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11. Qualitative Inductive Generalization
and Confirmation

Mathieu Beirlaen

Inductive generalization is a defeasible type of
inference which we use to reason from the partic-
ular to the universal. First, a number of systems
are presented that provide different ways of im-
plementing this inference pattern within first-
order logic. These systems are defined within the
adaptive logics framework for modeling defeasi-
ble reasoning. Next, the logics are re-interpreted
as criteria of confirmation. It is argued that they
withstand the comparison with two qualitative
theories of confirmation, Hempel's satisfaction
criterion and hypothetico-deductive confirma-
tion.
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Logics of induction are tools for evaluating the strength
of arguments which are not deductively valid. There are
many kinds of argument the conclusion of which is not
guaranteed to follow from its premises, and there are
many ways to evaluate the strength of such arguments.
This chapter focusses on one particular kind of non-
deductive argument, and on one particular method of
implementation. The type of argument under consider-
ation here is that of inductive generalization, as when
we reason from the particular to the universal. A num-
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ber of logics are discussed which permit us, given a set
of objects sharing or not sharing a number of properties,
to infer generalizations of the form All x are P, or All x
with property P share property Q. Inductive generaliza-
tion is a common practice which has proven its use in
scientific endeavor. For instance, given the fact that the
relatively few electrons measured so far carry a charge
of —1.6x10~!° Coulombs, we believe that all electrons
have this charge [11.1].

11.1 Adaptive Logics for Inductive Generalization

The methods used here for formalizing practices of
inductive generalization stem from the adaptive log-
ics framework. Adaptive logics are tools developed for
modeling defeasible reasoning, equipped with a proof
theory that nicely captures the dynamics of non-mono-
tonic — in this case, inductive — inference. In proofs for
adaptive logics for inductive generalization, the condi-
tional introduction of generalizations is allowed. The
proof theory is also equipped with a mechanism tak-
ing care that conditionally introduced generalizations
get retracted in case their condition is violated, for in-

stance when the generalization in question is falsified
by the premises.

In Sect. 11.2 and 11.3 the general framework of
adaptive logics is introduced, and a number of existing
adaptive logics for inductive generalization are defined.
The differences between these logics arise from dif-
ferent choices made along one of two dimensions.
A first dimension concerns the specific condition re-
quired for introducing generalizations in an adaptive
proof. A very permissive approach allows for their free
introduction, without taking into account the specifics
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of the premises. This is the idea behind the logic LI.
A more economical approach is to permit the introduc-
tion of a generalization on the condition that at least
one instance of it it present. This is the rationale behind
a second logic, IL. In an IL-proof a generalization All
P are Q can be introduced only if the premise set con-
tains at least one object which is either not-P or Q. More
economical still is the rationale behind a third logic, G,
which aims to capture the requirement of knowing at
least one positive instance of a generalization before
introducing it in a proof. That is, in a G-proof a gen-
eralization All P are Q can be introduced if the premise
set contains at least one object which is both P and Q.

The second dimension along which different con-
sequence relations are generated concerns the specific
mechanism used for retracting generalizations intro-
duced in adaptive proofs. It is often not sufficient to
demand retraction just in case a generalization is falsi-
fied by the premises. For instance, if the consequence
sets of our logics are to be closed under classical
logic, jointly incompatible generalizations should not
be derivable, even though none of them is falsified by
our premise set. Within the adaptive logics framework,
various strategies are available for retracting condi-
tional moves in an adaptive proof. Two such strategies
are presented in this chapter: the reliability strategy and
the minimal abnormality strategy.

Combining both dimensions, a family of six adap-
tive logics for inductive generalization is obtained (it
contains the systems LI, IL, and G, each of which can
be defined using either the reliability or the minimal
abnormality strategy). These logics have all been pre-
sented elsewhere (for LI, see [11.2-4]. For IL and G,
see [11.5]). The original contribution of this chapter
consists in a study comparing these systems to some

existing qualitative criteria of confirmation. There is an
overlap between the fields of inductive logic and con-
firmation theory. In 1943 already, Hempel noted that
the development of a logical theory of confirmation
might be regarded as a contribution to the field of in-
ductive logic [11.6, p. 123]. In Sect. 11.4 the logics
from Sect. 11.2 and 11.3 are re-interpreted as qualitative
criteria of confirmation, and are related to other qual-
itative models of confirmation: Hempel’s satisfaction
criterion (Sect. 11.4.1) and the hypothetico-deductive
model (Sect. 11.4.2). Section 11.4 ends with some re-
marks on the heuristic guidance that adaptive logics for
inductive generalization can provide in the derivation
and subsequent confirmation of additional generaliza-
tions (Sect. 11.4.3).

The following notational conventions are used
throughout the chapter. The formal language used is
that of first-order logic without identity. A primitive
functional formula of rank 1 is an open formula that
does not contain any logical symbols (3, V,—,V, A, D
, =), sentential letters, or individual constants, and that
contains only predicate letters of rank 1. The set of
functional atoms of rank 1, denoted “A'!, comprises
the primitive functional formulas of rank 1 and their
negations. A generalization is the universal closure
of a disjunction of members of A!. That is, the set
of generalizations in this technical sense is the set
(YA V...VA) |AL, ..., A, € ATin> 1}, where V
denotes the universal closure of the subsequent for-
mula. Occasionally the term generalization is also used
for formulas equivalent to a member of this set, e.g.,
Vx(Px D Qx). It is easily checked that generalizations
V(A;V...VA,) can be rewritten as formulas of the gen-
eral form V((Bi A...AB;)) D (Cy V...V Cy)), and vice
versa, where all B; and C; belong to A/!.

11.2 A First Logic for Inductive Generalization

In this section the standard format (SF) for adaptive
logics is introduced and explained. Its features are
illustrated by means of the logic LI from [11.3,4],
chronologically the first adaptive logic for inductive
generalization. A general characterization of the SF is
provided, and its proof theory is explained. For a more
comprehensive introduction, including the semantics
and generic meta-theory of the SF, see, e.g., [11.7,
8].

11.2.1 General Characterization
of the Standard Format

An adaptive logic (AL) within the SF is defined as
a triple, consisting of:

(i) A lower limit logic (LLL), a logic that has static
proofs and contains classical disjunction

(ii) A set of abnormalities, a set of formulas that share
a (possibly) restricted logical form, or a union of
such sets

(iii) An adaptive strategy.

The LLL is the stable part of the AL: anything deriv-
able by means of the LLL is derivable by means of the
AL. Explaining the notion of static proofs is beyond
the scope of this chapter. For a full account, see [11.9].
(Alternatively, the static proofs requirement can be re-
placed by the requirement that the lower limit logic has
a reflexive, monotonic, transitive, and compact conse-
quence relation [11.8].) In any case, it suffices to know
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that the first-order fragment of Classical Logic (CL)
meets this requirement, as we work almost exclusively
with CL as a LLL. The lower limit logic of LI is CL.

Typically, an AL enables one to derive, for most
premise sets, some extra consequences on top of those
that are LLL-derivable. These supplementary conse-
quences are obtained by interpreting a premise set as
normally as possible, or, equivalently, by supposing
abnormalities to be false unless and until proven oth-
erwise. What it means to interpret a premise set as
normally as possible is disambiguated by the strategy,
element (iii).

The normality assumption made by the logics to be
defined in this chapter amounts to supposing that the
world is in some sense uniform. Normal situations are
those in which it is safe to derive generalizations. Ab-
normal situations are those in which generalizations are
falsified. In fact, the set of LI-abnormalities, denoted
211, is just the set of falsified generalizations (the defi-
nitions are those from [11.5]; in [11.10, Sect. 4.2.2] it is
shown that the same logic is obtained if £2y; is defined
as the set of formulas of the form —VxA(x), where A
contains no quantifiers, free variables, or constants)

Qu =t {=V(A V... VA) Ay, A, € AT
n>1}.

(11.1)

In adaptive proofs, it is possible to make conditional
inferences assuming that one or more abnormalities
are false. Whether or not such assumptions can be up-
held in the continuation of the proof is determined by
the adaptive strategy. The SF incorporates two adaptive
strategies, the reliability strategy and the minimal ab-
normality strategy. In the generic proof theory of the
SF, adaptive strategies come with a marking definition,
which takes care of the withdrawal of certain condi-
tional inferences in dynamic proofs. It will be easier to
explain the intuitions behind these strategies after defin-
ing the generic proof theory for ALs. For now, just note
that in the remainder LI is ambiguous between LI" and
LI™, where the subscripts r and m denote the reliability
strategy, respectively the minimal abnormality strategy.
Analogously for the other logics defined below.

