity of network controllability to the omission or loss of low
weight edges, we employ a thresholding method. We first compute and store the
control characteristics of the original network. We then iteratively remove a set of
edges and compute and store the new control statistics until all the edges in the
network have been removed. We sort the edges of the network in terms of ascending
weight (lower weight edges first) and remove them in this order, adjusting the step
(i.e., the number of edges removed per iteration) depending on the size of the graph.
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In the case where several links possess the same weight, we randomly choose the
order of edges removed.1 At the end of the procedure, we obtain the evolution of the
control characteristics as the fraction of removed edges increases from 0 to 100%.
To eliminate the randomness in this procedure (arising when several links have the
same weight), we repeat this algorithm twenty times and average the results. In all
cases, we find the standard deviation due to this randomness to be imperceptible2 and
so we leave it out of the remaining discussion. This whole process can be described
as weight cuts.

To provide a meaningful comparison, we apply the same thresholding procedure,
however, instead of sorting links based on their weights, we randomly select the
edges to remove (equal in number to the same step size set in the weight cuts). We
repeat this process for each network again twenty times and present the averaged
results. We call this procedure random cuts.

4.1 Evolution of the Number of Controls

We first look at how the number of controls evolves as the thresholding level is
increased, i.e., as we remove more and more edges from the graph. A useful bench-
mark is that if a single edge is removed from the network, the number of controls will
increase at most by one (it is possible that the number controls remains the same).
Therefore, by removing k edges, we expect the number of controls to increase by
some κ ≤ k.

Some networks yield a very clear distinction between the outcome of weight
cuts and that of random cuts, such as the one_mode_message or the us (Fig. 2a, b).
In these graphs, we plot the fraction of minimum number of controls nc = Nc/N
against the percentage of edges that have been removed from the graph. We note that
this fraction nc increases much faster in the weight cuts (i.e., when lighter edges are
removed first) than in the random cuts. We also give the weight of the edge that was
removed from the graph, as the thresholding level grows.

4.1.1 Correlation Between Degree and Edge Weight

We argue that the clear distinction between the two curves, with the weight cuts curve
being above the random cuts curve, is the case due to the node degree/average edge
weight positive correlation discussed above. Indeed, for the one_mode_message the
empirical coefficient of correlation was of 0.593 and for us, 0.585. If lighter edges are
removed first from the graph and if these edges aremainly attached to nodes that have
a few connections (a node with lower degree), then we can expect that these nodes

1The library used to work on the networks is accessible here: Weight Analysis.
2To compare two sequences of weight cuts {w}n

i=1 and {w̃}n
i=1, we use the l1 distance between

them, d(w, w̃) = ∑n
i=1 |wi − w̃i |.

https://github.com/barnabemonnot/control
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Fig. 2 The evolution of the fraction ofminimumnumber of controls nc = Nc/N compared between
the weight cut procedure and the random cut procedure. a one_mode_message email network b us
airport network

will be disconnected from the network relatively fast. To control a disconnected node,
a new source control must be added, thus increasing Nc by one. The fast increase is
then explained by the premature appearance of many source controls.

Posfai et. al study the degree-degree correlations to explain the minimum number
of required controls, namely for each edge they investigate the correlations between
the in/out-degree of the source node and the in/out-degree of the target node [17].
They find that a high level of correlation, either positive or negative, between the
in-degree (resp. out-degree) of the source node and the in-degree (resp. out-degree)
of the target node increases the fraction nc. We argue here that if edges with high
weights are connected to these high degree nodes, as is the case with the two previous
graphs, we get the same kind of correlation obtained by Posfai et. al.

To make this assertion clearer, we generate random graphs and assign weights
to the links following three different methods: either as an increasing/decreasing
function of the sum of the degrees of their incident nodes, or randomly. If weights
follow an increasing function of the sum of the degrees, then links attached to more
connected nodes will receive a higher weight. We do this in a randomized way so
that the correlations are comparable with what we observe in the real datasets (i.e.,
not a perfect correlation). More specifically, let we be the weight attached to edge e,
and ue, ve denote the two node extremities of e. The three ways of assigning weights
are the following:

1. Increasing: we = k × (deg(ue) + deg(ve)).
2. Decreasing: we = k/(deg(ue) + deg(ve)).
3. Randomly: we = k.

where k is a random variable uniformly distributed over the integers from 1 to 100.
We generate graphs from two distinct families: Barabási-Albert (BA) preferential

attachment networks that exhibit scale-free degree distributions [2] or Erdös-Rényi
(ER) random graphs [19]. All of these graphs were generated with 1000 nodes and
approximately 2000 edges.

The results are different for the two families. Scale-free graphs exhibit a faster
increase in the number of controls required for the control of the graph (Fig. 3).
As before, we explain this by the appearance of many source controls attached to
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(a) BA scale-free networks with ρ > 0 (b) BA scale-free networks with ρ < 0

(c) BA scale-free networks with ρ ≈ 0

Fig. 3 Barabási-Albert scale-free networks generated with link weights a positively correlated to
the degrees of their adjacent nodes, b negatively correlated, and c randomly chosen

the nodes with low average weighted edges (correlated with low degree) which get
disconnected first. The reverse phenomenon is observed whenmore connected nodes
receive less weight on their adjacent links. However, when weights are assigned
randomly, we unsurprisingly find a curve very similar to that of the random cuts.

Erdös-Rényi graphs exhibit the same properties but at a different scale (Fig. 4).
As is known from the theory of random graphs, the degree of the nodes in an Erdös-
Rényi graph does not follow the kind of power law observed in scale-free graphs.
Indeed their degrees concentrate around a mean value (Poisson distribution), with
few outliers in the degree distribution. These tighter connections explain why the
evolution of the number of controls is close to that of random cuts.

4.1.2 Correlation Between In/Out-Degree and Edge Weight

This result drives us to find a more precise explanation for this behavior, in particular
investigating whether the series of node in/out-degrees and the series of average
weights of incoming/outgoing edges around the nodes are correlated, and if so, how
this correlation impacts the evolution of nc.

We also generate a random graph of type Erdös-Rényi (er) and another one of
scale-free type (ba), both of size 100 nodes and approximately twice as many edges.
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(c) ER random networks with ρ ≈ 0

(a) ER random networks with ρ > 0 (b) ER random networks with ρ < 0

Fig. 4 Erdös-Rényi random networks generated with link weights a positively correlated to the
degrees of their adjacent nodes, b negatively correlated, and c randomly chosen

For these graphs we apply 4 different weight assignments. For an edge e ∈ E , let
s(e), t (e) ∈ V denote respectively the source and the target of the edge.

1. Degree-based assignment: this is the same as in the previous section. This is done
in the graphs *-inc, *-inv, *-ran (where * can be replaced with the name of graph,
inc denotes the use of the increasing function, inv that of the decreasing function
and ran that of the random assignment).

2. In-degree-based assignment: Assign as a weight for e either an increasing or a
decreasing function of the in-degree of t (e). This is done in the graphs *-in-inc
and *-in-inv.

3. Out-degree-based assignment: Assign as a weight for e either an increasing or a
decreasing function of the out-degree of s(e). This is done in the graphs *-out-inc
and *-out-inv.

4. Reverse in-degree/out-degree assignment: Assign as a weight for e either an
increasing (resp. decreasing) or a decreasing (resp. increasing) function of the
in-degree (resp. out-degree) of t (e) (resp. s(e)). This is done in the graphs
*-in_out-inc and *-in_out-inv.

The main observation is that in-degree/average weight of incoming edges corre-
lation seems to be a stronger driver for the shape of the weight cut curve than that of
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Fig. 5 Erdös-Rényi networks (N = 100) with weights distributed inversely on incoming and out-
going edges. a er-in_out-inc: ρin > 0 and ρout < 0 b er-in_out-inv: ρin < 0 and ρout > 0

the out-degree/average weight of outgoing edges one. However, it is sufficient that
one of our two coefficients of correlation ρin or ρout be large enough for the weight
cuts curve to be over the random cuts curve.

We give as an example the result of the fourth procedure on a synthesized Erdös-
Rényi graph. We see that in spite of the negative correlation between either the
in-degree and average weight of incoming edges or the out-degree and average
weight of outgoing edges, the weight cuts curve is still above the random cuts curve
(Fig. 5a, b).

In order to succinctly capture the gap between the weight cuts and the random cuts
curves, we introduce the control distance denoted d(w, r), where w = (ni

c,w) is the
series of fraction of controls determined by the weight cut procedure and r = (ni

c,r )

is the series of fraction of controls determined by the random cut procedure. The
statistic

d(w, r) = 1

N

|E |∑

i=1

(ni
c,w − ni

c,r ),

effectively computes the average distance between the weight cut and random cut
curves over the entire sequence of cuts. A positive d(w, r) indicates a tendency for
the series of weight cuts to increase faster than that of the random cuts. This appears
to be a valid approach because in all of our tests, we observe that the weight cut curve
is in general either always above, always below, or roughly equal to the random cut
curve. Since we do not observe significant crossings between these two curves, this
distance metric is sufficient to capture the general trend of the curves.

Armed with the control distance, we compute this statistic on our real networks
with reassigned weights, using the fourth procedure of reverse in-degree/out-degree
assignment. The results are given in Fig. 6. It can be seen that for all networks, the
control distance is higher in the case of positive ρin and negative ρout than in the case
of negative ρin and positive ρout . This leads us to believe that ρin has a higher impact
than ρout on the speed with which new controls appear in the weight cuts, compared
with the random cuts.
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Fig. 6 Control distance for real networks with weights reassigned such that the in-degree and out-
degree correlations are opposite, i.e., inc networks: ρin > 0 and ρout < 0; inv networks: ρin < 0
and ρout > 0

4.2 Evolution of the Control Profiles

We now focus our attention to a finer measure of the controllability: the control
profile statistic giving at every step the ratio of source, external dilation and internal
dilation controls compared to the overall minimum number of controls.

The resulting path is given in a ternary plot where the lower-left, lower-right, and
upper corners correspond respectively to to graphs only possessing source controls,
external-dilation controls, and internal-dilation controls. The trajectory of the path
corresponds to the evolution of the control profile statistic. We have put in bold and
lighter colors the first 20% of the slices.

Again we observe a discrepancy between the evolution of this control profile in
the weight cut procedure and the random cuts. Since at the end of the algorithm,
all edges have been removed and hence all nodes are disconnected, both sequences
of control profiles eventually converge to the lower left corner, i.e., all controls are
source controls. However, the paths taken to arrive at this point vary following the
method. We give below two examples of these ternary plots (Fig. 7a, b).

Using our previously constructed celegans graph with newly assigned
weights, we notice the following. When we have high ρin (close to 1), such as in
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Fig. 7 The evolution of the control profile yields a trajectory that eventually leads to source dom-
ination of the controls. The transience of the evolution is determined by the correlation between
weights and the in- and out-degree of the nodes. In degree tends to dominate this effect. a Ches-
Lower food web network b intl airport network c celegans-in-inc ρin >0 d celegans-in-inv ρin < 0
e celegans-out-inc ρout > 0 f celegans-out-invρout < 0g celegans-in_out-inc ρin > 0 andρout < 0
h celegans-in_out-inv ρin < 0 and ρout > 0

celegans-in-inc, the control profile moves fast towards the no external dilation side
of the ternary plot. However, when ρin is low (close to -1) as in celegans-in-inv, the
profile evolves first towards the lower center of the ternary plot (Fig. 7c, d).

The situation is reversed when looking at ρout . A high ρout (celegans-out-inc)
results in a trajectory where the internal dilation controls disappear first. With a low
ρout these controls are removed after the external dilation controls (Fig. 7e,f).

The last series of graphs (Fig. 7g, h) confirm our intuition that in-degree/average
weight of incoming edges correlation impacts more the growth of nc than its ρout

counterpart. Indeed these graphs show realizations close to the celegans-in ternary
plots. This observation also holds for our other networks.

4.3 Estimating the Error Due to Missing Edges

Our original objective in this paper was to determine scale of the adverse effects
of systematically omitting edges with low edge weights, as we have argued may
arise during empirical surveys of networks. The results we have presented in this
paper have begun to answer this question, connecting the answer to the correlation
between edge weights and node degree. While the full analysis of this next extension
is beyond the scope of this paper, We now highlight some intriguing observations
that suggest it may be possible to quantify the discrepancy in the control statistic nc

between the true network and its approximation (with missing light-weight edges).
In order to address this question, we then applied the following procedure to two

real and two synthetic networks to generate graphs that have a range of correlation
ρ values.
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i. Assign weights following the formulas for we given in Sect. 4.1.1, i.e., with the
edge weight following an increasing, decreasing or random function of the adja-
cent nodes’ degrees.

ii. Choose a fraction δ ∈ [0, 1] and for �δ × |E |� iterations, select an edge e at
random and assign it a random weight contained between the minimum and
maximum weight found in the graph (note that an edge can be chosen multiple
times).

The rationale behind this procedure is to obtain graphs with varying ρ values. For
example, in the increasing function case, we start from a graph that has high weights
attributed to edges connected to high degree nodes and progressively assign random
weights to randomly chosen edges, thus reducing the level of correlation.

With these networks with different levels of ρ, we then compute the control dis-
tance d(w, r) for these graphs. Figure8 presents a scatter plot showing the relation-
ship between ρ and the control distance for Erdös-Rényi, Barabási-Albert, celegans,
and us (airport) networks. For each network, a very clear trend indicates that as ρ

increases, the distance between the weight cuts curve and the random cuts curve also
increases, in most cases in a nonlinear fashion. Interestingly, the trends are not con-
sistent across networks, despite a definitive pattern for each network. The us network
for example, while showing some correlation between ρ and the control distance,
also presents outliers. We anticipate that this variation in trends is due to varying
aspects network structure, possibly the degree distribution.

While the exact nature of these patterns is not yet clear, it does highlight several
useful findings. For networks exhibiting negative or near zero correlations between
edge weights and node degrees, the effect of omitting edges is much reduced com-
pared with those with high correlations. Although the control distance is measured

Fig. 8 Control distance for
real and synthesized
networks with assigned
weights plotted against the
rank correlation ρ.
Increasing ρ leads to an
increase in the control
distance. While the trend for
each network is clear, there is
variation between networks,
suggesting a dependence on
network structure
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relative to the random cut outcome, in several cases, the absolute increase in nc is
small for the first 10-20% of edges cut (see, for example Figs. 2b and 3b). More
exciting is the potential ability to predict the biasing induced by the omission of
edges. Consider a true real-world graph G, the true nature of it is unknown, and the
sampled and digitized version G̃, which is known. Network scientists will analyze
G̃ in efforts to infer attributes of the original graph G, for example computing ñc,
the number of controls required for G̃ in order to try to know nc, the number of
controls required for G. The findings here suggest that researchers could compute
the correlation ρ for their empirical network G̃ and use that estimate to infer the
effect of omitting k of the light-weight edges of G.

5 Conclusion

In this paper we have looked at how ordered removal of edges according to edge
weights influence the change of two network controllability statistics: the minimum
number of controls and the control profile. The level of correlation between node
degrees and their associated average link weights is the driving factor in understand-
ing how these statistics evolve under targeted edge removal. We identify that posi-
tive in-degree correlations, where on average high weight edges are found incident
to nodes with high in-degree, is the dominant weight-degree correlation. We hope
these results introduce another viewpoint from which to study the field of network
controllability, namely that of the link weights. As the community captures more
networks with edge weight information, insight in topics like this one will become
increasingly more rich and valuable [22].

Our motivation for this study was to understand how the omission of light weight
edgesmay distort network statistics, specifically those related to network control. Our
findings identify that the general correlation between edge weight and node degree
can provide an estimate of whether the omission will bias the number of controls
higher or lower than actual value. When these correlations are high and positive, the
network control statistics are relatively sensitive to edge omission, whereas networks
without a strong correlation or with negative correlation are more neutral to omitting
light weight edges.

An interesting by-product of this study is that assigning edge weights with cer-
tain correlations is a compelling way to on-average test characteristics of network
controllability and more specifically robustness of network controllability. A variety
of work we have cited in this paper has looked at the effects of certain types of edge
removal/attack as well as the impact of degree correlations. Assigning weights to
edges and removing edges in a given order provides a relatively systematic tool that
has a soft edge—averaging out idiosyncratic network structures that might otherwise
obscure the main effect.
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Where Is My Next Friend? Recommending
Enjoyable Profiles in Location Based Services

Riccardo Guidotti and Michele Berlingerio

Abstract How many of your friends, with whom you enjoy spending some time,
live close by? How many people are at your reach, with whom you could have a nice
conversation?We introduce a measure of enjoyability that may be the basis for a new
class of location-based services aimed at maximizing the likelihood that two persons,
or a group of people, would enjoy spending time together. Our enjoyability takes into
account both topic similarity between two users and the users’ tendency to connect
to people with similar or dissimilar interest. We computed the enjoyability on two
datasets of geo-located tweets, and we reasoned on the applicability of the obtained
results for producing friend recommendations. We aim at suggesting couples of
users which are not friends yet, but which are frequently co-located and maximize
our enjoyability measure. By taking into account the spatial dimension, we show
how 50% of users may find at least one enjoyable person within 10km of their two
most visited locations. Our results are encouraging, and open the way for a new class
of recommender systems based on enjoyability.

1 Introduction

Recommending people with similar properties, or similar interest, has been at the
basis of many applications, including commercial services like Twitter, Facebook,
or Amazon. The underlying assumption common to most of them is that one would
like, or be interested in, something or someone similar for properties or interests.
This concept is known as homophily in social contexts [4, 10]. However, in many
scenarios, social diversity fosters new relationships, opens new horizons for collab-
oration, or, more in general, enriches our cultural experience by bringing new topics
or new people in our lives.
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In this paper, we ask ourselves the question “can we enable more enjoyable
location-based services, on the basis of the activities and interactions among people
in a social network?”. A possible solution to define social enjoyability for recom-
mendations is obviously to consider people who are friends. However, by looking
at only the direct (or even the two-hop) friends there could be a considerable loss
in possible recommendations, especially for location-based services, as the set of
friends in a given area is generally a small percentage of all the users present in
that area. A trivial solution would be to put together people with similar interests,
regardless of their direct connections as friends. However, not everybody may enjoy
spending time with people talking about similar topics: socio-cultural diversity is
often researched to increase their knowledge and enhance their enjoyable moments
[12]. Hence, two persons are socially compatible according to both their interests
and their willingness to be with people with either similar, or different interests.

Along these lines we tried to automatically compute a measure from available
data in social network to estimate how much group of people appear to be socially
compatible according to their topics of interest and to their friends. We present a
measure of enjoyability of being together with other people, which takes into account
two factors: (i) what we call like-mindness, i.e. a topic similarity between any two
users; and (ii) what we define as our own version of homopily, i.e. the median of
like-mindness between a person and each of his/her friends. The enjoyability is a
composition between the like-mindeness and the homophily of the two persons. It
reaches its maximum when they are either both homophilous and like-minded, or
both heterophilous and not like-minded. A good application of enjoyability is to
devise suggestions for couples of users which do not know each other and that are
looking for someone to spend time together in an enjoyable way.

With the idea of producing enjoyable recommendations for location-based ser-
vices in social networks as final applications, we present the analysis of a possible
definition of enjoyability, computed on real world data such as Twitter. As tweets
may be also geo-located, we also perform a distance based analysis of friends vs
enjoyable people on a given radius, showing how enjoyable people are always at
reach, for radii as little as 500m, in the areas of Rome, and San Francisco. Our first
results are encouraging, and open the way for a new class of location-based services
and of recommender systems for social connections.

2 Related Work

Measures based on homphily and on common interests have long been applied in
social networks for applications which try to link together people who do not know
each other, or to predict their future interactions.

In general, homophily captures the similarity in social networks between individ-
uals who share a link, or the similarity among the members of groups [10]. In the
literaturewe canfind studies analyzinghowhomophily influences humanbehavior. In
[3], the authors exploited homophily in latent attribute inference to augment the users’
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features with information derived fromTwitter profiles and from friends’ posts. Their
results suggests that the neighborhood context carries a substantial improvement to
the information describing a user. The structure of ego-networks and homophily on
Twitter is studied in [9]. The authors investigated the relations between homophily
and topological features discovering an high homophily w.r.t. topics of interest. In
[1], the relation between geographic and interest-based factors w.r.t social linking is
analyzed. The authors found that profile similarity of users drives triangles closure
in the social network and, reciprocally, closure in the social network induces profile
alignment.

Homophily is generally applied in recommendation system to produce more valu-
able suggestions. The authors of [13] used Twitter contents with their popularity and
the social network to suggest lists of users to follow. A recommender system for con-
tent is presented in [6]. The authors demonstrated that the social component improves
the performances by exploiting attitudes, behaviors and preferences of the users. In
[14] the authors built a personalized recommender system, based on the homophily
of ego networks. Finally, in [8] the authors use friendship among Twitter users to
improve the probability of acceptance for carpooling recommendations.

Also link prediction in social network is a task in which homophily have been
largely exploited. Tagging and homophily is used in [2] to predict future friendships.
The analysis suggests that users with similar interests are more likely to be friends,
and therefore topic similarity measures among users should be predictive of social
links. Finally, in [16] the authors define a set of sentiment-based features that help
predicting the likelihood of two users to become “friends” based on their sentiments
towards topics of mutual interest.

We propose an enjoyability measures that goes beyond the concept of simple
social link and homophily, and tries to capture at the same time both differences and
similarities among users. Our measure is new and, to the best of our knowledge, there
are not similar studies analyzing separately the behaviors captured by the enjoyability
in a comparable way in the current state-of-art.

3 Enjoyability

Given a set of users u ∈ U we can analyze the relationships among them in terms of
(i) topics of interests and kind of friendship, and (ii) mobility and spatio-temporal
co-location. Every user u may consider other users in U as friends, collaborators,
neighbors or direct links in general. We denote such set of users called friends which
models the friendships asFu.With respect to the topics of interestwe take into account
the fact that every user can be interested in some documents. These documents can
be either generated by the user herself, or declared to be of interest for the same. We
denote the set of documents of interest for a certain user u with Cu. We call corpus
the complete set of documents for all the usersDU = {Cu}. Given a user u and his/her
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documents Cu, we can identify a number of topics within the documents. Each topic
can be weighted by their relative importance (or frequency) within the documents.
Consequently, we associate every user to a vector of topics with its weights tu.

Definition 1 (Like-mindness) Given two users u, v we call like-mindness the cosine
distance between their topic vectors:

lmu,v = 2
tu · tv

‖tu‖‖tv‖ − 1

The like-mindness expresses the similarity of interests between any two users. We
say u and v are like-minded if lmu,v ≈ 1, not-like-minded if lmu,v ≈ −1.

Homophily evaluates the user’s tendency to connect to people with whom (s)he
has a high like-mindness, or a low one:

Definition 2 (Homophily) Given a user u we compute his/her homophily as the
median of the like-mindness between him/her and all him/her friends Fu:

hu = median
v∈Fu

lmu,v

where median returns the median value of a certain set of values. In social networks,
the concept of homophily is well known [10], and network analysts often compute it
on the degree of a node, defining the assortativity of a network the phenomenon for
whichmost of the users tend to be homophilous by degree (i.e. they link to nodes with
similar degree). If hu ≈ 1, we say that u tends to be homophilous, while if hu ≈ −1
we say that u tends to be heterophilous.

Definition 3 (Enjoyability) Given two users u, v, their like-mindness lmu,v and their
homophily values hu, hv, we define their enjoyability:

eu,v = lmu,vhu + lmu,vhv

2

Note that eu,v ≈ 1 if either both u and v are homophilous and like-minded, or u and v
are heterophilus and not like-minded. In the dual case, eu,v ≈ −1. In Fig. 1 (left) users
u, v are like-minded since they are interested in the same topic; user u is homophilous

Fig. 1 (Left) Example of like-minded users (u, v), homophilous user (u) and heterogeneous user
(v). (Right) Twitter data source: social connections, interests and locations
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because also most of his/her friends are interested in the green topic, while on the
other hand user v is heterophilous; finally, the enjoyability between u and v is not
very high because v would not enjoy u.

4 Methodology

Theproposedmethodologyneeds three kindof input information: social connections,
interests and locations (see Fig. 1 (right)). This is why we decided to use the Twitter
social network as input. Our methodology consists of the following steps:

1. We get a set of geo-located tweets from the area of interest, using Twitter’s
streaming APIs1 on a bounding box. From that set, we extract the active users
U, which we filter by average ratio of distinct words used per tweet, and average
tweets per day, to remove spammers and automated accounts. Then, for each user,
we get the set of other users followed, i.e. friends (Fu).

2. From the text of the tweets DU , we extract for each user a topic vector by means
of a Hierarchical Dirichlet Process (HDP), that is a non-parametric version of
LDA. We use these vector to compute the like-mindness between every couple
of users lmu,v. The median of these values between each user u ∈ U and his/her
friends Fu is used as homophily hu. Finally, for any two users u, v ∈ U, we can
compute their enjoyability eu,v.

3. In order to extract the locations we map each geo-located tweets in its corre-
sponding cell by using a grid on the area of interest. For each user, we take the
two most visited locations (typically, home and work [11]).

Topic modeling is recognized to be able to capture meaningful information in
textual data [5, 7]. However, one drawback of one of the main approaches to topic
modelling, i.e. Latent Dirichlet Allocation (LDA) [5], is being parametric in the
number of topics to extract. To overcome this, we used a nonparametric Hierarchical
Dirichlet Process (HDP) [15] algorithm on the users’ tweets texts to estimate the
number of topics automatically. In practice, these approaches of topic modeling, i.e.
LDA and HDP, are clustering algorithms able to group together set of words related
with the same topic and to produce from the clustering a vector for each user showing
the interest for the various topics. Finally, to detect the two most frequently visited
locations, i.e. the locations where the user is supposed to live, we map each geo-
located tweets (that are about the 75% of all the tweets) in its corresponding cell of
500m width by using a geo-hashing function.

1https://dev.twitter.com/docs/streaming-apis.

https://dev.twitter.com/docs/streaming-apis
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5 Experiments

We conducted our tests on real Twitter social network data by following the method-
ology presented in the previous Section. Our goal is to study the distributions of the
social measures (like-mindeness, homophily, and enjoyability), to understand how
friendship and enjoyability distribute over space and which is the gain of enjoyable
connections with respect to classical friendship links. Note that in this work we are
not looking for an evaluation of the real effectiveness and utility of the enoyability
measure. In order to estimate the reliability of the enoyability, we should perform a
validation with the interested real users.. In this paper we limit ourselves to propose
a new measure and to show that is able to enrich the possible recommendations in
location based services. We leave for the future works its application and valida-
tions in case studies where feedback of the users will be collected with respect to
suggestions provided according to the enjoyability.

5.1 Data

Weused Twitter as data source, though themethod is easilymodifiable to other online
sources like Flickr, or Facebook, and it can be made more general to other offline
data sources as well, provided they supply information regarding social connections,
interests and locations.

We used the Twitter’s Streaming API to obtain two large datasets of geo-tagged
tweets onRome and San Francisco,2 for 50 days from the beginning of October 2014.
As a result, we collected 558,000 geo-tagged tweets from 17,600 user in Rome, and
3,286,000 geo-tagged tweets from 113,000 users in San Francisco.

For each user we retrieved historical tweets (not only geo-located) to build a larger
corpus, which we cleaned by removing stopwords and performing stemming. Then
we retrieve the users’ friends list, together with their tweets. By applying user and
tweet filtering to remove rarely active users and automated accounts, we ended up
with the statistics reported in Table1. Note that, thanks to smart filters, we lost around
93% of users generating in total around half the tweets, i.e. we kept only users with
good quality tweets which live in the bounding boxes defined, i.e. meaningful users
and not users which just tweeted once in the observed area.

5.2 Results on Social Measures

We computed the vector of topics contained in the users’ documents by using the
tweets of the users resulting from the filtering. Then exploited the vector of topics to

2GPS coordinates bounding box: Rome (12.234498, 41.655642, 12.85576, 42.141028), San
Francisco (−122.667, 36.8378, −121.2949, 38.0771).
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Table 1 Statistics after filtering

Dataset Users (%) Tweets (%)

Rome 1,106 (06.53) 237,351 (42.19)

San Francisco 8,581 (07.60) 1,521,827 (49.32)

Numbers in brackets are the percentages over the initial unfiltered data

compute the like-mindness between any two users, and, for each user, we used the
median value of it to compute the homophily. Finally with these values, we computed
the enjoyability values between any two users.

Since HDP is nondeterministic, we ran it 2,000 times on our data, obtaining on
average 25.48 topics (σ = 1.56) on Rome and 25.61 (σ = 1.54) on San Francisco.
The results for the two datasets are reported in Fig. 2 (left). We selected the results
relative to a number of topics of 25, to construct our vectors tu. We report in Fig. 2
(center, right) the top words for some examples of the multinomial distributions of
the HDP algorithm for Rome and San Francisco.

We now report and discuss the results we obtained on Rome and San Francisco
for the computation of the social measures. Figure3 presents the distributions of like-
mindness (left), homophily (center) and enjoyability between pairs of users (right)
for all the users.We report no significant differences in like-mindness and homophily
between Rome and San Francisco. As we can see from the first plot, computing a

Fig. 2 Number of topics distributions on 2 K runs of HDP (left). Top words for sample topics for
Rome (center) and San Francisco (right). Colors represent different topics
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Fig. 3 The distribution of the like-mindness shows that a large majority of the pairs are not socially
compatible being interested into different topics (left). Probably due to the number of topics extracted
by HDP (i.e. 25) also most of the users result to be not homophilous (center). The two distributions
of enjoyability for Rome and San Francisco appear to be quite different (right) we can observe a
higher number of very enjoyable couples in San Francisco than in Rome
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similarity based only on the like-mindness may end up recommending connections
between a limited number of pairs of users. On the other hand, from the second
plot, we learn that most of the people are heterophilous. If we combine the two
things into the enjoyability, we see, in the third plot, that there is broader space for
recommendations based on this measure, rather than the like-mindness. Moreover,
the combination of the first two measures produces two different distributions for
Rome and San Francisco, highlighting that the enjoyability is capturing a different
signal than just the like-mindness.

5.3 Analysis of Tweets in Locations

As mentioned before, besides providing users’ interests trough the tweets’ text, and
the social networkmodeled by the followers relationship, Twitter is also an important
source of human mobility information. This is due to the fact that many users access
Twitter frommobile apps and some of them choose to reveal in their tweets their cur-
rent location as GPS coordinates. We used the two most frequently visited locations
(i.e., cells of 500m width over a grid) to assess the enjoyability for location-based
recommendations services versus location-based recommendations services based
on friendship.

Table2 reports the aggregated (with average and standard deviations) probability
of tweeting from the most frequent location (second column), the two most frequent
locations combined (third column), or any other location after the secondmost visited
one (last column). We can observe how about 80% of the tweets are produced from
these locations, typically home and work, although this analysis is out of scope for
this paper. This indicates that the users live in these places and systematically tweet
from there. As the first two locations cover the large majority of tweets, we only take
into account these two locations for analyzing location-based services.

Since in the following we need to evaluate the distance between couples of users
in order to estimate possibilities for location based services, we define the distance
d(u, v) between two users u and v as the minimum distance among the following
four distances: (i) d1,1(u, v) computed between the two first top locations of u and
v; (ii) d1,2(u, v) computed on the first top location of u and the second top location
of v; (iii) d2,1(u, v) computed on the second top location of u and the first of v; (iv)
d2,2(u, v) computed between the two second top locations of u and v. Hereafter, we
refer to d as simply “the distance”.

Table 2 Number of tweets by location: avg (std dev)

Dataset Loc1 Loc1 + Loc2 Other

Rome 0.70 (0.25) 0.81 (0.20) 0.19 (0.18)

San Francisco 0.62 (0.24) 0.74 (0.21) 0.26 (0.19)

Loc1: ratio of tweets in the most visited location. Loc1+Loc2: ratio of tweets in the two most visited
locations. Other: ratio in all other locations
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5.4 Enjoyability Networks Building

To compare the improvement that the enjoyability can provide to a location-based
service with respect to friendship, we build the social networks of enjoyability and
friendship, named GE=〈NE, EE〉 and GF=〈NF, EF〉 respectively. In order to be com-
parable, their sizes in terms of number of nodes and edges must be similar. Let GF

be the Twitter social networks given by the followers. This friendship graph is quite
sparse (density equals to 0.0086 and 0.0009 for Rome and San Francisco respec-
tively) w.r.t the users in the observed bounding boxes Hence, in order to have GE

comparable with GF , while we could create a complete graph G∗
E out of the enjoy-

ability computed between any two nodes, we create the graph GE representing the
enjoyability with the same number of edges |EF | as found in GF .

As enjoyability in G∗
E is computed between any two pairs, we needed to remove

many edges, to end up with a graph GE with similar structural properties than the
friendship graph GF . By setting a threshold on the enjoyability graph GE to have
the same number of edges of the friendship graph GF would not work, as we would
advantage edges adjacent to nodes with higher enjoyability. In fact, when we tried
this strategy, we ended up with the same number of edges (this was intentional), but
with roughly 10% of the nodes.

Instead, we sampled the graph in the following way. From the friendship graph
GF , we get the degree of each node. Then we put in a multisetM each nodeNF of the
friendship graph, replicating it as many times as its degree. Finally, while the number
of edges |EE | in GE is not equal to the number of edges |EF | in GF , we randomly
pick a node u fromM , and we put in the enjoyability graph GE only the top k edges
ordered per descending enjoyability that u has in the complete enjoyability graph
G∗

E , where k is the degree of u in the friendship graph GF . Using this procedure, we
can still end up with the same number of edges, but we are also preserving roughly
90% of the nodes. The remaining nodes are nodes with very small degree, so we
simply ignored those nodes.

The statistics on these two graphs are shown in Table3. As already stated, the
number of nodes between the two networks is very similar. Moreover, it is worth
noting a very small intersection (5.1% for Rome and 4.6% for San Francisco) among
the edgesEF andEE . If the intersectionwouldhavebeennot present, then the location-
based service based on enjoyability would have uselessly recommended users which
are already friends. Furthermore, the statistics show how the two networks are indeed
similar under various topological points of view. The only hard difference is the
number of connected components: the enjoyability networkGE is a graphmuchmore
connected than GF in the area observed. Also this fact is relevant for a location-based
recommendation service.
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5.5 Location-Based Analysis of Enjoyability and Friendship

In this section we evaluate how much the enjoyability can improve a location-based
service for recommendations with respect to the friendship.

For each user u, we define three sets: Fu, Eu, and Du = Eu \ Fu. The first contains
the friends of u according to the friendship dimension of Twitter (NF). The second
contains all the people withwhich u is enjoyable according to the graphGE computed
above (NE). The third set is the set difference between them, i.e. it contains those
enjoyable people who are not friends with u. This last set can be used to recommend
new people, who are enjoyable, but still not friends with the target user. Figures4
and 5 reports two different results of the location-based analysis.

In Fig. 4 (left Rome, right San Francisco), we report different radii in km, and the
ratio of users who have at least one connection in their own F, E and D (subscripts
are removed as F, E and D are now computed for all the users). We used the distance

Fig. 4 Location based analysis: ratio of users who have at least one link in their own F, E, D for
different radii for Rome (left) and San Francisco (right). In both the cities we can observe that 50%
or more of the users may find at least one enjoyable person who is not yet a friend within the first
10km and a clear turning point between F and D around 20–22km. These aspects show how it is
easier to find people in D than in F, with more evidence in San Francisco

Fig. 5 Location based analysis: distribution of the number of people in F, E, D who have at least
a certain number of neighbors for radii 1, 5, and 25km for Rome (left) and San Francisco (right)
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previously defined to establish if a couple of users are distantmore or less than a given
radius. For all the three sets, the numbers clearly increase. However, the proportion
between users with at least one person in D and E change, as, generally speaking,
friendship and enjoyability are distributed in a different way over space. For both the
cities we see a turning point between F and D around 20km (22 for San Francisco).
As the Bay Area taken into account is wider than the area over Rome, we also see
how distance has different effect in San Francisco. Nevertheless, in both the cities
50% or more of the users may find at least one enjoyable person who is not yet a
friend, within the first 10km. For both cities it is clear how it is easier to find people
in D than in F, with more evidence in San Francisco.

In Fig. 5 (left for Rome, right for San Francisco), we have the probability density
function of the number of people in the three sets, for three radii: 1, 5, and 25km
(other radii were not shown to keep readability of the plots). On the x axis we have
the number of neighbors in the sets, on the y axis the number of people with a given
number of neighbors. For example in Rome (Fig. 5 (left)) we can find up to 10 users
with two neighbors which are friends and up to 100 users with neighbors which are
enjoyable in a radius of 1km. Following this idea, this plot is particularly useful in
applications where one requires to estimate how many people would be able to find,
for example, another 4 soccer player for a stadium located 5km far from the users
(although this requires spatial aggregation and may be enhanced by optimization).
These plots give a different perspective w.r.t the above two, as we see the full count
of people in the three sets, rather than just checking for their non-emptiness.

6 Applicability

The purpose of this paper is to introduce the enjoyability on the social networks
of two different geographic areas and to analyze the possibilities of its application
for interest-based recommendations for location based services. The development of
real location-based services and the detailed analysis of the recommendations based
on enjoyability are left for future work. However, here we list a few possible use case
scenarios for our methodology.

Individual recommendation. Individually recommend a new friend is the sim-
plest application. Let think for example to someone moving to a new city where no
friends are living. This approach could be used to suggest to him/her the best dinner
companion or new possible friends living in the unknown neighborhood.

Group recommendation. Group recommendations are useful when there is a set
of users needing to recruit another fewmembers in the group for their activities. Some
example are: team sports, group tourism, debates, social brainstorm, and so on. For
example, when organizing a football match additional enjoyable players supporting
the same football team (enjoyability given by homophilous users) could be found
within a given radius from a soccer field and.

Location-based recommendation. Pure location-based recommendations could
be useful in various mobility applications. The measure could be exploited by a
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carpooling service which produces proactive suggestions between couples of drivers
and passengers which are feasible both in terms of mobility matches and also accord-
ing to their enjoyability. This feature could help in reducing people reticence in
adopting carpooling as an everyday means of transport. Finally, the users could be
provided with recommendations about points of interest and the preferred time to go
there according to the enjoyability of their customers.

7 Conclusions and Future Work

We have introduced the enjoyability, as a measure of how two people would enjoy
time spent together on the basis of their interests and their homophily or heterophily.
We have shown the applicability of enjoyability on data with social, textual, and
geographical dimensions such as Twitter. Our approach can also be applied to other
data sources. The choice for Twitter data was supported by the availability of all
the components at once. One could easily replicate our experiments on Call Detail
Records (CDR) data used in conjunction with phone calls transcripts. This combina-
tion would improve the data quality and quantity in all the three dimensions of our
problem: better location data, better textual content, weighted friendship informa-
tion. However, this type of data is not public. Alternative public data includes Flickr
(whose typical usage is tourism), Foursquare (for which we would need to find an
external source for textual data), or Facebook (whose APIs do not expose the same
type or amount of data). Future work include the realization of an application of such
new class, for individual, group or pure location-based recommendations.
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Particle Filtering as a Modeling Tool
for Anomaly Detection in Networks

Ibrahima Gueye and Joseph Ndong

Abstract When linearity can be rigorously assumed for stochastic processes, the
linear Kalman filter can be used as a powerful tool for anomaly detection in com-
munication networks. However, this assumption done with a strong evidence is not
generally proved in a rigorous way. So it is important to develop other methodol-
ogy, for the scope of anomaly detection, which are not obliged to be based on that
assumption. This paper is focused on the use of particle filtering to build a normal
behavioral model for an anomaly detector. The particle filter is calibrated for entropy
reduction for the scope of noise reduction in the measurements. With the help of a
mixture of normal distributions, we can reuse the filtered observations to identify
anomalous events in a few number of classes. Generally anomalies might be rare and
thus theymight happen on a few clusters. So, using a new decision process based on a
hidden markov model, we can track and identify the potential abnormal clusters. We
study the performances of this system by analyzing the false alarm rate vs detection
rate trade-off by means of Receiver Operating Characteristic curve, and compare the
results with the Kalman filter. We validate the approach to track volume anomalies
over real network traffic.

Keywords Particle filter · Kalman filter · Non linear System · Entropy reduction ·
Anomaly detection

1 Introduction

In anomaly detection for communication networks, it is generally necessary to esti-
mate the state of the system evolving over time, using a sequence of noisy mea-
surements. Consequently, the initial measurements have much more noise than the
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filtered measurements and this denoised process can be used to track anomalies. For
example, we have techniques based on classification, clustering, nearest neighbor,
information theory, statistical, spectral density, etc. The parametric statistical meth-
ods assume the existence of an underlying distribution of the state process and rely
generally on the assumption of linearity of the state and measurements processes.
Recently, we have proposed some anomaly detection approaches concentrated on
linear Kalman filtering [13–15]. However, despite its strength, the linear Kalman fil-
ter, [12], runs with some difficulties. Generally, the innovation process is expected to
be a Gaussian white noise. However, in practice, this is hardly the case as frequently
the observed signals are non-gaussian/nonlinear themselves. This filter is generally
set with input matrices which are often difficult to find making hard to calibrate the
filter. It is also known that the linear filter performs only if the system state and the
observations process are typically linear over time. In real situations, it is not obvious
to demonstrate, with sampled dataset, that linearity is guaranteed for the state and
the measurement processes.

Our hope in this paper is to show, for the first time in the domain of anomaly
detection for communication networks, that the sub-optimal algorithm based on
particle filtering (which is originally design for nonlinear/non-gaussian processes)
can be view as a valuable and alternative tool for anomaly detection, in case when
linearity can not be guaranteed or is hardly assumed for the state and/or measurement
processes. In particle filtering, the particles represent paths through the state space, by
storing the trajectory taken by each particle, so it is appropriate to study a systemwith
dynamical states. The particle filter also performs suitably when the noise process is
not assumed to be zero [17].

2 Model for Particle Filtering

The framework of particle filtering is based on the following difference equations:

{
xk= f (xk−1) + vk−1

zk= h(xk) + nk
(1)

where f (.), the function which describes the internal state of the system, is used to
compute the predicted state from the previous estimate and similarly, the function
h(.), which describes how the system state is transformed to give the observations,
can be used to compute the predictedmeasurements from the predicted state; xk ∈ R

n

and zk ∈ R
m aremulti-dimensional vectors representing respectively the system state

and the measurement. The system is assumed to be excited by an unknown process
noise vk ∼ N (O, Qk) and the measurement are disturbed by unknown measurement
noise nk ∼ N (O, Rk).
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2.1 Sub-optimal Particle Filtering

We deal with the problem of Bayesian estimation of the system state xk at time k
given the data z1:k = {zi , i = 1, . . . , k} up to time k. Thus, we need calculating
the posterior density function (pdf) p(xk |z1:k). To have a filtered estimates of the xk

based on all the available measurements, we assumed that the initial pdf, i.e., the
prior p(x0|z0) ≡ p(x0) is known. So, the pdf p(xk |z1:k) can be obtained recursively
in a two-step prediction and update phase.

If the required pdf p(xk−1|z1:k−1) at time k − 1 is set, the prediction step involves
using the system state in Eq.1 to determine the prior of the state at time k by means
of the following Chapman-Kolmogorov equation:

p(xk |z1:k−1) =
∫

p(xk |xk−1)p(xk−1|z1:k−1)dxk−1. (2)

The probabilistic model of the state evolution p(xk |xk−1) is defined by the system
state equation inEq.1) and the known statistics of vk−1. At time step k, ameasurement
zk becomes available, and this may be used to update the prior (update stage) via the
Bayesian rule:

p(xk |z1:k) = p(zk |xk)p(xk |z1:k−1)

p(zk |z1:k−1)
, (3)

where the normalizing constant:

p(zk |z1:k−1) =
∫

p(zk |xk)p(xk |z1:k−1)dxk (4)

depends on the likelihood function p(zk |xk) defined by the measurement model in
Eq.1 and the known statistics of nk . In the update stage 3, the measurement zk is
used to modify the prior density to obtain the required posterior density of the current
state.

The recurrenceEqs. 2 and 3 form the basis for the optimalBayesian solution.How-
ever, the solution of this recursive propagation of the posterior is intractable analyti-
cally.When the state andmeasurements are linear, the Linear Kalman Filter becomes
a solution. Wen nonlinear/non gaussian features are assumed, sup-optimal (in the
sense that approximations are necessary) estimation frameworks as the extended
Kalman filter, the unscented Kalman filter or the particle filter approximate the opti-
mal Bayesian solution. In this work we focus on the particle filtering framework.

The particle filter is based on the sequential importance sampling (SIS) algorithm
which describes a Monte Carlo (MC) method [5, 6]. This algorithm has several
denominations as the bootstrap filtering [7], the condensation algorithm [11], particle
filtering [2] and interacting particle approximations [3, 4]. In this work we focus our
attention on the denomination “particle filtering”. The SIS algorithm implements
a recursive Bayesian filter by MC simulations. The main idea is to represent the
required pdf by a set of random samples with associated weights and to compute
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estimates based on these samples and weights. As the number of samples becomes
very large, this MC characterization becomes an equivalent representation to the
usual functional description of the posterior pdf, and the SIS filter approaches the
optimal Bayesian estimate.

Consider a random measure {xi
0:k, w

i
k}Ns

i=1 which characterizes the posterior pdf
p(x0:k |z1:k), where {xi

0:k, i = 0, . . . , Ns} is a set of support points with associated
weights {wi

k, i = 0, . . . , Ns} and x0:k = {x j , j = 0, . . . , k} is the set of all states
up to time k. The weights are normalized such that

∑
i wi

k = 1. The posterior density
at time k can then be approximated as:

p(x0:k |z1:k) ≈
Ns∑

i=1

wi
kδ(x0:k − xi

0:k). (5)

The weights can be found by the principle of importance sampling [1, 6]. This
principle supposes that p(x) ∝ π(x) is a probability density from which it is hard to
draw samples but π(x) can be found.We suppose also that xi ∼ q(x), i = 1, . . . , Ns

is a set of samples generated from an importance density q(.). Then, we obtain a
weighted approximation of the density p(.) by:

p(x) ≈
Ns∑

i=1

wiδ(x − xi ). (6)

where

wi ≈ p(xi
0:k |z1:k)

q(xi
0:k |z1:k)

. (7)

For this sequential case, at each iteration, we can derive samples forming an approxi-
mation to p(x0:k |z1:k) and need to approximate with a new set of samples. To achieve
this, we can write the importance density is a factorized form as:

q(x0:k |z1:k) = q(xk |x0:k−1, z1:k)q(x0:k−1|z1:k−1), (8)

and drawn samples xi
0:k ∼ q(x0:k |z1:k) by augmenting each of the previous samples

xi
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new states xi

k ∼ q(xk |x0:k−1, z1:k).
Theweight update equation can be then derived in the followingway. First express

the Eq.3, i.e., p(x0:k |z1:k) such that:

p(x0:k |z1:k) ∝ p(zk |xk)p(xk |xk−1)p(x0:k−1|z1:k−1) (9)

So, by substituting (8) and (9) to (7), the weight update equation becomes:

wi
k = wi

k−1

p(zk |xi
k)p(xi

k |xi
k−1)

q(xi
k |xi

0:k−1, z1:k)
(10)
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If q(xi
k |xi

0:k−1, z1:k) can be expressed as q(xi
k |xi

k−1, zk), then the importance density
becomes only dependent on xk−1 and zk . In this work, we focus our attention to
this particular useful choice of the importance density, since we need only a filtered
estimate of p(xk |z1:k) at each time step. In this case, only xi

k need to be stored, so we
can discard the path xi

0:k−1 and the passed observations z1:k−1 and the weight become
finally:

wi
k = wi

k−1

p(zk |xi
k)p(xi

k |xi
k−1)

q(xi
k |xi

k−1, zk)
(11)

We obtained the approximated posterior filtered density as:

p(xk |z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (12)

At this point, the SIS algorithm consists of a recursive propagation of the weights
and support points as each observation received sequentially. For more details on
how to implement this algorithm in Matlab, see [17]. The use of the SIS Algorithm
as described abovemight leverage a difficulty, namely the degeneracy problemwhich
have many solutions [17].

2.2 Solving the Degeneracy Problem

This problem holds when, after a few iterations, all but one particle will have neg-
ligible weight. This difficulty is due to the fact that the variance of the importance
weights can only increase over time [6]. The degeneracy problem causes a large
computational effort to update particles whose contribution to the approximation
to p(xk |z1:k) is almost zero. The works in [1, 10] propose a suitable measure of
degeneracy defined as the effective sample size Nef f :

Nef f = Ns

1 + V ar(w∗i
k )

(13)

where the “true weight” is w∗i
k = p(xi

k |z1:k)/q(xi
k |xi

k−1, zk). We can only obtain an
estimate of the effective sample size as:

N̂e f f = 1
Ns∑

i=1

(wi
k)

2

(14)

where wi
k is computed via (10). We always have Nef f ≤ Ns , so small Nef f causes

severe degeneracy which implies very bad results in particle filtering. One can avoid
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it by increasing the value of Nef f , but in this case the complexity will increase. Two
solutions exist in the literature to solve the degeneracy problem. The first one try
to build a good importance density, the second applies a resampling technique. The
choice of a good importance density tries to minimize the variance of w∗i

k so that
Nef f is maximized. This methods necessitates to sample from p(xk |xi

k−1, zk) which
is an integral to be evaluated in a not straightforward manner. Thus, we consider the
second solution which uses resampling procedure whenever significant degeneracy
is observed, i.e. when Nef f in drastically small. The resampling operation tries to
eliminate particle with small weights and consider only particles with high weights.
So, the procedure involves generating a new set {xi∗

k }Ns
i=1 by replacing them Ns times

from an approximate discrete representation of p(xk |z1:k) defined as:

p(xk |z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (15)

This resampling step should give Pr(xi∗
k = x j

k ) = w
j
k . The resulting sample is an i.i.d

sample from the discrete density (15), so wi
k = 1/Ns . The methodology described

in [2, 16] and based on order statistics can be used to implement the resampling
algorithm with O(Ns) complexity.

3 The Model Based on the Linear Kalman Filter

In [13], the anomaly detector is built on a Linear Time State-Space (LTSS) model as
shown in the following difference equations:

{
xt+1=At xt + wt

yt =Ct xt + vt
(16)

In Eq.1, the system state xt and the measurable output yt are multi-dimensional
vectors of appropriate dimensions. Due to lack of place, we redirect the reader to
our previous work [13] for more details for the description of this system. The
system parameter θ = {Ct , Qt , Rt } are found via the expectation-maximization (EM)
algorithm [18, 19].

4 Normal Space Identification

After applying the particle filtering, we obtain a filtered estimate of the system state
and the measurements. Thereafter, using the residual (difference between the mea-
sured and the filtered measurement) as our decision variable, we apply an unsuper-
vised clustering technique in order to organize it into a set of clusters. Anomalous
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eventsmight appear in a few number of this set of classes.We run a two-step approach
to build the normal space formedby someclusters, the remaining labeled as abnormal.
To see if this method is powerful enough, we apply the same detection procedure as
we did in a previous paperwhere the system is composedwith the linear Kalman filter
and the two frameworks of gaussian mixture modeler (GMM) and hidden markov
model (HMM).

We use GMM to reject the fact that the innovation process as output of the Kalman
filter does not remain a zero mean white gaussian noise. Instead we assume that this
process follows an ensemble of normally distributed processes we may identify as
some clusters. We also think that temporal correlations might exist between theses
classes and identifying them by means of a HMM can help us classify some cluster
as “normal” of the remaining as “abnormal”. Using GMM and HMM are not the
scope of this paper, so we let the reader refer to our previous work, [13] for more
details in the definition and method of calibration of theses techniques.

5 Discovering Normal and Abnormal HMM States

In [13], after running the GMM, we find the different clusters. Thereafter, we plug in
these results to the HMM framework to separate these clusters into different states,
each state having some clusters. The final step stays then on how to separate theses
states in two families, the first labeled as “normal” and the second one “abnormal”.
Recall we have assumed that the residual (our innovation process) is assumed to be
not a zero mean process. In “best conditions” where no anomaly and no heavy teals
happen, it might be a zero mean process. Then, in fact, it is easy for us to think that
there’s a part of this process with the mean closely equal to zero. If we can find
this part, we can eliminate it in the final procedure for anomaly detection, since it
is potentially the place where there’s no abnormal events. So after calibrating the
HMM, the states containing data for which the mean are close to zero are identify
as the normal family and the rest of the states where the corresponding data have
their mean far from zero are labeled as the abnormal family. Finally, we can easily
apply a decision based on applying thresholding to the data for the abnormal family
to detect the anomalous events.

6 Model Validation

6.1 Forecasting Criterion of Accuracy

To evaluate the performances of our models, we use several accuracy measures
defined to evaluate the entropy (bias) removal. Forecast accuracy can be assessed
in terms of root mean square error (RMSE), mean absolute error (MAE), and
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mean bias error (bias) MBE. RMSE gives more weight to large errors, whereas
MAE, less sensible to large errors, reveals the average magnitude of the error,
and MBE indicates whether there is a significant tendency to systematically over-
forecast or under-forecast. When comparing between different models, RMSE
was used as the metric for minimization, that is, forecasts were trained with the
goal of reducing the largest errors. These performance criterion are defined as

RMSE =
√
√
√
√ 1

N

N∑

i=1

(yi − ŷi )
2, MAE = 1

N

N∑

i=1

|yi − ŷi |, MBE = 1
N

N∑

i=1

(yi − ŷi ),

where yi and ŷi represent respectively the real and filtered measurements.

6.2 Experimental Data: Abilene Network

In this work, we used a collection of data coming from the Abilene networkbreak
[13–15]. The anomalies injected in the Abilene data are small and high synthetic
volume anomalies [8, 9].

6.3 Using Pre-prepared Data

We have built all the optimization process on the 41 links of the Abilene Network,
but for the sake of place, we show only the results for one link (one vector of
measurement) where there are six (6) true anomalous events. We have implemented
the particle filter described above by considering the following system. So, we set the
functions f (xk−1) = cos(xk−1)+sin(xk−1) and h(xk) = xk .We suppose that system
state andmeasurement are time invariant.We setmanually the quantities Q = 0.5 and
R = Q ×2.4 and the estimation is quite perfect. The particle filter is run with a set of
200 particles. A look for the state equation of the particle filter show that the value of
this state always lays in the interval [−2; 2]. Thus the measurement equation should
evolves in the same tendency as that is the statewhichgenerate themeasurement. So to
make the state and themeasures vary in the same level, one has to normalize the vector
of measurements by its mean; this does not have any drawback for the generality. We
use the same pre-prepared data for theKalmanfilter tomake the twomethods perform
with the same dataset. This situation should be avoid if the state of the particle filter
should be modeled by the equation f (xk−1) = Ak−1cos(xk−1) + Bk−1sin(xk−1),
with convenient values for the needed parameters A and B.
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6.4 Results and Discussion

The first result of our study is devoted to having a filtered estimate of the noisy
measurements. The approach shows the ability of the particle filter to estimate the
state of the system under noisy measurements, as can do also the Kalman filter.
However, the estimates obtained by the Kalman is more smoothed, see Fig. 1. In
Table1, we show the values of the accuracy criterion which say that the Kalman
filter give more error than the Particle filter. Also, we show also, on Fig. 2 the ability
the particles to capture the evolution of the system state over time. If the filter is
badly calibrated, there will be a severe deviation of the particles from the true state
and the results will be bad. To see the dynamics on the system state, the Fig. 3 gives
the evolution of the density of the system state generated by the particle filter.

After filtering for the purpose of entropy reduction, the resulting measurement
is much less noisy than the original observations and thus, this filtered signal can
be analyzed for the scope of anomaly detection. We do anomaly detection based on
data clustering. So, we suppose that anomalies might be rare and might happen on
a few number of clusters. For both methods, the GMM framework has found three
(3) clusters we have plug into the HMM framework to form two (2) states. To build
properly the GMM, one has to put attention on the variance for each cluster. If we
calibrate a set of r models, we choose the one which generate the lowest variance fr
each class. For the HMMcase, we talk the model with the transition matrix for which
the different states all well-separated, i.e. with the maximum likelihood estimates.
Then, as we did in [13] for the Kalman technique, we have applied the detection
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Fig. 1 Real versus filtered measurements, for the Particle Filter (top) and the Kalman Filter (down)
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Table 1 Comparison of the different performance criterion for the different prediction models,
Kalman Filter (KF) and Particle Filter (PF)

RMSE (%) MBE (%) MAE (%) Link

PF 0.0116 0.0050 0.0093 1

KF 0.0131 0.0094 0.0891

PF 0.0104 0.0046 0.0089 2

KF 0.0926 0.0098 0.0709

PF 0.0095 0.0040 0.0081 5

KF 0.0397 −0.00040 0.0294

PF 0.0097 0.0050 0.0087 41

KF 0.0765 0.0086 0.0585

The errors are much more larger the KF than for the PF
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Fig. 2 Evolution of the particle filter state density

procedure in the part (data coming from some GMM classes which certainly belong
to some HMM states) of the residual after removing the data which can be taken as
a zero mean gaussian process. To do that, we apply the Viterbi decoder to have the
best states sequence which capture the evolution of the data. Then, by observing the
emission probability matrix, the state which contains data from the cluster(s) with
mean closed to zero is discarded. Here, we apply the same procedure directly on the
filtered observations, for the particle filter. The results are in Fig. 4. After retrieving
the meaningful part of the data for anomaly detection, we apply a threshold. This
threshold is built on the variance of the data and we have an interval [a; a +σ ]where
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Fig. 3 The particles capture the trajectory of the estimated system state with its mean and mode
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Fig. 5 ROC curve: detection rate versus false positive rate

a is the mean of the data and σ the variance of the data. All the values of the threshold
are positive since we have squared the data.

The performance of an anomaly detector can be viewed in terms of detection
rate and false positive percentage. A false positive is detected whenever the system
leverages an alert where there’s no really anomalous event. On the other side, a false
negative is identified when the system is not able to detect an event which is a true
anomaly. So by deriving the receiver operating characteristics (ROC) curve (with in
x-axis the rate of false positive and in the y-axis the percentage of detection of true
anomalies), we can judge the capacity of a anomaly detector. The ROC curves in
Fig. 5 show clearly that the twomethods performwith good performance. In contrast,
the Kalman filter gives better results from a detection rate of 0–70% than the particle
filter. For a dection rate of 66.67% the FPR is of 0.001% and 0.003% respectively for
the Kalman and the Particle filters. Above 90%, we observe the reverse tendency. as
we can explore in the graph, for a detection rate of 100%, the particle filter achieves
a FPR of 0.056% while the Kalman filter gives 0.067%.

7 Conclusion

In this work, we have developed a particle filter to model the normal behavior
of a system defined for the purpose of anomaly detection in communication net-
works.Many anomaly detector techniques rely on linear dynamical system for which
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stationarity of the underlying state system is assumed without no rigorous study of
this belief. So, we believe that the particle filter can be an alternative to the Kalman
filter in situations where we can not consider the system state as a linear process.

Generally, in normal conditions when we are in presence of a secure network,
anomalies might be rare and targeted to local points or areas (time intervals). Tech-
niques that use anomaly detector based on clustering are built on the assumption that
the anomalous events does remain in a few number of classes. So, it is a convenient
way to applying the detection procedure to a set of identified clusters to make the
technique robust and fast enough to perform the calculations. The Viterbi decoder is
a powerful algorithm which can be used suitably to discover these classes and sepa-
rate them into normal and abnormal classes. By observing the emission probability
matrix, we can extract the cluster in each HMM state and the data in the state(s)
with mean close to zero are considered as “normal”. An important issue when cali-
brating a particle filter is the initial parameter settings; one has to turn carefully the
initial parameters, namely the state and measurement error covariance matrices and
the number of particles needed to have the best trajectory of the particle paths in
order to capture the state density evolution. We have used in this work an heuristic
method based applying a threshold to the data corresponding the abnormal classes
to tracking the volume anomalies. We hope to pursue this study in order to coupling
the HMM-based tracking scheme with a more elaborate detection algorithm.
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The Marginal Benefit of Monitor
Placement on Networks

Benjamin Davis, Ralucca Gera, Gary Lazzaro, Bing Yong Lim
and Erik C. Rye

Abstract Inferring the structure of an unknown network is a difficult problem of
interest to researchers, academics, and industrialists. We develop a novel algorithm
to infer nodes and edges in an unknown network. Our algorithm utilizes monitors
that detect incident edges and adjacent nodes with their labels and degrees. The
algorithm infers the network through a preferential random walk with a probabilistic
restart at a previously discovered but unmonitored node, or a random teleportation to
an unexplored node. Our algorithm outperforms random walk inference and random
placement of monitors inference in edge discovery in all test cases. Our algorithm
outperforms both methodologies in node inference in synthetic test networks; on real
networks it outperforms them in the beginning of the inference. Finally, awebsitewas
created where these algorithms can be tested live on preloaded networks or custom
networks as desired by the user. The visualization also displays the network as it is
being inferred, and provides other statistics about the real and inferred networks.

1 Introduction

The exploration of complex networks is a continuously evolving study as technology
progresses and networks change. In today’s world, there are many networks that are
unknown. How do we gain insight into these unknown networks without having to
traverse every vertex and edge within the network? Is there a way to place monitors
at different areas of the network to gain this insight? The objective of this paper is
to explore the topic of monitor placement on network vertices in an attempt to gain
insight into the true network topology.
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1.1 Motivation

In this paper we assume no knowledge of the true network, except for a rough
approximation of the number of nodes so that the algorithm has a stopping condition.
The algorithm used for network inference is tested on different synthetic and real-
world complex networks of same order. The test networks are introduced in Table1.
Comparison of performance of an algorithm amongst these different test networks are
normalized by looking at percentages, that is, the number of inferred nodes divided
by the approximate number of total nodes, or the number of inferred edges divided
by the approximate number of total edges.

In this paper we answer the following questions: As we increase the number of
monitors placed up to 50% of the nodes of the true network, what is the percent
gain of new information inferred from the original network? At what percentage
of monitor placement does the discovery of inferred network information begins to
diminish towards a flat rate of change of the monitors discovered per monitor added?
What is the minimum percentage of monitors needed to discover all nodes?

Thewebsite http://faculty.nps.edu/rgera/projects.html [4]was createdwhere these
algorithms can be tested live on preloaded networks or custom networks uploaded by
the user. The visualization also displays the network as it is being inferred and that
correlation to the percent edges and nodes inferred, and it provides other statistics
about the real and inferred networks. Figure1 shows two snapshots of the website,
displaying the network as it is being inferred in green (top left of each figure), the
leftover part of the network in white (top right), the plot of edges and nodes inferred
(bottom left), and a heat-map of accuracy at each step in the inference (bottom right).
Confidence intervals around the percent edges and nodes can be displayed by using
multiple runs.

