
GPLMT: A Lightweight Experimentation
and Testbed Management Framework

Matthias Wachs1(B), Nadine Herold1, Stephan-A. Posselt1, Florian Dold2,
and Georg Carle1

1 Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany
{wachs,herold,posselt,carle}@net.in.tum.de

https://www.net.in.tum.de
2 Chair for Network Architectures and Services, Department for Informatics,

Technical University of Munich (TUM), Munich, Germany
dold@in.tum.de

Abstract. Conducting experiments in federated, distributed, and het-
erogeneous testbeds is a challenging task for researchers. Researchers
have to take care of the whole experiment life cycle, ensure the repro-
ducibility of each run, and the comparability of the results. We present
GPLMT, a flexible and lightweight framework for managing testbeds and
the experiment life cycle. GPLMT provides an intuitive way to formal-
ize experiments. The resulting experiment description is portable across
varying experimentation platforms. GPLMT enables researchers to man-
age and control networked testbeds and resources, and conduct experi-
ments on large-scale, heterogeneous, and distributed testbeds. We state
the requirements and the design of GPLMT, describe the challenges of
developing and using such a tool, and present selected user studies along
with their experience of using GPLMT in varying scenarios. GPLMT is
free and open source software and can be obtained from the project’s
GitHub repository.

Keywords: Testbed management · Experimentation

1 Introduction

Network testbeds are an invaluable tool for researchers developing network pro-
tocols and networked systems to test a novel approach and existing, already
deployed solutions “in the wild”. A large variety of testbeds is available to
researchers. Many of them focus on a specific domain (e.g. wireless experimen-
tation, high-precision measurements, real-world network testbeds), and most of
them use a non-standardized and domain-specific approach to how the testbed is
designed, accessed, managed, and experiments are controlled, requiring manual
adaptation for every experiment. When trying to transfer such an experiment
to a different testbed, the experimenter has to adapt—and most of the time
rewrite—the experiment to be able to transfer the experiment to a different
platform. This makes it difficult to reproduce and confirm experiment results for
both the researcher as well as the research community.

A testbed may be heterogeneous with respect to the hardware and the oper-
ating system, and may be physically distributed across more than one location.
c© Springer International Publishing Switzerland 2016
T. Karagiannis and X. Dimitropoulos (Eds.): PAM 2016, LNCS 9631, pp. 165–176, 2016.
DOI: 10.1007/978-3-319-30505-9 13

166 M. Wachs et al.

This allows the researcher to evaluate reliability and portability under close to
real-world conditions. However, an experiment is challenging to manage in a com-
plex testbed. The life cycle of a network experiment comprises tasks such as test-
bed configuration, resource allocation, experiment definition, and deployment.
Many testbed environments, for example PlanetLab, Emulab, or GENI, focus on
testbed configuration and resource allocation but do not consider executing the
experiment itself. The experiment’s execution plan may require assigning differ-
ent tasks to subsets of nodes in a precise timely manner to control the execution.
At the end, the results need to be collected from all nodes. Monitoring and error
handling also have to be considered, as resources may become unavailable, or a
sub-task may fail. At worst, an experiment lasting several days has to be repeated.

Experiment runs often share similarities, but are still set up manually, or with
the help of ad hoc scripts which are rarely reusable. Instead of implementing ad
hoc solutions specific to our particular problems, we decided to realize a flexible
and extensible testbed and experimentation tool, supporting us in our work and
to make it available to the public.

With this work, we present GPLMT, a flexible, lightweight experimenta-
tion and testbed management tool. GPLMT provides an intuitive way for users
to define experiments, supports the full experimentation life cycle, and allows
experiments to be transferred between different testbeds and platforms, ensuring
reproducibility and comparability of experiment results. GPLMT is free software
and its source code is publicly available on the GPLMT website1. In the remain-
der of this paper we will give an overview of GPLMT, state the requirements
and challenges for such a tool, and describe the design and implementation. We
also describe the experiences of users working with GPLMT in various scenarios.

