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41. Models in Geosciences

Alisa Bokulich, Naomi Oreskes

The geosciences include a wide spectrum of dis-
ciplines ranging from paleontology to climate
science, and involve studies of a vast range of
spatial and temporal scales, from the deep-time
history of microbial life to the future of a sys-
tem no less immense and complex than the entire
Earth. Modeling is thus a central and indispens-
able tool across the geosciences. Here, we review
both the history and current state of model-based
inquiry in the geosciences. Research in these fields
makes use of a wide variety of models, such
as conceptual, physical, and numerical models,
and more specifically cellular automata, artificial
neural networks, agent-based models, coupled
models, and hierarchical models. We note the in-
creasing demands to incorporate biological and
social systems into geoscience modeling, chal-
lenging the traditional boundaries of these fields.
Understanding and articulating the many different
sources of scientific uncertainty – and finding tools
and methods to address them – has been at the
forefront of most research in geoscience modeling.
We discuss not only structural model uncertainties,
parameter uncertainties, and solution uncertain-
ties, but also the diverse sources of uncertainty
arising from the complex nature of geoscience
systems themselves. Without an examination of
the geosciences, our philosophies of science and
our understanding of the nature of model-based
science are incomplete.
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41.1 What Are Geosciences?

The geosciences (sometimes also referred to as the Earth
sciences) cover a very broad spectrum of disciplines
including geology, paleontology, hydrology (the distri-
bution and movement of water, on the surface and un-
derground), glaciology (the study of ice and glaciers),
climate science, oceanography, geophysics (the inter-
nal structure of the Earth, its gravitational and magnetic
fields, plate tectonics, and volcanology), and geomor-
phology (how surface landscapes change over time).
There is significant overlap between these different sub-

fields because the various subsystems of the Earth are
not isolated from one another and are often interact-
ing in complex ways. Usually, the geosciences are un-
derstood as ending where biological systems begin, but
given, for example, the great relevance of plants for
the hydrological cycle (e.g., ecohydrology) and erosion
phenomena (e.g., biogeomorphology), as well as the
great relevance of human activity in altering the climate,
landscapes, and oceans, this division is becoming in-
creasingly difficult to maintain [41.1].
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Although the geosciences have traditionally focused
on the Earth, the conceptual and disciplinary divides be-
tween studies of the Earth and studies of other planets
are also breaking down. For example, the wealth of new
information coming from the space program (e.g., the
Mars Rovers, HiRise images from the Mars Reconnais-
sance Orbiter, and images of various planets and moons
from the Cassini-Huygens spacecraft and the NewHori-
zons Pluto mission) has helped to generate the field
of planetary geomorphology in addition to terrestrial
(Earth) geomorphology. Planetary geomorphology in-
cludes the study of landscapes on not only planets, but
also on moons (such as Saturn’s moon Titan, which has
the largest dune field in our Solar System) and other
large celestial bodies (such as the Comet 67P which was
determined by the Rosetta-Philae lander module to have
water).

The phenomena that geoscientists investigate are
extremely complex and can span a vast range of spa-
tial and temporal scales. Hence, idealized models play
a central role in all of the geosciences. These models are
used for a variety of purposes, including both predic-
tion and explanation. They are used not only for basic
scientific research (theoretical tools for advancing in-
sight and understanding) but also for planning purposes,
policy, and hazard mitigation. Models are used to fore-

cast a wide range of phenomena of human interest, such
as earthquakes, volcanic eruptions, landslides, flooding,
the movement of groundwater and spread of contami-
nants, and coastal erosion.

The geosciences are one of the most rapidly grow-
ing areas of interest in scientific modeling. This is led,
in large part, by the tremendous amount of attention and
resources that have been invested recently in climate
modeling. Climate science is not unique, however, and
many of the methodological issues found there are in
fact widespread among the Earth sciences. Although,
traditionally, philosophers of science have largely ne-
glected the geosciences, leaving it a philosophical terra
incognita [41.2], it is increasingly being recognized that
our picture of the nature of science is inadequate if we
do not take this research in the geosciences into ac-
count.

A complete review of all the relevant work in the
diverse domains of the geosciences – and all the con-
ceptual and methodological issues in modeling that
arise within these different fields – is not possible in
a single chapter. We provide here an overview of philo-
sophical perspectives on this research that we hope will
encourage more scholars to explore these topics further.
The sections are organized primarily by the relevant
conceptual and methodological issues.

41.2 Conceptual Models in the Geosciences

Conceptual models are the first step one takes before
creating a more formal model (i. e., either a physi-
cal or numerical model). It is conceptualization of the
key processes operating in the system of interest and
the interactions between the components in the system.
A conceptual model can simply take a narrative form or
it can be an elaborate diagram. Typically, however, con-
ceptual models can yield only qualitative predictions.

Some of the earliest models in geomorphologywere
conceptual models. Two historically important exam-
ples of conceptual models are Grove Karl Gilbert’s
(1843–1918) balance of forces conceptual model and
William Morris Davis’s (1850–1934) cycle of erosion
conceptual model. In 1877, Gilbert introduced a con-
ceptual model of a stream that appealed to physical
concepts such as equilibrium, balance of forces, and
work to explain the tendency of a stream to produce
a uniform-grade bed. Gilbert describes his conceptual
model as follows [41.3, p. 112]:

“Let us suppose that a stream endowed with a con-
stant volume of water is at some point continuously
supplied with as great a load as it is capable of car-

rying. For so great a distance as its velocity remains
the same, it will neither corrade (downward) nor de-
posit, but will leave the grade of its bed unchanged.
But if in its progress it reaches a place where a less
declivity of bed gives a diminished velocity, its ca-
pacity for transportation will become less than the
load and part of the load will be deposited. Or if in
its progress it reaches a place where a greater decliv-
ity of bed gives an increased velocity, the capacity
for transportation will become greater than the load
and there will be corrasion of the bed. In this way
a stream which has a supply of débris equal to its
capacity, tends to build up the gentler slopes of its
bed and cut away the steeper. It tends to establish
a single, uniform grade.”

As Grant et al. note [41.4, p. 9]:

“Gilbert’s greatest and most enduring contribution
to conceptual models in geomorphology [. . . ] was
the application of basic principles of energy and
thermodynamics to the behavior of rivers. He did so
with clarity of expression and an absence of math-
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ematics that appeals directly to intuition, logic, and
analog reasoning.”

Note that Gilbert’s model provides the conceptual foun-
dation on which a numerical model, giving an equation
to describe the balance of these forces, could be con-
structed, though he himself does not take this further
step.

Another seminal conceptual model in the history
of geomorphology is Davis’s cycle of erosion [41.5].
Davis was a professor of geology at Harvard Univer-
sity; in an 1899 article entitled The geographical cycle,
he established a framework for thinking about modeling
in geomorphology [41.6, p. 481]:

“All the varied forms of the lands are dependent
upon – or, as the mathematician would say, are func-
tions of – three variable quantities, which may be
called structure, process, and time.”

The evolution of a landscape may be understood as a cy-
cle, which begins with a peneplain (a low relief plain)
near a base (e.g., sea) level, is followed by rapid up-
lift leading to a youthful stage of rugged topograph, in

which streams become established, and then a mature
stage of tectonic stability in which those streams widen
and gradually erode the landscape back down toward
the base level. Finally, there will be an old age stage,
involving low-relief landscapes with hills where moun-
tains used to be. This then becomes eroded back to the
peneplain stage until tectonic activity resumes and the
cycle begins again. He used this idea to explain, for ex-
ample, the features of the Appalachian mountains. It
was a qualitative and explanatory conceptual model: it
sought to explain and provide qualitative predictions for
various features of a landscape.

For Davis, the conceptual model was the end point
of his research; in recent years, most geoscientists have
sought to quantify these sorts of processes. Thus, con-
ceptual models can be seen as either the final product
(an end it itself), or as a preliminary step in the pro-
cess of creating a physical or mathematical model. In
the case of mathematical models, there are two lev-
els of modeling at which questions can be raised:
Is the fundamental conceptual model adequate? And
has that conceptual model been adequately represented
or captured by that particular choice of mathematical
equations?

41.3 Physical Models in the Geosciences

Until the mid-twentieth century, most conceptual mod-
els in the geosciences were realized as physical models.
Physical models, also sometimes referred to as hard-
ware or table top models, are a (usually, but not always)
scaled-down version of the physical system of inter-
est. In the geosciences, the systems of interest are
typically large-scale, complex, open systems that are
not amenable to experimental manipulation. A physi-
cal model allows a geoscientist to bring a version of
the landscape into the laboratory, manipulate various
variables in a controlled way, and explore hypothetical
scenarios.