11.2.2 Proof Theory

Adaptive proofs are dynamic in the sense that lines de-
rived at a certain stage of a proof may be withdrawn
at a later stage. Moreover, lines withdrawn at a certain
stage can become derivable again at an even later stage,
and so on. (A stage of a proof is a sequence of lines
and a proof is a sequence of stages. Every proof starts
off with stage 1. Adding a line to a proof by applying

one of the rules of inference brings the proof to its next
stage, which is the sequence of all lines written so far.)

A line in an adaptive proof consists of four ele-
ments: a line number, a formula, a justification and
a condition. For instance, a line

j A i....inR A,

reads: at line j, the formula A is derived from lines
i1 —i, by rule R on the condition A. The fourth element,
the condition, is what permits the dynamics. Intuitively,
the condition of a line in a proof corresponds to an
assumption made at that line. In the example above,
A was derived on the assumption that the formulas in
A are false. If, later on in the proof, it turns out that
this assumption was too bold, the line in question is
withdrawn from the proof by a marking mechanism cor-
responding to an adaptive strategy. Importantly, only
members of the set of abnormalities are allowed as el-
ements of the condition of a line in an adaptive proof.
Thus, assumptions always correspond to the falsity of
one or more abnormalities, or, equivalently, to the truth
of one or more generalizations.

Before explaining how the marking mechanism
works, the generic inference rules of the SF must be
introduced. There are three of them: a premise intro-
duction rule (Prem), an unconditional rule (RU), and
a conditional rule (RC). For adaptive logics with CL as
their LLL, they are defined as follows

Prem IfAerl:

A 0

RU IfAl,...,A,J_CLBZ
A Al
AI’L An

B AU...UA,
RC  If Ay.....A,FeL BVvDab(©):
A1 Al

n

1U...uA, U6

A, A
B A

Where I' is the premise set, Prem permits the intro-
duction of premises on the empty condition at any time
in the proof. Remember that conditions, at the intuitive
level, correspond to assumptions, so Prem stipulates
that premises can be introduced at any time without
making any further assumptions.
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Since ALs strengthen their LLL, one or more rules
are needed to incorporate LLL-inferences in AL-proofs.
In the proof theory of the SF, this is taken care of by the
generic rule RU. This rule stipulates that whenever B is
a CL-consequence of Ay, ...,A,, and all of Ay,... A,
have been derived in a proof, then B is derivable, pro-
vided that the conditions attached to the lines at which

Ay, ..., A, were derived are carried over. Intuitively, if
Ay, ..., A, are derivable assuming that the members of
Ay, ..., A, are false, and if B is a CL-consequence of
Ay,...,A,, then B is derivable, still assuming that all

members of Aq,..., A, are false.

Before turning to RC, here is an example illus-
trating the use of the rules Prem and RU. Let I} =
{Pa A Qa, Pb, —~Qc}. Suppose we start an LI-proof for
I} as follows

1 PanQa Prem 0
2 Pb Prem @
3 —=Qc Prem 0
4 Pa I;RU 0
5 Qa I;RU 0

Let ® be a finite set of LI-abnormalities, that is, ® C
£211. Then Dab(®) refers to the classical disjunction
of the members of ® (Dab abbreviates disjunction of
abnormalities; in the remainder, such disjunctions are
sometimes referred to as Dab-formulas). RC stipulates
that, whenever B is CL-derivable from A;,...,A, in
disjunction with one or more abnormalities, then B can
be inferred assuming that these abnormalities are false,
i.e., we can derive B and add the abnormalities in ques-
tion to the condition set, together with assumptions
made at the lines at which Ay, ..., A, were derived.
For instance, (11.2) is CL-valid

Vx(PxV Qx) vV =Vx(PxV Qx) (11.2)

Note that the second disjunct of (11.2) is a member
of £211. In the context of inductive generalization the
assumption that the world is as normal as possible
corresponds to an assumption about the uniformity of
the world. In adaptive proofs, such assumptions are
made explicit by applications of the conditional rule.
Concretely, if a formula like (11.2) is derived in an
LI-proof, RC can be used to derive the first disjunct
on the condition that the second disjunct is false. In
fact, since (11.2) is a CL-theorem, the generalization
Vx(PxV Qx) can be inroduced right away, taking its
negation to be false (lines 1—5 are not repeated)

6 Vx(PxvQx) RC {=Vx(PxVQx)}

In a similar fashion, RC can be used to derive other gen-
eralizations

7  VxPx RC {—VxPx}

8  VxOx RC {—VxQx}

9  Vx(=PxV Qx) RC {=Vx(—=PxV Ox)}
10 Vx(PxV —=Qx) RC {=Vx(PxV —0x)}
11 Vx(=Pxv-—-0x) RC {=Vx(—=PxVv-—-0x)}

Each generalization is derivable assuming that its cor-
responding condition is false. However, some of these
assumptions clearly cannot be upheld. We know, for in-
stance, that the generalizations derived at lines 8 and
11 are falsified by the premises at lines 3 and 1 re-
spectively. So we need a way of distinguishing between
good and bad inferred generalizations. This is where
the adaptive strategy comes in. Since distinguishing
good from bad generalizations can be done in differ-
ent ways, there are different strategies available to us
for making the distinction hard. First, the reliability
strategy and its corresponding marking definition are
introduced. The latter definition takes care of the retrac-
tion of bad generalizations.

Marking definitions proceed in terms of the mini-
mal inferred Dab-formulas derived at a stage of a proof.
A Dab-formula that is derived at a proof stage by RU
at a line with condition @ is called an inferred Dab-for-
mula of the proof stage.

Definition 11.1 Minimal inferred Dab-formula
Dab(A) is a minimal inferred Dab-formula at stage s of
a proof iff Dab(A) is an inferred Dab-formula at stage s
and there is no A’ C A such that Dab(A’) is an inferred
Dab-formula at stage s.

Where Dab(A,), ..., Dab(A,) are the minimal inferred
Dab-formulas derived at stage s, Uy(I") = AjU...UA,
is the set of formulas that are unreliable at stage s.

Definition 11.2 Marking for reliability
Where A is the condition of line i, line i is marked at
stage s iff AN U,(I") # 0.

To illustrate the marking mechanism, consider the fol-
lowing extension of the LI"-proof for I} (marked lines
are indicated by a v/-sign; lines 1—5 are not repeated in
the proof)

6 Vx(PxV Qx) RC
{=Vx(PxV Qx)}v

7 VxPx RC
{=VxPx}v

8 Vx0Ox RC

{=Vx0Ox}v
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9  Vx(—=PxV Qx) RC
{=Vx(=PxV Qx)}v

10 Vx(PxV —Qx) RC
{=Vx(PxV —=Qx)}

11 Vx(=PxV —Qx) RC
{=Vx(=Px Vv —0x)}v

12 —=VxQOx 3;RU
@

13 =Vx(—=PxV —Qx) 1;RU
@

14  —=VxPxV =Vx(—=PxV Qx) 3;RU
@

15 =Vx(PxV Qx)V —=Vx(—=PxVv Qx) 3;RU
@

As remarked above, the generalizations derived at lines
8 and 11 are falsified by the premises, so it makes good
sense to mark them and thereby consider them not de-
rived anymore. As soon as we derive the negations of
these generalizations (lines 12 and 13) Definition 11.2
takes care that lines 8 and 11 are marked. The gener-
alizations derived at lines 6, 7, and 9 are not falsified
by the data, yet they are marked according to Defini-
tion 11.2, due to the derivability of the minimal inferred
Dab-disjunctions at lines 14 and 15. We know, for in-
stance, that the generalizations derived at lines 7 and 9
cannot be upheld together: at line 14 we inferred that
they are jointly incompatible in view of the premises.
Definition 11.2 takes care that both lines 7 and 9 are
marked at stage 15, since

Uis(I) = {—=VxPx, =VxQOx, =Vx(Px Vv Ox),
=Vx(=PxV Qx), =Vx(—=PxV —0x)} .
(11.3)

The only inferred generalization left unmarked at stage
15 is Vx(Px Vv —Qx), derived at line 10.

Due to the dynamics of adaptive proofs, we cannot
just take a formula to be an AL-consequence of some
premise set I" once we derived it at some stage on an
unmarked line in a proof for I', for it may be that there
are extensions of the proof in which the line in question
gets marked. Likewise, we need to take into account the
fact that lines marked at a stage of a proof may become
unmarked at a later stage. This is taken care of by using
the concept of final derivability:

Definition 11.3 Final derivability
A is finally derived from I' at line i of a finite proof
stage s iff (i) A is the second element of line i, (ii) line i

is not marked at stage s, and (iii) every extension of the
proof in which line i is marked may be further extended
in such a way that line 7 is unmarked.