2 GPLMT Features

GPLMT is started on a control node and executes a user-supplied XML-based
experiment description. GPLMT provides an experiment definition language to
define the resources participating in the experiment, the tasks to execute and
including specific order and parallelism, and to assign such tasks to resources.
In addition, it allows the inclusion of files to reuse experiment definitions and to
group resources. GPLMT connects to the nodes via SSH and can be extended
with additional communication backends, runs tasks on the nodes, i.e. platform-
specific binaries or executable scripts, and can transfer files between the con-
troller and the nodes. To simplify the use of PlanetLab, GPLMT supports
importing information about available and assigned nodes from the user’s Planet-
Lab account using the PlanetLab-API. Testbed specific functionality, e.g. setting
link properties in the testbed, can be accessed in GPLMT using external scripts
if the testbed provides an API. GPLMT offers additional features focusing on
handling the intricacies of testbeds: the user can annotate commands with dif-
ferent modes of failure and register arbitrary cleanup actions to, for example,
kill processes and delete temporary files.
1 https://github.com/docmalloc/gplmt.

https://github.com/docmalloc/gplmt

GPLMT: A Lightweight Experimentation 167

3 Requirements and Challenges

In this section, we highlight the requirements for the design of an experimenta-
tion and management tool realizing the features described in Sect. 2 and based on
experiences obtained from conducting different types of experiments with various
testbeds, exchange with the research community and an analysis of possible use
cases varying from managing large scale and unreliable to small virtualization
based testbeds.

Self-Containment. GPLMT is intended as a lightweight tool for researchers
and experimenters. The tool should neither require a complex experimentation
infrastructure, rely on client software like agents installed on testbed nodes nor
have requirements for external services like a database server. The tool shall be
realized as a portable, platform independent stand-alone tool.

Scalability is important for the experimentation tool to support large-scale
testing and experimentation. When conducting experiments with many partic-
ipants, orchestration and controlling of a large number of different nodes is a
challenging task since large delays and setup times have to be prevented.

Resource Restrictions. Experimentation with GPLMT may be limited due to
restrictions in the surrounding environment. Establishing a large number of con-
nections to a large number of nodes has to be realized efficiently. Therefore,
GPLMT has to be aware of resource restrictions in the host environment and reuse
connections and provide rate limiting for new connections being established.

Heterogeneous Testbeds and Nodes. GPLMT has to make experimentation
independent from the testbed platform and the participating nodes. Experiments
have to be executable in heterogeneous environments with different operating
systems and different versions of the operating system.

Fault Tolerance in Unreliable Environments. In real-world and large-scale
network testbeds availability of resources cannot always ensured: not all assigned
nodes and resources may be available or can fail during an experiment and
become available again. GPLMT, therefore, has to cope with unreliable resources
and has to provide automatic error handling and recovery transparent to the
experiment.

High-level Experiment Definition. With GPLMT experiment definition shall
be done on a high level of abstraction, to allow the experimenter to focus on
essential aspects of experiment design and control flow without getting distracted
by implementation details.

Experiment Reproducibility. Experiment reproducibility is essential for con-
firmability of experimental results. GPLMT has to support an experiment flow
making execution independent from participants, resources, testbeds, external
dependencies and state based on a high-level definition of experiments.

Experiment Portability, Reusability and Extensibility. Experiments shall
be transferable to other testbeds infrastructures and allow researchers to share

168 M. Wachs et al.

experiment definitions. Employing an abstraction over the testbed infrastruc-
ture and using a high-level description of an experiment allows an experiment
definition to be reused and to be varied in different scenarios speeding up the
testing process.

Grouping Entities in Experiments. In an experiment, tasks and resources
may be assigned to different groups of nodes. GPLMT shall provide the func-
tionality to group nodes and resources and to assign tasks to such a group.

Nested Task Execution and Synchronization. Within an experiment, tasks
often have to be executed in a specific order or can be executed in parallel.
GPLMT shall provide constructs to allow experimenters to specify the execution
order of tasks. Tasks may also be nested and grouped in such sequential and
parallel constructs. Additional synchronization barriers between the tasks have
to be provided.