One of the central questions for geologists in the
late nineteenth century was the origin of mountains
(a subject known as orogenesis, from the Greek word
oros meaning mountain). A popular orogenic theory
in the nineteenth century was that mountains resulted
from an overall contraction of the Earth, which was
thought to be a consequence of the nebular hypothesis,
first proposed by Immanuel Kant [41.7] and Pièrre-
Simone Laplace [41.8]. To explore this hypothesis,
the Swiss geologist Alphonse Favre (1815–1890) built
a physical model involving layers of clay on a piece
of stretched rubber, which was then released and the
resulting structures were observed. The ability of this

model to successfully reproduce some of the features
of mountains led Favre to conclude that it supported the
plausibility of the hypothesis [41.9, p. 96]. It was, what
we would today call, a “how-possibly model explana-
tion” (see Chap. 4, Sect. 4.4).

One of the great challenges for physical model-
ing in the geosciences, however, is that the relevant
pressures, temperatures, durations, etc., of geological
processes are largely beyond our reach. This limita-
tion was recognized in the nineteenth century by the
French geologist and director of the École Nationale
des Mines, Auguste Daubrée (1814–1896), who notes
(Daubrée [41.10, p. 5], [41.11] quoted inOreskes [41.9,
p. 99]),

“[T]he equipment and forces that we can set to work
are always circumscribed, and they can only imitate
geological phenomena at the scale [. . . ] of our own
actions. ”

In order to make further advances in physical model-
ing in the geosciences, it was realized that the relevant
forces and processes would have to be appropriately
scaled in the model. The quantitative mathematical the-
ory by which such scaling could be achieved, however,
would not be developed until the work of M. King Hub-

http://dx.doi.org/10.1007/978-3-319-30526-4_4
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bert (1903–1989), an American oil company geologist,
in the late 1930s and 1940s.

Hubbert’s work provided [41.9, p. 110]:

“the first fully quantitative treatment of the question
how to choose the physical properties of materials
in a model to account for the much smaller scale
and time frame as compared with nature.”

Hubbert’s 1945 paper begins by noting the paradox
that has long perplexed the geologic sciences: How
could an Earth whose surface is composed of hard,
rigid rock have undergone repeated deformations as if
it were composed of a plastic material, as field obser-
vations of mountains and strata suggest? He notes that
this paradox is a result of failing to adequately consider
the concept of physical similarity, which like geometric
similarity in a map, requires that all the relevant phys-
ical quantities (not just lengths, but densities, forces,
stresses, strengths, viscosities, etc.) bear constant ratios
to one another [41.12, p. 1638]. He notes that when the
strengths are appropriately scaled, the resulting strength
of the rock on a human scale is “comparable with that
of very soft mud or pancake batter” [41.12, p. 1651].
So, for example, since the elastic properties of solids
depend on the strain rate, scale models that operate or-
ders of magnitude faster than terrestrial processes need
to use materials that are orders of magnitude weaker
than terrestrial rocks [41.9, p. 113]. Hubbert’s work on
scaling not only helped explain the puzzling field ob-
servations, but also provided the key to more adequate
physical modeling.

Physical models can be classified by how they do or
do not scale down. At one extreme there are life size (1 W
1) replica models of the system of interest. Sometimes
such 1 W 1 physical models are a localized study of a par-
ticular process, such as Bagnold’s [41.13] use of a wind
tunnel to study how grains of sand saltate form ripples.
However, a full-scale physical model can also be an en-
tire complex system, such as the Outdoor Streamlab at
the University of Minnesota. In this full-scale model
of a river segment, water and sediment flow down an
artificial river system where the sediment is collected,
measured, and recirculated to a sediment feeder. Al-
though such replica models are able to avoid some of
the problems arising from scaling issues (discussed be-
low), they still involve simplifications and laboratory
effects that can affect the reliability of the conclusions
drawn for their real-world counterparts. More generally,
however, many of the systems that geoscientists are in-
terested in (e.g., mountain ranges and coastlines) are
simply too large to be recreated on a 1 W 1 scale; hence,
this type of physical model is typically not feasible.

Scale models are physical models that have been
shrunk down according to some scale ratio (scale mod-

els can in principle be enlarged versions of their real-
world counterparts, though this is not typical in the
geosciences). For example, a 500m-wide real river may
be represented by a 5m-wide scaled physical model,
in which case the scale is 1 W 100. As Hubbert real-
ized, simply shrinking a system down by some factor,
however, will rarely preserve the necessary dynamical
relations [41.14, p. 4]:

“A true scaled model requires perfect geometric,
kinematic, and dynamic similitude, something that
cannot be achieved when using the same fluid as in
the real world system due to equivalent gravitational
and fluid motion forces.”

Further complicating accurate scale modeling is the fact
that different hydrodynamic processes are occurring at
different spatial scales, and different physical effects
can become dominant at those different scales too. For
example, when scaling down one might substitute a fine
sand for a pebbly gravel, but then cohesive forces can
become dominant in the model when they are negligi-
ble in the target. These are examples of what are known
as scale effects, when the force ratios are incompara-
ble between the model and target. In such cases, one
might need to substitute a liquid with a different vis-
cosity or a different bed material into the model to try
to overcome these scaling limitations – an example of
how modelers sometimes deliberately get things more
wrong in the model in order to get the conclusions to
come out more right.

More often, the physical models are distorted scale
models, where not all factors are scaled by the same ra-
tio. The San Francisco Bay model, which is a table-top
working hydraulic model of the San Francisco bay and
Sacramento–San Joaquin River Delta system built by
the US Army Corps of engineers, is an example of a ge-
ometrically distorted scale model, with the horizontal
scale ratio being 1 W 1000, while the vertical scale ratio
is only 1 W 100, and the time scale being 15min to one
day (for a philosophical discussion of this model see
Weisberg [41.15]). Relaxing scale requirements further
get what are sometimes referred to as analog physical
models, where one reproduces certain features of a tar-
get system without satisfying the scale requirements.
These are typically seen as physical systems to be in-
vestigated in their own right for what they can teach us
about certain physical processes, rather than miniature
versions of some specific real system [41.14, p. 5].

Physical models have their own strengths and weak-
nesses. The strengths, as mentioned, involve bringing
a version of the system of interest into the laboratory
as a closed system that is amenable to experimental
manipulation and control. One does not need to have
a mathematical representation of the system in order
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to explore its behavior. The weaknesses, or limita-
tions, of physical models predominantly fall into two
classes: laboratory effects and scale effects. Laboratory
effects are those that occur in the laboratory system
but not in the real-world counterpart. These can be re-
lated to model boundary conditions (sometimes literally
the wall or edge of the table) where the behavior can
drastically change, unrealistic forcing conditions, or the
omission of causally relevant factors in the model. Scale
effects refer to problems in maintaining the correct re-

lations between variables when they are scaled down.
This can lead to certain forces (e.g., cohesive forces)
becoming dominant in the model that are not dominant
in nature. More generally, these laboratory and scale ef-
fects are yet another example of the problem of external
validity: Does the model accurately reflect the behavior
of the system in the real world? This problem is per-
vasive among the sciences, and physical models are no
more immune to it, despite dealing with the same phys-
ical stuff as their target.

41.4 Numerical Models in the Geosciences

Numerical models are mathematical models that rep-
resent natural systems and their interactions by means
of a system of equations. These equations are typically
so complex that they cannot be solved analytically, and
so they have to be solved by numerical methods (such
as finite difference or finite volume methods) that pro-
vide an approximate solution, or the equations need to
be substituted with alternative algorithms, such as cel-
lular automaton models. Numerical models are often
implemented on a computer in a simulation that shows
how the model will behave over an extended period of
time, with some sort of graphical output to visualize
that behavior (for a review of some of the philosophical
issues in computer simulations see Winsberg [41.16]).
This has enabled geoscientists to do something that they
were generally unable (and often unwilling) to do in the
past: to expand the goals of the geosciences to include
forecasting and prediction as well as explanation.

In the context of the geosciences, there are many
different kinds of numerical models, which can be cate-
gorized in different ways. The British geomorphologist
Kirkby et al. [41.17], for example, distinguish the fol-
lowing four broad types of numerical models:

1. Black-box models
2. Process models
3. Mass–energy balance models
4. Stochastic models.

As Kirkby et al. explain, black-box models are models
where “the system is treated as a single unit without any
attempt to unravel its internal structure” [41.17, p. 16].
Tucker [41.18] gives as an example of a black-box
model what is known as Horton’s laws of river net-
work topology. The law predicts the average number of
branching stream segments of a certain order (roughly
size or width). It was discovered by Robert Horton in
1945 from purely empirical analyses of stream basins,
but gives no insight into why this so-called law would

hold (it is not a law in the traditional sense, in that it
does not hold universally). Black-box models are phe-
nomenological models that involve a brute fitting to the
empirical data. Although such models give no insight
or understanding of the internal processes, they can be
useful for making predictions.

At the other extreme of numerical modeling are
process models, which try to describe the internal mech-
anisms giving rise to the empirical relations. Tucker
explains, while [41.18, p. 687]:

“a black-box model of soil erosion would be based
on regression equations obtained directly from data
[. . . ] a process model would attempt to represent
the mechanics of overland flow and particle detach-
ment.”

In between these two extremes are what Kirkby
et al. [41.17] have called grey-box models, where some
mechanisms may be known and included, but the rest is
filled by empirical relations.