Definition 11.4 Logical consequence for LIf
I' Frr A (A is finally LI-derivable from I') iff A is
finally derived at a line of an LI"-proof from I".

Given the premise set [, there are no extensions of
the proof above in which any of the marked lines be-
come unmarked, nor are there extensions in which line
10 is marked and cannot be unmarked again in a fur-
ther extension of the proof. Hence, by Definitions 11.3
and 11.4

I o YxPx, (11.4)
I Hor YxOx (11.5)
I e Yx(Pxv Qx) , (11.6)
I For Vx(Px Vv —=Qx) , (11.7)
I Yo Vx(=Px v Qx) , (11.8)
I o Yx(=Px Vv —Qx) . (11.9)

The logic LI" is non-monotonic: adding new premises
may block the derivation of generalizations that were
finally derivable from the original premise set. For in-
stance, suppose that we add the premise —Pd A Qd to
I'y. Since the extra premise provides a counter-instance
to the generalization Yx(PxV —Qx), the latter should no
longer be LI"-derivable from the new premise set. The
following proof illustrates that this is indeed the case

1 PanQa Prem
]

2 Pb Prem
]

3 =Q0c Prem
]

4 —=PdAQd Prem
]

5 Vx(PxVQx) RC
{=Vx(PxV Ox)}v

6 VxPx RC
{=VxPx}v

7 VxQOx RC
{=Vx0Ox}v

8 Vx(—PxV Qx) RC

{=Vx(=PxV QOx)}v

T'lL| ) Med
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9  Vx(PxVv—Qx) RC
{=Vx(Px Vv —=0x)}v

10 Vx(=PxV —Qx) RC
{=Vx(=Px Vv —0x)}v

11 —VxPx 4;RU
@

12 —VxQOx 3;RU
@

13 =Vx(—=PxV —Qx) I;RU
@

14 —=Vx(PxVv Qx)V —=Vx(=PxVv Qx) 3;RU
@

15 —=Vx(PxV —Qx) 4;RU
]

Line 9 is marked in view of the Dab-formula derived
at line 15. There is no way to extend this proof in such
a way that the line in question gets unmarked. Hence,
I U{—=PdAQd} /L1 Vx(PxV—Qx). In fact, no nontau-
tological generalizations whatsoever are LI"-derivable
from the extended premise set 17 U {—Pd A Qd}.

11.2.3 Minimal Abnormality

Different interpretations of the same set of data may
lead to different views concerning which generaliza-
tions should or should not be derivable. Each such view
may be driven by its own rationale, and choosing one
such rationale over the other is not a matter of pure
logic. For that reason, different strategies are available
to adaptive logicians, each interpreting a set of data in
their own sensible way, depending on the context. The
reliability strategy was defined already. The minimal
abnormality strategy is slightly less skeptical. Conse-
quently, for some premise sets, generalizations may be
LI™-derivable, but not LI*-derivable.

Like reliability, the minimal abnormality strategy
comes with its marking definition. Let a choice set of
Y ={A, A,,...} be a set that contains one element
out of each member of X. A minimal choice set of X is
a choice set of X' of which no proper subset is a choice
set of . Where Dab(A), Dab(4,), ... are the mini-
mal inferred Dab-formulas derived from a premise set
I' at stage s of a proof, @y(I") is the set of minimal
choice sets of {A1, Ay, ...}

Definition 11.5 Marking for minimal abnormality

Where A is the formula and A the condition of line i,
line i is marked at stage s iff (i) there is no ¢ € @, (I")
such that ¢ N A = @, or (ii) for some ¢ € @,(I"), there

is no line at which A is derived on a condition ® for
whichp N ® = 0.

An example will clarify matters. Let 1> = {Pa A Qa A
Ra, —=Rb A (—PbV —=Qb), =Pc A —=Qc A Rc}.

1 PanQaARa Prem
@

2 =Rb A (—=Pbv —Qb) Prem
@

3 =PcA—=QcARc Prem
@

4  Vx(PxVvQx) RC
{=Vx(PxV Qx)}v

5  Vx(PxVRx) RC
{=Vx(PxV Rx)}V

6  Vx(—PxV Rx) RC
{=Vx(=PxV Rx)}v

7 =Vx(PxV Qx) 3;RU
@

8 —Vx(PxVRx)Vv-—Vx(—PxVRx) 2;RU
@

9  Vx(PxVRx)V VYx(—PxV Rx) 5;RU
{=Vx(PxV Rx)}

10 Vx(PxV Rx)V Yx(—=PxV Rx) 6;RU
{=Vx(—=PxV Rx)}

To see what is happening in this proof, we need to un-
derstand the markings. Note that there are two minimal
choice sets at stage 10

D10(13) = {{—VYx(PxV Ox), ~Vx(Px V Rx)},
{=Vx(PxV Qx), =Vx(—=PxV Rx)}} .
(11.10)

Line 4 is marked in view of clause (i) in Definition 11.5,
since its condition intersects with each minimal choice
set in @1o(I%). Lines 5 and 6 are marked in view of
clause (ii) in Definition 11.5. For the minimal choice
set {—=Vx(PxV Qx), =Vx(PxV Rx)}, there is no line at
which Vx(PxV Rx) was derived on a condition that
does not intersect with this set. Hence line 5 is marked.
Analogously, line 6 is marked because, for the minimal
choice set {=Vx(PxV Qx), ~Vx(—PxV Rx)}, there is no
line at which Vx(—Px Vv Rx) was derived on a condition
that does not intersect with this set.

Things change, however, when we turn to lines 9
and 10. In these cases, none of clauses (i) or (ii) of Def-
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inition 11.5 apply: for each of these lines, there is a min-
imal choice set in @ (I%) which does not intersect with
the line’s condition; and for each of the sets in @¢(1%),
we have derived the formula Vx(Px V Rx) V Vx(—=PxV
Rx) on a condition that does not intersect with it. Hence,
these lines remain unmarked at stage 10 of the proof.

Things would have been different if we made use of
the reliability strategy, since

Uio(I3) ={—Vx(PxV Qx), =Vx(Px V Rx),

—=Vx(—=PxV Rx)} . (11.11)

In view of Uyo(I3) and Definition 11.2, all of lines 4—6
and 9—10 would be marked if the above proof were
a LI"-proof.

As with the reliability strategy, logical consequence
for the minimal abnormality strategy is defined in terms
of final derivability (Definition 11.3). A consequence
relation for LI™ is defined simply by replacing all oc-
currences of LI" in Definition 11.4 with LI™. Although
the proof above can be extended in many interesting
ways, showing the (non-)derivability of many more

generalizations than those currently occurring in the
proof, nothing will change in terms of final derivabil-
ity with respect to the formulas derived at stage 10

I Hym Vx(Px v Qx) , (11.12)
I Hpm Vx(Px Vv Rx) , (11.13)
I Hum Yx(Px Vv —Rx) , (11.1%)
I Fpm Vx(Px Vv Rx) v Vx(—=Px V Rx) , (11.15)
0 Yo Vx(Px v Ox) , (11.16)
I Hore Vx(Px Vv Rx) (11.17)
0 b Vx(Px v —Rx) , (11.18)
I o Yx(PxV Rx) vV Yx(—=Px V Rx) . (11.19)

At the beginning of Sect. 11.2.3 it was mentioned
that the rationale underlying the reliability strategy is
slightly more skeptical than that underlying the mini-
mal abnormality strategy. The point is illustrated by the
proof for I. As we saw, the formula Vx(PxV Rx) vV
Vx(—=PxV Rx) is LI™-derivable from I, but not LI"-
derivable from 1.

11.3 More Adaptive Logics for Inductive Generalization

LI interprets the world as uniform by taking as normal
those situations in which a generalization is true, and
as abnormal those situations in which a generalization
is false. But of course, if uniformity is identified with
the truth of every generalization in this way, the world
can never be completely uniform (for the simple fact
that many generalizations are incompatible and cannot
be jointly true). Perhaps a more natural way to interpret
the uniformity of the world is to take all objects to have
the same properties: as soon as one object has property
P, we try to infer that all objects have property P. This
is the rationale behind the logic IL from [11.5].

Roughly, the idea behind IL is to generalize from
instances. Given an instance, the derivation of a gener-
alization is permitted on the condition that no counter-
instances are derivable. So abnormal situations are
those in which both an instance and a counter-instance
of a generalization are present. This is the formal defi-
nition of the set of IL-abnormalities

QIL =df {H(Al V... \/An) AN E"'(Al V... \/An) |
Al ... Aye A n=1).
(11.20)
The logic IL is defined by the lower limit logic CL,

the set of abnormalities 2y, and the adaptive strategy
reliability (ILF) or minimal abnormality (IL™).