Table 1 Overview of the discovered data

Metrics GR ER BA FB

Node count (True network) 5242 5242 5242 4039

Edge count (True network) 14496 14496 15717 88234

Node count (p = 0) 4387 5083 5225 4002

Edge count (p = 0) 12598 12373 1418 82378

Node count (p = 1) 3823 5078 5223 3935

Edge count (p = 1) 12598 12358 14432 82179

Node count (Ideal) 5182 5201 5242 4039

Edge count (Ideal) 14348 13864 15675 85485

Node count (RW) 4491 4924 5162 3550

Edge count (RW) 12095 10976 13370 75971

Node count (RP) 4746 5090 5056 4009

Edge count (RP) 10530 10898 11747 66643

http://faculty.nps.edu/rgera/projects.html
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Fig. 1 Two steps in the inference of an Erdős-Rényi network from [4]

1.2 Related Work

Inferring a network can be done with no knowledge of the network at all (other than
some random starting node), with partial information collected from network devices
(such as knowledge of some of the nodes present in the network), or with complete
information (inwhich case one could use the current knowledge to furthermonitor the
network, or to re-infer an evolving network). Bliss, Danforth and Dodds [3] present
recent techniques of inferring the topology of complex networks. These techniques
are based on sampling nodes, sampling edges, the exploration of networks using
random walks, or snowball sampling based on chain referral sampling ([2, 5]). Of
course, the most relevant question is measuring the inferred network against the true
network: random edge selection, depth and breath first search graph traversal, do not
perform well overall; simple uniform random node selection performs surprisingly
well; the best performingmethods are based on random-walks starting at an arbitrary
seed node (with the added probability of p at each node to teleport out of the random
walk to the seed node or another arbitrary node) [5]. High degree nodes play the
important role of hubs in communication and networking, and different local search
strategies in power-law graphs that have costs scaling sublinearly with the size of the
graph were introduced in [1]. However, the monitors in this paper infer more than
just the node and edge incident with it, and thus the techniques perform differently.

Other current techniques not necessarily using complex networks are based on dif-
ferential equations given one observation of one collective dynamical trajectory [11],
statistical dependence between observations [14], as well as machine learning based
on frequency of small subgraphs [7]. Extensions to multilayered networks have
recently been published in [12, 13].

2 Preliminaries

We define a monitor to be able to see the node where it is placed, the edges incident
to it, its neighbors, and possessing the ability to detect the degree and labels of its
neighbors (the labels of the true topology as it is being inferred). For example, if
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Fig. 2 A graph and a monitor placed at node v3

each of two monitors i and j individually detect node k, they identify that it is the
same k. We introduce this formally below.

Definition 1 We say that a monitor on node i detects a node j if (a) d(i, j) ≤ 1,
and (b) i knows the label of j and the deg j . A monitor on node i detects an edge i j
if i and i j are incident.

Notice that a monitor always detects its closed neighborhood N [v], but it infers
more than just its neighbors. This is the idea used behind the domination number,
γ (G), in graphs introduced by Ore [10]. We say that a vertex dominates itself and its
neighbors. Recall that a dominating set is a subset of the nodes such that each vertex
of V (G) is dominated by some vertex in the dominating set. The domination number
is the cardinality of a minimum dominating set of G. The domination number could
definitely be used to monitor a network, if the network is known. But in our approach
of discovering the network, this is not useful since we do not assume to have much
knowledge of the network (Fig. 2).

The k-VertexMaximumDomination, introduced byMiyano and Ono in [8], is the
parameter that gives the ideal placement ofmonitors if complete network information
is known. Given a positive integer k, k-Vertex Maximum Domination (k-MaxVD)
finds a subset DN of the nodes with size k that maximizes the cardinality of domi-
nated nodes. That is, maximize∪v∈DN N [v]. Note that this optimization may produce
a dominating set for some values of k, but does not need to, because in general not
all nodes in the network are dominated. In [8], the authors show that a simple greedy
strategy achieves an approximation ratio of 1 − 1

e for k-MaxVD, and this approxima-
tion ratio is the best possible for k-MaxVD unless P = NP.We thus plot our inference
algorithms against a greedy approach as an upper bound, and a random placement
and a random walk as a lower bound on the performance of the algorithms. We refer
to [9] for additional terminology not included in this paper.

3 Methodology

In this sectionwe describe the approach used in placingmonitors to infer an unknown
network. We create a hill-climbing algorithm starting at some random node, with a
probabilistic restart. Our algorithm first picks an initial “seed” node at random to
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place the first monitor. The monitor discovers the labels of its neighbors and incident
edges to the monitored node. Next, the highest degree node neighbor to the monitor
is chosen for the next monitor. If multiple highest degree neighbors exist, one is
chosen at random.

If the process attempts to place a monitor at a node where a monitor already
exists, then a stopping condition is reached. The next “seed” node could be either a
previously unseen node that is discovered at random, i.e. it teleports (when p = 0),
or the next highest degree node that was previously discovered and not used as a
monitor (when p = 1), or a combination of both approaches (when 0 < p < 1).

We present an initial bound on the number of monitors needed for network infer-
ence based on our algorithm. The best case is if the network topology is star. Either
the first or second monitor would be placed at the center node in the best case. The
worse case scenario is when the graph is a path, and the first monitor is placed at a
leaf node. In that case, it would take n − 1 monitors to discover all n nodes of the
network. We thus have the following remark, and the bounds are sharp given by the
star and path described above: 1 ≤ num_monitors ≤ n − 1.

Algorithm 1 Hill-Climbing: High-degree neighbor with restart by teleportation or
large seen degree

p, a given probability
monitor ← randomly chosen from the network
seen_nodes_list ← ∅
in f erred_graph ← ∅
while 50% of the nodes in the network unmonitored do

Add monitor to seen_nodes_list
Add all edges and nodes attached to the monitor to the in f erred_graph
Add neighbors of the monitor that have not yet been discovered to the seen_nodes_list
highest_deg_node ← neighbor of monitor with highest degree
if highest_deg_node does not have a monitor then

monitor ← highest_deg_node
else

With probability (1 − p), choose monitor ← node randomly chosen from the complement
of the in f erred_graph

Otherwise, monitor ← node with max degree in seen_nodes_list

4 Results and Discussion

Table1 presents general information regarding the four data sets used in this paper:
One Erdős-Rényi (ER) network, one Barabási-Albert (BA) network, one Facebook
(FB) network and one General Relativity collaboration (GR) network. The real net-
works are from the Stanford large network data set collection [6]. The node count,
edge count and number of components is shown.



98 B. Davis et al.

The performance of each algorithm is shown and discussed for the average of the
50 trials. We plot our inference algorithms against a greedy approach as an upper
bound (called I deal shown in black), and two lower bounds shown in different
shades of freesia representing Random Placement (R P) and Random Walk (RW ).
The monitors for all choices of Ideal, RW and R P are the same as we introduced
for our research.

4.1 General Relativity Collaboration Network

TheGeneral Relativity collaboration network is comprised of 5242 nodeswith 14496
edges, where an edge connects two nodes representing authors who have published a
scholarly article together. This network consists of 355 distinct components. Figure3
displays our inference of this network.

In this network, we achieve the best results using our algorithm with p = 0,
outperforming all other p values, as well as the random walk (RW) and random
placement (RP) strategies until about 20% of the nodes aremonitored. After the 20%
mark, RP captures a higher percentage of the nodes in the underlying network. The
success of p = 0 initially and RP afterward is likely attributable to their preference
for jumping to distinct topological components, thus capturing topology unlikely to
be “seen” by inference algorithms that tend to stay within a component. RW and our
algorithm when p = 1 tend to exhibit this “component-bound” behavior. In terms of
edges, our algorithm with all p values tested (p = 0, 0.25, 0.5, 0.75, 1) discovered
significantly more edges than the RW and RP inference algorithms as the number of
monitors increased. We believe this effect is attributable to the preference for higher
degree neighbors when selecting the next monitor. Neither the RW or RP algorithms

Percent of nodes inferred from General
Relativity Network

Percent of edges inferred from General
Relativity Network

Fig. 3 General relativity network: percent of nodes and edges in the inferred graph
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prefer high-degree neighbors when selecting a successor monitor, which contributes
to their under-performance in edge discovery. Figure3 displays this difference in
edge discovery.

4.2 Erdős-Rényi Random Graph

In this section, we examine the results of our inference on an Erdős-Rényi random
graph, of comparable order and size to the collaboration network studied above. Of
note, however, our Erdős-Rényi graph consists of only 19 connected components,
compared to 355 in the General Relativity collaboration network. Figure4 displays
the results of our inference trials.

When p = 0, 7 of the 12 connected components are discovered, accounting for
98% of the network nodes when 50% of the nodes are monitored. The rate of
discovery is quite high initially, with roughly 80% of the nodes discovered after
approximately 20% of the nodes in the network are monitored. When p = 1, we
achieve nearly identical results in terms of nodes discovered with 50% of the nodes
in the network monitored, and a slightly higher number of edges inferred (11804 vs.
12455 for p = 0 and p = 1, respectively.) Interestingly, in the p = 1 case, all nodes
and edges discovered were contained within a single component. This reinforces
the “component-bound” behavior of p = 1, and poses an interesting question to a
potential customer of our algorithm: given an approximately equivalent amount of
topological inference, is the discovery of more components within a network more
or less desirable? We believe there are cases to be made for each elsewhere; here, we
merely highlight this distinction.

Our investigation of variable p values are bounded by p = 0 and p = 1. Due to
the tightness of the limiting p values, the variable p values do not provide much

Nodes inferred from ER Network Edges inferred from ER Network

Fig. 4 ER random networks: percent of nodes and edges in inferred graph
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additional value, besides highlighting increased component discovery tendencies of
low p and additional edge discovery as p increases.

4.3 Preferential Attachment Model: Barabási Albert
Networks

Our graph inference trial involving a Barabási Albert-model graph was performed
on a network consisting of 5242 nodes and 15717 edges, matching the number of
nodes in the General Relativity example.

By construction, this network is connected, and it has hubs, unlike the General
Relativity and the Erdős-Rényi RandomGraphs. Due to the propensity of high degree
hubs to form in the Barabási-Albert network construction model, our algorithm cap-
tures a large percentage of the nodes in the ground truth topology using relatively
few monitors regardless of the choice of p value. This is evident in Fig. 5, in which
the inference results for different values of p overlap throughout, significantly out-
performing the random placement and random walk inferences.

This effect is due to hubs being discovered within a couple of steps from the seed,
and selected for monitor placement early in the algorithm’s execution. Further, we
can see a diminishing return on investment as the number of monitors placed in the
original graph increases, both on edges and nodes as the hubs are close to each other.

Aswe increase the number ofmonitors placed from zero up to 50%of the nodes in
the true network, the percent gain of new information per newmonitor added quickly
tends toward zero. In terms of nodes discovered, the derivative of the function given
by our our curve in Fig. 5 decreases from a maximum of about 0.5% marginal gain
at the first fifty-monitor step to about 0.1% marginal gain nodes discovered when
20% of the nodes in the graph are monitors.

Nodes inferred from BA Network Edges inferred from BA Network

Fig. 5 BA network: percent of nodes and edges in the inferred graph
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Nodes inferred from FB Network Edges inferred from FB Network

Fig. 6 FB network: percent of nodes and edges in the inferred graph

4.4 Facebook Network

The final network we consider is a Facebook ego network from [6], consisting of
4039 nodes and 88234 edges. It forms a connected graph, and of note, is much more
highly connected than any network studied above. The results of our inference trials
are presented in Fig. 6.

In terms of edges, not much difference exists between the p = 0 and p = 1
algorithms, and our algorithms clearly outperform RW and RP. When we consider
node inference, however, some variation is observed. Well-defined hubs enable node
inference very quickly with fewmonitors; however, the existence of distinct commu-
nities tends to create “steps”, due to all nodes within a particular community being
exhausted as monitors before new nodes can be discovered in a disparate commu-
nity. Due to this effect, out of all the choices of p, the value of p = 0 performs best
due to its tendency to restart inference at a randomly selected node. This allows the
inferences that are based just on random walks and placements to outperform our
inferences after a certain point.

As a concrete demonstration of this phenomenon, consider only the vertices of
degree greater than 250. Figure7a shows the entire network, and the plot of Fig. 7b
shows the graph induced on the vertices with degree greater than 250 which reveals
3 components. Consider these 3 components as communities for the entire Facebook
network. One cluster has only one hub, and the second cluster has a triangle of
hubs. The third cluster is centered around a star of hubs. Recall that since the entire
Facebook graph is connected, we know that these clusters must be connected to each
other through lower degree vertices. Thus, interconnecting paths between the clusters
of the Facebook Network must contain an edge that is incident to vertices that have a
low degree (since these clusters are not connected). The affinity of core hubs for each
other can be measured by the Pearson correlation coefficient as mentioned in [9].
The Pearson correlation coefficient for the Facebook network is computed as 0.064,
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Facebook: Overall Network Facebook: Vertices with degree above 250

Fig. 7 Facebook network visualizations

which is not indicative of either strong assortative or disassortative mixing of the
graph vertices. On the Facebook network, we discovered a vertex degree of 66 to
connect the entire network. Thus, we discover the nodes as a step function since
many high degree nodes need to be used as monitors before getting to the lower
degree node connecting the clusters.

5 Conclusions

In this research, we introduced a hill-climbing algorithm that infers a networkwith no
knowledge of the network other than random nodes to start (or restart) the algorithm.
Our algorithmhas a probabilistic restart once itwants to place amonitor on a node that
is occupied by a monitor: when p = 1 the algorithm restarts at a large degree node
that has been discovered, versus when p = 0 the algorithm restarts at a random node
of the network, and there are all the choices in between for the variable 0 ≤ p ≤ 1
as expected. The value of p is chosen before the algorithm starts.

We analyzed real and synthetic networks, and present an analysis based on 50
runs of the algorithm for several values of p concluding that there is very little
difference between the algorithms when we are concerned with edges being inferred.
If the inference of nodes is the main goal, it is interesting to see the clear difference
between the real networks and the synthetic networks. On the synthetic networks,
there is no difference between any of our algorithms and they outperform the random
placement and random walk, being extremely close to the ideal case in the presence
of hubs. On the real networks, we see lots of variance between the algorithms, our
inferences outperforming the random walks and placement towards the beginning
of the inference, at which point random placement performs better since it does not
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choose nodes in the same clusters or component as our algorithms do. This suggests
that the current algorithms should be used for quick inferences with a few monitors.
Also, on the real networks, we observed that if there are no random restarts, our
algorithm infers the denser part of the graph in more detail.

A user that desires to infer an unknown complex network with this algorithm
needs to know a rough estimate of the size of the network to define the budget of
total monitors, which was set to n/2 in this research. Secondly, the user needs to
have a goal of inferring nodes or edges. If the inferred nodes are the goal, then select
p = 0, and for edges edges select p = 1. The variable parameter (probability of
staying within the current component) p of the algorithm combines the two different
kinds of searchmethodologies, namely edge-findingor node-finding allowing a better
discovery of both nodes and edges on average.

6 Further Studies

It is assessed that the real world networks could be accurately correlated to
Open question 1: One possible extension for the detection algorithm would be to

increase the capability of the detectionmonitor. Futurework could consider amonitor
that has the capability to detect a triangle, that is, the ability to detect neighboring
vertices, the edges to neighboring vertices, and edges between those neighbors; or
nodes at further steps from the monitors.

Open question 2: Another possible improvement is to combine algorithms after
a certain number of steps, or to add restarts more often. This will avoid the step
increases observed in the Facebook network due to the clusters of hubs.

Open question 3: The biggest improvement that the authors see is finding a way
of comparing the topology of inferred networks to the true network that uses other
metrics besides the percent nodes and percent edges discovered. This requires a
different type of analysis complementing this article.
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Analysis of the Temporal and Structural
Features of Threads in a Mailing-List

Noé Gaumont, Tiphaine Viard, Raphaël Fournier-S’niehotta,
Qinna Wang and Matthieu Latapy

Abstract A link stream is a collection of triplets (t, u, v) indicating that an inter-
action occurred between u and v at time t . Link streams model many real-world
situations like email exchanges between individuals, connections between devices,
and others. Much work is currently devoted to the generalization of classical graph
and network concepts to link streams. In this paper, we generalize the existing
notions of intra-community density and inter-community density.We focus on emails
exchanges in the Debian mailing-list and show that threads of emails, like commu-
nities in graphs, are dense subsets loosely connected from a link stream perspective.

1 Introduction

Exchanges in a mailing-list are often studied as complex networks: there is a link
between two individuals if they exchange emails. In particular, communities in such
complex networks capture groups of friends or close colleagues (individuals that
exchangemanymoremessageswithin the group thanoutside the group, typically) [2].
However, removing all time information has important consequences if one wants
to study the dynamics of email exchanges.
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(a)

(b)

(c)

(d)

(e)

Fig. 1 An example of link stream representing email exchanges between individuals a, b, c, d
and e, with threads represented by colored areas. For instance, at time 5, b and c exchange an email,
as well as d and e. Threads are a priori dense series of exchanges involving a limited group of nodes
during a limited period of time

In order to study those dynamics, one may label each link with the frequency of
exchanges or the times at which they occur [5], but capturing both the structure and
the dynamics of exchanges remains challenging. In particular, studying threads calls
for methods that capture the temporal nature of interactions more accurately, without
loosing the power of network analysis.

We propose here to model email exchanges directly as link streams, i.e. series of
triplets (t, a, b) meaning that individuals a and b exchanged an email at time t . We
then introduce notions that capture both the temporal and structural nature of these
exchanges. We use a typical dataset obtained from a public mailing-list archive to
illustrate our approach. We analyze this dataset using our model, with a special focus
on the properties of threads within the whole archive. Our goal is to understand
how the now classical concept of communities in complex networks may trans-
late to threads in link streams representing email exchanges. Indeed, we expect the
exchanges of a given thread to involve a specific set of individuals for a specific
period of time, thus being dense from both structural and temporal points of view.
This is illustrated in Fig. 1.

2 Dataset

Archives of exchanges in various mailing-lists are readily available on the web, and
studying them provides very rich insights on various issues. They have the advantage
of being publicly available in many cases, and some involve large amounts of users
over long time periods.

A typical example is provided by Debian mailing-list [4]: it contains emails sent
from over 51753 email addresses, over almost 20 years. In addition, exchanges in this
mailing-list have been studied in the past [1, 3, 7]. Finally, this dataset provides the
thread information for each message, that we can use as a ground truth. For all these
reasons, we use in this paper the Debian mailing-list to illustrate and validate our
approach.
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More precisely, we crawled the Debian mailing-list web archive [4]. For each
messagem, we extract its authora(m), the date t (m) atwhich itwas posted (converted
into UTC time), and the message it is replying to p(m) (through the in- reply- to
entry), which has a corresponding author a(p(m)). This corresponds to an interaction
between a(m) and a(p(m)) at time t (m) in the link stream. Some messages are not
answers to any other message (they are directly sent to the mailing-list), and in this
case we state that p(m) = m. Such messages are called root messages.

We capture the mailing-list from January 1st, 1996 to December 31st, 2014. We
obtain a dataset D of n = 722716 emails sent from 51753 distinct email addresses.

Each root message m naturally induces a thread: it is the set T (m) of messages
such that m belongs to T (m) and if a message m ′ is in T (m) then all messages
m ′′ such that p(m ′′) = m ′ also belong to T (m). In other words, T (m) contains
exactly m, the answers to m, the answers to these answers, and so on. The focus of
this paper is the study of structural and temporal features of these threads.

Our data contains incomplete threads: the ones that have an email in our dataset
but began before and/or continued after the data collection period. Some threads
also exhibit inconsistencies, for instance a reply has a smaller timestamp than the
message it replies to. We remove those threads, as well as all threads that last for
more than 2 years, or that start 2 years before the end of our data collection.

After this bias correction procedure, we obtain n = 554233 emails, involving
34648 distinct authors over a duration of 598532269s (18 years, 11 months and 19
days) and 116999 threads.

3 Framework and Notations

Our goal is to study the structural and temporal properties of threadswithin amailing-
list archive. In order to do so, we propose a model of the data that captures both its
temporal and structural nature, and allows for easy manipulation of threads.

We model our mailing-list archive as the link stream D = (TD, VD, ED) with
TD = [α,ω], VD = {a(m) : m ∈ D ′} and ED = {(t (m), a(m), a(p(m))) : m ∈ D ′}
where D ′ is the set of emails in our dataset after cleaning. In other words, a triplet
(t, u, v) in ED indicates that individual u answered to an email of individual v at
time t .

Such a link stream naturally contains sub-streams: L ′ = (T ′, V ′, E ′) is a sub-
stream of L = (T, V, E) if and only if T ′ ⊆ T , V ′ ⊆ V and E ′ ⊆ E . In other words,
all the interactions of L ′ also appear in L . Given a set of nodes S, we define the
sub-stream L(S) of L induced by S as the largest sub-stream of L such that all the
links in L(S) are between nodes in S.

Any link stream L = (T, V, E) also induces a graph G = (VG, EG) where VG =
{u : ∃t ∈ T, v ∈ V s.t. (t, u, v) ∈ E} and EG = {(u, v) : ∃t ∈ T s.t. (t, u, v) ∈ E}.
In our case, the whole mailing-list archive induces the graph G(D) among authors
of emails, and each thread induces a sub-graph of G(D).
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In a graph G = (V, E), a community structure is defined by a partition C =
{Ci }i=1..k of V into k communities. In other words,

⋃
i Ci = V and Ci ∩ C j = ∅

whenever i �= j . In a similar way, one may consider a link stream L = (T, V, E)

and a partition of its links into k sub-streams P = {Pi = (Ti , Vi , Ei )}i=1..k . In other
words, for any (t, u, v) ∈ E , there exists a unique j between 1 and k such that (t, u, v)

is a link of E j .
The threads in our email dataset are exactly a partition of the whole stream, which

we denote by T = {Pi }i=1..k where k is the number of threads and each Pi is a
sub-stream representing a thread (with our notations above, there exists a message
m such that Pi = T (m)). See Fig. 1.

Notice that, although the threads are a partition of the whole stream, their induced
graphs may overlap: some nodes and links of G(D) belong to several sub-graphs
G(Pi ). As a consequence, threads do not induce a partition of G(D) into communi-
ties. Instead, one may see the partition of D into threads as a community structure,
and this is the focus of our work.

Notice finally that we consider that links are undirected (i.e. (t, u, v) = (t, v, u))
and happen at an instant in time (regardless, for instance, of when the message is
read). Taking into account the direction and duration of links is out of the scope of
this work.

4 Basic Statistics

In this section, we present the basic statistics describing the threads in our dataset
and the whole archive.

Themost basic description of our data certainly is the number of links (i.e. emails)
they contain, the number of distinct nodes (i.e. authors) involved, the number of
distinct links they contain (distinct pairs of authors in direct interaction), and their
duration (time from the first email to the last one). Figure2 display the distribution
of these values for each thread.

Although the largest thread lasts more than a year, most threads are contained
within a few days (100000 s is a bit more than 24h). Similarly, the largest thread
involves 100 messages, though all intermediate sizes are represented in the dataset.
Most threads are very short and involve less than 3 messages.

In order to gainmore insight, we observe correlations between some of these basic
statistics. Figure3 (left) shows that thread duration and size are correlated (the larger
a thread is, the longer it is likely to be); notice however that for small-sized threads,
all types of durations are represented. Looking at the correlations between the size of
threads and the number of distinct authors involved shows that threads nearly always
involve more messages than authors. This is a typical feature of mailing-lists [1] and
as such is dataset-dependent.

In a link stream L = (T, V, E)withT = [α,ω],wedefine, for all (u, v) ∈ V × V ,
the maximal sequence tuv = (α, t0, . . . , tk, ω) such that for all i between 0 and k,
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there exists (ti , u, v) ∈ E , and for all i between 0 and k − 1, ti ≤ ti+1. In other words,
tuv is the ordered sequence of apparitions of the link (u, v) to which we add α and ω.

We further define τ(u, v) = (ti+1 − ti )i=0..k+1 the sequence of intercontact times
of a pair of u and v in V . In other words it is the series of times elapsed between
two consecutive occurrences of a link between them. Figure4 (left) shows the inter-
contact times distribution in the Debian mailing-list for all pairs of nodes (u, v).
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5 Interactions Within Threads

The key feature of communities is the fact that they form dense subgroups. This
section is therefore devoted to the study of density of interactions within threads,
from both structural and temporal point of views.

5.1 Density of Threads

In a graph, the density is the probability that two randomly chosen nodes are linked
together. In other words, it captures the extent at which all nodes are directly con-
nected to each other. The density of the graph G(D) induced by our dataset is
3.139 × 10−4.

In [6], we introduced the notion of Δ-density to capture a similar intuition in link
streams, involving both structure and time. Indeed, given a durationΔ, theΔ-density
of link stream L is the probability that a link appears between two randomly chosen
nodes during a randomly chosen time interval of duration Δ. It captures the extent
at which all nodes are directly connected to each other at least every Δ time units.
Formally, it is defined as:

δΔ(L) = 1 − 2 · ∑
u,v∈V,u �=v

∑
t∈τ(u,v) max(0, t − Δ)

|V | · (|V | − 1) · max(0, ω − α − Δ)

where τ(u, v) denotes the inter-contact times between u and v, and α and ω are the
start and end time of the link stream.

In order to study the Δ-density in our data, we first have to choose an appropri-
ate Δ. We use here several values which capture email dynamics at different scales:
Δ = 1min, 1 hour, 1 day, 1 week, 1 month, 1 year and 20 years (the whole duration
of the dataset). Figure4 (right) displays the evolution of the Δ-density of the stream
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for all theses values of Δ. It shows that the Δ-density is small for small Δs, and
converges to the density of the graph induced by the email exchanges (in our case,
3.139 × 10−4).

In Fig. 4 (right), the inflexion points give information on the values of Δ where
the dynamics change. Still, looking at the density of the whole stream is very coarse
and yields little information. A finer approach consists in looking at the Δ-density
of relevant sub-streams. In our case, the threads between authors are a natural object
to study.

5.2 Intra-thread Density

More globally, given a graph G = (V, E) and a partition C = {Ci }i1..k of V into
k communities, the density within communities of C is captured by the intra-
community density:

2 · ∑
i |{(u, v) ∈ E , u ∈ Ci and v ∈ Ci }|

∑
i |Ci | · (|Ci | − 1)

In other words, intra-community density is the probability that two nodes chosen at
random in the same community are linked together.

In our case, this notion does not directly make sense: as already noticed, we
do not have communities defined on G(D) since the graphs induced by threads
overlap. However, we extend the notion of intra-community density to link streams
as follows. The intra-thread Δ-density is the probability that two randomly chosen
authors contributing to the same thread are linked together within a randomly time
interval of duration Δ, for a given Δ:

1 − 2 · ∑
i

∑
u,v∈Vi ,u �=v

∑
t∈τi (u,v) max(0, t − Δ)

∑
i |Vi | · (|Vi | − 1) · max(0, ωi − αi − Δ)

where Vi is the set of authors involved in thread Pi , αi is the time of the first message
in the thread (i.e. the minimal t such that there exists a (t, u, v) ∈ Ei ), ωi is the
time of the last message in the thread (i.e. the maximal t such that there exists a
(t, u, v) ∈ Ei ) and τi (u, v) denotes the inter-contact times in Pi .

In our data, the inverse cumulative distribution of intra-thread Δ-densities are
in Fig. 5 (left) for several values of Δ ranging from 1min to 1 year. For each point
on the x-axis, the plot gives the proportion of threads in the mailing-list that have an
intra-thread Δ-density higher than x . As expected, the higher the Δ used, the higher
the density is. However, there is no significant change between a Δ of 7 days and a
Δ of 1 year.

Moreover, these distributions confirm that the interactionswithin threads aremuch
denser (both structurally and temporally) than in the global mailing-list. Indeed, the
median intra-threadΔ-density ranges from 2.69 × 10−4 to 0.28while the link stream
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Fig. 5 Left Inverse cumulative distributions of values of intra-thread Δ-density for different Δs.
Right Inverse cumulative distributions of values of inter-thread Δ-density for different Δs

Δ-density ranges from 1.05 × 10−10 to 3.42 × 10−5. The intra-thread Δ-density
typically is 105 times larger than the global Δ-density.

This shows that threads are indeed dense substreams in our link streams.

6 Relations Between Threads

In the previous section, we focused on structural and temporal properties inside
threads, compared to the whole link stream. We now turn to the study of relations
between threads.

6.1 Inter-thread Density

Let us first study the density of relations between threads in a way similar to above.
Given a graph G = (V, E) and a partition C = {Ci }i1..k of V into k communities,
the inter-community density is the probability that two nodes chosen at random in
two different communities are linked together:

δinter(Ci ) = 1

|C |
∑

j,i �= j

|{(u, v) ∈ E s.t. u ∈ Ci and v ∈ C j }|
|Ci | · |C j |

Again, this notion does not directly make sense in link streams, as threads
do not induce a partition of nodes. As a consequence, we introduce the inter-
thread Δ-density as the probability that two randomly chosen nodes in different
communities are linked together during a time interval of duration Δ chosen at ran-
dom during the time duration of both threads.
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Let us define the inter-thread substream between a thread Pi and a thread
Pj : Li j = (Ti j , Vi j , Ei j ), with Ti j = [min(αi , α j ), max(ωi , ω j )], Vi j = Vi ∪ Vj and
Ei j = {(t, u, v) : t ∈ Ti j , u, v ∈ Vi j , (t, u, v) ∈ E\Ei ∪ E j }. In other words, this is
the substream containing the links between nodes of Pi or Pj that are not involved
in threads Pi and Pj . The inter-thread density between Pi and Pj is the Δ-density of
Li j . In order to obtain the inter-threadΔ-density of Pi to all other threads, we simply
average the inter-threads Δ-densities of Pi and all other threads. More precisely:

δinter
Δ (Ci ) = 1

|C |
∑

j,i �= j

δΔ(Li j )

In our data, the inverse cumulative distribution of inter-thread Δ-densities are
displayed in Fig. 5 (right) for different values of Δ. For each point on the x-axis,
the plot gives the proportion of threads in the mailing-list that have an intra-thread
Δ-density higher than x . Again, largerΔ correlateswith largerΔ-densities. However,
the inter-threadΔ-density does not plateau, even for large values ofΔ. This is natural,
since the number of links considered in the computation of the inter-threadΔ-density
naturally grows with Δ.

In Fig. 6, the correlations between the inter- and intra-threadΔ-density are plotted
for some values of Δ. As expected, intra-threads are denser than inter-threads. This
relation holds asΔ is bigger, even though the difference between inter and intra thread
Δ shrinks. Further experimentation shows that for Δ = 20 years, the difference is
non-existent. The figure is omitted for brevity. This is due to the fact that the bigger
the Δ, the less the temporal characteristics of threads are important.

6.2 Graphs Between Threads

Relations between sub-streams Li , i = 1..k, may have different forms, and in par-
ticular they have a temporal and a structural nature. In order to capture the temporal
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Fig. 7 Left Correlation between the degree in the time overlap graph X and the thread size. Right
Correlation between the degree in the node overlap graph Y and the thread duration

relations between sub-streams, one may define the temporal overlap graph as fol-
lows: X = (V, E) with V = {i, i = 1..k} and there is a link (i, j) in E whenever
Pi and Pj have a temporal intersection (i.e. [αi , ωi ] ∩ [α j , ω j ] �= ∅). Likewise, one
may define the node overlap graph as follows: Y = (V, E) with V = {i, i = 1..k}
again and there is a link (i, j) in E whenever there is a node v involved in both Pi

and Pj (i.e. there exists a t , a t ′n a u and a u′ such that there is a link (t, u, v) in
Pi and a link (t ′, u′, v) in Pj .

The graphs contain 116999 nodes (the number of threads) and about 2 million
edges for the temporal overlap graph and 63 millions for the node overlap graph.
These graphs encodemuch information about relations between threads. For instance,
the degree of node i in X is the number of threads active at the same time as Pi .

We display in Fig. 7 (left) the correlations between the degree in X and the thread
size. There is a clear correlation between the thread duration and the degree in
temporal overlap graph when threads have a duration of at least 105s. Also, it appears
that some time up to 104 threads are present simultaneously as reflected by the
maximal degree.

Figure7 (right) shows the correlations between the degree in Y and the thread
duration. The correlation is less clear between the thread node size and the degree in
the node overlap graph. However, the trends appears: threadswith a lot of participants
have a high degree in the graph.

6.3 Quotient Stream

The quotient graph is another key notion for studying the relations between commu-
nities in a graphG = (V, E). Given a partitionC = {Ci }i=1..k of V into communities,
in the quotient graph G each node i , i = 1..k, represents community Ci and there
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Fig. 8 Top An example of graph exhibiting communities and its corresponding graph quotient.
Bottom An example of link stream with communities and its corresponding quotient stream

is a link between two nodes i and j , i �= j , if there is a link between a node in Ci

and a node in C j in G. See Fig. 8 for an illustration. One may add on each link a
weight indicating the number of links between communities. Clearly, the quotient
graph captures relations between the communities under concern; for instance, its
density indicates up to what point all communities have links between them.

To deepen our understanding of our data, we capture here both temporal and
structural nature of relations between sub-streams. We define the quotient stream
induced by a partition P = {Pi = (Ti , Vi , Ei )}i=1..k of link stream L as the stream
Q = (TQ, VQ, EQ) such that (Pi , Pj , t) ∈ EQ if and only if there exists (u, v, t1) in
Ei , (u, v′, t2) in Ei and (u, v′′, t) in E j with t1 ≤ t ≤ t2. In other words, there is a
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node u that has a link within Pj occurring between two of its links in Pi . This means
that u is involved in the two streams during the same time period.

The quotient stream induced by the threads in our dataset has 12281269 links
and involves 68524 distinct nodes (i.e. threads). Since our dataset contains 116999
threads, this implies that 48475 threads are not in relation with any others.

Figure9 shows the Δ-density of the quotient stream and the Δ-density of the
original stream for different values of Δ. The quotient is not very Δ-dense, i.e.
threads are not densely connected together, though it is slightly denser than the
stream for large values of Δ. This is comparable to graphs.
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Incorporation of Social Features
in the Naming Game for Community
Detection

Thais Gobet Uzun and Carlos Henrique Costa Ribeiro

Abstract The organization of individuals in groups or communities is an observed
property of complex social networks and this structural organization emerges natu-
rally due to the relationships built between people on a daily basis. We believe that
the opinion exchange among individuals is a key factor to this community construc-
tion, given that sharing opinions bounds people together, and disagreeing constantly
would probably weaken a relationship. In this work, we analyse three models of
opinion exchange that uncover the community structure of a network, based on the
Naming Game (NG), a classic model of linguistic interactions of agreement. The
NG-based models applied in this work insert time-changing social features to the
NG dynamics in order to form communities of nodes sharing different language con-
ventions. For this matter, we explore the models NG-AW—that incorporates trust—,
NG-LEF—that incorporates uncertainty—and NG-SM—finally incorporating opin-
ion preference. We test the algorithms in LFR networks and show that the separate
addition of each social feature in the Naming Game results in improvements in com-
munity detection. Our simulations show that opinions coexist at the end of the game
in non-convergent executions, each name tagging a different community, identifying,
by a socially guided language dynamics, the topological communities present on the
network.Moreover, the resulting trust in edges and uncertainty in nodes classify them
according to role and position in the network, respectively.We observed this behavior
in large networks with disjoint communities generated using LFR benchmark, and
we compared our results with existing results from the literature, focusing on the
quality of the community detection per se. Our model with secondary memory has
shown accuracy comparable with algorithms designed specifically for topological
community detection, while modeling social features that reveal communities as an
emergent property, as observed in real-world social systems.
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1 Introduction

Most complex systems in nature and society can be analysed as networks, sets of
nodes joined together in pairs by links, to capture the intricate web of relations
among the units they are made of. One property that many real networks share is
community structure, when nodes organize themselves in sub-units, where nodes
are highly connected among each other and connections between communities are
much more rare [5]. Many research has been done for detection of the communities
in these systems, mainly focusing on the topological features of the network, and
every year more algorithms are presented in the literature, some of them having great
performance and accuracy in detecting communities [4].

However, one can notice that, in real social networks, communities are formed in
a natural emergent way. Those groups, however, tend to be bound closely or dissolve
through time naturally due to changes in the aspects they share. One of these aspects,
that will be tackled in this work, is the linguistic interaction or opinion exchange
between people in a network.

For thismatter,wewill use as base theNamingGame (NG), awidely knownmodel
of language exchange, that, when played by agents in networks with extremely high
community structure can enter a meta-stable state where communities are revealed
in an emergent way [8]. Our aim in this work is to show that, the revelation of
communities can happen for an arbitrary network when modeling agents’ social
features in the NG dynamics. For this purpose, we will analyse three variations of
the Naming Game, each incorporating a new social feature, trying to show that the
insertion of each social attribute leads to a better emergence of the present community
structure.

2 The Naming Game

The Naming Game [1] is a model for the emergence of a common vocabulary in
a multi-agent system without central control, using only peer-to-peer interactions.
The game is played by N identical agents, trying to agree in the name of a subject.
Every agent has a memory, that starts empty and the game ends when a consensus
or convergence state, where all agents have only one and the same word in their
memories, is reached.

The Naming Game can be shown to converge for various network topologies, and
the main difference in behavior is the time to reach convergence and the memory
necessary to store all words. Interestingly, in [8] the authors apply NG to a real
high-school friendship network with extremely high community structure, where
NG does not converge but reaches a state with coexisting meta-stable word clusters.
This non-convergent state evidences existing communities in the friendship network,
separating students from middle-school and high-school and among different ethnic
lines. Figure1 [8] shows the resulting words in memories after the Naming Game
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for each time step do
One agent is randomly chosen as a speaker;
Among its neighbors, one agent is chosen to be the hearer;
if the speaker’s memory is empty then

the speaker invents a word;
else

the speaker selects one of the words in his inventory;
end
The speaker transmits the word to the hearer;
if the hearer has the word in his memory then

the communication is a success and both speaker and hearer delete all the words from
their memories except the transmitted word;

else
the communication is a failure and the hearer adds the transmitted word to his
inventory

end
end

Algorithm 1: Naming Game

Fig. 1 Different
communities labeled with
different words at the end of
NG for a school friendship
network [8]

(different colors mean different words) for the mentioned network, where we can
observe the separation of the communities.

However, due to the non-determinism of this game, this behavior does not happen
in all executions, but only in a few, because of the initial choices of hearer: If in the
first stepsmany communications happen in edges between communities—here called
external edges—the probability of convergence increases drastically (not shown). In
other words, if external edges are chosen with more frequency to communicate in the
early beginning of the game, convergence is likely. On the other hand, the existence
of the meta-stable of non-convergence suggests that for some instances the Naming
Game can unravel the communities present in a network.
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Several variations of the Naming Game have been proposed in the literature
[8–10], being used sometimes as an agreement model and an opinion spreading
model [14]. One of these variations is the NG with Adaptive Weights and will be
presented next.

3 Naming Game with Adaptive Weights

The Naming Game with Adaptive Weights (NG-AW) was proposed by Lipowska
et al. [7], as a model that results in an adaptive weighted network, based on the
assumption that a person talks preferably with those with whom he already have
agreed with. The weight of each edge is the ratio between its number of successes
and its number of attempts, and changes over time. It is originally applied to fully
connected networks and works as in Algorithm 2.

input : ε value;
for each time step: do

One agent i is randomly chosen as a speaker;
The agent i chooses his hearer j among his neighbors with probability

pi j = wi j + ε
∑

k=neighbors(wik + ε)
(1)

where wi j = Successesi j
Attemptsi j

;

if the speaker’s memory is empty then
the speaker invents a new word;

else
the speaker selects randomly one from his inventory;

end
The speaker transmits the word to the hearer;
if the hearer has the word in his memory then

the communication is a success and both speaker and hearer delete all the words from
their memories except the transmitted word;

else
the communication is a failure and the hearer adds the transmitted word to his
inventory

end
end

Algorithm 2: Naming Game with Adaptive Weights

As suggested by the work in [7], it is easy to see that in some way sharing con-
ventions and therefore developing a high trust brings individuals closer, while being
unable to communicate creates a distance between them. This motivates us to inter-
pret the edges’ weights as trust, reinforcing and weakening the connections among
individuals as communication interactions take place. In this way, a communication
will be more probable to happen through a high trust relationship. The calculation
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of an edge weight can be seen as a special case of the definition of trust in [13]
where trust is represented as α = r

r+s , where r and s are real numbers and represent
respectively the positive and negative experiences a truster has with a trustee.

The ε value is given a priori and is the responsible for the randomness in the
communications: a small ε indicates that the agent will prefer edges that had many
successes in the past interactions. As we increase ε the game approaches the original
Naming Game, behaving more randomly. In the Community Detection (CD) scope,
as the weight is the edge’s success rate, when applied to networks with community
structure, external edges have small weight during the game, since transmits words
from different clusters. If the communication flows through high weight edges, inter-
actions will take place mostly inside communities, avoiding convergence.

In this work we will test the detection of communities using the LFR bench-
mark [6], one of the most used CD benchmarks. This benchmark is based on the fact
that real-world networks are characterized by heterogeneous distributions of node
degree, with tails that often decay according to a power law. Likewise, it also takes
into account that different communities are not always the same size: in fact, the dis-
tribution of community sizes of real networks can also be approximated by a power
law [6]. LFR benchmark generates networks with power law distributions of degree
and community size, with exponents τ1 and τ2, respectively. Themixing parameter μ

is responsible for the community structure in the network, and indicates the fraction
of external links each node will have. Consequently, each node will have (1− μ) of
its edges with nodes from its community.

Figure2 shows the weights of edges after NG-AW with ε = 1 for a LFR net-
work with N = 1000, 〈k〉 = 20, τ1 = 2, τ2 = 1, kmax = 50, size of communities
Cmin = 10, Cmax = 50 and μ = 0.1. As we can see, the weights of internal edges tend
to be higher than weights for external ones, meaning that the algorithm weakens or
reinforces a connection if it is external or internal, respectively. If we relate each
different word to a different community, we have a Naming Game-based model that
detects communities as groups of agents sharing the same word after the game, in
non-convergent executions.

We will use the Normalized Mutual Information (NMI) [3], that is a measure
of similarity of partitions based on Information Theory, as the standard partition
measure. If the found and correct partitions are identical the resulting NMI will

Fig. 2 Weights
distribution—NG-AW
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Fig. 3 NMI for NG-AW

Fig. 4 NG-AW convergence
probability

be 1, the maximum possible value. If having complete knowledge of partition A we
would still know nothing about partition B and vice versa, NMI tends to 0. Figure3
shows the resulting NMI for LFR networks with the same parameters varying the
parameter μ, responsible for the community structure of the network. For networks
with high community structure (μ = 0.1 and 0.2) we have a value of NMI close
to 1. When the community structure of the network is a little less obvious, the
algorithm only detects communities for a small interval of low ε input values and
with worse accuracy. This interval becomes smaller as the network has more external
edges. As we see in Fig. 4, this happens because for larger ε values convergence
is reached with higher probability, as the communications happen more randomly
and the communities for such networks are less redundant. However, these results
verify that an opinion dynamics model, like the Naming Game or variations, can be
considered as a dynamical CD algorithm, in which the uncovering of communities
occur in an emergent way through pairwise interactions.

Trying to establish a NG-based approach that naturally detects community struc-
ture for a more extensive range of networks and with higher probability, next we will
explore an algorithm based on [7], the NG-LEF, relating ε to a time-changing local
exploration factor, that is socially interpreted as the agent’s uncertainty.
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4 Naming Game with Local Exploration Factor

The Naming Game with Local Exploration Factor (NG-LEF) [11] incorporates
uncertainty in the dynamics, by turning the global ε in NG-AW in a local εi that
decays over time. We interpret εi as a measure of uncertainty of the agent i in its
knowledge about the environment, that would be the agents’ trust during the game.
Thus, an agent chooses the hearer based on a deterministic part—his built trust
w—biased by a random factor—the ε value—, that is the uncertainty of the agent in
such trust.

Relating this local ε in a social scope to an uncertainty factor for each agent, we
produce an antropomorphic analogywith peoplemeeting people randomly in a social
network. A personwould communicate with higher uncertainty as he/she knows very
little about the environment (early stages), and with higher certainty as he/she learns
about it, as the person exchange information with other people. In NG-LEF the idea
is that, in the beginning of the game, the random exploration of the Naming Game
holds, satisfying the need for redundancy. In later times, communication happens
more often between nodes with a history of successes. Algorithm 3 shows NG-LEF.
The value of 10% of ε decay was obtained empirically.

In NG-LEF, as the node has more failures, its ε will decay faster, decreasing the
randomness of this node’s choice of hearer. Then, nodes with more external edges,
having smaller ε, will tend to communicate more preferably through edges with high
trust,making the node behave like inNG-AW.Nodeswith less or none external edges,
however, typically have larger values of ε, since they havemore successes, andwould
communicate more randomly with their neighbors. So the behavior of the node will
depend on its relative position in the network. This is shown in Fig. 5, wherewe divide
the nodes in three classes of proportion of external edges: low, medium and high,
for the LFR network with μ = 0.1 and ε(0) = 10. As can be seen, different nodes get
different values for εi along the game, making a node communicate more randomly
as it has more internal connections. Also, as Fig. 6 shows, NG-LEF weakens external
edges and reinforces internal ones with more precision, therefore, better classifying
the edges. If we take both of these values as outputs of the algorithm, we can have
not only the resulting partition but also a classification of nodes by their proportion
of external edges and classification of edges in internal or external by their weights.

Fig. 5 NG-LEF ε evolution
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input : Initial value of random factor ε(0);
εk = ε(0) for all nodes k;
for each time step: do

One agent i is chosen randomly to be the speaker;
The speaker i chooses a hearer j with probability proportional to

pi j = wi j + εi
∑

k=neighbors(wik + εi )
(2)

if the speaker’s memory is empty then
the speaker invents a new word;

else
the speaker selects randomly one from his inventory;

end
The speaker transmits the word to the hearer;
if the hearer has the word in his memory then

the communication is a success and both agents erase their memories keeping only
the transmitted word;

else
the communication is a failure, the hearer adds the word to his inventory and both
agents decrease their ε in 10%

end
end

Algorithm 3: Naming Game with Local Exploration Factor

Fig. 6 Weights distribution
for NG-LEF

Aswe see in Fig. 7, for networkswith high community structureNG-LEF presents
a more stable behavior, having plateau of NMI for values of ε larger than 1, approx-
imately. However, for networks with higher values of μ the behavior is similar to in
NG-AW, even though we had better construction of edges’ weights. This happens
because, as the networks have lower proportion of internal connections, external
edges have a slightly higher chance to be chosen to communicate , creating paths of
high weight between different communities, making easier to a competing word to
reach them. Once the word enters the community, many times throughmore than one
link, fewer internal connections helps the competing word to disseminate, leading
to poor detection of communities, and often to convergence. As we see in Fig. 8, for
networks with strong communities the convergence rate is lower than for NG-AW.
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Fig. 7 NMI for NG-LEF

Fig. 8 Convergence
probability NG-LEF

However, for networks with less community structure, NMI is poor for small ε and
convergence is reached with high probability for larger ε values.

Even though the incorporation of trust and then uncertainty have led us to some
improvement in community detection, we see that this is not enough to reveal or
form the community structure of an arbitrary network. In the next section we explore
a model that incorporates a third social feature: opinion preference.

5 Naming Game with Secondary Memory (NG-SM)

Still on the search for a model where the utterance dynamics reveals the community
structure, we analyse a recently introducedmodel, theNamingGamewith Secondary
Memory [12], where agents have two inventories: the main memory, that behaves
just like in NG; and the secondary memory, that keeps count of every word the
agent has ever been exposed to. Our motivation is, even if one’s mind is made out
about a given subject, one do not properly forget other opinions had in the past. In
both NG-AW and NG-LEF, agents are flighty, forgetting their opinions based on
a single successful communication, regardless of how many communications the
agent had with the forgotten words. A word that is massively present in the agent’s
neighbourhood, and therefore would be in the agent’s inventory most of the time,
would be erased at any moment by few communications with agents from a different
community (with a different word). In a social sense, it would be equivalent to a
person sharing an opinion with a close group for most of his/her life, and changing
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it completely when hearing a different one twice in a row. In real life, however, a
person could even change his/her mind after talking a few times with an outsider, but
would have a predisposition of believing again in a previously well agreed opinion.
With the preference for transmission of the word with more occurrences, the spread
of outsider words inside communities would be minimized and the state of non-
convergence should be more stable, leading to a better detection of the existing
communities (Figs. 9 and 10).

input : Initial value of random factor ε(0);
εk = ε(0) for all nodes k;
for each time step: do

One agent i is chosen randomly to be the speaker;
The speaker i chooses a hearer j with probability proportional to

pi j = wi j + εi
∑

k=neighbors(wik + εi )
(3)

if the speaker’s memory is empty then
the speaker invents a new word;

else
the speaker selects one word k from his principal memory with probability
proportional to the success of the word Sik in the secondary memory;

end
The speaker transmits the word to the hearer;
if the hearer has the word in his principal memory then

the communication is a success and both agents increase the number of occurrences
of the transmitted word in 1 and delete all other words from the principal memory;

else
the communication is a failure, the hearer adds the word to his principal memory and
secondary memory and both agents decrease their ε in 10%

end
end

Algorithm 4: NG with Secondary Memory

Fig. 9 NG-SM ε evolution
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Fig. 10 Weights
distribution—NG-SM

Figures11 and 12 presents respectively the Normalized Mutual Information and
the convergence rate for the same LFR networks after NG-SM. We observe a high
NMI value for all networks with μ < 0.5, only observing a few convergences in the
network with μ = 0.5. For more evident communities, the game always reaches non-
convergence, so emergence of communities will happen in all executions. Figures9
and 10 show the ε evolution and the histogram of edge weights for NG-SM. We see
that, not only NG-SMmaintains those classifications, but makes themmore accurate:
we see that the numeric difference between classes averages is larger through the
game. Also, the values for all classes are mainly larger, indicating more uncertainty
in the conversations, without leading the game to convergence. This is important
because the randompart of the communications is fundamental for gathering intrinsic
information about the network. For the edges’ weights we can also notice some
improvement, on the misclassified internal edges, and a larger proportion of external

Fig. 11 NMI for NG-SM

Fig. 12 Convergence rate of
NG-SM
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Fig. 13 NG-SM ε evolution

edges with weight smaller than 0.1 and internal edges with weight larger than 0.9.
Figure13 shows the NMI values for NG-SM (highlighted) with ε(0) = 10 and also—
from [4]—for different existing CD algorithms, in LFR networks with the same
previous parameters, N = 1000 and N = 5000. The community sizes also vary as
small (S), from 10 to 50 nodes or big (B), from 20 to 100 nodes. We can see that
NG-SM has better accuracy for larger networks and it seems to work better when
the communities in the network are smaller. Also, we see that NG-SM is suited for
CD, comparable and in some cases better than existing algorithms.

That way, with the incorporation of opinion preference, uncertainty and trust, a
model like the Naming Game can reveal the community structure of an arbitrary
network with considerable accuracy.

6 Conclusions

In this work we use NG-variations to detect disjoint communities. We showed that
with the insertion of trust in the NG—using the model in [7]—the system reaches
more often a non-convergentmeta-stable state, where nodes in the same communities
share the same words. Also, NG-AW results in a classification of edges in external or
internal, due to the resulting weights of these edges. This happens for networks with
obvious community structure, as for other networks, convergence happens with high
probability.We interpret the local exploration faction in NG-LEF [11] as uncertainty,
and show that this algorithm, that models trust and uncertainty, has better accuracy
than NG-AW. Moreover, the resulting uncertainty values of nodes are related to
their proportion of external edges, or how connected they are in the community
they belong to. The resulting edges weights—or the connections trust values—are
better divided in internal and external. The incorporation of opinion preference, the
third social feature, happens with the Naming Game with Secondary Memory [12].
NG-SM showed improvement in uncovering the communities in the networks, where
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networks that were intractable with NG-LEF have high NMI and zero convergence
probability. Also, both classifications of edges with trust and nodes with uncertainty
are more well divided and accurate, with NG-SM.

We tested the models in networks generated with the well known LFR community
detection benchmark [6], that presents real-world characteristics and we showed
that the found communities are more similar to the topological communities as we
increase the number of modeled social features. With NG-SM, that incorporates all
three features, for all LFR networks with μ < 0.5 we have accurate detection of
communities with NMI > 0.9 and guaranteed non-convergence. The classification
of nodes, edges and the unravel of the communities all happen on an emergent way.
In this way, each insertion of social feature results in a partition closer to the known
a priori partition.

Thaís Uzun thanks CNPq (143356/2011-9) and Carlos Ribeiro thanks CNPq
(303738/2013-8) and Fapesp (2013/13447-3) for financial support.
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A Novel Approach to Evaluate
Community Detection Algorithms
on Ground Truth

Giulio Rossetti, Luca Pappalardo and Salvatore Rinzivillo

Abstract Evaluating a community detection algorithm is a complex task due to
the lack of a shared and universally accepted definition of community. In literature,
one of the most common way to assess the performances of a community detection
algorithm is to compare its output with given ground truth communities by using
computationally expensive metrics (i.e., Normalized Mutual Information). In this
paperwe propose a novel approach aimed at evaluating the adherence of a community
partition to the ground truth: our methodology provides more information than the
state-of-the-art ones and is fast to compute on large-scale networks. We evaluate its
correctness by applying it to six popular community detection algorithms on four
large-scale network datasets. Experimental results show how our approach allows to
easily evaluate the obtained communities on the ground truth and to characterize the
quality of community detection algorithms.

1 Introduction

Evaluating the results provided by a community detection algorithm is one of the
most difficult tasks of complex network analysis, since there is no a shared and
universally accepted definition of what a community is [1, 2]. Each approach hence
defines its own idea of community and maximizes a specific quality function (e.g.
modularity, density, conductance, etc.). Even though the communities identified by
a given algorithm on a network are consistent with its community definition, it is not
guaranteed that they are able to capture the real sub-topology of the network. For this
reason, the common way to state the quality of a community detection algorithm is
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to evaluate the similarity between the communities it produces and the ground truth
communities of the network. Generally, the communities produced by the algorithm
are compared to the ground truth communities specified in the network dataset using
metrics like the Normalized Mutual Information score (NMI) [3]. Unfortunately the
computational complexity of this metric is quadratic in the number of communities
of the network, which makes it unsuitable on large-scale complex networks where a
large number of communities emerge.

In this paper we propose a novel community evaluation approach that leverages
ground truth communities and copes with the computational issues that arise when
calculatingNMI on large community sets. To do that we define twomeasures, namely
community precision and community recall, which provide information about how
much the nodes of a given community tend to be in the same ground truth community.
In particular, community precision quantifies the level of label homophily between
a community and a ground truth community, while the community recall quantifies
the ratio of nodes in the ground truth community covered by a given algorithm
community. To validate our methods we apply six popular community detection
algorithms on four large-scale networks with ground truth communities. We then
compute the proposed community precision and community recall metrics on the
produced community sets in order to compare them on the ground truth. We show
how the evaluation can be easily performed through density scatter plots, where the
presence and position of visual clusters well identify the properties of the community
sets in terms of precision and recall. The evaluation can be also summarized into a
single number using the F1-measure (the harmonic mean of community precision
and community recall), which provides a clear and concise evaluation of the quality
of a community set.

The paper is organized as follows. Section2 revises the main works in community
detection and community evaluation. Section3 introduces the community precision
and the community recall metrics and Sect. 4 describes our experiments, the com-
munity detection algorithms used (Sect. 4.1), the network datasets (Sect. 4.2) and
the results obtained (Sect. 4.3). Finally, Sect. 5 concludes the paper illustrating some
possibile improvements of the proposed metrics.

2 Related Works

Community detection has become during the last decade one of the most chal-
lenging and studied problems in complex network analysis, due to its relevance
for a wide range of applications such as the study of information and disease
spreading [4, 5], the prediction of future interactions and activities of individuals
[6, 7], and even the analysis of the patterns of human mobility [8, 9]. Two surveys
by Fortunato [1] and Coscia et al. [2] explore all the most popular techniques to
find communities in complex networks, highlighting that several algorithms have
been proposed in literature to detect different definitions of network community.
The plethora of many community definitions makes the evaluation of a community
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detection algorithm a difficult task. In literature, the most used evaluation method is
to compare the community set produced by an algorithm on a network with ground
truth communities of the same network.Due to the scarse availability of real networks
with ground truth communities, the evaluation of an algorithm is often performed
using synthetic network generators that also provide ground truth communities (such
as the LFR benchmark [10]). In such scenario, the comparison is generally done by
the Normalized Mutual Information score (NMI) a measure of similarity borrowed
from information theory [3, 11, 12], defined as:

NMI(X, Y) = H(X) + H(Y) − H(X, Y)

(H(X) + H(Y))/2
(1)

where H(X) is the entropy of the random variable X associated to an algorithm
community, H(Y) is the entropy of the random variable Y associated to a ground
truth community, and H(X, Y) is the joint entropy. NMI ranges in the interval [0, 1]
and is maximized when the algorithm community and ground truth community are
identical. One drawback of NMI is that, assuming that the algorithm community set
and the ground truth community set have approximately the same size n, the overall
NMI computation requires O(n2) comparisons, making it unsuitable for large-scale
networks.

3 Approach Definitions

The computation of NMI on large community sets is often prohibitive: following
Eq. (1) given the algorithm community set X of size m and ground truth community
set Y of size n, to compute NMI we need to identify the communities best matches
with costO(mn). Assumingm � n theNMI computation requiresO(n2) comparisons
thus making it often unsuitable for large-scale networks.

To overcome this drawback, we propose a novel approach that provides valuable
insights on the quality of the community sets produced by a community detection
algorithm. Given a community set X produced by an algorithm and the ground truth
community set Y , for each community x ∈ X we label its nodes with the ground
truth community y ∈ Y they belong to. We then match community x with the ground
truth community with the highest number of labels in the algorithm community.
This procedure produces (x, y) pairs having the highest homophily between the node
labels in x and all the ground truth communities. We then measure the quality of the
mappings by the two following measures:

• Precision: the percentage of nodes in x labeled as y, computed as

P = |x ∩ y|
|x| ∈ [0, 1] (2)
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• Recall: the percentage of nodes in y covered by x, computed as

R = |x ∩ y|
|y| ∈ [0, 1]. (3)

Given a pair (x, y) the two measures describe the overlap of their members: a perfect
match is obtained when both precision and recall are 1. We thus have a many-to-
one mapping: multiple communities in X can be connected to a single ground truth
community in Y . This policy enables the adoption of the proposed methodology both
in case of algorithms producing crisp partitions or algorithm producing overlapping
communities. Moreover, analyzing the precision and recall of each pair we are able
to detect both underestimations and overestimations made by the adopted algorithm.

We can combine precision and recall into their harmonic mean obtaining the
F1-measure, a concise quality score for the individual pairing:

F1 = 2
precision ∗ recall

precision + recall
. (4)

Given a network, the F1 score can be averaged among all the identified pairs in
order to summarize the overall correspondence between the algorithm community
set and ground truth community set. The mean F1, along with its standard devi-
ation, makes possible to compare the performances of different algorithms on the
same network with ground truth communities. The proposed approach as complexity
O(|V | + |C|) � O(|V |) since it is composed by two steps: (i) node labeling (linear in
the number of nodes |V |) and (ii) communities F1-computation (linear in the number
of identified communities |C|). The averaging of community F1s has constant cost.

4 Experiments

In this section we evaluate the proposed methodology on the community sets pro-
duced by popular community detection algorithms on large-scale real-world net-
works with ground truth communities. In Sect. 4.1 we introduce the algorithms used
and in Sect. 4.3 we evaluate the quality of the algorithms by using the proposed
approach.1

4.1 Community Detection Algorithms

We use six different community detection algorithms designed to maximize different
functions: Louvain, Infohiermap, cFinder, Demon, iLCD and Ego-Network.

1A Python implementation of our approach is available at: http://goo.gl/kWIH2I.

http://goo.gl/kWIH2I


A Novel Approach to Evaluate Community Detection Algorithms on Ground Truth 137

Louvain is an heuristic method based on modularity optimization [13] and it is
proven to be fast and scalable on large-scale networks. The modularity optimization
is performed in two steps. First, the method searches for “small” communities by
optimizing modularity locally. Second, it aggregates nodes belonging to the same
community and builds a new network whose nodes are communities. These steps
are repeated iteratively until a maximum modularity is obtained, producing a com-
plete non-overlapping partitioning of the graph. As most of the approaches based on
modularity optimization, it suffers from a “scale” problem that causes the extraction
of few huge communities and an high number of tiny ones.

Infohiermap is one of best performing hierarchical non-overlapping clustering
algorithms for community detection [14] studied to optimize community conduc-
tance. The graph structure is explored with a number of random walks of a given
length and with a given probability of jumping into a random node. The underlying
intuition is that random walkers are trapped in a community and exit from it very
rarely. Each walk is described as a sequence of steps inside a community followed by
a jump. By using unique names for communities and reusing a short code for nodes
inside the community, this description can be highly compressed, in the same way as
re-using street names (nodes) inside different cities (communities). The renaming is
done by assigning a Huffman coding to the nodes of the network. The best network
partition will result in the shortest description for all the walks.

cFinder is an algorithm for finding dense overlapping groups of nodes in net-
works, based on theClique PercolationMethod (CPM) [15]. Its community definition
is based on the observation that a typical member in a community is linked to many
other members, but not necessarily to all other nodes in the community. In other
words, a community can be interpreted as a union of smaller complete subgraphs
that share nodes. These complete subgraphs are called k-cliques, where k is the num-
ber of nodes in the subgraph, and a k-clique-community is defined as the union of all
k-cliques that can be reached from each other through a series of adjacent k-cliques.
Two k-cliques are said to be adjacent if they share k − 1 nodes.

Demon is an incremental algorithm that uses an approach based on the extraction
of ego networks, that is, the set of nodes connected with a certain ego node u [16].
The communities are extracted by using a bottom-up approach: each node gives the
perspective of the communities surrounding it and then all the different perspectives
are merged together in an overlapping structure. In practice, the ego network of each
node is extracted and a label propagation is performed on this structure ignoring
the presence of the ego itself, since it will be judged by its peer neighbors. Then,
with equity, the vote of everyone in the network is combined. The result of this
combination is a set of overlapping modules, the guess of the real communities in
the global system, made not by an external observer, but by the actors of the network
itself.

iLCD is an algorithm for the detection of overlapping communities in dynamic
networks. It can also be used on static networks and works on large-scale networks.
It is not based on the modularity, but, on the contrary, on the idea that communities
are defined locally (intrinsic communities) [17].
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Table 1 Networks statistics of the four large-scale real-world networks analyzed

Network Nodes Edges Clustering Diameter Ground truth
com.