An important class of process models are land-
scape evolution models (LEMs). LEMs are numerical
models in which the evolution of the landscape is re-
lated to the key underlying physical processes. These
include, for example, the physical and chemical pro-
cesses of rock weathering leading to rock disintegration
and regolith production (regolith is a generic term re-
ferring to loose rock material, such as dust, soil, and
broken rock, that covers solid rock), gravity-driven
mass movement/landsliding, and water flow/run off
processes (e.g., represented by the St. Venant shallow-
water equations, which are a vertically integrated form
of the Navier–Stokes equations). Each of these pro-
cesses is represented mathematically by a geomorphic
transport function (GTF), which get linked together
to form the LEM. LEMs are often constructed as
a software framework within which a variety of differ-
ent component processes (represented by a particular
choice of GTFs or equations), arranged in a partic-
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ular configuration, can be implemented. Examples of
such LEMs include the channel-hillslope integrated
landscape development (CHILD) model, developed by
Tucker et al. [41.19], and the cellular automaton evo-
lutionary slope and river (CAESAR) model developed
by Coulthard et al. [41.20]. These LEMs can simulate
the evolution of landscapes on scales ranging from 1 to
500 km2 and temporal scales ranging from days to mil-
lennia.

Often a component of LEMs, but sometimes pre-
sented as a model on their own, are mass-balance mod-
els (or energy-balance models). Mass-balance models
use the fact that mass–energy is conserved to develop
a continuity equation to describe the movement of mass
(or energy) between different stores. A store could be
anything ranging from water in lake, the population of
a species in ecosystem, the energy stored as latent heat
in an atmospheric column, the carbon mass in a tree, to
the depth of soil at a point on a hillslope [41.18, p. 688].
An example of a mass-balance numerical model is
a glacier model that describes the relation between ice
accumulation and ablation (by melting and sublima-
tion) at a given point of time under certain climate
conditions [41.21]. Similarly, an energy-balance model
in glaciology would be one that calculates the energy
(heat) fluxes at the surface of the glacier that control
melting and affect mass balance.

Climate science is a field of the geosciences in
which both energy-balance and process numerical mod-
els have been developed to a high level of sophisti-
cation. Energy-balance models represent the climate
of the Earth as a whole, without detailed information
about processes or geographical variation. General cir-
culation models (GCM) go a step further in explicitly
representing atmospheric and oceanic processes. The
most recent generation of climate models are Earth
system models (ESM), which additionally include in-
formation about the carbon cycle and relevant bio-
geochemical processes. More specifically, ESMs are
a composite of a large number of coupled models
or modules, including an atmospheric general circu-
lation model, an oceanic general circulation model,
an ice dynamics model, biogeochemistry modules for
land and ocean (e.g., for tracking the carbon cycle),
and a software architecture or framework in which all
these modules are integrated and able to communi-
cate with each other. Developing and running GCMs
and ESMs require a large number of collaborating
scientists (scores to hundreds), significant supercom-
puting time, and millions of dollars. Because of the
resource-intensive nature of such modeling projects,
there are currently only a few dozen of them, and their
outputs are periodically compared in intercomparison
projects (e.g., coupled model intercomparison project

(CMIP5) [41.22]). (For more on coupled models and in-
termodel comparison projects, see Sect. 41.9 below.) At
present, GCMs and ESMs typically have a spatial reso-
lution of 100�300 km; to fill this gap at the finer level of
resolution, regional climate models (RCMs) have been
developed for various locations.

While the trend in climate modeling has been to-
ward increasing the complexity of these models with
ever more process modules being added, there has
recently been an interesting debate about whether a fun-
damentally new approach to climate modeling is re-
quired (for an excellent review and assessment of the
leading proposals see Katzav and Parker [41.23]). More
generally the trend toward ever more complex models
in the geosciences has led to what Naomi Oreskes calls
the model-complexity paradox [41.24, p. 13]:

“The attempt to make models capture the complex-
ities of natural systems leads to a paradox: the more
we strive for realism by incorporating as many as
possible of the different processes and parameters
that we believe to be operating in the system, the
more difficult it is for us to know if our tests of the
model are meaningful.”

In opposition to this trend, many geoscience model-
ers have started developing what are known as reduced
complexity models, which are motivated by the idea that
complex phenomena do not always need complex mod-
els, and simpler models may be easier to understand
and test. A simpler model may also be run more of-
ten, and with more different parameters, making it more
amenable to sensitivity analysis (see Sect. 41.6.3 be-
low).

In the context of geomorphology, reduced complex-
ity modeling is often defined in contrast with what is
termed simulationmodeling (simulation here refers not
to models that are run as a computer simulation, but
rather models that try to simulate or mimic all the de-
tails of nature as closely as possible). While simulation
models try to remain grounded in the fundamental laws
of classical mechanics and try to represent as many of
the processes operating, and in as much detail, as is
computationally feasible, reduced complexity models
represent a complex system with just a few simple rules
formulated at a higher level of description. As phys-
ical geographers Nicholas and Quine note, emphasis
added [41.25, p. 319]:

“In one sense, the classification of a model as
a reduced complexity approach appears unnecessary
since, by definition, all models represent simplifica-
tions of reality. However, in the context of fluvial
geomorphology, such terminology says much about
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both the central position of classical mechanics
within theoretical and numerical modeling, and the
role of the individual modeler in defining what con-
stitutes an acceptable representation of the natural
environment.”

One of the first successful reduced complexity mod-
els in geomorphology was a cellular automata-type
model of a braided river (i. e., a river with a number
of interwoven channels that shift over time) that used
just two key rules [41.26]. This model was heralded
as a paradigm shift in geomorphic modeling [41.27,

p. 194]. As Brad Murray, one of the proponents of
this approach, argues, knowing how the many small-
scale processes give rise to the large-scale variables
in the phenomenon of interest is a separate scientific
endeavor from modeling that large-scale phenomenon
(Murray [41.28]; see also Werner [41.29]). Although
reduced complexity models may seem like caricatures
of their target systems, they can be surprisingly suc-
cessful in generating realistic behaviors and providing
explanatory insight (for further philosophical discus-
sion of reduced complexity models and this case, see
Bokulich [41.30] andMurray [41.31]).

41.5 Bringing the Social Sciences Into Geoscience Modeling

The geosciences are considered a branch of the phys-
ical sciences, being concerned with the chemistry and
physics of the Earth, its history, and (more recently) its
future. As such, the geosciences are typically thought
of as excluding the domains of both the biological sci-
ences and social sciences. Maintaining these artificial
divisions, however, has increasingly become difficult.
As Oreskes argues [41.1, p. 247]:

“Many, perhaps, most, significant topics in Earth
science research today address matters that involve
not only the functioning of physical systems, but
the interaction of physical and social systems. In-
formation and assumptions about human behavior,
human institutions, and infrastructures, and human
reactions and responses are now built into vari-
ous domains of Earth scientific research, including
hydrology, climate research, seismology and vol-
canology.”

For example, hydrological models that attempt to pre-
dict groundwater levels on the basis of physical consid-
erations alone, can be inadequate for failing to include
possible changes in human groundwater pumping activ-
ity, an external forcing function that can have dramatic
effects on the physical system.

Climate science is another domain of the geo-
sciences in which the need to incorporate the social
sciences (specifically patterns and projections of human
behavior involving, e.g., emission scenarios and defor-
estation practices) is evident. The Intergovernmental
Panel on Climate Change (IPCC) has attempted to in-
corporate these social factors by three separate working
groups, the first on the physical basis and the others
on the social and policy dimensions, each issuing sepa-
rate reports, released at different times. But, as Oreskes
notes, the social variables are not just relevant to the

social–policy questions, but to “the work that provides
the (allegedly) physical science basis as well” [41.1,
p. 253].

Increasingly geoscientists are being called upon to
not only use their models to predict geoscience phe-
nomena, but also to perform risk assessments and to
communicate those risks to the public. Given that geo-
scientists are typically not trained in risk assessment,
risk policy, or public communication, the results can
be troubling. Oreskes recounts the high-profile case of
the 2009 earthquake in central Italy that killed 309 peo-
ple, and for which six geophysicists were sentenced to
six years in prison for involuntary manslaughter in con-
nection with those deaths. Although the international
scientific community expressed outrage that these seis-
mologists were being charged with failing to predict
the unpredictable, the prosecutor, as reported in Nature
painted a different picture (Hall [41.32, p. 266]; quoted
in Oreskes [41.1, p. 257]):

“‘I’m not crazy’, Picuti says. ‘I know they can’t pre-
dict earthquakes. The basis of the charges is not that
they didn’t predict the earthquake. As functionar-
ies of the state, they had certain duties imposed by
law: to evaluate and characterize the risks that were
present in L’Aquila.’ Part of that risk assessment, he
says, should have included the density of the urban
population and the known fragility of many ancient
buildings in the city centre. ‘They were obligated to
evaluate the degree of risk given all these factors’,
he says, and they did not.”