Repeatable, Periodic and Scheduled Tasks for Experiments. Often tasks
inside an experiment have to be executed repeatedly or triggered periodically
or at a certain point in time (e.g. for periodic measurements). GPLMT has to
provide constructs to express a looping functionality and to schedule tasks to
be executed at certain point in time or after a certain duration without adding
high complexity.

Error Condition Handling in Experiments. In many cases the experiment
control flow depends on successful or failed execution of tasks, making subse-
quent operations useless or the whole experiment fail. Therefore, GPLMT has to
allow the experimenter to define the expected result of a task and how an error
condition has to be handled. In addition, functionality to define a clean up and
tear down task—executed before the experiment is terminated—is beneficial.

4 GPLMT Design and Implementation

GPLMT is designed as a stand-alone tool running on the so-called GPLMT con-
troller. The GPLMT controller is responsible for orchestrating the whole exper-
iment, i.e. scheduling tasks on the hosts of a testbed, from now on called nodes.
GPLMT manages a connection from the controller to each node. GPLMT does
not require any original services on the nodes, but relies on SSH, and possibly
other protocols in the future. In addition, GPLMT can use the PlanetLab-API to
obtain information about available nodes in the experimenter’s PlanetLab slice.
An experiment is conducted by passing an experiment description in a high-level
description language to GPLMT. The description tells GPLMT which nodes to
connect to, which files to exchange, and which tasks to run.

4.1 Resource Management

In large-scale experiments with many nodes, GPLMT will open a large number
of connections. SSH is particularly resource-intense. The SSH connection setup is

GPLMT: A Lightweight Experimentation 169

computationally expensive due to cryptography and may overload a low-powered
controller or the physical host of a virtualized testbed. A high rate of connection
attempts may stress IDS systems, and may trigger IDS alerts for alleged SSH
scanning.

GPLMT offers two solutions to limit its resource usage: connection reuse and
rate limiting of connection attempts. GPLMT will tunnel all commands to the
same node through a single control connection, but will still try to reconnect when
the connection is lost. GPLMT optionally delays connection attempts, including
reconnects, to not exceed a configurable number of attempts per interval.

4.2 Implementation

The GPLMT controller is implemented in Python 3. Besides a few Python
libraries and the Python interpreter itself, GPLMT only depends on the external
tools which are needed to connect to nodes. Notably, GPLMT wraps OpenSSH,
so all features of OpenSSH are available via a local OpenSSH configuration file.
GPLMT directly uses OpenSSH’s control master feature to reuse connections to
the same node.

5 GPLMT’s Experiment Definition Language

GPLMT provides a domain-specific language to describe the experiment setup
and execution. Its syntax is defined in an XML Schema obtained from a relax-ng
definition. Therefore, terms such as element and attribute refer to the respective
XML objects.

The experiment root element may contain multiple include, targets, and
tasklist elements and a single steps element. A targets element names the
nodes and can also be used to group nodes. tasklist defines a set of commands
to be run. Both definitions are tied together with the steps element, which
states which tasklist is to be executed on which targets and at what time.

Target and tasklist definitions are optional and may also be imported from
other documents. Targets and tasklists are distinguished and referenced by unique
names.

5.1 Targets

A target element names a member node, and specifies how to access the node.
The following types of targets are currently supported:

– local specifies execution on the GPLMT controller itself.
– ssh states that the nodes can be accessed using SSH. The child elements
username and password may provide credentials.

– planetlab specifies a PlanetLab node and accepts the PlanetLab-API-URL,
the slice, and the user name as attributes.

– group specifies a nested target definition, creating a set of nodes (and other
groups) addressable as a single target.

170 M. Wachs et al.

To support parameterization per target, each target definition can contain
multiple export-env elements, which declare an environment variable to be
exported. The value of this variable is then available to tasks on the target.