Amazon 334,863 925,872 0.3967 44 75,149

DBLP 317,080 1,049,866 0.6324 21 13,477

Youtube 1,134,890 2,987,624 0.0808 20 8,385

LiveJournal 3,997,962 34,681,189 0.2843 17 287,512

Ego-networks is a naive algorithm that models the communities as the set of
induced subgraphs obtained considering each node with its neighbors. This approach
provides the highest overlap among the considered approaches: each node u belongs
exactly to |Γ (u)| + 1 communities, where Γ (u) identifies its neighbors set.

4.2 Network Data

We use four large-scale network datasets in our experiments: DBLP, Youtube,
Amazon and LiveJournal [18], filtering them on the nodes covered by the ground
truth partition (network statistics shown in Table1).2

The DBLP network is a co-authorship network where two authors of computer
science papers are connected if they publish at least one paper together. The ground
truth communities are defined by the publication venue, e.g. journal or conference,
hence authors who published to a certain journal or conference form a community.

Youtube is a popular video-sharing website where the users form friendships each
other and can create groups which other users can join. The user-defined groups are
the ground truth communities of the network.

The Amazon network has been collected by crawling Amazon website. It is based
on Customers-Who-Bought-This-Item-Also-Bought feature of the Amazon website.
If a given product i is frequently co-purchased with product j, the graph contains an
undirected edge from i to j. Each product category provided by Amazon defines each
ground truth community.

LiveJournal is a free online blogging community where users can declare friend-
ships to each other. It also allows users to form a group which other members can
then join. Each of these user-defined groups is a ground truth community.

2The network datasets are available at: https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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Fig. 1 Density scatter plots describing community precision and community recall on the six
community sets extracted from the Amazon network. a Amazon—Louvain. b Amazon—iLCD.
c Amazon—cFinder. d Amazon—Demon. e Amazon—Infohiermap. f Amazon—Ego-
Network

4.3 Results

We apply the six algorithms introduced in Sect. 4.1 to extract communities from
the four large-scale network datasets described in the Sect. 4.2. We then use the
proposed evaluation approach to compare the obtained community sets and rank
the tested algorithms. Figures1, 2, 3 and 4 show the density scatter plots describing
community precision and community recall computed on the six community sets
produced on the Amazon, DBLP, Youtube and LiveJournal networks respectively.
In this representation, we report the community precision on the x-axis and the
community recall on the y-axis: the color of a point (x, y) in a scale from yellow to
red indicates the number of community matchings having precision x and recall y:
the more red is the color the higher is the volume.We have a perfect match when both
precision and recall are 1 (top-right corner of the plot): in this scenario, the algorithm
community is identical to the corresponding ground truth community. The proposed
visualization also allows an intuitive identification of the community scale:

• pairings having maximal recall and low precision (i.e. points that clusters close to
the upper left corner of the plot) identifies network substructures that overestimate
the ground truth;

• pairings having low recall and maximal precision (i.e. points that clusters close
to the lower right corner) identifies network substructures that underestimate the
ground truth.
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Fig. 2 Density scatter plots describing community precision and community recall on the six com-
munity sets extracted from the DBLP network. a DBLP—Louvain. b DBLP—iLCD. c DBLP—
cFinder. d DBLP—Demon. e DBLP—Infohiermap. f DBLP—Ego-Network

Fig. 3 Density scatter plots describing community precision and community recall on the six
community sets extracted from the Youtube network. a Youtube—Louvain. b Youtube—iLCD.
c Youtube—cFinder. d Youtube—Demon. e Youtube—Infohiermap. f Youtube—Ego-
Network

The former scale tells us that the algorithmproduces communities that group together
more nodes than it should, while in the latter case the ground truth communities are
fragmented in smaller communities.
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Fig. 4 Density scatter plots describing community precision and community recall on the six com-
munity sets extracted from the LiveJournal network. a LiveJournal—Louvain. b LiveJournal—
iLCD. c LiveJournal—cFinder. d LiveJournal—Demon. e LiveJournal—Infohiermap.
f LiveJournal—Ego-Network

Table 2 The average F1-measure for the four networks

Network Louvain Infohiermap cFinder Demon iLCD Ego-
networks

Amazon 0.40
(0.26)

0.46 (0.29) 0.72
(0.27)

0.70
(0.24)

0.74
(0.23)

0.72 (0.22)

DBLP 0.26
(0.24)

0.45 (0.31) 0.82
(0.24)

0.75
(0.24)

0.81
(0.23)

0.81 (0.22)

Youtube 0.16
(0.05)

0.59 (0.32) 0.50
(0.20)

0.36
(0.10)

0.35
(0.20)

0.58 (0.28)

LiveJournal 0.01
(0.006)

0.66 (0.30) 0.21
(0.30)

0.56
(0.29)

0.71
(0.04)

0.52 (0.30)

Each row shows the averageF1-measure (standard deviationwithin brackets) achievedwhenmatch-
ing the communities identified by the algorithms and the ground truth communities of a specific
network. In bold the best score for each network

From the plots, for the Amazon and DBLP networks a difference among the algo-
rithms clearly emerges: whileDemon, iLCD, cFinder andEgo-networks produce
community sets with high precision and high recall denoting a high correspondence
to the ground truth communities, Louvain and Infohiermap produce community
sets with low precision (low label homophily) and high recall (they cover a large
fragment of the corresponding ground truth community). On the Youtube network
Louvain shows very high precision and very low recall, while the other algorithms
behave the opposite producing communities with low precision and high recall. On
the LiveJournal network all the algorithms produce communities with high preci-
sion, while the recall varies a lot across the communities. Table2 summarizes all
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Fig. 5 Distribution of F1-measure on the community pairings generated by the six algorithms the
Amazon (a), DBLP (b), Youtube (c) and LiveJournal (d) networks

these observation reporting, for each algorithm and dataset, the average F1-measure
computed on the identified pairings. We observe how the average F1-measure is
useful to understand two main aspects of community evaluation:

• First, it summarizes how well the communities produced by an algorithm corre-
sponds to the ground truth communities. For instance, from our experiments is
clear how Louvain shows lower correspondence with the ground truth than all
the other algorithms: this result is clearly due to the so called scale problem of
modularity based approaches. Indeed, as shown from all the density scatter plots,
Louvain produces either huge or tiny communities thus providing respectively an
overestimation (high recall, low precision—i.e. Amazon and DBLP) or a underes-
timation (low recall, high precision—i.e. LiveJournal and Youtube) of the ground
truth communities;

• Second, the F1-measure helps also in evaluating the quality of the ground truth
itself: on theYoutube dataset for example no algorithmproduces communitieswith
high correspondencewith the ground truth ones, denoting either a lowquality of the
ground truth communities or that the community definition underlying the ground
truth radically differs from the community definition of the tested algorithms.
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However theF1-measure indicator is computed as an average of community-pairs
F1s and it can show a high standard deviation (Table2). For this reason we report
in Fig. 5, for each network and algorithm, the complete distribution of F1 across
the community pairs. We observe how the distributions endorse the validity of the
proposed indicator even in presence of high standard deviation.

5 Conclusion

Evaluating the quality of community detection algorithms is a hard task, especially
because the problem itself is ill-posed: each algorithm optimizes a different quality
metric introducing its owncommunity definition. In this paperwe tackled the problem
of estimating the correspondence between algorithm communities and ground truth
communities. When available, the information about ground truth communities of a
network can be used to compare the results provided by a set of algorithms: so far
the NMI has been the common way to perform this task. However, NMI has a major
drawback: its computational complexity is quadratic in the number of communities.
For this reason we introduced a novel and fast approach to estimate the quality of
the communities produced by an algorithm that can be applicable to large-scale
networks. With the support of visual tools, our methodology provides a reliable
index that captures the quality of a community set and describes if the adopted
algorithm underestimates or overestimates the ground truth community structure.
As future works, we plan to use the proposed approach to identify and characterize
sub-profiles among the communities extracted: by applying clustering techniques
using precision and recall as features, we can group communities according to their
degree of correspondence to the ground truth and then study their network features.
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Improving Network Community Structure
with Link Prediction Ranking
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Abstract Community detection is an important step of network analysis that relies
on the correctness of edges. However, incompleteness and inaccuracy of network
data collection methods often cause the communities based on the collected datasets
to be different from the ground truth. In this paper, we aim to recover or improve the
network community structure using scores provided by different link prediction tech-
niques to replace a fraction of low ranking existing links with top ranked predicted
links. Experimental results show that applying our approach to different networks
can significantly refine community structure. We also show that predictions of edge
additions and persistence are confirmed by the future states of evolving social net-
works. Another important finding is that not every metric performs equally well on
all networks. We observe that performance of link prediction ranking is correlated
with certain network properties, such as the network size or average node degree.
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1 Introduction

Detecting and characterizing network community structure are among the fundamen-
tal techniques of network science.Community detection reveals latent butmeaningful
structures in a wide range of networks [1], yet the results often do not represent the
reality. The primary reason is that available network datasets are often incomplete or
inaccurate because of lost, incorrect. or misrepresented data, especially when gath-
ered from massive networks. Consequently, the networks derived from such data
may have some edges missing while some edges present in the network dataset may
not exist in reality.

In this paper we introduce and evaluate methods of recovering or improving
the network community structure by removing extraneous (or transient) edges and
restoring (or creating) the missing ones.

We start by setting the fraction of edges to be replaced which defines the number
of added and deleted edges. Next, we rank all the edges by the chosen link prediction
method. Then, we complement the network with non-existing highest ranked edges
and remove the same number of existing lowest ranking links using three popular link
prediction metrics. We evaluate this approach on seven real-world network datasets,
including two friendship networks, two collaboration networks, and a co-purchasing
network. After enhancing the networks with our link improvement procedure, we
first run community detection algorithms to find community structure. Then we
measure the quality of the discovered community structure with two global and six
local metrics. The results show that the community structure of five out of seven
real-world networks is significantly refined.

The rest of the paper is organized as follows. The related work is presented in
Sect. 2. The detailed description of the approach is provided in Sect. 3. The analysis
of the results using community structuremetrics is given in Sect. 4. Section5 includes
the results for an evolving network with the known ground truth data. The conclusion
and future work are outlined in Sect. 6.

2 Related Work

In [2] the authors focus on findingmissing edges and communities. First, they classify
the reasons formissing edges but do not consider extraneous edges. They use a partial
network which is simulated by deleting a certain fraction of edges from the input
dataset. The quality of the resulting communities is compared to their true versions
which are assumed to be available. Normalizedmutual information (NMI) [3] is used
as a measure of community quality.

In [4] the authors use the results of community detection to guide the addition of
missing links. In their approach, intra-community edges suggested by a link predictor
are added to the network first, followed by inter-community edges. Experimental
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verification was performed on the LFR benchmark [5] and six very small real-world
networks using several link predictors and two community detection algorithms.

A more detailed analysis of the relation between community structure and link
formation is provided in [6]. Given an array of communities, the density of links
inside a community and between any two communities determines the probability of
adding a particular link. A further development [7] uses the network’s local structural
information for improved performance.

A common approach to enhancing the quality of community detection methods
using link prediction techniques is to introduce a preprocessing step to ameliorate
the network by reinforcing its community structure. An example is a method [8] in
which link prediction is applied to assign weights to the existing edges of a network
and then a community detection algorithm is applied to the weighted network. This
approach uses five different community detection methods. The community quality
is measured using NMI for synthetic networks and modularity for real-world ones.

Amore complicated solution has been proposed recently in [9]. It involves running
link prediction multiple times on the same input network thus creating a family
of enhanced networks. Community detection is then performed for each network
in this family. The final result is constructed by aggregating community detection
results of each individual network. This approach was implemented only for disjoint
community detection.

3 Link Replacing Methodology

Algorithm 1 defines our approach. First, every possible edge (whether existing or
potential) in the network is assigned a rank based on the score returned by a link pre-
dictorL . We use LPmade library [10] for unsupervised link prediction and analysis
selecting three local computationally efficient metrics described below.

The Number of Common Neighbors (CN) is simply the count of the number of
neighbors that any two given nodes have in common. The computational complexity
to calculate this score for a network is O(E), where E denotes the number of edges
in the network.

Adamic-Adar (AA) [11] is a refinement of the CN in which each common neigh-
bor of the two nodes for which the metric is evaluated adds the inverse of the loga-
rithm of its degree to the result rather than adding a constant of 1. The computational
complexity to calculate this score for a network is O(E).

PropFlow (PF) [12] measures the geodesic proximity of the two nodes for which
the metric is computed. We restrict the degree of the considered neighborhood to
four, so the complexity of computing this metric is O(d4N) where d is the average
node degree and N is the number of nodes in the network. For a sparse network, the
complexity is linear in the number of nodes.

Edges and their corresponding rank scores are kept separately for existing and
potential edges.
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Algorithm 1 : Link ranking and replacement
Input: Graph G = (V,E), link predictor L , fraction of edges to be replaced f
Output: Graph G′ = (V,E′) with improved community structure

E′ ← E
E ← {{u, v} : ∀u ∈ V,∀v ∈ V , s.t. u �= v} \ E
RE ← ()

RE ← ()

for all {u, v} ∈ E s.t. (deg(u) > 1 and deg(v) > 1 do
Add ({u, v}), L ({u, v}) to RE

end for
Sort RE in the order of ascending rank values
for all e ∈ E do
Add (e,L (e)) to RE

end for
Sort RE in the order of descending rank values
n ← �f · |E|�
for i = 1 to n do

e ← edge from the ith top tuple of RE
E′ ← E′ ∪ {e}

end for
for i = 1 to n do

e ← edge from the ith top tuple of RE
E′ ← E′ \ {e}

end for

During the second phase of the algorithm, edge replacements take place. First, a
number of edges (denoted by f ) with the highest rank among the non-existing edges
are added to the network. Next, the same number of the lowest ranked existing edges
are removed from the network. In order to prevent the formation of isolated nodes
(i.e., nodes with a degree of 0), an edge is not considered for removal if one or both of
its endpoints have a degree of 1. Then, we use the community detection algorithms
SpeakEasy [13] and GANXiS [14] to detect the community structure of the modified
network.

SpeakEasy is a label propagation community detection algorithm which identi-
fies communities using top-down and bottom-up approaches simultaneously. Specif-
ically, nodes join communities based not only on the nodes’ local connections but
also on the global information about the network structure. It adopts consensus clus-
tering to get robust community structure. In our experiments, we choose to make
50 label propagation iterations with no node receiving a new label before terminat-
ing. We conduct 20 replicate runs for consensus clustering to get more robust and
deterministic results.

GANXiS is a fast algorithm using a general speaker-listener information propaga-
tion process. It spreads one label at a time between nodes according to the interaction
rules. The worst-case time complexity of GANXiS is O(E).

Both GANXiS and SpeakEasy can detect overlapping communities, but for our
experiments we configure them to detect only disjoint communities. Once the com-
munity structure is found, we measure its quality using several metrics to check the
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performance of our approach. The impact of selecting the value of parameter f on
performance is discussed in Sect. 4.3. Our approach differs from [2] since we do not
know the ground truth networks. Instead, we consider different metrics (see Sect. 4.1
for details) and if the majority of them agree on the improvement of communities
after the replacement, we accept the results.

4 Evaluation and Analysis

4.1 Community Quality Metrics

To evaluate our approach without ground truth, we adopt two global community
quality metrics, modularity (Q) [15] and modularity density (Qds) [16], and the
following six local community quality metrics: Intra-density ID, Contraction CNT ,
Expansion EXP, Conductance CND [16], Fitness F [17], and the Modularity Degree
D [18]. For the sake of space, we list the metrics above, and refer the reader to the
cited references for their formal definitions and descriptions.

4.2 Dataset Descriptions

We consider seven real-world network datasets, including two friendship networks,
two collaboration networks, and a co-purchasing network. Below we describe the
basic properties of these datasets and provide the number of nodes (N) and edges
(E) for each.

Gowalla was collected from a location-based social networking provider. There
are 391,222 users with public profiles (friends and check-ins) that were active from
the middle of September 2011 to late October of the same year [19]. There are
2,176,188 edges in this network that indicate friendships between users.

Amazon is a product co-purchasing network of the Amazon website [20]. There
are 334,864 nodes in the network that represent products and 925,872 edges that link
commonly co-purchased products.

DBLP is a scientific collaboration network with 317,080 nodes representing
authors and 1,049,866 edges connecting authors that have co-authored a paper [20].

Santa Fe is the largest connected component of the collaboration network of
scientists at Santa Fe Institute during the years 1999 and 2000 [21]. It has 118 nodes
and 200 edges.

Football is a network that represents the schedule of games between college
football teams in a single season with 115 nodes and 613 edges [21].

Dolphin is a social network of frequent associations between 62 dolphins con-
nected by 150 edges and living in a community off Doubtful Sound, New Zealand
[22].
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Karate is a small network representing the friendships between 34 members of
a karate club at a US university during two years [23]. It has 78 edges.

4.3 Experimental Results

In this part, we present the quality metrics for the community structure in which the
percentage f = [0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50] of edges were replaced. f = 0
means that there is no change to the original networks.

Figure1 shows the results for the Gowalla dataset. The horizontal lines show the
qualitymetric of the community structure detected in the original unchangednetwork.
All three link predictors improved the networks according to eight community quality
metrics. PropFlow performs extremely well on Gowalla, except for the Expansion
measure. The improvement goes beyond values of f ≤ 50 reported here. We can
observe a limit (varying for different link prediction metrics) of how many links
could be replaced for the purpose of improving the community structure of the
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network. Figure1b shows that the value of modularity density grows by an order of
magnitude compared to the original value with PropFlow.

Figure2 presents the results of the Amazon dataset. We can observe that CN and
Adamic-Adar metrics work well on this network.

Figure3 displays the results of DBLP. With CN , the values of Qds, ID, and CNT
generally decrease as the replacing percentage f increases. While Q achieves its
maximum at f = 30, EXP and F reach their optima at f = 40, and CND and D attain
theirs at f = 15. With Adamic-Adar, the values of Q, EXP, CND, and F reach their
optima at f = 20, while Qds and D achieve theirs at f = 15.

Results for smaller networks are summarized in Table1. This excludes Santa Fe
and Karate datasets which, although small, have a well-evolved edge structure and
no need for improvement.

Table1 presents link improvement results for CN and Adamic-Adar metrics
on the Amazon, DBLP, Football, and Dolphin datasets. The results for PropFlow
are omitted because it works well only on the Gowalla dataset. The cells in
the table that contain the fraction of replaced links f show the best f for the
corresponding community quality metric. RI stands for the relative improvement
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of the corresponding community quality metric. It is the percentage of improvement
of the metric attained with the best f compared to its original value for the unchanged
network (f = 0). The ✗ in the table indicates that our link prediction method results
in no improvement (RI < 0) in that row. This table and all the above figures show
that our link improvement procedure is able to significantly refine the community
structure of five out of seven networks.

Generally, our method performed best when the number of common neighbors
were used as the link prediction metric, followed by the Adamic-Adar metric. Yet
for the Gowalla network, the best performing link prediction metric was PropFlow.
Therefore, we conclude that a single link prediction metric cannot perform well on
all networks. The basic reason for this is that each metric performance depends on
the meaning of the relationships which define links in the network. Another reason
is that networks also differ in their size, structure, and dynamics. The impact of these
factors on link prediction is often unclear. Thus, our method can be used to evaluate
the performance of link prediction metrics. If the highly ranked predicted links do
not improve quality of communities, they are unlikely to be formed quickly. We also
observe that there is a threshold (which varies for different link prediction metrics)
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Table 1 The best replacing percentage f and the corresponding relative improvement (RI) of the
community qualitymetric achieved using the two link improvementmethod: the number of common
neighbors and Adamic-Adar on Amazon, DBLP, Football, and Dolphin

Datasets

Amazon DBLP Football Dolphin

f RI f RI f RI f RI

CN Q 30 16.6 30 15.3 15 20.5 20 11.7

Qds 25 27.8 ✗ ✗ 15 34.1 10 25.7

ID 25 12.6 ✗ ✗ 10 9.8 10 9.4

CNT ✗ ✗ ✗ ✗ 15 20.4 25 3.9

EXP 40 52.6 40 53.4 15 43.6 30 52.3

CND 40 36.0 15 13.0 15 41.9 25 42.1

F 40 27.2 40 18.8 15 35.0 30 40.5

D 25 40.8 15 18.5 15 69.2 25 73.0

AA Q 30 8.9 20 10.4 15 16.9 15 7.1

Qds 25 18.4 15 2.6 15 33.2 10 20.8

ID 25 4.4 ✗ ✗ 15 9.1 ✗ ✗

CNT 15 3.0 ✗ ✗ 20 19.4 ✗ ✗

EXP 25 28.2 20 28.8 20 36.0 20 33.4

CND 25 20.5 20 14.7 20 36.5 30 20.2

F 25 15.6 20 13.6 20 29.1 30 18.8

D 25 26.0 15 22.5 15 60.1 15 40.4

of how many links could be replaced for the purpose of improving community struc-
ture of a network. Going beyond this threshold may lead to higher cost and lower
performance although the quality of the community structure may still be better than
that of the original unchanged network.

4.4 Impact of the Community Detection Algorithm

To test how much our outcomes depend on the choice of the community detection
algorithm,wepresent here the results of the experiments on one of the largest datasets,
Amazon, using GANXiS algorithm [14]. Figure4 shows the experiment outcomes
that are qualitatively similar to those reported in Sect. 4. The scale of improvements
and the range of percentages f overwhich the improvements are seen are very similar,
while the order of the link prediction methods sorted by their performance remains
the same. This is a clear indication that switching to a different community detection
algorithm did not impact our conclusions about the use of link prediction methods
on the Amazon dataset.
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5 Evolving Networks

In search for ground truth examples to further verify our methodology, we apply
it to social networks evolving from their initial state. This evolution happens when
a group of people is put together and makes initial links which are being refined
later based on increasing members knowledge about each other. Examples are when
middle school studentsmove to high school or later when they join universities. Links
from the initial period that are a miss dissolve and are replaced by other links while
some initial links persists. The final stage is a stable community, like researchers in
Santa Fe orKarate clubmembers. This is distinct from truly dynamic networkswhere
change is constant. So here we are not trying to detect changing points in evolving
networks or evolving community structure in dynamic networks. The networks that
we consider evolve from an initially suboptimal state to a final stable state. By
observing evolving networks at different stages, we are able to measure how our
predictions of edge creation and persistence based on the past network states compare
to the future state. We use the ArnetMiner paper citation and author collaboration
dataset [24]. We restrict the network to a subgraph whose nodes represent authors
only in the United States, since collaboration requires language and location affinity.
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Wedivide the dataset into three subsets definedby timeperiods containing collabo-
rations between 1995–2004, 2005–2009, and 2010–2014. To compare collaborations
within any two time periods, we first find the subgraphs for each period that contain
an intersection of nodes of both graphs. For the chosen periods, the subgraphs have
N = 18,382 nodes and Eo = 44,182, En = 43,267 edges in the older and newer sub-
graph, respectively. The newer subgraph has EN = 28,996 existing new edges and
EP = 14,271 existing edges persisting from the older subgraph. With these values,
the fraction of new edges in a random sample of edges non-existing in the older
graph is 2∗EN

N(N−1)−2∗Eo
which is 0.017% for our graph.

Next, non-existing but highly ranked edges are added as new edges to the older
subgraph while low ranking existing edges are removed from it. Then using the
newer graph as ground truth, we count how many new edges in the older subgraph
actually exist in the newer one. Creating new edges successfully requires a metric
consistent with the meaning of the links, which in our case is co-authorship. Hence,
in addition to the CN metric, we also introduce a new metric, Complete Recent
Triangles (CRT) for ranking edges. CRT first identifies all new triangles that are
created by adding a new edge to the network. For each such newly created triangle,
the CRT metric increases the score of the new added edge by the sum of weights of
the two previously existing edges of the triangle. The weight of each such edge is the
sum of the recency values of papers co-authored by the authors represented by the
edge endpoints. Four age categories are set; less than 2, 2–4, 4–6 years, and older
than 6 years. The corresponding values of recency are 1, 0.8, 0.65, and 0.5.

To measure the accuracy and coverage of edges selected as new or persistent by
our method, we vary f from 1 to 50. The results are computed with the older period
set to 1995–2004, and the newer one set to 2005–2009. The results based on other
periods are qualitatively similar. Then, for each f , we compute the numbers of all
edges selected as new by the link prediction SN(Selected and New), and the number
of such edges that actually exist in the newer subgraph is denoted SEN . The ratio of
SEN to SN measures the quality of selection of new edges while the ratio of SEN to
EN tells us what percentage of the new edges is covered by the selected new edges.
Table2 shows the results. For the ArnetMiner networks generated for the periods
selected for the reported experiments and for CRT, the first ratio varies between
12.22–17.91%, thus it is up to 1,000 times greater than the fraction of new edges in
a random sample of edges. The second ratio shows that the coverage of new edges
reaches up to 9.3% for f = 50. The results for CN are worse, the first ratio peaks
at f = 5 and yields 13.8% while the coverage peaks at 8.4% for f = 50. For the
middle range of f the two metrics perform similarly.

For ArnetMiner network, we used edge persistence selection which is comple-
mentary to edge deletion considered for the other network. Like previously, we first
rank all existing edges using link prediction method, here CN and CRT. Then we
remove 100 − f percentage of the lowest ranking edges, thus preserving f percentage
of existing edges as persistent. SP denotes the number of existing edges selected as
persistent, while SEP is the number of those edges that actually exist in the newer
subgraph.
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The results with CN for edge persistence are at the level of random chance, and
they are clearly impacted by the massive number of deleted edges. Therefore, we
omitted those results here. However, using CRTwe again observe the improvements.
When persistent edges are selected randomly, the success rate is 32.3%. At the same
time, using CRT with the two smallest values of f , yields the success rate of over
70%. The best success rate of 79.9% is achieved with f = 1 which is 2.5 times
greater than at random. The coverage of persistent edges reaches 54.7% for f = 50.

6 Conclusion and Future Work

In this paper, we introduce an approach for improving the network community struc-
ture by removing a certain fraction of low ranking existing links and replacing them
with highly ranked new links. The proposed method significantly improves the com-
munity structure of the networks we considered. However, there is a threshold of how
many links can be replaced in order to refine the community structure of a network.
Going beyond this threshold may lead to higher cost and lower performance.

Generally, the link improvement method using the number of common neigh-
bors for link prediction has the best performance, followed by Adamic-Adar, while
PropFlow performs extremely well only on Gowalla dataset. We conclude that a sin-
gle link prediction method cannot perform uniformly well on every network. Some
metrics aremore suitable than others for a particular network depending on the nature
of the links. This was confirmed by our study of the evolving network in which a
new link prediction metric for co-authorship, Complete Recent Triangles, delivered
the improvement of three orders of magnitude over randomly selecting new edges.
Finally, we observe that there is a correlation between the performance of link pre-
diction improvement and certain network properties. Two influential factors are the
network size and the degree to which nodes possess global knowledge about the
network structure. To confirm that our conclusions do not depend on the use of a
specific community detection method, we processed the Amazon dataset with two
community detection algorithms, obtaining similar results.

In the future, we plan to design and adopt more link prediction metrics for our
approach to explore their performance on different types of networks. We also plan
to explore how much our link improvement method could refine the quality of over-
lapping community structure.
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A Subgraph-Based Ranking System
for Professional Tennis Players

David Aparício, Pedro Ribeiro and Fernando Silva

Abstract This paper introduces a novel ranking system for competitive sports based
around the notion of subgraphs. Although the system is targeted specifically to pro-
fessional tennis it could be applied to any dominance network due to its generality.
The results of about 140,000 tennis matches played between Top-100 players are
used to create a colored directed network where colors represent different surfaces
and edge direction depends on head-to-read results between players. The main con-
tribution of this work is a ranking system which relies on the occurrences of 4-node
directed subgraphs and the positions (or orbits) where the players appear on them.
Since the concept of orbit is intrinsically connected with node dominance, appearing
frequently in dominant orbits indicates that the player himself is dominant. Even in
a very sparse network and without any background knowledge on the tournaments
or stages of the matches, our proposal is able to extract meaningful rankings which
capture the intricate competitive relationships between players from different eras.

1 Introduction

Debating who is the best player (or team) is one of the most discussed topics in any
competitive sport and it can stir heated arguments between fans. Objectively quan-
tifying player achievements is not straightforward, even when personal preferences
are set aside, since multiple criteria can be used to compare players and the sports
themselves evolve throughout the years. Nevertheless, competitive sports require a
system that is able to rank players (or teams) according to their performance.

Most existing ranking systems focus on some set of numerical features, with dif-
ferent weights and time spans used depending on the sport under consideration [11].
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Professional tennis in particular is governed by the Association of Tennis Profession-
als (ATP) which ranks players based on their results in official ATP tournaments.
The ATP ranking is updated on a weekly basis and aggregates the results from the
previous 52 weeks. Points are awarded to players according to the round of the tour-
nament that they reach and the ranking of the tournament itself. Recently, with the
emergence of network science, node centrality metrics have been applied to sports
datasets in order to derive rankings [5, 7, 9, 10]. The vast majority of these ranking
methods are adaptations of the PageRank algorithm [2]. In this work we take a differ-
ent perspective by instead considering the role of small subgraphs. Subgraph-based
metrics have been used to evaluate node importance in other fields such as biol-
ogy [12]. Our goal is to provide a ranking system that truly captures the dynamics
of the network. For that purpose, we devise a ranking mechanism that considers not
only the subgraphs themselves but also the position (or orbit) of the players in the
subgraphs. Orbit information allows us to discover indirect dominance while at the
same time weighting both inward and outward edges. This method contrasts with
PageRank which essentially considers only one of the two possible edge directions,
giving importance to wins and almost disregarding losses, or vice-versa.

Our approach was tested on one of the most popular individual sports: men’s
professional tennis. Our results show that, even without any kind of prior knowledge,
the methodology put forward is able to produce consistent and meaningful results
using only the topology of the dominance network.

2 Network Description

In order to construct the dominance network we first collected the names of all tennis
players that have been ranked in the Top-100 of theATP year-end rankings from 1974
until 2015 and then extracted their match information from Tennis Abstract.1 Going
beyond the Top-100 introduces noise in the data and is not necessary for our purposes
since players below the Top-100 only enter a few major tournaments. A total of 856
tennis players have been in the Top-100 throughout the years and they have played
about 140,000matches between themselves. The amount of matches played annually
on each surface is presented in Fig. 1 as well as the total number (dotted line). This
number increased significantly in the 1990s but has dropped in recent years mostly
due to changes in the ranking system that encourage players to only participate in the
most prestigious tournaments and also thanks to an increased awareness of the sport’s
physical demands. Nowadays, most tennis tournaments are contested on either clay
or hard courts, with only a handful of matches played on grass each year. Carpet was
a popular surface until the mid-1990s but it was discontinued from the ATP Tour
in the late 2000s. The surface characteristics affect the pace of the game, favouring
different playing styles. Usually, grass is the fastest surface to play on, followed by
carpet, hard and finally clay.

1www.tennisabstract.com.

www.tennisabstract.com
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Fig. 1 Matches played by
year on each surface

Following data extraction, the information is processed in order to construct
6-tuples of the form (Player1, Player2, Surface, Year, Matches, WinPercentage) for
each pair of players. Besides creating a tuple for each surface, an additional 6-tuple is
necessary to account for overall head-to-head. Using this data, a dominance network
is created where nodes are players and the orientation of the colored directed edges
between two players depends on their head-to-head on a given surface. Consider
tuple (pi, pj, s, t, ms,t

ij , ws,t
ij ) and parameters δ and φ: a colored directed edge (pi, pj)

is created if player pi won at least δ%of the matches against pj on surface s in a given
year t (Eq. 1) and they played a minimum φ matches in surface s during their careers
(Eq.2). Our networks were built with δ = 2

3 , meaning that one player only dominates
another if he has defeated him in more than 66% of the matches. A minimum of 3
matches (φ = 3) is required to establish a dominance relation between two players
on grass courts, and 5 for the other surfaces. An overall dominance relation that
disregards playing surface also requires at least 5 matches.

ws,t
ij ≥ δ% (1)

( 2015∑

t=1974

ms,t
ij

)

≥ φ (2)

An aggregated (or career) dominance network is assembled by calculating dom-
inances using the career win-percentage, instead of yearly results. The resulting
network has 585 vertices and 5,301 directed edges with 5 possible labels (or col-
ors): hard, clay, grass, carpet or overall. The number of overall edges is not simply
the sum of the edges from all surfaces since an overall dominance is established by
playing a minimum φ matches on any surface (for instance, one player can dominate
another in overall matches without having φ encounters with him in any particular
surface). Notice that only 585 of the original 856 players are represented in the net-
work since the others did not play the required φ matches against any other Top-100
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Table 1 Global network statistics of the dominance networks, discriminated by surface

Surface |V| |E| |E|
|V|

|E⇒|
|E|

Hard 301 868 2.88 0.64

Clay 289 793 2.74 0.65

Grass 140 173 1.24 0.90

Carpet 97 188 1.94 0.72

Overall 585 3279 5.61 0.68

player, and consequently have no edges. Requiring the win-percentage to be above a
certain threshold δ for a dominance relation to be established results in the creation
of bidirectional (or reciprocal) edges, meaning that two players met in at least φ

matches but neither one dominates the other. The dominant (unidirectional) edges
and non-dominant (bidirectional) edges are henceforth represented as E⇒ and E⇔,
respectively. Table1 summarizes the networks’ global statistics. In regard to indi-
vidual players, Jimmy Connors dominates the most other players (63), followed by
Roger Federer (60) and Ivan Lendl (59). On hard courts Roger Federer leads with
46 out-edges, Guillermo Vilas on clay with 37, John McEnroe on carpet with 23 and
Roger Federer on grass with 17 out-edges.

Two visual representations of the network are presented in Fig. 2. The giant com-
ponent of the aggregate network is shown in Fig. 2a. Each edge color matches a
surface: blue for hard, brown for clay, green for grass, pink for carpet and black for
overall dominances. Node size depends on the number of out-edges; Roger Federer
corresponds to the largest node since he has the most out-edges (132). Figure2b
shows the relations between all 25 players that have been ranked as the ATP Top-1
player. Edges are only relative to overall dominance and the line thickness reflects
how unbalanced the relation is. It is interesting to notice that Jimmy Connors, one
of the players with most out-edges, does not dominate any Top-1 player. The fact
that he faced the others when they were closer to their prime than himself might be
the main reason for this. It seems reasonable to expect younger players, which are
at their peak, to dominate players declining in form. However, that is generally only
the case for players of the same level: very good young players tend to dominate
very good older players, but average young players do not usually win against very
good older players. Furthermore, considering the players’ full history allows us to
capture the various stages of their careers. Comparing players from different eras
might seem unfair if one inspects only individual relations but what really makes a
player dominant is the global aspect of his career and the head-to-head results that he
had against players from his own era, players from the era preceding his and players
from the subsequent era. Therefore, it is difficult to infer that a player pi from one
era dominates another player pj from a different era, however it is possible to say
that pi is generally more dominant than pj, and those are the relations that we intend
to capture using our ranking mechanism.

Figure3 shows that the networks’ in- and out-degrees follow a power law. Results
are only presented for overall matches but the surface networks are also scale-free.
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(a)

(b)

Fig. 2 Player dominance networks: in a blue edges are drawn for dominances in hard courts, brown
for clay, green for grass and pink for carpet. The nodes’ size increases proportionally with their
out-degree. b shows the relations between all ATP Top-1 players, disregarding surface.

Fig. 3 In- and out-degree distribution of tennis players dominance networks (overall matches)
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3 Subgraph-Based Ranking System

3.1 Related Work

The discussion of who is the best tennis player of all-time is open for debate and
multiple criteria can be used. Ranking players simply by the number of matches that
they won unduly favours players that had very long careers, such as Jimmy Connors,
and ranking players by theirwin-ratio excessively benefits those that, likeBjörnBorg,
retired at the peak of their careers. Furthermore, these possibilities do not take into
account the intricate relations between the players. Grand Slam tournament victories
(or grand slams for short) are often used to compare tennis players; however, before
the 1990s several top-ranked players willingly skipped some of the annual Grand
Slam tournaments since it was not yet the norm to evaluate players by their number
of grand slams.

The work by Radicchi et al. [9] proposes a PageRank-like ranking system for
male tennis players. Dingle et al [3] also used Radicchi’s ranking system to produce
a more up-to-date ranking of both male and female tennis players. The network that
Raddicchi et al. built is different from our own since (a) their edges are weighted
(wij: number of times that pi beats pj) while ours are simple directed edges reflecting
win-percentages, (b) they used match information from 1969 until 2010 whilst our
networks are relative to matches from 1974 to 2015 and (c) they only considered
matches played on either Grand Slam tournaments or ATP Masters 1000 whereas
we use information from all official ATP tournaments. Traditional PageRank does
not decrease the node’s rank with respect to its out-edges (in this case, meaning
loses against) and is therefore not suitable to determine player dominance relations.
The prestige score presented in [9] lowers the wij according to pj’s out-degree (the
number of times pj loses against someone); therefore, dominating a dominated node
gives less prestige than dominating a more dominant player. However, the prestige
score is not decreased according to pi’s out-edges, which may result in dominated
players having a high score as long as they dominate a few dominant players. Our
scoring system increases the players’ score in respect to the players that they dominate
and, likewise, decreases their score when they are themselves dominated. Another
approachwas followed byMotegi andMasuda [7]where they use a dynamicwin-loss
score that takes into account temporal information and fluctuations in the ranking.
They not only consider direct wins and losses but also indirect ones, namely those
corresponding to directed paths of size 2. Our work differs because we use subgraphs
of size 4, which encapsulate more information than paths of size 2. Furthermore, we
consider global dominance relations to obtain an earned ranking, while their work
focuses on obtaining a temporal snapshot for a particular point in time and use it for
prediction purposes.
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3.2 Methodology

A simple way to assess node dominance is to compare its out-degree (dominant) with
its in-degree (dominated). However, tennis players face a limited set of opponents
due to their ranking (higher ranked players seldom play against lower ranked players)
and career span (players from different periods never face each other). Moreover,
requiring at least φ matches to be played for a relation to be established further

decreases the amount of direct relations, resulting in very sparse networks
(

|E|
|N |2

≤ 0.05
)
. Therefore, comparing players only by degree is not sufficient.

Another option is to consider richer structural units: subgraphs. Actually, the
degree of a vertex v ∈ V (G) can be regarded as a 2-node subgraph where v occu-
pies one of its two possible positions. In this work, instead of looking only at the
directed degree (or subgraphs {v → u}, {u → v} and {v ↔ u}), we analyse slightly
larger subgraphs and observe at which position vertex v appears in each occur-
rence. As illustrated in Fig. 4, this allows not only for direct dominances (a → b) or
equivalences (a ↔ b) to be captured but also for indirect dominances (a → b ↔ c,
therefore a → c) and super dominances (a → b → c, therefore a � c) due to graph
transitivity. This is particularly useful in the tennis players network since, as dis-
cussed previously, players have a very limited number of edges (direct dominances).
Another advantage lies in the fact that it enables dominance relations to be estab-
lished between players of different eras by following the path of the subgraph, such
as {Federer → Agassi → Becker → Connors}, which leads to the conclusion that
{Federer � Connors}. However, there are many other possible paths from Federer
to Connors and in some of them Connors may actually indirectly dominate Federer.
Therefore, all paths from one player to another must be enumerated in order to assess
indirect dominances.

Graphlets [8] are subgraphs that take the node position of the subgraph (or orbit)
into account. Graphlet usage is often restricted to analyzing only the set of 30 undi-
rected graphs of up to five nodes due to computational limitations. Using undirected
subgraphs would not produce meaningful results in dominance networks since edge
direction is crucial. An extension of graphlets to directed networks was proposed
in [1]. Graphlets can be used, for instance, to compare the topology of networks

Fig. 4 Graph transitivity translated to direct dominance (a → b), super dominance (a � b) and
indirect dominance (a → b)
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[4, 8] or nodes [6]. The key idea is to compute howmany times a given node appears
in an orbit and repeat that process for all possible orbits. Two nodes are more or less
alike depending on how similar their orbit frequencies are. For instance, two nodes
present at the center of multiple stars are more similar to each other than to another
node that appears more frequently at the stars’ periphery. Usually, graphlet com-
putation is not concerned with specific types of subgraphs (such as chains, stars or
cliques), but instead with all possible subgraphs of a given size. The results presented
here are relative to all 199 possible directed subgraphs with 4 nodes.

In a first step, our subgraph-based ranking system receives as input a set of
graphlets and assigns scores to their orbits. Then, during subgraph enumeration,
the player’s score is increased or decreased according to the orbits that he appears in.
Orbit scores are calculated using the transitivity closure of the subgraph, as shown in
Fig. 5, where dij is the path length between node ni and node nj. Notice that different
nodes of a subgraph may be in the same orbit, and will always have the same score
(see orbit e from subgraph GB for instance). Looking at GB we identify orbit f as
dominant since it has 3 out-edges and no in-edges, while orbit e has no out-edges and
2 in-edges, representing a dominated orbit. Orbits a, b, c and d from GA constitute
a 4-node chain where the orbits at its start are more dominant than the ones at its
end since they indirectly dominate more orbits. Orbits h, i and j of GC form a cycle
and are therefore equivalent. However, orbit j dominates k directly while h and i
dominate k indirectly. Also, orbit i dominates orbit k more directly than orbit h does.
These considerations are taken into account by our scoring mechanism.

Orbit scores are calculated as shown in Eq.3. The main idea is to subtract the

negative points
( ∑|So|

j=0 βk−d(oj,o)
)
from the positive ones

( ∑|Io|
i=0 βk−d(o,oi)

)
. Set Io

is formed by the orbits inferior to the orbit being computed while So is the set of
orbits superior to it. The distance between oi and oj is given by d(oi, oj) and it can
be at most k − 1, where k is the size of the subgraph. Basically, direct dominant
connections give more points than indirected ones and, conversely, direct dominated
connections take more points away. Parameter β controls the relative importance of
the directedness, i.e. a small β (closer to 1)means that direct and indirect dominances

Fig. 5 Graph transitivity of 3 subgraphs. Nodes with the same shade are in the same orbit. Orbit
scores are assessed using the transitivity matrix: row values are positivepoints while column values
are negative. Higher cell values mean that the connection is less direct



A Subgraph-Based Ranking System for Professional Tennis Players 167

give roughly the same points while an high β means that direct dominances are more
important. Notice that if β is too big the score becomes almost equivalent to the
degree. A parameter λ ∈ [0, 1] is also inserted to control the influence of dominating
versus being dominated. Using λ ≈ 1means that a player is mostly evaluated by how
many players he dominates (out-edges) while the amount of times that he himself
is dominated (in-edges) does not have a big impact in the rankings, and vice-versa
when λ ≈ 0, i.e. the player is ranked higher if he is dominated by few players.
These considerations produce a flexible scoringmechanismwith just two parameters.
The score of a player pi is obtained by summing his occurrences in all orbits and
multiplying them by their score, as shown in Eq.4. Finally, players are ordered from
the lowest to the highest score to produce the ranking.

S(o) =
(

λ ×
|Io|∑

i=0

βk−d(o,oi)

)

−
(

(1 − λ) ×
|So|∑

j=0

βk−d(oj,o)

)

(3)

S(pi) =
|O|∑

o=0

Fr(pi, o) × S(o) (4)

4 Results

Table2 presents the 15 players with the highest scores depending on λ. In the middle
columnλ is 1

2 ,meaning that dominating and not being dominated is equally important
for the players’ scores, and this value is used for comparison. When λ < 1

2 the
rankingmechanismgivesmore importance to not being dominated that to dominating
other players. Players such as Björn Borg and Gustavo Kuerten benefit from this
parameter choice whereas Guillermo Vilas is penalized. If ones keeps decreasing λ,
Rafael Nadal eventually tops the ranking because very few players have a positive
win-loss ratio against him. However, making λ too small results in a meaningless
ranking since players that have few out-edges unrealistically climb in the rankings
as long as they have very few (or none) in-edges. By contrast, when λ > 1

2 , players
such as Carlos Moya and Guillermo Vilas climb in the rankings while Björn Borg
and Novak Djokovic drop some positions. Having λ ≈ 1 still produces meaningful
results since the ranking eventually stabilizes and ranks very highly players that
dominate many others. Nevertheless, it does not seem fitting to completely disregard
the dominated edges of the playerswhen building a dominance based ranking system.
In the remaining results λ is set to 1

3 , hence giving a slight edge to players that are
not dominated by many others while still producing meaningful results.

Table3 shows the career rankings with β = 1.5. To illustrate the effect of β take
graph GA from Fig. 5 as an example: if β = 1, S(a) = 1(4−1) + 1(4−2) + 1(4−3) = 3,
S(b) = 1, S(c) = −1 and S(d) = −3; if β = 2, S(a) = 2(4−1) + 2(4−2) + 2(4−3) =
14, S(b) = 4, S(c) = −4 and S(d) = −14. In pratice, this means that orbits a and b,
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Table 2 Ranking obtained by varying λ: the relative weight between dominating (out-edges) and
being dominated (in-edges)

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Player

I. Lendl 1

R. Federer 1

J. Connors

R. Nadal 1

N. Djokovic 1

B. Becker

A. Agassi 3

B. Borg 5

S. Edberg 1

P. Sampras 2

J. McEnroe 1

A. Murray 4

L. Hewitt 2

G. Kuerten 7

G. Vilas 6

Player

I. Lendl 1

R. Federer 1

J. Connors

A. Agassi

R. Nadal

N. Djokovic 1

B. Becker 1

S. Edberg

J. McEnroe 1

G. Vilas 1

L. Hewitt

P. Sampras

B. Borg

A. Murray 2

A. Roddick

Player

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

N. Djokovic

S. Edberg

G. Vilas

J. McEnroe

L. Hewitt

P. Sampras

B. Borg

Y. Kafelnikov

A. Roddick

Player

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

S. Edberg 1

N. Djokovic 1

G. Vilas

J. McEnroe

L. Hewitt

P. Sampras

Y. Kafelnikov 1

C. Moya 3

B. Borg 2

Player

R. Federer

I. Lendl

J. Connors

A. Agassi

R. Nadal

B. Becker

G. Vilas 2

S. Edberg

N. Djokovic 2

J. McEnroe

L. Hewitt

Y. Kafelnikov 2

P. Sampras 1

C. Moya 3

D. Ferrer 2

λ = 1
6 λ = 1

3 λ = 1
2 λ = 2

3
λ = 5

6

for instance, are much more alike when β = 1 than when β = 2. A low β (≈ 1) does
not distinguish direct from indirect relations while a high β (≈ 2) penalizes indirect
ones too heavily, therefore an intermediate value for β (1.5) was chosen.

Roger Federer is the most dominant player since 1974 according to our ranking
system, followed by Jimmy Connors and Ivan Lendl. Evaluating if the results are
correct is not straightforward and highly subjective. Nonetheless, one of the most
commonly used criteria to judge the quality of a tennis player is the number of
grand slams that he won during his career. From Table3a it can be observed that
winning grand slams is correlated with a higher position in our ranking. From the
Top-25 players only David Ferrer, Tim Henman and Robin Soderling failed to win
any grand slams. Table3b shows the Top-10 by surface and also the number of grand
slams contested on that surface that they won. Roger Federer is the most dominant
player both on grass and hard courts, Guillermo Vilas is the best player on clay and
McEnroe is ranked first in carpet courts. Again, the number of grand slam victories
is correlated with the ranking. We point out that no grand slam tournament was
ever contested on carpet. Table3c gives a more in-depth look at all 25 players that
have been the Top-1 player in the ATP rankings from 1974 until 2015. A dash (–)
means that the player does not have a single connection on that particular surface,
i.e. he did not play the minimum φ matches against anyone. The position of the
player is presented in bold-face only if our system ranks him among the Top-25 of
that particular surface. As can be observed, most (76%) ATP Top-1 players are also
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Table 3 Ranking of tennis players with λ = 1
3 and β = 2: a Top-25 players, b Top-10 players by

surface and c our rankings for all players ranked as Top-1 by the ATP

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Player

R. Federer17

J. Connors8

I. Lendl8

A. Agassi8

R. Nadal14

J. McEnroe7

G. Vilas4

N. Djokovic10

B. Becker6

P. Sampras14

S. Edberg6

A. Roddick1

A. Murray2

L. Hewitt2

B. Borg11

T. Muster1

C. Moya1

I. Năstase2

D. Ferrer*

G. Kuerten3

Y. Kafelnikov2

A. Ashe3

JC. Ferrero1

T. Henman*

R. Soderling*

Rank

1

2

3

4

5

6

7

8

9

10

Player

R. Federer9

N. Djokovic7

A. Agassi6

A. Murray1

A. Roddick1

R. Nadal3

P. Sampras7

L. Hewitt1

T. Berdych

I. Lendl5

Player

G. Vilas2

R. Nadal9

T. Muster1

S. Bruguera2

G. Kuerten3

M. Orantes1

B. Borg6

M. Wilander3

I. Nătase1

I. Lendl3

Hard Clay

Rank

1

2

3

4

5

6

7

8

9

10

Player

R. Federer7

J. Connors4

Edmondson1

J. McEnroe3

R. Tanner1

B. Becker3

S. Edberg4

N. Djokovic3

P. Cash1

P. Sampras7

Player

J. McEnroe

B. Becker

I. Lendl

J. Connors

G. Ivanisevic

P. Sampras

B. Borg

A. Ashe

K. Rosewall

B. Walts

Grass Carpet

Player Overall Hard Clay Grass Carpet

I. Nătase 18 26 9 – 18

J. Newcombe 38 – – 128 38

J. Connors 2 11 27 2 4

B. Borg 15 31 7 12 7

J. McEnroe 6 27 297 4 1

I. Lendl 3 10 10 90 3

M. Wilander 27 234 8 96 78

S. Edberg 11 12 118 7 70

B. Becker 9 192 55 6 2

J. Courier 41 13 37 32 73

P. Sampras 10 7 66 11 6

A. Agassi 4 3 63 28 41

T. Muster 16 178 3 – –

M. Rios 33 252 20 – –

C. Moya 17 190 149 – –

Y. Kafelnikov 21 269 321 22 49

P. Rafter 381 243 193 20 –

M. Safin 46 298 31 167 –

G. Kuerten 20 21 5 – –

L. Hewitt 14 8 177 496 –

JC. Ferrero 23 231 16 – –

A. Roddick 12 5 76 63 –

R. Federer 1 1 14 1 –

R. Nadal 5 6 2 118 –

N. Djokovic 8 2 35 8 –

(a) (b) (c)

ranked as one of the Top-25 most dominant players by our system. The exceptions
are John Newcombe, Mats Wilander, Jim Courier, Marcelo Rios, Patrick Rafter and
Marat Safin. Patrick Rafter is a notable outlier since he is ranked at the bottom half
of the table (381th out of 585 players). Notice however that he was only ranked as
the ATP Top-1 for one week. Our ranking also detects surface specialists (such as
Wilander, Muster, Rios, Kuerten and Ferrero on clay, Courier, Agassi and Hewitt on
hard courts, and Newcombe and Rafter on grass), all-round players (such as Năstase,
Connors and Federer) and players with an Achilles-heel on a specific surface (such
as Sampras and Djokovic on clay, Borg on hard, and Lendl and Nadal on grass). We
should note that, for instance, Rafael Nadal has a very low score on grass despite
having a ≈79% win-loss ratio in that surface and winning two grand slams on grass.
His very low score comes primarily from the fact that he is dominated by Roger
Federer on that surface and, because Federer is a hub-like node in grass, Nadal ends
up appearing in many different subgraphs with Federer and the other players that
Federer dominates. Since Nadal occupies a negative orbit in those subgraphs his
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score is continuously decreased. This negative effect is primarily felt on small and
sparse networks such as the grass network where even a single connection has a very
high impact. A possible solution to reduce the influence of hubs would be to ensure
that each player only decreases the score of another player once.

5 Conclusion

The first contribution of this work is the distribution2 of a network summarizing
the complete match history between all male Top-100 ATP players since 1974. The
data is discriminated by year as well as playing surface. The constructed dominance
network models the relations between players: if a player wins against another one
more thanφ times andwins at least δ%of thematches, a directed connection is drawn
between them. An exploratory analysis was performed in order to verify that these
choices are adequate and produce a meaningful representation. It was also observed
that, like many real-world networks, both its in- and out-degree distributions follow
a power-law, meaning that there are few very dominant players, few very dominated
players and many average players.

We present a ranking system based on the subgraph topology of the dominance
network that offers a different view than past approaches based on the PageRank
algorithm. A complete subgraph enumeration is performed in the original network
in order to compute the ranking. During the enumeration process, the position that the
player appears in the subgraph is stored and his score is updated: if the player appears
in a dominant orbit his ranking is increased, while if he appears in a dominated orbit
his ranking is decreased. The ranking system does not require any meta-information
about the network such as the tournament or the round that the players faced each
other to produce meaningful results, however it could easily be extended to support
it by adjusting the edge weights. The system is also flexible since it is possible to
control (i) λ the importance of being dominant versus being dominated and (ii) β

the importance of direct versus indirect dominances.
We assess which values of λ and β are better-suited for this particular tennis

network and present rankings for the best overall players since 1974 and the most
dominant players by surface. Our ranking system produces results that agree with
the ATP ranking while at same time offering a different perspective since wins are
not discriminated by tournaments (which some are more valuable than others) nor
rounds (where awin in a later round givesmoreATP points) and the intricate relations
between players are also captured. This approach gives a better idea of actual player
dominance which is valuable when trying to assess who are the best tennis players.
Using our ranking system it was possible, for instance, to (i) observe that player
performance is heavily influenced by the playing surface and (ii) discover which
former ATP World Top-1 players were actually dominant players and which ones
were not. We also performed a yearly ranking not included here for space concerns

2http://www.dcc.fc.up.pt/~daparicio/networks.

http://www.dcc.fc.up.pt/~daparicio/networks
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where we (i) observed that the most dominant players are usually the ones that reach
more tournament finals, semi-finals and quarter-finals but they are not necessarily the
ones that winmore tournaments due to the unbalanced nature of ATP ranking system,
(ii) identified which seasons were most dominated by a single (or a few) player(s),
(iii) pinpointed tennis transition-eras (1987–1989 and 1999–2003) and (iv) noticed
that it is rare for a player be very dominant both on fast (hard or grass) and slow
courts (clay).
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Returners and Explorers Dichotomy in Web
Browsing Behavior—A Human Mobility
Approach

Hugo S. Barbosa, Fernando B. de Lima Neto, Alexandre Evsukoff
and Ronaldo Menezes

Abstract A better understanding of the fundamental mechanisms underlying
complex human dynamics is of major interest in contemporary social research. Over
the last few years, researchers have made huge strides towards this understanding,
thanks especially to the increasing availability of datasets containing digital traces
of many human activities. In this work, we investigate Web browsing trajectories
using a human mobility approach based on approximately four years of browsing
history data. Our findings strongly suggest that return visitation patterns in browsing
behaviors and in human mobility exhibit very similar scaling properties. Moreover,
we classifyWeb users as returners and explorers based on their on-line activities, and
show that at a population level, the distribution of both profiles agrees with empirical
observations in human mobility. Finally, we create a network representation of the
most popular websites from the aggregated browsing trajectories and uncover many
functional clusters related with different users’ activities.

1 Introduction

Uncovering fundamental mechanisms governing human dynamics is one of the ulti-
mate goals of social investigation and research. Recently, the introduction of the
complex systems apparatus into the social research has helped the uncovering of
many universal regularities in human behaviors. For instance, the scaling proper-
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ties of: structural features of social networks [1, 2], travel distances and visitation
frequencies in human mobility [3–6], and time intervals between consecutive events
of human activities [3, 6, 7], to name but a few.More surprisingly,many of apparently
unrelated behaviors were empirically found to follow common underlying processes.
For instance, cumulative advantage–the principle in which popular options are more
likely to be chosen rather than unpopular ones–was suggested to play an important
role in shaping social networks [8–11] and human trajectories [5], whereas activity
bursts–long periods of inactivity between short periods of intensive activity–were
observed in distinct modern human behaviors, such as email communications, and
Web browsing [12, 13].

Despite the large body of literature suggesting the existence of general mecha-
nisms underlying behaviors of apparently distinct nature (e.g. human displacements
and social interactions), the roots of such universal mechanisms are not widely
agreed, let alone understood.

The difficulty of searching for universal mechanisms for human dynamics stem
from the differences among certain human activities. For instance, if at one hand,
human trajectories are shaped by environmental factors (e.g. physical or spatial con-
straints) [14, 15], Web browsing, on the other hand, cannot be said to be physically
constrained or spatially bounded, in the sense that the amount of time necessary
to move from one location to another is irrelevant. In this work we trace a paral-
lel between human mobility and Web browsing behaviors. The motivation is that if
such different behaviors are indeed regulated by common fundamental mechanisms,
a better understanding of one can provide important insights on the other.

The contribution of this work is threefold. First, we applied methods from the
human mobility analysis framework to Web browsing history data, unveiling that
visitation patterns in both activities share similar scaling properties, suggesting that
both behaviors might be generated by a common fundamental process. Second, we
employed a graph-based approach to generate abstract mobility networks, high-level
representations of Web browsing trajectories, and created a spatial distribution of
the most visited Web sites in our data. Finally, we focused our attention in profiling
Web users as returners and explorers as proposed by Pappalardo et al. [16].

2 Materials and Methods

2.1 Datasets

Our findings are based on the empirical analyses of 44months of Web browsing
history data generated by 521 anonymous users between September 2010 and May
2014. For comparison reasons, we also analyzed 6months of mobile phone traces of
30,000 users and 2.5years of a location-based social networking check-ins produced
by approximately 13,000 users. The datasets can be summarized as follows:
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• Web browsing history: The dataset consists of more than 5M anonymized Web
browsing history entries corresponding to visits to 187,680 hosts by 524 users
between September 21, 2010 to May 24, 2014.1

• Mobile phone traces: 6month of CDR data produced by 30,000 users in one of
the largest metropolitan areas in Brazil.

• BrightKite: approximately 2.5years of geo-tagged check-ins produced by more
than 13,000 BrightKite users, in three metropolitan areas in the US, namely Los
Angeles, San Francisco and New York.2

Although the Web browsing dataset provides information at the URL level, we
decided to use the host information since we are interested in the websites being
accessed rather than the unique pages. Also, only requests that originated actively
by the user were considered. Thus, we analyzed only three types of requests3:

• LINK: When a user followed a link and got a new toplevel window;
• TYPED: A user typed the page’s URL in the URL bar, selected it from URL bar
autocomplete results or clicked on it from a history query;

• BOOKMARK: When a user followed a bookmark;

Additionally, since all the location information in the dataset is hashed, we gen-
erated a lookup table to retrieve the actual domains being accessed.

2.2 The Web Browsing Mobility Network

The traces of Web browsing mobility were extracted from the browsing history
data where locations are represented by the host of the pages. Paths correspond
to the sequence in which the locations were visited. The weight wi, j of an edge
is the number of jumps from site i to site j , representing a proximity between the
two locations. The greater the weight, the closer the two locations must be in the
abstract mobility space. For each user in the dataset we extract a visitation sequence
S = [si ] , i ∈ 1 . . . n, from which we produced the Web browsing mobility network.
Figure1 illustrates the process of creating this network.

Because Web browsing trajectories have no spatial dimension, we used the
Fruchterman-Reingold graph layout algorithm [19] to generate what we called the
Abstract Mobility Space (AMS), defined as: a 2D space where locations are arranged
based on how frequent they are visited in sequence (i.e. based on the weight wi, j ).
At some extent, this approach is similar to the work of Dragulescu with visualization

1The browsing history data is provided by the Web History Repository project http://
webhistoryproject.blogspot.com/.
2Brightkite was a location-based social networking service launched in 2007 and closed in 2011
[17, 18].
3For more details on the structure of the browsing history, visit http://forensicswiki.org/wiki/
Mozilla_Firefox_3_History_File_Format.

http://webhistoryproject.blogspot.com/
http://webhistoryproject.blogspot.com/
http://forensicswiki.org/wiki/Mozilla_Firefox_3_History_File_Format
http://forensicswiki.org/wiki/Mozilla_Firefox_3_History_File_Format
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Fig. 1 Web browsing
mobility network generated
from the subtrajectory
S = [s1, s3, s4, s2, s1, s3, s1,
s5, s1]

of on-line communities,4 in the sense that both works use a force-directed algorithm
to create a geographical abstraction of a network. It is worthy noting that the AMS
is generated from the aggregated data across all users in the datasets.

Notice that the AMS is, by definition, a visual metaphor of the mobility networks,
with no intrinsic scale or orientation. Hence, its only important spatial property is
that if two locations i and j are frequently visited consecutively (i.e. the edge weight
wi, j is high), their corresponding vertices will be separated by a distance d ∝ w−1

i, j .
Notice that the AMS can be generated from any mobility network, not exclusively
fromWeb browsingmobility. In fact, we also generated the AMSs for actual mobility
networks extracted from the mobile phone and BrightKite datasets, using the same
logic depicted in Fig. 1.

It is needless to say that the graph-layout algorithm of choice is by no means
intended to model, reproduce or mimic any actual geographical or physical property
of the graph (even though it is inspired in a mechanical system of springs [19]).
Rather, its purpose is to generate aesthetically-pleasing pictures of graphs, such that
their topological features are preserved and emphasized [19].

Nevertheless, for the purpose of this work they can be helpful in the sense that they
can reproduce the indented properties in the graph layout. One limitation however is
the fact that the graph layout is bounded by the plotting area. Therefore, very long
edges are absent from the graph, which places a rigid upper limit to the jump lengths
as measured from the AMS.

However, the soundness of the AMS approach relies heavily on the topologi-
cal similarities between the traveling and browsing mobility networks. Significant
discrepancies between them would weaken any evidence of a universal common
process underlying both behaviors. Hence, we compared the degree distribution of
the mobility networks.

We can see that the Browsing and BrightKite Mobility networks both exhibit a
power-law degree distribution

p(k) ∼ (k + k0)
−α,

with comparable fitting parameters (see Table1). In Fig. 2, the solid line corresponds
to a power law with α = 1.90 ± 0.008. The phone data on the other hand, totally

4Ekisto: an interactive visualization of online communities http://ekisto.sq.ro/.

http://ekisto.sq.ro/
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Table 1 Estimated parameters of the power-law fits for the mobility networks degree distribution
with parameter estimation error σα

Data k0 α σα

Web mobility 13.0 1.907 0.008

BrightKite–Los Angeles 24.0 2.15 0.04

BrightKite–New York 26.0 2.30 0.06

BrightKite–San Francisco 29.0 2.19 0.04

Fig. 2 Weighted degree distribution of mobility networks. As one can see, the Browsing and
BrightKite Mobility networks both exhibit a power-law degree distribution, with comparable fitting
parameters (see Table1). The solid line corresponds to a power law with α = 1.90 and is plotted
as a guide to the eye. The phone data on the other hand, totally deviates from the power-law shape,
being better approximated by a log-normal distribution with parameters k0 = 185, μ ≈ 7.62 and
σ ≈ 1.042

deviates from the power-law shape, being better approximated by a log-normal dis-
tribution with parameters k0 = 185, μ ≈ 7.62 and σ ≈ 1.042.