Oreskes concludes from this case [41.1, p. 257]:

“[s]eismology in the twenty-first century, it would
seem, is not just a matter of learning about earth-
quakes, it is also about adequately communicating
what we have (and have not) learned.”



Part
H
|41.6

898 Part H Models in Physics, Chemistry and Life Sciences

Whether it is communicating the risks revealed by
geoscience models or incorporating social variables di-
rectly into geoscience models, geoscientists are under
increasing pressure to find ways to model these hybrid
geosocial systems.

In some areas, such as geomorphology, agent-based
models (ABMs) (which are common in fields such as
economics) are starting to be used. ABMs consist of
a set of agents with certain characteristics, following
certain rules of self-directed behavior, a set of rela-
tionships describing how agents can interact with each
other, and an environment both within which, and on
which, the agents can act. As Wainwright and Milling-
ton note [41.33, p. 842]:

“Despite an increasing recognition that human ac-
tivity is currently the dominant force modifying
landscapes, and that this activity has been increas-
ing through the Holocene, there has been little in-
tegrative work to evaluate human interactions with
geomorphic processes. We argue that ABMs are
a useful tool for overcoming limitations of existing
[. . . ] approaches.”

These ABMmodels, with their simplistic representation
of human behavior, however, face many challenges, in-
cluding not only difficulties in integrating the different
disciplinary perspectives required to model these hybrid
geosocial systems, but also issues of model evaluation.

41.6 Testing Models: From Calibration to Validation

41.6.1 Data and Models

Empirical data was long assumed to be the objective
and unimpeachable ground against which theories or
theoretical models are judged; when theory and data
clashed, it was the theory or model that was expected to
bend. Beginning in the early 1960s, however, philoso-
phers of science including Kuhn [41.34, pp. 133–134],
Suppes [41.35], and Lakatos [41.36, pp. 128–130] be-
gan to realize that this is not always the case: sometimes
it is reasonable to view the theory as correct and use it
to interpret data as either reliable or faulty. In a 1962 pa-
per called Models of Data, Suppes argued that theories
or theoretical models are not compared with raw em-
pirical data, but rather with models of the data, which
are a cleaned up, organized, and processed version of
the data of experience. The production of a data model
can involve, among other things, data reduction (any
data points that are due to error or noise, or what are
otherwise artifacts of the experimental conditions are
eliminated from consideration) and curve fitting (a deci-
sion about which of several possible curves compatible
with the data will be drawn).

This same insight has been recognized by scientists
as well. The ecological modeler Rykiel, for example,
writes, “Data are not an infallible standard for judg-
ing model performance. Rather the model and data are
two moving targets that we try to overlay one upon
the other” [41.37, p. 235]. Similarly Wainwright and
Mulligan argue that the data of measurements are an ab-
straction from reality depending on timing, technique,
spatial distribution, scale, and density of sampling.
They continue [41.33, p. 13]:

“If a model under-performs in terms of predictive
or explanatory power, this can be the result of inap-

propriate sampling for parametrization or validation
as much as model performance itself. It is often as-
sumed implicitly that data represents reality better
than a model does (or indeed that data is reality).
Both are models and it is important to be critical of
both.”

A similar point has been made by the historian Paul
Edwards [41.38] in his book on the development of
climate modeling. There he traces in detail the chang-
ing meaning of data in meteorology and atmospheric
science, noting how the existing incomplete, inconsis-
tent, and heterogeneous data had to be transformed
into a complete and coherent global dataset, with large
numbers of missing gridpoint values interpolated from
computer models in a process known as “objective
analysis” [41.38, p. 252]. Edwards further argues that
even the data obtained from measuring instruments
is model-laden. He notes, for example, that [41.38,
pp. 282-283]:

“meteorology’s arsenal of instrumentation grew to
include devices, from Doppler radar to satellites,
whose raw signals could not be understood as me-
teorological information. Until converted – through
modeling – into quantities such as temperature,
pressure, and precipitation, these signals did not
count as data at all.”

The importance of recognizing this model-
ladenness of data is vividly illustrated in Elizabeth
Lloyd’s [41.39] recounting of the high-profile case in
which it was claimed in a US congressional hearing that
data from satellites and weather balloons contradicted
climate model evidence that greenhouse warming was
occurring. In the end, the climate models were vindi-
cated as more reliable than the data. Lloyd concludes
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from this case that we need to move towards a more
complex empiricist understanding of the nature of data.

The data from measurements can, for example, be
skewed by the fact that measurements are local, and
yet the model might require a more global value (espe-
cially when there is significant heterogeneity), or more
generally that measurements can only be made at one
scale, and yet have to be extrapolated to another scale.
Hence, when using data to parameterize, calibrate, or
validate a model (see below) it is important to be aware
of the limitations of the data model as well, and pay
attention to any biases or errors that may have been in-
troduced during the collection and processing of that
data.

In some areas of the geosciences, such as paleon-
tology, models have even been used to correct biases
in available data. For example, one aim of paleontol-
ogy is to gather information about the deep-time history
of biodiversity (ranging from the Cambrian explosion
to the various mass extinctions) on the basis of the
observed fossil record. The conditions under which fos-
sils are formed, preserved, and revealed are not only
rare, but highly contingent and uneven with respect
to space, time, and type of organism. Hence, there is
arguably a strong detection (or sampling) bias in the
observations. While some have taken the paleodiver-
sity curves constructed from these fossil observations as
a literal description of ancient biodiversity, others have
argued that observed paleodiversity is a composite pat-
tern, representing a biological signal that is overprinted
by variation in sampling effort and geological drivers
that have created a nonuniform fossil record [41.40, 41].
Before any evolutionary theories can be tested against
the data of the fossil record, these data need to be
corrected to extract the relevant biological signal from
other confounding factors. Thus, for example, “many
vertebrate paleodiversity studies have relied on model-
ing approaches (e.g., multivariate regression models) to
‘correct’ data for uneven sampling” [41.40, p. 127]. Of
course, how the data are to be properly corrected, in-
cluding which models of possible drivers and sources
of bias are included in the multivariate analysis yield-
ing the corrected data, involves substantial theoretical
assumptions.As Kuhn noted years ago, observations are
not “given of experience”, but are “collected with diffi-
culty” [41.34, p. 126].

The model-ladenness of data has led philosophers
such as Giere to claim that “it is models almost all
the way down” [41.42, p. 55] – a conclusion Ed-
wards [41.38] argues is strongly supported by his his-
torical analysis of the nature of data in meteorology and
atmospheric science. Others, such as Norton and Suppe,
have taken this conclusion even further, arguing that it
is models all the way down. They write [41.43, p. 73]:

“Whether physically or computationally realized,
all data collection from instruments involves mod-
eling. Thus raw data also are models of data.
Therefore, there is no important epistemological
difference between raw and reduced data. The dis-
tinction is relative.”

However, saying that all data is model-laden to some
degree does not imply that there is no epistemolog-
ical difference, nor that all models are epistemically
on par [41.44, pp. 103–104]. One of the most under-
developed issues in this literature on data models is an
analysis of what makes some data models better than
others, and under what sorts of conditions data models
should – or should not – be taken as more reliable than
more theoretical models.

41.6.2 Parametrization, Calibration,
and Validation

In mathematical modeling, one can distinguish vari-
ables, which are quantities that can vary and are to be
calculated as part of the modeling solution, and param-
eters, which are quantities used to represent intrinsic
characteristics of the system and are specified external
to the model by the modeler. Also specified external to
the model are the boundary conditions and the initial
conditions (the latter describe the values of the variables
at the beginning of a model run). Whether something is
a variable or parameter depends on how it is treated in
a particular model. Parameters need not be constant and
can also vary across space, for example, but how they
vary is specified external to the model. One can further
distinguish two general types of parameters: those re-
lated to characteristics of the dynamics of a process and
those related to the characteristics of a specific system
or location where the model is being applied [41.45,
p. 7].

Sometimes parameters can be universal constants
(e.g., gravitational acceleration or the latent heat of wa-
ter), in which case specifying their values is relatively
unproblematic (though the process by which the val-
ues of constants are initially determined is nontrivial,
and as Chang [41.46] cogently argues, challenges arise
even in so-called basic measurements, such as temper-
ature). More typically in the geosciences, however, the
value of a parameter has to be determined on the basis
of complex measurements, and even an idealization or
averaging of those measurements (such as in the case
of the parameter for bed roughness of a stream bed).
The process by which input parameters are initially cho-
sen has not been well studied, and is greatly in need of
a better understanding. What has been the subject of
considerable attention is the problem of calibration: the
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adjustment of model parameters in response to inade-
quate model performance.

In an ideal world, modelers would build a model
based on physical principles and the equations that
represent them, and then, with the use of appropri-
ate input parameters for physical variables (like tem-
perature, pressure, permeability, equilibrium constants,
etc.), build a numerical simulation that accurately re-
flects the system under analysis. But most models do
not do this: for a variety of reasons the match between
the model output and available empirical information is
often quite poor [41.47]. Therefore, modelers calibrate
their models: they adjust the input parameters until the
fit of the model to available information is improved to
a level that they consider acceptable.