In an IL-proof generalizations cannot be condi-
tionally introduced from scratch, since an instance is
required. In this respect, IL is more demanding than
LI. However, it does not follow that for this reason IL
is a weaker logic, since it is also more difficult to derive
(disjunctions of) abnormalities in IL. A simple example
will illustrate that, for many premise sets, IL is in fact
stronger than LI. Consider the following IL-proof from
I3 = {Pa, —PbV Qb}

1 Pa Prem
]

2 —=Pbv Qb Prem
)

3 VxPx 1;RC
{3xPx A Ix—Px}

4 Qb 2,3;RU
{3xPx A Ax—Px}

5 VxQx 4;RC

{3xPx A Ax—Px, IxQOx A Ix—QOx}

In view of Pa ¢y, VxPx Vv (3xPx A 3x—Px), we applied
RC to line 1 and conditionally inferred VxPx at line 3.
Next, we used RU to infer Qb from this newly obtained
generalization together with the premise at line 2. We
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now have an instance of VxQx, so we can conditionally
infer the latter generalization, taking over the condition
of line 4. Importantly, not a single disjunction of mem-
bers of 2y, is CL-derivable from 3. This means that
there is no way to mark any of lines 3—5 in any exten-
sion of this proof, independently of which strategy we
use.

Consequence relations for IL" and IL™ are again
definable in terms of final derivability (Definition 11.3).
All we need to do is replace all occurrences of LI" in
Definition 11.4 with IL", respectively IL™. Hence

F3 '_IL VxPx s
F3 l_IL V)CQX .

(11.21)
(11.22)

Compare the IL-proof above with the following LI-
proof from I3

1 Pa Prem
@

2 =Pbv Qb Prem
]

3 VxPx RC
{=VxPx}v

4 Qb 2,3;RU
{=VxPx}v

5 VxQOx RC
{=Vx0Ox}v

6 —VxPxV -—=VYx—Qx 1,2;RU
0

7 =VxQxV—=Vx(=PxVv—-0x) 1,2;RU
0

Independently of the adaptive strategy used (reliability
or minimal abnormality), there are no extensions of this
LI-proof in which any of lines 3—5 become unmarked.
Therefore

F3 |7ZLI VXPX ,
F3 |7‘LI VXQX .

(11.23)
(11.24)

The premise set I3 not only serves to show that IL is not
strictly weaker than LI in terms of derivable generaliza-
tions. It also illustrates that, although in an IL-proof we
generalize on the basis of instances, such an instance
need not always be CL-derivable from the premise set.
In the proof from I3, we derived the generalization
VxQx even though no instance of this generalization is
CL-derivable from I73. Instead, we first derived VxPx
(of which I3 does provide us with an instance), and

then used this generalization to infer an instance of
VxQx. This is perfectly in line with the intuition be-
hind IL: If deriving a generalization on the basis of an
instance leads us to more instances of other general-
izations, then, assuming the world to be as uniform as
possible, we take the world to be uniform with respect
to these other generalizations as well.

When discussing inductive generalization, confir-
mation theorists often use the more fine-grained dis-
tinction between mere instances of a generalization,
positive instances, and negative instances. For example,
given a generalization Yx(Px D Qx), any a such that
Pa D Qa is an instance of Vx(Px D Qx); any a such that
Pa A Qa is a positive instance of Yx(Px D Qx); and any
a such that Pa A —Qa is a negative instance of ¥Yx(Px D
Ox). Instead of requiring a mere instance before in-
troducing a generalization, some confirmation theorists
have suggested the stronger requirement for a positive
instance, that is, a negative instance of the contrary
generalization (Sect. 11.4.3). According to this idea, in-
terpreting the world as uniform as possible amounts to
generalizing whenever a positive instance is available to
us. Abnormal situations, then, are those in which both
a positive and a negative instance of a generalization are
available to us. There is a corresponding variant of IL
that hard-codes this idea in its set of abnormalities: the
logic G from [11.5]. The latter is defined by the lower
limit logic CL, the set of abnormalities §2¢ and either
the reliability strategy (G") or the minimal abnormality
strategy (G™).

£2g =qf
{3AI A AAANA) AT(AL AL AALATA)) |
Ap, Ay, ... A, G./'thl;l’lZO} .
(11.25)

In proofs to follow I(A; A...AA, AAQ) AT(ATA ... A
A, A—Ap) is abbreviated as A; A ... AA, A LA (Where
again Ag,A;,...,A, € A1), As an illustration of the
workings of G, consider the following G-proof from
Iy = {Pa A Qa,—Qb,—Pc}

1 PanQa Prem
@

2 —Qb Prem
@

3 =Pc Prem
]

4 Vx(PxD Qx) I;RC

{Px N £0x}
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5 Vx(Qx D Px) I;RC
{Ox A +Px}

6 Vx(Px=Qx) 4,5;RU
{Px A £0x, Ox A £Px}

7  IxPx A Jx—Px 1,3;RU
@

8 IxOx A Ix—0Ox 1,2;RU
@

The formulas derived at lines 4—6 are finally G-deriv-
able in the proof. Since G-consequence too is defined
in terms of final derivability, it follows, independently
of the strategy used, that

Iy Fg Vx(Px D Qx), (11.26)
Iybg VX(QXDPX) s (11.27)
Iy Fg Vx(Px = Qx) . (11.28)

Now consider the following IL-proof from I (where
Al ..., A, e A" V(A v...VA,) abbreviates 3(A; v
... VA)AT=(A1V...VA)))

1 PanQa Prem
@

2 —Qb Prem
@

3 —Pc Prem
@

4 Vx(PxD QOx) I;RC
{!{(=PxV Qx)}v

5 Vx(Qx D Px) I;RC
{{(=0xV Px)}v

6 Vx(Px=Qx) 4,4;RU
{1{(=Px Vv Ox),(=0xV Px)}v

7 1Px 1,3;RU
]

8 10x 1,2;RU
]

9 I(PxV Qx)V!(—PxV Qx) 1,2;RU
]

10 Y(—=QxVv Px)V!(PxVv Qx) 1,3;RU

]
11 1(=PxV —Qx) 1,2;RU
]

The minimal inferred Dab-formulas inferred at lines
7—11 will remain minimal in any extension of this proof

(none of the disjuncts of any of the formulas derived at
lines 9 or 10 is separately derivable). Accordingly, the
marks in this proof will not change. Hence, indepen-
dently of the strategy used

N |7ZIL Vx(Px D Qx) , (11.29)
I |7ZIL VX(QXDPX) s (11.30)
I |7ZIL Vx(Px = Qx) . (11.31)

Two more remarks are in order. First, the example above
suggests that G is in general stronger than IL. This
is correct for the minimal abnormality strategy, but
false for the reliability strategy. An illustration is pro-
vided by the premise set I'5 = {Pa, Qb, Rb, Qc, —Rc}.
The generalization VYx(—Px D Qx) cannot be inferred
on the condition —Px A £Qx, since we lack a pos-
itive instance. It can be inferred on the conditions
+Qx or £Px in view of VxQx ¢, Vx(—=Px D Qx) and
VxPx F¢r, Vx(—Px D Qx), but none of these conditions
are reliable in view of the derivability of minimal
Dab-formulas like £PxV (Px A £Rx) and £0xV (Qx A
+Px) Vv (Px A £Rx).

The situation is different in an IL"-proof, where de-
riving Vx(—=Px D Qx) on the condition !(PxV Qx) in
a proof from I is both possible and final. That is, for
every derivable Dab-formula in which !(PxV Qx) oc-
curs, we can derive a shorter (minimal) disjunction of
abnormalities in which it no longer occurs. Summing

up

I's Hgr Yx(—=Px D QOx),
F5 l_IL‘" V)C(_'P)C D) Q)C) .

(11.32)
(11.33)

The second remark is that the requirement for a pos-
itive instance before generalizing in a G-proof is still
insufficient to guarantee that for every G-derivable gen-
eralization a positive instance is CL-derivable from the
premises. The following proof from Pa illustrates the
point

1 Pa Prem ¢
2 VxPx 1;RC  {£Px}
3 Vx(OxDPx) 2;RU {£Px}

Independently of the strategy used, no means are avail-
able to mark line 3, hence Pat-¢ Vx(Qx D Px), even
though no positive instance of Yx(Qx D Px) is avail-
able. More on this point below (see the discussion on
Hempel’s raven paradox in Sect. 11.4.1 and in the Ap-
pendix).