The deviation in the phone data can be explained by the communication infrastruc-
ture. Cell phone towers are distributed according to factors such as population den-
sity, expected traffic load and technical specifications of the equipments. Since the
weighted degree distribution in the mobility network is directly related with its traffic
load, it is clear that the presence of a power-law degree distribution would represent
a poor infrastructure design, with many underused antennas.
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3 Results

Before approaching the explorer and returners dichotomy, the validity of our
approach depends heavily on level of agreement between browsing visitation and
human mobility patterns, especially the visitation frequencies distribution. The rea-
son is because very different functional forms would conflict with the hypothesis of
a common underlying process shared by distinct behaviors.

Maybe one of the most widely-reported features of human returning behavior
is the heavy-tailed visitation frequencies distribution [5, 20, 21], i.e. most of the
visits of an individual are to very few highly-visited locations (e.g. home and work);
visitation frequencies are better approximated by a power-law distribution.

For the Web browsing behavior, our analyses have shown that the frequency dis-
tribution is indeed very similar to what we observed in human mobility data (see
Fig. 3). As one can see, the parameters of the power-law fittings do not differ much
across the different datasets (see Table2). Moreover, the scaling parameter observed
in the browsing mobility data (α ≈ 1.85 ± 0.05) is very close to what was previ-
ously observed in human trajectories as reported bySong et al. (α ≈ 1.83 ± 0.07) [5].

Fig. 3 Distribution of
visitation frequencies. We
can see that all distributions
are approximated by a power
law. The solid line
correspond to a power-law fit
with α ≈ 1.85 shown as a
guide to the eye. See Table 2
for the best fit parameters

Table 2 Estimated parameters of the power-law fits for the visitation frequencies distributions with
parameter estimation error σα

Data f0 α σα

Web mobility 12 1.85 0.005

Phone data 2 1.74 0.001

BrightKite–Los Angeles 10 1.98 0.02

BrightKite–New York 11 1.98 0.02

BrightKite–San Francisco 8 2.03 0.02
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Such similarities at functional forms and scaling parameters suggests that bothmech-
anisms indeed might share a common underlying mechanism.

Notice, however, that the heavy tail of the browsing visitation frequencies spans
up to two orders of magnitude in comparison to the mobility data. Such discrepancy
can offer interesting insights regarding the origins of the upper limit observed in the
human mobility data. One possible explanation is that because human mobility is
strongly influenced by the physical constraints of the system such as displacement
distances and times, our mobility is bounded to these spatial limitations. Web brows-
ing, on the other hand, does not face physical constraints, since the amount of time
necessary to reach any point is negligible for all practical purposes. If indeed brows-
ing and traveling are both driven by a common underlying process, the browsing
patterns could represent an upper limit of such process.

3.1 Characterizing Explorers and Returners in Web
Browsing Navigation Trajectories

In a recent work, Pappalardo et al. [16] investigated the impact of recurring move-
ments to the overall mobility, from which they could identify distinct profiles of
individuals: returners and explorers. Returners are characterized by their radii of
gyration being dominated by recurrent visits between a few preferred locations.
Explorers, on the other hand, tend to travel between a larger number of different
locations.

For such, the authors analyzed the characteristic distances traveled by a person
when visiting the most frequented locations in comparison with their overall charac-
teristic distance. The characteristic travel distance of an individual can be estimated
by the radius of gyration, rg , defined as

rg =
√

1

N

∑

i∈L

ni (ri − rcm)2,

where:

• L is the set of visited locations;
• ni is the number of visits to a location i ;
• N = ∑

i∈L ni is the total number of visits to location i;
• ri is the vector of the geographical coordinates of location i ;
• rcm is the center of mass of the trajectory, defined in terms of the visitation fre-
quency of the locations.

In order to characterize the movements to frequently visited locations the authors
defined a k-radius of gyration r (k)

g as an estimate of characteristic trip lengths
computed over the kth most-visited locations. The k-radius of gyration can be
formalized as



180 H.S. Barbosa et al.

r (k)
g =

√
√
√
√ 1

Nk

k∑

i=1

(
ri − r(k)

cm

)2
,

where k is the frequency rank of a location, Nk = ∑k
j=1 n( j) where n( j) represents

the total number of visits to the j th most-visited location.
To assess the capability of the AMS approach in capturing and reproducing plau-

sible structural properties of the mobility networks, we compared the true radii of
gyration rg extracted from the mobile phone data with the AMS radius of gyration,
νg , defined as

νg =
√

1

N

∑

i∈L

ni (ρi − ρcm)2

where in this case, ρi is the 2D coordinates vector of vertex i within the AMS and
ρcm is center of mass of the corresponding trajectory.

Additionally, we define the ν(k)
g equivalent to the k-radius of gyration

ν(k)
g =

√
√
√
√ 1

Nk

k∑

i=1

(
ρi − ρ

(k)
cm

)2
,

where ρi is the 2D coordinates of the vertices corresponding to kth most-visited
location within AMS whereas ρ(k)

cm is the center of mass of the movements between
the top k locations.

From the definitions above, we measured the Pearson correlation between rg and
νg as measured from the mobile phone data. Our objective is to verify if people
with high rg also have a high νg and vice-versa, which would add more supporting
evidence that the AMS is a plausible approximation for the spatial dimension of
human trajectories. Also, we measured the correlations for the corresponding r (k)

g

and ν(k)
g for k = 2, 4, 8.

As one can see, indeed the AMS was able to capture and reproduce reasonable
spatial properties of the mobility patterns. The moderate correlation between the
actual users’ radii of gyration and those extracted from the AMS (boldface values
in Table3) confirms that a graph layout produced by a force-directed algorithm is
able to capture some of the spatial features of human trajectories. It is noteworthy
the fact that our analyzes have shown that although rg and νg are correlated, their
distributions do not have the same functional form.

Therefore, more analyses were necessary to assess the validity of our approach
regardless the differences in the radii of gyration distributions. Then, we applied
the method recently proposed by Pappalardo et al. [16] in order to profile users as
returners and explorers, based on their characteristic travel distances. Additionally,
the authors also proposed the idea of k-returners as those individuals whose charac-
teristic traveled distance is dominated by their top k most-visited locations locations.
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Table 3 Pearson correlation between the actual radii of gyration (rg) and the radii of gyration
extracted from the AMS (νg)

rg r (2)
g r (4)

g r (8)
g νg ν

(2)
g ν

(4)
g ν

(8)
g

rg 1.00 0.71 0.89 0.96 0.51 0.32 0.42 0.46

r (2)
g 0.71 1.00 0.82 0.76 0.36 0.46 0.40 0.38

r (4)
g 0.89 0.82 1.00 0.95 0.44 0.38 0.46 0.45

r (8)
g 0.96 0.76 0.95 1.00 0.46 0.35 0.44 0.46

νg 0.51 0.36 0.44 0.46 1.00 0.70 0.90 0.96

ν
(2)
g 0.32 0.46 0.38 0.35 0.70 1.00 0.82 0.76

ν
(4)
g 0.42 0.40 0.46 0.44 0.90 0.82 1.00 0.95

ν
(8)
g 0.46 0.38 0.45 0.46 0.96 0.76 0.95 1.00

Table 4 Proportion of k-returners in the Mobile Phone data

k = 2 (%) k = 4 (%) k = 8

ν
(k)
g 53.6 83.0 96.8%

r (k)
g 46.9 73.88 90.32

For instance, a 2-returner is an individual whose traveled distances are mainly deter-
mined by the visits to two locations (e.g. home andwork).More precisely, the authors
defined a k-returner as one whose r (k)

g > rg/2.
Hence, we use this approach to classify the Web browsing users in the dataset as

k-returner or k-explorer. Once again we performed the same analyses to the mobile
phone datasets for both rg and νg to serve as reference. Table4 shows that the pro-
portion of k returners for ν(k)

g and r (k)
g . For the Web browsing data, the proportion of

k-returners is 56.3, 93.9 and 99.8% for k = 2, 4, 8 respectively; not far from what
was observed in the mobility data.

Another way to look at the distribution of k-returners and k-explorers in the
population is by analyzing the ratio Sk = r (k)

g /rg for each user in the datasets. This
ratio characterizes to what extent a user is a returner or explorer. Values close to one
corresponds to returners while values close to 0 correspond to explorers. Also, we
measured the Sk ratios to the respective ν(k)

g and νg . Here we are not interested in the
actual Sk distribution but rather to compare the distributions generated from rg and
νg . The closer these distributions are, the stronger is the support for the validity of
our method. As seen in Fig. 4 (middle and bottom rows), the distribution of ratios
when measured from rg and νg are indeed very similar. Moreover, when we look
at the distribution of ratio values for the browsing data, we can see that they have
similar shapes as observed from the actual mobility data, especially for k ≥ 4.

We used a hierarchical clustering algorithm [22] to generate a representation
of more than the 400 most-visited sites (see Fig. 5). We can observe that in some
cases, sites with similar contents were grouped together. For instance, cluster (b) can
be interpreted as the Sharing region, whose sites are predominantly torrent search
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 The ratio between recurrent and overall mobility as estimated by the Sk ratios for k = 2, 4, 8.
a–c Browsing mobility data. We can notice that phone traces (d–f) and BrightKite (Los Angeles)
data (g–i). We omitted from the plot the San Francisco and New York BrightKite data since they
had the same form as in the LA data

Fig. 5 A visualization of the
top 423 hosts generated
based on the browsing
behaviors and visitation
frequencies (high resolution
available on-line http://my.
fit.edu/~hbarbosafilh2011/
webmap.pdf). Label sizes
represent the PageRank of
the vertices in the mobility
network whereas node colors
encode the clusters the
vertices belong

engines and file hosting services. Also, adult sites were all clustered together (c). In
other cases, the clusters representwebsites relatedwith particular set of activities. The
cluster (a) can be seen as the Science region, whose members are mostly scientific
publications and bibliography management systems whereas (d) represents a broad
Development region whose sites range from source code repositories (e.g. Github
and Google Code) to Q&A sites (e.g. StackOverflow). Moreover, (e) seems to be
also related with academic-related activities, since travel sites (e.g. Expedia and Tri-
pAdvisor) and professional social networks (e.g. Linkedin and Xing) appear together
with the conference management system EasyChair.

http://my.fit.edu/~hbarbosafilh2011/webmap.pdf
http://my.fit.edu/~hbarbosafilh2011/webmap.pdf
http://my.fit.edu/~hbarbosafilh2011/webmap.pdf
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4 Discussion and Conclusions

In this work, we investigated patterns of Web browsing behaviors from a human
mobility perspective. Our results strongly suggest that both behaviors are driven
by common fundamental processes, especially when it comes to return visitation
patterns, here shown to exhibit similar scaling properties.

Also, our approach made it possible to classifyWeb users as returners and explor-
ers based on their on-line activities and their corresponding Web browsing mobility
networks. From the aggregation of these mobility networks we created a hierarchi-
cal representation of the most popular websites uncovering many functional clusters
of semantically-related sites, whose proximity could be traced to different users’
activities.

Moreover, our findings were consistently in agreement with the human mobility
literature, adding a small but relevant piece of evidence in favor of a universal law
of human dynamics, possibly rooted the cognitive processes of memory formation
and decision-making, although an ultimate answer is still far from be known. In
other words, this work provides important insights to help us in this journey for
the understanding of the inner-most mechanisms underlying the complex nature of
human behaviors.

Acknowledgments The authors acknowledge the partial support from National Science Foun-
dation (NSF) grant No. 1152306. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
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Modeling Memetics Using Edge Diversity

Yayati Gupta, Akrati Saxena, Debarati Das and S.R.S. Iyengar

Abstract The study of meme propagation and the prediction of meme trajectory are
emerging areas of interest in the field of complex networks research. In addition to
the properties of the meme itself, the structural properties of the underlying network
decides the speed and the trajectory of the propagating meme. In this paper, we
provide an artificial framework for studying the meme propagation patterns. Firstly,
the framework includes a synthetic networkwhich simulates a realworld network and
acts as a testbed formeme simulation. Secondly,we propose ameme spreadingmodel
based on the diversity of edges in the network. Through the experiments conducted,
we show that the generated synthetic network combined with the proposed spreading
model is able to simulate a real world meme spread. Our proposed model is validated
by the propagation of the Higgs boson meme on Twitter as well as many real world
social networks.

1 Introduction

“We ape, we mimic, we mock, we act” is a law universal to all human beings. Imag-
ine a lady in an elevator, heading to the fifth floor of her office. Suddenly, one by
one, every person in the elevator turns back, what does she do now? According to
Elevator Groupthink psycology experiment [1], most of us would turn back in such
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a situation. Usually, most of us become followers of the crowd when faced with
our sense of conformity. If ants follow each other with the help of the pheromone
trail, humans too involuntarily imitate and follow each others’ behaviours and ideas.
Behaviours like obesity, smoking and altruism are also seen to spread through social
networks [2]. Today, Online Social Networks (OSNs) like Facebook and Twitter
provide a platform to fulfill people’s penchant for information sharing, arguing and
mudslinging. Used by approximately 1.4 billion people worldwide [3], Facebook’s
“Read, Like and Share” tradition has today become a way of living. Understand-
ing these spreading phenomena can help us in diverse ways such as accelerating
the spread of useful information i.e. health related advices or disaster management
related announcements as well as for viral marketing of products and memes. Pre-
dicting the trajectory of a meme’s propagation in a network can also prevent the
spread of malicious rumors and misinformation. Social networks play an instrumen-
tal role in the spread of influence in today’s world. Hence, contagion prediction
models are an extensively studied field in complex networks research. Such models
evolve frequently with time, aiming to depict real world information propagation
more accurately. Initially, meme propagation models were inspired from compart-
mental epidemiological models [4]. These models [5] were too simplistic and did
not consider the role of edges in the spreading of information. Later on, the advent
of independent cascade [6] and linear threshold models [7] proved seminal and these
became the standardised models for meme propagation. However, most of these
models did not take into consideration the network structure and the calculation of
parameters for these models also remained a challenge.

Consider an anecdote about a small child Bob who went to visit the theme park,
Six Flags Magic Mountain in California, with his parents. Bob got lost in the Fright
Fest, which is the biggest and most terrifying maze at the theme park known for its
complex spider-web like structure. Confused by the many turns the maze took at
every step, poor Bob could not find his way out of the Fright Fest. When Bob did not
return, his worried parents contacted the park authorities for help. These authorities
having complete knowledge about the structure of the maze and the possible paths
that could be traversed by the players, could easily locate Bob. Similarly, real world
networks also have a complex yet distinct structure and if one could understand this
structure and estimate the paths that can be taken by the meme in its trajectory, could
she also not behave like the park authorities in the above analogy? In connection
with the above anecdote, the knowledge of a network’s structure is important for
understanding meme propagation. It is known that the real world social networks
have a very well defined structure. We employ this well known structure for the
simulation of a meme. The major contributions of the paper are:

1. Generation of an artificial synthetic network that mimics a real world social
network in terms of network structure.

2. We propose a spreading model for meme propagation based on the structure of
the network. This model is based on the difference in spreading probabilities of
different edges which is recognised from the network itself.
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The proposed synthetic network and spreading model give a synthetic simulation
environment which serves as a test-bed to study meme propagation patterns. Further,
it gives a way of organising the edges in an hierarchy based on varying probabilities
of information transmission across these edges. We validate the proposed spreading
model against the real world spreading of the Higgs boson meme on Twitter. If one
could extract the structure of offline social networks, our framework can be used for
understanding a wide range of phenomena on offline networks as well in addition
to online networks. In addition to controlling information flow on OSNs, we can
decrease the increasing behavioral spreading of obesity and depression in the world
and promote altruism and positive movements. Inspired from the diversity of edges
in a social network, the paper lays light on a novel aspect of looking at information
propagation.

The rest of the paper is organised as follows: Sect. 2 describes the related work.
Section3 explains the synthetic networks in addition to describing the real world
networks used for simulation. The network structure based spreading model is pro-
posed in Sect. 4. Section6 is devoted to results and discussion. Section7 concludes
the paper alongwith the future work.

2 Related Work

An enormous amount of work has been done to study the information propagation
pattern on an online social network [8, 9]. Initially, memes in a social network
were considered analogous to a virus in a biological network [4]. As a result, most
information spreading models were inspired from compartmental epidemiological
models like SIS and SIR models [5] introduced in 1989. However these models
assumed a homogenous mixing of people constituting the population and did not
take into account interactions between the individuals. Later, independent cascade
(IC) [6] and linear threshold (LT) [7] models were investigated which are now used
as the standard models for information propagation [10]. However, these models did
not consider factors like network structure and model simulation parameters. There
were some studies that predicted the parameters associated with the information
propagationmodels [11], but these are largely based on the utilisation of the past data,
obtaining which is a difficult process. Studying considering the impact of network
structure on a meme’s propagation provide a relative view of the meme spread. For
example, the spread of epidemics is faster on scale free networks as compared to the
random networks due to the presence of hubs [12]. Zhang et al. presents a stochastic
model for the information propagation phenomenon [13]. Studying the information
propagation may help the scientists in a number of ways like halting the spread of
misinformation [14] and accelerating useful information [15] through a network.

Meme Virality prediction is an active research area in social network analysis
[16, 17] and meme propagation models can be used extensively in fields like Viral
Marketing. Viral Marketing can be done by targeting a set of nodes in a network as
done by Kleinberg et al. in their paper on influencemaximisation [18, 19]. Influential
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spreaders play a significant role in information propagation as shown by Kitsak et al.
in their work [20].Meme virality can not only depend on network structure and nodes
in a network, it seems to be intuitive that meme content also has a role to play in the
meme becoming viral [16, 17]. Though most studies consider nodes in their study
of meme virality, we consider the property of edges in the spread of information. An
edge connecting a vulnerable node to an influential node may have more impact as
compared to a vulnerable node to another. Our study takes the diversity of edges into
consideration and then probes into the meme pattern that can be formed.

3 Generation of Networks for Meme Simulation:
SCCP Networks

It has been observed that most of the social networks are scale free and can be
generated by the preferential attachment model. Further, these networks have com-
munities because of the phenomenon of homophily that leads to the formation of
dense clusters in the network. We also consider one more meso scale characteristic
in the formation of network- core-periphery structure. It has been shown that the
scale free networks possess an implicit core-periphery structure. Considering these
3 characteristics, we have tried to simulate real world networks via SCCP networks
which show properties like Scale-free structure, presence of Communities and Core-
Periphery structure. We introduce a modification to the algorithm [21] employed by
Wu et al. to generate these synthetic networks. The modified algorithm can be found
in detail in [22]. There is an implicit core-periphery structure in the generated net-
work. It follows from the work done by Della et al. [23]1 which proves the existence
of core-periphery structure in scale free networks.The modified algorithm generates
synthetic scale free networks having a varying number and sizes of communities,
which is a feature prevalent in real world networks.

4 Proposed Spreading Model

Meme propagation on a real world network follows the pattern of a complex con-
tagion. Unlike a simple contagion, the spreading pattern of a complex contagion
depends on factors like homophily and social reinforcement.2 A simple contagion is

1The work shows that scale free networks possess a core-periphery structure. They define
cp-centralisation value which is a measure of the degree to which a network contains a core-
periphery structure. According to this study, the average cp-centralisation value for 1000 instances
of scale free networks with 100 nodes and average degree 4 is 0.668.
2Homophily is the name given to the tendency of similar people becoming friends with each
other. This leads tomore number of ties between likeminded people and hence leads to the formation
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like an infectious disease which spreads with equal probability across all the edges,
while a complex contagion spreads with different probabilities depending on the
factors like social reinforcement and homophily [17]. In addition, user influence
also plays a prominent role in meme propagation. We take into consideration all
these factors in modeling the diffusion of a meme permeating through the ties in the
network.

Our model is based on two key ideas:

1. Diversity in Tie Strength: “Birds of the same feather flock together”. We are more
engaged and connected with the people in our own community as compared to
people from other communities [24]. Hence, the probability associated with the
edges connecting people of the same community should be higher than the edges
connecting people of different communities. This observation gains motivation
from the theory of weak ties [25].

2. The social status of nodes: The social influence of a person in a network plays a
big role in acceptance of information propagated by that person. A person’s social
status also decides if that person is vulnerable to adopting information. Simply
stated, lower the status, higher the vulnerability and vice versa. Higher the status,
more the influence and vice versa.

Because of the presence of core-periphery structure in SCCP networks, there are
two kinds of nodes in a SCCP network: core nodes and periphery nodes (periphery
nodes are further divided into many communities). Initially, all the nodes are unin-
fected and a node turns infected as soon as it adopts a meme.We call an infected node
u, the sender and an uninfected neighbour of u say v, the receiver of an infection.
The probability of infection transmission across an edge depends on the types of
both nodes—the sender and the receiver. In our model, the probabilities of infection
across edges are divided into five categories:

Pcc, Pcp, Ppc, Ppp0 , Ppp1

Here, ‘P’ represents probability. The type of edge is represented by the subscript.
The subscript’s first alphabet denotes the type of sender node and second alphabet
denotes the type of receiver node. ‘c’ represents core, ‘p’ represents periphery. 0
in the subscript denotes same community membership of sender and the receiver
node, while 1 represents sender and receiver belonging to different communities.
We worked towards predicting the most plausible order for these edge probabilities,
which is initially proposed to be as: Pcc > Pcp > Ppp0 > Ppp1 > Ppc.

Our model can be considered as an extension of the simple cascade model, with
a slight change in the definition in every iteration, each infected node tries infecting
its uninfected neighbours in accordance with the above probability hierarchy.

(Footnote 2 continued)
of communities in the network. Social reinforcement is the phenomenon by which multiple expo-
sures of an information to a person leads to him adopting it. Social reinforcement and homophily
tend to block the information inside one community.
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5 Datasets

In addition to theSCCPnetworks,wehaveused anumber of other realworld networks
to simulate meme’s spread. These datasets are listed in Table1. For the simulation
of our spreading model, we have considered the two most widely used online social
networks- Facebook and Twitter having approximately 1371 and 271 million users.
For comparing our complete framework, we use the Higgs boson meme propagation
information on Twitter (dataset1). The dataset 1 gives a complete picture of a meme
spreading on an online social network along with the information “who infected
whom at every step . All these considered datasets are the examples of SCCP kind of
networks. We have picked the datasets for the most popular social networking sites.
Furthermore, the datatset of Twitter in addition to the network, also gives the retweet
information of the Higgs boson meme which is used to validate the spreading model.
A detailed explanation of these datasets is given below.

We detect communities in datasets 1(a), 2 and 3 using fast greedymodularity opti-
mization algorithm. This algorithm is given by Newman et. al. [29] and is used to
detect community structure for very large graphs.We also find out the core-periphery
structure for all the above listed datasets using k-shell decomposition algorithm. We
assign a coreness value to each node equal to the shell value assigned to it by the
algorithm. Then, we pick top 10% of the nodes having highest coreness values and
call them the core nodes. The remainder of the nodes are termed periphery nodes.

Table 1 Datasets used for experiments

Dataset Specification

Dataset 1(a): This dataset is an induced directed unweighted subgraph on Twitter users
who were involved in any of the activities (reply, retweet, or mention)
regarding the Higgs boson meme.a [26] It is an undirected unweighted
graph containing 456631 nodes and 14855875 edges

Dataset 1(b): This is a directed weighted graph between the Twitter users who were
involved in retweeting [27] of the Higgs Boson meme. There is an edge
from B to A if A retweets B. This graph contains 425008 nodes and
733647 edges. In datasets 1(a) and 1(b), the tweets posted in Twitter about
this discovery between 1st and 7th July 2012 are considered

Dataset 2: This dataset is an undirected unweighted induced subgraph on Facebook
with 4039 nodes and 88234 edges [28]

Dataset 3: This dataset is an induced undirected unweighted subgraph on Twitter
with 81306 nodes and 1768149 edges [28]

Dataset 4(a): These datasets have been derived from the algorithm proposed in the
previous section. This is a SCCP network on 65800 nodes, 591750 edges
and 11 communities

Dataset 4(b): This is a SCCP network on 4000 nodes, 170314 edges and 11 communities

Dataset 5 This is an Erdos-Renyi graph on 4000 nodes and 34650 edges
aHiggs boson is one of the most elementary elusive particle in modern physics. A meme in Twitter
is considered to be a Higgs Boson meme if it contains at least one of these keywords or tags: lhc,
cern, boson, higgs
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6 Experiments and Results

6.1 Spreading Model Validation

Our model was validated using datasets 1(a) and 1(b), where 1(a) gives us the infor-
mation about the structure of a social network and 1(b) is the cascading pattern of
a meme over 1(a). Let the dataset 1(a) be represented by G(V, E). Based on the
structure of G, we partition its nodes in two subsets C and P . C is the set of core
nodes and P is the set of periphery nodes such that C ∪ P = V and C ∩ P = ∅. We
also associate a variable δi j with each edge Ei j . δi j = 1 if nodes i and j belong to the
same community, else 0. We divide the edges in the retweet network (dataset 1(b)) in
four categories based on the types of users an edge is connecting. These categories
are as follows:-

1. Ecc = {Ei j ∈ E : (i ∈ C) ∧ ( j ∈ C)}
2. Ecp = {Ei j ∈ E : (i ∈ C) ∧ ( j ∈ P)}
3. E pc = {Ei j ∈ E : (i ∈ P) ∧ ( j ∈ C)}
4. E pp = {Ei j ∈ E : (i ∈ P) ∧ ( j ∈ P)}

• E pp0
= {Ei j ∈ E : (i ∈ P) ∧ ( j ∈ P) ∧ δi j = 1}

• E pp1
= {Ei j ∈ E : (i ∈ P) ∧ ( j ∈ P) ∧ δi j = 0}

The types of nodes for 1(b) are extracted from its main graph 1(a).
In retweet networks, the weight of an edge from A to B specifies the amount

of information flowing from A to B (number of times B retweeted a message from
A). Therefore, more the weight, higher the probability of information transmission
across that edge. We calculate the following weights from the above graphs:

Let W (Ei j ) be the weight of an edge from node i to node j and Nxy represent the
type of edges Exy where x and y are the types of nodes hence having the possible
values p and c. Then, we calculate Wxy ,the sum of weights of all the edges from a
node of type x to a node of type y.

1. Wcc =
∑

(W (Ei j ))/Ncc such that Ei j ∈ Ecc

2. Wcp =
∑

(W (Ei j ))/Ncp such that Ei j ∈ Ecp

3. Wpc =
∑

(W (Ei j ))/Npc such that Ei j ∈ E pc

4. Wpp =
∑

(W (Ei j ))/Npp | such that Ei j ∈ E pp

• Wpp0
=

∑
(W (Ei j ))/Npp0 such that Ei j ∈ E pp0

• Wpp1
=

∑
(W (Ei j ))/Npp1 such that Ei j ∈ E pp1

The weights obtained show that the observed order is the same as we have pro-
posed earlier thereby validating the ordering we proposed i.e. Wcc > Wcp > Wpp0

>

Wpp1
> Wpc.
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6.2 Simulation Results

We introspect on the extent aswell as rate of infection of the network, while propagat-
ing a meme on it. We simulate EBH as well as uniform spreading model on a number
of datasets and report the results. For the simulation of our proposedmodel,we use the
following probabilities: E pc : 0.00001, E pp0

: 0.0003, E pp0
: 0.0001, Ecc : 0.006,

and Ecp : 0.004. For the simulation of uniform spreading model, every edge is con-
sidered to have an equal probability of infection i.e. Ei j = 0.0002, where i and j are
the endpoints of an edge. We have chosen these probabilities such that we can visu-
alise the spreading pattern of a meme to the best possible extent. For all the figures
in this section, X axis represents the number of iterations and Y axis represents the
cumulative number of nodes infected up to that iteration. The results of this paper
are structured in three parts.

6.2.1 Meme Spreading Patterns on Different Networks
Using the EBH and Uniform Spreading Models

Figure1(3) shows the actual spreading pattern of the Higgs boson meme which
indicates that in the real world, a meme does not have a constant growth rate. The
rate remains constant upto some point, afterwhich the popularity of ameme shoots up
steeply and then slowly fades, giving rise to a sigmoid curvewhich is characterised by
the equation: F(x) = 1/(1 + e−kx ) Fig. 1(1, 2) shows the simulation of our proposed
spreading model on the SCCP network and two real world networks of Facebook
and Twitter and Higgs boson Twitter network respectively. It can be seen that in
both these cases, the curve for the spreading pattern is seen to be sigmoidal just
like Fig. 1(2). Figure1(5, 6) shows the difference in the spreading patterns when the
simulation is done through an uniform spreadingmodel and ourmodel respectively. It
can be seen that the simulation through an uniform spreading model is also a sigmoid
function but has a lesser value of parameter x. Figure1(4) shows the simulation of
the proposed spreading model on 3 different kinds of networks. Despite simulating
the EBH spreading model on all the three graphs, the value of x is observed to be
lower only in the case of random networks.3 Thus we can say that the sharp S shaped
infection pattern is observed only for the SCCP kind of networks. These graphs show
that the presence of both- a SCCP kind of network as well as EBH spreading model
are required to mimic a real world meme propagation.

3In the case of random network, even though the declared 10% core nodes have a high probability
of infecting their neighbours, the connections between the core nodes are not dense enough to result
in an overshoot in the number of infected nodes.
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Fig. 1 Spreading patterns on different kinds of networks and its comparison to real world data—1:
Spreading patterns on datasets 3 and 4(a) 2: Spreading pattern on dataset 1(a) 3: Actual spreading
pattern of Higgs bosonmeme(dataset 1(a) and 1(b)) 4: Comparison between the proposed spreading
model on datasets 2, 4(a), and 5 5: Spreading patterns for dataset 4(a) 6: Proposed and uniform
spreading models on dataset 3

6.2.2 Explanation of the Plateau Structure Observed
in the Meme Pattern

Figure2(3) shows the pattern of infection of core nodes and periphery nodes for
the actual Higgs boson meme. As in the previous case, all iterations are considered
to be of equal length (10 timestamps). We observe the cumulative number of core
nodes and periphery nodes infected in every iteration. When we started infection
from periphery nodes (Fig. 2(1)), the plateau structure of the curve continues till a
core node is infected and then the infection shoots up suddenly. Figure2(2) shows
the plot when the infection is started only from the core nodes. We can see that in this
case, infection shoots up immediately without the plateau structure. This solidifies
the observation that the number of periphery nodes infected increases sharply as
soon as a sufficient fraction of the core nodes gets infected.
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Fig. 2 Spreading patterns starting from different types of seed nodes and its comparison to real
world data—1: Proposed spreading model on dataset 4(a) where spreading starts from periphery
nodes 2: Proposed spreading model on dataset 4(a) where spreading starts from core nodes 3:
Actual spreading pattern for theHiggs bosonmeme(fromdataset 1(a) and 1(b)) 4: Spreading patterns
starting from single community 5: Spreading patterns starting frommultiple communities 6: Actual
spreading pattern for the Higgs boson meme(from dataset 1(a) and 1(b))

6.2.3 Effect of Communities and Core Nodes on Meme Virality

InFig. 2(4),we start the infection froma single community and show that the infection
spreads in multiple communities only when the meme infects the core sufficiently
and gets viral. Figure2(5) shows the spreading pattern when the infection starts
from multiple communities. But the meme becomes viral only after the infection
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of core nodes. So, whether the infection starts from single community or multiple
communities, the infection of core nodes is sufficient to predict its virality. Figure2
shows the actual spreading pattern of Higgs boson meme.

7 Conclusion and Future Work

A lot of researchers are working towards proposing the models that can predict the
pattern of meme spread in a real world network today. A number of models have been
proposed for this ranging from simple epidemiologicalmodels to the standardmodels
like Linear Threshold and Independent Cascade. Most of these models do not give
an approach to identify the parameters required to simulate them. Moreover, they are
proposed for all kind of networks though they can be improved upon and specialised
for a particular kind of network. Hence, improving these models to better simulate
a meme propagation is possible. It is shown that, together, SCCP and EBH models
effectively simulate real world meme propagation. The sigmoid curve with a sharp
slope is shown to be the characteristic pattern of an internet meme. Furthermore, the
importance of core nodes in marking the virality of a meme is emphasised. It is also
shown that infecting multiple communities also require the infection of core nodes.
The study is validated with the Higgs boson meme spreading on Twitter in addition
to various other real world networks. This study opens a new direction of considering
edge diversity in meme propagation models. One can extend our problem to predict
the exact values of the probabilities influencing the meme propagation. This can
greatly help in prediction of a future cascade pattern. If such cascades could be
predetermined then we could exert a control on our otherwise ever changing social
networks. Not only could preventive checkpoints be placed in the network but also
useful information could be accelerated through the network by using the predicted
meme trajectory.
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and Giovanni Neglia

Abstract Network growth and evolution is a fundamental theme that has puzzled
scientists for the past decades. A number of models have been proposed to capture
important properties of real networks. In an attempt to better describe reality, more
recent growth models embody local rules of attachment, however they still require
a primitive to randomly select an existing network node and then some kind of
global knowledge about the network (at least the set of nodes and how to reach
them). We propose a purely local network growth model that makes no use of global
sampling across the nodes. The model is based on a continuously moving random
walk that after s steps connects a new node to its current location, but never restarts.
Through extensive simulations and theoretical arguments, we analyze the behavior
of the model finding a fundamental dependency on the parity of s, where networks
with either exponential or a conditional power law degree distribution can emerge.
As s increases parity dependency diminishes and the model recovers the degree
distribution of Barabási-Albert preferential attachment model. The proposed purely
local model indicates that networks can grow to exhibit interesting properties even
in the absence of any global rule, such as global node sampling.
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1 Introduction

The growth and evolution of networks is a fundamental problem in Network Science
specially in the light that networks are constantly changing over time. Explaining
how and why different real networks grow and evolve the way they do has kept
researchers busy for the past decades. Not surprising, various mathematical models
for network growth and evolution have been proposed in the literature, either ad-hoc
models tailored to specific domains, or general models aiming to capture general
principles. A celebrated general network growth model is the Barabási-Albert (BA)
model [1] which embodies the principle of preferential attachment found in various
real networks.

A recognized drawback of most proposed network growth and evolution models
is the assumption of global information about the network [2, 4, 5, 8]. For example,
the BA model has a primitive to randomly select a node from the existing network
according to the degree distribution. To relax such assumption, models that attach
new nodes and edges to the existing network using local attachment rules, such as the
Random Walk Model [9, 10], have been proposed. Clearly, random walks require
knowledge of the current node degree and its neighbors, a much more localized
information. Moreover, it seems more reasonable that new nodes connect to nearby
nodes (through some local process) rather than selecting new neighbors from the
entire population (through some global process). However, the RandomWalkModel
studied in [9, 10] and others [5, 8] still require a primitive to randomly select a node
from the network (for the purpose of restarting the walker, for example) and are
thus not purely local, because they need to know the number and the identity of all
network nodes as well as a way to reach them. Such models have local attachment
rules, but global “entry point” selection. More recently, models that have no global
primitives have started to be explored [6, 7]. A drawback of these other models is
that they rely on an initial network already containing all nodes such as a lattice or
a regular tree, that is then modified according to local rules, and thus are technically
not growth models.

In this work we propose and explore a network growth model that is purely local,
requiring no global selection over the nodes or any initial network. The model works
as follows:

0. Start a network with a single node with a self-loop and place a random walk on
this node.

1. Let the random walk take exactly s steps.
2. Connect a new node to the node where the walker resides.
3. Stop if the number of nodes in the network is n, otherwise go to Step 1.

Intuitively, the random walk moves around continuously and after every s steps a
new node is added and connected to its current location. The new node immediately
becomes part of the network and the walker sees no difference between it and any
other node. Note that the model has two parameters s and n and grows an undirected
tree (apart from the self-loop at the initial node) since every new node starts with
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Fig. 1 Examples of sample path for network growth for s = 1 (top) and s = 2 (bottom). The red
square denotes the walker position. The snapshots represent the growing network just after the new
node is connected

degree one. Moreover, the random walk is uniform on the neighbors and is never
restarted, thus its nameNRRW(NoRestart RandomWalk)model. Figure1 illustrates
a sample path of network growth with s = 1 and s = 2. Can such purely local model
give rise to interesting network structures such as networks that exhibit a power-law
degree distribution?

Interestingly, we uncover various non-trivial features of this model such as the
fundamental dependency on the parity and magnitude of s and its relationship to
the degree distribution. If s is odd and small we find that networks generated by the
model tend to have very short-tailed degree distribution and very long distances. On
the contrary, if s is even and small, networks exhibit a special kind of power law
degree distribution (to be formalized later) and very short distances! As s increases
the effect of parity decreases and networks exhibit a heavy-tailed degree distribution.
Interestingly, with s large enough, the observed degree distribution follows a power
law with exponent identical to the network generated by the BA model, recovering
the effect of preferential attachment. We also rigorously prove that for s = 1 the
random walk is transient and the degree of every node is bounded from above by a
geometric distribution. Other interesting features will be highlighted in what follows.

Themodel here proposed is very related to theRandomWalkModel [9]which also
allows a randomwalk to take s steps before connecting a newnode.Thekeydifference
is that in [9], after a new node is attached to the network, the randomwalk is restarted
uniformly at random across all existing nodes in the network. Our randomwalk never
restarts, and is therefore a purely local model. Interestingly, the authors of [9] show
(through simulations and approximations) that their model is closely related to the
BA model and yields a power law degree distribution independently of s. However,
recently this finding has been questioned and for s = 1 it was mathematically proven
that this is not the case [3]. Our model and findings contributes to this debate and
possibly sheds light on how both results could be reconciled (more on this on Sect. 6).
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The remainder of this paper is organized as follows. Section2 discusses the model
and its intuitive behavior, as well as the connection with prior works. Section3
presents the evolution of node degree induced by the model. Section4 analyzes the
depth of the tree generated by the model. Section5 presents our theoretical findings
for the case s = 1, showing the transient nature of the model in this case. Finally, we
summarize our findings and present a brief discussion in Sect. 6.

2 Network Growth Model

As presented in Sect. 1, NRRW (No Restart RandomWalk) model can be interpreted
as a simple random walk that attaches a new node to its current location every s
steps. Similar proposed random walk models for growing networks assume that the
random walk restarts either after connecting a new node or adding some number of
edges to the new node [9, 10]. A restart consists of randomly selecting a node from
the existing network (usually uniformly) and placing the random walk on that node.
Despite the similarities, the lack of restarts makes NRRW fundamentally different
frommodelswith restart. In particular, the restart significantly reduces the correlation
between consecutive node additions since it is very unlikely that the random walk
will visit the previous new node when walking to add a new node. Intuitively, the
random walk loses memory at every restart. Moreover, restarts have the drawback
of assuming knowledge of all network nodes and random access to any such node,
and is thus not a purely local growth model.

What is intuitively the behavior of NRRW? In a sense, when s is large the random
walk will have little memory between node additions. However, this behavior is
different from restarts since the random walk will not find itself on a node chosen
uniformly at random but on a node chosen randomly proportional to its degree.1

Thus, when s is large the NRRW seems similar to the BA model since new nodes
connect to random nodes chosen proportionally to their degree. However, since s is
fixed and the network grows, will NRRW indeed exhibit a behavior similar to BA
model when s�n and then s will finally become small in comparison to the network
size?

What about small values for s? Intuitively, the random walk will frequently stum-
ble over the newly created nodes. Interestingly, this local behavior depends funda-
mentally on the parity of s. If s = 1 then the random walk can always walk to the
newly created node and add a new node to it. Such behavior is just not possible if
s = 2 and the walker is not on the root. This qualitative difference is not limited to
s = 1 and s = 2. When s is odd the walker can always land to the most recently
added node after s steps and then add a new node. For s even, this is impossible
unless the walker does not traverse the loop at the initial node.

1Recall that the steady state distribution of a randomwalk on a fixed network is given by di /
∑

j d j ,
where di is the degree of node i .
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The above observation justifies why in the NRRW model we consider a single
node with a self-loop as a starting point. If this was not the case, for any s even the
random walk would only add nodes to the original node, trivially constructing a star
since it can never step on a newly created node. The loop allows a change of “parity”
with respect to the levels of the tree where new nodes can be added. In fact if the
random walk is at level k of the tree and s is even, the random walk can only add
new edges at the levels k + 2h for h = −� k

2�, . . . ,−1, 0, 1, 2, . . . until it does not
traverse the loop. For s odd this is not necessary as the walker can step on a newly
created node to be able to add to nodes in any level of the tree without returning to
the root. Thus, yet another fundamental difference between s even and odd.

Will these differences between small and large s and even and odd s manifest
themselves in structural properties of the trees generated by the model? In particular,
will the degree distribution fundamentally depend on s? In what follows we explore
the degrees and other properties of the trees generated by the model showing in fact,
that s plays a key role.

2.1 Simulations

In order to study the model we designed and implemented an efficient simulator (in
C++) for the NRRW model which has as parameters s, n and r , with r denoting
the number of independent runs. For each run, we start with a single node with a
self loop, move the random walk s steps, connect a new node to its current location,
and repeat. We collect statistics for the various properties merging the results across
the r simulation runs, such as degree distribution (fraction of nodes with degree k
across all runs). The worst case time complexity of a simulation run is O(sn log n)

but the amortized time complexity is O(sn), as we use a growing vector to represent
the neighbors of a node that doubles its capacity when needed. Thus, a walker step
requires Θ(1) time and a node addition takes O(1) amortized time.

3 Degree Behavior

In this section we study the degree distribution of NRRW through extensive simula-
tions illustrating its behavior and dependencies. Figure2 shows the Complementary
Cumulative Distribution Function (CCDF) of nodes’ for various values for s. Sur-
prisingly, when s is small (between 1 and 8) the respective degree distributions are
fundamentally different, exhibiting a kind of power law for s even and an exponen-
tial tail for s odd. Note that when s = 1 we do not observe nodes with degree larger
than 40 while for s = 2 a non-negligible fraction of nodes have degree greater than
105. We also observe opposite trends in the degree distribution as s increases. For s
odd, increasing s yields a distribution with heavier tails, while for s even increasing s
yields a distribution with a lighter tails. As s increases into a medium range (between
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Fig. 2 Empirical degree Complementary Cumulative Distribution Function (CCDF) for various
values of s in log− log scale (n = 106, r = 103)

15 and 64) the trends continue and the two distributions approach each other. For even
larger s (between 127 and 256) the degree distributions become very close, being
almost indistinguishable. Interestingly, with large s the degree follows a power law
distribution, suggesting that the effect of even s value dominates the dynamics.More-
over, for large s the CCDF exhibits a power law with exponent approximately −2 as
it is also the case for the BAmodel which is based on linear preferential attachment.2

This supports our initial intuition that when s is large, the random walk samples
nodes (adding a new node and connecting to it) with probability proportional to their
degree, behaving similarly to the BA model.

Figure3 shows the degree distribution for s = 2 but over different values for n.
Interestingly, note that independent of n the degree distribution exhibits the same
power law exponent. However, as n increases the fraction of nodes greater than k
becomes smaller for any fixed k > 0 (with the exception of the cut-off regime which
occurs when k is near n). This implies that the fraction of nodes with k = 1, the mini-
mum degree, is increasing with n. This is clear by observing d = 1 (leftmost point in
x-axis) and noting that the fraction of nodes with degree greater than 1 is decreasing

2Recall that if D follows a power law distribution, then P(D = k) ∼ k−α where α > 1 is the power
law exponent, and it follows that P(D ≥ k) ∼ k−(α−1). Thus, the CCDF has an exponent that is
one unit less than the PDF.
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Fig. 3 Empirical degree CCDF for various values of n in log− log scale (top plots). Empirical
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with n. Note that such behavior does not occur for s = 1 which maintains its degree
distribution as n increases (the dots for different n values are barely distinguishable
in plot).

If for s = 2 the fraction of nodes with degree 1 increases and converges to 1
as n goes to infinity, then we cannot claim that the degree distribution follows a
power law. However, we can consider the degree distribution of the nodes that do
not have degree 1. In particular, the conditional degree distribution, conditioned on
D > 1, is shown in Fig. 3. Note that the conditional degree distribution does not show
dependance on n and moreover seems to follow a power law. This finding is quite
interesting since the fraction of nodes with degree 1 can converge to 1 (as n → ∞)
while the remainder of nodes can still follow a power law. This may shed new light
on the contrasting results in [3, 9]. We return to this discussion in Sect. 6.

Figure3 also shows the fraction of nodes with degree greater than 1, P(D > 1), as
a function of n for different even s values (for s odd, it does not depend significantly
on n as shown in the top right part of Fig. 3 for s = 1). Note that for small s the
fraction goes to zero reasonably fast (and thus, the fraction of nodes with degree 1
goes to one). As s increases the rate at which P(D > 1) decreases also decreases.
Note that for large s (128 or 256) this decrease is barely noticeable, despite being
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present. Interestingly, as s odd increases, P(D > 1) decreases but without showing
any dependency on n. When s = 257, P(D > 1) approaches the value shown in
Fig. 3 for s = 256 (result not shown due to space constraints).

As shown, the NRRW model has a very particular behavior with respect to the
degree distribution. In Sect. 6 we provide a further discussion with a few conjectures
for its asymptotic behavior with n.

4 Level Behavior

Wenow investigate the level of the nodes on the trees generated by theNRRWmodel.3

As we have shown above, the model dynamics has a fundamental dependence on the
parity of s, specially when s is small. Indeed, this dependence also manifests itself on
the level of the nodes. Figure4 shows the level distribution (fraction of nodes at level
larger than �) for a few small values of s separated into odd and even, respectively.
The level distribution for s even decreases very fast. Note that although n = 106,
when s = 2, 90% of nodes are at level 4 or less and no node is at level 7 or higher.
As s even increases the level distribution decreases relatively slower, with 90% of
nodes found at level greater than 4 when s = 8. Still, no node is found at level greater
than 10. The behavior is completely different for s odd, and the level distribution
seems to be uniform (straight line on a linear-linear plot). For s = 1 the distribution
has the heaviest tail with about 4 nodes per level, giving rise to 2.5 · 105 different
levels. For s = 7 there are about 40 nodes per level, giving rise to 2.5 · 104 different
levels. Interestingly, as s even increases the level distribution becomes heavier while
as s odd increases the level distribution becomes lighter. Figure4 also shows the
level distribution for large s. Indeed, as s increases the level distributions for s even
and s odd become more similar and the dependency on the parity diminishes. This
behavior is similar to what observed for the degree distribution, illustrated in Sect. 3.

Note that from the level distribution we can infer the kind of trees that NRRW
generates. When s is small and even, the trees generated are “fat and short”, with
most nodes near the root and a few with very large degrees. When s is small and
odd, the trees are “thin and long” with few nodes spread across many levels and no
node with large degree. As s increases, the two kind of trees move in each other’s
direction, becoming more and more similar.

3Recall that the level of node on a tree is given by its distance to the root, and thus the root is at
level zero.
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Fig. 4 Empirical CCDF of the node level for different s values (n = 106, r = 103)

5 Theoretical Findings for s = 1

The numerical simulations with s odd and in particular with s = 1 suggest that trees
grow in depth as the number of nodes increases. In particular, the growth in depth
seems linear on the number of nodes. This is an indication that the random walk is
continuously pushing the tree to lower depths just never to return to its origins. In a
nutshell, the random walk is transient and visits each node in the tree only a relative
small number of times, with high probability. The following Theorem rigorously
formalizes this intuition.

Theorem 1 In the NRRW model with s = 1, the number of visits to a node is sto-
chastically dominated by 1 plus a geometric random variable with support on Z>0.

Proof We consider here that the initial network consists of a single node with no
self-loop. This simplifies the notation and does not compromise the main argument.

Let r denote the initial node of the growing network hereafter referred to as the
root of the tree (at any step the growing network is a tree) where the walker resides
at time zero. Note that r is the only node at level zero. Let Xn be the level (i.e. the
distance from the root) of the node visited by the NRRWat step n.We call the process
{Xn, n ∈ Z≥0} the level process. Note that the randomwalk visits r the same number
of times that the level process visits level zero. At step n > 0 the NRRW is in a
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node vn with at least two edges: the one the NRRW has arrived from and the new
one added as a consequence of the NRRW’s arrival. Let dn ≥ 2 denote the degree
of node vn . If vn 
= r , the NRRW jumps from vn to a node with larger level with
probability dn−1

dn
≥ 1

2 and with the complementary probability 1
dn

≤ 1
2 to a node with

smaller level. If vn = r , then the level can obviously only increase. Note that, due
to the fact that degrees keep changing because of the arrival of new edges, the level
process is non-homogeneous (both in time and in space).

We now study the evolution of the level process every two steps, i.e. we consider
the process Yn � X2n . Given that the network is a tree and X0 = 0, the two-step
level process can be seen as a non-homogeneous reflecting ‘lazy’ random walk on
2Z≥0 = {0, 2, 4, . . .}.We denote by pk,h(n) the probability that the level at step n + 1
is h conditioned on the fact that it is k at step n. Although the notation hides it, we
observe that the probabilities pk,h(n) depend on the whole history of the NRRWuntil
step n. The reason to consider the two-step level process is that we can get bounds
on the transition probabilities pk,h(n) that allow a simple comparison with a (biased)
homogeneous random walk. The bounds derived above for Xn lead immediately to
conclude that pk,k+2(n) ≥ 1

2
1
2 = 1

4 for any level k ≥ 0 and pk,k−2(n) ≤ 1
2
1
2 = 1

4 for
k ≥ 2, but we can get a tighter bound for pk,k−2(n). If the NRRW is at level k, all the
nodes on the path between its current position and the root r have degree at least 2.
If it then moves to node v at level k − 1, a new edge is attached to v, whose degree is
now at least 3. The probability tomove from v further closer to the root to a node with
level k − 2, is then at most 1

3 . It follows then that pk,k−2(n) ≤ 1
2
1
3 = 1

6 for k ≥ 2.
We consider now a homogeneous biased lazy random walk (Y ∗

n )n≥0 on
2Z≥0 starting from 0 with transition probabilities p∗

k,k+2 = 1
4 for all k ∈ 2Z≥0 and

p∗
k,k−2 = 1

6 for k ∈ 2Z≥0 and k 
= 0.We show that if (Y ∗
n )n≥0 also starts in 0 (Y ∗

0 = 0),
it is stochastically dominated by (Yn)n≥0. We prove it by coupling the two processes
as follows. Let (ωn)n≥0 be a sequence of independent uniform random variables over
[0, 1]. We use them to generate sample paths for both processes (Yn)n≥0 and (Y ∗

n )n≥0
as follows:

Yn+1 =

⎧
⎪⎨

⎪⎩

Yn − 2, if ωn ∈ [0, pk,k−2(n))

Yn + 2, if ωn ∈ [1 − pk,k+2(n), 1]
Yn otherwise

Y ∗
n+1 =

⎧
⎪⎨

⎪⎩

Y ∗
n − 2, if ωn ∈ [0, p∗

k,k−2)

Y ∗
n + 2, if ωn ∈ [1 − p∗

k,k+2, 1]
Y ∗

n otherwise

where pk,k−2(n) and p∗
k,k−2 are 0 if k = 2. We start observing that if Yn and Y ∗

n have
the same value k, then every time Yn increases also Y ∗

n increases because p∗
k,k+2 =

1
4 ≤ pk,k−2(n). On the contrary if Y ∗

n decreases (as it can happen only for k ≥ 2),
then Yn may decrease or not because pk,k−2(n) ≤ 1

6 = p∗
k,k−2. It follows that if Yn

and Y ∗
n are at the same level, then Y ∗

n+1 ≤ Yn+1.
We are going to prove by induction on n that Y ∗

n+1 ≤ Yn+1 for every n. With a
slight abuse of terminology we say that Yn increases (resp. decreases) if Yn+1 > Yn

(resp. Yn+1 < Yn). We start observing that indeed Y ∗
0 ≤ Y0, because both processes

start in 0. Let us assume that Y ∗
n = h ≤ k = Yn . For all values of h, every time

Y ∗
n increases also Yn increases because p∗

k,k+2 = 1
4 ≤ pk,k+2(n) and then Y ∗

n+1 =
h + 1 ≤ k + 1 = Yn+1. If h ≥ 2, then p∗

h,h−2 = 1
6 ≥ pk,k−2(n) and if Yn decreases
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then Y ∗
n must also decrease (Y ∗

n+1 = h − 1 ≤ k − 1 = Yn+1). It follows that for h ≥ 2
then Y ∗

n+1 ≤ Yn+1. The only case when Yn may decrease without Y ∗
n decreasing is

when h = 0 and k 
= 0, but in this case Y ∗
n+1 = 0 and Yn+1 ≥ 0. This proves that

Y ∗
n+1 ≤ Yn+1 for every n.
Given that Y ∗

n ≤ Yn and both processes start at level zero, the number of visits of
(Yn)n≥0 to level zero is bounded by the number of visits of (Y ∗

n )n≥0 to level zero. The
homogeneous biased lazy random walk (Y ∗

n )n≥0 is transient since p∗
k,k+2 = 1/4 >

p∗
k,k−2 = 1/6. Thus, the probability of the first return time to level 0 is f0 < 1. By the

strong Markov property, the number of visits to level 0 is geometrically distributed
on the set Z>0 with parameter equal to 1 − f0. Since a visit to level zero in (Xn)n≥0

(one level process) implies a visit to level zero in (Yn)n≥0 (two level process), then it
follows that the number of visits of (Xn)n≥0 to level zero is bounded by a geometric
randomvariable and then evenmore so by 1 plus the samegeometric randomvariable.

Now let us consider any node v in the growing network. If the NRWW never
visits v, then the degree of b is 1 and the thesis follows immediately. Otherwise, let
consider the first time the NRWW visits v to be time t = 0 and let consider v to be
the root of the current tree. We can retrace the same reasoning and conclude that the
number of visits to v for t > 0 is bounded by a geometric random variable on Z>0

with parameter equal to 1 − f0. Then the total number of visits to v is bounded by 1
plus such random variable. This concludes the proof. �
Corollary 1 In the NRRW model with s = 1, the degree distribution of any node is
bounded by a geometric distribution.

This follows since the degree of every node equals the number of visits of the random
walk to the node plus 1 (the plus 1 accounts for the fact that any node joining the
network, although not yet visited by the walker, has degree 1).

6 Discussion and Conclusion

Aswe have shown, theNRRWmodel exhibits interesting features that fundamentally
impact the networks it generates. For s = 1 the random walk is transient and node
degree is bounded by a geometric distribution (Theorem 1). For s = 2, the fraction
of nodes with degree 1 seems to converge to 1 as n → ∞. However, the conditional
degree distribution seems to follow a power law. Can such results be made mathe-
matically rigorous? Other interesting questions also emerge from our analysis of the
NRRWmodel. In particular, our numerical simulations seem to indicate that for any
s even, the fraction of nodes with degree 1 will converge to 1 as n → ∞. On the
other hand, our simulations also indicate that this is not the case for any s odd. So
will there be a fundamental difference between a fixed but arbitrarily large even and
odd s? It is hard to imagine that s = 210 and s = 210 − 1 would have fundamentally
different behavior, since in both cases the random walk moves quite a lot before
adding a new node. Of course, any fixed s will be small as n → ∞. Thus, we make
the following conjecture:
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Conjecture 1 For any fixed s even, the fraction of nodes with degree one converges
to 1, as n → ∞. For any fixed s odd, the fraction of nodes with degree one converges
to a number strictly less than 1, as n → ∞.

If true, such conjecture would imply that the degree distributions are also never
identical, for any fixed s even or odd. However, our numerical results indicate that the
conditional degree distribution (conditioned on degree being greater than one) for s
even, seems to converge to a power law as n → ∞. On the other hand, for s = 1 we
have proved that the random walk is transient and degree distribution is bounded by
a geometric distribution (Theorem 1). Can fixed odd s values really generate power
laws? If this is the case, then there would be a phase transition on s, from inducing a
network with degree distribution with an exponential tail (s = 1) to a power law tail.
Despite the numerical results indicating the heavy tail degrees for s = {127, 255},
we make the following conjecture:

Conjecture 2 For any fixed s even, the conditional degree distribution is bounded
from below by a power law, as n → ∞. For any fixed s odd, degree distribution is
bounded from above by an exponential, as n → ∞.

Such conjectures consider that n diverges. In practice n must be finite when
generating a network with NRRWmodel. Thus, for a fixed n, the differences induced
by an even or odd s may diminish as s increases. In particular, the degree distribution
generated by even and odd s values may become arbitrarily close as s increases, as
we have observed in numerical simulations for a fixed n (Fig. 2).

Last, we return to the recent dispute if the Random Walk model with restarts
generates a power law degree distribution, independently of s [3, 9]. It has been
mathematically proved that when s = 1 the fraction of nodes with degree one con-
verges to 1, as n → ∞ [3]. At the same time, simulation results suggest that the
degree distribution follows a kind of power law [9]. We can attempt to reconcile
such findings by leveraging our own findings on NRRWmodel. When s = 1 the new
node is connected to a given existing node u if i) a neighbor of u is selected at the
restart and then ii) the random walk moves to u. A node whose neighbors are all
leaves would be selected with a probability proportional to its degree. Now it has
been shown that when n → ∞ the fraction of nodes that are leaves converges to 1,
then most of the neighbors of a non-leaf node are leaves and this node is essentially
selected proportionally to its degree, similarly to the BAmodel embodying preferen-
tial attachment. Thus, the conditional degree distribution, leaving out degree 1 nodes,
will follow a power law distribution with the same exponent as in the BA model. In
some sense, this reconciles the findings of the two prior works [3, 9].

To conclude, as exemplified above, a fundamental understanding ofNRRWmodel
adds to our understanding of purely local network growth models. In particular,
besides requiring a less strict assumption to operate, models that do not rely on
any global primitive can also generate networks with rich and diverse structural
properties.
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Pseudo-Cores: The Terminus of an Intelligent
Viral Meme’s Trajectory

Yayati Gupta, Debarati Das and S.R.S. Iyengar

Abstract Most memes die soon after they have been released, but only few go
viral and spread worldwide. Identifying the secret recipe for the success of such viral
memes is a very interesting ongoing research question.While many researchers have
attributed the success of a meme to its content and place of origin, we propose taking
into consideration the underlying network structure that the meme propagates on.
In this paper, we induce artificial virality in a meme by intelligently directing its
trajectory in the network. This induction is based upon the spreading power of core
nodes in a core-periphery structure. This paper puts forward two greedy hill climbing
approaches to determine the path froma node in the periphery shell (where thememes
generally originate) to the core of the network. We also unearth specialized shells—
Pseudo-Core, which emulate the behavior of the core in terms of spreading power.
We consider two sets for the target nodes, one being core and the other being any
of the pseudo-cores. We show that our algorithms perform better than random and
degree based approaches and have a worst case time complexity of O(n). The paper
highlights the importance of core-periphery structure in a network and the role of
pseudo-cores in making a meme go viral.

1 Introduction

Behind every viral meme, there is a story. Korean pop star Psy launched a quirky
music video “Gangnam Style” in 2012 which received almost 1 billion views on
Youtube. In India, the song “Why this Kolaveri Di” by Dhanush became an instant
social rage in 2011. It earned more than 10,500,000 Youtube views by November
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2011 and investigating the reasons behind the virality of these videos became a
pressing research question [1]. The unique dance moves, upbeat tone and the visual
nature of the Gangnam style were considered instrumental in making the video viral
[2]. Similarly “Why this Kolaveri di” gained a cult status because of its distinct
“Tanglish1” style. These memes required only a few seconds to absorb the attention
of the viewer because of their novel characteristics.

Though at first glance it does seem that novelty is the only factor responsible
for making a meme viral. But then, on 8 January 2010, a Californian resident, Paul
“Bear” Vasquez uploaded a video of a double rainbow. It was a video exclaiming
about the double rainbow he had witnessed in the front yard of his home. What was
surprising is that this seeminglymundane video got close to 23million views in 2010.
If only the unique intrinsic characteristics of a meme are responsible in making it
viral, what made this not so innovative “Double Rainbow” video go viral?

Kevin Alloca, Youtube’s trends manager elegantly addressed this question in his
TED talk—“WhyVideos goViral ?” [3]. He highlights the importance of tastemakers
in introducing a video to the crowd and make it viral. Tastemakers are the people on
Youtube having a large number of followers. Kevin showed that both the videos Dou-
ble Rainbow” and “Friday” became popular after being referred by the tastemakers
Jimmy Kimmel and Michael Nelson respectively. A broader study by Kitsak et al.
showed that the influence of a node can be better marked by the coreness [4]. Core-
ness of a node takes into account both the degree and the influence of its neighbours
in account. Kitsak et al. identify the core nodes in a network and term these nodes
as superspreaders.

If we could hit the core of a network with the meme traversing over the network, it
will quickly go viral. Hence, we probe upon the question: “How can we intelligently
target links in the network to quickly reach the superspreaders in a network?”.

1.1 Superspreaders : The Destination for a Viral Meme

In our proposal, we have visualized the social network as having a meso scale char-
acteristic called as core-periphery structure. The notion of a core-periphery structure
was defined by Borgatti and Everett in their seminal paper [5] in 2000.2 It has been
proved that most networks existing in the nature possess core-periphery structure
[6].3 This result has far reaching consequence on meme virality.

High status people enjoy higher privileges, hence becoming well connected
amongst themselves as well as with the rest of the network. This makes them easily

1portmanteau word of Tamil and English.
2The core was defined as a set of nodes densely connected to each other having a large number of
connections to the periphery nodes. On the other hand, the periphery nodes although connected to
the core nodes are largely disconnected amongst themselves.
3Most of the networks in real world are scale free [7].Works done byDella et al. [8] and Liu et al. [6]
prove that scale-free networks usually possess a core-periphery structure. Therefore by transition, it
becomes evident that a social network is a scale free network as well as a core-periphery structure.
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accessible. Moreover, Kitsak et al. [4] have shown that the influential spreaders in a
network are those which lie at its core. These two properties of high reachability and
maximum spreading power validate the core nodes in a network as superspreaders.

Taking all the aforementioned facts in account, we propose algorithms that can
help a user intelligently guide a meme towards the core of a network. So, if the
information originates in the periphery of a network, our problem can be reduced to
a path finding algorithm, given that the source is a node in the periphery of the network
and destination is the core. The main contributions of the paper are as follows:

1. Evaluation and employment of different properties of the shells provided by the
k-shell decomposition algorithm to take an intelligent walk towards the destina-
tion in the network. The key idea of the paper is to utilise the presence of multiple
shells in a network to effectively reach its core starting from the periphery.