There are several concerns that can be raised about
this process. One is that parameterized models are
nonunique, and there is no way to know which particu-
lar set of parameterizations (if any) is the so-called right
one; many different parameterizations may produce
a given output. (This may be understood as a variation
on the theme of underdetermination, discussed further
below.) As hydrologist Beven notes [41.45, p. 7]:

“parameters are usually calibrated on the basis of
very limited measurements, by extrapolation from
applications at other sites, or by inference from
a comparison of model outputs and observed re-
sponses at the site of interest.”

Moreover, because of the variability and uniqueness of
many complex systems, parameter values extrapolated
from one site may not be appropriate for another. Even
if one restricts oneself to a given site, a model cali-
brated for one purpose (e.g., predicting peak runoff)
may be predictively useless for another purpose (e.g.,
predicting total runoff) [41.33, p. 15]. Indeed, if the
chosen parameterization is not an accurate representa-
tion of the physical system under consideration, it is
likely that the model will not perform reliably when
used for other purposes. This helps to explain the obser-
vation that many calibrated models fail, not only when
used for purposes other than that for which they were
calibrated, but sometimes even when used for their in-
tended purposes [41.48].

Once a model has been built and calibrated, many
modelers engage in an activity they call model valida-
tion, by which they normally mean the testing of the
model against available data to determine whether the
model is adequate for the purpose in question. Many
geoscientists acknowledge that the use of the term val-
idation should not be taken to imply that the model
is true or correct, but rather only that “a model is ac-
ceptable for its intended use because it meets specified

performance requirements” [41.37, p. 229]. Rykiel thus
argues that before validation can be undertaken, the fol-
lowing must be specified:

a) The purpose of the model
b) The performance criteria
c) The context of the model.

However, many so-called validated models have failed
even in their intended use. For example, in a 2001
study, Oreskes and Belitz showed that many hydrologi-
cal models fail because of unanticipated changes in the
forcing functions of the systems they represent. More
broadly, validated models may fail for the following
reasons [41.9, p. 119]:

1. Systems may have emergent properties not evident
on smaller scales.

2. Small errors that do not impact the fit of the model
with the observed data may nonetheless accumulate
over time and space to compromise the fit of the
model in the long run.

3. Models that predict long-term behavior may not an-
ticipate changes in boundary conditions or forcing
functions that can radically alter the system’s be-
havior.

The idea that a model can be validated has been
critiqued on both semantic and epistemic grounds.
Semantically, Oreskes et al. have noted that the termi-
nology of validation implies that the model is valid –
and thus serves as a claim about the legitimacy or accu-
racy – a claim that, as already suggested above, cannot
be sustained philosophically and is often disproved in
practice [41.47, 49]. Hence, a better term than model
validation might be model evaluation. Even with this
change in terminology, however, epistemological chal-
lenges remain. In many cases, the available empirical
data (e.g., historic temperature records) have already
been used to build the model, and therefore cannot
also be used to test it without invoking circular reason-
ing. Some modelers attempt to avoid this circularity by
calibrating and validating the model against different
historical time periods, with respect to different vari-
ables, or even different entities and organisms.

Paleontologists, for example, use biomechanical
models to try to answer functional questions about ex-
tinct animals based on the structures found in the fossil
record (which is a subtle and difficult process, see e.g.,
[41.50]). These biomechanical models, which are used
to make predictions about paleospecies, are validated
or tested against data for present-day species. More
specifically, Hutchinson et al. have used such models
to determine how fast large theropod dinosaurs, such
as Tyrannosaurus rex, could run. They write [41.51,
p. 1018]:
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“The model’s predictions are validated for living al-
ligators and chickens [. . . ]. [m]odels show that in
order to run quickly, an adult Tyrannosaurus would
have needed an unreasonably large mass of extensor
muscle.”

Such an approach may work in cases where very large
amounts of data are available, or where there are clearly
distinct domains that may be enlisted. In many areas of
the geosciences, however, data is scant and all available
data need to be used in the initial construction of the
model.

41.6.3 Sensitivity Analysis
and Other Model Tests

Irrespective of the difficulties of model construction
and calibration, models can be highly effective in
helping to identify the relative importance of vari-
ables, through techniques such as sensitivity analy-
ses. Sensitivity analysis – also known (inversely) as
robustness analysis – is the process of determining
how changes in model input parameters affect the
magnitude of changes in the output (for philosophi-
cal discussions of robustness analyses see, e.g., Weis-
berg [41.52] or Calcott [41.53]; for a comprehensive,
technical introduction to sensitivity analysis in a vari-
ety of domains see Saltelli et al. [41.54]). For example,
in the context of the paleontology research on mod-
els of Tyrannosaurus rex introduced above, Hutchinson
writes [41.55, p. 116]:

“Because any model incorporates assumptions
about unknown parameters, those assumptions need
to be explicitly stated and their influences on model
predictions need to be quantified by sensitivity anal-
ysis [. . . ]. In manymodels this can be determined by
varying one parameter at a time between minimal
and maximal values (e.g., crouched and columnar
limb poses) and evaluating the changes in model
output (e.g., the required leg muscle mass).”

Varying one parameter at a time is known as a local
sensitivity analysis. However, for some sorts of sys-
tems (especially systems in which nonlinearities and
thresholds operate), a complicating factor is that model
sensitivity to a parameter can also depend on the val-
ues of the other model parameters [41.56, p. 141] and
[41.33, p. 18]. Hence, in these latter cases, one needs
to perform what is known as a global sensitivity analy-
sis, where all the parameters are varied simultaneously
to assess how their interactions might affect model out-
put [41.57].

Sensitivity analysis is used in nearly all domains
of modeling, and it can be an important guide to data

collection: alerting the scientific community to where
additional or better empirical information is most likely
to make a difference. That is to say, sensitivity analy-
ses can reveal which parameters are most important in
a model (and hence should be targeted for additional
data collection) and which parameters are relatively
unimportant or even negligible. It may thus suggest pa-
rameters that should be omitted, which can save on
computational time. Sensitivity analyses can also help
determine whether a model might be overparameter-
ized, which involves a kind of overfitting to the data
that occurs when too many parameters are included and
fixed.

Model testing can involve a wide spectrum of
different techniques, ranging from subjective ex-
pert judgments to sophisticated statistical techniques.
Rykiel [41.37] has assembled a list of 13 different
procedures, which he calls validation procedures. How-
ever, given the concerns raised above about the term
validation and the heterogeneity of the procedures col-
lected in his list, the broader rubric of model tests
is arguably more appropriate. Rykiel’s list is as fol-
lows [41.37, pp. 235–237]:

1. Face validity, where experts are asked if the model
and its behavior are reasonable.

2. Turing-test validity, where experts assess whether
they can distinguish between system and model out-
puts.

3. Visual validation, where visual outputs of model are
(subjectively) assessed for visual goodness of fit.

4. Inter-model comparisons.
5. Internal validity of model.
6. Qualitative validation: the ability to produce proper

relationships among model variables and their dy-
namic behavior (not quantitative values).

7. Historical data validation, where a part of the his-
torical data is used to build the model and a part is
used to validate it.

8. Extreme conditions tests, where model behavior is
checked for unlikely conditions.

9. Traces: the behavior of certain variables is traced
through the model to see if it remains reasonable at
intermediate stages.

10. Sensitivity analyses: the parameters to which the
model is sensitive are assessed against the param-
eters to which the system is or is not sensitive.

11. Multistage validation: validation at certain critical
stages throughout the model-building process.

12. Predictive validation: model predictions are com-
pared to system behavior.

13. Statistical validation: statistical properties of model
output are evaluated and errors are statistically ana-
lyzed.
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Although, as noted before, the term validation is inap-
propriate and this heterogeneous list could be usefully
organized into different categories, it nonetheless pro-
vides a good sense of the broad spectrum of techniques

thatmodelers deploy in testing and evaluating theirmod-
els. Each of the procedure on this list can play an impor-
tant role in the modeling process and is arguably worthy
of further philosophical and methodological reflection.

41.7 Inverse Problem Modeling

One of the central tasks of geophysics is to determine
the properties of the interior structure of the Earth on
the basis of measurements made at the surface. The
primary method by which this is done is known as
inverse problem modeling. Most broadly, an inverse
problem is defined as that of reconstructing the pa-
rameters of a system or model based on the data it
produces; in other words, one starts with a set of ob-
servational data and then tries to reason back to the
causal structure that might have produced it. The in-
verse problem is contrasted with the forward problem,
which involves starting with a known model and then
calculating what observations or data that model struc-
ture will produce. Inverse problems are found across
the sciences, such as in finding the quantum potential in
the Schrödinger equation on the basis of scattering ex-
periments, diagnostic imaging in medicine using X-ray
computer assisted tomography, or, most relevantly here,
determining information about the interior structure of
the Earth on the basis of travel-time data of waves
(e.g., earthquakes). Indeed, the first methods for solv-
ing inverse problems were developed in the context of
seismology by a German mathematical physicist Gus-
tav Herglotz (1881–1953) and the geophysicist Emil
Wiechert (1861–1928).