A total of six logics have been presented so far: the
logics LIF, LI™, IL", IL™, G, and G™. Each of these
systems interprets the claim that the world is uniform in
a slightly different way, leading to slightly different log-
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ics. Importantly, there is no Carnapian embarrassment
of riches here: each of the systems has a clear intuition
behind it.

The systems presented here can be combined so as
to implement Popper’s suggestion that more general
hypotheses should be given precedence over less gen-
eral ones [11.11]. For instance, if two generalizations
Vx(Px D Qx) and Vx((RxASx) D Tx) are jointly incom-

patible with the premises, a combined system gives
precedence to the more general hypothesis and delivers
only Vx(Px D Qx) as a consequence. There are various
ways to hard-code this idea, resulting in various new
combined adaptive logics for inductive generalization,
each slightly different from the others. These combina-
tions are not fully spelled out here. For a brief synopsis,
see [11.5, Sect. 5].

1.4 Qualitative Inductive Generalization and Confirmation

Inductive logic and confirmation theory overlap to
some extent. As early as 1943, Hempel noted that
the development of a logical theory of confirmation
might be regarded as a contribution to the field of
inductive logic [11.6, p. 123]. Following Carnap and
Popper’s influential work on inductive logic and cor-
roboration respectively, many of the existing criteria
of confirmation are quantitative in nature, measuring
the degree of confirmation of a hypothesis by the
evidence, possibly taking into account auxiliary hy-
potheses and background knowledge. Here, the logics
defined in the previous two sections are presented
as qualitative criteria of confirmation, and are related
to other qualitative models of confirmation. Quantita-
tive criteria of confirmation are not considered. For
Carnap’s views on inductive logic, see [11.12]. For
Popper’s, see [11.11]. For introductions to inductive
logic and probabilistic measures of confirmation, see,
e.g., [11.13-16].

Let I be any adaptive logic for inductive general-
ization defined in one of the previous sections. (All
remarks on I-confirmation readily generalize to the
combined systems from [11.5, Sect. 5].) Where H is the
hypothesis and I" contains the evidence, I-confirmation
is defined in terms of I-consequence:

Definition 11.6 1-confirmation

I Y-confirms H iff I' -1 H.

I' I-disconfirms H ift I' -y —H.

I' is I-neutral with respect to H iff I' t/y H and I" b4
—H.

This definition of I-confirmation has the virtue of sim-
plicity and formal precision. The two main qualitative
alternatives to I-confirmation are Hempel’s satisfac-
tion criterion and the hypothetico-deductive model of
confirmation. In Sect. 11.4.1, I-confirmation is com-
pared to Hempel’s adequacy conditions, which serve
as a basis for his satisfaction criterion. In Sect. 11.4.2,
I-confirmation is compared to hypothetico-deductive
confirmation. Section 11.4.3 concerns the use of the

criteria from Definition 11.6 as heuristic tools for hy-
pothesis generation and confirmation.

1.4.1 I-Confirmation
and Hempel's Adequacy Conditions

Let an observation report consist of a set of molecu-
lar sentences (sentences containing no free variables or
quantifiers). According to Hempel, the following con-
ditions should be satisfied by any adequate criterion for
confirmation [11.17]:

(1) Entailment condition: Any sentence which is en-
tailed by an observation report is confirmed by it.

(2) Consequence condition: If an observation report
confirms every one of a class K of sentences, then it
also confirms any sentence which is a logical con-

sequence of K:

(a) Special consequence condition: If an observa-
tion report confirms a hypothesis H, then it also
confirms every consequence of H.

(b) Equivalence condition: If an observation report
confirms a hypothesis H, then it also confirms
every hypothesis which is logically equivalent
to H.

(3) Consistency condition: Every logically consistent
observation report is logically compatible with the
class of all the hypotheses which it confirms.

If logical consequence is taken to be CL-conse-
quence, as Hempel did, then I-confirmation satisfies
conditions (1)-(3) no matter which adaptive logic for
inductive generalization is used, due to I's closure un-
der CL. So all of the resulting criteria of confirmation
meet Hempel’s adequacy conditions. (For (3) the fur-
ther property of smoothness or reassurance is required,
from which it follows that the I-consequence set of con-
sistent premise sets is consistent as well [11.7, Sect. 6].)

The definition of Hempel’s own criterion requires
some preparation (the formal presentation of Hempel’s
criterion is taken from [11.18]). An atomic formula A
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is relevant to a formula B iff there is some model M
of A such that: if M’ differs from M only in the value
assigned to B, M’ is not a model of A. The domain
of a formula A is the set of individual constants that
occur in the atomic formulas that are relevant for A.
The development of a universally quantified formula
A for another formula B is the restriction of A to the
domain of B, that is, the truth value of A is evaluated
with respect to the domain of B. For instance, the do-
main of Pa A (PbV Qc) is {a, b, c} whereas the domain
of Pa A Qa is {a}; and the development of Vx(Px D Qx)
for Pa A =Qb is (Pa D Qa) A (Pb D Qb).

Definition 11.7 Hempel's satisfaction criterion

An observation report E directly confirms a hypothesis
H if E entails the development of H for E.

An observation report E confirms a hypothesis H if H
is entailed by a class of sentences each of which is di-
rectly confirmed by E.

An observation report E disconfirms a hypothesis H if
it confirms the denial of H.

An observation report E is neutral with respect to a hy-
pothesis H if E neither confirms nor disconfirms H.

There are two reasons for arguing that Hempel’s satis-
faction criterion is too restrictive, and two reasons for
arguing that it is too liberal. Each of these is discussed
in turn. First, in order for the evidence to confirm a hy-
pothesis H according to Hempel’s criterion, all objects
in the development of H must be known to be instances
of H. This is a very strong requirement. I-confirmation
is different in this respect. For instance,

Pa, Qa, —Pb,—=Qb, Pc -y Vx(Px D Qx) . (11.34)
In (11.34) it is unknown whether c¢ instantiates the hy-
pothesis Vx(Px D Qx), since the premises do not tell
us whether Pc D Qc. The development of Vx(Px D Qx)
entails Pc D Qc, whereas the premise set of (11.34)
does not. So the hypothesis Yx(Px D Qx) is not directly
confirmed by these premises according to the satisfac-
tion criterion, nor is it entailed by one or more sentences
which are directly confirmed by them. Therefore the
satisfaction criterion judges the premises to be neutral
with respect to the hypothesis Vx(Px D Qx), whereas
(11.34) illustrates that Vx(Px D Qx) is I-confirmed by
these premises.

Second, given the law Vx(Px D Rx), the report
{Pa, Qa, Pb, Qb}, does not confirm the hypothesis
Vx(Rx D Qx) according to Hempel’s original formu-
lation of the satisfaction criterion. The reason is that
auxiliary hypotheses like Vx(Px D Rx) contain quanti-
fiers and therefore cannot be elements of observation
reports. (The original formulation of Hempel’s criterion

can, however, be adjusted so as to take into account
background knowledge [11.19,20].) For problems re-
lated to auxiliary hypotheses, see also Sect. 11.4.2.
For now, it suffices to note that the criteria from Def-
inition 11.6 do not face this problem, as quantified
formulas are perfectly allowed to occur in premise sets.
For instance, the set {Pa, Qa, Pb, Qb, Vx(Px D Rx)} I-
confirms the hypothesis Vx(Rx D Qx)

Pa, Qa, Pb, Qb, Vx(Px D Rx) 1 Vx(Rx D QOx) .
(11.35)

It seems, then, that I-confirmation is not too restric-
tive a criterion for confirmation. However, there are two
senses in which I-confirmation, like Hempelian confir-
mation, can be said to be too liberal. The first has to
do with Goodman’s well-known new riddle of induc-
tion [11.21]. The family of adaptive logics for inductive
generalization makes no distinction between regulari-
ties that are projectible and regularities that are not.
Using Goodman’s famous example, let an emerald be
grue if it is green before January 1st 2020, and blue
thereafter. Then the fact that all hitherto observed emer-
alds are grue confirms the hypothesis that all emeralds
are grue. The latter regularity is not projectible into the
future, as we do not seriously believe that in 2020 we
will start observing blue emeralds. Nonetheless, it is
perfectly fine to define a predicate denoting the prop-
erty of being grue, just as it is perfectly fine to define
a predicate denoting the property of being green. Yet
the hypothesis all emeralds are green is projectible,
whereas all emeralds are grue is not.

The problem of formulating precise rules for de-
termining which regularities are projectible and which
are not is difficult and important, but it is an epis-
temological problem that cannot be solved by purely
logical means. Consequently, it falls outside the scope
of this article. See [11.21] for Goodman’s formulation
and proposed solution of the problem, and [11.22] for
a collection of essays on the projectibility of regulari-
ties.