2. Unearthing specialized shells which mimic the core in terms of spreading power
and help a meme go viral. We call these shells as “Pseudo-Cores”.

These revelations of our experiments may impact the fields of information propaga-
tion as well as epidemiology. It can help in the formulation of intelligent pathways for
information propagation and placement of preventive checkpoints to halt infection
spread.

2 Presence of Pseudo-Cores in a Network

In this section, we define the pseudo-cores and describe their importance in making
a meme go viral. We have done it with the help of certain experiments which are
performed on the networks [6, 9] mentioned in Table1. We use k-shell decomposi-
tion4 algorithm to unravel the pseudo-core shells. Reference [11] is one of the most
popular algorithms to decompose a network into multiple shells of influence. In this
decomposed network, the innermost shell, or the core, is the most dense subgraph
having the highest closeness centrality. As we move outward towards other shells,
density and closeness both decrease and the outermost shells are called the periph-
ery shells. Core-periphery structures have been studied greatly ever since they were
introduced in 2000. However the research attention was focused mostly on the core,
and scientists have not yet tried to harness the power of the intermediary shells in
the network. In this paper we investigate the properties of all the shells in a network
and then observe how the network structure in these shells can be efficiently used to
guide the meme in a correct direction and make it viral.

4This algorithm is explained in detail in [10].
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Table 1 Datasets used for experiments

Dataset Description

Facebook Facebook is the most popular Social Networking Site today. This dataset consists of anonymized
friendship relations from Facebook [12]. The network contains 4,039 nodes and 88,234 edges

Google plus Google plus is a social layer for Google Services [12]. The network contains 107,614 nodes and
13,673,453 edges

Slashdot Slashdot is a website where the users can submit and evaluate the news stories on science and
technology. It is famous for its specific user community [13]. This dataset contains 82,168 nodes and
948,464 edges

Flickr This is an image and video hosting site. It is mainly used for sharing and embedding personal
photographs [6]. This dataset has 80513 nodes and 5899882 edges

Livemocha Livemocha is the world’s largest online language learning community [6]. This dataset has 104438
nodes and 2196188 edges

DBLP The DBLP computer science bibliography is a collaboration network. It provides a detailed list of
research papers in computer science [14]. The network contains 317,080 nodes and 1,049,866 edges

Buzznet Buzznet is social media network used for sharing photos, journals, and videos. It has 101168 nodes
and 4284534 edges

2.1 Cascading Power of Different Shells in a Network:

Cascading power of a shell: We know that a shell is a group of nodes. For finding the
cascading power of a shell, we infect the network starting from some of the random
nodes in the particular shell. The network is infected using independent cascade
model. At every iteration, the most recently infected nodes infect their adjacent
nodes with certain probability. The process stops as soon as no new node is infected
in an iteration. It is to be noted that every node gets at most one chance of infection.
We note the number of nodes infected at the end of this process. Corresponding to
one shell, we repeat this process 100 times starting from different seed nodes. The
average number of nodes infected in 100 iteration is termed as the cascading power
of a shell.

The plots in Fig. 1 represent the meme cascade size produced if the cascade starts
from some of the nodes of a particular shell. One ideally expects the cascade to
acceleratewhen core shell is encountered, but it is observed that the acceleration point
is reached much before the point where the meme reaches the core. This intriguing
fact led us to investigate the existence of a “pseudo-core shell” or a shell which
provides something akin to an escape velocity for the meme to become viral i.e. once
the meme reaches this shell, it goes viral and there is no longer a need for it to target
some higher shell node. This hypothesis may have many large scale implications.
For example-Imagine a political analyst trying to find which person to infect in a
political network, she would no longer have to infect the most influential politicians
or relatively insulated core nodes. Infecting someone relatively less influential(if this
person lies in a pseudo-core shell) would cause the same effect.
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Fig. 1 Shell wise cascading power distribution. aCascading power of Facebook shells.bCascading
power of other real world network’s shells

We propose and compare a set of path finding algorithms in the next section and
further observe if changing the destination to pseudo-core could impact the time
taken by the algorithm.

3 Algorithms

Wedescribe algorithms in this section to find a path from the periphery of a network to
the destination, which we initially assume as core. Later we apply the same algorithm
with pseudo-cores as the destination and report the improved results. We describe
two already implemented algorithms in Table2.

Below, we propose two hill climbing algorithms based on the shell numbers of
the nodes. After the network has been decomposed into shells, the entire system can
be visualized as a circular maze made up of concentric circles(shells). The goal of
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Table 2 Existing algorithms

Random walk algorithm [15] Degree based hill climbing [16]

This algorithm involves a node inspecting its
neighbours at every step and selecting one of
them randomly. If the chosen neighbour is a
core node, the algorithm terminates, else the
selection of the random neighbours continues.
Random walk algorithm (without repetition of
nodes) has a time complexity of O(n)

This algorithm uses a hill climbing approach
based on the degree of the nodes in the
network. At every step, a node looks at its
neighbours and chooses the unexplored node
having the highest degree. If the chosen node is
a core node, the algorithm terminates, else the
process continues. As hill climbing algorithms
have a complexity of O(n) where n is the
number of nodes and finding degree of all
nodes takes O(m) time, degree based hill
Climbing has a time complexity of
max[O(n), O(m)] ∼ O(n) in sparse graphs

the algorithm is to intelligently move from the outermost shell to the innermost shell.
There are inter-shell edges that help a user in taking such a walk across shells, while
the intra-shell edges help the user to traverse a shell.

3.1 Algorithm 1—Shell Based Hill Climbing Approach (SH):

Let G(V, E) represent the graphwhere V (G) is the set of vertices and E(G) is the set
of edges. Let the number of vertices and edges in G be n andm respectively. shell(u)
represents the shell number of a node u as calculated by the k-shell decomposition
algorithm. start is the periphery node fromwhere the meme starts spreading. NG(u)
represents the set of neighbours of node u in the graph G. The proposed SH approach
has a complexity of max[O(m + n), O(n)] ∼ O(n) in sparse graphs.

3.2 Algorithm 2—Intershell Hill Climbing with Intrashell
Degree Based Approach(SA):

Algorithm 2 is a modification of Algorithm 1 and utilises the idea that a node with
very high degree will cover most of the shell. If this node is chosen, it would greatly
reduce the number of steps required to traverse a shell. Let the number of ver-
tices and edges in G be n and m respectively. NG(u) represents the set of neigh-
bours of node u in the graph G. The proposed SA approach has a complexity of
max[O(m + n), O(n), O(m)] ∼ O(n) in sparse graphs (Fig. 2).
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Algorithm 1 Shell Based Hill Climbing(SH)
procedure FindNumsteps

Input:- Graph G(V, E), Starting node start
Output: Number of steps taken by the algorithm to terminate
Apply k-shell decomposition and calculate shell(u) ∀u ∈ V (G)

visi ted[u] ← ‘ f alse′ ∀u ∈ V (G)

numsteps ← 0
current ← start
visi ted[current] ← ‘true′
while current is not a core node do

v1 ← argmaxu∈NG (current)∧visi ted[u]=‘ f alse′ shell(u)
if shell(v1) ≤ shell(current) then

v2 ← random node u ∈ NG(current) ∧ visi ted[u] = ‘ f alse′
current ← v2

else
current ← v1

end if
numsteps ← numsteps + 1

end while
return numsteps

end procedure

Algorithm 2 Improved Shell Based Hill Climbing(SA)
1: procedure FindNumsteps
2: Input:- Graph G(V, E), Starting node start
3: Output: Number of steps taken by the algorithm to terminate
4: Apply k-shell decomposition and calculate shell(u) ∀u ∈ V (G)

5: visi ted[u] ← ‘ f alse′ ∀u ∈ V (G)

6: numsteps ← 0
7: current ← start
8: visi ted[current] ← ‘true′
9: while current is not a core node do
10: v1 ← argmaxu∈NG (current)∧visi ted[u]=‘ f alse′ shell(u)
11: if shell(v1) ≤ shell(current) then
12: v2 ← argmaxu∈NG (current)∧visi ted[u]=‘ f alse′ degree(u)
13: current ← v2
14: else
15: current ← v1
16: end if
17: numsteps ← numsteps + 1
18: end while
19: return numsteps
20: end procedure
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Fig. 2 Proposed Algorithms: The path denoted in the pink edges is the path chosen by the
corresponding algorithm to move towards the core. a Algorithm1—shell based hill climbing (SH).
b Algorithm2—modified shell based hill climbing (SA)

Fig. 3 Comparison of algorithms for facebook. a Random walk. b Shell based hill climbing algo-
rithms
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Fig. 4 Comparison of algorithms for google plus. a Random walk. b Shell based hill climbing
algorithms

4 Experimental Results

To evaluate the performance of the algorithms mentioned in the above section, we
select periphery nodes from shell 1(periphery) in a network and for each of these
nodes, we find the number of steps taken to reach the core. We term each run from
a periphery node as an instance of the problem. Therefore, we can say the number
of instances is equal to the number of periphery nodes. It is observed that more than
80% of the walks conclude in a maximum of 15 steps in most of the datasets.5

Let R be a random variable depicting the number of steps taken by the algorithm
to terminate. Let P(R = k) be the Probability of R being k, where k ≥ 2. We plot
the cumulative probability distribution function of R. X axis indicates all possible
values of R while Y axis shows the probability of R ≤ k.

The plots given below validate that the proposed algorithms cover most of the
instances in very less number of steps as compared to the existing path finding

5Without loss of generality, we have ignored the trivial case where source nodes are directly con-
nected to the core as the path length in these cases is 1.
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algorithms. The highest line in the curve represents the most efficient algorithm. In
the case of Facebook network, the proposed algorithms cover 80% of the instances
in less than 100 steps. Degree based hill climbing requires around 200 steps to cover
80% of the instances. In the case of Google Plus, all the three hill climbing based
approaches cover 90% of the instances in less than 3 steps. The results for the rest
of the networks can be found in [10]. In all the cases, the algorithms proposed reach
their peak at the earliest proving that they are more optimal with respect to the time
taken to reach the destination.The randomwalk algorithm clearly performs the worst
(Figs. 3 and 4).

Next, we modify the destination to be the pseudo-core shells and observe the
cumulative frequency distribution of R as given in Fig. 5. In this case also, our pro-
posed algorithms perform better than the other algorithms. Interestingly, the perfor-
mance of even the random walk algorithm increases drastically when the target is
changed to be the pseudo-cores. This indicates that the virality which seems frequent
and random in our social as well as biological networks may be because of the pres-
ence of pseudo-cores in the network. It is fairly intuitive that it is difficult to target a
core node. However, it would be easier to hit the pseudo-core and this could be one
of the possible explanations for meme virality in a network. The results for these
simulations are shown in Fig. 5.

Fig. 5 Comparison of algorithms for infecting pseudo-cores. a Facebook. b Google plus
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5 Related Work

The information derived from the internet is being harnessed in a myriad of applica-
tions today. Culotta et al. [17] have used the information potential of a social network
to predict epidemics in a population. Social networks act as reservoirs of data which
can be used to predict the results of elections [18] as well as patterns in crime [19].
Meme is a term used to describe a unit of information traversing in a network. These
memes behave like biological viruses and evolve over time as suggested by Daley et
al. in their work [20]. Memetics or the study of memes has a wide range of applica-
tions in several research areas like Digital Marketing and Epidemiology. This is not
surprising as deciphering patterns in any kind of data or trajectories in information
flow in the network can have wide range impacts. If for some reason an information
goes viral and impacts a large portion of the network, then the meme holds more
potential in the network for analysis as to why it went viral.

Many approaches have been employed to understand the cause of meme virality.
Berger and Milkman [21] employed the content of a meme to predict its virality
while Weng et al. observed the similarity between a simple contagion and a viral
meme [22]. The existence of communities and core-periphery structure [5] are two
major discoveries with respect to complex network structure. We applied the studies
on complex network structures to understand meme spread and probed upon the
question : “Can we intelligently alter the path of a meme flowing through a network
to make it go viral?”.

Milgrams experiment [23] had a similar aim to find the shortest path from a source
person to the target person. For this experiment, breadth first search approach is not
suitable as it would lead to flooding of letters in the network. We cannot also assume
that a person will advertise a product to each of his/her neighbours. Similarly a DFS
might result in several paths which are not optimal. However, It was observed that
even though people did not possess an overview of the entire network, they were still
able to trace the average 6-hop path between two individuals. This spawned the idea
of a decentralised search approach [24]. This greedy heuristic aimed at providing a
path from a source to a destination exploring only one new node per iteration which
is nearest to the target. We were inspired by this decentralised approach to propose
a method to direct a meme in an optimal direction. Our work differentiates from the
decentralised algorithms in two ways:

1. Instead of focusing on one target node, we are trying to attack exactly one node
in a group of nodes, termed as core.

2. We are proposing the algorithm for real world networks instead of very well
defined lattice like structures while most of the decentralised algorithms are pro-
posed for very well defined structures.

In this paper, we propose a hill climbing technique by virtue of which a user needs
to focus only on one neighbour who gives him/her more benefit as compared to
distributing his/her efforts among all the neighbours. Our work is the first of its kind
to the best of our knowledge.
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Fig. 6 Distribution of leakage power across shells for various networks

6 Conclusion

The paper unravels the potential of a core-periphery structure in imparting virality to
a passable/non-exemplary meme. We empirically observed that the innermost core
shell has the greatest tendency to trigger a global cascade in the network, thereby
increasing the necessity to infect the core quickly in order to cause virality. We
have proposed two shell based hill climbing approaches that help a meme to pave
an intelligent path to the core, when it originates in the periphery. One of the most
important contributions of the paper is the unveiling of the concept of “Pseudo
Core” shells that have the same cascading impact on the network as a core shell.
Intelligently hitting the pseudo-core shell achieves the same virality as that achieved
by core shell. As a result the path taken during the trajectory of a viral meme can be
reduced. These revelations introduced by our experiments may prove to have huge
impact across several disciplines.

7 Future Work

While performing experiments to analyse network property effects on shells, we
defined a shell parameter which we deem “Leakage Power”. Leakage power denotes
a shell’s potential to connect to the higher numbered shells.6 We plotted leakage
power against shell number and observed that the leakage power was not necessarily
the highest in the case of core. There were indications of high leakage power in
intermediary shells as well. This is shown in Fig. 6. This led us to investigate the
ideas of “teleportation shells” and “barricade shells”. The shells having higher
leakage powers act as the teleportation shells and can trigger a meme to take longer
jumps on its path to the core. On the other hand, the shells having low leakage powers

6The exact calculation for finding the leakage power of a shell can be found in [10].
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may tend to block ameme inside it, hence suggesting why somememes are non viral.
Based on these observations, the algorithms may be altered to provide better results
and most importantly answer the bigger question which is “How to make a meme go
viral ?”.
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Modeling Evolutionary Dynamics
of Lurking in Social Networks

Marco A. Javarone, Roberto Interdonato and Andrea Tagarelli

Abstract Lurking is a complex user-behavioral phenomenon that occurs in all large-
scale online communities and social networks. It generally refers to the behavior
characterizing users that benefit from the information produced by others in the
community without actively contributing back to the production of social content. The
amount and evolution of lurkers may strongly affect an online social environment,
therefore understanding the lurking dynamics and identifying strategies to curb this
trend are relevant problems. In this regard, we introduce the Lurking Game, i.e., a
model for analyzing the transitions from a lurking to a non-lurking (i.e., active) user
role, and vice versa, in terms of evolutionary game theory. We evaluate the proposed
Lurking Game by arranging agents on complex networks and analyzing the system
evolution, seeking relations between the network topology and the final equilibrium
of the game. Results suggest that the Lurking Game is suitable to model the lurking
dynamics, showing how the adoption of rewarding mechanisms combined with the
modeling of hypothetical heterogeneity of users’ interests may lead users in an online
community towards a cooperative behavior.

1 Introduction

Most members of online communities and social networks do not actively con-
tribute to the shared online space, i.e., they only consume (e.g., read, watch) infor-
mation without sharing their knowledge or expressing their opinion. These users are
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commonly defined as lurkers, since they remain quite unnoticed while benefiting
from others’ information or services. Remarkably, lurkers feel themselves as com-
munity members, and should not be trivially regarded as totally inactive users, i.e.,
registered users who do not use their account to join the online community.

The characterization of lurking in online communities has been a controversial
issue from a social science and computer-human interaction perspective [9]. One
common perception of lurking is related to the infrequency of active participation to
the community life [24], while other definitions refer to legitimate peripheral partic-
ipation [17], individual information strategy of microlearning [16], and knowledge
sharing barriers [5]. In general, in the realm of online social networks (OSNs), neutral
or even positive views of the presence of lurkers have normally supplanted negative
views. The silent presence of lurkers can indeed be seen as harmless as it reflects a
subjective reticence (rather than malicious motivations) to contribute to the commu-
nity wisdom [24]. Moreover, lurking can be expected or even encouraged because
it allows newcomers to learn the netiquette before they might decide to provide a
valuable contribution over time. On the other hand, if users are worried that their
private information may be revealed or their security may be threatened by posting,
they may decide to lurk to protect themselves.

Lurkers hold great potential in terms of social capital, because they acquire knowl-
edge from the OSN; further, they might decide to use this knowledge in order to form
their own opinions, although these will never or rarely be unveiled to the commu-
nity. Within this view, it is highly desirable to delurk such users, i.e., to apply a
mix of strategies aimed at encouraging lurkers to return their acquired social capi-
tal, through a more active participation to the community life. As a matter of fact,
even though a massive presence of lurkers is typical in a large-scale social environ-
ment, too many lurkers would impair the virality of the online community, which
instead needs to be sustained over time with fresh ideas and initiatives. Social sci-
ence and human-computer interaction research studies have addressed the delurking
problem mainly focusing on the conceptualization of the strategies to adopt, such
as [27]: reward-based external stimuli (e.g., badges [3]), providing encouragement
information, improvement of the usability of the online platform, and guidance from
elders/master users to help lurkers become familiar with the system as quickly as
possible. However, given the variety of influencing factors that drive online partici-
pation, developing a computational approach to turn lurkers into active members of
an OSN is an emerging yet challenging problem, regardless of the delurking strategy
adopted.

Contributions. Our intuition in this work is that the behavioral dynamics underly-
ing the transition from a lurking to non-lurking (i.e., active) user role, and vice versa,
can suitably be modeled via an evolutionary game theory approach [15, 21–23, 33].
We define the Lurker Game, in which active users are regarded as cooperators and
lurkers as defectors. Cooperators contribute to the system by adding information
represented by “virtual coins” to a common pool, while defectors do not contribute.
The total amount of virtual coins in the common pool increases according to two key
aspects: (i) the collective effort of cooperators and (ii) the different impact that infor-
mation naturally has on each agent, depending on her/his preferences. Our Lurker
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Game employs a Fermi-like function [29] to model the transition probability from
one agent strategy to another. Having considered the importance of rewarding mech-
anisms [4, 29, 30] towards an ordered phase of cooperation (i.e., delurking), we
also introduce a prize structure for promoting cooperation. We evaluate the Lurker
Game on random graph models that resemble the complexity of real-world OSNs,
focusing on the effect that the network topology may have on the final equilibrium
of the game. This work represents, to the best of our knowledge, the first attempt
for quantitatively understanding lurking and delurking dynamics in OSNs via the
evolutionary game theory.

The remainder of the paper is organized as follows. Section 2 introduces the Lurker
Game on complex networks. Section 3 shows results of numerical simulations, and
Sect. 4 provides a discussion on main experimental findings. Related works are dis-
cussed in Sect. 5, finally Sect. 6 concludes the paper.

2 The Lurker Game

User-generated communications and social content produced in an OSN represent a
rich source of knowledge whose value can, in principle, be increased by collective
efforts. Within this view, evolutionary games provide a powerful tool to model the
dynamics of OSNs [1, 10, 26].

Our aim in this work is the definition of a novel game, named Lurker Game, to
analyze the dynamics of OSN populations, by focusing on the two main roles played
by network members: active contributors and lurkers. The former are regarded as
contributors, whereas the latter as defectors. Information generated by contributors
is expressed in terms of virtual coin (vc), which is assumed to be unitary by default.
Note that we adopt the term information with its more general meaning, which
includes any type of social content produced in an OSN (i.e., posts, comments,
preferences, etc.).

Our Lurker Game entails important aspects in cooperator-defector games. The
collective effort is represented by a synergy factor r (r > 0), which is usually adopted
in public goods games (PGGs) [29, 30], and used to grant groups of cooperators.
However, Lurker Game has two main differences from classic PGG. First, due to its
nature, the “public good” in our game (i.e., information generated by contributors)
is not divided but rather equally shared among all users of a group. Second, we
observe that information may acquire a different value for each individual (e.g., one
may contribute by writing posts on politics but it is not interested in reading about
music); to model this heterogeneity of user interests and preferences, we introduce
a further parameter, denoted by ν, ranging in (0, 1], such that the common pool of
virtual coins, shared in the OSN environment, is diversified by means of ν.
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2.1 Basic Dynamics

Given a set of N agents, the dynamics of Lurker Game unfolds in discrete time steps
and is defined as follows. At each time step, agents have to put into the common pool
a virtual coin if they take the role of cooperators, otherwise (i.e., they are lurkers) do
nothing. The accumulated amount of virtual coins is increased by r and ν, and then
equally shared among all agents. The payoff equations in Lurker Game are defined
as follows:

{
π c = rν

∑N c

1 vc − vc

πd = rν
∑N c

1 vc
(1)

with N c number of cooperators, r synergy factor, and ν representing the heterogeneity
of interests of users. Due to its evolutionary nature, Lurker Game allows agents to
change their strategy [33], i.e., from cooperation to defection and vice versa. In
particular, when considering two agents at a time, we adopt a Fermi-like function to
implement a transition probability from one strategy to another. Given two agents x
and y, this probability is defined as:

W (sx → s y) =
(

1 + exp

[
π y − π x

K

])−1

(2)

where sx and s y denote the strategies of the players x and y, respectively, π x and π y

denote their respective payoff, and K indicates uncertainty in adopting a strategy.
By setting K = 0.5, we implement a rational and meritocratic approach during the
strategy revision phase [29]. Like in the PGG, behaving as defectors is much more
convenient than behaving as cooperators and the Nash equilibrium of Lurker Game
corresponds to defection.

2.2 Mean Field Analysis

We perform a mean field analysis [8] of Lurker Game, in order to investigate if the
Nash equilibrium corresponds to the final ordered phase. Hence, we assume that the
population is composed of only one big community and every agent interacts with
all the others. Under this assumption, the evolution of a population with N agents is
described by the following set of equations [14]:

⎧
⎪⎨

⎪⎩

dρc(t)
dt = pc · ρc(t) · ρd(t) − pd · ρd(t) · ρc(t)

dρd (t)
dt = pd · ρd(t) · ρc(t) − pc · ρc(t) · ρd(t)

ρc(t) + ρd(t) = 1

(3)
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with ρc(t) and ρd(t) densities of cooperators and defectors, pc(t) probability that
cooperators prevail, and pd(t) probability that defectors prevail. These probabilities
are computed according to the payoffs obtained, at each time step, by cooperators and
defectors as defined in Eq. 6. Therefore, we have to consider the difference between
the payoffs accumulated by the two agents randomly chosen at each time step. If
we denote with x a cooperator and with y a defector, the probability pc corresponds
to W (x → y), so we consider the difference π(d) − π(c). While, pd corresponds to
W (y → x), then we consider π c − πd . Few algebraic steps lead to the following
solutions:

{
πd − π c = rνNρc − rνNρc + 1 = 1

π c − πd = rνNρc − 1 − rνNρc = −1
(4)

By substituting results of Eq. 4 in Eq. 2, one obtains pc ∼ 0.12 and pd ∼ 0.88.
Remarkably, the mean field approach to Lurker Game leads to dynamics completely
independent both from r and ν. Given the values computed in Eq. 4, the solution of
the system in Eq. 3 confirms the expected result, i.e., defection prevails according to
the Nash equilibrium.

2.3 Rewarding Mechanisms

The above result leads us to focus on rewarding mechanisms to drive a population
towards an ordered phase of cooperation. Therefore, we introduce a variation in the
basic formulation of Lurker Game by introducing a prize structure for promoting
cooperation. This impacts on the payoff equation of cooperators, whereby the set of
payoff equations is modified as follows:

⎧
⎪⎪⎨

⎪⎪⎩

π c = rν
N c∑

1
vc − vc + Φ(Δt c)

πd = rν
N c∑

1
vc

(5)

with Φ(Δt c) rewarding function that allows cooperators to receive a further amount
of virtual coins. This function takes in input Δt c, i.e., the amount of time each agent
behaves as a cooperator. The prize structure S grants cooperative agents at a fixed
rate, i.e., every k time steps: S : Δt c = {k, k, . . . , k}. This way, each prize consists of
an amount of vc equal to that paid by a cooperator over time (between two achieved
prizes). We define the prize function as follows:

Φ(Δt c) =
{

Δt c · vc if Δt c ∈ S

0 if Δt c /∈ S
(6)
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Analogously to the basic dynamics of Lurker Game, after every iteration agents
undergo a strategy revision phase based on Eq. 2. Algorithm 1 sketches the main
steps performed in Lurker Game.

Algorithm 1 Lurker Game
Require: A population of N agents, where N c are cooperators and N d are defectors (N = N c +

N d ).
The synergy factor r > 0.
The user preference coefficient ν ∈ (0, 1].
A network topology G that models the connectivity of the N agents, otherwise agents are fully
connected to each other (mean field).

1: repeat
2: Compute the payoff of cooperators and defectors, according to Eq. 5
3: Randomly select two agents x and y (with different strategies) s.t. x, y are linked w.r.t. G
4: Agent y takes the strategy of agent x according to Eq. 2
5: until all agents have the same behavior (Nash equilibrium)

2.4 Lurker Game on Networks

Since social networks constitute the natural environment to observe the phenomenon
of lurking, we also study the Lurker Game on complex networks. Following the lead
of previous studies on evolutionary games (e.g., [10, 15, 18, 21, 28, 34]), we focus
our attention on two relevant models: Barabasi-Albert model [6] (hereinafter BA)
and Watts-Strogatz [35] model (hereinafter WS). Since the topological properties of
networks generated by both considered models (i.e., BA and WS) are well-known
(see, e.g., [7]), all outcomes of the proposed model can be analyzed seeking relations
with the considered topology.

Note that when agents are arranged on networks, the dynamics of the game are
different from those adopted in the mean field case, which in topological terms, can be
viewed as a fully-connected network. Adopting complex networks, only few agents
are considered at each iteration. In particular, at each time step two randomly chosen
agents play Lurker Game with all groups of belonging. Therefore, the accumulated
payoffs are computed for each group and the final prize is assigned only to cooperative
agents that played the game. Next, as previously discussed, the x th agent tries to
enforce its strategy to the yth agent with probability defined in Eq. 2.

Memoryless and memory-aware payoff. We introduce a further aspect of the
proposed model, related to the way agents manage their accumulated payoffs. We
distinguish between two scenarios of payoff accumulation, namely memoryless and
memory-aware.

The memoryless case entails that every time two agents are selected to play
Lurker Game with their groups, they reset their accumulated payoff. Therefore,
when computing the transition probability of Eq. 2, they consider only the payoff
accumulated during the present time step. Instead, the memory-aware case entails
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agents save their payoff over time. Note that while the memory-aware case is closer
to a real scenario (e.g., online users may accumulate several badges over time), the
memoryless case avoids noise effects in numerical simulations that can emerge in
Eq. 2 for large payoffs.

We investigate both cases, by introducing a cutoff in the difference between the
payoffs of the two considered agents (i.e., x and y). In doing so, for large payoffs,
the Fermi function behaves like a simple rule with only two possible results: 1 and
0, i.e., 1 if the payoff of the x th agent is greater than that of the yth, and 0 otherwise.
Thus, the interesting granularity, in terms of transition probabilities, introduced by
the Fermi function is lost in the memory-aware case, after few time steps.

It is also relevant to observe that a similar problem may arise when dealing with
scale-free networks since, even in the memoryless case, nodes with high degree (i.e.,
hubs) can accumulate at each iteration a very high payoff. As a result, we expect that
simulations performed on scale-free networks in the memoryless case yield outcomes
similar to those achieved by the memory-aware case, at least by considering the same
topology (i.e., scale-free in both cases).

Identifying critical parameters. Numerical simulations will be primarily devoted
to the identification of critical values of k and ν, i.e., the step adopted in the prize
structure S and the variety of information (or users’ interests) in the social network,
respectively. These values together with the final equilibrium achieved in both net-
works, provide a useful indicator for studying the dynamics of Lurker Game and for
comparing different network topologies. Remarkably, we are dealing with a disor-
dered system [11, 13, 14], in terms of states (i.e., cooperators and defectors), having
only two possible equilibria: one characterized by the prevalence of one species (i.e.,
cooperators or defectors) and one characterized by a coexistence of both species at
equilibrium. The former corresponds to a ferromagnetic phase, whereas the latter to
a paramagnetic phase [13]. Thus, both the Nash equilibrium and its opposite case
correspond to the ferromagnetic phase. The paramagnetic phase has been observed
in games like the PGG, obtained by tuning the synergy factor and without adopting
rewarding mechanisms [29].

3 Results

Experimental setting. We evaluated Lurker Game by arranging agents on different
networks, generated according to the BA and WS models. The former generates
scale-free networks, i.e., networks characterized by the presence of nodes with a
very high degree, defined hubs. The WS model generates different kinds of networks
by tuning a rewiring parameter, β, which ranges within [0, 1]. In particular, β = 0
yields a regular ring lattice topology, intermediate values of β yield small-world-
networks (characterized by relatively low average path lengths and high clustering
coefficients), while completely random networks are obtained for high values of β.
In this work, we considered the following values: β = {0.0, 0.3, 0.5, 0.8}. Figure 1
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Fig. 1 Evaluation networks: a WS with β = 0.0, b WS with β = 0.5, c BA

Table 1 Structural properties of evaluation networks

Network model Avg. path length Diameter Clust. coeff.

WS β = 0.0 625.38 1250 0.500

WS β = 0.3 7.89 14 0.165

WS β = 0.5 6.99 12 0.054

WS β = 0.8 6.67 11 0.005

BA 4.85 9 0.002

shows a pictorial representation of each kind of networks, whereas Table 1 reports
some of their structural properties (achieved with 5000 nodes).

Numerical simulations were performed with N = 5000 agents, with an equal ini-
tial density of cooperators and defectors (i.e., ρc(0) = ρd(0) = 0.5), and an average
degree 〈k〉 = 4. We set the synergy factor r to 2, as we found that this value does
not allow cooperators to survive without rewarding mechanisms (see also [29] for
a discussion about the critical thresholds of the synergy factor). Parameter ν was
instead varied considering values from 0 to 1. It is worth noting that for ν = 0.2 the
game, in the memoryless case and without the adoption of rewarding mechanisms,
corresponds to the PGG in networks with the same topology. Simulations were car-
ried out for a maximum number of time steps equal to 108, then results were averaged
over several different runs.

Evolution of the system. We initially analyzed the density of cooperators over
time in all networks. We found three main behaviors: cooperators vanish (Fig. 2b)
or prevail (Fig. 2a) after a number of time steps, or both cooperators and defec-
tors coexist over time. This finding clearly indicates that a population playing the
Lurker Game can reach both ordered phases and disordered phases at equilibrium.
In particular, since agent strategies can be mapped to spins σ ± 1 respectively and,
as observed, there are only two possible equilibria, the evolution of the system can
be analyzed in terms of ferromagnetic phase transitions [8, 20]. Thus, mapping our
model to a spin system allows us to identify the conditions that can lead towards
the different kinds of equilibrium. The relevance of identifying a description based
on the language of phase transitions, lays in the fact that it opens the way to further
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Fig. 2 Possible behaviors of
the Lurker Game system.
Time evolution of density of
cooperators: a cooperators
prevail, b defectors prevail.
Results correspond to WS
model (β = 0.5) with 5000
agents and k = 2, for ν equal
to a 0.5 and b 0.3

analytical investigations [14] that can potentially lead to get new insights on the
proposed model.

Critical values of ν. We finally analyzed the role of ν. Results are reported in
Table 2 for the memoryless case. For the memory-aware case, results indicate a more
complex scenario, which is discussed next.
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Table 2 Memoryless agents

Network model Critical ν k-range

WS β = 0.0 0.6 [1. . .5]
WS β = 0.3 0.44 [1. . .5]
WS β = 0.5 0.42 [1. . .5]
WS β = 0.8 0.41 [1. . .5]
BA 0.22 [1. . .5]

4 Discussion

Results of our investigations suggest that our Lurker Game has a rich behavior, which
can be described by considering the main degrees of freedom of the system: ν, k,
network topology and the evolution of payoffs over time.

Results on WS Networks. In the memoryless case, for each considered β, we
found a well recognized critical ν. In particular, by increasing β, cooperators require
a smaller ν to prevail. This suggests that, in general, random topologies support
cooperation better than regular ones. It is worth noting that in all cases critical ν

showed a certain robustness towards the considered k values, i.e., k ∈ [1 . . . 5]. In
this regard, further investigations will be devoted to better clarify the relation between
ν and k, since we hypothesize that for high k values defectors may prevail even for ν

values greater than the identified thresholds (see Table 2). On the other hand, results
achieved by memory-aware agents indicate that, in general, critical ν are smaller
than those found in the memory-less case, e.g., for β = 0.0 we obtained ν ∼ 0.4.
However, we found that even for values greater than the minimal threshold of ν,
sometimes defectors may prevail. Before trying to mind a hypothesis about this
behavior, we have to recall that in the memory-aware case some noise may arise
resulting from high payoffs. Moreover, the memory-aware case may easily promote
cooperation than its counterpart as groups of cooperative agents tend to increase their
payoff unboundedly. Therefore, as a future work, we aim to investigate this aspect
of the model. Also note that a mixed phase (i.e., composed of both species) has been
found for values close to the critical ν.

Results on scale-free networks. When considering the BA model, a major finding
is that cooperators need a smaller ν to prevail than those computed in WS network;
specifically, ν = 0.22 and ν ∼ 0.1, in the memory-less and in the memory-aware
case, respectively. Moreover, scale-free networks in the memory-aware case show
an interesting bistable behavior for small values of ν. We suggest again that this may
result from noise introduced by the utilization of large payoff in the Fermi function
that we faced by adding a numerical cutoff. It is relevant to note that our results
are in accord with those reported in [25], as stated above, since scale-free networks
have been found to foster cooperation better than other topologies. Also, like for WS
networks, critical ν are robust to variations of k in the considered range.
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Overall, the proposed Lurker Game suggests that the adoption of rewarding mech-
anisms combined with the modeling of hypothetical heterogeneity of users’ interests
(ν) may lead a population towards a cooperative behavior. This supports our initial
intuition that Lurker Game is suitable to model the dynamics of such a complex
phenomenon as lurking.

5 Related Work

In [31, 32], the authors developed the first computational approach to lurker mining,
focusing on ranking problems. To this purpose, they proposed a topology-driven
definition of lurking behavior, based on principles of overconsumption, authorita-
tiveness of the information received, and non-authoritativeness of the information
produced. Quantitative and qualitative evaluation results showed how the proposed
methods are effective in identifying and ranking lurkers in real-world OSNs.

The same authors also posed a first step toward the definition of delurking strate-
gies in [12], by proposing a targeted influence maximization problem under the
linear-threshold diffusion model. In this context, a set of previously identified lurk-
ers is taken as target set of an influence maximization problem, whose objective
function is defined upon the concept of delurking capital, i.e., the social capital
gained by activating lurkers in an online community.

We can also mention research studies that, though not specifically concerning
lurking, addressed related problems in OSNs via a game-theoretic approach. For
instance, Anand et al. [2] defined a Stackelberg game to maximize the benefit each
user gains extending help to other users, hence to determine the advantages of being
altruistic. Some interesting remarks relate the altruism of users to their level of capa-
bilities, and indicate that the benefit derived from being altruistic is larger than that
reaped by selfish users or free riders. Malliaros and Vazirgiannis [19] also built upon
game theory to study the property of users’ departure dynamics, i.e., the tendency of
individuals to leave the community.

Our proposed approach in this work differs from all the aforementioned studies
as it represents both a novel computational approach to lurking and delurking user-
behaviors, and a novel application domain in the field of evolutionary games.

6 Conclusion

In this work, we brought for the first time evolutionary game theory into the analysis
of lurking behaviors in OSNs. We defined the Lurker Game and evaluated it through
both a mean-field analysis and by arranging agents on small-world and scale-free
networks. Results suggest that Lurker Game is suitable to model the dynamics of such
a complex phenomenon as lurking, showing a rich behavior depending on the network
topology and on the way agents manage their payoff. Remarkably, Lurker Game
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allows us to understand how the adoption of rewarding mechanisms combined with
the modeling of hypothetical heterogeneity of users’ interests may lead a population
towards a cooperative behavior. Further investigations will be mainly devoted to
better clarify the interrelation between the two model parameters in Lurker Game,
also including analysis over other network topologies and larger populations.
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The Network of Genetic Admixture
in Humans

Hend Alrasheed and Feodor F. Dragan

Abstract Recent advances in the field of genetic data analysis reveal promising
findings in the field of human history; especially when combined with proper data
analysis tools. Within the field of modern genetics, there is evidence that the human
populations have genetically interacted as a result of several events. The genetic
admixture contains multiple pieces of DNA that have been passed down subse-
quently through generations making it combine DNA from different source groups.
In this paper, we construct and analyze the network of human genetic admixture.
We study the topology of this network, we investigate its δ-hyperbolicity (negative
curvature), and, using it, identify the core vertices by proposing the δ-hyperbolicity-
neighborhood measure that we assign to each vertex.

1 Introduction

Using networks to describe systems that are composed of elements and the inter-
actions or connections between those elements aids analyzing and understanding
them. Therefore, networks in multiple disciplines ranging from computer science
to systems biology are being modeled as graphs were vertices represent the differ-
ent elements and edges represent the different interactions among those elements.
Within the field of modern genetics, there is evidence that the human populations
have interacted throughout history. This interaction, which may occur as a result of
migrations, invasions, and slavery, results in transfer of genetics and accordingly cre-
ates admixed populations. The genetic admixture contains multiple pieces of DNA
that have been passed down subsequently through generations making it combine
DNA from different source groups.

The work in [10] uses DNA frommany people around the world (95 populations)
to identify the mixed source groups and to decide when did those mixing events
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had occurred. Their results are presented on an interactive map in [1]. Their work
concludes that many populations are results of genetically mixed groups that mixed
throughout the last 4000 years. Furthermore, some of thosemixed source populations
are geographically very spread. Finally, even though genetic mixing among source
groups is often local with respect to time and space, neighboring populations do not
necessarily share the same ancestry or history.

Even though it is interesting to analyze the details of the direct genetic admix
among populations, it is equally interesting to see how this genetic admix looks like
in the organization level by the use of graph-theoretical tools. This global approach
of analyzing the genetic admix as a system not only as individual components may
increase our understanding of the human history inmultiple aspects; for example, the
transmission of languages and cultures. In this paper, we construct and analyze the
network of human genetic admixture. We investigate the topology of this network by
studying the degree distribution, the clustering coefficient, and the different measures
of centrality. We also investigate the δ-hyperbolicity of this network and, using it,
identify the core vertices. For this we propose the δ-hyperbolicity-neighborhood
of each vertex. Then we use this measure to identify the core vertices. Based on
our analysis, we find the average distance between a pair of populations across the
network are relatively small suggesting a small-world network. We also find that the
network comprises a number of sub-networks when edges are pruned based on their
weights. Those sub-networks are formed by multiple neighboring populations. Also,
we identify key vertices according to a number of centrality measures, and we find
that thosemeasures correlate verywell.Moreover, we find the core vertices identified
based on the δ-hyperbolicity-neighborhood measure correlate to some extent with
some of the typical centrality measures such as the betweenness centrality.

2 Data and Network Construction

The data was obtained from the Genetic Atlas of Human Admixture History interac-
tive website [1], which is a companion of the work presented in [10]. In this work,
the authors study 95 populations (a population or a group is a set of individuals
with similar genetic makeup). For each individual population p, they show the set
of other source populations that are genetically admixed in the DNA of population
p. For example, Fig. 1, which is a screen shot from [1], shows that the Polish popu-
lation has the following admixing groups: Lithuanian (53.1%), Norwegian (16%),
Russian (12.9%),Moroccan (3.7%), Sardinian (3.7%), Basque (2.6%), etc. The per-
cent associated with each source group indicates its contribution to that population
such that all admixed populations collectively make 100%. Overall, we found 2685
distinct edges in this network.

Here we construct and study the network of genetic admixture in human pop-
ulations. In this network vertices represent the different populations and an edge
connects two populations if one participates in the genetic makeup of the other.
Each edge has an associated direction and a weight. For a source population u and a
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Fig. 1 Genetic mixing in the genetic of the Polish population

population v, the edge euv is directed towards v. The weight assigned to each edge
euv denoted as wuv is based on the percent of contribution in which it participates in
building the DNA of this admixed group. Hence, the larger the weight is, the more
significant the contribution. We normalize the weights as follows. The weight of an
edge euv becomes wuv = (100 − λuv)/10, where λuv is the percent of the contribu-
tion as reported in [1]. This way the smaller the weight is, the larger the contribution,
and as a result, the shorter the distance between the two populations. For example, if
a source group u represents 50% of group v’s DNA, then the edge leaving u towards
v has a weight of 5.

A graph can be expressed by its adjacency matrix auv where the value auv is one
if vertices u and v are connected and zero otherwise and wuv represents the weight
of that edge if one is present. We use this representation throughout this work. For
several reasons that will become apparent later on in this text, we will be analyzing
the weighted and the unweighted versions of this network. In the weighted network,
different edges will have associated weights as described above. In the unweighted
network, edges are either present or absent (we ignorewuv in this case). Table1 gives
some overall statistics of the constructed networks.
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3 Network Analysis

In this section, we study some fundamental global and local network parameters
of the two generated networks: the weighted genetic admixture network and the
unweighted genetic admixture network.

Diameter, characteristic path length, and small-world property. According
to the distances between vertices in the graph, the eccentricity of a vertex u is
ecc(u) = maxv∈V {d(u, v)}. The minimum value of the eccentricity represents the
graph’s radius: rad(G) = minu∈V {ecc(u)}. The diameter of the graph diam(G)

refers to the length of the longest shortest path between any two vertices u and v,
i.e., diam(G) = maxu,v∈V {d(u, v)}. Another important distance related measure of
graphs is the characteristic path length (CPL) which is the average distance between
vertex pairs. See Table1. Many real-world networks exhibit the small-world prop-
erty. A network is said to have this property when it has a small CPL or diameter
compared to the size of the network. Let si ze(G) = |V | + |E | be the size of graph
G, a network has the small-world property when diam(G) ≤ log2(si ze(G)). For
our network, log2(si ze(G)) = 11.44.

For the unweighted genetic admixture network, the diameter is 4, which is small
compared to the network’s size. However, since the diameter in graphs is susceptible
to outlier vertex pairs [11], we are also interested in the effective diameter which
represents the maximum distance between a fraction of vertex pairs (in our case
90%) of the network. The effective diameter for this network is 2, and the CPL is
1.8. Clearly, this network exhibits the small-world property. This indicates that if
one population p1 does not contribute (directly) in the genetic make up of another
population p2, then there is a small chain of population exchanges between the two.
For the weighted network, the diameter is≈36, the effective diameter is≈19, and the
CPL is ≈16. In both networks the diameter is finite which means that all vertices are
reachable from one another. In other words, the network of human genetic admixture
has one connected component. Also, we find that the network is biconnected.

Weights and network components. One would expect neighboring populations
to be genetically admixed; however, it was concluded in [10] that some mixture

Table 1 Basic network parameters

Measure Directed weighted Directed unweighted

diam(G) 36.38 4

C P L 15.83 1.8

rad(G) 19.68 2

k̄+(G) 143.8 14.6

k̄−(G) 273 28.3

k̄(G) 416.8 42.9

diam(G): network’s diameter; C P L: characteristic path length; rad(G): graph’s radius; k̄+(G),
k̄−(G), k̄(G): average in-degree, average out-degree, average total degree respectively
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events include populations that belong to very distant locations. This is evident
considering our genetic admixture network that is represented by one connected
component. However, this also motivates investigating the sub-networks that this
single component comprises. Specifically, we focus on the number of sub-networks,
the size of each sub-network, and how the populations in each sub-network are
connected. To obtain the set of sub-networks,we use the edgeweights as an indication
of their importance. Given a threshold number t , where 0 ≤ t ≤ 100, first, we fix the
threshold weight t and construct a graph Gt = (V, Et ) by pruning those edges with
weights less than t . Second, we identify the set of strongly connected components
for the directed network Gt ; each strongly connected component represents one
sub-network.

We start this process with t = 100% (the highest possible weight). At this point,
every single vertex in the graph G100 represents a strongly connected component
on its own. Then we gradually reduce threshold t (obtaining a different set of sub-
networks) untilweget to a point inwhich all vertices are in the samecomponent (when
t = 0). The number of strongly connected components as well as some other prop-
erties about each component are listed in Table2. An interesting observation about
the formation of populations into distinct sub-networks is that it is highly affected
by the geographic locations of those populations. For an example, see Table3 in
which we provide a list of all sub-networks with size ≥2 along with the geographic
location to which the listed populations belong. The geographic regions are as pre-
sented in [10]. Note that all populations in a sub-network either belong to the same
geographic region or to a region that is close geographically. This indicates that, for
some populations, the genetic admixing with neighboring populations is more sig-
nificant. Another interesting observation is that the small-world property is evident
in the sub-networks. For example, G3, G2, and G1 in Table2.

Table 2 Sub-networks in each Gt that result from pruning edges with weights <t

t (%) |Gt | |Et | Min # of vertices
in a sub-network

Max # of vertices
in a sub-network

Diam of largest
sub-network

90 95 2 1 1 0

70 95 7 1 1 0

50 94 18 1 2 1

30 88 63 1 3 1

10 36 222 1 33 8

5 18 418 1 61 5

3 12 601 1 78 6

1 2 1099 5 90 4

0 1 2685 95 95 4

t : edge threshold; |Gt |, |Et |: number of sub-networks and edges in Gt ; Diam of largest sub-network
is the longest (unweighted) path that exists between any two vertices
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Table 3 A list of populations in some of the sub-networks in Gt where t = 20 and the geographic
region(s) of the listed populations

No. Populations Geographic region

1 GermanyAustria, Finnish, Norwegian, English,
Ireland Scottish, Spanish, French

N.W.Europe, E.Europe

2 Cambodian, Dai, Han, HanNchina, Tujia, Miao S.EastAsia

3 Balochi, Brahui, Sindhi, Pathan C.SouthAsia

4 BantuSouthAfrica, SanKhomani, SanNamibia Bantu, San

5 Belorussian, Polish, Lithuanian E.Europe

6 Ethiopian, EthiopianJew Ethiopian

7 BantuKenya, Yoruba Bantu, W.Africa

8 Adygei, Georgian W.Asia

9 Bedouin, Saudi S.MiddleEast

10 Daur, Oroqen N.EastAsia

11 Yi, Naxi S.EastAsia

Clustering coefficient. The clustering coefficient for a vertex v, denoted as cc(v),
indicates the likeliness that any two neighbors of v are also neighbors. Given an
unweighted graphG = (V, E) and a vertex v ∈ V , let N (v) be the neighborhood of v
consisting of all vertices adjacent to v. Also, let eN (v) be the set of edges between every
pair of vertices in v’s neighborhood. Then cc(v) = 2|eN (v)|

|N (v)||N (v)−1| . 0 ≤ cc(v) ≤ 1. The
clustering coefficient CC(G) ∈ [0, 1] of a graph G is the average of cc(v) taken over
all vertices v ∈ V . CC(G) = 0 when there is no clustering and CC(G) = 1 when
the clustering is very high which happens when the network includes a number of
sub-networks each of which is highly dense and connected with other sub-networks
with very few links.

For our network, the clustering coefficient measures the tendency of two popu-
lations that both already genetically admixed with a third population to themselves
admix (we ignore the directions here). The average clustering coefficient of the net-
work is about 0.57. We are also interested in exploring the following: if a population
p1 contributes to the genetic admix of another population p2, what is the probability
that population p2 also contributes to p1’s admix? This question can be answered
using the graph’s reciprocity which is another important property of directed net-
works [13]. The reciprocity of a given graph, denoted as R(G), is the fraction of
edges that point to both directions (vertices) and it is calculated as R(G) = |e∗

uv |
|E | ,

where |e∗
uv| is the number of bidirectional edges and 0 ≤ R(G) ≤ 1. The reciporcity

of our genetic admixture network is 0.24 which means that if population p1 con-
tributes to the DNA of population p2, then there is a probability of 24% that p2

also contributes to the DNA of population p1. This could be explained by the one
direction immigration. Close analysis of those pairs of populations, that admix in
only one direction, shows that the admix involves non-neighboring populations.
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Degree distribution and the degree centrality. The degree of a vertex u (denoted
as ku) in an undirected graph G is the number of edges that have u as one of their
endpoints, i.e., ku = ∑

v auv . IfG is directed, then a vertex u has an in-degree denoted
as k+

u that represents the number of edges in E that have u as a source vertex, and
an out-degree k−

u that represents the number of edges that have u as a target vertex.
The in-degrees and the out-degrees of the vertices in our directed unweighted genetic
admixture network fluctuates between 1 and 63, with Papuan and Druze having the
highest in-degree and out-degree respectively. In case of weighted networks, the
weights of the edges are important to give a more precise characterization of its
complexity. Therefore, rather than considering the number of incident edges, we
consider their weights. Hence, the degree ku is defined as

∑
v auvwuv . The in-degree

and the out-degree are defined accordingly. The populationwith the highest weighted
in-degree is Papuan and the population with the highest out-degree is Druze. The
average degree of the graph G, k̄(G), is defined as k̄(G) = 1

|V |
∑

u∈V ku . See Table1.
The degree centrality considers the central vertices as the set of vertices with the

highest number of connections. The degree centrality is a local measure since it only
relies on the number of neighbors [6]. Therefore, we compute the degree distribution
p(k) and the cumulative degree distribution P(k) = ∑

�≥k p(�) which indicates the
fraction of vertices with degree k or larger. The cumulative degree distribution often
provides some global characteristic of the network. In Fig. 2, we plot the cumulative
in-degree and out-degree distributions for our directed unweighted genetic admixture
network in a semilogarithmic scale. One could think that vertices with very high
in-degrees act like populations that belong to popular geographical locations that
may had attracted immigrants or had represented commercial attractions. However,
it also may be the case that the high in-degree is just a result of being geographically
close to multiple other populations and the genetic admix is just a consequence of
the location.

Distances and centrality. The distance d(u, v) between two vertices u and v in a
graph G is the number of edges in a shortest (u, v)-path that connects them. When
G is a weighted graph, the distance d(u, v) is the sum of the weights of all edges in
a shortest (u, v)-path from u to v (direction is important). The centrality measures
presented in this section are all based on the set of shortest paths in a graph. A
centrality measure rank the vertices according to their importance. Then it identifies

Fig. 2 The cumulative degree distribution P(k) with the in-degree k (a) and the out-degree k (b).
The horizontal axis for each chart is the in-degree or the out-degree and the vertical axis is the
cumulative probability distribution of that degree
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the set of vertices that are most significant and accordingly more central. There are
multiple centrality measures each of which identifies the key vertices based on a
distinct purpose. In this section, we limit our discussion to those measures that are
directly based on the notion of distances.

The betweenness centrality measure expresses how much effect each vertex has
in the communication in the network assuming that all traffic follows shortest paths.
Informally, the betweenness centrality of a vertex v refers to the total number of short-
est paths between every vertex pair that pass through v. Let αwz(v) be the fraction of
shortest paths betweenw and z that pass through v, i.e.,αwz(v) = σwz(v)/σwz , where
σwz(v) is the number of all shortest paths between w and z that pass through v and
σwz is the number of all shortest paths between w and z. The betweenness centrality
cB(v) of v is cB(v) = ∑

w∈V

∑
z∈V αwz(v) [6]. Higher values of this measure indi-

cates higher importance of the vertex. The closeness centrality considers the central
vertices as the subset of vertices with the minimum total distance to all other vertices.
The closeness centrality cC(v) of a vertex v is defined as cC(v) = 1/

∑
u∈V d(v, u)

[6]. The eccentricity centrality suggests that the center of the graph includes the ver-
tex (or vertices) that has the shortest distance to all other vertices. For a given vertex
v, the eccentricity centrality is cE (v) = 1/max{d(v, u) : u ∈ V } [9]. The vertices
with the highest eccentricity centrality in fact form the center of the network C(G).
In other words, C(G) = {u ∈ V : ecc(u) = rad(G)}. Tables4 and 5 list the highest
ten populations for the degree, betweenness, eccentricity, and closeness centrality
measures for the unweighted and the weighted networks respectively. Note that in
the fifth column of Table4, all the five listed populations have equal eccentricity
centrality. For the unweighted network, the Spearman rank correlation coefficient,
which tests the association between two sets of ranks, between the betweenness and
the closeness centralities is 0.677 with 70% common populations in the list of top
10 populations. For the weighted network, the Spearman rank correlation between
the two measures is about 0.41.

Table 4 Top ten populations with respect to degree, betweenness, eccentricity, and closeness cen-
trality measures for the directed unweighted genetic admixture network

In-degree Out-degree Tot-degree Betweenness Eccentricity Closeness

Papuan Druze Adygie Burusho Papuan Druze

Maya Palestinian Armenian Papuan Melanesian Palestinian

Melanesian Burusho Balochi Druze Columbian Burusho

Burusho Maya BantuKenya Melanesian Lahu Maya

Uzbekistani Hazara BantuSouthAfrica IndianJew Hazara Hazara

IndianJew Melanesian Basque Maya – Melanesian

Cambodian Sardinian Bedouin Hazara – Papuan

Adygie Papuan Belorussian Palestinian – Sardinian

Turkish Kalash BiakaPygmy Adygie – Kalash

Pathan Indian Brahui MbutiPygmy – Brahui
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Table 5 Top ten populations with respect to degree, betweenness, eccentricity, and closeness cen-
trality measures for the directed weighted genetic admixture network

In-degree Out-degree Tot-degree Betweenness Eccentricity Closeness

Papuan Druze Papuan Spanish Burusho Druze

Melanesian Palestinian Burusho Maya Armenian Han

Indian Burusho Maya Han Pathan Palestinian

Burusho Maya Melanesian SanKhomani Maya Maya

Maya Hazara Indian Moroccan Hazara Burusho

Pathan Indian Palestinian Iranian Melanesian Balochi

Myanmar Melanesian Druze Cypriot Papuan Jordanian

Cambodian Papuan Hazara Pathan She Moroccan

IndianJew Bedouin IndianJew Adygei Han Brahui

Adygei Mozabite MbutiPygmy EastSicilian Yakut Melanesian

4 δ-Hyperbolicity and Network’s Core

δ-Hyperbolicity is ameasure that captures the notion of negative curvature in abstract
metric spaces including graphs. A simple graph G = (V, E) naturally defines a met-
ric space (V, d) on its vertex set V where the distance d(u, v) is defined as the length
a shortest (v, u)-path between v and u. In graphs, δ-hyperbolicity measures how
close the graph’s structure is to a tree structure metrically [8]. Given a graph G =
(V, E), x , y, u, and v ∈ V are four distinct vertices, and the three sums: d(x, y) +
d(u, v), d(x, u) + d(y, v), and d(x, v) + d(y, u) sorted in a non-increasing order,
the hyperbolicity of the quadruple x , y, u, v denoted as δ(x, y, u, v) is defined as:
δ(x, y, u, v) = (d(x, y) + d(u, v)) − (d(x, u) + d(y, v))/2.The δ-hyperbolicity of
the graph is δ(G) = maxx,y,u,v∈G δ(x, y, u, v). Generally, the smaller the value of
δ(G) the closer the graph is to a tree metrically and, as a result, the hyperbolicity
property is more evident. Even though the δ-hyperbolicity by definition considers
the maximum difference between any two largest distance sums for any quadruple,
recent research also analyzes the distribution of δ-hyperbolicity of the quadruples
[2, 3, 7]. This makes the value of the average δ-hyperbolicity (taken over all quadru-
ples) equally important. The small δ-hyperbolicity property has been found in many
real-world networks [2, 3, 7, 12]. However, in many of those networks, this low
value is a direct result of the small-world property especially that the inequality
δ(G) ≤ diam(G)

2 is sharp. For our unweighted network, δ(G) = 2 and the average
δ-hyperbolicity of the graph δ′(G) is 0.24. For our weighted network, δ(G) = 15
and δ′(G) = 1.96.
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δ-Hyperbolicity, centrality, and network’s core. It was suggested in [4] that the
concentration of load on a subset of vertices of the network, for communication
assuming shortest path routing, is due to its negative curvature or δ-hyperbolicity.
This concentration can be seen as a bend in those shortest paths towards a core of
the network defined by its most central vertices. However, the identification of core
vertices differ according to the centrality measure used to decide the central vertices.
In [4], the core is defined as the subset of verticeswith highest betweenness centrality.
In [3] the core is defined based on the eccentricity centrality and the betweenness
centrality.

Proposition 1 ([3]) Let G be a δ-hyperbolic graph and x, y be arbitrary vertices
of G. If d(x, y) > 4δ + 1, then on any shortest (x, y)-path there is a vertex w with
ecc(w) < max {ecc(x), ecc(y)}.

According to the proposition, shortest paths bend towards vertices with smaller
eccentricity making the graph’s core mostly represented with vertices with the small-
est eccentricity (rad(G) or rad(G) + 1 in most cases). Then, the betweenness cen-
trality is used to prioritize those vertices according to their participation. In [2], it
has been observed that if one constructs a small r -neighborhood where (r = δ(G))
around a vertex v on a shortest path between two vertices x and y, then all shortest
paths between x and y include a vertex in this r -neighborhood.1 Our goal is to identify
the core vertices using the δ-hyperbolicity of the network without any presumptions
about the centrality of the vertices in the network. Then we analyze the core vertices
in terms of their centrality.

For each integer r ≥ 0, let Nr (u) denotes the neighborhood of distance at most
r centered at u, i.e., Nr (u) = {v ∈ V : d(u, v) ≤ r}. We define the δ-hyperbolicity-
neighborhood of a vertex u, denoted as NΔ(u), as the smallest integer Δ, where 0 ≤
Δ ≤ δ(G), such that themajority of vertex pairs (more than 90%) are covered by that
neighborhood. We say a vertex pair (w, z) is covered by the
δ-hyperbolicity-neighborhood of a vertex v, if there is at least one vertex u ∈ NΔ(v)

such that d(w, z) = d(w, v) + d(v, z). Figure3 shows that the δ-hyperbolicity-
neighborhoods of the majority of vertices when Δ = 0 cover a small percent of
vertex pairs (between 3% and 15%). An exception is those vertices with higher
betweenness; for example, Papuan that covers about 33% of other vertex pairs.
However, when Δ = 1, the δ-hyperbolicity-neighborhood around each vertex cov-
ers the majority of vertex pairs. Again some exceptions include French that covers
only 27%. For the details, take a look at Table6.

1Note that the value of r could be higher but never exceeds 6δ(G) + 2 [2]. However, for real-
networks it was observed in [2] that r ≈ δ(G).
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Fig. 3 Percent of vertex pairs covered by the δ-hyperbolicity-neighborhood NΔ(v) of each vertex
v in the directed unweighted genetic admixture network. 1 ≤ v ≤ 95 and 0 ≤ Δ ≤ δ(G) = 2

Table 6 Percent of vertex pairs covered by each δ-hyperbolicity-neighborhood in the directed
unweighted genetic admixture network

v Population N0(v) (%) N1(v) (%) N2(v) (%)

a Populations with high coverage

12 Burusho 29.48 98.53 100

33 Hazara 22.5 96.2 100

63 Papuan 33.08 96.77 100

b Populations with low coverage

10 Bulgarian 2.8 9.18 72.06

25 French 3.68 27.22 91.58

35 Hungarian 2.79 18.8 93.1

Now we can rank our vertices according to their δ-hyperbolicity-neighborhoods.
Each vertex v has two values: (1) Δ, that represents the smallest integer Δ ≤ δ(G)

such that the δ-hyperbolicity-neighborhood NΔ(v) covers more than 90% of ver-
tex pairs, and (2) the percent of vertex pairs covered by this δ-hyperbolicity-
neighborhood. We lexicographically sort all vertices according to those two values.
The results are listed in Table7. The higher the ranking of a vertex, the more it
becomes part of the core set.