5.2 Tasklists

The tasklist binds a list of tasks to a name. A task is one of the following
predefined commands:

– get and put are used to exchange files between the controller and the targets.
– run accepts a command to be executed. When a target defines additional

environment variables, those are passed to the command using export-env.
– The par and seq elements contain nested lists of tasks. seq will run those

tasks in order, whereas par will immediately start all sub-tasks in parallel.
– call is used to reference a tasklist to be executed.

tasklist accepts the optional attributes cleanup, timeout, and error, con-
trolling the tasklist’s behavior in case of an error condition. cleanup references
another tasklist to be executed after the current tasklist, even if the current
tasklist aborts due to an error. This can be used to kill stale processes and
delete temporary files or to save intermediate results. timeout specifies the max-
imum amount of time the tasklist is allowed to execute before it is aborted. This
guarantees progress in case a command loops infinitely or dead-locks. on-error
determines how GPLMT continues when a task fails. The following fail modes
are available:

– abort-tasklist aborts the current tasklist and continues with the tasklist
specified by the surrounding context.

– abort-step aborts the current step and continues with the next step. Steps
are explained in Sect. 5.3.

– panic aborts the whole experiment.

5.3 Steps

The language requires exactly one steps element. It may contain multiple step,
synchronize, register-teardown, and repeat elements.

The step element determines which tasklists run on which target. A start
and a stop time can be added to schedule a task for later execution. Times
are either relative to the start of the experiment or absolute wall clock times,
allowing to defer a step until night-time when resources are available. Thus, step
elements form the basic building block for orchestrating the experiment.

Consecutive step elements run in parallel. A synchronize element repre-
sents barrier synchronization, and execution can only continue after all currently
running steps have finished.

register-teardown references a tasklist by name that is executed when
steps finishes. This tasklist is always executed, even if errors lead to the abortion

GPLMT: A Lightweight Experimentation 171

of the experiment. The registered tasklist is intended to contain cleanup tasks
and to transfer experiment results to the controller. The register-teardown
cleanup tasklist only needs to be registered right before the step that allocates
the corresponding resources is issued.

GPLMT’s experiment definition language offers basic loops within steps:
The repeat element loops over the enclosed steps until at least one of the fol-
lowing conditions is satisfied:

– a given number of iterations (iterations)
– a given amount of time has passed (during)
– a given point in time was passed (until)

These are deliberately simple conditions that only allow for decidable loops,
so it can be easily verified by manual inspection (or programmatically) whether
a loop terminates.

5.4 Example

In this section, we present a brief example for a GPLMT experiment to illustrate
how experiments are defined. In this experiment, we use GPLMT, running on the
controller, to generate network traffic on two nodes and capture this traffic using
a third monitoring node. Therefore, nodes A (IP 10.0.0.16) and B (IP 10.0.0.17)
ping each other. The monitor collects all network traffic using tcpdump. At the
end of the experiment, the resulting capture file is transferred to the controller.
Listing 1.1 shows a (slightly abbreviated) description for this experiment.

First of all, an external experiment description containing teardown func-
tionality is included (l. 4). Separating functionality in different files eases reuse
of frequently used targets and tasklists.

The definition for the three nodes A and B and monitor is done in the
targets element (ll. 6–23): nodes A and B are grouped into a target named
pingGroup. To ping each other, these hosts have to know the partner’s IP address
which is provided in the environment variable host.

The experiment workflow is defined in the steps element (ll. 37–45). The
different step elements reference tasklists from the tasklists element (ll. 25–
35). The experiment starts with instructing the monitor node to capture network
traffic using tcpdump (l. 38) using tasklist createPCAP (l. 26). To ensure tcpdump
is terminated at the end of the experiment, the experiment registers tasklist
stopMonitoring (l. 39), imported from a file (l. 4). Both tasklists, createPCAP
and stopMonitoring, are executed in parallel.

The synchronize statement (l. 41) ensures monitoring is started before the
nodes in group pingGroup (ll. 11–22) begin to ping each other (l. 42). Both
nodes execute the same tasklist doPing (ll. 29–31). The shell on respective node
expands the variable host (on l. 27) set to the other host’s IP address (ll. 15,20).