A fundamental challenge for inverse modeling
methods is the problem of underdetermination [41.58,
p. 120]:

“[T]he model one aims to determine is a contin-
uous function of the space variables. This means
the model has infinitely many degrees of freedom.
However, in a realistic experiment the amount of
data that can be used for the determination of the
model is usually finite. A simple count of variables
shows that the data cannot carry sufficient informa-
tion to determine the model uniquely.”

In other words, the solution to the inverse problem is
not unique: there are many different models that can ac-
count for any given set of data equally well. This is true
for both linear and nonlinear inverse problems [41.59].

One method for trying to constrain this underde-
termination is known as the model-based inversion

approach, which involves introducing a second, inter-
mediary model known as the estimated or assumed
model [41.60, p. 626]. The estimated model is used in
the forward direction to generate synthetic data, which
is then compared with the observational data. On the
basis of the discrepancy between the two datasets, the
estimated model is modified and the synthetic data
it produces is again compared in an iterative opti-
mization process. As Snieder and Trampert note, how-
ever [41.58, p. 121]:

“There are two reasons why the estimated model
differs from the true model. The first reason is the
nonuniqueness of the inverse problem that causes
several (usually infinitely many) models to fit the
data [. . . ] The second reason is that real data [. . . ]
are always contaminated with errors and the esti-
mated model is therefore affected by these errors as
well.”

In other words, one must also be aware of errors aris-
ing from the data model (as discussed earlier). Different
modeling approaches for dealing with inverse prob-
lems in geophysics have been developed, such as the
use of artificial neural network (ANN) models (see,
e.g., Sandham and Hamilton [41.61] for a brief re-
view).

Recently, a number of philosophers of science have
highlighted the philosophical implications of the un-
derdetermination one finds in geophysical inverse prob-
lems. Belot [41.62], for example, argues that this “down
to earth underdetermination” shifts the burden of proof
in the realism–antirealism debate by showing that a rad-
ical underdetermination of theory by (all possible) data
is not just possible, but actual, and likely widespread
in the geosciences (and elsewhere). Miyake similarly
calls attention to the problem of underdetermination in
these Earth models and notes that there are additional
sources of uncertainty that are not even considered in
the setting up of the inverse problem [41.63]. He argues
that thinking of these Earth models as a case of what
philosophers [41.64] call model-based measurement is
important for understanding the epistemology of seis-
mology.
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41.8 Uncertainty in Geoscience Modeling

Geoscientists have paid considerable attention to the
problem of model uncertainty and sources of error, but
many (if not all) of the sources of uncertainty they
identify are not unique to the geosciences. There are
different ways in which one can construct a taxonomy
of the sources of uncertainty in modeling. One can,
for example, organize the sources of uncertainty by the
relevant stage in the modeling process. Here, one can
group the various uncertainties into the following three
categories:

1. Structural model uncertainties
2. Parameter uncertainties
3. Solution uncertainties.

Alternatively, one can also organize the sources of
uncertainty in modeling on the basis of various com-
plexities that arise for the sort of systems one is trying
to model. This latter approach is taken by geomor-
phologist Stanley Schumm [41.65], who organizes the
sources of uncertainty into the following three cate-
gories:

1. Problems of scale and place
2. Problems of cause and process
3. Problems of system response.

Each of these ways of thinking about sources of uncer-
tainty in modeling serves to highlight a different set of
philosophical and methodological issues.

Uncertainties can be identified at each step of the
modeling process. During the construction phase of the
model there are a number of uncertainties that can be
grouped together under the broad rubric of structural
model uncertainties. In this category, there are what are
termed closure uncertainties, which involve uncertain-
ties about which processes are to be included or not
included in the model [41.66, p. 291]. There can be un-
certainties regarding both which processes are in fact
operating in the target system (some processes might
be unknown) and which of the processes known to be
operating are in fact important to include (we may know
that a process is operating, but not think it is relevant).
Sometimes whether a process is important, however,
depends on what other processes are included in the
model, as well as on other factors, such as the relevant
spatiotemporal scale over which the model will be ap-
plied. As an example of this type of structural model
(closure) uncertainty, O’Reilly et al. [41.67] discuss the
case of early attempts to model stratospheric ozone de-
pletion (that resulted in the unexpected ozone hole in
the Antarctic, which was discovered in 1985). They
write [41.67, p. 731]:

“[B]efore the ozone hole discovery led scientists
to rethink their conceptual models, ozone assess-
ments had not considered such multiphase reactions
[i. e., heterogeneous chemical reactions] to be im-
portant. At the time, gas-phase atmospheric chem-
istry was much better understood than multiphase
chemistry, and heterogeneous reactions were seen
as arcane and generally unimportant in atmospheric
processes.”

Because these chemical processes were not well un-
derstood scientifically and were not recognized as im-
portant to this phenomenon, they were left out of the
model, leading to a drastic underprediction of the rate
at which ozone depletion would take place. More gen-
erally, asOreskes and Belitz have noted, when modelers
lack reliable information about known or suspected
processes, they may simply leave out those processes
entirely, which effectively amounts to assigning them
a value of zero [41.48, 67]. Such closure uncertainties
in modeling can thus lead to significant errors.

Second, there are process uncertainties, which are
concerned with how those processes should be rep-
resented mathematically in the model. For many pro-
cesses in the geosciences, there is no consensus on the
right way to represent a given process mathematically,
and different representations may be more or less ap-
propriate for different applications. For example, there
are different ways that turbulence can be represented in
models of river flow, from the greatly simplified to the
highly complex [41.66, p. 291].

Third, there are what are more narrowly called
structural uncertainties; these are uncertainties in the
various ways the processes can be linked together and
represented in the model. Included in this category are
uncertainties associated with whether a component is
taken to be active (allowed to evolve as dictated by the
model) or passive (e.g., treated as a fixed boundary con-
dition). Lane [41.66, p. 291] gives the example of the
different ways the ocean can be treated in global climate
models: because of water’s high specific heat capac-
ity, the ocean responds slowly to atmospheric changes;
hence, if used on short enough time scales, the modeler
can represent the ocean as a passive contributor to atmo-
spheric processes (as a source of heat and moisture, but
not one that in turn responds to atmospheric processes).
Parker [41.68] also discusses structural uncertainty in
climate modeling, with regard to the choice of model
equations.

Structural model uncertainties can give rise to struc-
tural model error, which Frigg et al. [41.69] define
broadly as a discrepancy between the model dynamics
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and target system dynamics. They demonstrate that in
a nonlinear model, even a small structural model er-
ror can lead to divergent outcomes more drastic than
those due to the sensitive dependence on initial con-
ditions characteristic of chaotic systems. In analogy
with the well-known butterfly effect, they (following
Thompson [41.70]) call this the hawkmoth effect. They
conclude that the structural model error in a nonlin-
ear model “is a poison pill . . . operational probability
forecasts are therefore unreliable as a guide to rational
action if interpreted as providing the probability of var-
ious outcomes” [41.69, p. 57]. Nonetheless, they note
that such models may still be useful for generating in-
sight and understanding.

In addition to these three types of structural model
uncertainty (closure, process, and structure uncertain-
ties), another significant source of uncertainty is param-
eter uncertainty. As discussed earlier, models contain
both variables (whose values are determined by the
model itself) and parameters (whose values must be
specified externally by the modeler). In the global cir-
culation or ESMs of climate science, parameters are
used, for example, in representations of unresolved pro-
cesses (such as cloud systems or ocean eddies) that are
on a finer-grained scale than that on which the model
operates. Ideally, the value of a parameter is deter-
mined directly by field measurements, but often this
is not possible. In many cases, the parameter is ei-
ther prohibitively difficult to measure or has no simple
field equivalent. The parameters then need to be esti-
mated or calculated on the basis of other models (e.g.,
as detailed by Edwards [41.38] in his discussion of
parameters in meteorology and atmospheric science).
Beven [41.45, p. 8] gives the example of the parameter
representing soil hydraulic conductivity in hydrology.
Measurements of soil hydraulic conductivity are typ-
ically made on soil samples in a small area, but are
known to exhibit order of magnitude variability over
even short distances. Often, however, the model will
require a value of hydraulic conductivity over a much
larger spatial scale (e.g., the whole catchment area).
Hence, substantial uncertainties can arise as one tries
to determine an effective value for the parameter.

Parameters can also take on different values than
their real-world counterparts during the process of cal-
ibration or optimization. An example is the bed rough-
ness parameter, which is used to represent the grain size
of a river bed affecting the friction and turbulence of the
flow. As Odoni and Lane note [41.71, p. 169]:

“it is common to have to increase this quite sig-
nificantly at tributary junctions, to values much
greater than might be suggested by [. . . ] the bed
grain size. In this case there is a good justifica-

tion for it, as one-dimensional models represent not
only bed roughness effects but also two- and three-
dimensional flow processes and turbulence.”