Discussions. From Fig. 3 and the results listed in Table7 it is clear that the ranking of
vertices obtained according by the coverage of their δ-hyperbolicity-neighborhoods
corresponds to some extent with the ranking obtained from the centrality measures;
especially the out-degree centrality, the betweenness centrality, the eccentricity cen-
trality, and the closeness centrality. One can see that the majority of the top ten
populations in each centrality measure are also present in the top ten list of the
vertices with respect to their δ-hyperbolicity-neighborhoods. In contrast, some pop-
ulations who are not at the top of the rankingwith respect to some centralitymeasures
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Table 7 Top ten populations with respect to the δ-hyperbolicity-neighborhoods of vertices in the
directed unweighted genetic admixture network

Rank Population In-degree
rank

Out-degree
rank

Betweenness
rank

Eccentricity
rank

Closeness
rank

1 Burusho 4 3 1 2 3

2 Druze 19 1 3 2 1

3 Palestinian 16 2 8 2 2

4 Melanesian 3 5 4 1 6

5 Kalash 17 7 19 2 9

6 Maya 2 4 6 2 4

7 Indian 10 7 15 2 11

8 Papuan 1 7 2 1 7

9 IndianJew 5 9 5 2 22

10 Sardinian 29 6 35 2 8

Here we compare this rank of each vertex with its rank according to the five centrality measures
discussed earlier: the in-degree, out-degree, betweenness, eccentricity, and closeness

actually appear as core vertices according to their δ-hyperbolicity-neighborhood. For
example, the three populations: Kalash, Indian, and Sardinian all are considered as
core vertices according to their δ-hyperbolicity-neighborhood; however, they have
lower values for the eccentricity centrality and/or the betweenness centrality mea-
sures. This can be justified by the existence of multiple core vertices distributed over
multiple cores of the network defined using different centrality measures (or even by
the existence of a number of nested cores). Some core vertices are more important
with respect to their location and according to the percent of other vertex pairs they
cover. This makes those vertices have higher values for the eccentricity centrality
and/or the betweenness centrality measures. Still other core vertices, which may
have lower eccentricity or betweenness centralities, are important (i.e., essential for
communication) for a smaller percent of vertices. This observation motivates investi-
gating the existence of multiple communities that revolve around those different core
vertices. Generally, communities in a network are represented by a number of highly
dense (with respect to the number of connections) set of vertices; and different com-
munities are linked with fewer connections. Here we use the Louvain method [5] for
detecting communities in our unweighted genetic admixture network (we ignore the
direction of the edges here). The method identifies three communities (or modules)
in our network which admits a modularity of 1.62. The modularity here measures
the density of connections inside communities to the density of connections outside
communities. See Figs. 4 and 5. Unlike the sub-networks identified earlier in Sect. 3,
the modules are represented mostly by non-neighboring populations, and the core
vertices are distributed among the different modules.
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Fig. 4 Populations in three different modules.Module sizes (with respect to the number of vertices)
are 36, 34, 25

Fig. 5 Each population is assigned to a different module. Larger circles indicates the core vertices
in each module based on the δ-hyperbolicity-neighborhood of vertices

5 Conclusion

Wehave studied the genetic admixture network of humans inwhich vertices represent
populations and a link exists between a pair of populations if one participates in the
genetic admix of the other.We have considered both theweighted and the unweighted
versions of the network. The networks studied were based on data published in [10].
Based on our analysis, we find the average distance between a pair of populations
across the network are relatively small suggesting a small-world network. We also
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find that the network comprises a number of sub-networks when edges are pruned
based on their weights. Those sub-networks are formed bymultiple neighboring pop-
ulations. Also, we identify key vertices according to a number of centrality measures,
and we find that those measures correlate very well. Finally, we propose a method of
identifying core vertices based on the δ-hyperbolicity of the network. This network
is dynamic; i.e., the connections among populations are based on a specific time
frame. It is interesting to capture different admixing statistics based on various time
frames and compare how the dynamicity of this network changes with time.
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Network Science and Narratives: Basic
Model and Application to Victor Hugo’s Les
Misérables

Semi Min and Juyong Park

Abstract Propelled by the recent advances in digitization of books and
computational methods for automated text analysis, we are witnessing a promis-
ing opportunity for a serious scientific study of narratives. The importance of such
an endeavor stems from the fact that a good story, albeit often fictional and artificial,
is composed of highly believable characters who interact and experience a sequence
of events together in a realistic world setting, and thus a better understanding of nar-
ratives may yield new insights for comprehending various real social phenomena as
well as literary fiction. Here we present the basic scientific framework for modeling
narrative as complex networks, which allows us to study how the narrative struc-
ture is reflected in the network of characters and how they allow us to understand
the dynamics of narrative progression. This paper contains the fundamental network
model of narratives and its properties that serves as the starting point for a more
comprehensive future work.

1 Introduction

Advances in quantitative methodologies for the modeling and analyses of large-
scale heterogeneous data in recent years have made possible the understanding of
various complex social, technological, and biological systems from novel perspec-
tives. And the horizon is expanding from such traditional complex systems to other
fields including culture and humanities to find answers to new and long-standing
problems, helped by the advent of large-scale data sets. For example, massive digi-
tization of books (e.g., Project Gutenberg and Google Books) have allowed scholars
to perform high-throughput analyses of language and literature, collective memory,
the adoption of technology, censorship, and historical epidemiology [1]. The global
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nature of web and the social media are also enabling many transnational studies
of cultural phenomena: Park et al. studied complex network of western classical
composers constructed from a comprehensive recordings data from ArkivMusic [2]
and revealed its basic properties and growth dynamics [3]. Schich et al. analyzed
the network of notable individuals and showed the emergent processes in cultural
history [4].

As evidenced by these previous works, a data analysis framework that has attracted
significant attention in recent years is network science. Network science attempts to
uncover the underlying principles of a complex system from the patterns and the
nature of the connections or interactions among its components [5]. By focusing
on the interconnected nature of things, network science has made great strides in
enabling a deep understanding of not only the systems easily recognizable as a
network such as the Worldwide Web [6] and the Internet backbone [7], but also
those that have been intensively studied in other traditional domains such as biology,
management, and sociolgy [8–10].

In this paper we utilize the network framework to study a system that has not yet
been widely studied by the framework, but one that we believe can benefit hugely:
Narratives. Narratives, or stories as they are called more colloquially, have long been
studied by narratologists who tried to reveal the patterns in their structure, as they
realized the ubiquity and importance of narratives as the form by which we perceive
and communicate our experience and surroundings. The connection between narra-
tives and networks can be easily seen, for example, from the New Oxford American
Dictionary’s definition of a narrative as “a spoken or written account of connected
events.” Therefore the connection between the elements of the events—people (char-
acters), things (devices), environment, etc.—are very important in the construction
of a well-written, engaging narrative. It is this importance of the connections between
the elements that render narratives an appropriate topic for network science. While
still in its infancy, there have been a number of notable works in the past several
years that do highlight the importance of networks for understanding narratives.
The community structure of the co-appearance network of characters from Victor
Hugo’s Les Misérables [11], the network of characters from William Shakespeare’s
Hamlet constructed from word exchange [12], and the social networks of characters
from from 19th-century British novels and serials from conversations [13] are such
examples.

There have historically been many attempts to characterize the plot structure of
narrative plot by extracting common and oft-observed patterns, including Aristotle’s
three-act plot structure theory. According to the theory, Act One is the setup where
the central theme and question are raised, followed by two major turning points that
form Acts Two and Three before the narrative concludes with a climax and a final
resolution. Variant forms of it such as a four-act plot structure theory exist as well
[14, 15]. While these types of theories still find use, there are naturally many ways
in which they can be extended or modified to be able to help us understand the huge
body of literature in existence. It should be not only possible but also necessary:
given the large number of narratives, it’s easy to understand that the themes may
be different from narrative to narrative, and each narrative may contain more than
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three events and many more characters, resulting in the level of complexity that
requires dividing the narrative into more than merely three or four smaller parts.
This is what we wish to achieve in this paper: We attempt to establish a network
science-based framework for narrative analysis that more accurately identifies the
complexity of a narrative from the narrative itself. Note that this paper presents the
fundamental modeling philosophy of our approach and some very basic results, and
a more extensive work will be presented elsewhere in the future. We illustrate the
framework using the English translation of Victor Hugo’s Les Misérables [16], freely
available on Project Gutenberg [17]. Based on the Paris Uprising of 1832 CE, it is
considered a classic that vividly conveys the social conditions of a tumultuous era
and insights into the human psyche via richly developed characters around the main
character Jean Valjean, a fugitive who transforms into a force for good in a chaotic
France while being haunted by the shadow of his criminal past [18]. The resulting
complex web of characters and plots render Les Misérablesan appropriate material
for the application of the methods we develop here.

2 Network of Characters: Topology and Growth

Our work begins from the the realization that it is very often the characters that,
through their actions and interactions, advance a narrative. This makes it appropriate
to represent the structure of narrative using character appearance and interactions.
Since there can be varying numbers of characters appearing together at various points
in the narrative, we represent the narrative as a set of interacting character timelines
shown in Fig. 1. A character timeline is a record of the character’s appearance in each
narrative unit (e.g., a chapter in a novel or a scene in a play) of the narrative. What
we consider as an appearance of a character and an interaction is up to the narrative
format and the modeler; while it is straightforward in a dialog-driven script for a
movie or a play since a character’s appearances and dialogs are very clearly marked,

Timeline of Character i

Timeline of Character j

Timeline of Character k

Narrative Units

D GA B F H I

ED EC F I

EB C F H IE

Fig. 1 Character-centric diagrammatic representation of our narrative flow model. According to
the model, a narrative is a set of character timelines, the record of the characters’ appearances in each
narrative unit such as a chapter. We build the network of characters by connecting the characters
that appear in a common narrative unit
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Fig. 2 The character network of Les Misérables. The node radius is proportional to its degree
(the number of its neighbors). The network shows many characteristics of a social network such as
small-world property and high clustering

there can be ambiguities in a novel. Here, we count the appearance of a character
in a chapter as a single appearance, and consider tow characters to be interacting
when they appear together in a common chapter of Les Misérables. This implies
that an interaction could mean not only an explicit conversation or contact, but also
experiencing a common event or situation.

In a well-written story, it is often the adventures, tribulations, and successes or
failures of the characters that constitute its core content. The state of the character
therefore is intimately tied to the state of narrative progression. Furthermore, since
interactions between characters is an essential part of a character’s experience and
development, understanding the dynamics of the character relationships is key to
understanding the structure of the narrative itself. We thus start by constructing
the network of characters based on Fig. 1. The network of Les Misérables contains
63 characters after very minor ones are excluded. Drawing an edge between two
characters if they have appeared in a chapter together (Fig. 1 or Ref. [11]) results in
m = 504 edges. The network is shown in Fig. 2. In it, 25.8 % of the character pairs
are connected, the mean geodesic length is 1.85, the network diameter is 4 (between
the pair of Babet and Geborand, and 17 other pairs of relatively minor characters),
and the clustering coefficient is 0.77.1

From the perspective of the narrative flow, what interests us is how the network
grows over time and what we learn about the narrative from the patterns. This is

1Although our network appears denser than typical social networks [19, 20], this is likely due to
the fact that most characters of the novel are involved in some common plot while the rest of the
story world is pushed into the background.
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because the network is essentially coupled to the narrative flow: Starting from an
empty network in the beginning of the narrative, the network grows as new charac-
ters are introduced and interact with others. In this sense, we can say that the temporal
growth of the network is intimately connected to the concept of the so-called narra-
tive stages. A common classification of narrative stages is Exposition, Rising Action,
Climax, Falling Action, and Resolution [21]. The Exposition stage introduces the
characters and the space they inhabit. Once the motives and allegiances of the char-
acters are presented, in the Rising Action the characters begin to struggle against each
other until all conflicts are resolved throughout the last three stages. Based on this
stage distinction, therefore, we can assume that n and m would not simply increase
linearly in time but nonlinearly in accordance with the nature of the stages. In Fig. 3
we show the growth of n and m along the narrative time measured in chapters. As
expected, the growth is not linear, especially for the number of nodes n. After the
first batch of characters are introduced at the beginning of the narrative, there are
specific points in the narrative where many new characters are introduced simulta-
neously (noted S1, S2, and S3 in Fig. 3) that suggest they are the Exposition stages.
An inspection of the actual story confirms this:

• Stage S1: Fantine’s friends are introduced as her happy days are depicted.
• Stage S2: Valjean’s former fellow prison inmates appear to testify during the trial

of the fake Valjean.
• Stage S3: “The Friends of ABC” (young progressives) are introduced, shown

debating on various social issues of the day.
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Fig. 3 The growths of the number of characters n and the number of edges m in Les Misérables.
The growths are nonlinear, indicating that different stages in narratives serve different roles in the
network growth via character introduction and formation of new connections
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There is also a stretch of chapters (S4) where the network shows little growth.
This part largely coincides with Volume 2 (“Cosette”) of the novel composed of
those chapters that contain no narrative progression (i.e. the author digresses to
discuss the battle of Waterloo, religion, the vagrant children of Paris, etc.) or that
show no network growth, being mainly about Valjean and Cosette’s flight from the
pursuit of Thenadier while avoiding people in general. Finally, near the end of the
narrative at S5, it is the number of edges m that lead the growth of the network while n
shows little increase. This—new edges being created between existing nodes without
the addition to new ones—implies a convergence of the characters into a common
environment: this part in fact describes the scene at the barricade where nearly all
major characters (who have been introduced before) converge.

The network growth pattern shown Fig. 3 is aggregate. To understand the narrative
structures based on the character network in more detail, we need to study the cen-
trality of each character. We introduce three measures: Appearance a, unweighted
degree k, and weighted degree w. Appearance a is the simplest, equal to the number
of narrative units (chapters in our analysis of Les Misérables) in which a character
appears. We show the final histogram of a in Fig. 4a. It has a skewed distribution with
many characters appearing in a handful of chapters and a few characters appearing
in many chapters, for instance Marius appears in 122 chapters, Valjean in 121, and
Cosette in 97, whereas the mean and the median are 19.3 and 9 respectively, nearly an
order of magnitude smaller than the most frequent characters. In Fig. 4d we show the
temporal growth of each character’s cumulative appearance. Although Marius and
Valjean are similar in the total appearances (122 and 121, respectively), how these
values are reached are very different. Valjean first appears in the beginning of the
novel, then with regularity until there is a noticeable absence between chapters 160
and 233 (indicated by a plateau). During Valjean’s absence, Marius, making his first
appearance in chapter 170, takes the center stage in the novel and appears in almost
every chapter until he overtakes Valjean in appearance. This is a direct reflection of
the structure of Les Misérables: the first part is mainly about Valjean (with Marius
absent), the second part is mainly about Marius (with Valjean absent), and the final
part features both as major characters.

The degree k, the number of connections in the network, on the other hand, differs
in interesting ways from a. The three highest-degree nodes are Valjean (k = 43),
Cosette (k = 41), and Javert (k = 39), whereas Marius is down to k = 34. The degree
therefore captures the nature of the social sphere around a character that appearance
alone cannot tell: Valjean is a well-travelled character linking many different spheres
of the story world, whereas Marius associates with a narrow pool of characters
(namely the young fellow rebels) and his love interest Cosette. The weighted degree,
the total number of times a character meets others, shown in Fig. 4e, f is in a sense
a combination of the two. Here Valjean is again the leading character, followed by
Marius, Cosette, Thenadier, and Javert.
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Fig. 4 Histograms of (a) appearance, (b) unweighted degree, and (c) weighted degree of the char-
acters of Les Misérables. The histograms are relatively skewed, with some characters having high
values and many having small values. The three most frequently appearing characters are Marius
(122), Valjean (121), and Cosette (97), while the three highest-degree characters are Valjean (43),
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of their social networks. (d)–(f) show the growth of these quantities for each character, showing
the different stages of the narrative in which the characters are very actively depicted. a Appear-
ance distribution. b Unweighted degree distribution. c Weighted degree distribution. d Appearance.
e Degree. f Weighted degree
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3 Conclusion

In this paper we proposed a network framework for studying a narrative. By model-
ing a narrative flow as a growing dynamic network of characters, we demonstrated
that some very basic measurements of the network reveal interesting pattern of the
network structure. For instance, the growth of the network size showed a range of
interesting behaviors such as a sudden increase in the number of nodes and char-
acters that corresponded to the different characteristics of narrative stages. The role
of an individual character in the narrative flow was measured via multiple centrality
measures, which revealed different aspects of the character’s role and position in the
network. While this work is the first part of a longer forthcoming research that makes
explicit use of the narrative text to more fully capture the complexity in storytelling,
we believe that this work contains some useful and fundamental ideas for bringing
the methods of complex networks towards understanding narratives.
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Mental Lexicon Growth Modelling Reveals
the Multiplexity of the English Language

Massimo Stella and Markus Brede

Abstract In this work we extend previous analyses of linguistic networks by adopt-
ing a multi-layer network framework for modelling the human mental lexicon, i.e.
an abstract mental repository where words and concepts are stored together with
their linguistic patterns. Across a three-layer linguistic multiplex, we model Eng-
lish words as nodes and connect them according to (i) phonological similarities,
(ii) synonym relationships and (iii) free word associations. Our main aim is to exploit
this multi-layered structure to explore the influence of phonological and semantic
relationships on lexicon assembly over time. We propose a model of lexicon growth
which is driven by the phonological layer: words are suggested according to different
orderings of insertion (e.g. shorter word length, highest frequency, semantic multi-
plex features) and accepted or rejected subject to constraints. We then measure times
of network assembly and compare these to empirical data about the age of acquisi-
tion of words. In agreement with empirical studies in psycholinguistics, our results
provide quantitative evidence for the hypothesis that word acquisition is driven by
features at multiple levels of organisation within language.

1 Introduction

Human language is a complex system: it relies on a hierarchical, multi-level com-
bination of simple components (i.e. graphemes, phonemes, words, periods) where
“each unit is defined by, and only by, its relations with the other ones” [1, 2]. This
definition [1] might explain some of the success of complex network modelling of
language for investigating the cognitive processes behind the so-called human men-
tal lexicon (HML) [2]. Psycholinguists conjecture [1, 3, 4] that words and concepts
are stored within the human mind in such mental repository, which allows word
retrieval according to multiple relationships (i.e. semantic, phonological, etc.). One
can imagine the HML as an extensive database, where words are stored together with
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their linguistic patterns (e.g. synonym relations, etc.) on which a distance metric can
be imposed, allowing for comparisons across entries.

In the last fifteen years, different layers of the HML have been investigated using
tools from network theory. Motter et al. [5] constructed a semantic network of
synonyms, where words appearing as synonyms in a dictionary were connected.
The resulting network exhibited small-worldness (i.e. higher clustering coefficient
and similar mean shortest path length compared to random graphs). It also dis-
played a heavy-tailed degree distribution with scaling exponent γ � 3.5. The authors
attributed both the presence of network hubs and the small-world feature to polysemy,
i.e. a given word having more meanings depending on context and thus gathering
more links. Sigman and Cecchi [6] showed that polysemic links create shortcuts
within semantic networks, thus reducing path lengths between semantically distant
concepts. This is relevant to cognitive processing because the semantic topology
correlates with performance in word retrieval in memory tasks [1, 3, 7, 8]. It is con-
jectured that words within the HML are recollected together with a set of additional
properties (e.g. being animated, etc.) [7]. Empirical evidence supports the hypothesis
that adjacent words in a semantic network inherit features from their neighborhood,
so that words closer on the network topology can be processed in a correlated way,
thus reducing memory effort [1, 3, 7]. Semantic networks were further analysed
by Steyvers and Tenenbaum in [9]. By proposing a network growth model based
on preferential attachment, the authors investigated the role of word learning vari-
ables (e.g. frequency and age of acquisition) on shaping the structure of semantic
networks. They showed that higher frequencywords tend to havemore semantic con-
nections and tend to be acquired at earlier stages of development , thus highlighting
an interplay between network topology and language learning.

Complex networks were also proposed as a suitable tool for analysing the phono-
logical layer of the HML. Vitevitch suggested phonological networks (PNs) [4] as
complex networks in which words are connected if phonologically similar, i.e. if
they differ by the addition, substitution or deletion of one phoneme. Experimental
evidence showed that the resulting network degree and local clustering coefficient
both correlated positively with speech errors and word identification times, indi-
cating that also the topological properties of a word in the phonological network
plays an important role in its cognitive processing [10]. In [11, 12], we checked that
artificial corpora, made of uncorrelated random words, could not reproduce specific
features of the English phonological network. By means of percolation experiments
we showed that the real PN actually inherits some features (e.g. a degree distribution
with a heavy tail) from its embedding space, but it also displays some patterns that
are extremely hard to match with randomword models (e.g. the PN’s empirical core-
periphery structure). By proposing a family of null models that respect the spatial
embedding, we identified two constraints possibly acting on phoneme organisation:
(i) a maximum size of phonological neighborhoods (above which word confusability
[4, 10] becomes predominant) and (ii) a tendency to avoid local clustering (which
correlates with word confusability [10]).

To the best of our knowledge, until now there has been no theoretical framework
modelling both the semantic and the phonological aspects of the mental lexicon in
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termsof amultiplex network.Multiplexes represent a novel andquite prolific research
field [13, 14]: in a multiplex the same set of nodes can be connected differently
in different layers of networks. Historically, the idea of context-dependent links
originated from the social sciences [13]. However, it is only in the last five years
that these multi-layered networks were successfully applied in a wide collection
of different scenarios, such as robustness of infrastructure, science of science and
game-theoretic dilemmas, among many others (for further references see [14]).

Exploring the multiplexity of the English language to study lexicon formation is
the main idea of this study. We specifically focus on the interplay between semantics
and phonological factors in the assembly of the repertoire over time. In detail, we
build a three-layer multiplex network, where each layer represents a given linguistic
network and where the same set of nodes is replicated across all layers. We focus our
analysis on a minimalistic network growth model where the lexicon is assembled
over time and real words get inserted, one at a time, according to a given ordering,
either based on exogenous features (e.g. word frequency) or multiplex features of
the HML. Our main aim is to quantify the influence of each ordering in the assembly
times of the empirical multiplex, in order to assess the impact of word features on
lexicon growth. For this purpose, we test our experiments with empirical data of
the age of acquisition of English words, obtained from [15]. Our results highlight
the presence of an interplay between the phonological and the semantic layers in
structuring the mental lexicon.

This paper is structured as following: in Sect. 2we report on the datasetwe adopted
for the multiplex construction and we compare it to datasets of commonly spoken
English; in Sect. 3we introduce themodel of lexicon growth; the results are discussed
in Sect. 4, conclusions and future work directions are reported at the end.

2 Multiplex Construction

We build a linguistic multiplex of three unweighted, undirected graphs/layers, com-
prising an intersection of N = 4731 words and based on the following interactions:

1. Free Word Associations (based on the Edinburgh Associative Thesaurus [16]);
2. Synonyms (based on WordNet 3.0 [17]);
3. Phonological Relationships (based on WordNet 3.0 and manually checked, auto-

matic phonological transcriptions into the IPA alphabet [18]).

The thus constructed linguistic multiplex includes one phonological layer and
two semantic layers. With synonym relationships and word associations we chose
to include two semantic layers, mainly because of large structural differences in the
topology of these networks. Free associations capture also those linguistic patterns
that cannot be expressed in terms of other semantic relationships (e.g. opposites,
synonyms, etc.). These relationships are still of primary importance for cognitive
processes [3, 16]. In fact, experimental evidence indicates that such links act as
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pointers for word retrieval [1, 3]. Their greater generality is what differentiates asso-
ciations from synonymy relationships, which have been extensively investigated in
the linguistic literature [3, 8, 9].

Representativeness of the Data

A network representation of language should be indicative of real patterns in the
mental lexicon, therefore the linguistic multiplex should be based on commonly used
words. Unfortunately WordNet 3.0 does not include frequency counts, therefore we
tested our data through the word frequencies from the Opensubtitles dataset [19], i.e.
a lexicon based on more than 1.4 · 108 word counts from TV series subtitles.

Theword length distributions reported in Fig. 1 indicate that our smaller-sizeword
sample containsmore shorterwordswhen compared toWordNet. Furthermore, Fig. 1
shows that words contain less phonemes than orthographic characters, on average.
For instance, a word in our sample contained 4.78 ± 0.03 phonemes and 5.39 ±
0.03 orthographic characters. Given this difference, we are using both phonetic and
orthographic word lengths in our growth experiments in Sect. 4, as proxies for word
acquisition through hearing and reading, respectively.

In Fig. 1 the word frequency distribution of our 4731 sampled words is com-
pared against the whole Opensubtitles repository and against the 4731 words from
Opensubtitles with the highest frequencies. Interestingly, the whole dataset exhibits
a heavy tail behaviour. The cumulative probabilities P(F ≥ z) of finding a word
with frequency F greater than or equal to z tell us that higher frequency words in our
dataset are more likely than in the whole Opensubtitles but also less likely than in the
frequency ranked subsample. Furthermore, excluding extremely frequent words, our
sample reproduces the same power-law like behaviour of the whole Opensubtitles

Fig. 1 Left Orthographic and phonetic word length distributions for our sample (blue dots and
golden squares, respectively) and for roughly 29000words phonetically transcribedwithinWordNet
3.0 (green diamonds and red triangles). Opensubtitles is not used in the word length distributions
because it does not have phonological transcriptions. Right Empirical probability distributions of
word frequency within our data sample (blue dots), the Opensubtitles repository (golden squares)
and a ranked subsample of the Opensubtitles list of the same size as our sample (green diamonds).
The dashed black line gives a power-law with exponent γ = 1.83 ± 0.03
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Fig. 2 Cumulative degree
distribution P(K ≥ k) for
the phonological network
(blue dots), the synonym
network (golden squares),
the free association network
(green diamonds), the
semantic aggregate network
associations+synonyms (red
triangles) and the
overlapping network (purple
triangles)

dataset, for mid-and high frequencies. Because of this over-representation of higher
frequency words, we can reasonably assume that our data is a good representation
of commonly used English words.

Multiplex Network Structure

We begin the analysis of the multiplex by investigating the cumulative degree distri-
butions P(K ≥ k) [20] of individual layers and of the multiplex, reported in Fig. 2.
The degree distributions span different orders of magnitudes and display different
behaviors. There is a considerable fraction of hubs within the association network,
which displays a heavy tail degree distribution. The phonological network displays
a cut-off around degree k ≈ 30 while the synonym network shows a degree distrib-
ution that can be approximated by an exponential. We also investigate the multiplex
overlapping degree oi [13], i.e. the sum of degrees k[α]

i of node i on each layer α:

oi =
3∑

α=1

k[α]
i . (1)

Interestingly, the overlapping degree seems to have a more pronounced exponen-
tial decay compared to the degree of the aggregated semantic layers (i.e. a network
where any link is present if it is present in at least one of the original layers). This
reveals negative degree correlations on lower degrees, in our linguistic multiplex. A
scatter plot highlights the presence of hub nodes in the semantic aggregate that have
low degrees (k ≤ 15) in the phonological layer. For this reason, locally combining
layer topologies is of interest for our assembly experiments, cf. Sect. 4.

Table1 reports some network metrics [20] for the individual layers and the aggre-
gated semantic multiplex, compared to configuration models with the same degree
distributions. All the three layers display the small-world feature, in agreementwith
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Table 1 Metrics for the multiplex with N = 4731 nodes: edge count L , average degree 〈k〉, mean
clustering coefficientCC , assortativity coefficient a, giant component node count GC Size, network
diameter D and mean shortest path length 〈d〉
Network L 〈k〉 CC a GC Size D 〈d〉
Phonological 15447 6.5 0.24 0.61 3668 22 6.7

Phonological CM 15447 6.5 0.004(1) 0.0048(4) 4580(10) 10 4.3(5)

Synonym 7010 3.0 0.23 0.26 2989 15 5.9

Synonym CM 7010 3.0 0.002(1) −0.02(3) 3396(9) 13 5.1(2)

Association 20375 8.6 0.1 −0.11 3664 7 3.6

Association CM 20375 8.6 0.09(2) −0.005(1) 3658(8) 7 3.5(3)

Semantic Aggregate 26056 11. 0.18 −0.06 4298 9 3.6

Sem. Agg. Combined CMs 27374 11.6 0.01(2) 0.015(1) 4320(10) 8 3.5(2)

Multiplex Aggregate 40983 17.3 0.15 0.018 4689 9 3.4

Mult. Agg. Combined CMs 42787 18.1 0.012(5) 0.024(4) 4713(6) 8 3.2(1)

Error bars on the last digit are reported in parentheses and are based on 20 repetitions. For instance,
3.0(4) means 3.0 ± 0.4. CM aggregates are obtained by combining CM layers and therefore differ
in degree from their empirical counterparts

previous results [5, 11]. The current literature suggests that small-worldness might
be related to language robustness to individual word retrieval failure (e.g. in aphasia
[3]) while also enhancing network navigability [10]. It is noteworthy that the phono-
logical layer displays a network diameter almost three times larger than themean path
distance. Since its configuration model (CM) counterpart does not reproduce such
pattern, this is an indication of a strong core-periphery structure within the network
[11]. Further, all the individual layers are disconnected and have a giant component
(GC). The GC size is hardly matched by CMs for the phonological and synonym
layers while there is good agreement for the association layer. Interestingly, the two
semantic layers display different organisational features: the synonym layer is more
disconnected but more clustered than the association one; and while synonyms dis-
play an assortative mixing by degree associations are disassortative [20], instead.
Therefore, in the association layer there are hub words surrounded by many poorly
connected nodes while in the synonym layer large neighborhoods tend to be directly
connected with each other. Indeed, because of these different topological features we
will keep these layers distinct within our linguistic multiplex. Assortative mixing is
also strongly present at the phonological level, but note that in this case high assor-
tativity is a feature inherited from the embedding space of phonological networks
[11, 12]. Configuration model aggregates are formed by aggregating the individual
configuration model layers. Only 0.5% of the edges in the association layer overlap
with the synonym layer. The empirical networks display a higher edge overlap when
compared to the configuration models (4.5% of the edges overlap across the real
layers versus the 0.1% of the CMs).
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3 Simulated Network Assembly

In [11], we suggested a network growth procedure as a null model for phonological
networks (PNs), in which an artificial PNwas built from randomly assembled strings
of phonemes, satisfying some empirical constraints (e.g. phoneme frequencies). In
this work, we extend that model by adopting a multiplex perspective.

Let usmodel themental lexicon as a networkwhich grows over time. Ourmodel is
localist [9], i.e. in it each concept is partially associatedwith an individual node/word
in the network. Concepts are acquired to the lexicon by inserting single nodes/words.
However, a given concept is represented in its full meaning by a word/node together
with its links, since they retain further information about the concept itself (e.g. a
neighborood can translate into a semantic context [9] or it can provide information
about word confusability [4]). In the following we will use “words” to identify single
nodes and “concepts” to identify jointly a node and its local connectivity. We follow
an approach similar to Steyvers and Tenenbaum [9].

At each time step, a node/word is tentatively inserted into the lexicon. Then, we
check for phonological similarities between the new word and the others already in
the network, i.e. we check for links on the phonological level. If the new node/word
receives at least one connection (i.e. it becomes active in the multiplex jargon [14])
on the phonological network, then it is accepted to the lexicon. Otherwise, if the
node/word does not receive any connection, we reject it with probability f , putting it
back to the list of not yet includedwords.Words are suggested from this list according
to a given multiplex or exogenous criterion and until all words have been accepted.
We measure the average assembly time T , i.e. the time it takes until a full network
comprising all 4731 words has been built. The rejection probability f is the only free
parameter of the model, but acceptance/rejection of words also depends strongly on
the ordering in which they are suggested. There are many possibilities of different
orderings that could be considered. We tested several of them and then selected a
sample of those experiments that provided a wide pool of different results:

1. random ordering as a baseline reference case (Rand. Order);
2. phonologically shorter words first (Short Pho., e.g. “a”, “ad”, “ash”, ...);
3. orthographically shorter words first (Short Wor., e.g. “a”, “ad”, “be”, ...);
4. more frequent words first (Freq., e.g. “a”, “in”, “have”, ...);
5. higher degree words in the association layer first, where hubs are the most rec-

ollected words in semantic memory (Asso., e.g. “man”, “water”, “sex”, ...);
6. higher degree words in the synonym layer first, notice the difference with the

association layer in the ranking (Syno., e.g. “take”, “hold”, “get”, ...);
7. higher degree words in the semantic multiplex aggregate first, association hubs

prevail over the synonyms (As.+Sy., e.g. “man”, “water”, “sex”, ...);
8. empirical age of acquisition [15] (AoA, e.g. “momma”, “potty”, “water”, ...);
9. random phonological/random semantic neighbors, i.e. select a word at random

on the phonological level, select one of its neighbors on the semantic aggregate
at random, avoiding repetitions (R. Ph./Ag.);
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10. random phonological/frequent semantic neighbors, i.e. select a phonological
word at random, select one of its neighbors on the semantic aggregate at random
but proportionally to its frequency (R. Ph./F. Ag.);

11. frequent phonological/frequent semantic neighbors, i.e. select a phonological
word at random but proportionally to its frequency, similarly select one of its
neighbors on the semantic aggregate (F. Ph./Ag.).

In our model the growth dynamics is driven by the phonological layer. Although
this could be made more realistic, our choice is motivated by two empirical observa-
tions. Firstly, there is widely accepted empirical evidence showing that phonological
memory (i.e. the growing set of phonological transcriptions that are checked for
connections, in our model) plays a critical role in concept acquisition [21–25]. Fur-
thermore, there are recent empirical studies in children that strongly emphasise that
lexical acquisition is heavily influenced by the phonology of the words, at least
at early stages of the lexicon’s assembly [25]. Psycholinguists conjecture that this
lead of phonology in the lexicon growth might occur because children could find it
easier to produce and understand words containing phonemes already presented in
their phonological inventory [1, 22]. This empirical bias is what our model tries to
capture by checking for phonological similarities before word acceptance/rejection.
However, it is also true that semantics and other external features do influence the
lexicon’s growth and our model does account for this interplay through the orderings
of word insertion. In fact, there is also evidence that, after an initial state in which
phonological learning is predominant, lexical learning lets children learn novelwords
whose sounds are not present in their inventories [24, 25]. Our model captures also
this aspect, since even novel words that do not have phonological similarities can be
probabilistically accepted. The second motivation behind adopting the phonological
network as a check for linguistic relationships is that detecting phonological similar-
ities is straightforward: it can be done on a quantitative basis (i.e. check for phoneme
strings having edit distance one). Conversely, detecting semantic relationships (i.e.
are two words synonyms?) can be extremely difficult without any external source of
information (e.g. a dictionary or an experiment).

Beyond the type of links we check, another key element of our model is the “acti-
vation” requirement, i.e. the fact that a word has to receive at least one connection in
order not to undergo the probabilistic rejection/acceptance stage. Being connected
to any other node is the simplest requirement one can think of in terms of local con-
nectivity, which is pivotal in the activation spread [7]. We have made this modelling
choice mainly in the interests of meaningful parsimony. While we do not mean to
preclude a possible role for other growth dynamics, we have to start from a simple,
yet meaningful, dynamics that minimises the number of free parameters. It has to be
underlined that our chosen model represents, at best, a highly simplified abstraction
of the cognitive processes driving real lexicon growth. We chose to follow simplic-
ity, mainly because of how little is known about the evolution of the real, large-scale
human mental lexicon [1, 9]. Other viable approaches that might fall in the same
simplicity category as our model should also be explored in the future.



Mental Lexicon Growth Modelling Reveals the Multiplexity of the English Language 275

Interestingly, the sameword is used in both themultiplex and the psycholinguistics
jargons: an “active” node in a multiplex is one having at least one link [14], the
“activation” in psycholinguistics is a theoretical stimulus signal that spreads through
connections across the semantic and/or phonological layers of the mental lexicon
when words are to be identified and retrieved [3, 7, 10]. Indeed, our model accepts
preferentially “active” (in the multiplex jargon) and potentially “activable” words (in
an activation spread model scenario). Our focus on local connectivity was inspired
by previous models of lexicon growth [9, 26], which conjecture that memory search
processes might be sensitive to the local connectivity of concepts.

4 Results and Discussion

In Fig. 3 we report the normalized assembly times T/Trandom for different orderings
for several values of the rejection parameter f . These values are rescaled to the ran-
dom case. Interestingly, such rescaling shows that inserting words with our selected
orderings always decreases the assembly times compared to the random scenario.
This effect becomes more evident when the rejection probability f is large. For
instance, when the probability of rejecting each inactive word is f = 0.8, inserting
words ordered according to their phonetic length (shorter first) fully assembles the
network in roughly 78% of the time necessary in the random case and this distinction
is statistically significant. Notice that a-priori, we chose orderings loosely inspired by
a least memory effort principle [1] so that this general trend is expected. Nonetheless,
there is an interesting variety of behaviors that need further analysis.

Intuitively, inserting shorter phonetic-lengthwordsfirst is the optimal case in terms
ofminimumassembly time.Orthographicword length gives slightly higher assembly
times. Inserting words according to their frequency gives results that are very close
to semantic measures such as the degree rankings in the semantic layers/aggregate
and to multiplex features. All these orderings show a trend close to the one where
words are inserted within the growing lexicon according to their age of acquisition.

Fig. 3 Normalized
assembly times for different
orderings at different
rejection probabilities f .
These normalized times
indicate the average time
necessary for the network to
get assembled through a
given ordering rescaled to
the random reference case.
Error bars indicate standard
errors and are evaluated over
20 different runs
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Since assembly times are the quantitative proxies of our model for the likelihood of
the mechanisms underlying lexicon growth, we adopt the times based on the age of
acquisition as another reference point for testing the influence of the other orderings.

We start from the distributions of the assembly time for each ordering, at several
values of the rejection probability f . We then quantify the overlap of the interquartile
range of the age of acquisition case with the other scenarios. We consider the over-
lap of interquartile ranges rather than the overlap of the whole distributions because
interquartile ranges represent a more robust measure of scale against fluctuations on
extreme values in small, skewed empirical distributions as ours [27]. Also, interquar-
tile ranges are easy to compute and visualise by commonly used box plots [27]. An
example is reported in Fig. 4, where a box plot for the interquartile ranges of all our
orderings are reported for f = 0.8. For instance, in that case the frequency ordering
does not give results compatible with the empirical case (even though it is very close
to the ordering with the degree in the semantic aggregate). Further, considering only
the semantic degrees gives a slightly stronger overlap, but is not yet compatible with
the age of acquisition case. Ordering words by their phonological and the semantic
network degrees gives the closest results to the empirical age of acquisition scenario.
We interpret this result as a quantitative proof of the importance of the multiplex
structure of human language in shaping organisational features of the human mental
lexicon. Locally navigating across the linguisticmultiplexwith aword frequency bias
gives the best, highest overlapping results, within the framework of our theoretical
model.

In Fig. 5 we checked the performance of the multiplex-based ordering versus f .
Let us underline that during a given assembly f is kept fixed. However, when the
probability of rejecting unconnected words is low, the orderings based only on either
frequency or the semantic degrees perform relatively well. We can think of this
stage as the real lexical learning phase [3, 23, 25, 26], which happens later in lan-
guage development and where novel words are inserted within the lexicon according

Fig. 4 Normalized assembly times of different orderings for a rejection probability equal to 0.8. The
age of acquisition is highlighted in red. Whiskers represent distribution extremes while interquartile
ranges are represented by orange boxes.White dashes indicatemedianswhile black dashes represent
means, instead. Interquartile overlaps represent the fraction of orange boxes fallingwithin the ranges
of the age of acquisition scenario
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Fig. 5 Heat map of the normalized overlaps of the interquartile ranges of the assembly times
relative to the age of acquisition case. The colours indicate: red = a perfect overlap (see the age
of acquisition row); white = the absence of overlap; blue = the respective interquartile ranges are
quite far. Orderings based on multiplex features are highlighted, the semantic ones on top and those
based on multiplex neighborhoods on the bottom

to their semantic information and almost independent of phonological similarities.
Larger values of the rejection probability f correspond to scenarios where the fre-
quency and semantic degree orderings give results significantly different from the
age of acquisition case. We can interpret this stage as a phonological learning phase
[21–23], where words are inserted to the lexicon strongly based on their phonological
similarities and where the phonological and the semantic layers are strongly inter-
dependent. Therefore, our model highlights an interesting shift from one strongly
semantic to a strongly multiplex stage, depending on the f parameter. This is a first
quantitative finding about the importance of a multiplex modelling of the human
mental lexicon. In fact, partial knowledge as frequency or phonological information
only is unable to reproduce the same patterns across the whole parameter space.

5 Conclusions and Future Work

Here we proposed a simplified model of lexicon growth which is based on a rep-
resentation of the English HML on several levels via the framework of multiplex
networks. Motivated by empirical evidence and technical advantages in checking for
phonological links we focus on the phonological level for the growth dynamics.

Numerically estimated assembly times identify a higher likelihood of a lexicon
growth encapsulating information from the multiplex structure of free associations,
synonyms and phonologically similar words, compared to assembly based on infor-
mation from single layers or only word frequencies or lengths. In fact, assembly
times can be thought of as proxies for the likelihood of the mechanisms underlying
lexicon growth. When words are acquired without strong phonological biases (as in
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later stages of children’s linguistic development) then orderings based on frequency
and on semantic local centralities (i.e. node degree) are in good agreement with the
empirical case. On the other hand, when words are acquired with stronger biases, as
it happens in earlier stages of children’s linguistic development, orderings based on
the multiplexity of the English language provide results closer to the real scenario.

There are many interesting questions that this preliminary work opens. The first
is a more extensive investigation of the multiplex features of the English language,
e.g. a more detailed structural investigation of multiplex reducibility, layer over-
lap, cartography, clustering, efficiency and robustness to word retrieval failure [14].
Another interesting research direction would be trying to generalize our model by
basing acceptance on the formation of more than one connections, or rather on links
created also on other multiplex layers different from the phonological one, possi-
bly by using the empirical semantic connections as a reference. This generalisation
would be more realistic but also more cumbersome in adding more parameters to a
model, which, already in this simple version, is capable of displaying an interplay
between lexical and phonological learning.

From a complex systems perspective, it would be interesting to explore further
the “multiplexity” of the English language, namely the interplay between phono-
logical and semantic features, also by comparing the model against real data from
children. Last but not least, a multiplex analysis for languages different from English
could represent an interesting theoretical framework for testing both distinctive and
universal features of human language.
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Empirical Analysis of Crypto Currencies

Manoj Kumar Popuri and Mehmet Hadi Gunes

Abstract Analysis of the currency networks is not easy as the transactions are not
centralizedbut rather take place over a large number of banks and commercial entities.
Digital crypto currencies, however, require a public ledger to work and provide an
opportunity for analysis of currency transactions. A crypto currency is a medium of
exchange using cryptography to secure the transactions and to control the creation
of new units. In this paper, we analyze two of the popular crypto currencies, i.e.,
Bitcoin and Litecoin. We construct network of transactions from public transaction
ledger. We investigate the structure of currency transaction network by measuring
the network characteristics.

1 Introduction

Currency is amediumof exchange,which arose out of need to address the inefficiency
of barter. Digital currency is a form of currency that is electronically created and
stored [14]. Crypto currencies are often decentralized digital cash systems and there
is no single overseeing authority [13]. The first public crypto currency was Bitcoin,
proposed in 2008 by Satoshi Nakamoto, a pseudonym [10]. Even though the system
went online in January 2009, Bitcoin had very few users and didn’t have real world
value for a year. Since its inception, over 48 million transactions took place. The
market value of Bitcoins in circulation peaked at about 14 billion USD on May 12,
2013, and as of Dec 1, 2015 is about 5.63 billion USD.

The Bitcoin system operates as an online peer-to-peer network, and anyone can
join the system by installing the client application. Instead of having a bank account
maintained by a central authority, each user has a unique address that consists of
a pair of public and private keys. Existing coins are associated to the public key
of the owner, and outgoing payments have to be signed by the owner using the
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corresponding private key. After validation of transaction with the owner’s public
key, the successful transactions are formed into blocks.

The transactions of all the crypto currencies are available to anyone by installing
the client and connecting to peer to peer network. Such detailed information is rarely
available in financial systems,making the crypto currency networks a valuable source
of empirical data involving monetary transactions. Due to the anonymity of the
crypto currencies and potentially unlimited number of pseudo identities a user could
generate, however, it is hard to determine which observed phenomena are specific to
the system and which results can be generalized.

An earlier study by Daniel et al. analyzes the Bitcoin transaction network to
investigate the movement of money and observe the dynamics of the network [7]. In
their analysis of Bitcoin data on May 7th 2013, they observe 17 million transactions
among 13 million addresses where only a million of them had nonzero balance.
According to their analysis there is a strong correlation between the balance and
the indegree of individual nodes. They found that the Bitcoin network is gradually
increasing since 2010 with some fluctuations, e.g., the boom in the exchange rate
in 2011. According to their analysis both the in-degree and out-degree are highly
heterogeneous with power law distributions. They also found that Bitcoin network
is disassortative except for only a brief period in the initial deployment where the
number of nodes were few.

The study of networks has emerged in diverse disciplines as a means of analyzing
complex relational data [12]. Network analysis has been applied to physical phenom-
ena [15], biological systems [6], transportation systems [1], social networks [11],
software systems [3], linguistics [2] and academy [5].

In this paper, we compare two most popular crypto currencies as a network, by
analyzing their transaction ledger. We map the transaction network of Bitcoin and
Litecoin digital currencies from their public ledger and analyze the complex network
of each digital currency. In our network, the nodes are the addresses of Bitcoin users
and the edges are the transaction between two users.

2 Bitcoin Network

We downloaded the Bitcoin ledger and decoded the data collected from the wallet.
Bitcoin network is a growing network where the number of unique addresses cre-
ated increases exponentially. The major increase in the number of unique addresses
occurred after the first boom in 2011 and the second one when the Bitcoin mar-
ket value crossed 1000 USD. The network we are analysing is comprising of
N = 49,390,594 nodes, total incoming transactions Ein = 151,933,127, and total
outgoing transactions Eout = 151,857,042. We also divide the transaction data by
year to study the evolution of the network over the years.

Degree
The degree distribution captures the underlying structure of a network by summa-
rizing the degree characteristics of the nodes. Figure1 present the in degree and out
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Fig. 1 Degree distribution of the Bitcoin (yearly PDF with overlaid aggregate CDF)

degree distributions of theBitcoin transactions, respectively.While probability distri-
bution functions show yearly distributions, overlaid cumulative distribution function
shows the distribution for all transactions. We find that the degree distributions of
yearly transactions as well as all transactions follow power law distribution, which
makes Bitcoin network a scale free network, for both in degree and out degree. The
power laws of the overall degree distributions are αin ∼ −2.21 and αout ∼ −2.10.
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Fig. 2 Degree correlations of Bitcoin

Table 2 Network characteristics of yearly Bitcoin transactions

Y ear 2009 2010 2011 2012 2013 2014

Assortativity −0.30 −0.14 −0.03 −0.025 −0.017 −0.019

Clustering 0.00 0.22 0.21 0.10 0.055 0.04

Table1 presents the characteristics of yearly Bitcoin transactions.We observe that
from 2009 to 2011 the degree distribution slope increases considerably and thereafter
has been increasing but slightly.

Assortativity
We computed the nearest neighbour degree function K in

n (Kout ), which measures the
in degree Kin of the nodes with respect to out degree Kout . Figure2 presents the
degree correlations for the Bitcoin network. In the graph, we observe that there is a
disassortative behaviour between the In and out Degrees of the nodes. That is, the
nodes with high out degree tend to connect to the node with low in degree.

As a summary measure assortativity coefficient is calculated as the Pearson cor-
relation coefficient of degree between pairs of linked nodes. Positive values of r
indicate a preference to link between nodes of similar degree, while negative val-
ues indicate preference to link between nodes of different degree. Table2 presents
the yearly assortativity coefficients of the Bitcoin transactions. We observe that the
in-out degree correlation coefficient is negative, except for only a brief period in the
initial phase. After mid-2010, the degree correlation coefficient stays between r ≈
−0.012 and r ≈ −0.015 suggesting that the network is disassortative. In general, for
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large scale-free networks, assortativity vanishes as the network size increases [9] and
a similar behavior is observed in the Bitcoin network.

Clustering
We alsomeasured the average clustering coefficient, whichmeasures local density of
edges. Table2 presents clustering coefficients of the yearly Bitcoin transactions. We
observed that in 2009 clustering is 0, indicating that there were no triangles among
users. Then, between 2010 and 2011, clustering is high, fluctuating around 0.22. This
can be due to few early adopters transferring money between their multiple accounts
to test the network. As the number of users increase in the subsequent years, the
clustering coefficient reduces from 0.10 in 2012 to around 0.04 in 2014, which is
still much higher than a random network of similar size.

Richest Bitcoin Addresses
We traced the top 100 richest addresses in the Bitcoin and analysed for unique
patterns. The total Bitcoins in circulation are 14,917,575 BTC with a market value
of 377.93 USD as of Dec 1, 2015. The top 100 richest nodes in Bitcoin hold 19.88%
of wealth as shown in Fig. 3. We noticed couple of interesting behaviours among the
richest Bitcoin users. For instance, the richest node transfers his/her bitcoins to four
new addresses and then on the same day transfers all coins back into a single new
address, which becomes the new richest address.

Figure4 shows the in and out degree of the top 100 users. We observe that the
incoming transactions to the richest people are throughmining nodes,which indicates
that most of the richest nodes are miners.We also observe that approximately 73% of
the richest people have 0 out degree, which means that they just accumulate money
without spending it.

Anonymity
Even though Bitcoin data is anonymous, an active attacker can observe the IP address
of a transaction request and match it to an actual user [4]. Hence, some users might
be interested in hiding their IP address when communicating with the network.
Anonymizer technologies allow one to hide a user’s IP address and are widely used.
Tor is currently the most popular anonymizer network with millions of users [8].

Fig. 3 Richest users during
Nov 2015
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Fig. 4 Degrees of the
richest 100 users

Fig. 5 Anonymity among
MyWallet users

To analyze the percentage of anonymous Bitcoin users, we compared the IP
addresses connected to the Bitcoin with the IP addresses of Tor exit nodes every
hour. We analyzed the IP addresses for 30days to find the ratio of users connecting
to the Bitcoin anonymously as shown in Fig. 5. We observed that among 800 to 2000
connects to MyWallet at a given time only up to 20 nodes are using Tor anonymizer.

3 Litecoin Network

Litecoin is refereed to as the silver form of Bitcoin where the protocol is designed so
that custom hardware cannot be used for mining. Even through Litecoinmarket value
is 1% of Bitcoin, the Litecoin network has a total N = 6,990,919 unique addresses,
total Ein = 56,205,576 incoming transactions, and total Eout = 52,456,092 outgoing
transactions Fig. 6

Degree
We calculated the in degree and out degree distributions of the network in Fig. 7.
Unlike Bitcoin network, the Litecoin network growth is continuous. The degree
distributions of aggregate transactions show a power law pattern with an exponent
of αin ∼ −2.14 for in degree and αout ∼ −2.01 for out degree.
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Fig. 6 Degree correlations of Litecoin

Table3 presents yearly Litecoin network characteristics. The in degree and out
degree power law exponents are more stable than the Bitcoin network.

Assortativity
We compute the degree correlation, i.e., the in degree Kin of the nodes with out
degree Kout , for the network in Fig. 6. We find that the in-out degree correlation is
dissortaative as the nodes with high degree have low in degree. The distribution is
different from Fig. 2 for Bitcoin where the very high degree nodes connected to other
very high degree nodes.

Table4 presents assortativity coefficient of yearly Litecoin transactions. We find
that the in-out degrees of yearly transactions is dissasortative in 2011 and 2012 but
over the time become non-assortative in 2014.

Clustering
We also measured the average clustering coefficient in Table4. We observed that, in
the initial phase clustering is high. After the initial phase the clustering coefficient
reduces from 0.33 in 2012 to around 0.032 in 2014.

Richest Litecoin Addresses
The total Litecoin in circulation are 43,455,110 LTC with a market value of 0.00959
USD as of Dec 1, 2015. The 48.89% of the total market capitalization of the Litecoin
is hold by the richest 100 people. We observed that the behaviour of the top 100
addresses in the Litecoin network are similar to the Bitcoin’s richest users. We find
that among the 100 richest nodes 82% of the nodes have 0 out degree as shown
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Fig. 7 Degree distribution of the Litecoin (yearly PDF with overlaid aggregate CDF)

in Fig. 8. We observe an interesting pattern among the richest Litecoin users where
more than two thirds of the 100 richest nodes simply transfer their Litecoins into
a new account while paying a small transaction fee. This can be an indication that
those accounts belong to a single user.
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Table 4 Network characteristics of yearly Litecoin transaction networks

Y ear 2011 2012 2013 2014

Assortativi t y −0.036 −0.027 −0.015 −0.000

Clustering 0.33 0.18 0.062 0.038

Fig. 8 Degrees of the
richest 100 users

4 Conclusions

We have performed a detailed analysis of the two popular digital currencies, i.e.,
Bitcoin and Litecoin. After becoming popular after 2011, Bitcoin is characterized by
a dissasortative degree correlation and power law in- and out-degree distributions.
Litecoin network has disassortative degree correlation and power law in- and out-
degree distributions since inception in 2011. The characteristics of richest nodes in
Bitcoin and Litecoin are similar. We also found that majority of the richest nodes are
interested in just accumulating money.

Acknowledgments This material is based upon work supported by the National Science Founda-
tion under grant number EPS- IIA-1301726.
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Circadian Patterns on Wikipedia Edits

Y. Gandica, R. Lambiotte, T. Carletti, F. Sampaio dos Aidos
and J. Carvalho

Abstract Cyclic behaviour and circadian patterns emerging from the editing activity
of Wikipedia are hereby considered. Such patterns affect many human activities,
mobility routes, energy storage and synchronization, among others. Because the
editing of Wikipedia is the result of a voluntary process made by many independent
human beings, the question about the signature of such circadian patterns on such
data is not straightforward. We however show in this work that Wikipedia editing
presents well defined periodic patterns with respect to daily, weekly and monthly
activity. In addition, we also show the periodic nature of the number of inter-event
in time. The results of our work shed some light on the activity scheduling present
in our society, contributing to the circadian patterns understanding.

1 Introduction

The success of research in digital social patterns hinges on the access to high quality
data. Even though the availability of recorded data and its accessibility are rapidly
increasing, many data sets are not freely available for research.Wikipedia (WP) is an
important exception, as not only it is considered a robust and trustworthy source of
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information [1] but it also is accessible by anyone with a connection to the internet.
This platform also offers to anyone all its past editing record.

The high quality of the WP encyclopedia is the result of a collective effort by
millions of volunteers in an apparently disorganized process of editing, acceptance,
and rejection, which works as an effective and robust peer review procedure [2].
Some editors spend a lot of time, either editing a single page on a specific subject, or
editing several pages over a diversity of subjects. It has been shown [3] that some sta-
tistical aspects of WP editing can be reproduced by using three simple mechanisms:
preferential attachment, that represents the editors’ ownership feeling, displayed by
a strong tendency of users to improve and defend their previous contributions [2]; a
fitness parameter, that describes the greater or smaller predisposition for users to edit,
which may be caused by the authority of editors who are experts on the page topic,
or merely by their personality traits [4–6], and an aging factor [7, 8], describing the
time-dependent behavior, with an initial high motivation to edit, followed by a ten-
dency to decrease the editing activity due to theme completeness, personal saturation,
blockage [9], and/or any other possible personal cause. From the last mechanisms,
if we analyze the data coming from editors with long editing activity, the condition
of fitness is satisfied and the system is in the regime before time saturation. In this
sense, we can study the general behavior when authors are mostly influenced by the
ownership feeling over the WP page.

In this communication we propose to explore if, under this condition, the data
coming fromWP editing exhibits circadian patterns. By circadian patterns we mean
any kind of regular activity, in terms of days, weeks or even months and seasons.
Human beings are constrained by biological circadian cycles. However the society
duties generate other uniformities in our daily activities. Currently, one important
aspect of circadian sequence studies comes from research on humanbursty behaviour.
Some authors have suggested that circadian patterns are one of the main causes for
the fat-tailed nature of inter-event distributions [10, 11].

The issue of circadian patterns is, by itself, of great interest. Beyond obvious
concerns for medicine and biology, this subject has implications regarding mobility
routes, energy storage and synchronization, among others. Some previous studies
from data gathering of mobile calls, emails, web-pages, etc., have shown that they
exhibit circadian patterns. The existence of such patterns in WP editing, however,
cannot be taken for granted, due to the voluntary character of the editing process. Still,
we show in this work that WP editing does present well defined circadian patterns.
As a result, the WP database can be used to address several interesting current issues
regarding the cyclic nature of human activity.

This article is structured as following: in Sect. 2 we explain the source of the
data sample and in Sect. 3 the data cyclic nature is studied. In Sect. 4 we show the
circadian patterns on data, while in Sect. 5 the circadian patterns of the inter-event
probabilities are shown. Finally in Sect. 6 we extract our conclusions.
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2 Data

Our data sample is a database ofWP edits, of pages written in English in the period of
about 10 years ending in January 2010; this dump containing 4.64 × 106 pages [13].
For each entry we have the WP page name, the edit time stamp and the identification
of the editor who did the changes. We analyze the information separately for each
page and for each editor, and we reduce the impact of outliers by eliminating the
pages or editorswith less than 2000 edits. This number is a good compromise between
having enough pages/editors and the pages being frequently updated or the editor
being reasonably active in this time interval.We removed from the data the editsmade
byWP-bots, which are programs that go through the WP, carrying out automatically
repetitive and mundane tasks to maintain the WP pages (as software programs, their
edit pattern is different from the humans’). Moreover, we only considered the editors
who logged in with a username before editing, in order to univocally identify the
editor; in this way, we discarded the entries associated to IP numbers.

3 Cyclic Nature

A natural way to study periodicity on data is by means of a Fourier power spectrum.
For this purpose, we selected the 100 most active editors and computed the Fourier
spectrum of each editor’s time activity. Results are reported in the upper panels
of Fig. 1, where we show the power spectrum for three representative editors. In
general, editors have the main power peak at ∼ 1.157 × 10−5 Hz corresponding to
a period of 24h and a second peak at ∼ 2.315 × 10−5 Hz, matching a 12h period, a
harmonic from the main frequency. In the bottom panels of the same figure we show
the result of the same procedure applied to pages. We found that, in general, pages
lack predominant power peaks. They appear only in pages related to records (for
example births/deaths counting) or companies, which in general update their pages
daily. In the bottom panels of Fig. 1 we show one sample of a regular page (center),
one of a company (right) and one of death counting (left).

4 Circadian Event Patterns

In order to better illustrate these circadian patterns, we show in Fig. 2 the average
number of edits on a day for the four most active editors as a function of the time of
day at which the edit is recorded. To build this plot we divided the whole time span
of our sample, about ten years, into days and for each day we computed the average
number of edits done in windows whose duration is 30min. We can notice that these
editors are characterized by a high editing activity. Closely inspecting the data we
found that these editors handle several pages and play the role of administrators. It is
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Fig. 1 Fourier power spectrum computed using a fast Fourier transform for three editors (upper
panels) and for three pages (bottom panels) showing the regular behavior found in each group.
In general, the highest power peak was found for editors, corresponding to a period of about
24h ( f ∼ 0.1 × 10−4 Hz), and a second, smaller, peak corresponding to a period of about 12h
( f ∼ 0.2 × 10−4 Hz), a harmonic of the first frequency. Peaks were not found for pages that are
not related to special events or companies, which in general update their pages daily. We show two
examples (left and right panels) of these special cases in this figure

Fig. 2 Distribution of editing pattern along the day, averaged over the data time span (about ten
years), for four editors. The time is given by the WP servers and the editors can be in different time
zones, which can also be different from theWP servers time. The sleeping/resting hours are visible
and also the one or two peaks of more active editing. (Figure taken from [14] with the permission
of the authors)
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Fig. 3 Editing activity as a function of the week day, averaged over the data time span (about ten
years), for two editors. Circadian patterns are clearly visible. The highest activity peak can switch
between morning and evening, depending on the week day. In general, the week-ends have different
editing activity. (Figure taken from [14] with the permission of the authors)

also clear that each editor has a well defined activity schedule with peaks at particular
times.

In Fig. 3 we report the weekly editing activity. The circadian patterns are clearly
visible. Once again each editor has a characteristic activity pattern. The highest
activity peak can switch between mornings and evenings, depending on the day. In
the process of WP editing, the change of activity patterns on week-ends is clear.

Finally, as some countries are strongly influenced by seasonal changes, we are
interested in understanding whether WP editors are also influenced by the life style
adopted in each season. In Fig. 4 we show the activity over the year, plotting the total
number of edits for the whole data time span. We show the total number of edits in
each month (stars) and in each day of the year (filled color) for the most active WP
editors. We can see that the editors in the two left panels have two peaks, in June and
in December, while the editors in the right panels only display a peak in December.

5 Daily Inter-event Patterns

The circadian patterns in the editing probability are somehow expected. Any regular
activity done by a human being has a probability that depends on the time of day,
the day of the week and time of the year. The editing of WP is also affected by these
probabilities, as was shown in Figs. 2 and 3. When addressing circadian patterns,
researchers concentrate mainly in the event probability. However, another relevant
question is how are the inter-event times affected by the human circadian nature.
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Fig. 4 Number of edits along the year, per month (shown by stars) and per day (with filled color),
for four of the most active editors, over the data time span (about ten years)

Fig. 5 Distributions of inter-event for edits starting at different hours of the day, averaged over
the data time interval (about 10years). Each color corresponds to a specific interval of inter-events.
There is also a structure regarding the inter-event activity depending on the hour in a day. The
editors are the same as in Fig. 3

To answer this question we show in Fig. 5 the inter-event time probability along the
day. Each color in the plot represents the probability to have inter-event times inside
a particular range of values. It is apparent that each range of the averaged fraction
of inter-events follows a similar pattern, according to the specific editor’s circadian
cycle. This means that the activities in different time scales are affected in a similar
way by the intrinsic circadian pattern of these editors.
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6 Conclusions

Cyclic nature and circadian patterns have been studied over the editing activity of
WP. The fast Fourier transform was used to test cyclic behavior in data for several
editors on one WP page and over the activity of one editor over several WP pages.
We found that, in general, the editors have the main power peak at ∼ 1.157 × 10−5

Hz corresponding to a period of 24h and a second peak at ∼ 2.315 × 10−5 Hz
(12h period), a harmonic of the main frequency. On the other hand, page editing
does not show predominant power peaks. These peaks appear in pages only if they
are related to records (for example births/deaths counting) or companies, which in
general update their pages daily. Clear circadian patterns were visible when plotting
the averaged editing activity along the day and along the week. Along the year the
intensity of activity seems conditioned by holidays. In addition, circadian patterns
over inter-event activity were also reported, showing that the activities in different
time scales are affected in a similar way by the intrinsic circadian cycle of the editors.
It was compelling to check how the human activity patterns obtained from this online
data-base are conditioned by social constraints. The only biological constraint that
we found, however, was a crucial one: resting time.
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Lyric-Based Music Recommendation

Derek Gossi and Mehmet H. Gunes

Abstract Traditional music recommendation systems rely on collaborative filtering
to recommend songs or artists. This is computationally efficient and performs well
method but is not effective when there is limited or no user input. For these cases,
it may be useful to consider content-based recommendation. This paper considers a
content-based recommendation system based on lyrical data.We compare a complex
network of lyrical recommendations to an equivalent collaborative filtering network.
We used user generated tag data from Last.fm to produce 23 subgraphs of each
network based on tag categories representing musical genre, mood, and gender of
vocalist. We analyzed these subgraphs to determine how recommendations within
each network tend to stay within tag categories. Finally, we compared the lyrical
recommendations to the collaborative filtering recommendations to determine how
well lyrical recommendations perform. We see that the lyrical network is signifi-
cantly more clustered within tag categories than the collaborative filtering network,
particularly within small musical niches, and recommendations based on lyrics alone
perform 12.6 times better than random recommendations.

1 Introduction

Due to the proliferation of music streaming and subscription services in recent years,
there has been increasing interest in determining how various songs and artists are
connected to one another, and ultimately to a given listener. The goal in analyzing a
musical network in this context is often to recommend songs or artists to a person
who has a list of songs or artists that they are already known to enjoy listening to.
This is a difficult challenge in many ways, especially when one considers the unique
subtleties present in musical expression. Often, preferences for a given listener span
a wide range of genres and styles, making labeling the data solely in this manner

D. Gossi
Mathematics & Statistics, University of Nevada, Reno, Nevada, USA

M.H. Gunes (B)
Computer Science and Engineering, University of Nevada, Reno, Nevada, USA
e-mail: mgunes@unr.edu

© Springer International Publishing Switzerland 2016
H. Cherifi et al. (eds.), Complex Networks VII, Studies in Computational
Intelligence 644, DOI 10.1007/978-3-319-30569-1_23

301



302 D. Gossi and M.H. Gunes

insufficient in the recommendation task. Up to this point, the methodology that has
been employed for the recommendation task in an industrial setting has been largely
focused on linking listeners together by preferences using a collaborative filtering
method, i.e. if user 1 likes songs A, B, and C, and user 2 likes songs A, B, and D, the
recommender might recommend song D to user 1, and song C to user 2. However,
this methodology is an indirect approach, as it does not use actual musical or lyrical
content. In particular, collaborative filtering recommendation systems do not scale
well to new or existing entries suffering from a lack of user ratings.