The synchronize statement (l. 43) blocks until the doPing tasklists have
finished (l. 30). The final step (l. 44) copies the captured traffic from the monitor
node to the controller.

172 M. Wachs et al.

Listing 1.1. Example: Generate and Monitor Network Traffic with GPLMT

1 <?xml version="1.0" encoding="utf -8" ?>

2 <experiment >

3
4 <include file="include/teardowns.xml" />

5
6 <targets >

7 <target name="monitor" type="ssh">

8 <user>testaccount </user>

9 <host>monitor.example </host>

10 </target>

11 <target name="pingGroup" type="group">

12 <target name="A" type="ssh">

13 <user>testaccount </user>

14 <host>10.0.0.16 </host>

15 <export -env var="host" value="10.0.0.17" />

16 </target >

17 <target name="B" type="ssh">

18 <user>testaccount </user>

19 <host>10.0.0.17 </host>

20 <export -env var="host" value="10.0.0.16" />

21 </target >

22 </target>

23 </targets >

24
25 <tasklists >

26 <tasklist name="createPCAP">

27 <run>tcpdump -i eth0 -w testrun.pcap &</run>

28 </tasklist >

29 <tasklist name="doPing">

30 <run>ping $host -c 10</run>

31 </tasklist >

32 <tasklist name="getData">

33 <get>testrun.pcap</get>

34 </tasklist >

35 </tasklists >

36
37 <steps >

38 <step tasklist="createPCAP" targets="monitor" />

39 <register -teardown ref="stopMonitoring"

40 targets="monitor" />

41 <synchronize />

42 <step tasklist="doPing" targets="pingGroup" />

43 <synchronize />

44 <step tasklist="getData" targets="monitor" />

45 </steps >

46 </experiment >

GPLMT: A Lightweight Experimentation 173

6 User Studies

In the following section, we present an overview of projects using GPLMT to
show the various different use cases and purposes GPLMT can be used for and
highlight the challenges emerging with respect to both experimentation as well as
using the GPLMT framework. Based on these experiences, we modified GPLMT
in the current version to cope with this challenges.

6.1 The GNUnet Project - Large-Scale Software Deployment
in Heterogeneous Testbeds

GNUnet2 is a GNU free software project focusing on a future, decentralized
Internet. GNUnet develops the GNUnet peer-to-peer (P2P) framework to allow
developers to realize decentralized networking applications.

GNUnet employs GPLMT to deploy the GNUnet framework to a large num-
ber of PlanetLab nodes to be able to test the software under real-world condi-
tions and to support bootstrapping of the network. GNUnet’s requirement was
to compile the latest GNUnet version on PlanetLab nodes directly.

GNUnet used GPLMT to provide the nodes with all software dependencies
required. While running, GNUnet was monitored to analyze the behavior of the
software and the P2P network and to obtain log files in case of a crash. With
GPLMT detailed information for every node could be obtained.

For GNUnet, the major challenge was the unreliability and heterogeneity
of the PlanetLab testbed. With a large number of nodes only a fraction were
accessible and working correctly. PlanetLab nodes only provide outdated soft-
ware and are very heterogeneous both with respect to versions of the operating
system and version of software installed. Nodes also often get unavailable during
operation.

6.2 OpenLab Eclectic - A Holistic Development Life Cycle for P2P
Applications

The OpenLab Eclectic Project3 focused on developing a holistic development
life cycle for distributed systems by closing the gap between the testbed and the
P2P community.

Eclectic used GPLMT to orchestrate, control and monitor networking, P2P
testing, and experimentation on different testbeds. GPLMT’s functionality to
define experiments and to interact with testbeds using an abstraction layer
allowed Eclectic to deploy distributed systems on local systems, HPC systems
like the SuperMUC4 and Internet testbeds like PlanetLab.