In other words, the bed roughness parameter in the
model is used to capture not just the bed roughness,
but other effects that act like bed roughness on the be-
havior of the flow. This is another example of what
was earlier called getting things more wrong in order
to get them more right. More generally, parameter val-
ues determined for one model may be calibrated for
that particular model structure, and hence not be in-
dependent of that model structure or even different
discretizations or numerical algorithms of that model
structure, and therefore are not transferable to other
models without additional error [41.45, p. 8]. Hence,
one must be aware of the problem of parameter incom-
mensurability, where parameters that share the same
namemight in fact “mean” different things [41.45, p. 8].

Although they are not strictly speaking parameters,
one can also include under this umbrella category un-
certainties in the initial conditions and the boundary
conditions, which also need to be specified externally
by the modeler in order to operate the model. Examples
include [41.71, p. 169]:

“the geometry of the problem (e.g., the morphology
of the river and floodplain system that is being used
to drive the model) or boundary conditions (e.g.,
the flux of nutrients to a lake in a eutrophication
model).”

In order to integrate a model forward in time, one
needs to first input the current state of the system as
initial conditions. Not only can there be uncertainties
in the current state of the system, but also some chaotic
models will be very sensitive to such errors in the initial
conditions.

The final category of model uncertainties is solu-
tion uncertainties. Once the model equations are set
up, the parameters fixed, and the initial and bound-
ary conditions are specified, the next step is to solve
or run the model. Often in geoscience modeling, the
governing equations are nonlinear partial differential
equations that do not have general analytic solutions.
In such cases, one must resort to various discretiza-
tion or numerical approximation algorithms (e.g., finite
difference methods, finite element methods, bound-
ary element methods, etc.) to obtain solutions, which
will not be exact (though they can often be bench-
marked against analytic solutions). There can also be
uncertainties introduced by the way the algorithm is im-
plemented on a computer for a simulation model. Beven
notes [41.45, p. 6]:
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“[D]ifferent implementations will, of course, give
different predictions depending on the coding and
degree of approximation. [The] computer code [. . . ]
represents a further level of approximation to the
processes of the real system.”

In implementing a model on a computer, decisions must
be made about the appropriate choice of time steps and
spatial discretizations, and these and other solution un-
certainties can lead to further sources of error.

In his book To interpret the Earth: Ten ways to be
wrong, Schumm identifies 10 sources of uncertainty,
which he organizes into the three categories of prob-
lems of scale and place, problems of cause and process,
and problems of system response [41.65]. The first
source of uncertainty concerns time. Compared to the
long-time history over which Earth’s landscapes evolve,
the time scale of human observation is extremely short.
There can be short-term patterns in geoscience phenom-
ena that are very different from the long-term pattern
one is trying to predict or explain; hence, extrapola-
tions from short-term observations may not be reliable
(e.g., the short-term wind direction you observe may
not be indicative of the prevailing long-term wind di-
rection that predominantly shapes the landscape). Also,
different features of a landscape (and the correspond-
ing different processes) can become salient as different
time scales are considered. The processes that are most
relevant on a short-time scale (such as storm events)
may be insignificant on a long-time scale, as well as
the reverse (e.g., uplift phenomena are negligible over
the short term, but are such stuff as the Himalayas are
made of over the long term). Hence, inadequate atten-
tion to these issues of time, both in the construction and
application of the model, can be a significant source of
uncertainty. The second source of uncertainty, space,
is analogous to these problems of time. For example,
to understand how water moves through the ground on
a small spatial scale, the type of soil or rock (e.g., its
porousness) might be most relevant to model, while on
a large scale, the overall topology of the landscape (e.g.,
whether it is on a steep slope) and whether it has large-
scale rills (cracks or channels) might be more relevant.
The third source of uncertainty Schumm calls location,
which relates to the uniqueness of geomorphic systems
(e.g., there is a sense in which no two rivers are exactly
the same, and hence models developed for one location,
might not be applicable to other locations).

In the next cluster, Schumm identifies convergence
as a fourth source of uncertainty. Convergence is the
idea that different processes or causes can produce sim-
ilar effects. For example, sinuous rills on the Moon
look like dried river beds formed by flowing water, but
were later concluded to be the result of collapsed lava

tubes [41.65, p. 59]. Hence, one needs to be careful
in inferring cause from effect, and in drawing an anal-
ogy from the causes of an effect at one location to the
causes of a very similar effect at another location. The
fifth source of uncertainty, divergence, is the opposite of
convergence: the same cause can produce different ef-
fects. Schumm gives the example of glacio-eustasy, or
the change of sea levels due to the melting of glaciers
and ice sheets. He explains [41.65, p. 64]:

“With the melting of the Pleistocene continental ice
sheets the assumption is that a global sea-level rise
will submerge all coastlines. However, the results
are quite variable [. . . ] [a]s a result of isostatic uplift
following melting of the continental ice sheets.”

Isostatic uplift refers to the rebounding or rise of land
masses that were depressed under the massive weight
of the ice sheets (this rebound is still ongoing and aver-
ages at the rate of a centimeter per year: see, e.g., Sella
et al. [41.72]). In other words, the melting of glaciers
and icesheets can cause sea levels both to rise and to
fall (depending on the location): one cause, two differ-
ent (and opposite) effects.

The sixth source of uncertainty Schumm identifies
is what he calls efficiency, which he identifies with the
assumption that the more energy expended, the greater
the response or work done. He notes that this will not
generally be the case [41.65, p. 66]:

“When more than one variable is acting or when
a change of the independent variable, such as pre-
cipitation, has two different effects, for example,
increased runoff and increased vegetation density,
there may be a peak of efficiency at an intermediate
condition.”

He gives as an example the rate of abrasion of a rock by
blown sand, which has a maximum abrasion efficiency
at relatively low rates of sand feed (presumably due to
an interference of rebounding particles with incoming
particles).

The seventh source of uncertainty he identifies is
multiplicity, which is the idea that there are often
multiple causes operating in coordination to produce
a phenomenon, and hence one should adopt a multiple
explanation approach. This concept originated in the
work of the American geologist Thomas C. Chamber-
lin (1843–1928), specifically in his method of multiple
working hypotheses, a method which he urged was
beneficial not only to scientific investigation, but also
to education and citizenship. In his 1890 article in-
troducing this method he considers the example of
explaining the origin of the Great Lake Basins. Cham-
berlin writes [41.73, p. 94]:
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“It is practically demonstrable that these basins
were river-valleys antecedent to the glacial incur-
sion, and that they owe their origin in part to the
pre-existence of those valleys and to the blocking-
up of their outlets [. . . ]. So, again, it is demonstrable
that they were occupied by great lobes of ice, which
excavated them to a marked degree, and therefore
the theory of glacial excavation finds support [. . . ]. I
think it is furthermore demonstrable that the earth’s
crust beneath these basins was flexed downward,
and that they owe [. . . ] their origin to crustal de-
formation.”

What might initially appear to be a scientific contro-
versy involving rival hypotheses or competing expla-
nations, in fact turns out to be a case where each
hypothesis correctly has part of the story. Chamber-
lin concludes that one benefit of considering diverse
explanations for observed phenomena is that it forces
the geologist to move beyond hasty or simplistic ex-
planations, and instead to consider the possibility that
more than one relevant process has been involved. (For
a philosophical discussion of the method of multiple
hypotheses in the case of plate tectonics, see Rachel
Laudan [41.74].)

An example of this from paleontology is the long-
standing debate about the cause of the Cretaceous
(K–T) mass extinction (in which 70% of all species,
including all the (nonavian) dinosaurs, went extinct).
The favored explanation of this extinction event is the
impact hypothesis: that the extinction was caused by
a large comet or asteroid that hit Earth near present-day
Chicxulub, Mexico. While the fact that this impact oc-
curred is not in doubt, some scientists question whether
the impact hypothesis can explain the gradual and step-
wise extinction pattern that is observed in the fossil
record. They favor instead an explanation that appeals
to massive volcanism and climate change, which was
already underway. While often viewed as rivals, these
two explanations might be complementary [41.75].
Schumm concludes, “if there is more than one cause
of a phenomenon, unless all are comprehended, extrap-
olation will be weak and composite explanations are
needed” [41.65, pp. 74–75]. (For a more general philo-
sophical discussion of explanation in the Earth sciences,
including a discussion of the explanation of the K–T ex-
tinction, see Cleland [41.76].)