Finally, one may argue that I-confirmation is too
liberal on the basis of Hempel’s own raven paradox.
Where Ra abbreviates that a is a raven, and Ba abbre-
viates that a is black, a non-black non-raven I-confirms
the hypothesis that all ravens are black

—Ba, ~Ra 1 Vx(Rx D Bx) . (11.36)
Even the logic G does not block this inference. The
reason is that we are given a positive instance of
the generalization Vx(—Bx D —Rx), so we can derive
this generalization on the condition 3x(—Bx A =Rx) A
Ax(—Bx A Rx). As the generalization Vx(—Bx D —Rx)

241

'l | ) Med



242

h°LL | ) Med

Part C

The Logic of Hypothetical Reasoning, Abduction, and Models

is G-derivable from the premises, so is the logically
equivalent hypothesis that all ravens are black, Vx(Rx D
Bx) (remember that G, like all logics defined in the pre-
vious section, is closed under CL).

Hempel’s own reaction to the raven paradox was
to bite the bullet and accept its conclusion [11.23].
According to Hempel, a non-black non-raven indeed
confirms the raven hypothesis in case we did not know
beforehand that the bird in question is not a raven. For
example, if we observe a grey bird resembling a raven,
then finding out that it was a crow confirms the raven
hypothesis [11.18]. But as pointed out in [11.19] this
defense is insufficient. Even in cases in which it is
known that a non-black bird is not a raven, the bird
in question, although irrelevant to the raven hypothesis,
still confirms it.

If — like Hempel — one accepts its conclusion, the
raven paradox poses no further problems for I-confir-
mation. Those who disagree are referred to the Ap-
pendix, where a relatively simple adaptive alternative
to G-confirmation is defined which blocks the paradox
by means of a non-material conditional invalidating the
inference from all non-black objects are non-ravens to
all ravens are black.

1.4.2 1-Confirmation
and the Hypothetico-Deductive
Model

If a hypothesis predicts an event which is observed at
a later time, or if it subsumes a given observation re-
port as a consequence of one of its postulates, then
this counts as evidence in favor of the hypothesis. The
hypothetico-deductive model of confirmation (HD con-
firmation) is an attempt to formalize this basic intuition
according to which a piece of evidence confirms a hy-
pothesis if the latter entails the evidence.

In its standard formulation, HD confirmation also
takes into account auxiliary hypotheses. Where A is
a set of background information distinct from the evi-
dence E,

Definition 11.8 HD-confirmation
E HD-confirms H relative to A iff:

(i) {H}U A is consistent,
(i) {H} U A entails E {H} U A E),
(iii) A alone does not entail E (A I/ E).

The intuitive difference conveyed by HD confirmation
and Hempelian confirmation becomes concrete if HD
confirmation is compared with Hempel’s adequacy cri-
teria from Sect. 11.4.1. Let H abbreviate Black swans
exist, let E consist of a black swan, and let A be

the empty set. Then, according to Hempel’s entailment
condition, H is confirmed by E, since E - H. Not so
according to HD confirmation, for condition (ii) of
Definition 11.8 is violated (H I# E) [11.24]. The same
example illustrates how HD confirmation violates the
following condition, which holds for the satisfaction
criterion in view of Definition 11.7 [11.25]:

(4) Complementarity condition: E confirms H iff E dis-
confirms —H.

The consequence condition too is clearly invalid
for HD confirmation. For instance, Ra O Ba HD con-
firms Vx(Rx D Bx), but it does not HD confirm the
weaker hypothesis Yx(Rx O (BxV Cx)), since Vx(Rx D
(Bx Vv Cx)) I/ Ra D Ba.

An advantage of HD confirmation is that it fares bet-
ter with the raven paradox. The observation of a black
raven (Ra, Ba) is not deducible from the raven hypoth-
esis Vx(Rx D Bx), so black ravens do not in general
confirm the raven hypothesis. But birds that are known
to be ravens do confirm the raven hypothesis once it
is established that they are black. For once it is known
that an object is a raven, the observation that it is black
is entailed by this knowledge together with the hypothe-
sis (Vx(Rx D Bx), Ra - Ba). Likewise, a non-black non-
raven does not generally confirm the raven hypothesis.
Only objects that are known to be non-black can con-
firm the hypothesis by establishing that they are not
ravens. In formulas: Vx(Rx D Bx), —~Ba F —Ra.

HD confirmation faces a number of standard objec-
tions, of which three are discussed here. The first is the
problem of irrelevant conjunctions and disjunctions. In
view of Definition 11.8 it is easily checked that when-
ever a hypothesis H confirms E relative to A, so does
H’ = H AK for any arbitrary K consistent with A. Thus
adding arbitrary conjuncts to confirmed hypotheses pre-
serves confirmation. Dually, adding arbitrary disjuncts
to the data likewise preserves confirmation. That is,
whenever H confirms E relative to A, H also confirms
E’ relative to A, where E' = E V F for any arbitrary F.

Various solutions have been proposed for dealing
with such problems of irrelevancy, but as so often the
devil is in the details (see [11.20] for a nice overview
and further references). For present purposes, it suf-
fices to say that I-confirmation is not threatened by
problems of irrelevance. Clearly, if the evidence E I-
confirms a hypothesis H, it does not follow that it I-
confirms H A K for some arbitrary K consistent with
A, since from {E} U Ay H it need not follow that
{E}U A1 HAK. Nor does it follow that EV F con-
firms H relative to A, since from {E} U A 1 H it need
not follow that {E vV F} U Ay H.

A second objection against HD confirmation con-
cerns the inclusion of background information in Def-
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inition 11.8. In general, this inclusion is an advantage,
since evidence often does not (dis)confirm a hypothesis
simpliciter. Rather, evidence (dis)confirms hypotheses
with respect to a set of auxiliary (background) assump-
tions or theories. The vocabulary of a theory often
extends beyond what is directly observable. Notwith-
standing Hempel’s conviction to the contrary, nowadays
philosophers largely agree that the use of purely the-
oretical terms is both intelligible and necessary in
science [11.26]. Making the confirmation relation rel-
ative to a set of auxiliaries allows for the inclusion
of bridging principles connecting observation terms
with theoretical terms, permitting purely theoretical
hypotheses to be confirmed by pure observation state-
ments [11.27]. However, making confirmation relative
to background assumptions makes HD vulnerable to
a type of objection often traced back to Duhem [11.28]
and Quine [11.29]. Suppose that a hypothesis H entails
an observation E relative to A, and that E is found to
be false. Then either (a) H is false or (b) a member
of A is false. But the evidence does not tell us which
of (a) or (b) is the case, so we always have the op-
tion to retain A and blame some auxiliary hypothesis in
the background information. More generally, one may
object that what gets (dis)confirmed by observations is
not a hypothesis taken by itself, but the conjunction of
a hypothesis and a set of background assumptions or
theories.

With Elliott Sober, we can counter such holistic ob-
jections by pointing to the different epistemic status of
hypotheses under test and auxiliary hypotheses (or hy-
potheses used in a test). Auxiliaries are independently
testable, and when used in an experiment we already
have good reasons to think of these hypotheses as true.
Moreover, they are epistemically independent of the test
outcome. So if a hypothesis is disconfirmed by the HD
criterion, we can, in the vast majority of cases, maintain
that it is the hypothesis we need to retract, and not one
of the background assumptions [11.30].

A parallel point can be made concerning I-confir-
mation. Here too, we can add to the premises a set
A of auxiliary or background assumptions. And here
too, we can use Sober’s defence against objections
from evidential holism. A nice feature of I-confirma-
tion is that in adaptive proofs the weaker epistemic
status of hypotheses inferred from an observation re-
port in conjunction with a set of auxiliaries is reflected
by their non-empty condition. Whereas auxiliaries are
introduced as premises on the empty condition, induc-
tively generated hypotheses are derived conditionally
and may be retracted at a later stage of the proof.
For a more fine-grained treatment of background infor-
mation in adaptive logics for inductive generalization,
see [11.5, Sect. 6].

The third objection against HD confirmation dates
back to Hempel’s [11.17], in which he argued that a vari-
ant of HD confirmation (which he calls the prediction
criterion of confirmation) is circular. The problem is
that in HD confirmation the hypothesis to be confirmed
functions as a premise from which we derive the evi-
dence, and that it is unclear where this premise comes
from. The hypothesis is not generated, but given in ad-
vance, so HD confirmation presupposes the prior attain-
ment — by inductive reasoning — of a hypothesis. This in-
ductive move, Hempel argues, already presupposes the
idea of confirmation, making the HD account circular.