The main challenge for Eclectic was to define testbed independent experi-
ments to be able to transfer experiments between different testbeds. GPLMT was
2 https://gnunet.org.
3 http://www.ict-openlab.eu/experiments-use-cases/experiments.html.
4 https://www.lrz.de/services/compute/supermuc/.

https://gnunet.org
http://www.ict-openlab.eu/experiments-use-cases/experiments.html
https://www.lrz.de/services/compute/supermuc/

174 M. Wachs et al.

also used to setup network nodes and collect experimental results. Within this
project, GPLMT was integrated with the Zabbix5 network monitoring solution
to provide an integrated approach for infrastructure monitoring and experiment
scheduling.

6.3 Testbed Management for Attack and Defense Scenarios

Datasets to train and test Intrusion Detection Systems (IDS) under realistic and
reproducible conditions are hard to obtain and generate. Such datasets have to
provide a high diversity of attacks with a high packet frequency but also have
ensure reproducible results and provide a clear labeled information about the
data flows.

At TUM’s chair for network architectures and services, researchers used
GPLMT to generate such datasets with different attack scenarios. To generate
such datasets, a virtualized testbed environment with virtual machines grouped
into attackers, victims and monitoring machines was used. These machines were
used to execute attacks as well as provide defense mechanisms and obtain the
generated network traffic. In addition, this testbed was used to evaluate the
quality of port scanners and port scan detection tools with the results being
collected and interpreted afterwards.

The main challenge was the grouping of the different entities, as well as
the complex interaction and nesting of tasks assigned to the entities. Timing
aspects as well as synchronization were crucial to this setting. The monitoring
and generation of test datasets during the experiment executions was an addi-
tional challenge to be mastered.

6.4 Distributed Internet Security Analysis

In [1], security researchers developed a distributed, PlanetLab-based approach
to conduct large-scale scans of today’s TLS deployment in the wild. They used
PlanetLab nodes to perform distributed scans of large IP ranges and analyzed
the TLS certificates found on hosts. To conduct these scans, GPLMT was used
to deploy the scanning tool used to the PlanetLab nodes, orchestrate the mea-
surements, and obtain results from the nodes.

A major challenge in this use case was long lasting scan experiments in
combination with the large number of parallel SSH connections established to
PlanetLab nodes. The organization’s intrusion detection system detected these
connections as a malicious attack and blocked the control node as the source of
these connections on the network as a consequence.

The main challenge was the large number of connections to the PlanetLab
nodes. First, those connections had to be throttled during the experiment. Apart
from this, the number of connections established had to be managed.
5 http://www.zabbix.com/.

http://www.zabbix.com/

GPLMT: A Lightweight Experimentation 175

7 Related Work

Various different tools exist to manage and control network experiments. A rather
extensive list can be found on the PlanetLab website6. [1] provides a compre-
hensive analysis with respect to quality and usability of such tools, finding most
of them not usable or suitable to be used with respect to today’s network exper-
iments. Many of these tools are outdated and not available anymore (Plush,
Nebula, Plman, AppManager) or were not even made publicly available at all
(PLACS). Some of these tools provide rather basic functionality to invoke com-
mands on remote nodes (pssh, pshell, vxargs) not supporting error conditions
and error handling as well as orchestrating nodes to perform complex and syn-
chronized operations. The Stork project7 provides a deployment tool for Planet-
Lab nodes including configuration. This tool lacks fine-grained execution control
to setup more complex experiments. Gush (GENI User Shell) [2] claims to be an
execution management framework for the GENI testbed. Gush provides exten-
sive methods to define resources but is limited regarding control flow aspects.
Parallel or sequential execution is not possible in a straight forward manner. In
addition, Gush is not longer supported8.

Experimentation frameworks like NEPI [3] require the user to do rather com-
plex adaptations in the source code to extend it with new functionalities and
add support for new platforms. Approaches like OMF [4] focus on the manage-
ment and operation of network testbed infrastructures and federation between
infrastructures not focusing on the experiment part in the life cycle.

The COCOMA framework [5] focuses on providing an experimentation frame-
work for cloud based services to control and execute tests for cloud based services
in a controlled and reproducible manner and to study resource consumption of
such services. [6] proposes an emulated testbed for the domain of cyber-physical
systems. This work focuses more on the testbed implementation and less on the
execution of experiments.