The final three sources of uncertainty Schumm
identifies are singularity, the idea that landforms,
though also having many commonalities, have features
that make them unique, and hence respond to changes in
slightly different ways or at different rates; sensitivity,
the idea that small perturbations to a system can have
significant effects, especially when a system involves

either internal or external thresholds; and the complex-
ity of geomorphic systems, which means they have
numerous interconnected parts interacting in typically
nonlinear ways. An example of an important threshold
in the geosciences is the velocity at which a sediment
particle of a given size is set in motion by a particu-
lar fluid (e.g., water or wind). This is an example of
an extrinsic threshold involving changes in an external
variable. There can, however, also be intrinsic thresh-
olds in which there is an abrupt change in a system
without there being a corresponding change in an exter-
nal variable. For example, under constant weathering
conditions the strength of materials can be weakened
until there is an abrupt adjustment of the system (such
as a landslide). Another example of an intrinsic thresh-
old is when a bend or loop in a meandering river will
suddenly be cut off by the formation of a new channel.
More generally, geomorphic systems often exhibit what
are called autogenic behaviors, in which there can be
a sudden and pronounced change in the system’s behav-
ior or characteristics, not due to an external cause, but
rather due to internal feedbacks in the system, in which
gradual changes can result in sudden, threshold-like re-
sponses (for a discussion see Murray et al. [41.77]; for
an example of an autogenic behavior discovered in the
St. Anthony’s Falls physical model discussed earlier,
see Paola et al. [41.78]). Schumm concludes [41.65,
p. 84]:

“The recognition of sensitive threshold conditions
appears to be essential in order that reasonable
explanations and extrapolations can be made in
geomorphology, soil science, sedimentology and
stratigraphy, and many environmental and ecosys-
tem areas.”

So far we have reviewed five sources of uncer-
tainty arising during stages of the modeling process
and 10 sources of uncertainty arising from the com-
plexity of geoscience systems. A further complication
arises from the fact that even models with these sorts
of errors can generate predictions that agree reason-
ably well with observations – a case of getting the
right answer for the wrong reason. Hence, on pain of
committing the fallacy of affirming the consequent, one
cannot deductively conclude that one’s model is right,
just because it produces predictions that match obser-
vations. More generally, this is related to the fact that
more than one model or theory can account for a given
set of observations: the data underdetermine the model
or theory choice. In the philosophical literature this is
known as the problem of underdetermination (e.g., see
Duhem [41.79], or for contemporary discussion, see
Stanford [41.80]; for a philosophical discussion of un-
derdetermination in the Earth sciences see Kleinhans
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et al. [41.2]). In the geoscience literature the prob-
lem of underdetermination is sometimes referred to as
the problem of nonuniqueness, or equifinality [41.81].
Beven and Freer write [41.82, p. 11]:

“It may be endemic to mechanistic modeling of
complex environmental systems that there are many
different model structures and many different pa-
rameter sets within a chosen model structure that
may be [. . . ] acceptable in reproducing the observed
behavior of that system. This has been called the
equifinality concept.”

In other words, the data are not sufficient to uniquely
pick out a model structure or parameter set. (A simi-
lar sort of equifinality was seen in the nonuniqueness
of inverse problems discussed earlier.) Moreover, the
acceptable parameter sets may be scattered throughout
parameter space (i. e., not localized around some opti-
mum parameter set). This problem of equifinality is not

just hypothesized, but has been demonstrated in com-
puter simulations, which are now cheap and efficient
enough to allow explorations of the parameter space of
models of a variety of geoscience systems.

The problem of equifinality has led Beven et al. to
develop a method to deal with uncertainty that they
call the generalized likelihood uncertainty estimation
(GLUE) methodology [41.83]. GLUE involves a kind
of Monte Carlo method with a random sampling of the
space of possible model–parameter combinations, in
which each possible set of parameters is assigned a like-
lihood function (assessing the fit between model predic-
tions and observations). The idea is not to pick one best
model–parameter set, but rather to take into account
the predictions of all acceptable models (models not
ruled out by current data or knowledge), weighted by
their relative likelihood or acceptability, in something
like a Bayesian averaging of models and predictions.
(For a recent review and discussion of objections to the
GLUE methodology see Beven and Binley [41.84].)

41.9 Multimodel Approaches in Geosciences

The GLUE methodology is just one of several different
approaches that try to use multiple models in concert to
reduce uncertainty. The GLUE methodology requires
a large number of runs to adequately explore the pa-
rameter space. However, this is not typically feasible
in computationally intensive models. An alternative ap-
proach that can be used with more complex models
is the metamodel approach (for a review see Kleij-
nen [41.85]). A metamodel is a simplified surrogate
model that is abstracted from the primary model and
used to aid in the exploration of the primary model and
its parameter space. While metamodels have long been
used in engineering research, they have only recently
started to be applied to models in the geosciences.

Odoni [41.86], for example, has applied the meta-
model approach to the study of a landscape evo-
lution model (LEM) developed by Slingerland and
Tucker [41.87] known as GOLEM (where GO stands
for geomorphic-orogenic). GOLEM has been used,
for example, to model the evolution of a catchment
landscape of the Oregon Coast Range around the head-
waters of the Smith River over a period of 100 000
years. In order to understand how equifinality mani-
fests itself in GOLEM, Odoni selected 10 parameters
(related to mass movement, channel formation, fluvial
erosion, and weathering processes) to vary over a range
of values that was determined to be consistent with the
location based on published data and calibration. The
model outputs used to describe the landscape at 100 000

years include sediment yield, drainage density, sedi-
ment delivery ratio, and a topographic metric. Rather
than trying to solve the full GOLEM model for the
immense number of possible parameter value combina-
tions, Odoni derived a metamodel, or set of regression
equations, that described each model output as a func-
tion of the GOLEM parameters. As he explains, “The
parameter space is then sampled rapidly and densely
(>> 1�106 times), using each metamodel to predict
GOLEM’s output at each sample point” [41.86, p. i].
In this way metamodels yield a clearer picture of what
drives model output (leading to a possible further sim-
plification of the model) and an understanding of where
equifinality may be lurking. It is important to note that
this equifinality is not just an abstract cooked-up pos-
sibility, but a genuine, wide-spread practical problem,
making it yet another example of what Belot termed
down-to-earth underdetermination.

More common than both the GLUE and metamodel
approaches are classic intermodel comparison projects.
The most well known here are the large-scale, multi-
phase intercomparison projects used by the IPCC in
their assessments. The most recent coupled model in-
tercomparison project (CMIP5), for example, compares
the predictions of dozens of climate models running the
same set of scenarios. The aim of such multimodel en-
sembles is to “sample uncertainties in emission scenar-
ios, model uncertainty and initial condition uncertainty,
and provide a basis to estimate projection uncertain-
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ties” [41.88, p. 369]. Lloyd has emphasized the strength
of such multimodel approaches, arguing that it is “a ver-
sion of reasoning from variety of evidence, enabling this
robustness to be a confirmatory virtue” [41.89, p. 971].

The proper assessment of such intermodel compari-
sions for robustness and uncertainty reduction involves
some subtleties, however (see, e.g., Parker [41.90, 91];
Lenhard and Winsberg [41.92]). Models can, for ex-
ample, agree because they share some common model
structure, rather than indicating model accuracy. As
Masson and Knutti explain [41.93, p. 1]:

“All models of course contain common elements
(e.g., the equations of motion) because they de-
scribe the same system, and they produce similar
results. But if they make the same simplifications in
parameterizing unresolved process, use numerical
schemes with similar problems, or even share com-
ponents or parts thereof (e.g., a land surface model),

then their deviations from the true system or other
models will be similar.”

In such cases an agreement among climate models does
not indicate that modelers are on the right track. It re-
mains unclear how best to conceptualize and assess
model independence [41.23, p. 485]. More generally,
the spread of an ensemble of models is often taken to
approximate the uncertainty in our predictions; how-
ever, as Knutti et al. [41.94] have argued, these are
ensembles of opportunity, not systematic explorations
of model or parameter space. They suggest a number
of ways forward, including having a larger diversity
of models to help find constraints valid across struc-
turally different models, and developing new statisti-
cal methods for incorporating structural model uncer-
tainty [41.94, p. 2755]. There are many other multi-
model approaches used in the geosciences, including
coupled models and hierarchical modeling.

41.10 Conclusions
The geosciences provide a rich and fruitful context in
which to explore methodological issues in scientific
modeling. The problem of understanding and articulat-
ing scientific uncertainty has particularly come to the
fore in these fields. The complex and multiscale na-
ture of geological and geophysical phenomena require
that a wide variety of kinds of models be deployed
and a broad spectrum of sources of uncertainty be con-
fronted. Most modelers do not expect their models to
give specific, quantitative predictions of the detailed be-
havior of the systems under investigation. Rather, they
are understood as providing a tool by which scientists
can test hypotheses (including causal ones), evaluate
the relative importance of different elements of the
system, develop model-based explanations [41.95, 96],
and generate qualitatively accurate projections of fu-
ture conditions. Indeed, it is precisely by grappling with

these many sources of uncertainty that geoscientists
gain insight and understanding into the various pro-
cesses that shape the Earth, their relative importance
and patterns of dependence, and the emergent structures
that they produce.

The geosciences, as we have seen, constitute
a significant portion of scientific research today. Our
philosophies of science and our understanding of the
nature of model-based inquiry are inadequate if we do
not take this research into account. As we hope this re-
view has made clear [41.44, p. 100]:

“the earth sciences are profoundly important, not
only because they challenge conventional philo-
sophical portraits of how scientific knowledge is
produced, tested, and stabilized, but also because
they matter for the future of the world.”
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