The weak step in Hempel’s argument consists in
his assumption that the inductive jump to the origi-
nal attainment of a hypothesis already presupposes the
confirmation of this hypothesis. In testing or generat-
ing a hypothesis we need not yet believe or accept it.
Typically, belief and acceptance come only after con-
firming the hypothesis. Indeed, in probabilistic notions
of confirmation the idea is often exactly this: confirming
a hypothesis amounts to increasing our degree of belief
in it. Hempel’s circularity objection, it seems, confuses
hypothesis generation and hypothesis confirmation.

Hempel’s circularity objection does not undermine
HD confirmation, but it points to the wider scope of the
adaptive account as compared to HD confirmation. In
an I-proof, the conditional rule allows us to generate
hypotheses. Hypotheses are not given in advance but
are computable by the logic itself. Moreover, a clear
distinction can be made between hypothesis generation
and hypothesis confirmation. Hypotheses generated in
an I-proof may be derivable at some stage of the
proof, but the central question is whether they can be
retained — whether they are finally derivable. I-confir-
mation, then, amounts to final derivability in an I-proof
whereas the inductive step of hypothesis generation is
represented by retractable applications of RC.

11.4.3 Interdependent Abnormalities
and Heuristic Guidance

For any of the adaptive logics for inductive general-
ization defined in this chapter, at most one positive
instance is needed to try and derive and, subsequently,
confirm a generalization for a given set of premises.
This is a feature that I-confirmation shares with the
other qualitative criteria of confirmation. As a simple
illustration, note that an observation report consist-
ing of a single observation Pa confirms the hypothesis
VxPx according to all qualitative criteria discussed in
this chapter. Proponents of quantitative approaches to
confirmation may object that this is insufficient; that
a stronger criterion is needed which requires more than
one instance for a hypothesis to be confirmed. Against
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this view, one can uphold that confirmation is mainly
falsification-driven. Rather than confirming hypotheses
by heaping up positive instances, we try and test them
by searching for negative instances. In the remainder
of this section, it is argued by means of a number of
examples that I-confirmation is sufficiently selective as
a criterion for confirming generated hypotheses. The
examples moreover allow for the illustration of an ad-
ditional feature of I-confirmation: its use as a heuristic
guide for provoking further tests in generating and con-
firming additional hypotheses.

Simple examples like the one given in the previous
paragraph may suggest that, in the absence of falsifying
instances, a single instance usually suffices to I-con-
firm a hypothesis. This is far from the truth. Consider
the simple premise set [ = {—PaV Qa, —Qb, Pc}. This
premise set contains instances of all of the generaliza-
tions VxPx, Yx—Qx, and Vx(Px D Qx). Not a single one
of these is IL-confirmed, however, due to the derivabil-
ity of the following disjunctions of abnormalities

1PxV!0x , (11.37)
1PxV!(=PxV Qx) , (11.38)

1(PxV Qx)V!I(=PxV Qx) , (11.39)
10xV!(=PxV Qx) , (11.40)

1(=Px Vv Qx)V!(=Px Vv —=Qx) . (11.41)

Note that I contains positive instances of both VxPx
and Vx—Qx, so not even a positive instance suffices
for a generalization to be finally IL-derivable in the
absence of falsifying instances. The same is true if
we switch from IL to G. None of VxPx, Vx—Qx, or
Vx(Px D Qx) is G-confirmed, due to the derivability of
the following disjunctions of abnormalities

+PxVv +0x, (11.42)
+PxV (Px A £0Qx), (11.43)
+0x Vv (Ox A £Px) . (11.44)

The reason for the non-confirmation of generalizations
like VxPx, Vx—Qx, or Vx(Px D Qx) in this example
has to do with the dependencies that exist between
abnormalities. Even if a generalization is not falsified
by the data, it is often the case that this generaliza-
tion is not compatible with a different generalization
left unfalsified by the data. As a further illustration,
consider the premise set I; = {—Ra, —Ba, Rb}. Again,
although no falsifying instance is present, the general-
ization Vx(Rx D Bx) is not IL-derivable. The reason is
the derivability of the following minimal disjunction of
abnormalities

!(=Rx V Bx)V!(—=Rx V —Bx) . (11.45)

Examples like these illustrate that I-confirmation is
not too liberal a criterion of confirmation. They also
serve to illustrate a different point. Minimal Dab-for-
mulas like (11.45) evoke questions. Which of the two
abnormalities is the case? For this particular premise
set, establishing which of Bb or —Bb is the case
would settle the matter. For if Bb were the case, then
the second disjunct of (11.45) would be derivable,
and (11.45) would no longer be minimal. Consequently,
the abnormality 3x(—Rx Vv Bx) A 3x—(—Rx Vv Bx) would
no longer be part of a minimal disjunction of abnor-
malities, and the generalization Vx(Rx D Bx) would
become finally derivable. Analogously, if —=Bb were the
case, then the first disjunct of (11.45) would become
derivable, and, by the same reasoning, the generaliza-
tion Yx(Rx D —Bx) would become finally derivable.
Thus

I3 U{Bb} 11, Vx(Rx D Bx) ,
I5 U {—'Bb} =19 VX(R)C D) —'BX) .

(11.46)
(11.47)

Two more comments are in order here. First, this ex-
ample illustrates that confirming a hypothesis often
involves the disconfirmation of the contrary hypothe-
sis. We saw that if we use Hempel’s criterion a non-
black non-raven confirms the raven hypothesis. But as
Goodman pointed out “the prospects for indoor or-
nithology vanish when we notice that under these same
conditions, the contrary hypothesis that no ravens are
black is equally well confirmed” [11.21, p. 71]. Thus,
according to Goodman, confirming the raven hypoth-
esis Vx(Rx D Bx) requires disconfirming its contrary
Vx(Rx D —Bx). This is exactly what happens in the ex-
ample: in order to IL-derive Vx(Rx D Bx), a falsifying
instance for its contrary is needed, as (11.46) illustrates.
Goodman’s suggestion that the confirmation of a hy-
pothesis requires the falsification/disconfirmation of its
contrary was picked up by Israel Scheffler, who de-
veloped it further in his [11.31]. Note that falsifying
the contrary of the raven hypothesis amounts to find-
ing a positive instance of the raven hypothesis. Thus, in
demanding a positive instance before permitting gen-
eralization in a G-proof, the latter system goes further
than IL in implementing Goodman’s idea. As we saw,
however, not even G goes all the way: a generalization
may be G-derivable even in the absence of a positive
instance.

Second, if empirical (observational or experimen-
tal) means are available to answer questions like
Y Bb, —Bb} in the foregoing example, these questions
may be called tests [11.2]. Adaptive logics for in-
ductive generalization provide heuristic guidance in
the sense that interdependencies between abnormalities
evoke such tests. Importantly, further tests may lead to
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the derivability of new generalizations. In the example,
deciding the question ?{Bb, —Bb} in favor of Bb leads
to the confirmation of Vx(Rx D Bx) and to the discon-
firmation of Vx(Rx D —Bx), while deciding it in favor
of —=Bb leads to the confirmation of Vx(Rx D —Bx) and
to the disconfirmation of Vx(Rx D Bx). This is an im-
portant practical advantage of I-confirmation over other
qualitative criteria: adaptive logics for inductive gen-
eralization evoke tests for increasing the number of
confirmed generalizations.

The illustrations so far may suggest that this heuris-
tic guidance provided by I-confirmation only applies
to hypotheses that are logically related or closely con-
nected, like the raven hypothesis and its contrary. But
the point is more general, as the following example il-
lustrates.

Consider the premise set

Iy = {Pa, Qa,—Ra,—Pb,
—Qb, Rb, Pc,Rc, Qd, —Pe} .

Despite the fact that Iy contains positive instances of
the generalizations Vx(Px D Qx) and Vx(Rx D —Qx),
and despite the fact that these generalizations are not
falsified by g, none of them is IL-derivable due to the
derivability of the disjunction

1(=Px Vv Ox)V!(—=Rx VvV =Qx) . (11.48)

11.5 Conclusions

A number of adaptive logics for inductive generaliza-
tion were presented each of which, it was argued, can
be re-interpreted as a criterion of confirmation. The log-
ics in question can be classified along two dimensions.
The first dimension concerns when it is permitted to
introduce a generalization in an adaptive proof. The
logic LI permits the free introduction of generaliza-
tions. IL and G require instances of a generalization
before introducing it in a proof. Interestingly, these
stronger requirements do not result in stronger log-
ics.