8 Future Work

For future versions, we plan to decouple the GPLMT controller from the experi-
menter’s host and instead run GPLMT as a service on a dedicated control node.
Users would then submit experiments to the experiment queue of a testbed,
which is managed by GPLMT. This would ease the use of shared testbeds. Future
versions of GPLMT may support target types other than SSH and PlanetLab,
for example mobile devices. An intuitive user interface would ease experiment
monitoring and control. This feature was provided based on Zabbix in an earlier
version of GPLMT but is not available at the moment due to a recent refactoring
of the code base.
6 https://www.planet-lab.org/tools.
7 http://www.cs.arizona.edu/stork/.
8 http://gush.cs.williams.edu/trac/gush.

https://www.planet-lab.org/tools
http://www.cs.arizona.edu/stork/
http://gush.cs.williams.edu/trac/gush

176 M. Wachs et al.

9 Conclusion

The focus of GPLMT is to provide a lightweight and convenient way for exper-
imenters to conduct network experiments and manage testbed environments.
Instead of using handcrafted onetime scripts for every experiment, we envision
GPLMT to be flexible tool usable for different scenarios and use cases. Using
a high-level description language GPLMT offers opportunities to share experi-
ment descriptions among researchers and supports closer collaborations between
experimenters. Moreover, GPLMT’s language was designed to support error han-
dling, nested execution flows and different timing aspects to provide a high level
flexibility and adaptability. GPLMT is still under active development and will
be extended in the future. With this work, we want to present GPLMT to the
community and make it available for a broad audience. GPLMT is free software
and can be obtained from the repository9. Both feedback as well as contributions
from the community are highly appreciated.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) under support code 16KIS0145, project SURF.
The authors would like to thank Matthias Jaros, Oliver Gasser for their helpful feed-
back, Omar Tarabai for his work on GPLMT and the integration with Zabbix.

References

1. Jaros, M.: Distribution and orchestration of network measurements on the planet-
lab testbed. Bachelor’s thesis, Technische Universität München, Chair for Network
Architectures and Services, April 2015

2. Albrecht, J., Huang, D.Y.: Managing distributed applications using gush. In:
Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010.
LNICST, vol. 46, pp. 401–411. Springer, Heidelberg (2011)

3. Quereilhac, A., Lacage, M., Freire, C., Turletti, T., Dabbous, W.: Nepi: an inte-
gration framework for network experimentation. In: 19th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–5,
September 2011

4. Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: OMF: a control and manage-
ment framework for networking testbeds. ACM Oper. Syst. Rev. (OSR) 43, 54–59
(2010)

5. Ragusa, C., Robinson, P., Svorobej, S.: A framework for modeling and execu-
tion of infrastructure contention experiments. In: 2nd Internation Workshop on
Measurement-based Experimental Research, Methodology and Tools (2013)

6. Genge, B., Siaterlis, C., Fovino, I.N., Masera, M.: A cyber-physical experimenta-
tion environment for the security analysis of networked industrial control systems.
Comput. Electr. Eng. 38(5), 1146–1161 (2012). Special issue on Recent Advances
in Security and Privacy in Distributed Communications and Image processing

9 https://github.com/docmalloc/gplmt.

https://github.com/docmalloc/gplmt

	GPLMT: A Lightweight Experimentation and Testbed Management Framework
	1 Introduction
	2 GPLMT Features
	3 Requirements and Challenges
	4 GPLMT Design and Implementation
	4.1 Resource Management
	4.2 Implementation

	5 GPLMT's Experiment Definition Language
	5.1 Targets
	5.2 Tasklists
	5.3 Steps
	5.4 Example

	6 User Studies
	6.1 The GNUnet Project - Large-Scale Software Deployment in Heterogeneous Testbeds
	6.2 OpenLab Eclectic - A Holistic Development Life Cycle for P2P Applications
	6.3 Testbed Management for Attack and Defense Scenarios
	6.4 Distributed Internet Security Analysis

	7 Related Work
	8 Future Work
	9 Conclusion
	References