A growing area of the literature in musical analysis is focused on using audio and
lyrical features to classify artists and songs [4–7]. Thismethodologygoes beyonduser
preference lists and attempts to find relationships amongst the songs and artists. This,
ideally, would lead to stronger recommendation engines, as well as a more thorough
understanding of the music. The idea is to find factors beyond genre that influence
a given listener’s probability of enjoying a song. These could be related to tempo,
mood, production style, use in a dance setting, or lyrical sentiment. While analysis of
the full audio wave data has the most potential to improve recommendation systems,
the success of existing algorithms is limited when given the task of classifying this
complex unstructured data. Another option is to utilize song lyrics to connect various
songs and artists, where lyrics are available. This presents its own unique challenges,
as accurate lyrical analysis involves being able to decipher subtleties such as irony,
hyperbole, and ambiguity. Even disregarding the complexities of lyrical analysis,
the lyrics in conjunction with the music provide another layer of complexity. For
example, a given set of lyrics over a slow and maudlin musical background may
be open to a completely different interpretation than the same set of lyrics over
a fast-paced and energetic musical background. However, even considering these
challenges, lyrical analysis has proved in the literature to be a worthwhile endeavor.

Research in the area of lyrical analysis has grown in recent years with the increas-
ing availability of large datasets to train algorithms. Work in this area has tended to
focus on classification of lyrical content into categories such as mood using labeled
training data [3]. More recent work has separated lyrical analysis from standard text
analysis, by showing the importance of rhyme, repetition, and meter. However, the
research beyond standard text analysis tools has been fairly minimal. The release of
theMillion SongDataset (MDS), by far the largest dataset available to use in research
of this type, has begun a new wave of analysis [2]. What has been missing from the
literature is a complex network approach to lyrical analysis where the topology of
the network is defined by artists linked together by lyrical similarity. This paper uses
lyrical network and compares clustering methods on these networks. While certain
genres such as pop and rock have been notoriously difficult to separate, even for
human analyzers, with the aid of the MSD there may be new possibilities for genre
clustering and defining the edges.
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2 Methodology

Lyrics Dataset: Lyrical data is provided by the musiXmatch Dataset (MXD) [1],
which provides lyrics for 237,662 tracks and 22,821 unique artists (implying 10.4
average number of tracks per artist in the dataset), which are each directly linked to
the MSD. This is, of course, a small subset of the full MSD. The remaining tracks
were omitted due to either copyright restrictions, a given track not containing lyrics,
or duplication. The lyrics for each track are provided in a BOW format, and are
stemmed using a modified version the Porter2 stemming algorithm. Thus, words
that are similar in a statistical sense, e.g. kneel, kneeled, and kneeling, are mapped
to the same stem (in this case, “kneel”), and are treated as identical terms in the
analysis. The total dictionary of terms used as features in this analysis is limited to
the top 5,000 words present in the dataset, which accounts for approximately 92% of
the complete set of unique words. This limited dictionary is chosen because many
of the term features outside this list are noisy and unusable, or used too infrequently
in the dataset to be of much statistical value.

Term Frequency Matrix: A vector space model (VSM) is implemented to rep-
resent the lyrical data. While the BOW format loses valuable information about the
location of words relative to each other within a given song, it is a convenient statis-
tical tool as it allows us to define a song as a vector along a finite dictionary of terms,
where each component in the vector represents the frequency of a given word. Once
each song is vectorized in this manner, we have a sparse term frequency matrix of
size n × 5000, where n = 237,662 songs in the dataset. Further, we create a similar
reduced term frequency matrix of artists by adding frequency vectors across a given
artist’s song catalogwithin the dataset, resulting in a sparse na × 5000matrix, where
na = 22,821 unique artists in the dataset. This “summed” artist matrix represents the
full dictionary of words used by a given artist in the dataset.

Term Frequency-Inverse Document Frequency (TF-IDF) Weighting: The
term frequency matrix of artists, while modeling the lyrical data of each artist as ele-
ments in a commonvector space, suffers from the fact that “unimportant” and “impor-
tant” words are weighted similarly. This is remedied by first eliminating statistically
unimportant stop words such as the, is, at, which, and on. Secondly, term frequency-
inverse document frequency weighting (TF-IDF) is utilized to minimize the impor-
tance of commonwords occurring frequently in the dataset. Formally,wemultiply the

raw term frequency by the inverse document frequency IDF(w) = log
(

|A|
|a∈A:w∈a|+1

)

where A is the set of all artists in the dataset, and a ∈ A. Calculating TF-IDF weights
for each element in the term frequency matrix results in an adjusted sparse matrix in
the same vector space as the term frequency matrix.

Pairwise Similarity Matrix: Pairwise similarity between artists is calculated
using cosine similarity. If x and y are artist TF-IDF vectors, then their cosine sim-

ilarity is C
(

x, y
)

= xyT

||x||
∥
∥
∥y

∥
∥
∥
. Computing the cosine similarity for each artist vector

results in an na x na pairwise similarity matrix where 0 implies the two vectors are
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orthogonal and completely dissimilar, and 1 implies two artists are identical, in terms
of frequency and types of words used in the lyrics.

Threshold Selection: From the similarity matrix, we are able to define which
pairs of artists are “similar” to each other in the lyrical sense. Rather than applying a
similarity threshold directly to similarity matrix to obtain the set of edges, we utilize
a k nearest neighbor approach to emulate what would be seen in a traditional collab-
orative filtering recommendation network. The k nearest neighbors of a given artist
are the k artists which would be recommended to a user given a known preference
to the artist in question. This fixes the outdegree for every node in the dataset at k,
while the indegree is of unknown distribution. This resembles real-world limitations
of recommendation networks, as explored in [3]. The level k is chosen to be 10 for this
analysis, a level deemed sufficient enough to collect a useful range of connections
while not going beyond the practical limitations of a real-world recommendation
network. However, it should be noted that there is no true empirical justification for
this choice of k.

Collaborative Filtering Network: We compare the topology of the network
defined by lyrical similarity to that of a traditional collaborative filtering approach.
TheEchoNest Taste Profile Subset (ENTPS) [1], provided as part of theMillion Song
Dataset Challenge, includes data on the number of times a given user has listened
to a song in the MSD. The data includes 1,019,318 unique users with 48,373,586
user/song/count triples.With this dataset, a traditional collaborative filtering network
can be defined by utilizing memory-based filtering using songs rather than users, i.e.
item-based collaborative filtering. We begin by vectorizing data for a given item—in
this case a song—where the i component in the vector represents the number of plays
by user i. We compute pairwise cosine similarity for each song in the dataset where
the song vectors belong to the vector space of users. Once the pairwise similarity
matrix is generated, we compute the edges of the network using the k nearest neigh-
bors approach, with k = 10, in a similar manner to the lyrics network. The lyrics
network and the collaborative filtering network are then reduced to 18,290 unique
artists shared by both datasets, implying 80.2% of the original 22,821 unique artists
in the lyrics dataset also have user play count data in the ENTPS. With each node
having outdegree of 10, each of the two artist networks has 18,290 nodes and 182,900
edges.

Tag Data: To enhance analysis of the recommendation networks, we link user-
generated tag data to artists in the network by utilizing the Last.fm dataset [1]. The
Last.fm data is linked to the MSD and includes 522,366 unique tags and 505,216
tracks with at least one tag.We significantly reduce the tag set to themost general and
descriptive tag categories. The 500 top tags in the dataset are grouped into relevant
tag categories representing a uniquemusical genre, mood, or gender. Table1 presents
the unique tags in the Last.fm dataset that are used as tag categories. Overall, 23 tag
categories are considered. 15 of the 23 tag categories represent musical genre. Four
mood categories are considered. For simplicity, several of the genre groups include
groups of similar, but technically different, genres. For example, soul, R&B, and
funk are grouped together, while in actuality they are distinct genres.
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Table 1 Last.fm tag categories

Category Type Unique tags included

Rock Genre Rock, Classic R., Hard R., Progressive R., Pop R., Soft R., Rock n Roll

Pop Genre Pop, Pop Rock

Alternative Genre Alternative, Alternative Rock

Indie Genre+ Indie, Indie Rock, Indie Pop

Electronic Genre Electronic, Electronica, Electro, House, Trance, Techno, Progressive
Trance

Dance Genre+ Dance, party, club

Jazz Genre Jazz, Jazzy

Folk Genre Singer-Songwriter, Folk, Acoustic, Folk Rock, Singer Songwriter,

Metal Genre Metal, Heavy M., Death M., Progressive M., Black M., Power M.,
Gothic M., Melodic M., Doom M., Thrash M., Metalcore, Nu M.

Soul Genre Soul, RnB, Funk, R&B, RB, R and B

Hip Hop Genre Hip-Hop, Hip Hop, Rap, Hiphop

Punk Genre Punk, Punk Rock

Blues Genre Blues, Blues Rock

Country Genre Country, Classic Country

Reggae Genre Reggae

Latin Genre Latin, Spanish, Latino

Christian Genre Christian, Worship

Relaxing Mood Chillout, Mellow, Chill, Relax, Relaxing, Calm, Chill Out

Romantic Mood Love Songs, Love Song, Sensual, Sex, Sexy

Positive Mood Fun, Happy, Upbeat, Energetic, Uplifting, Feel Good, Energy, Positive

Negative Mood Sad, Melancholy, Melancholic, Dark, Moody, Bittersweet

Male Gender Male Vocalists, Male Vocalist, Male Vocals, Male

Female Gender Female Vocalists, Female Vocalist, Female, Female Vocals, Female
Vocal

Subgraph Analysis: To determine how each network is structured within certain
musical communities, subgraphs are generated and analyzed for each of the 23 tag
categories. Subgraphs are generated by limiting the artist set within a given subgraph
to only artists featuring a tag from the tag category associated with that subgraph. By
analyzing the number of edges remaining in each subgraph compared to the number
of edges “leaving” the subgraph, we can see if recommendations within each network
tend to stay within certain tag categories, or certain niches within the full artist set.
Formally, we compare the actual number of edges in each subgraph to the number of
edges that would remain in the subgraph given that the 10 outgoing edges from each
node in the subgraph are distributed to random nodes in the network. The ratio to the
actual number of edges in the subgraph to the expected randomly distributed number
of edges in the subgraph will indicate how much recommendations tend to remain in
a given tag category. The expected number of edges remaining in the subgraph given
random edge distribution is calculated as follows. Given every node in the graph
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has outdegree of k, say node s is inside the subgraph S of full node set N. Then the

expected number of edges from s going to other nodes in S is
∑k

i=1 i

( |S| − 1
i

)( |N\S|
k − i

)

( |N | − 1
k

) .

If edges are chosen randomly, each s ∈ S selects edges independently. Expected

number of edges remaining in the subgraph S is |S|∑k
i=1 i

( |S| − 1
i

)( |N\S|
k − i

)

( |N | − 1
k

) . For large

N, this is approximately |S|K |S|
|N | .

Comparison of the Recommendation Task: We compare the ranked recom-
mendation lists for both networks, assuming that the collaborative filtering network
represents the “true” rankings. For each artist, we consider the ranked list of the top
1,000 most similar artists using both lyrical similarity and user similarity metrics,
and calculate the difference between the two ranked lists used a Rank Biased Overlap
(RBO) metric, calculated as follows. Let CF(j)

i represent the set of the first i elements
in the ranked list of the collaborative filtering network for artist j. Let L(j)

i be defined
in an identical manner for the lyrical network. The RBO of the lyrical and collabo-

rative filtering rankings for artist j is RBO(j) = 1
1000

∑1000
i=1

CF(j)
i ∩L(j)

i
i . The mean RBO

for the full artist set is the mean of the RBO(j) across all artists j. We also compare
the RBO of the collaborative filtering rankings with a set of random rankings for
each artist, to see if using lyrical similarity rankings is howmuch more accurate than
simply recommending a set of randomly ordered artists in the dataset.

3 Results

Comparing the general topology of the two networks in Table2, several differences
stand out. The average clustering coefficient of the lyrics network is significantly
greater than that of the collaborative filtering network and the average shortest path
is also greater. This indicates that the lyrics network, when compared to the collab-
orative filtering network, tends to be clustered more around certain communities of
the network, which would also increase the average shortest path as there are less
bridges between communities.

While the average outdegree of both networks is fixed at 10, the indegree distri-
butions are displayed in Figs. 1 and 2. Neither network displays a power law in its
indegree distribution, with clear curvature in the log-log plots. The lyrics network

Table 2 Network topology comparison

Network Diameter Average shortest path Clustering coefficient

Lyrics Network 10 4.52 0.217

CF Network 6 4.22 0.119
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Fig. 1 Lyrics network

Fig. 2 Collaborative
filtering network

is significantly biased than the collaborative filtering network, with the top 10% of
nodes receiving 65.1% of the possible edges. In comparison, the top 10% of nodes
in the collaborative filtering network only receive 22.6% of the possible edges.

Results of the subgraph analysis shown in Tables3 and 4 indicate that the lyrics
network is significantly more clustered within certain tag categories than the collab-
orative filtering network, indicating that users tend to listen to music across a broad
spectrum of categories. However, users do not randomly listen to music across tag
categories, as every tag category subgraph does have more edges than the expected
number of edges given random edge preference. In addition, in both networks as the
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Table 3 Lyrics network subgraph analysis

Subgraph Nodes Percentage of nodes (%) Edges Random edges Actual/random

Rock 7,622 42 61,658 31,763 1.9

Pop 6,277 34 45,870 21,542 2.1

Relaxing 5,425 30 37,959 16,091 2.4

Alternative 5,126 28 35,333 14,366 2.5

Positive 5,052 28 34,657 13,954 2.5

Male 4,529 25 27,533 11,215 2.5

Romantic 4,416 24 30,058 10,662 2.8

Dance 4,404 24 23,320 10,604 2.2

Indie 4,192 23 23,987 9,608 2.5

Negative 4,135 23 28,643 9,348 3.1

Female 3,617 20 15,538 7,153 2.2

Folk 3,588 20 22,603 7,039 3.2

Electronic 3,536 19 12,981 6,836 1.9

Soul 3,123 17 16,494 5,333 3.1

Metal 2,535 14 14,377 3,514 4.1

Punk 2,282 12 10,715 2,847 3.8

Hip Hop 2,088 11 10,703 2,384 4.5

Jazz 1,955 11 7,040 2,090 3.4

Blues 1,752 10 8,128 1,678 4.8

Country 1,249 7 6,094 853 7.1

Latin 1,117 6 6,675 682 9.8

Reggae 818 4 1,391 366 3.8

Christian 711 4 1,960 276 7.1

size of the node set in a subgraph decreases, the ratio of actual edges to expected ran-
dom edges increases. This makes intuitive sense, as smaller tag categories indicates
more specific niches—these specific niches would tend to have more unique lyrical
sets, and listeners of a specific niche of music likely would not venture outside this
niche as much as a listener of popular genres or categories.

In the lyrics network, Folk, Metal, Country, Hip Hop, Blues, Latin, and Christian
music are particularly strong communities, as would be expected. In the collaborative
filtering network, Metal, Country, Latin, Reggae, and Christian music display strong
community preference, with Indie music also displaying above average community
structure given the size of the artist set. In terms of mood category, negative music is
more clustered than positive music lyrically, with ratios of 3.1 and 2.5, respectively,
but neither is significantly clustered in terms of user preference. Music with male
vocals is slightly more clustered lyrically than music with female vocals.
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Table 4 Collaborative filtering network subgraph analysis

Subgraph Nodes Percentage of nodes (%) Edges Random edges Actual/random

Rock 7,622 42 39,382 31,763 1.2

Pop 6,277 34 27,180 21,542 1.3

Relaxing 5,425 30 20,880 16,091 1.3

Alternative 5,126 28 20,561 14,366 1.4

Positive 5,052 28 18,124 13,954 1.3

Male 4,529 25 14,849 11,215 1.3

Romantic 4,416 24 14,428 10,662 1.4

Dance 4,404 24 14,198 10,604 1.3

Indie 4,192 23 15,045 9,608 1.6

Negative 4,135 23 12,928 9,348 1.4

Female 3,617 20 9,764 7,153 1.4

Folk 3,588 20 10,357 7,039 1.5

Electronic 3,536 19 10,161 6,836 1.5

Soul 3,123 17 8,159 5,333 1.5

Metal 2,535 14 7,450 3,514 2.1

Punk 2,282 12 5,711 2,847 2.0

Hip Hop 2,088 11 4,598 2,384 1.9

Jazz 1,955 11 3,280 2,090 1.6

Blues 1,752 10 2,799 1,678 1.7

Country 1,249 7 2,484 853 2.9

Latin 1,117 6 1,921 682 2.8

Reggae 818 4 901 366 2.5

Christian 711 4 1,083 276 3.9

Table 5 Recommendation performance comparison

Ranking compared to CF RBO Multiple

Lyrical ranking 0.0649 12.6

Random ranking 0.0052 1

Table5 displays a comparison of collaborative filtering recommendations with
lyrical similarity recommendations utilizing the mean RBO metric. This is com-
pared to the mean RBO of collaborative filtering recommendations and random
recommendations to provide a baseline. While the lyrical recommendations have a
weak mean RBO of 0.0649, it is 12.6 times superior to random recommendations.



310 D. Gossi and M.H. Gunes

4 Conclusions

When actual user data is unavailable, which especially holds true for many new
and emerging songs or artists, it may be advantageous to consider content-based
recommendation methods in determining the initial recommendations to and from
this artist or song. This paper shows that even a purely lyric-based method provides
significant information about the tags the artist or song might have associated with
it. Lyrical analysis may be especially successful for niche genres such as Country,
Metal, Blues, Hip Hop, and Christian—where the lyric network in this analysis
was successful at differentiating these genres from others. At the very least, lyrical
analysis could verify whether or not a given recommendation in the lack of user data
is “very bad,” as it could determine how far a user is venturing from their typical
listening history.

By adding more elements to the vector space than just TF-IDF vectors for lyrics,
such as direct factors for lyrical sentiment, repetition, and variety of word choice
one could likely refine the results of this analysis. Adding factors for audio signal
content would also produce stronger results.
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Identifying Key Opinion Leaders in Evolving
Co-authorship Networks—A Descriptive
Study of a Proxy Variable for Betweenness
Centrality

Johannes Putzke and Hideaki Takeda

Abstract Many researchers identify influentials in a network by their betweenness
centrality. Whereas betweenness centrality can be calculated in small, static, con-
nected networks, its calculation in complex, large, evolving networks frequently
causes some problems. Hence, we propose a proxy variable for a node’s between-
ness centrality that can be calculated in large, evolving networks. We illustrate our
approach using the example of KeyOpinion Leader (KOL) identification in an evolv-
ing co-authorship network of researchers who have published articles about PCSK9
(a protein that regulates cholesterol levels).

1 Introduction

The analysis of complex networks has become one of the main research topics in
contemporary computer science. The analysis of evolving networks has been a par-
ticular focus of attention (see [1] for a literature review). In this context, one main
research question has been to identify themost important nodes (hubs, influentials) in
a network. One of the most prominent measures of a node’s importance in a network
is a node’s betweenness centrality [12].

Whereas a node’s betweenness centrality can be calculated in small, static, con-
nected networks, the calculation of a node’s betweenness centrality in complex, large,
evolving networks frequently causes some problems. For example, betweenness cen-
trality can be calculated in connected graphs only. However, the early evolutionary
stages of a network are often characterised by a few edges and nodes. Consequently,
the corresponding graph consists of many disconnected components (compare [17]),
and the measure of betweenness centrality is either undefined (at the whole net-
work level) or can be calculated separately for each of the unconnected components
only. Furthermore, calculating betweenness centrality is computationally too costly
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to allow for dynamic analyses in large networks (compare [10, 18] for the execution
times of betweenness centrality calculations on commodity machines).1

Nevertheless, many application scenarios require some knowledge about the
nodes’ betweenness centrality in the (early) evolutionary stages of a network. There-
fore, in this paper we propose a proxy variable for a node’s betweenness centrality
that can also be calculated in the early evolutionary stages of a network and that
allows for dynamic analyses.

We illustrate our approach using the example of key opinion leader (KOL) identi-
fication in PCSK9 research (see Sect. 3, Data). KOLs are physicians and researchers
who influence the treatments prescribed by their peers. Pharmaceutical enterprises
spend considerable time and effort identifying KOLs and maintaining a good rela-
tionship with them. However, to best build relationships, pharmaceutical enterprises
have to identify KOLs in the early stages of the emergence of a new research field and
track their importance over time. We suppose that KOLs can be identified through
their embeddedness in a co-authorship network. In the network, authors serve as
nodes, and a tie is assumed between two authors who have co-authored a publication
(compare, for example, [20, 21]).

To summarise, our paper has two research objectives. Our main objective is to
answer the research question of whether there is a proxy variable for the KOLs’
betweenness centrality that can also be calculated in the (early) evolutionary stages of
a co-authorship network. However, to answer this question, we first have to identify
who the researchers/KOLs are that have the highest betweenness centrality in the
PCSK9 co-authorship network.

The remainder of this paper is structured as follows. The next section reviews
the related literature. Section3, Data, introduces the dataset used for our analyses.
Section4 presents our analyses. The last section,Discussion, addresses the theoretical
andmanagerial implications of ourwork, notes the limitations of this study, andpoints
to further research.

2 Related Work

In this literature review, we particularly focus on two streams of thought. The first
is literature about evolutionary network analysis in computer science. An extensive
literature review about this kind of work can be found in a recent paper by Aggarwal
and Subbian [1]. Hence, a review about this kind of work is beyond the scope of
this paper.

The second stream of thought is research that analyses scientific co-authorship by
the means of network analysis (e.g. [20, 21, 23]). In this context, it is particularly
interesting to highlight papers that examine the evolution of a co-authorship network.
For example, Barabási et al. [5] analyse in a seminal paper the small world properties

1The execution times are too high evenwhen applying improved algorithms to calculate betweenness
centrality (e.g. [3, 6, 30]).
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of an evolving co-authorship network (i.e. they examine whether the network has a
larger clustering coefficient [28] than expected for a random network and a small
average separation/shortest-path-length).

Backstrom et al. [2] examine how communities/groups develop and evolve in
networks using data from DBLP.2 They are particularly interested in determining
who will join which community in the future and how people and topics move
between communities.

Also, Franceschet [11] uses data from DBLP for his analyses, in which he distin-
guishes between the author-paper affiliation network and the (author) collaboration
network. Whereas the author-paper affiliation network is a bipartite graph with two
types of nodes (authors and papers (and an edge from an author to a paper if the
author has written the paper)), the

collaboration network is an undirected graph obtained from the projection of the author paper
affiliation network on the author set of nodes. Nodes of the collaboration network represent
authors and there is an edge between two authors if they have collaborated in at least one
paper

(p. 1995). Like Franceschet [11], we focus on the authors’ collaboration network
in this paper.

Although the collaboration network is a coarser representation with respect to the affiliation
network ... [it] is highly informative since many collaboration patterns can be captured by
analyzing this form of representation

([11, p. 1995]). For example, Franceschet [11] analyses the temporal evolution of the
connectivity of the collaboration network, the distribution of the number of scholar
collaborators, network clustering, the average separation distance among scholars,
as well as assortativity by the number of collaborators. He finds that the network is a
widely connected small world. Furthermore, he finds the distribution of collaboration
among scholars to be highly skewed and concentrated (i.e. there are a few highly
productive collaborators responsible for a relatively high share of collaborations).
However, he finds the network to be resilient to the removal of these highly productive
collaborators.

Liu andXia [17] examine the structure and evolution of the co-authorship network
in the interdisciplinary field of “evolution of cooperation”. They illustrate how small
clusters evolve into a giant component that can be considered as a small-world
network.

Whereas most of the studies presented above focus on network topology and
macro-level network properties (such as diameter, distance, components, clustering
coefficient etc.) [29], Yan and Ding [29] take a different approach by studying micro-
level network properties (i.e. centrality measures). Specifically, they examine how
authors’ centrality measures change over time. Yan and Ding’s [29] study is probably
the one the most related to our research.

2DBLP is a database of computer science publications; http://dblp.org, accessed on July 22nd 2015.

http://dblp.org
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Finally, Yang et al. [31] infer a node’s future centrality in a network by a Node
Prominence Profile (NPP). They base theNPPon the principles of preferential attach-
ment [4] and triadic closure [14]. However, in their study, Yang et al. [31] focus on
degree centrality. In this work, we intend to infer a node’s betweenness centrality
from a single, easily available proxy variable.

3 Data

To analyse KOLs in an evolving complex network, we analysed the co-authorship
network of researchers who published an article about PCSK9.3 In the network,
authors serve as nodes of the network, and a tie is assumed between two authors
who have co-authored at least one publication. To obtain this network, we searched
the PubMed/MEDLINE database4 for all articles that contain the phrase “PCSK9”
in any search field. PubMed/MEDLINE is a comprehensive scholarly bibliographic
database maintained by the United States National Library of Medicine that also has
been used in comparable research (e.g. [23]).

The decision to analyse the PSCK9 network was taken as we wanted to analyse a
network with several thousand nodes only to ensure a high data quality and a clear
boundary specification of the network (compare [26] for additional advantages of
studying a collaboration network of this size). In total, 952 articles were retrieved
from the Pubmed/MEDLINE database. These articles were reported to have been
written by 4213 authors. (Two of the articles did not provide any authorship infor-
mation). Since PubMed did not provide a unique researcher ID for many authors,
we manually checked the data for inconsistencies. Indeed, many names that were
recognised as belonging to different individuals by our system in fact belonged to
the same individual. In most of these cases, an author used her or his initial for some
of the publications but not others (e.g. we assumed that the names “Abdiche, Yas-
mina” and “Abdiche, Yasmina N” belong to the same individual; compare [29] for
this procedure). After data cleansing, 3905 authors remained in the database.

The average author of these 3905 authors has written 1.742 articles about PCSK9.
This number seems rather low. For example, Yan and Ding [29] find in their co-
authorship analyses that the average author in the field of “library and information
science” has written 2.4 articles. Newman [22] finds numbers between 2.55 and
11.6 articles for different research domains. The low number in the case of PCSK9
research can be explained by the fact that PCSK9 is a rather new, narrow research
field and authors also publish papers about different research subjects.

In contrast, the average PCSK9 article has been written by 7.14 authors. This
number seems rather high. In comparison, Yan and Ding [29] report that the average

3PCSK9 is a protein which regulates LDL cholesterol levels. By blocking PCSK9, cholesterol
levels can be brought substantially down. Hence, drugs can be developed that reduce the risk of
cardiovascular diseases by blocking PCSK9.
4http://www.ncbi.nlm.nih.gov/pubmed, accessed on June 4th 2015.

http://www.ncbi.nlm.nih.gov/pubmed
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Table 1 Number of articles
per year

Year Number of articles Year Number of articles

1993 1 2009 47

2003 2 2010 61

2004 14 2011 69

2005 18 2012 120

2006 32 2013 140

2007 41 2014 197

2008 58 2015 152

article in the field of library and information science has 1.8 authors. Newman [22]
finds numbers between 1.99 (for the field of theoretical high-energy physics) and
8.96 authors per paper (for the field of high energy physics in general). The high
number of 7.14 in the case of biomedical research can be explained by the fact that
experimental bio-medical research requires a large group of collaborators (similar to
those of experimental high-energy physics). For example, large scale clinical trials
are conducted by more than 100 people. In this context, the PubMed/MEDLINE
database contains a single PCSK9 paper with 186 authors. (However, this number is
still low compared with experimental high-energy physics for which Newman [22]
reports a single paper with 1,681 authors.)

The articles about PCSK9 were written between 1993 and 2015. However, only a
single article about PCSK9 was published in 1993 and none was published between
1994 and 2003. Table1 lists the number of articles published per year.

4 Analyses

Using this data sample, we calculated a series of network statistics (including
betweenness centrality) for all authors in the network using the R libraries “sna”
[8] and “igraph” [9], as well as the software Gephi 0.8.2 beta.5 During the analyses,
we aggregated the network from year to year, which means we assumed that a tie
between two authors who co-authored a paper in the past endured till the year of
analysis (and was not resolved).6 Consequently, we studied the cumulative network
structure in one-year intervals (i.e. the network from 1993 to 2003, the network from
1993 to 2004, the network from 1993 to 2005, and so on) (compare [17]). This
approach is also taken by most comparable studies (e.g. [26]).

However, also in 2015 (the last year of our analyses), the network consisted of
several components, and it is not meaningful to compare the authors’ betweenness

5http://gephi.org, accessed on July 14th 2015.
6In the analyses, we left out the years 1994–2002, since no papers about PCSK9 were published
then.

http://gephi.org
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Table 2 Top-Authors by betweenness centrality

Author Betweenness
centrality

Author Betweenness
centrality

Seidah Nabil G 0.088853334 Wasserman Scott M 0.020952266

Rader Daniel J 0.040243062 Hovingh G Kees 0.020169608

Robinson Jennifer 0.037968118 Boileau Catherine 0.020161673

Humphries Steve E 0.031357795 Zelcer Noam 0.019938673

Boerwinkle Eric 0.029708067 Jukema J Wouter 0.019929378

Kathiresan Sekar 0.027206458 Park Sahng Wook 0.019409024

Lambert Gilles 0.026681915 Horton Jay D 0.017328605

Thompson John R 0.026023458 Cariou Bertrand 0.015712718

Konrad Robert J 0.023464245 Stein Evan A 0.013969696

Davis Harry R Jr 0.022314041 Ballantyne Christie M 0.013736185

Kastelein John J P 0.021815021 Averna Maurizio 0.013704782

Chen Wei 0.021738187 Rabes Jean-Pierre 0.013482347

Hubbard Brian 0.021491985

centrality scores between components of different size.7 Therefore, we decided to
focus our further analyses on all authors that belong to the main component of the
network in 2015.8 The main component of the network comprised 2,836 authors (i.e.
72.62% of all authors).9 Between these authors were 43,183 edges (i.e. 91.21% of
all edges). Focusing on the main component of a network for further analyses is a
valid approach taken by many comparable studies (e.g. [19, 29]).

Table2 shows the 25-top-authors of this main component by their betweenness
centrality. Interviewswithmanagers responsible for PCSK9 from the pharmaceutical
industry confirmed that most of these authors are among the most influential people
in PCSK9 research.10

The main research question of this paper was whether these authors can be iden-
tified in the early evolutionary stages of a network by taking a variable as a proxy
for the authors’ betweenness centrality in the future.

In this paper, we propose the number of an author’s unclosed triads as a proxy
for her or his betweenness centrality. Figure1 illustrates an unclosed triad. In the
unclosed triad, author A has published a paper jointly with node B and another
paper jointly with node C. However, node B and node C have not published any

7Although Freeman [13] proposed a standardised measure of betweenness centrality that can the-
oretically be used for comparing centrality scores between components of different size, we think
that it is, for example, not meaningful to compare the maximal betweenness centrality of a node in
a component with three actors to that of a node in the main component of a co-authorship network.
8The main component of a network is also sometimes referred to as the “giant component”.
9There were no other meaningful big components in the network. For example, the second (third)
biggest component in the network comprised 1.23% (0.69%) of all authors.
10These influential people include basic researchers as well as researchers conducting clinical trials.
Hence, some context knowledge is helpful for reading the tables.
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Fig. 1 Unclosed triad

Table 3 Spearman correlation between the number of an author’s unclosed triads and this author’s
betweenness centrality in 2015

Year Spearman’s rho Year Spearman’s rho

1993–2002 - 2009 0.5767765

2003 0.3581052 2010 0.5976887

2004 0.4428995 2011 0.6691048

2005 0.4435424 2012 0.7276214

2006 0.5192145 2013 0.7779198

2007 0.5859543 2014 0.9017711

2008 0.5787019 2015 0.9876267

paper together. Hence, node A lies between nodes B and C and should have a high
betweenness centrality in the final network.11

Table3 illustrates Spearman’s [25] rank correlation coefficients between the
author’s betweenness centrality in 2015 and the number of an author’s unclosed
triads in the respective years. It is defined as

ρ =
∑

(rk(BCi )− rkBC)(rk(U Ti )− rkU T )
√∑

(rk(BCi )− rkBC)2
√
(rk(U Ti )− rkU T )2

(1)

where

rk(BCi ) is the rank of author i’s betweenness centrality,
rk(U Ti ) is the rank of author i’s number of unclosed triads,
rkBC is the mean rank of all betweenness centrality scores, and
rkU T is the mean rank of all number of unclosed triads.

We decided to use Spearman’s rho instead of Pearson’s correlation coefficient since
we expected the association between betweenness centrality and the number of an
author’s unclosed triads to be monotonic, but did not want outliers or a nonlinear

11We suppose that node A will have a high betweenness centrality in the final network, although
node B and node C are more likely to co-author a paper in the future than two random nodes if both
have co-authored a paper with node A. In the literature, this fact has been termed the “forbidden
triad” [14].
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Table 4 Spearman correlation between an author’s degree centrality and this author’s betweenness
centrality in 2015

Year Spearman’s rho Year Spearman’s rho

1993–2002 – 2009 0.1547840

2003 0.3348258 2010 0.2336706

2004 0.5012240 2011 0.3004783

2005 0.4919271 2012 0.3598940

2006 0.3827627 2013 0.3772301

2007 0.4472469 2014 0.4388881

2008 0.3589474 2015 0.4671028

relationship to bias the results. However, we are aware that we lose some information
by treating interval-scaled variables as ordinal.

Since there was only a single publication by two authors between 1993 and 2002,
a calculation of Spearman’s rho for these years is not meaningful. Also the corre-
lation coefficient for 2003 should be viewed with caution as there were only two
publications about PCSK9 in 2003. However, for the remaining years, Spearman’s
rho indicates a strong to very strong correlation between the author’s betweenness
centrality in 2015 and the number of the author’s unclosed triads in the respective
years.

As betweenness centrality and degree centrality are thought to be highly correlated
(e.g. [24]), one might argue that an author’s degree centrality is a more convenient
proxy variable for an author’s betweenness centrality than the number of this author’s
unclosed triads. However, we calculated the correlation between an author’s degree
centrality and this author’s betweenness centrality in 2015 (see Table4).

By comparing Tables3 and 4, one can see that the correlation coefficients between
an author’s number of unclosed triads and this author’s betweenness centrality are
much higher than those between an author’s degree centrality and this author’s
betweenness centrality.12 Hence, we can conclude that the number of an author’s
unclosed triads is a better proxy variable for this author’s betweenness centrality
than her or his degree centrality.

Although we found that the number of an author’s unclosed triads is a good proxy
for her or his betweenness centrality in the PCSK9 co-authorship network, this might
possibly be a peculiarity of our dataset.

To ensure that the number of an actor’s unclosed triads is generally a goodproxy for
her or his betweenness centrality, we generated a) 100 random Erds-Renyi networks,
b) 100 scale-free (Barabási-Albert) networks with a power exponent of γ = 2, and
c) 100 scale-free networks with a power exponent of γ = 3 [4] using the R package

12This is true for all years except 2004 and 2005. However, there were only very few publications
in these years (14 and 18 respectively, compare Table1), and the high correlation coefficients
between an author’s degree centrality and this author’s betweenness centrality for those two years
can be explained by chance. Furthermore, the differences in the correlation coefficients between the
number of an author’s unclosed triads and betweennness centrality and author’s degree centrality
and betweenness centrality for the years 2004 and 2005 are not very large (0.4428995 vs. 0.5012240
and 0.4435424 vs. 0.4919271).
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Table 5 Spearman correlation between the actor’s betweenness centrality and the actor’s number
of unclosed triads

Erds-Renyi networks Scale-free networks
(γ = 2)

Scale-free networks
(γ = 3)

Spearman’s rho 0.99749 0.99999 0.99999

igraph [9]. All of these networks consisted of 2836 nodes. Afterwards, we calculated
for each network the correlation between the actors’ betweenness centrality and the
actors’ number of unclosed triads. Table5 illustrates the mean correlation coeffi-
cients over all 100 networks for the three different types of networks. As the mean
correlation coefficients are near 1 in all three types of networks, we can conclude that
the number of an actor’s unclosed triads is an appropriate proxy variable for her or
his betweenness centrality in these artificial networks.

However, we also wanted to ensure that the number of an actor’s unclosed triads
is a good proxy variable for her or his betweenness centrality in not only these artifi-
cial networks but also real world networks. Therefore, we examined the correlation
between a node’s betweenness centrality and the suggested proxy variable using four
well-known real world networks that stem from different domains and have differ-
ent sizes: (1) Jeong and colleagues’ [15] “protein interaction network” (ρ = 0.971),
(2) Watts and Strogatz’ [28] ‘power grid” (ρ = 0.858), (3) Padgett’s “Florentine
families network” [7] (ρ = 0.854), and (4) Knuth’s [16] “Les Miserables dataset”
(ρ = 0.980). Also, in these four real world networks, the strong correlations indi-
cate that the suggested proxy variable is a good indicator for a node’s betweenness
centrality. Nevertheless, we cannot infer whether the accuracy of the proxy variable
changes with the size of the network based on this data.

For the final step of our analyses, we examined what percentages of the top nodes
in the co-authorship network and the four real world networks are correctly identified
as such using the proposed heuristic. Figure2 depicts the number of nodes selected as
top nodes (in percent) on the x-axis. The y-axis depicts howmany nodes are correctly
identified as top nodes using the proposed approach.

For example, if one aims to identify the top 15% of nodes (by their betweenness
centrality) in the co-authorship network, the proposed approach correctly identifies
83% of these top nodes. Another example is the line for the “Florentine families
network” in Fig. 2.13 If one intends to identify the top 5% of the Florentine families
(i.e. the top family), the proposed proxy variable correctly identifies this one family
(i.e. the proxy variable identifies 100% of the families one intended to identify).
Also if one intends to identify the top 12.5% of the families (i.e. two families), the
proposed proxy variable correctly identifies these two families (i.e. 100%). However,
if one intends to identify the top three families by their betweenness centrality (i.e.
18.75% of all families), the proposed proxy variable only correctly identifies two
(i.e. 66.6% of the families one intended to identify). Finally, when the aim is to

13The “Florentine families network” is a very small network (with 16 nodes only).
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Fig. 2 Nodes selected as top nodes and nodes correctly identified as top nodes

identify the top four families by their betweenness centrality, the proposed proxy
variable correctly identifies three (i.e. 75%), and so on.

In general, across all networks, the proposed approach identifies a sufficiently
large number of top nodes for a variety of application scenarios (such as, for example,
KOL identification for marketing campaigns in the co-authorship network).

5 Discussion

In this paper, we aimed at two research objectives. First, we identified KOLs in
PCSK9 research by their embeddedness in a co-authorship network. Specifically, we
identified them by using their betweenness centrality in the co-authorship network.
Second, we proposed a proxy variable for the betweenness centrality of these nodes
(i.e. the number of an author’s unclosed triads).14

We think that both points in themselves are important contributions to practice and
literature. Pharmaceutical enterprises spend considerable time and effort identifying
KOLs. In this paper, we illustrated an easy and cheap alternative to identify KOLs on
the basis of co-authorship data. The proposed method can also be easily conducted
with search terms other than “PCSK9”.

Furthermore, the proposed proxy variable may serve as an indicator for the nodes’
betweenness centrality in a variety of settings where betweenness centrality cannot
feasibly be calculated. Since the collaboration network of scientist is a prototype

14Encouraged by a literature review and interviews with marketing managers from the pharmaceu-
tical industry, we assumed that authors with a high betweenness centrality have a high influence as
well. Although we think that this is a reasonable assumption for co-authorship networks, we want
to be clear that structural importance and dynamic influence of nodes do not necessarily have to be
the same.
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example of a complex evolving network [5], our findings also seem applicable to a
variety of other networks as well.

Of course, as with any empirical study, this study is subject to some limitations.
We do not consider most of these limitations to void the results, so long as readers
remain aware of them as they draw their conclusions. In fact, the limitations suggest
some future research. There are four specific limitations to discuss.

First, since PubMed/MEDLINE did not provide unique researcher IDs for all
researchers, there might be some problems in distinguishing some of them. Either
some researchersmight have the samenameor some authorsmight change their name
(e.g. after marriage) and be recognised as two different nodes in a network. However,
we manually checked the data for inconsistencies and think that the remaining error
is of the order of a few percent (compare [22]). Therefore, we do not think that
this methodological limitation will significantly affect our results (compare also
[5]). Nevertheless, future research should conduct related analyses with a dataset in
which each author has a unique researchers’ ID.

Second, by selecting all articles about PCSK9 research indexed by the PubMed
database, we obtained a clear boundary specification of the network. However,
this boundary specification is rather artificial (compare [27]). For example, some
of the authors might have collaborated on other articles, and we neglected these
co-authorship links in our analyses. Therefore, future research should analyse co-
authorship networks with a different boundary specification.

Third, we neglected the fact that KOLs retire and stop publishing papers [5].
Hence, we might possibly have identified some KOLs in our analyses that are not
active anymore. Future research could collect additional data on this aspect and
explicitly consider the retirement of KOLs in the analyses.

Fourth, during our analyses, we focused on the author collaboration network
(compare [11]) and used the author-paper affiliation network (i.e. a bipartite graph)
for calculating some descriptive statistics only (such as the number of authors per
paper, or the number of papers per author). Future research could analyse the author-
paper affiliation network in more detail.

Our hope is that our research will assist others in conducting these types of stud-
ies and form the basis for substantial future research into identifying KOLs in co-
authorship networks, as well as the use of the number of unclosed triads as a proxy
variable for betweenness centrality.
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An Empirical Study of the Diversity
of Athletes’ Followers on Twitter

Ricardo Silveira, Giulio Iacobelli and Daniel Figueiredo

Abstract The study of user diversity in online social networks is an important and
ongoing research effort to better understand human behavior. This work takes a step
in this direction by providing an empirical study of around 8,000 athletes divided
into 13 categories and followed by 197 million users in Twitter. We propose a metric
for follower diversity at the category level that factors the vast popularity difference
between categories (e.g., soccer versus golf). Using thismetric,we propose ameasure
for athlete heterogeneity based on the diversity of his/her followers. Our findings
reveal that follower diversity is spread across two scales with the vast majority of
users having very small diversity. We also find that athlete heterogeneity is inversely
proportional to its number of followers. This indicates that very popular athletes are
followed by users that (on average) do not follow other sports.

1 Introduction

Online social networks became highly popular in the last decade, and currently amas-
sive amount of data is generated daily by the millions of users of such systems. This
data has been leveraged to study various aspects of human behavior at unprecedented
scale, such as information cascades, news bias, opinion formation and others [1–3].
Among the most widely used and studied platforms is Twitter, a system blending
social media and social networks with over half a billion users and the advantage
that in principle all user generated data is publicly available [4–6].
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An interesting object of study is user interest diversity [2, 7, 8]. In systems where
so much is available on so many topics will users’ interest become more or less
diverse? Will strong polarization around topics emerge out of local interactions?
Can we accurately quantify user diversity in the presence of strong biases imposed
by popularity and context? Prior works have focused primarily on user generated
content to assess diversity and polarization. We focus on a much stronger signal
which does not depend on content and topic categorization is external to the system.
In particular, we focus on a target group where topics and interests are well-defined:
sports, athletes and followers. In particular, we present an empirical study of diversity
considering around 8 thousand athletes divided into 13 categories and followed by
197 million people on Twitter. Our main contributions and findings are:

• Characterize athlete/follower relationship in the context of different categories.
• Propose a metric to quantify user diversity and athlete heterogeneity that accounts
for popularity bias of categories.

• Quantify the proposed metrics and identify various relationships between cate-
gories, popularity and diversity.

• Among other findings, we highlight that popular categories are followed by less
diverse users, and that athletes with many followers have less diverse followers.

The remainder of this paper is organized as follows. Section2 describes the data
collection and presents a preliminary analysis. Sections3 and 4 present the proposed
metrics for user diversity and athlete heterogeneity and their empirical evaluation,
respectively. Section5 concludes the paper with a brief discussion.

2 Data Collection and Analysis

The website http://www.tweeting-athletes.com is a semi-public platform keeping
track of athletes that have a Twitter account. Besides associating an athlete to its
twitter account, the website has categorized all athletes according to their sport or
league in which they play, such as soccer and NBA. Since athlete information is
manually verified by the website, the available data can be taken as reliable, although
not complete since athletes (or their managers) must register with the website.

We developed a web crawler to collect all athletes’ profiles on the website which
on February 2015 was around 8,000 athletes. We then developed a program to use
the public Twitter API to collect information of each of these athletes, including
the identity of all their followers (this procedure lasted several days, also on Febru-
ary 2015). The data collected is summarised in Table1. The first column corresponds
to the thirteen main categories listed in the website and each athlete is in exactly one
of such categories with their respective sizes given in the third row. The fourth row
denotes the number of followers (users) of all athletes in the corresponding category,
while the second row shows the number of follows, which is the sum of the number
of followers of each athlete in the category. Note that the number of follows is larger
than the number of followers, since a follower may follow different athletes in the

http://www.tweeting-athletes.com
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Table 1 Summary of collected data across different categories

Category # Follows # Athletes # Followers Popularity

Soccer 649,689,003 1417 107,598,814 458,496.1

NBA 180,315,704 560 50,800,914 321,992.3

NFL 131,436,876 2187 29,500,112 60,099.2

Other sports 114,895,505 651 37,282,225 176,490.8

Motorsports 40,263,566 122 16,808,352 330,029.2

MLB 39,629,147 658 11,505,122 60,226.7

MMA 35,901,352 334 12,056,037 107,489.1

Olympic games 31,767,754 834 15,537,349 38,090.8

NHL 27,228,831 435 5,451,714 62,595.0

Golf 23,408,708 233 8,753,212 100,466.6

Cycling 13,536,674 151 6,407,248 89,646.8

Winter Olympics 7,582,522 222 5,125,114 34,155.5

Tennis 3,131,908 22 2,268,151 142,359.5

Fig. 1 Complementary
Cumulative Distribution
Function (CCDF) of the
degree of athletes (red curve)
and followers (blue curve).
Athletes’ degree: number of
followers

same category. The last column presents the popularity of each category, computed
as the number of follows per athlete in the category.

Note that categories are of very different sizes, either when considering number
of follows, number of athletes or number of followers. This reflects the enormous
bias induced by popularity in such systems. To better accommodate for this bias, we
consider that the popularity of each category is measured as # Follows/# Athletes,
rather than simply using the number of follows or followers. In other words, the
popularity of a category corresponds to the average number of follows per athlete in
the category.

Figure1 depicts the Complementary Cumulative Distribution Function (CCDF)
for the degree of athletes and followers in log-log scale. For an athlete, the degree
corresponds to the number of followers it has, whereas for a follower the degree
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Table 2 Top five followed athletes and their number of followers

Athlete C. Ronaldo Kaka L. James
(NBA)

Neymar Jr. Ronaldinho

# Followers 33,657,773 22,092,978 18,978,751 17,008,330 11,608,006

Four are soccer players

is the number of athletes followed. Note that 70% of all athletes have more than
8 thousand followers, with extremely popular athletes having over 10 million fol-
lowers. Considering that the average number of followers per athlete is 20,552, the
degree of very popular athletes (≈10 million) is an extremely large value, more than
400 times larger than the average value, an observation also reflected in the large
standard deviation of 798,766. The top five athletes in number of followers are listed
in Table2, along with the corresponding number of followers.

The degree distribution (CCDF) of followers is quite different, showing that more
than 80% of users follow less than 10 athletes and very few users follow more than
800 athletes (10% of the total number).1 This much shorter tail is reflected in the
average (15.7) and standard deviation (6.6) of the empirical distribution.

3 Follower’s Diversity

We consider that users are interested in topics by associating topics to categories
and interest by a following relationship. Thus, a user is interested in a category if
he/she follows at least one athlete in that category. Note that we will not consider the
number of athletes a user follows within a given category. By focusing on categories
rather than on athletes we can avoid the general bias of following multiple athletes
in the same category. Another important aspect when measuring diversity is the
popularity of each category. As shown in Table1, some categories are more popular
than others, and to properly quantify diversity we must take this into account. Our
diversity measure is build on the following observations:

• diversity should increase with the number of categories followed.
• diversity should decrease with the popularity of a followed category.

We introduce the following notation to provide a clear definition of diversity.
Let the data be encoded as a directed graph G = (V, E), in which a vertex k ∈ V
corresponds to a Twitter user account, and there is a directed edge (k, j) ∈ E from
k to j if user k follows user j . Let A ⊂ V denote the set of athletes, and let S denote
the set of categories. For s ∈ S, we denote by As the set of athletes in category s.
Recall that each athlete belongs to exactly one category. A vertex k ∈ V is a follower
if there exists a j ∈ A such that (k, j) ∈ E ; we denote by F ⊆ V the set of followers.

1Note that there is a user following all athletes—most likely an account not associated with a real
person.
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Given a follower k ∈ F , and a category s ∈ S, we denote by As,k the set of athletes
in As which are followed by k, i.e., As,k = { j ∈ As | (k, j) ∈ E}. Moreover, for k a
follower, we denote by Sk = {s ∈ S | As,k �= ∅}, i.e., the set of categories followed
by k. Given an athlete j ∈ A, we denote by K j = {k ∈ F | (k, j) ∈ E} the set of
followers of j , and we denote by d in

j its cardinality, corresponding to its degree, i.e.,

d in
j � |{k ∈ F | (k, j) ∈ E}|. With a slight abuse of notation, given a category s ∈ S,

we denote by d in
s the total number of follows (of incoming links) for category s, i.e.,

d in
s = ∑

j∈As
d in

j .
As mentioned above, to measure diversity the popularity of each category must be

taken into account. Thus, we assign a weightωs to each category s which is inversely
proportional to its popularity, i.e., ωs � |As |

d in
s
. The diversity of a follower k, denoted

by αk , is then defined as:

αk �

∑

s∈S

ωs I(As,k �= ∅)

∑

s∈S

ωs

=
∑

s∈Sk

ρs , (1)

where, ρs = ωs/
∑

s ωs is the normalised weight for category s, while I(·) is the
indicator function, that is I(As,k �= ∅) = 1, if As,k �= ∅, and 0 otherwise.

The weight and normalized weight values are listed in Table3. Note that the
diversity induced by the different categories is quite different; following Tennis con-
tributes to user diversity much more than following NBA, while Winter Olympics
contributes the most to user diversity.

Figure2a depicts the CCDF of follower diversity as measured by αk . Note that
approximately 30% of the followers have the smallest possible diversity (0.014)
which correspond to users who only follow Soccer category, the most popular cate-
gory. Figure2a also shows thatmore than 60%of the followers have diversity smaller
than 0.05 and they follow athletes from one or two categories. Finally, we observe a
small fraction of users (less than 10−5) that follow all categories, thus having highest
possible diversity of 1.

We now consider the diversity of followers of a given category with results shown
in Table4. Note that diversity is not spread uniformly across categories. In particular,
followers of Winter Olympics category have the largest average diversity among all
categories, with Soccer the lowest. We point out that, although following a popular
category s results in a small weight ωs , a follower may in principle follow other
categories inducing a higher diversity. However, it seems that followers of popular
categories do not tend to follow other categories and therefore have a small diversity.
This is confirmed by considering the total and fraction of users that follow just that
category (columns 4 and 5 of Table4). Note that more than 66% of those who follow
soccer, do not follow any other category, while for NFL this number is 30%.
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Fig. 2 Fraction of followers/athletes with diversity/heterogeneity greater than give value (CCDF).
a CCDF of followers diversity, αk (avg=0.097, std=0.073). b CCDF of athlete heterogeneity, β j
(avg=0.32, std=0.09)

Table 4 Average and standard deviation of follower diversity in each category

Category Average Std. deviation # Excl. followers Fraction excl.
followers

Winter olympics 0.358307 0.181506 1,428,837 0.278791

Olympic games 0.277852 0.136397 3,499,990 0.225263

NHL 0.251917 0.175995 1,726,975 0.316777

MLB 0.248452 0.167417 3,194,130 0.277627

Golf 0.245631 0.185144 1,479,384 0.169010

Cycling 0.229478 0.181855 1,366,709 0.213307

NFL 0.200693 0.134341 8,985,095 0.304578

Tennis 0.189565 0.163223 274,485 0.121017

MMA 0.153562 0.146019 2,709,689 0.224758

Other sports 0.126630 0.141822 15,953,684 0.427917

Motorsports 0.122397 0.144113 4,288,922 0.255166

NBA 0.114913 0.136002 18,088,226 0.356061

Soccer 0.055275 0.097337 71,148,842 0.661242

Exclusive followers (# Excl. followers) corresponds to users who only follow that category, while
their fraction is with respect to all followers of that category

4 Athlete’s Heterogeneity

We now focus on the diversity of the followers of given athletes, a concept we refer to
as athlete’s heterogeneity. In particular, we are interested in studying the relationship
between the athlete heterogeneity and other characteristics, such as number of follow-
ers or popularity. Building on the concept of follower’s diversity, the heterogeneity
of an athlete j is defined as:

β j � 1

d in
j

∑

k∈K j

αk , (2)
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Table 5 Top five athletes according to heterogeneity

Athlete Peter Bakare
(Oly. G.)

Kim St-Pierre Aja Evans Molly Schaus Kacey
Bellamy

# Heterog. 0.566 0.564 0.560 0.557 0.555

# Followers 30,313 6,181 7,717 5,636 4,705

The most heterogeneous athlete is from Olympic Games (Volleyball) while the other four are from
Winter Olympics category

Fig. 3 Histogram of the
athletes’ heterogeneity as a
function of log of the number
of followers

where, K j denotes the set of followers of athlete j and d in
j its cardinality (degree).

Note that β j is the average follower diversity among the users that follow athlete j .
Figure2b depicts the CCDF of the athlete heterogeneity. The vast majority of

athletes (more than 70% of the athletes) have a heterogeneity between 0.2 and 0.4,
with an average value of approximately 0.32 and standard deviation 0.09. Different
from follower diversity, athlete heterogeneity is much more center around its mean
with few athletes being very different. Thus, followers tend to be more diverse than
an athlete’s followers. Table5 shows the top five athletes according to heterogeneity.
Note that they are different from the top five according to number of followers, shown
in Table2. This already suggests that more heterogeneous athletes do not have many
followers, which we next investigate. Figure3 shows a histogram of the (average)
athletes’ heterogeneity as a function of the logarithm of number of followers. The
error bars represent the standard deviation in each bin. The figure shows a clear
trend indicating that as the number of followers increases the average heterogeneity
decreases. Note that, as shown in Fig. 1 (red curve) there are very few athletes in the
range [0, 3] (as in the extreme tail) and thus the data is more noisy in this range and
the trend is not so clear. Overall, athlete popularity (i.e., number of followers) seems
to be inversely proportional to the diversity of its followers. It is worth noting that not
every athlete belonging to a very popular category has a small heterogeneity value.
For example, soccer players Charlie Davies (more than 100 thousand followers) and
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Landon Donovan (more than 1 million followers) have heterogeneity 0.39 and 0.31,
respectively. Considering that soccer weight is 0.014, this indicates that most of their
followers also follow other categories.

5 Discussion and Conclusion

The study of diversity in online social networks is an ongoing research effort that
can significantly contribute to the understanding of human behavior. This work takes
a step in this direction by considering the context of athletes their categories and
their followers in Twitter. In particular, we introduce a simple metric for follower
diversity that allows a more fair comparison between categories with extremely
different popularities, such as Soccer and Winter Olympics. Our analysis of around
8,000 athletes and their 197 million followers reveals very interesting findings, such
as thatmost followers have very small diversity (60% follow less than two categories)
and that popular athletes are followed by less diverse followers. Although this work
has focused on diversity at the level of categories, our dataset includes subcategories
for athletes, such as the team they currently play for. For future work, we intend
to measure diversity considering the subcategories followed by users. Lastly, the
measure hereby introduced in the context of athletes/sports can be used to study
user interest diversity across different Twitter categories, such as politicians/political
parties, actors/films and news/topics.
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Forecasting a Global Air Passenger
Demand Network Using Weighted
Similarity-Based Algorithms

Ivan Terekhov, Antony Evans and Volker Gollnick

Abstract The aim of this study is to define an appropriate approach to forecast
the appearance and disappearance of air passenger demand between cities world-
wide. For the air passenger demand link forecasting, a weighted similarity-based
algorithm is used, with an analysis of nine indices. The weighted resource allocation
indexdemonstrates the bestmetrics. The accuracyof thismethodhas beendetermined
through a comparison of modeled and known data from three separate years. The
known data was used to establish boundaries when applying the similarity-based
algorithm. As a result, it is found that a weighted resource allocation index, with
defined boundaries, should be utilized for link prediction in the air passenger demand
network. Furthermore, it is shown that grouping cities within the air passenger
demand network, based on socio-economic indicators, increases the accuracy of
the forecast.

1 Introduction

The modular environment AIRCAST [1, 2], aims to forecast future development of
the air transportation system (ATS) based on socio-economic scenarios. AIRCAST
allows to simulate a range of possible outcomes for the future ATS and assess, for
example, the impact of new technology on the number of demand passengers or the
size and number of aircraft on particular routes. An air passenger demand (APD)
forecast model of ‘origin to destination air travel passenger demand between city
pairs’ on a global level calledD-CAST [1] is the first layer in a chain ofmodels within
AIRCAST [2]. In D-CAST, the APD model forecasts the number of passengers as
well as changes in the number of connected cities within the forecast period. This
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paper aims to define an appropriate approach to forecasting the appearance of APD
between cities worldwide.

The APD network is a dynamically evolving network. This network contains a
number of cities (nodes) with links between them. In this study, the APD network is
considered as an undirected network [1]. TheAPDnetwork is aweighted network i.e.
each link is characterized by a parameter or a set of parameters. As shown, the APD
has interdependences with economic and social indicators [3, 4]. Thus, the weight of
a link could be considered as a combination of socio-economic indicators between
cities in pairs. During the forecasting period, the socio-economic indicators of cities
vary. Therefore, the weighting of links is also changing. This variation in weightings
over time has an impact on the APD network and, accordingly, the topology of the
network is likely to change. For example, where the socio-economic indicators of
cities (e.g. GDP, population and oil price) show a rapid increase, it is probable that
a number of connected cities with a significant APD will appear where no APD
connections previously existed.

There are three main groups of link prediction methods [5] for forecasting con-
nections in the network: similarity-based algorithms, maximum likelihood (ML)
and probabilistic models (PM). Similarity-based algorithms are divided into local,
global and quasi-local indices [5]. Similarity-based algorithms are the mainstream
class of link prediction algorithms. ML methods and PM are complex and very
time consuming. ML is able to handle networks with up to a few thousand nodes
in a reasonable time [5]. Furthermore, ML methods do not demonstrate the best
accuracy [5]. Mostly, studies consider link prediction in non-weighted networks.
Studies on link prediction inweighted networks aremainly conducted usingweighted
local similarity indices [6, 7]. In addition, the APD network is a high clustered
network as shown by Ghosh and Terekhov [2]. For highly clustered networks,
the common-neighbor-based indices demonstrate relatively good prediction with
low complexity [5]. Thus, in this study, only weighted local similarity indices are
considered.

The underlying principle of weighted and non-weighted indices of similarity-
based algorithms is the same. These algorithms assign a score to each non-existing
link in a given network. Then the links are ranked in descending order according to
their score. Links with the highest score should appear in the network. Here, two
significant problems arise. In the network, one index can perform well while another
fails [5]. Thus, the first problem is to define which weighted local similarity index
shows the best performance in the APD network. The second problem is to define
a criterion for adding new connections to the network with the highest score from
the top of the ranking list. In other words, a boundary condition in the ranking list
of non-existing links has to be defined: links from the ranking list between the first
link and a boundary link will be added to the network.

In addition, as shown by Zheleva et al. [8], the combination of network structure,
node attributes, and node community features improve link prediction performance.
In the APD network, the network structure and node attributes are known. For
node communities, cities are allocated to groups according to the proximity of
their socio-economic indicators. For example, cities with large GDPs and popu-
lations are classified under the big-rich group and cities with large populations and
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small GDPs are classified under the big-poor group. Since cities generally possess
different socio-economic indicators in these groups (clusters) [1], the process of link
appearance and disappearance in each cluster pair of the APD network could be
different. Thus, a similarity-based algorithm which shows the best performance in
one cluster is probably different in another cluster. For instance, different weighted
similarity algorithms could perform better between big-rich cities and small-poor
cities, than between megacities and middle-rich cities. It is also likely that every
cluster pair has its own boundary. In this paper, the performance of similarity-based
algorithms for each cluster pair is analyzed. The boundary for each cluster pair is
defined utilizing the algorithm with the best performance.

Two standard metrics are used to identify the appropriate index for each cluster
pair: the area under the receiver operating curve (AUC) [9] and precision [10]. In this
study, these metrics are applied to the APD topology for 2009. For accuracies and
boundary identification, a set of forecasts of the APD network is made: from 2002
to 2012, from 2007 to 2012 and from 2011 to 2012.

For 2002, 2007, 2011 and 2012 origin to destination city pairs worldwide (topol-
ogy) have been obtained from Sabre Airport Data Intelligence (ADI) [11] database.
The ADI database contains two types of annual APD data: from 2002 to 2013—
preliminary data, from 2009 to 2012—final data. The preliminary data contains a
number of mistakes, while the final data has been corrected. For the metrics calcu-
lations, the final ADI data for 2009 are utilized. For the accuracies and boundary
calculations, the preliminary APD data of 2002 and 2007 are used and the final data
for 2011. For the link weighting calculations, GDP [12, 13], population [14, 15]
and geographical coordinates [16, 17] of the cities have been obtained from various
databases [1]. However, city populations for 2002, 2007 and 2011 are not available.
Thus, this data has been obtained by extrapolation of the city population from 2012
to 2002, 2007 and 2011 based on the historical population growths for the countries.
For the average air fare between cities, a simple air fare model [2] is adopted.

2 Definition of the Weighted Similarity-Based Algorithm
for the APD Network

The initial set of 4,435 cities obtained from the ADI data base is divided into 9
clusters, based on their socio-economic indicators [1] in 2012: GDP, city population
and GDP per capita. All economic indicators within the study are adjusted to 2005
US dollars. The detailed description of the clustering process is shown in [18]. For
the purposes of the study, short hand cluster names, derived from cluster means
(population, GDP and per capita GDP), are adopted (i.e. very small rich cities, small
poor cities, etc.).