The second dimension along which the logics de-
fined in this chapter can be classified concerns their

By the same reasoning as in the previous illustration,
I3 evokes the question ?{Qc, —Qc}. If this question is
a test (if it can be answered by empirical means), the
answer will confirm one of the generalizations Yx(Px D
0x) and Vx(Rx D —Qx), and will disconfirm the other
generalization [11.2].

The example generalizes. In LI and G too, the
derivability of Vx(Px D Qx) and Vx(Rx D —Qx) is
blocked due to the CL-derivability of the LI-minimal
Dab-formula (11.49), respectively the G-minimal Dab-
formula (11.50)

(11.49)
(11.50)

=Vx(Px D Qx) vV =Vx(Rx D —Qx) ,
(PxA£0x) Vv (Rx A £0x) .

Here too, deciding the question 7{Qc, —=Qc} resolves the
matter. Thus, where I € {LI, IL, G}

I3 by Yx(Px D Qx) , (11.51)

I 1 Vx(Rx D —Qx) , (11.52)

I3 U{Qc} 1 Vx(Px D Qx), (11.53)
I3 U{Qc} H Vx(Rx D —=Q0x) , (11.54)
I3 U{—=Qc} /1 Vx(Px D Qx) , (11.55)
I3 U {—=Q0c} 1 Vx(Rx D —=Qx) . (11.56)

For some concrete heuristic rules applicable to the logic
LI, see [11.3].

adaptive strategy. Here, no surprises arise. A logic de-
fined using the reliability strategy is in general weaker
than its counterpart logic defined using the minimal
abnormality strategy (this was shown to be the case
for all adaptive logics defined within the standard for-
mat [11.7, Theorem 11]).

When re-interpreted as criteria of confirmation, the
logics defined here withstand the comparison with their
main rivals, i. e., Hempel’s satisfaction criterion and the
hypothetico-deductive model of confirmation. In con-
clusion, the adaptive confirmation criteria defined in
Sect. 11.4 offer an interesting alternative perspective on
(qualitative) confirmation theory.
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11.A Appendix: Blocking the Raven Paradox?

If a formalism defined in terms of CL behaves overly
permissive, a good strategy to remedy this problem is
to add further criteria of validity or relevance. For in-
stance, in order to avoid problems of irrelevant conjunc-
tions and disjunctions, hypothetico-deductivists may
impose further demands on HD confirmation [11.32-
35].

A similar strategy could be adopted with respect to
I-confirmation and the raven paradox. In this appendix,
an alternative adaptive logic of induction, IC, is defined,
as is a corresponding criterion of confirmation which is
slightly less permissive than the criteria from Sect. 11.4.
IC makes use of a non-classical conditional resembling
a number of conditionals originally defined in order to
avoid the so-called paradoxes of material implication.
First, an extension of CL is introduced, including this
new conditional connective. Next, the adaptive logic IC
is defined.

The new conditional, —, is fully characterized by
the following rules and axiom schema’s

AA—B) P)
B
A=B RCEA
A>CO)=(B-C) ( )
A=B RCEC
(C>A)=(C—B)’ ( )
(A= (BAC)=((A— B A(A—C)), (DA
(AVB)->(O)=(A—-> O A(B—0), (Dv)

((RCEA), (RCEC), and (DA) fully characterize the con-
ditional of Chellas’s logic CR from [11.36]. The latter
was also used for capturing explanatory conditionals
in [11.37]. See also [11.38, Chap. 5] for some closely
related conditional logics, including an extension of
Chellas’s systems that validates (MP).)

Let CL™ be the logic resulting from adding — to
the language of CL, and from adding (MP)-(DV) to the
list of rules and axioms of CL. Note that the conditional
— is strictly stronger than D

(A—>B)D(ADB). (11.57)

(By (MP), A, (A — B) FcL— B. By the deduction the-
orem for D, A— Blc¢cL—~ A D B. By the deduction
theorem again, F¢c.— (A — B) D (A D B).)

In view of this bridging principle between both
conditionals it is easily seen that counter-instances to
a formula of the form Vx(A(x) D B(x)) form counter-
instances to Vx(A(x) — B(x)), and falsify the latter for-
mula as well. For instance, if Pa A —=Qa, then, by CL,
=Vx(Px D Qx), and, by (11.57), =Vx(Px — Qx).

The adaptive logic IC is fully characterized by the
lower limit logic CL ™, the set of abnormalities

1c =ar {FAI A ... AAL A AY)
AN _‘V((Al A AA) = Ag) |
Ao, A1, ..., A, e A n>0}, (11.58)

and the adaptive strategy reliability (IC") or minimal
abnormality (IC™). IC is defined within the SF. All
rules and definitions for its proof theory are as for the
other logics defined in this chapter, except that in the
definition of RU and RC, CL is replaced with CL™.

The following proof illustrates how formulas are de-
rived conditionally in IC

1 —Ra Prem
[

2 =Ba Prem
[

3 Vx(—=Bx— —Rx)
{3x(—=Bx A =Rx) A =Vx(—Bx — —Rx)}

1,2;RC

Given only the premises —Ra and —Ba, there is no
possible extension of this proof in which line 3 gets
marked. Hence

—Ra, —Ba Fyc Yx(—Bx — —Rx) . (11.59)

However, contraposition is invalid for the new condi-
tional —, hence we cannot derive the raven hypothesis
from the formula derived at line 3. Note also that, in
view of (11.60), we cannot use the conditional rule RC
to derive Vx(Rx — Bx) on the condition {3x(Rx A Bx) A
—Vx(Rx — Bx)} in an IC-proof, since

—Ra, —Ba t/cL—~ Vx(Rx — Bx)

V (3x(Rx A Bx) A =Vx(Rx — Bx)) . (11.60)
Therefore
—Ra, —Ba t/c Yx(Rx — Bx) . (11.61)

Thus, if conditional statements of the form for all x, if
A(x) then B(x) are taken to be IC-confirmed only if the
conditional in question is an arrow (—) instead of a ma-
terial implication, then the raven paradox, in its original
formulation, is blocked.

An additional property of IC is that strengthening
the antecedent fails for —. In Sect. 11.3, for instance,
we saw that

Patg Vx(Qx D Px) . (11.62)
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In IC, (11.62) still holds for the material implication,
but not for the new conditional. In an IC-proof from
Pa we can still derive VxPx on the condition {IxPx A
dx—Px}, and since IC extends CL it still follows that
Vx(Px D Qx)

Palyc VxPx,
Patyc Vx(Qx D Px) .

(11.63)
(11.64)

However, since VxPx e~ Vx(QOx — Px), and since
we do not have any further means to conditionally de-
rive the formula Vx(Qx — Px) in an IC-proof

Pa thce Vx(Qx — Px) . (11.65)

Originally, the logics in the G-family were constructed
as logics requiring a positive instance before we are al-
lowed to apply RC. This is reflected in the definition
of the set of G-abnormalities. In order to derive a for-
mula like Vx(Px D QOx) on its corresponding condition,
a positive instance, e.g., Pa A Qa, is needed. Examples
like (11.36) and (11.62) show, however, that such a pos-
itive instance is not always required in order to G-derive
a generalization. The logic IC, it seems, does much bet-
ter in this respect. However, it still does not fully live up
to the requirement for a positive instance before gener-
alizing, as the following IC-proof from Iy = {—Ra A
—Ba, Rb, Bc) illustrates (where Ag, Ay, ..., A, € A1,
T((A;A...AA,) = Ap) abbreviates (A A...AA, A
Ao) VAN —'V((Al VAN /\An) — Ao))

1 —RaA—-Ba Prem
]

2 Rb Prem
]

3 Bc Prem
]

References

4  Vx(—Bx — —Rx) I;RC
{f(=Bx — —Rx)}

5 Bb 2,4;RU
{f(=Bx — —Rx)}

6 Vx(Rx — Bx)
{T(Rx — Bx), T(—=Bx — —Rx)}

2,5;RC

The key step in this proof is the derivation of Bb at
line 5, which together with Rb provides us with a pos-
itive instance of the raven hypothesis. Bb is derivable
from lines 2 and 4 in view of CL and (11.57). Ex-
cept for the formulas IxRx A Ix—Rx and IxBx A Ix—Bx,
no minimal Dab-formulas are CL ™ -derivable from I5.
Therefore

Iy Fic Vx(Rx — Bx) . (11.66)

As (11.61) illustrates the logic IC avoids the raven
paradox in its original formulation. A possible draw-
back of IC is that it does not fully meet the demand
for a positive instance when confirming a hypothesis
(Sect. 11.4.3). It is left open whether it is possible and
desirable to further extend IC so as to fully meet this
demand.
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