In the APD network, every cluster is defined as a set of cities and weighted
connections. These connections link cities in one cluster with cities in other clusters
and cities within a cluster. Weights in this study are considered as a combination
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of average air fare [2], distance between cities and main socio-economic indicators
such as city GDP and city population. The weight on the connection between cities
x and y is presented as follows:

wxy = (gx ∗ gy)
α ∗ (

px ∗ py
)β ∗ (

lxy
)γ ∗ (

txy
)δ ∗ ε + θ (1)

where gx,y are the gross domestic products of city x and y; px,y are the populations
of city x and y; lx,y is the distance between city x and y; tx,y is the average air fare
between city x and y; α,β, γ, δ are elasticities of GDP, population distance and
average air fare respectively; ε is a dummy variable; is a free parameter. In this study
it is assumed that α = 1, β = 1, γ = 1, δ = −1, ε = 1 and θ = 0. Thus, the Eq. (1)
turns to a variation of Newton’s gravity model and the weight could be interpreted as
an abstract attractive force between cities. Furthermore, the gravity model has been
used in a number of studies [4, 19] to predict the APD between city pairs.

Based on the simple air fare model [2] and the assumptions in Eq. (1) the weight
w between cities x and y could be presented as:

wxy = gx ∗ gy ∗ px ∗ py
(
r ∗ 2 ∗ 10−4 + 0.0653

) ∗ l2xy + 140 ∗ lxy
(2)

where r represents an average oil price in a given year.
Within this study, nine indices of similarity-based algorithms are analyzed. Based

on Lü and Zhou’s study [5], the weighted common neighbors (WCN), the weighted
Adamic-Adar index (WAA) and the weighted resource allocation index (WRA) are
applied to the APD network. In addition, similarity indices for unweighted networks
are adapted for weighted networks using the proposed simple method byMurata and
Moriyasu [6]. These indexes are the weighted Salton index (WSA), the weighted
Sorensen index (WSO), the weighted hub promoted index (WHPI), the weighted
hub depressed index (WHDI), the weighted Leicht-Holme-Newman index (WLHN)
and the weighed preferential attachment index (WPA). These similarity indexes are
presented in Table1.

Two standard metrics AUC [5, 9] and precision [5, 10] are used to determine the
accuracy of each index. Initially, for an undirected weighted network, all existing and
non-existing links are known. From this set of existing links, a group of links—the
probe set—is excluded. The remaining existing links are the testing set. The score of
each index in the network formed by the testing set is calculated for all non-existing
links and the probe set. The AUC shows the probability that a randomly chosen link
from the probe set has a higher score than a randomly chosen link from the set of
non-existing links. For the precision metric, the set of probe links and non-existing
links is ordered in descending order according to their scores. From this list, the top-L
links are selected as the predicted once. Among these links, Lr links are correct (links
from the probe set). The precision is a ratio of Lr to L. Thus, higher precision means
higher prediction accuracy 5. Both metrics are numbers between 0 and 1. The closer
the metric is to 1, the better the performance of the index in a given network.
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Table 1 Weighted similarity-based algorithm indexes

Index name Index formula

Weighted Common Neighbors index (WCN) sWC N
xy = ∑

z∈Γ (x)∩ Γ (y)

w (x, z) + w (z, y) (3)

Weighted Adamic-Adar index (WAA) sW AA
xy = ∑

z∈Γ (x)∩ Γ (y)

w(x,z) + w(z,x)
log(1+ s(z)) (4)

Weighted Recourse Allocation index (WRA) sW R A
xy = ∑

z∈Γ (x)∩ Gamma(y)

w(x,z)+ w(z,x)
s(z) (5)

Weighted Salton index (WSA) sW S A
xy = ∑

z∈Γ (x) ∩ Γ (y)

w(x,z) + w(z,x)√
s(x) ∗ s(y)

(6)

Weighted Sorensen index (WSO) sW SO
xy = ∑

z∈Γ (x)∩ Γ (y)

2(w(x,z) + w(z,x))
s(x) + s(y) (7)

Weighted Hub Promoted Index (WHPI) sW H P I
xy = ∑

z∈Γ (x)∩ Γ (y)

w(x,z) + w(z,x)
min{s(x), s(y)} (8)

Weighted Hub Depressed index (WHDP) sW H DI
xy = ∑

z∈Γ (x)∩ Γ (y)

w(x,z) + w(z,x)
max{s(x), s(y)} (9)

Weighted Leicht-Holme-Newman index
(WLHN)

sWLHN
xy = ∑

z∈Γ (x) ∩ Γ (y)

w(x,z) + w(z,x)
s(x) ∗ s(y)

(10)

Weighed Preferential Attachment index (WPA) sW P A
xy = s (x) ∗ s(y) (11)

In this study for AUC and precision calculations, the 2009 APD network is uti-
lized. For that year, 3,919 cities are obtained. These cities are allocated to 9 clusters
according to their socio-economic indicators, based on the 2012 cluster means. It is
assumed that the cluster means remain fixed as in 2012 (base year) and do not change.
In other words, city clustering in 2009 is made from the perspective of clustering
in 2012. Based on city clusters, 471,824 real connections in 2009 are distributed
between 45 cluster pairs. Non-existing links are obtained for each cluster pair. The
total number of non-existing links in the APD network of 2009 is 7,205,497. For the
calculation of the two metrics, sets of existing and non-existing links are used.

Based on existing studies [5, 7] the network has been divided into two sets: testing
and probing in proportions 90% and 10%, respectively. Each AUC and precision
value is obtained by averaging 10 realizations with independent random separations
of random and probe sets. Metrics for the whole network and each cluster pair for
different indexes are calculated as well as their standard deviations. AUC and pre-
cision are used to determine the accuracy of each index for the whole network and
for clusters. The index with the best metrics values is then chosen for the topology
forecast in theAPDnetwork. The result demonstrates that only one index—Weighted
Hub Promoted Index (WHPI) has a higher precision value in the whole network
than the cluster average. However, this value is low compared to other indices. All
other indices show higher AUC and precision numbers in clusters than in the whole
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network. This proves the necessity of separating cities into groups according to their
socio-economic indicators, so as to improve the link forecasting performance. The
best AUC number for the whole network is WSO. But this number is smaller than
AUC for the WRA in clusters. The WRA index shows the best AUC and precision
results in clusters pairs. This is expected, since WRA gives a higher score to a non-
existing connection between two nodes if these nodes have many common neighbors
with large weights. It is important to note, that the WRA index has the best perfor-
mance of AUC and precision in each cluster pair. This disproves the assumption that
cluster pairs in the APD network have different similarity indices demonstrating the
best performance.

Based on the aforementioned analysis, theWeighted Resource Allocation (WRA)
index is chosen for the topology forecast in the APD network. The score for each
non-existing link in each cluster pair will be calculated utilizing the WRA index.
Next, it is necessary to validate the method based on historical data.

3 Model Validation

For the validation, the APD topologies of four years from 2002 to 2012 are uti-
lized. Data for these years from the ADI database (2002, 2007, 2011 and 2012 APD
networks) are retrieved. Socio-economic data and geographical coordinates for cities
from the same databases as for 2012 are obtained. The conditions required for the
appearance of new cities in the APD network are not clear and hard to predict [5].
Thus, for the analysis, sets of cities from four networks are reviewed. Cities which
are presented in a given year and 2012 are allocated to the set of common cities.
Thereby, there are three sets of common cities for all 3 networks. For 2002, 2010,
2011 there are 3,699, 3,896 and 3,667 common cities with 426,150, 500,020 and
521,171 connections between them respectively.

Three analyses based on modified networks with common cities to define accu-
racies of the APD topology forecast have been made. Within the analyses new
connections are calculated utilizing theWRA index and compared with the real data.
These connections are calculated for the following topologies: 2012 from 2002, 2012
from 2007 and 2012 from 2011.

For all three analyses, predicted topologies are compared with real topologies.
For example, new calculated connections in 2012 from 2002 are compared with
the real topology of 2012. The analysis procedure is as follows: the 2012 socio-
economic indicators and cluster affiliations are assigned to cities in 2002. Thus,
the 2002 APD network turns to an incomplete network of the 2012 APD network.
The score for all non-existing connections in every cluster pair of the 2002 network
is calculated using the WRA index. Connections are sorted in descending order
by their score. The calculated data is then compared to real data. The number of
real added connections for every cluster is already known. Thus, from the calculated
connections in the sorted list, the same amount of connections is added to themodeled
APD network. In other words, from the real data in cluster A from 2002 to 2012, for
example, x connections are added. This means, that from the calculated sorted list
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Table 2 The average accuracies for new predicted connections, eliminated connections and the
final accuracies of the forecasted 2012 ADP networks from 2002, 2007 and 2011

2002 2007 2011

Addition 0.344461159 0.283425859 0.261119746

Elimination 0.127025427 0.140473134 0.111642672

Total 0.718827952 0.695375928 0.748008114

in cluster A, these x connections are added from the top. All of these new calculated
connections from every cluster are added to the 2002 APD network, thus forming
an extended 2002 APD network. In addition, some of the connections had to be
removed from the network because the socio-economic indicators changed and, as
a consequence, some APD connections have disappeared. The elimination process
follows a similar procedure to the connection addition process. The score is calculated
for every connection from the extended 2002 APD network and the connections are
sorted in descending order by their score in this second list. The number of the
real added connections is already known. From the second sorted list, the same
number of connections as in the number of the real added connections is added to
the final network. The remaining connections are eliminated from the APD network.
Thus, the APD forecasting method has two sequential steps: the connection addition
process and the connection elimination process. It is possible to define the accuracy
of these processes. The accuracy for the connection addition is defined as a ratio
between the amount of real new added connections in 2012 and the number of real
new connections in the sorted list. The accuracy for the connection elimination is
defined as a ratio between the amount of real connections in 2012 and the number
of real new connections in the ordered list. This number is between 0 and 1. The
addition process has a higher accuracy the closer the ratio is to 1. The elimination
process has a higher accuracy the closer the ratio is to 0. Accuracies for the addition
and elimination processes for every cluster pair for 2012 from years 2002, 2007 and
2011 are calculated.

In this study, all average accuracies for added connections from the years 2002,
2007 and 2011 are below 0.5, meaning that the prediction contains errors amounting
to more than 50%. For connection elimination average accuracies are above 0.5,
meaning that there is less than 50% error in the elimination prediction. However,
the final average accuracy for all clusters of the APD network forecasts is above
0.6 and it is higher than, for example, in T. Murata and S. Moriyasu’s study4 of
link prediction in a weighted network of Question-Answering Bulletin Boards. The
average accuracies for new predicted connections, eliminated connections and the
final accuracies of the forecasted 2012 ADP networks from 2002, 2007 and 2011 are
presented in Table2. The final accuracy of every cluster pair for 2012 from 2002,
2007 and 2011 is shown in Fig. 3.

After the addition and elimination processes, the forecasted APD networks of
2012 and the real APD network of 2012 are compared. This comparison shows that
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the forecasted network has accuracies higher than 0.6 (Table2). The accuracy is high
even when the average addition and elimination accuracies show poor results. The
reason for the over 0.6 accuracy is that more than 50% of connections in 2012 remain
in the network from 2002, 2007 and 2011 APD networks and high accuracies in most
clusters (Fig. 1).

The accuracies for 2002 in most cluster pairs are almost always higher than for
2007 and 2011. It is, in particular, significantly higher in megacities—megacities,
big poor cities—megacities, etc. cluster pairs. This is probably related to the 2008
economic crisis, and predictions from 2007 and 2011 to 2012 are more likely to show
the higher impact of this crisis, when the world economy was not fully recovered,
than from 2002. Furthermore, there are different accuracy figures for cluster pairs.
Relationships between citieswith “strong” socio-economic indicators in some cluster
pairs (for example small-rich—megacities) are better described using Eq. (2) than
for “weak” cluster pairs (for example big-poor–small-poor). Therefore, the accuracy
is higher for cities with relatively high socio-economic indicators. In addition, it
should be noted that cluster pairs are not equal in terms of number of passengers.
For the forecast model, it is important to have a high accuracy for connections with
a high APD. Table3 presents the final accuracies for the accumulative number of
passengers by cluster pairs in Fig. 1 of the real 2012 APD networks from forecasted
2002, 2007 and 2011. Numbers in brackets indicate accumulated numbers of cluster
pairs corresponding to a given accumulated percentage of passengers. The model
validation on historical data shows higher accuracy compared to existing studies. At
this stage of the study, the topology forecast model validation using historical data
shows acceptable results and the accuracy obtained seems to be sufficient. However,
the accuracy could probably be enhanced by defining appropriate coefficients in
Eq. (1). Next, it is necessary to analyze the WRA index boundary criteria in the
sorted lists of non-existing connections for each cluster pair.

Fig. 1 Final accuracies for connection in every cluster pair in 2012 from 2002, 2007 and 2011
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Table 3 Average accuracies for 2002, 2007 and 2011 for a given percentage of passengers

50% passengers 90% passengers 75% passengers 100% passengers

2002 0.950410 (5) 0.893178 (12) 0.830114 (19) 0.741496 (45)

2007 0.911038 (5) 0.856984 (12) 0.803311 (19) 0.703929 (45)

2011 0.916903 (5) 0.884192 (12) 0.841171 (19) 0.741308 (45)

Figures in brackets indicate how many cluster pairs generate a given percentage of passengers

Fig. 2 The APD network
topology of a cluster pair in
year y

Fig. 3 The APD network
topology of the cluster pair in
year y+1. Thick lines depict
new real added connections
to the network of year y

4 Boundaries

Based on the aforementioned analysis, there are two ways to define boundaries in
the sorted list of connections: either using the number of new added connections and
the number of real connections in each cluster pair or the boundary scores for each
cluster pair. In other words, for the first method, a fixed number of connections are
added to the network from the sorted list of non-exiting connections, which is in
descending order according to their score. No additional manipulations are required
for connection elimination. In the secondmethod, for the addition connection process
into the APD network, all connections where the score exceeds the boundary score
(boundary for adding connections) in the sorted list with all possible connections is
added to the APD network. For the elimination process, all connections where the
score does not exceed the boundary score (boundary for eliminating connections) in
the sorted list is added to the APD network.

For example, the APD network topologies of a cluster pair in year y (Fig. 2) and
the next year y+1 (Fig. 3) are known. Socio-economic indicators of cities from year
y+1 are assigned to the same cities as in year y. Utilizing the WRA index, scores
for all non-existing connections are calculated (Fig. 5). Connections are sorted in
descending order by their score (Fig. 6). The accuracy of the method can be defined
using new real added connections to network in year y+1. The number of forecasted
links from the top of the list is equal to the number of new real added connections.
The accuracy is defined as the ratio of relevant connections in the list of non-existing
connections to number of new real added connections. There are two types of criteria
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Fig. 4 The forecasted APD
network of year y+1

Fig. 5 Existing connection
and all non-existing links in
the APD network in year y.
The score for each
non-existing link is
calculated. New real added
connections in the APD
network in year y+1 are
marked in bold

for adding connections to the ADP network. The first criterion is a fixed amount
of connections. This amount added every year is equal to the number of new real
added connections from year y+1. The second criterion is the boundary score. Each
connection with a score higher than the boundary score in year y+1 is added to
the network. The next step in forecasting is the elimination connections from the
network. Forecasted links from the top of the list (from Fig. 6) are added to the
existing links in year y (from Fig. 5) and sorted by their score in descending order.
The number of forecasted links from the top of this new list is equal to the number of
real connections in year y+1. Connections with the score lower than the boundary
score for the elimination process are eliminated from the network (Fig. 7). Thus, after
the addition and elimination processes, the forecasted APD network for year y+1
is obtained (Fig. 4).
In this study, the possibility of link addition and elimination are considered. It is
assumed that APD connections are able to appear and disappear in the APD network.
However, there are two connection adding and elimination approaches from the
network: a fixed amount of connections or boundary scores. In both approaches,
a situation could arise where all cities within a cluster pair are connected to each
other. This is more likely to occur when applying the first method, i.e. using the
number of new added connections in each cluster pair. For example, cluster pair
middle-rich–small-rich in 2012 has 207 and 565 cities respectively. This cluster pair
in 2012 has 27,628 connections including 3,538 new connections added from 2011
(shown in Fig. 3). The number of non-existing connections is 89,327. If it is assumed
that the number of added connections will remain fixed, all cities in this cluster pair
will be connected to each other within ∼25years. For the second method, applying
boundary scores, the year when all of the cities are interconnected in the cluster is
hard to predict. This will depend on various factors such as network configuration,
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Fig. 6 Non-existing connections are sorted in descending order based on their score. Two types
of boundaries based on the number of new real added connections are presented: fixed amount
of connections and the boundary score. The forecast predicts two actual connections out of three.
Thus, the accuracy in this case is 0.6666

Fig. 7 The new three connections for year y+1 from Fig. 6 are added to the existing connections
of year y from Fig. 7 and sorted in descending order by their score. Connections with a score less
than S45 (boundary for the elimination process) are eliminated from the network

city clustering, socio-economic scenario, etc. Nevertheless, at this stage of the study
for the APD network forecasting, it seems reasonable to use the second method of
boundary definition–boundary scores.

It is important to note that each cluster pair has different boundaries either for the
fixed number of connections method or the boundary score method. This proves the
assumption that each cluster pair has its own boundaries.

5 Conclusion

This paper presents the study of topology forecast in APD networks utilizing a socio-
economic scenario. The study shows that the Weighted Resource Allocation (WRA)
index demonstrates the best performance. AUC and precision metrics are higher for
cluster pairs than for the whole APD network. This proves the necessity of separating
cities into groups by their socio-economic indicators to improve the link forecasting
performance. Thus, the WRA index is used to calculate scores for all non-existing
links in each cluster pair. This disproves the assumption that cluster pairs in the APD
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network have different similarity indices demonstrating the best performance. For
existing years, the modeling is applied and results are compared with real data. The
accuracy of the similarity-based algorithm for the APD network is higher than in
related studies. The study shows two methods of adding new connections from the
ordered score list of non-existing connections. The first method is to add a fixed
number of connections based on the historical analyses. The other method is to
use a score number from the ordered list as the boundary. Both methods prove the
assumption that each cluster pair has its own boundary. It seems reasonable to use
the second approach with the boundary score. However, this adding process requires
further investigation. Despite the low average accuracy for predicting new connec-
tions in the APD network, the validation of the topology forecast model demonstrates
a high accuracy for elimination connections and the final accuracy for the forecasted
APD networks (Fig. 6). Nevertheless, this accuracy is strongly related to the fact that
more than 50% of connections in 2012 stay in the network from 2002, 2007 and
2011. The APD topology forecast approach was tested for 1, 5 and 10years. Yet, due
to the lack of data, current validation is not able to estimate possible error propagation
within the forecast period. For future study, the validation must be extended in order
to understand the prediction error growth. One of the possible validation methods is
forecasting the APD network from 2002 to 2007 and from 2007 to 2012. Comparing
validation results could allow for error growth estimation. It is furthermore believed
that the accuracy of the similarity-based algorithm could be enhanced. Topology
forecasting can be improved by defining appropriate coefficients in the Eq. (1). It is
likely that every cluster pair could have its own coefficients. In addition, the main
network metrics should be analyzed (e.g. average weighted degree, average path
length, modularity, etc.) and compared with the metrics obtained from historical
data described in [17]. This may help to understand latent processes for the APD
connections generation.
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Influence and Sentiment Homophily
on Twitter Social Circles

Hugo Lopes, H. Sofia Pinto and Alexandre P. Francisco

Abstract Web-based social relationsmirror several known phenomena identified by
Social Sciences, such as Homophily. Social circles are inferable from those relations
and there are already solutions to find the underlying sentiment of social interactions.
Wepresent an empirical study that combines existingGraphClustering andSentiment
Analysis techniques for reasoning about Sentiment dynamics at cluster level and
analyzing the role of social influence on sentiment contagion, based on a large dataset
extracted from Twitter during the 2014 FIFAWorld Cup. Exploiting WebGraph and
LAW frameworks to extract clusters, and SentiStrength to analyze sentiment, we
propose a strategy for finding moments of Sentiment Homophily in clusters. We
found that clusters tend to be neutral for long ranges of time, but denote volatile bursts
of sentiment polarity locally over time. In those moments of polarized sentiment
homogeneity there is evidence of an increased, but not strong, chance of one sharing
the same overall sentiment that prevails in the cluster to which he belongs.

1 Introduction

Twitter is a highly dynamic social environment where 316 million monthly active
users generate a stream of 500 million tweets per day. It not only allows millions
of users to interact among each other, but it is also a window for those interactions.
Since it is an accessible and prolific source of social data, Twitter and other web-
based social networks are widely used in the literature for different Social-related
Analysis [8], such as Network Dynamics [15], Community Detection [16], Event
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Detection and Prediction [7, 18], Information Flow [2], Influence and Homophily
Analysis [1, 21], SentimentAnalysis [12]. Some of these study the interdependencies
and possible correlations among the different topics, however we found that there
is not an extensive study about sentiment prevalence on clusters and whether this
sentiment can be spread by influence into a state of sentiment homophily inside those
clusters. Understanding how sentiment behaves at a cluster level can be useful for
mining the overall mood of communities, and it may also be useful for improving
sentiment classification techniques using enriched information about surrounding
emotions.

Easley and Kleinberg [8] define homophily as the principle that people tend to
be similar to their friends, which may be caused by selection or social influence. We
found that sometimes homophily is defined in the literature as selection itself [19],
i.e., people select friends with similar characteristics. Following the first definition,
we search for moments of sentiment homophily in social circles and we try to under-
stand if they are caused by social influence. The hypotheses that motivate our work
are:

• H1: The sentiment expressiveness inside clusters is highly dynamic over time.
• H2: Clusters show moments of sentiment prevalence.
• H3: During moments of sentiment homogeneity in a cluster, there is an increased
chance that a user is influenced by the surrounding emotion and shows a similar
sentiment to the one prevailing at that moment.

Regarding some specific terms related with Twitter, a tweet is a message with a
maximum size of 140 characters that can include photos and videos. By retweeting
a tweet, a user is forwarding that tweet to his own followers. A mention is an explicit
reference to a user using the tag “@” followed by his unique username. For instance,
typing “@maria” is a mention to the user “maria”. A reply is a particular case of a
mention in which the mention is located at the bottom of the tweet. Replies are used
to comment or answer something that the mentioned user has tweeted.

Using existing clustering and sentiment classification techniques, we propose to
measure the overall sentiment of clusters based on the frequency of tweets for each
possible sentiment value, regarding their sentiment classification. We found that the
neutral value is the most frequent classification during the clusters’ lifetime, however
different sentiment values appear, usually in spikes and with different polarities over
time, confirming the highly dynamic nature of clusters’ sentiment (H1). We also
observed moments of sentiment homophily (H2), for instance in chains of retweets
or topic-related discussions and we describe a systematic strategy for finding those
moments. Finally, we used dubious sentiment classifications for testing the role of
influence in the origin of those moments of sentiment homophily by comparing
the extrapolation of the clusters’ overall sentiment with human-coders’ evaluations.
With this strategy we found a tendency for ambiguous classifications being correctly
relabeled with the prevalent sentiment of respective clusters (H3).
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2 Related Work

Fowler and Christakis [10] conducted a study about the spread of happiness within
social networks, using data from the Framingham Heart Study,1 collected between
1983 and 2003. From a network of 4,739 individuals, each person was weekly asked
how often they experienced certain feelings during the previous week: “I felt hopeful
about the future”, “Iwas happy”, “I enjoyed life”, “I felt that Iwas just as good as other
people”. They used this information to measure the state of happiness of individuals
throughout a period of time. According to their results there is happiness homophily
up to three degrees of separation between nodes. This study not only found evidence
of sentiment contagion through influence, it also suggests that it may cause sentiment
homophily at a cluster level.

Thelwall [22] searched for homophily in social network sites using data extracted
fromMySpace, concluding that there was a highly significant evidence of homophily
for several characteristics such as ethnicity, age, religion, marital status. Then, he
conducted another study on emotion homophily [23], based on the same type of
data. Using an initial version of SentiStrength [24] for sentiment classification, two
different methods were tested to seek emotion homphily between pairs of friends: a
directmethod and an indirectmethod. The directmethod compares only the sentiment
of the conversational comments between each pair of friends. The indirect method
compares the average emotion classification of comments directed to each node,
independently, in each pair of friends. Weak but statistically significant levels of
homophily were found with both methods. However, the direct method can only
give insight of the average homophily at a maximum distance of 1, while the indirect
method covers a maximum distance of 3.

Gruzd et al. [11] followed the study of Fowler and Christakis with web-based
social network data, focusing on the potential propagation factors for sentiment con-
tagious instead of searching for evidence of sentiment homophily. They performed a
topic-oriented data extraction from Twitter in order to minimize possible bias caused
by the occurrence of multiple events that generate multiple unrelated discussions,
and they found on the 2010 Winter Olympics a well covered and very popular event
on Twitter, from which they got strong emotional content. Using SentiStrength for
tweets’ sentiment classification, they found that a tweet is more likely to be retweeted
through a network of follow relations if its tone and content are both positive. Fan
et al. [9] decomposed sentiment into four emotions: angry, joyful, sad and disgusting.
They used a bayesian classifier to infer these emotions based on emoticon occurrence
in interactions extracted fromWeibo. Considering pairs of direct friends in a follow-
relation network, they only found evidence of emotion homophily regarding anger
and joy, observing that anger was the most influential emotion and the chance of con-
tagion was higher in stronger ties. Using a follow-relation network extracted from
Twitter, Bollen et al. [5] also found sentiment homophily but regarding sentiment
polarity, which they called subjective well-being assortativity. They observed that
pairs of friends connected by strong ties are more assortative, however they did not

1Medical study about cardiovascular disease—https://www.framinghamheartstudy.org/.

https://www.framinghamheartstudy.org/
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identify whether this phenomenon was caused by selection or social influence. None
of these studies analyzed sentiment dynamics over time nor looked into an overall
sentiment at community level.

Following these findings, we propose to look for signs of sentiment homophily
at a cluster level and understand whether prevalent sentiment in social circles can be
used for estimating individuals’ sentiment.

3 Dataset Overview

To find social circles and analyze their behavior over time, a large amount of data
needs to be extracted during a period of several weeks.We extracted the dataset using
Twitter Public Streaming API,2 filtering the data according to a list of keywords
related to 2014 FIFA World Cup. Extraction started on March 13th of 2014 and it
ended on July 15th of 2014, covering the entire event that took place from June
12th to July 13th of 2014. It resulted in 166GB of compressed data containing a
collection of 339,702,345 tweets, having missed an estimated amount of at most
30 million tweets about the topic according to the limit messages received from
the API. Due to the large amount of countries participating in the World Cup, we
only considered a subset of the entire dataset for our analysis. This subset covers
the knock-out stage of the event, from June 27th until July 15th, with 97,403,564
tweets that represent 28.7% of the entire data. We did this to minimize the sparsity
of the information, since only 16, from the initial 32 participating countries, were
still in competition. English is the most spoken language in the subset, representing
45.8% of the tweets, followed by Spanish with 24.2%, and Portuguese with 10.2%.
Regarding the distribution of each type of tweets in the subset we found that 38.2%
are simple tweets, 55.3% are retweets, and 6.5% are replies. We also noticed that
64.7% of all tweets have at least one mention, which makes it the most frequent type
of strong relations in the dataset, followed by retweets and then replies. However,
the set of mentions contains the set of replies and also intersects the set of retweets.

4 Approach

Our approach is divided into four stages: User Clustering; Tweet Clustering; Senti-
ment Analysis; and Influence and Homophily Analysis in time series, as it is outlined
in Fig. 1. The first three stages integrate existing solutions for clustering and senti-
ment analysis with several scripts for data transformation. They were used to process
the extracted dataset into time-series of sentiment information about social circles.
With the preprocessed data obtained from these three stages, we propose a set of
metrics to evaluate the extent of sentiment homophily. Then, we propose a strategy

2https://stream.twitter.com/1.1/statuses/filter.json.

https://stream.twitter.com/1.1/statuses/filter.json
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Fig. 1 High-level view of the designed workflow

to ascertain a possible relation between influence and sentiment, which can eventu-
ally improve the sentiment classification of tweets in clusters that denote sentiment
homophily.

4.1 User Clustering

Before finding the social circles, we needed to find the social network that comprises
them.We decided to build the network’s graph considering only strong ties, which the
literature states to be found in retweets and mentions [6, 13, 20]. However, we chose
to use only replies because retweets and replies are mutually exclusive and replies
represent direct conversations, which may not be necessarily true with mentions. We
started by filtering all retweets and replies from the dataset, converting them from
JSON to the condensed format: “type tweetID userID receiverID timestamp”. To
analyze the clusters in different periods of time, the set of retweets and replies were
individually filtered and sorted by their timestamp values, for independent analysis.

Once we were dealing with networks with millions of nodes and edges, we chose
to use Webgraph3 [4] to build and analyze underlying graphs, and used Layered
Label Propagation (LLP) algorithm in LAW software library4 for clustering them.
Besides compressing the ASCIIGraph to the WebGraph’s format BVGraph, we had
to symmetrize it to an undirected and loop-less graph to be used by LLP algorithm,
to do user clustering. The symmetric graph was also used to calculate the connected
components of the network. LLP [3] is an iterative strategy that reorders the graph
such that nodes with the same label are close to one another. This node reordering
is useful for graph compression, however, for our purposes we only require the
node labeling assignment produced by the label propagation algorithm that returns a
clustering configuration of the graph. The clustering result is mappable with a sorted
list of user IDs, and all these steps are outlined in Fig. 2.

3http://webgraph.di.unimi.it/.
4http://law.di.unimi.it/software.php.

http://webgraph.di.unimi.it/
http://law.di.unimi.it/software.php
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Fig. 2 User clustering process

4.2 Tweet Clustering

Our strategy to classify the sentiment of a cluster was getting the tweets that the users
in that cluster tweeted during the lifetime of the cluster, and then classifying each one
independently to sum up an overall result. For that we clustered the tweets according
to the previously obtained clusters of users, i.e., we extracted from the dataset all
the tweets of each user in the cluster, created in the same period of time used to
cluster the users. Then we converted these tweets to the shorter format: “userID
tweetID language epochTimestamp hashtagCounter URLCounter mentionCounter
tweetText”. All the clusters with only one or two tweets were removed. Each cluster
of tweets was filtered and divided by its prevalent language, in order to perform the
sentiment classification without mixed languages (Fig. 3).

Fig. 3 Tweet clustering process
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4.3 Sentiment Analysis

We chose the lexicon-based SentiStrength tool [24] to perform automatic sentiment
classification of the tweets, because (1) it does not require training datawhenworking
in unsupervisedmode; (2) it has good performance and it is able to process more than
16,000 tweets/s in standard machines; (3) and has good results on Twitter datasets
[11, 24]. Giving a text file as input, SentiStrength outputs another file with each
line of text of the input file annotated with two sentiment values: a positive integer
s+ ∈ {1, . . . , 5} and a negative integer s− ∈ {−5, . . . ,−1}. The higher the absolute
value, the higher the polarity strength of that value.

To classify the tweets in each cluster of tweets we filtered only the tweet text. To
avoid words out of context that could be matched by SentiStrength, we removed all
the mentions, retweet indicatives and URLs occurrences in the text. After running
SentiStrength over the clusters of tweets we got, for each cluster, a matching file with
the classified sentiment annotated for each tweet.

4.4 Influence and Sentiment Homophily Analysis over Time

The user clustering, tweet clustering and sentiment analysis stages were scripted to
extract the information about the clusters in the network and their sentiment, during
desired time intervals. For our analysis we performed a round-based clustering for
each round of the knock-out stage subset, which includes the round of 16, quarter-
finals, semi-finals and final stage of the World Cup.

Since we were seeking an overall sentiment, we chose to condensate the two
sentiment values in one unique value, calculating the Absolute Sentiment value,

|s| = s+ + s−,∈ {−4, . . . , 0, . . . , 4} (1)

This way, a tweet is positive with a strength between 1 and 4, neutral when 0,
or negative with a strength between −1 and −4. This approach promotes clearly
polarized sentiment results and penalizes balanced strength results. Thus, the results
(5,−5), (4,−4), (3,−3), (2,−2), which we consider ambiguous results, have the
same absolute sentiment of 0 as the SentiStrength neutral result (1,−1).

We focused on polarity changes over time and we calculated the distribution of
the absolute sentiment values per hour, in each cluster, by counting the number of
tweets for each absolute sentiment result. By analyzing these distributions over time
we were able to observe sentiment dynamics and detect sentiment homophily, when
existing.

To systematically find periods of polarity homophily, assuming that sentiment
homophily is found locally in time, we defined a time window t , a minimum number
of tweets m needed to consider a sentiment prevalence in t , and minimum rate of
polarity prevalence p in t , as metric for sentiment homogeneity. LetΔt (x1, x2) be the
time interval between two tweets, and pol(x1, . . . , xn) be the rate of the prevalent
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polarity in a sequence of tweets, there is sentiment homophily for a sequence of
tweets x1, x2, . . . , xn when,

n ≥ m ∧ pol(x1, . . . , xn) ≥ p ∧ ∀{xi , xi+1, . . . , xi+m} ∈ {x1, x2, . . . , xn}, Δt (xi , xi+m) ≤ t.
(2)

However, finding time intervals that satisfy this metric does not show if there is an
increased chance of any user in that cluster of sharing the same befitting sentiment
with the overall sentiment that surrounds him, i.e., being influenced by his peers’
mood.Our approach to evaluatewhethermoments of sentiment homophily are caused
by influence is to look for ambiguous tweets in moments of prevalent polarized
sentiment in the cluster, to whichwe assign that same prevalent polarization, and then
we compare this updated sentiment classification with human coders classifications.

Lets assume the pairs (1,−1), (2,−2), (3,−3), (4,−4), (5,−5) as ambiguous
results in polarized clusters. The reason for this assumption regarding (2,−2),
(3,−3), (4,−4), (5,−5) is that they reveal sentiment strength but not a decided
polarization, even in a polarized environment. We also include (1,−1) because Sen-
tiStrength outputs this value both for neutral sentences and for sentences that do not
match any word in the lexicon, which gives a dubious meaning to this value. This
way, we trust more in polarized classifications.

After identifying ambiguous results, we search for an ambiguity a that has a
number of surrounding tweets equal or greater than m, with a prevalence of a certain
polarity equal or greater than p during a period of time t that includes a. For each
ambiguity a found in a context with these characteristics, we set its polarity to be
the same as the prevalent polarity of the tweets surrounding it. We propose two
algorithms to do this sentiment extrapolation, that only differ in the position that
the ambiguity occupies in the context configuration. The first algorithm searches for
ambiguities that have a central position in the polarized context, being fixed at the
center of the time window. For a set of ambiguities A found in a sequence of tweets
T = {x1, . . . , xn}, when xa ∈ A ∧ xa ∈ T , and

∃xb, xe ∈ T, (b ≤ a < e ∨ b < a ≤ e) ∧ Δt (xb, xa) ≤ t/2∧
Δt (xa, xe) ≤ t/2 ∧ e − b ≥ m ∧ pol(xb, xe) ≥ p,

(3)

then the sentiment polarity of xa is relabeled with the prevalent sentiment polarity in
xb, . . . , xe.

The second algorithm considers any ambiguity that belongs to a sliding time
window t that fulfills those restrictions, independently of its position towards the
context. For a set of ambiguities A found in a sequence of tweets T = {x1, . . . , xn},
when xa ∈ A ∧ xa ∈ T , and

∃xb, xe ∈ T, (b ≤ a < e ∨ b < a ≤ e) ∧ Δt (xb, xe) ≤ t ∧ e − b ≥ m ∧ pol(xb, xe) ≥ p,

(4)
then the sentiment polarity of xa is relabeled with the prevalent sentiment polarity in
xb, . . . , xe.
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Fig. 4 Time-line of tweets’ frequency of absolute sentiment for each accumulation of 3h. Clus-
ter “413547” from the Spanish-speaking set of reply-based clusters over the quarter-finals stage,
cluster “1000883” from the English-speaking set of reply-based clusters over the semi-finals, and
cluster “2049176” from the Spanish-speaking set of retweet-based clusters over the final stage

5 Results and Discussion

We used the modularity coefficient Q, that measures the division of the nodes in a
graph into different clusters and the strength of their connections [17], to evaluate
the quality of the clusters obtained with LLP algorithm. For clusters obtained from
retweet-relation graphs we got an average of Q = 0.620, while for reply-relation
graphs this value increased for Q = 0.800. This denotes that reply-relations are
more restrict than retweets and generate smaller but denser clusters. The size distrib-
ution of all sets of clusters followed a power-law, regardless the round, language, or
type of relation of the graphs. Considering hypothesis H1 and H2 we can observe in
Fig. 4 that sentiment is highly dynamic, especially for reply-based clusters.With peri-
ods of sentiment neutrality interleaved with periods of sentiment polarity, there are
moments in which a certain polarity prevails, where we can find periods of local sen-
timent homophily. Even though these moments appear to be quite ephemeral. The
majority of clusters have sentiment peaks during their lifetime, which represents
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85.5% of the clusters obtained from retweet-relation graphs and 95.2% of the clus-
ters obtained from reply-relation graphs, confirming H1. Clusters that showed total
neutral sentiment were mainly small size clusters. We detected that chains of polar-
ized retweets generate moments of sentiment homogeneity (H2), as well as some
topic-related conversations, which are respectively more frequent (but not exclu-
sively) on retweet-based clusters, and reply-based clusters. If we assume that, when
some user retweets a certain status, there is a chance of that user being also sharing
the inherent sentiment of that status’message, thenwemay say that there is sentiment
influence on cascades of retweets.

Regarding H3, we gathered 24 human-coders, in which 23 of them are Portuguese
native-speakers and the remaining one is a Spanish native-speaker. All of them are
able to read and interpret English, and 18 are also able to read and interpret Spanish.
We shuffled them into 8 groups of 3, and each group evaluated two sets of 100
ambiguous tweets. This way, each ambiguitywas classified by three different human-
coders. The testing samples were randomly collected from the set of ambiguous
tweets found with the sliding window algorithm, using the fixed parameters t = 6h,
m = 10, and p = 0.7. These samples sum a total of 1,600 ambiguous tweets, divided
into 800 for English, 600 for Spanish, and 200 for Portuguese. Half of the sets of
each language was extracted from retweet-based clusters, and the other half from
reply-based clusters. Each person was asked to classify the sentiment expressed in
the tweet message, as positive, neutral, or negative. We chose to only ask for the
polarity and not the sentiment strength to simplify the classification process. We
included the neutral option assuming that there are indeed some tweets that do not
express any kind of polarization. The results in Table1 suggest a tendency for the real
sentiment of ambiguous tweets to match the overall sentiment of their clusters, over
having a neutral or mismatching sentiment polarity, and this value is clearly higher
than it would be assigned by chance. However, this matching rate is not sufficient
to claim that when there is a period of sentiment homophily there is a strong chance
of a user in that cluster sharing a tweet with an equivalent polarity. We evaluated
the reliability of the human coder classifications in terms of agreement using the
Krippendorff’s alpha-coefficient [14], which varied between 0.24703 and 0.53167,
i.e., they are statistically reliable but with a certain level of disagreement, unveiling
the subjective nature of this task.
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6 Conclusion and Future Work

With this work we observed that sentiment reveals a highly dynamic behavior at
cluster level, having ephemeral spikes of polarity usually lasting for a few hours.
We were able to locally find moments of sentiment homogeneity during those spikes
by setting a time window t , a minimum number of tweets m needed to consider a
sentiment prevalence in t , and minimum rate of polarity prevalence p in t . Using
a sample with 97,403,564 tweets where 14,075,547 different users participate in
retweet/reply relations, we found similar results for clusters of different languages
(English, Spanish, Portuguese) during different periods of time. For understanding
if an existing overall sentiment in a cluster may influence the sentiment of its indi-
viduals, we relabeled the sentiment of ambiguous classifications surrounded by a
context of sentiment homophily with the prevalent sentiment of that cluster during t
and we evaluated this extrapolation with human coders. The matching rate between
the human-coders classification and the clusters’ sentiment polarity extrapolation
always shows higher and more stable expressiveness over mismatching and neutral
rates. However, with the best matching result around 60%, we can only say we found
a weak but significant tendency of a user sharing a befitting sentiment in a cluster
during a period of sentiment homogeneity.

Given the level of disagreement between human coders it would be desirable to
use a higher odd number of coders for each evaluation set. In the future it would be
interesting to separate neutral sentiment classifications from undecidable sentiment
classifications, which have the same value (1,−1) when classified by SentiStrength,
and see what would happen to the rate of neutral classifications among the human
coder classifications. It could also be interesting testing the repeatability of the results
when exploring different techniques for building and clustering the network’s graph,
such as using ego-networks and local clustering methods, respectively.
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Comparative Network Analysis
Using KronFit

Gupta Sukrit, Puzis Rami and Kilimnik Konstantin

Abstract Comparative network analysis is an emerging line of research that
provides insights into the structure and dynamics of networks by finding similarities
and discrepancies in their topologies. Unfortunately, comparing networks directly is
not feasible on large scales. Existing works resort to representing networks with
vectors of features extracted from their topologies and employ various distance
metrics to compare between these feature vectors. In this paper, instead of relying on
feature vectors to represent the studied networks, we suggest fitting a network model
(such as Kronecker Graph) to encode the network structure. We present the directed
fitting-distance measure, where the distance from a network A to another network B
is captured by the quality of B’s fit to the model derived from A. Evaluation on five
classes of real networks shows that KronFit based distances perform surprisingly
well.

Keywords Complex networks · Comparative analysis · Generative models ·
Distance metrics

1 Introduction

Comparative network analysis and network classification on the basis of structural
similarity are at a nascent stage holding great potential. The topology of a network
often encompasses important information on the functionality and dynamics of the
system it represents. As case in point, structural similarity of road networks and
fungal networks are the result of low cost and robustness being the main driving
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forces in the network development [1]. Evaluation of network similarity is important
in diverse research fields, particularly in computational biology, where it reveals
previously unknown interactions and biological function of protein complexes.

So far network similarity does not have a concrete, rigorous definition. Therefore,
researchers employ vectors of features extracted from the networks at various scales
to compare networks. Existing features range from microscopic properties that
describe interactions between individual nodes to macroscopic features that describe
the network as a whole, e.g. average path length, degree distribution exponent, etc.
Lately, mesoscopic features such as network motifs [2], graphlets [3], and back-
bones [4] have been utilized.

An important limitation of comparing networks based on feature vectors is that no
single set of features can be claimed universal. Some network properties are good for
comparingbetweenprotein interaction networks, otherworkwell for social networks.
In addition, feature extraction is computationally expensive in large networks [5].
This makes use of approaches that do not involve feature vectors a lucrative research
problem. In this paper, we take a direction orthogonal to the conventional one and
represent a network by its model rather than a set of features.

There are several statistical models that can capture the topology of a given net-
work by fitting a small set of parameters [6–9]. The result of such fitting can be
regarded as a compressed (imperfect) representation of the original network i.e.
features of the network topology are recapitulated by a small number of metrics.
Similar networks should have similar models. We explore this claim using series
of distance metrics which are based on Kronecker Graphs model fitting algorithm
(KronFit) [9]. We also take into account distance metrics derived from network
features and compare them with KronFit based distance metrics in performing unsu-
pervised clustering. We analyze the quality of clusters produced using each of these
distance metrics, by evaluating against a number of cluster quality metrics. We show
that log-likelihood (LL) of one network being generated by a Kronecker Graph
model fitted to another network performs surprisingly well as a measure of similarity
between networks.

The rest of this paper is structured as follows: We recapitulate the Kronecker
Graphs generative model in Sect. 2. We proceed and develop series of network
similarity estimators based on KronFit algorithm in Sect. 3, followed by description
of baseline network distances in Sect. 4. In Sect. 5, we show that augmented network
similarity estimators derived from KronFit perform surprisingly well based on the
results of experiments performed with 5 classes of real networks. Sect. 6 discusses
relatedworks.Our conclusions on generativemodels as a tool in comparative analysis
of networks are summarized in Sect. 7.

2 Background on KronFit

Let G = (V ,E) denote a network where V = {1, . . . , n} is a set of n vertices and
E ⊆ V 2 is a set ofm directed unweighted edges.We represent all undirected networks
using the directed edges semantic ((u, v) ∈ E ⇔ (v, u) ∈ E). Although, we assume
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unweighted networks, the proposed approach can easily be extended to weighted
networks as well. Let A represent the n × n adjacency matrix of G such that for any
u, v ∈ V , Auv = 1 if (u, v) ∈ E and Auv = 0, otherwise.

LetMn×n be amatrix. LetM[k] be the kth Kronecker product of the matrix, then its
Kronecker square [10] is a matrix M[2] of dimensions n2 × n2. The items of M[2] are

M[2]
ij = Mdiv(i,n),div(j,n) · Mmod(i,n),mod(j,n)

where div(i, n) is the integer quotient of i divided by n andmod(i, n) is the remainder.
Leskovec et al. [9] have suggested using I2×2 initiator matrices, where Iij ∈ (0, 1),
raised to a Kronecker power of k as the basic building block in generation of large
scale probabilistic adjacency matrices P = I [k]. The dimension of all generated
probabilistic adjacency matrices P is thus 2k × 2k where k is some integer. Every
item Pij is the probability of having an edge between the vertices i and j in the
generated Kronecker networks. The log-likelihood of a given adjacency matrix A to
be generated by drawing each edge (i, j) with the probability Pij is:

LL =
∑

i∈V

∑

j∈V

log
(

P
(Aij)

ij

(
1 − Pij

)(1−Aij)
)

(1)

TheKronFit algorithm, suggested by the authors, finds the optimal initiatormatrix
such that LL is maximized. The authors observed that the 2×2 initiator matrices are
sufficient for a good match and choosing larger initiator matrices does not improve
the results significantly.

Leskovec et al. also suggest a method to reduce the complexity of LL calculation
toO(m) by first computing the probability of a network with 2k vertices and no edges
being generated from P. However, the number of vertices in real networks is not a
power of two. Therefore, the network G is padded with 2k −n disconnected vertices.
In the following discussions, we will assume a padded adjacency matrix Â whose
dimensions are 2k × 2k where k = �log2 n�. Â is constructed from A by padding
2k − n rows and 2k − n columns with zeros. Â can be interpreted as an adjacency
matrix of a network that is similar to G but has additional 2k − n isolated vertices,
which we refer to as synthetic vertices in following discussions.

3 KronFit Network Distances

Model distance (MD). An initiator matrix I2×2 =
[

a b
c d

]

contains four values that

lie in the range of [0, 1] and are considered equally important for fitting a correct
model. Lescovec et al. [9] proposed to compare networks by comparing their initiator
matrices. We use euclidean distance (ED) to perform such kind of comparison. An
ED heatmap on 500 networks of five different types1 is presented in Fig. 1a.

1Details on evaluated data set are presented in Sect. 5.1.
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Fig. 1 Network similaritymetrics. a MD. b FD. c SFD. d NFD. eDensity. f Clust.Coef. gDiameter.
h Degree distr.

Fitting Distance (FD). Given a networkG, an initiator matrix I found by the KronFit
algorithm maximizes the log-likelihood of G being generated using I . The likeli-
hood of similar networks being generated by the same model is maximized as well.
Structurally dissimilar networks should, therefore, have lower likelihood of being
generated by the model. In the rest of this paper we denote the initiator matrix fit to
a network G as IG. We will refer to the network G as prototype. We denote by LLGS

the log-likelihood of a subject network S being generated from IG.
These LLGS values can be used as inverse distance measure between the networks.

LLGS values are negative numbers ranging from−2.6E + 08 to−376 in current study.
The value LLGS = −2.6E + 08 was obtained for a prototype being a community
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in the Live Journal social network tested against one of the Autonomous Systems
topologies. In the rest of this paper, we denote the negation of LLGS as the fit-distance
(FD) measure between networks.

LL computation time is linear at the number of edges. Thus the time complexity of
computing the FDmatrix isO(k2m̂)where k is the number of networks in the data set
and m̂ is the average number of edges. In contrast, MD is easier to compute because
for each pair of networks it requires calculating the euclidean distance between the
respective initiator matrices, an operation which can be regarded as constant time.

See Fig. 1b for a heatmap of FD. The columns in this figure correspond to proto-
type networks and rows correspond to subject networks. We can clearly notice the
large horizontal strips in this heatmap. In contrast to MD which is a symmetric
measure, LLGS can differ significantly from LLSG. There are several factors that
affect this asymmetry. For example, KronFit does not work equally well for all kinds
of networks. We notice that types of prototype networks with high average FD (the
yellow horizontal stripes in Fig. 1b) are better differentiated from other networks
using this measure. Network size is another significant factor that affects the LL
calculation. The more nodes a network S has the lower is its LLGS value w.r.t. any
prototype G.
Scaled Fitting Distance (SFD). The log likelihood metric for a network crudely
measures how well the synthetic networks generated from the initiator matrix will
match the original network. The larger the networks we strive to generate, the more
variations can be there and thus, the likelihood of generating a particular subject
network of the same size drops. Figure2 shows that LL scales as the number of
elements in the padded adjacency matrix Â2k×2k

.
Next, we adjust the −LLGS values by the factor of 1/22k . The resulting distance

measure is presented in Fig. 1c. It is clear that the adjusted LL measure is more
informative but the asymmetry is still there. The fitting distance obtained from SLL
is referred to as Scaled Fitting Distance (SFD), in the rest of the paper.

y = -0.0097x2 - 97.134x + 31223
R² = 0.9997
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Fig. 2 Log-likelihood (averaged over all prototype networks and subject networks having the same
k = �log2 n�) as a function of the dimension of the padded adjacency matrix (2k)
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Normalized Fitting Distance (NFD). Equation1 inadvertently incorporates an extra
factor that affects the magnitude of log likelihood. While calculating log likelihood,
they also consider the probability of edges formed by vertices that weren’t part of
the initial network. The largest deviations are found in networks whose size is just
above a power of two (n = 2k + i where i is some small integer). In such networks,
the number of synthetically added vertices (zero padding discussed in Sect. 2) grows
to the scale of original network size and notably affects the log likelihood value. Kim
and Leskovec [11] propose a corrected log-likelihood LLNZ that disregards padded
nodes. In this paper we focus on KronFit and the original LL rather than LLNZ and
KronEM proposed in [11].

While comparing a subject network to the existing prototypes one would like
to find the closest prototypes. In this case, maintaining consistency among subject
networks is not required. We define a Normalized Fitting Distance (NFD) such that
the most similar network (self) is at distance zero and the farthest network is at
distance unity.

NLLGS = LLGS − maxG′ LLG′S

minG′ LLG′S − maxG′ LLG′S

Since all values are negative, NLLGS is a positive real number in range [0, 1]. The
distance metric obtained from NLL is termed as Normalized Fit-Distance (NFD).

4 Baseline Network Distances

We compare the KronFit-based network distances to four common baseline metrics:
Density, Clustering Coefficient, Diameter, and Degree distribution [12].
Density of a network is the fraction of existing edges out of possible edges in the
network. For undirected networks Density = 2m

n(n−1) where m is the number of edges
and n is the number of nodes. The Density network distance is simply the absolute
difference between the densities of two networks.
Clustering Coefficient (CC) of a node is the fraction of existing edges between
node’s neighbors out of all possible edges between them. CC of a node can be
regarded as the density of its ego network. AverageCC is a commonmacroscopic net-
work feature. Similar to Density, the CC network distance is the absolute difference
between the networks’ average CCs.
Diameter is the distance between the two farthest nodes in the network. We consider
the absolute difference between network diameters as theDiameter network distance.
Degree Distribution is one of the the most common microscopic properties that are
used to describe networks. In this paper, we consider an euclidean distance between
normalized degree distributions [3] as the eighth network distance measure.
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Table 1 Details of the evaluated networks (all values are averaged over 100 networks of each type)

Network
type

n m Avg. degree Avg. CC Diameter LLGG

AS 6,060 23,891 7.78 0.362 10 −188,666

Amazon 96 326 7.12 0.560 8.7 −1,422

DBLP 662 2,224 10.1 0.832 10 −13,406

LiveJournal 270 14,320 116.2 0.857 3.5 −38,279

Youtube 288 862 5.64 0.366 6.7 −5,098

5 Evaluation

5.1 Data and Procedure

We conducted experiments on 500 networks containing five different types of net-
works. 100 snapshots of the Autonomous Systems relationships between the years
1997 and 2000 were obtained from [13]. The rest of the networks were obtained
from the SNAP network collection [14] where we selected 100 largest network files
from each one of the following data sets: Amazon (AM), DBLP, LiveJournal (LJ),
and YouTube (YT). The evaluated data is briefly summarized in Table1.

First we have computed the degree distribution, diameter, average clustering coef-
ficient, and density for each network. We normalized the degrees of vertices to
fit the range (0, 1]. Then for every pair of consecutive deciles of the normalized
degrees (di, di+1), we calculated the fraction of vertices whose normalized degrees
are between di and di+1. Along with diameter, average clustering coefficient, and
density this results in 13 features that describe each network.

We proceed by calculating the initiator matrices for all 500 networks in the data

set. We set the initiator matrix, I [1] =
[
0.9 0.5
0.5 1

]

(these are the default values used

in Leskovec et al. [9] and these represent the general trend in fitted values for most
networks) and configure the KronFit algorithm with the following parameters: 50
iterations for gradient descent; learning rate equal to 105; minimal and maximal
gradient steps equal to 0.005 and 0.05 respectively; 100, 000 samples per gradient
estimation; and 10, 000 warm-up samples. The initiator matrices add four features
to the description of each network. Based on this data set we compute the distances
between each pair of network using the eight metrics defined in Sects. 3 and 4,
namely: Model Distance MD, Fitting Distance (FD), Scaled Fitting Distance (SFD),
NormalizedFittingDistance (NFD),Density, ClusteringCoefficient (CC),Diameter,
and Degree Distribution (Deg). In the next subsections we analyze the quality of the
distance metrics.
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Table 2 Comparison of quality of clusters obtained using different distance metrics using purity,
prediction strength (PS), adjusted Rand index (Rand), and Fowlkes-Mallows index (FM)

Distance Metric Purity PS Rand FM

MD 0.608 0.340 0.398 0.555

Density 0.502 0.268 0.192 0.426

Degree 0.592 0.360 0.348 0.486

CC 0.634 0.432 0.381 0.518

Diameter 0.516 0.288 0.215 0.412

FD 0.765 0.503 0.637 0.724

SFD 0.435 0.258 0.162 0.437

NFD 0.393 0.237 0.104 0.518

5.2 Cluster Analysis

The standard way of evaluating the quality of a distance metric is through application
of unsupervised clustering or supervised classification algorithms which require
distances between entities to be evaluated. Examples of such algorithms are
k-means [15] or Ward’s algorithm [16] for unsupervised or k-nearest neighbors [17]
for supervised methods. Here we focus on the clustering algorithms.

In order to measure the quality of a clustering algorithm with respect to a given
distance metric, a variety of measures can be used. Average inter-cluster distance
(ICDO), average intra-cluster distance (ICDI ), the Dunn index [18], Calinski and
Harabasz index [19, 20] are only a few examples of such measures. Some algorithms
directly optimize one of the cluster quality measures. For example, k-means mini-
mizes the sum of square distances between elements and centers of their clusters.
FD is clearly superior according to all these metrics as depicted in Table2.

Given a dissimilarity matrix the objective of a clustering algorithm is partitioning
the elements into a set of clusters such that every element is similar to other elements
within its cluster and not similar to elements of other clusters. Next, we evaluated
the distance metrics with all hierarchical clustering algorithms available in standard
distribution of the R programming language. The best overall results were obtained
with the Ward’s clustering algorithm which takes a square of the input dissimilari-
ties (distances). Thus, in the rest of this subsection we depict the results using this
algorithm.

Figure3 compares the cluster hierarchies based on the Model Distance (MD) and
the proposed Fit Distance (FD). The FD hierarchy is strict with a clear partition
into four clusters while the MD hierarchy is more detailed and results clusters of
uneven size when cut at any level. We cut all hierarchies to produce five clusters
due to the five network types in the data set. By color-coding the leaf nodes based
on the types of the respective networks we can visualize the purity of the produced
clusters. The networks in the MD hierarchy are mixed up while in the FD hierarchy
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Fig. 3 Ward hierarchical clustering based on a the Model Distance and b the Fit Distance

the clusters are much more pure with YouTube cluster being the easiest to identify
in both hierarchies.

In order to quantitatively evaluate the accuracy of the clustering, we calculate
cluster purity, prediction strength [21], adjusted Rand index [22], and Fowlkes-
Mallows index [23]. Purity evaluates the extent to which clusters are homogeneous.
Purity of a clustering C1, ...,C5 of the 500 networks is

Purity =
∑

j

max
i

nij

500

where nij is the number of networks of type i in a cluster j. Other measures also
evaluate the produced clustering versus a gold standard, which is derived from the
types of the networks as listed in Table1.

From Table2, we can clearly see that FD is superior to MD and all other distance
metrics. Purity of 0.76 means that only 24% of the networks were included as a
minority group in their cluster. Note that SFD andNFD are both extremely inefficient
performing worse than the baseline in most cases. Based on these results we can
conclude that FD is better suited for unsupervised clustering than other metrics and
that normalizing the log-likelihood to produce a goodfit distance should be performed
with a great care.
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Table 3 Average distances between networks and the inter-cluster/intra-cluster distance ratio for
then gold standard and the random reference

Distance
Metric

Gold Random

ICDO ICDI ICDO/ICDI ICDO ICDI ICDO/ICDI

MD 0.374 0.169 2.210 0.334 0.334 1.000

Density 0.339 0.154 2.200 0.303 0.303 1.000

Degree 0.822 0.408 2.010 0.740 0.741 0.999

CC 0.324 0.119 2.710 0.283 0.283 1.000

Diameter 5.594 3.737 1.500 5.230 5.230 1.000

FD 1,165,784 53,503 21.800 943,813 950,231 0.993

SFD 0.207 0.186 2.320 0.328 0.325 1.009

NFD 0.181 0.061 2.930 0.842 0.842 1.000

5.3 Separation of Network Types

In previous subsection we showed that fit-distance is a good distance (a.k.a. dis-
similarity) measure for unsupervised analysis of network collections. Unfortunately,
many clustering algorithms are sensitive to the distributions and scale of the distance
values. We, therefore, strive to evaluate the quality of the distance metrics directly,
without proxies such as classification or clustering algorithms.

In the following analysis we use the gold standard, data set partitioned by the
network types, for evaluation of the distance metric quality using standard cluster
quality metrics (ICDI , ICDO, Dunn Index, etc.). We use random partition as a refer-
ence point. An appropriate cluster quality metric should produce the same value for
the random partition regardless the scale of the distance metric used. This require-
ment is especially important in current study because the log-likelihood values differ
by several orders of magnitude from other distance metrics as presented in Table3.
Therefore we employ the intra-cluster/inter-cluster distance ratio (ICDO/ICDI ), as it
the most stable according to the random reference (see rightmost column in Table3).
This measure can be regarded as a normalized separation index since it is agnostic
to the scale of the evaluated distance metric.

High ICDO/ICDI value indicates good separation between the clusters. In our
case, ICDO/ICDI is the upper bound on the cluster quality that can be produced by
any clustering algorithm. For example, if the degree distribution distance is accurate,
then for this particular set of 500 networks the best partition can be at most twice as
good as the random partition.

For this purpose, inter-cluster distance and intra-cluster distance of clusters formed
by different distance metrics were calculated. A low value for ICDI implies that the
networks in the same cluster were very similar to each other, which is desirable.
Similarly, a higher ICDO implies that different clusters were far away from each other
and easily distinguishable. Note that different scales are introduced with clustering
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using different distance metrics and we divided ICDO and ICDI , to normalize the
scales. From Table3, it can be easily seen that FD performs better than all the other
distance metrics by a large factor. Comparing with the model distance, FD produces
clusters that are considerably more distinguishable.

No clustering algorithm can perform better than the gold standard. Thus, cluster
quality measure applied to the gold standard with respect to a distance metric results
in the highest quality that can be achieved.

6 Related Work

Przǔlj [3] uses 73 constraints in the form of graphlets to compare PPI networks with
their synthetically generated counterparts. The approach is especially appropriate for
partially known networks where global topology characteristics are biased but some
parts of the networks are well studied and contain reliable local information. This
approach also requires munificent computing resources.

In [24], the focus is on comparing mesoscopic properties of networks. Networks
are decomposed into communities of different sizes, starting with a single node
and a maximum of n nodes. They compare networks based on different parameters
calculated for different community sizes. In [25], networks were compared based on
ameasure called n-tangle density, which is basically the edge density in sub-graphs of
n nodes from the network. The n-tangle density is calculated for different values of n
and these densities are compared to evaluate network similarity. This method cannot
find node to node correspondence between similar networks, therefore, making it
difficult to pinpoint the source of anomaly (if any) in a network.

Aliakbary et al. [26] used several network features like average shortest path,
degree distribution, average density, average clustering, etc. to compare networks
for unsupervised machine learning task. They also compare the effectiveness of
their approach to Euclidean distance metric based on KronFit initiator matrix and
demonstrate its inferiority. It may be noted here that there are many different initiator
matrices that can encode the original network with the same likelihood. For example,

two initiator matrices

[
1 1
1 0

]

and

[
0 1
1 1

]

have non zero euclidean distance of
√
2,

while both encode isomorphic graphs yielded by Kronecker product of any degree.
As demonstrated in Sect. 5, the correct way of utilizing the full power of KronFit is
by calculating the likelihood of a network being generated from an initiator matrix
and not by comparing the initiator matrices directly.

7 Discussion and Future Work

Network comparison is an emerging research area with wide applications in social
and biological networks analysis. In this paper, we propose a fit-distance (FD) dis-
tance metric between a subject network and the model derived from a prototype
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network. We demonstrated FD with the Kronecker Graphs model and showed that
it is superior to direct comparison between the models using euclidean distance and
to the baseline network distance measures.

One of the interesting features of FD is that prototype networks that can easily
be distinguished from other types of networks using this measure, receive high FD
values in general (see the yellow stripes in Fig. 1b).Although, the differences between
subject networks are not comprehensible to the eye in this sub-figure, they are quite
significant as can bee seen from the normalized values in Fig. 1d. We attribute the
success of FD in clustering and its extremely high ICDO/ICDI value to this natural
weighting of “easy” and “hard” prototype networks.

The primary objective of this paper was to draw the attention of scholars to
the network comparison opportunities opened by some generative and descriptive
networkmodels. In the nearest future, more accurate fitting distancemeasures should
be developed based on new network models such as MAGFit [7] or KronEM [8].
With the advance of model-based network comparison methods, we expect to see
machine learning models that classify networks directly, without the need for feature
extraction.
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